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ABSTRACT OF THE DISSERTATION

Multiband Deblurring for Fluid Lens Cameras

by

Jack Tzeng

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California, San Diego, 2010

Professor Truong Q. Nguyen, Chair

Unique image processing challenges are produced by the Fluid Lens Camera

System. Over traditional glass lens systems, better miniaturization potential and

fixed length lens while zooming are unique abilities offered by the fluid lens. Non-

uniform blurring for each color plane of the image is also caused by the fluid in

the lens. A sharp green color plane and blurred blue and red color planes are also

produced by this fluid. For natural and medical images, the edges in the green

and blue color planes are similar. In this work, the sharpness of the blurred color

planes is improved by sharing edge information between color planes. Avoiding

shading artifacts while improving edge quality is the goal of this work. Several

algorithms are discussed: a wavelet-based algorithm, a contourlet-based algorithm,

a Support Vector Regression algorithm, and an Adaboost classification algorithm.
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In each algorithm, the strengths of the previous algorithm are built upon in order

to improve results. A major advantage of these methods is that shading and edge

information is combined without using a complicated point spread function. While

the focus of this dissertation is on using the green color plane to improve the blue

color plane, the same algorithms could be applied to the red color plane as well.

Infrared imaging, medical image overlaying, satellite mapping, and remote sensing

are all multiband system with high edge correlation where this work could be

applied.

xix



Chapter 1

Introduction

Developed by Lo, the Fluid Lens Camera System (FLCS) [1, 2, 3] is a

camera that uses fluid optics instead of glass optics. A much smaller camera than

traditional camera systems, the amount of fluid in the lens chamber is adjusted

dynamically to control the curvature of each lens. Objects are magnified and

focused by altering the curvature of the lens chamber. In addition, the lens is

a fixed size and does not telescope while zooming. This property is ideal for

surgery because the camera does not consume space in the surgical field. Enticing

opportunities for surgical and cellular areas are presented by this lens system. That

excitement is tempered by some of the natural disadvantages of the system.

(a) (b)

Figure 1.1: The FLCS blurs two different color planes differently. (a) Green
image from the device; (b) blue image from the device.

For the FLCS, one of the major hardware issues is that the fluid causes non-

uniform blurring of different color planes. Because of these axial color aberrations,

images from certain wavelengths are sharp while images from other wavelengths

1



2

are blurred. A focused green image was developed by the camera’s inventors at

the cost of extremely blurred blue and red images. Shown in Fig. 1.1, different

levels of sharpness are seen for the various color planes.

(a)

(b) (c) (d)

Figure 1.2: The FLCS has a complicated PSF. (a) The color image; (b) the red
image; (c) the green image; (d) the blue image.

A second problem with the FLCS is that the point spread function (PSF)

varies with spatial location, object depth, color wavelength, and zoom. The PSF

is a measure of the amount of blur caused by the lens. In Fig. 1.2, an example is

shown of an image from the lens. Since PSF varies with spatial location, objects in
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the center of the image appear sharper than objects along the perimeter. The PSF

varies with color wavelength, with green appearing sharpest. Due this variability,

a PSF is difficult to estimate and prone to severe estimation error.

The basic image inverse problem [4] is seen in (1.1).

B̂(x) = L0(x) ∗B(x) +N(x) (1.1)

B is the original sharp blue image, x is the spatial location, N is the noise,

∗ is the convolution operator, L0 is the lens, and B̂ is the output image after it

has been blurred by the lens.

An accurate PSF estimation is a crucial piece of conventional image pro-

cessing methods [5, 6] such as the Lucy-Richardson deconvolution algorithm [7, 8]

and the Wiener deconvolution algorithm [9]. The PSF for the FLCS has several

variables. The effectiveness of these algorithms is limited by the estimation errors

with the PSF.

To address these hardware issues, novel image processing solutions are pro-

posed which do not require a PSF. By examining the edge characteristics of the

green color plane, knowledge is gained about the structure and edge characteris-

tics of the overall system. This knowledge is applied to the other color planes and

a sharper, more consistent color image is produced. Four different methods are

discussed to enhance these color images. The common theme for each of these algo-

rithms is to balance the restrictive PSF of the FLCS against the natural sharpness

information provided by the green color plane.

The first method is the Wavelet Sub-band Meshing algorithm [10, 11].

Adapting a technique for image demosaicking [12, 13], much less channel knowl-

edge and fewer tuning parameters are required by this method. This algorithm

is extremely efficient and significant gains in image quality are produced. The

correlation between the edges of the green image and edges of the red and blue

images [14, 15] is the foundation of this method. The best results are achieved

when natural sharp objects have similar edge direction in the red, green, and blue

color planes. Color bleeding artifacts are produced when objects in the image do
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not have similar edge direction. Successful results in the surgical arena are pro-

duced because of the similarity in edge direction between the green and blue color

planes.

The Contourlet Sub-band Meshing algorithm is the second method pre-

sented [16]. Contourlets [17, 18] rather than wavelets [19, 20] are relied upon by

this algorithm to produce sharp natural edges. Similar edge correlation problems

are produced by the contourlet algorithm. However, the effects of color bleeding

are much less noticeable. The directional filters of the contourlet-based method

are used to adjust to the natural contours of the image. Edges in the blue and red

color planes are produced by this adjustment. The structure of the original object

is maintained.

The Support Vector Regression (SVR) algorithm is the third algorithm

presented. In the previous two methods, the color bleeding issue is not dealt with

effectively. A bank of sharp medical images is used to train the SVR algorithm to

produce a regression model [21, 22]. Areas of weak and strong edge correlation are

identified by this regression model and the proper coefficients are predicted. Color

bleeding artifacts are reduced while the same level of sharpness is maintained.

The Adaboost method is the fourth algorithm presented. By manipulating

several weak classifiers, a strong classifier is produced by Adaboost. The goal of this

classification is to differentiate between three component methods: the Contourlet

Sub-band Meshing algorithm, the Color SVR and the Edge SVR. Features such as

derivatives in the color domain, derivatives in the spatial domain, pixel values, and

contourlet coefficients are used to discriminate between the three methods. At each

pixel location, one of the three methods is selected by the strong classifier. This

method is the classifier’s prediction as to which of the three methods will produce

the strongest result. The results of this prediction are combined to produce an

image which has lower error than each of the three component methods.
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1.1 Review of Fluid Lens Camera System Color

Blur

Two fluid lens chambers are contained in the FLCS. This fluid lens design

is modeled after natural eye systems. A major problem for the lens is that different

color wavelengths react non-uniformly to the fluid and axial color aberrations are

produced.

As a design choice, a Bayer Pattern is used by the CMOS sensor. The

Bayer pattern samples green values at twice the rate that the red and blue color

planes are sampled. In order to maximize the number of sharp samples, the device

is tuned to sharpen the green color plane. While a sharp green image is produced

by this tuning, blurred red and blue images are also produced.

In traditional glass lens systems, the conventional approach to dealing with

these axial color aberrations in hardware is to design doublets or triplets where

lenses are fitted together. The natural color dispersion of the glass material is

compensated for by these acromats. Because of the difficulty inherent in designing

the two lenses, fitting doublets or triplets to the FLCS becomes infeasible to model.

At this stage of prototyping, image processing solutions are the most effective

means with which to address these axial color aberrations.

1.2 Notation

This thesis uses the following notation:

B̂ The ˆ represents an estimate of B after it passes through a

lens.

B̂LH The sub-band output after filtering and down-sampling B̂

twice. Here, an L and an H represent a low-pass and a high-

pass filter at each level respectively.

ĜLH Similar to B̂LH, ĜLH comes from the output Ĝ from the

lens of the Green component. Here, an L and an H represent
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a low-pass and a high-pass filter at each level respectively.

R̂LH is associated with the Red component.

B̂r The subscript r represents an output after reconstruction of

B̂.

B̂rL The subscript L represents the low frequency sub-band output

of B̂r.

ĜrH The subscript H represents the high frequency sub-band out-

put of Ĝr.

EG The error in estimating G.

x ≈ y The ≈ notation means that |x− y| < 2−10.

B̃ The .̃ represents the reconstruction estimate for a given algo-

rithm.

Bf The subscript f represents the frequency response of B.

ω1, ω2 The spatial frequency.

L0 The PSF of the lens.

B̃i The intermediate output from one of three methods used by

Adaboost i ∈ {1, 2, 3}.



Chapter 2

Previous Methods

For the past century, conventional hardware approaches were developed to

address axial color aberrations. Sets of doublets or triplets were fitted and designed

together to reduce this distortion. In the FLCS, only two lens chambers are used.

Due to the variations in blur from the unusual PSF, the system is difficult to

model. Attempting to fit and model several fluid lenses becomes intractable.

2.1 Conventional Methods

Instead of dealing with this problem in hardware, software approaches are

proposed. The three basic methods for deblurring are: Wiener deconvolution

[9] in the presence of Additive White Gaussian Noise (AWGN), Lucy-Richardson

deconvolution [8, 7] in the presence of Poisson noise, and Total Variation [23] to

accomplish joint denoising and deblurring.

In Wiener deconvolution, the blur of the lens is directly inverted in the

frequency domain:

Hf (ω1, ω2) =
|Lf0(ω1, ω2)|

2

|Lf0(ω1, ω2)|2 +
Nf (ω1,ω2)

Bf (ω1,ω2)

(2.1)

B̃f (ω1, ω2) =
Hf (ω1, ω2)B̂f (ω1, ω2)

Lf0(ω1, ω2)
(2.2)

7
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Here, Lf0 is the frequency response of the PSF and
Nf (ω1,ω2)

Bf (ω1,ω2)
is the noise-

to-signal ratio. Without noise, Hf = 1 and this method becomes a standard

inverse filter. When |Lf0(ω1, ω2)| has zero locations, the frequency values are

unrecoverable.

In the image processing domain, the second conventional deblurring ap-

proach is the Lucy-Richardson algorithm. The Lucy-Richardson method is an

iterative approach which assumes a Poisson noise statistic.

B̃k+1(x) = B̃k(x) ∗ L0(x) ∗
B̂(x)

L0(x) ∗ B̃k(x)
(2.3)

k is the iteration step and x is the spatial location. The PSF is an estimate

of how the fluid lens blurs light before the CMOS sensor registers the image.

With a good estimate of the PSF, the Lucy-Richardson algorithm con-

verges to the maximum likelihood solution assuming a Poisson counting statistic

[24]. Even when natural images do not follow this statistic, if the PSF and input

image are non-negative, then the output image is non-negative. Compared to other

algorithms, the necessity to clip or normalize negative outputs is avoided.

To use this algorithm for the FLCS, an estimate of the PSF is required

for each color plane. A unique PSF is applied to each of the three color planes

[4, 25, 26]. While the PSF for the blue and red color planes are very large due to

the amount of blurring caused by the lens, the PSF for the green image would be

close to a 2-D delta function.

A major contribution of this work is that the proposed algorithms do not

require an estimate of the PSF. Errors caused during estimation are avoided. As

discussed in Chapter 1, the PSF is a function of several different parameters.

Using the Lucy-Richardson algorithm or the Wiener deconvolution algorithm is

computationally expensive because of the variable nature of the PSF. The proposed

algorithms do not require this error-prone step.

An alternative approach would be to transform the RGB image to another

domain such as YCrCb. In this domain, most of the edge information is con-

tained in the Luma component while most of the color and shading information

is contained in the Chroma components. Since blurring has only a minor affect



9

on the Chroma components, deblurring using the Lucy-Richardson algorithm is

performed only on the Luma component. A consistent level of blurring between

the three color planes is implicitly assumed by this method. For the FLCS, this

assumption does not hold.

In Fig. 2.1(a) and Fig. 2.1(c), sample images taken by the lens are shown.

In Fig. 2.1(b) and Fig. 2.1(d), the same images are shown after ten iterations

of the Lucy-Richardson algorithm run on the luminance in the YCbCr domain.

While Fig. 2.1(b) has sharper edges and less noise, moderate improvement is seen

in Fig. 2.1(d).

(a) (b)

(c) (d)

Figure 2.1: The Lucy-Richardson algorithm has both successful and moderate
deblurring results after running ten iterations on the Luma component. (a) First
original image; (b) successful deblurring of first image; (c) second original image;
(d) moderate deblurring of second image.

The Total Variation deconvolution method [23] is a more recent attempt at

denoising and deblurring. The Alternating Minimization algorithm [27] is used to

implement this approach efficiently. Similar to Wiener deconvolution, the Total
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Variation is dependent on an accurate PSF estimation. The success of this ap-

proach is limited by the estimation errors. This limitation makes it inappropriate

for the FLCS.

2.2 Additive Wavelet RGB

In the field of Remote Sensing, one of the major goals is to develop pan-

sharpening algorithms. In the problem setup, low resolution color or multi-spectral

images and high resolution pan-chromatic or single-spectral images are provided.

The goal of pan-sharpening is to fuse the two data sources to provide a high

resolution multi-spectral image.

Several techniques exist for pan-sharpening [28]. For many of these algo-

rithms, the image is transformed to the color image to the intensity-hue-saturation

domain. The intensity component of the image is processed. By processing the

intensity component, these algorithms avoid biasing the end result toward gray

colors. A review of these methods can be found in [28].

One of the methods which is similar to the proposed wavelet method dis-

cussed in Chapter 3 is the Additive Wavelet Luminance (AWL) and Additive

Wavelet RGB (AWRGB) methods [29]. In the AWRGBmethod, the pan-chromatic

image is decomposed into n wavelet resolution levels:

P = wp0 +
n∑

i=1

wpi (2.4)

Here, wp0 is the lowest resolution wavelet sub-band and wpi is the higher

sub-band. Over the color images, higher edge fidelity and resolution is contained

in the pan-chromatic image. The edge information stored in the pan-chromatic

image is characterized in the second term,
∑n

i=1 wpi. In the AWRGB method, the

edge information is added to the original color images:
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R′ = R +
n∑

i=1

wpi (2.5)

G′ = G+
n∑

i=1

wpi (2.6)

B′ = B +
n∑

i=1

wpi (2.7)

Note that the R, G, and B images are used directly during the wavelet re-

construction process. The original color details of the multi-spectral image are

preserved by this method while including the edge information from the pan-

chromatic images. A similar addition of the pan-chromatic details is produced

by the AWL method. However, only the Luminance or Intensity component of the

multi-spectral image is processed.

2.3 Image Modeling

In the area of Image Denoising, various methods are proposed to model

the natural statistics of images. With an accurate model, the noise and the signal

can be separated. The task of image denoising is simplified. A Gaussian Scale

Mixture Model in the wavelet domain are proposed to address this issues [30, 31,

32]. This model has the advantage of high kurtosis marginal distributions, and

positive covariance between the neighboring coefficient amplitude. A cluster of

coefficients can be modeled as a Gaussian vector scaled by an unknown factor. A

more complete review of this method can be found in [31].

In [33], Dark Flash Photography is presented as a multiband application.

An infrared flash is used to capture edges in low light conditions. The advantage

of an infrared flash is that the edges of an object can be captured. However, the

flash is less noticeable to the people in the scene. The edge information is then

applied to the RGB images in order to produce a sharp image in a dark setting

with natural colors and a dimmer flash than a traditional camera. The goal of

this is to produce a reconstructed image with the edge fidelity of the infrared
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image and the color intensity similar to the denoised version of the RGB image.

This problem is framed as a minimization problem. The goal of the algorithm

is to minimize a combination of several weighted terms including: the difference

between the reconstruction and the RGB image, the gradient of the reconstruction,

and the difference between the gradient of the reconstruction and the gradient of

the infrared image.

In [33], models are explored which exploit dependencies between color chan-

nels. K-SVD denoising from [34] and fields-of-experts from [35, 36] are included in

these models. The major issues with developing image priors is that images tend

to have a high-dimensionality, and the structure of an object can extend over a

large window. Explicit spectral models are proposed by [37, 38]. The various de-

pendencies and correlations between different spectral bands are explored in these

models.



Chapter 3

Wavelet Sub-band Meshing

The Wavelet Sub-band Meshing algorithm is a first attempt at recognizing

and dealing with the deficiencies of previous work. The major problems addressed

by this work are: the over-reliance of previous methods on accurate PSF esti-

mation, the computation resources needed by iterative approaches such as the

Lucy-Richardson algorithm, and the inability of previous work to recognize the

non-uniform blurring of color planes caused by the liquid lens.

In Fig. 2.1, the possibilities and limitations of the Lucy-Richardson algo-

rithm are shown. The lack of complete utilization of the blur characteristics of

the FLCS are a limiting factor for this algorithm. With the configuration of the

FLCS, the green color planes are sharp and the blue and red color planes are

blurred. Unlike previous methods, an algorithm which uses this information to

improve blurred color planes is proposed. The edges of the resulting color image

are enhanced.

For most natural color images, high edge correlation is exhibited in the

red, green, and blue (RGB) color planes (Fig. 3.1) [12, 13]. However, distinct

shading characteristics are also contained in the natural images [39]. For the

FLCS, different amounts of blur are experienced by the different color planes. In

[10, 11], a perfect reconstruction filter bank is modified to improve the blue image

resolution by using green image edge information.

In a standard perfect reconstruction filter bank, a signal is decomposed into

separate sub-bands [20]. The result is reconstructed back to the original signal.

13
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(a) (b)

(c) (d)

Figure 3.1: This image shows a natural image where different color planes have
similar edge characteristics, but different shading levels. (a) Color image; (b) red
image; (c) green image; (d) blue image.
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In Fig. 3.2, the original signal is blurred by the lens L0. As a result, the blurred

signal B̂ is reconstructed by the filter bank. Here, the shading information is

represented by the sub-band B̂LL while the edge information is represented by

the B̂LH, B̂HL and B̂HH.

// H0
GFED@ABC↓ 2 //̂

BLLGFED@ABC↑ 2 // F0

// H0
GFED@ABC↓ 2 ?>=<89:;+ // GFED@ABC↑ 2 // F0

// H1
GFED@ABC↓ 2 //̂

BLHGFED@ABC↑ 2 // F1B
Lens = L0

//
B̂ ?>=<89:;+ //

B̂

// H0
GFED@ABC↓ 2 //̂

BHLGFED@ABC↑ 2 // F0

// H1
GFED@ABC↓ 2 ?>=<89:;+ // GFED@ABC↑ 2 // F1

// H1
GFED@ABC↓ 2 //̂

BHHGFED@ABC↑ 2 // F1

Figure 3.2: A standard perfect reconstruction filter bank is shown.

In the proposed system (Fig. 3.3), the edge sub-bands of the blue image are

replaced with the edge sub-bands of the green image. Due to blurring, distorted

edge information is contained in the B̂HL, B̂LH, and B̂HH sub-bands. The blue

shading is maintained in the B̂LL sub-band. Estimates of the edges are contained

in the ĜLH, ĜHL, and ĜHH sub-bands. As the level of blur is increased, the

number of levels of decomposition is increased and more green edge information is

used.

B
Lens = L0

B̂
// H0

GFED@ABC↓ 2 // H0
GFED@ABC↓ 2 //̂

BLLGFED@ABC↑ 2 // F0

?>=<89:;+ // GFED@ABC↑ 2 // F0

// H0
GFED@ABC↓ 2 // H1

GFED@ABC↓ 2 //̂
GLHGFED@ABC↑ 2 // F1

Ĝ ?>=<89:;+ //
Ã

// H0
GFED@ABC↓ 2 //̂

GHLGFED@ABC↑ 2 // F0

// H1
GFED@ABC↓ 2 ?>=<89:;+ // GFED@ABC↑ 2 // F1

// H1
GFED@ABC↓ 2 //̂

GHHGFED@ABC↑ 2 // F1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
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Figure 3.3: A reconstruction filter bank is modified to take the edge information
from the green image and shading information from the blue image.

The inputs to the system are a low quality blue image and a high quality
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green image:

1. Select a perfect reconstruction filter bank.

2. Decompose the images into four sub-bands by first filtering and down-sampling

the rows, then filtering and down-sampling the columns.

3. Replace the band pass sub-bands of the blue image (B̂LH, B̂HL, B̂HH)

with the band pass sub-bands of the green image (ĜLH, ĜHL, ĜHH).

4. Depending on the degree of blur, introduce more levels of decomposition by

further down-sampling and filtering the B̂LL component. The green color

sub-bands will replace more of the corresponding blue color sub-bands.

5. Reconstruct by up-sampling and filtering.

3.1 Analysis of the Algorithm

For clarity, the one dimensional case is shown in this analysis. The two

dimensional case is a natural extension of this work. All filters are assumed to

have unit gain at DC.

B̂
// H0

// GFED@ABC↓ 2 // GFED@ABC↑ 2 // F0

B̂rL

��B
// Lens = L0

?>=<89:;+ //
B̂

B̂
// H1

// GFED@ABC↓ 2 // GFED@ABC↑ 2 // F1

B̂rH

OO

Figure 3.4: Blurring with L0 followed by a standard one dimensional perfect
reconstruction filter bank are shown.

B
// Lens = L0

B̂
// H0

// GFED@ABC↓ 2 // GFED@ABC↑ 2 // F0

B̂rL

��
?>=<89:;+ //

Ã

Ĝ

// H1
// GFED@ABC↓ 2 // GFED@ABC↑ 2 // F1

ĜrH

OO
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 3.5: A one dimensional modified reconstruction filter bank is shown.
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In Fig. 3.4, the blurring effects of the lens on the true blue image B(z) is

modeled by L0 as a low-pass filter.

B̂(z) = L0(z)B(z) (3.1)

In Fig. 3.4, a standard filter bank is shown after the lens:

B̂rL(z) =
1

2
F0(z)(H0(z)B̂(z) +H0(−z)B̂(−z)) (3.2)

B̂rH(z) =
1

2
F1(z)(H1(z)B̂(z) +H1(−z)B̂(−z)) (3.3)

Modifying this filter bank, B̂rH(z) is replaced with ĜrH(z) from the green

image sub-band of Fig. 3.5:

ĜrH(z) =
1

2
F1(z)(H1(z)Ĝ(z) +H1(−z)Ĝ(−z)) (3.4)

In order to reconstruct the original signal B, the higher sub-bands of the

B̂ are replaced with the higher sub-bands of Ĝ. From the optical properties of the

lens, the higher sub-bands Ĝ are assumed to estimate the edges of B more closely

than the higher sub-bands of B̂:

H1(z)Ĝ(z) +H1(−z)Ĝ(−z) + EG

= H1(z)B(z) +H1(−z)B(−z) (3.5)

H1(z)B̂(z) +H1(−z)B̂(−z) + EB

= H1(z)B(z) +H1(−z)B(−z) (3.6)

|EG| ≤ |EB| (3.7)

Estimates of the true high-pass sub-bands of B are represented in equations

(3.5) and (3.6), where EG and EB are the errors of the two estimates. Because of

high edge correlation, that inequality (3.7) is assumed to hold.

The green color sub-bands are used to create our reconstructed image Ã(z):
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Ã(z) = B̂rL(z) + ĜrH(z) (3.8)

=
1

2
(F0(z)(H0(z)B̂(z) +H0(−z)B̂(−z)))

+
1

2
(F1(z)(H1(z)B(z) +H1(−z)B(−z)))

−
1

2
F1(z)EG (3.9)

=
1

2
[F0(z)H0(z)L0(z)B(z)

+F0(z)H0(−z)L0(−z)B(−z)

+F1(z)H1(z)B(z) + F1(z)H1(−z)B(−z)

−F1(z)EG] (3.10)

Ideally, if the aliasing component B(−z) can be removed, then a delayed

version of the original signal B(z) can be reconstructed. The following reconstruc-

tion conditions are produced:

F0(z)H0(z)L0(z) + F1(z)H1(z) = 2z−l (3.11)

F0(z)H0(−z)L0(−z) + F1(z)H1(−z) = 0 (3.12)

|F1(z)EG| = ǫ (3.13)

H0(z) and L0(z) are both low-pass filters. If H0(z) has a lower transition

frequency than that of L0(z), then the following two approximations hold.

H0(z)L0(z) ≈ H0(z) (3.14)

H0(−z)L0(−z) ≈ H0(−z) (3.15)

The reconstruction conditions are simplified by these approximations.

F0(z)H0(z) + F1(z)H1(z) ≈ 2z−l (3.16)

F0(z)H0(−z) + F1(z)H1(−z) ≈ 0 (3.17)

|F1(z)EG| = ǫ (3.18)
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When equality holds for (3.16) and (3.17), the perfect reconstruction con-

ditions of a conventional two-channel filter bank [20] are met. For any perfect

reconstruction filter bank, the output is simplified to:

Ã(z) = z−lB(z)−
1

2
F1(z)EG (3.19)

An Ã(z) that closely resembles the signal B(z) with a small error factor EG

is produced. EG changes spatially. Regions where the two images have high edge

correlation are locations where the algorithm will perform well.

3.2 Analysis of Error

As stated in the beginning of Chapter 3, H0(z) is required by the derivation

to have a lower transition frequency than L0(z). The approximations (3.14) and

(3.15) are true under this assumption. For a two-channel perfect reconstruction

filter bank, H0 has a transition band centered at ω = 0.5π [20]. L0(z) transition

frequency is determined by the system, This frequency may be less than 0.5π.

Levels of sub-band decomposition are added to the system in order to avoid this

conflict.

For this problem, traditional optimization techniques cannot be applied to

a rigorous mathematical system model. Instead, the system is simplified to the

special case of modeling the lens as a low-pass filter on the blue color plane. A

large number of experiments and simulations was run in order to recover the high

frequency spectra of the original signal. Poor results are produced by conventional

methods. For the proposed algorithm, this part of the spectrum is replaced with

the corresponding green sub-bands.

As discussed in beginning of Chapter 3, high frequency blue sub-bands are

filtered out, but high frequency green sub-bands are passed on. There exists a

trade-off between the error created by using the green sub-bands versus the error

created by the lens when blurring the blue sub-bands. For this algorithm, when the

frequencies of the blue sub-band are not passed by the lens, the green sub-bands

are favored by the trade-off. Shown in Section 3.2, the level of decomposition, c,
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is increased until the transition frequency of the blurring filter falls beyond the

transition frequency of the lowest sub-band.

Determining the Levels of Decomposition

Recall that the blur filter of the blue image is represented by L0(e
jω). The

approximate frequency response is considered:

L0(e
jω) ≈

{
1 if |ω| < π/4

0 if π/4 ≤ |ω| < π

}
(3.20)

The blue sub-bands are used for all frequencies |ω| < π/4 that the lens

passes. The green sub-bands are used for all frequencies π/4 ≤ |ω| < π. For this

L0(e
jω), a two-level decomposition is required. In Fig. 3.2, a two-level decomposi-

tion for a one dimensional signal is shown:

̂BLL(z) =
1

2
[H0(z

1/2)
1

2
(H0(z

1/4)B̂(z1/4)

+(H0(−z1/4)B̂(−z1/4)))]

+
1

2
[H0(−z1/2)

1

2
(H0(jz

1/4)B̂(jz1/4)

+(H0(−jz1/4)B̂(−jz1/4)))] (3.21)

The B̂LH, B̂HL, and B̂HH terms of the algorithm are replaced with their

respective ĜLH, ĜHL, and ĜHH terms. The original B signal are estimated

poorly by the B̂LH, B̂HL, and B̂HH sub-bands. The accuracy of our estimate

of these sub-bands is dependent on the reconstruction error. The original B signal

is estimated well by the unfiltered sub-bands of ĜLH, ĜHL, and ĜHH because

of strong edge correlation.

The following change of variables is considered:

R(z) = H0(z)[B(z)− B̂(z)] (3.22)

P (z) = H0(z)B(z)(1− L0(z)) (3.23)
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The error between BLL and B̂LL is represented by EBLL:

EBLL(z) = BLL(z)− ̂BLL(z) (3.24)

=
1

4
[H0(z

1/2)R(z1/4)]

+
1

4
[H0(z

1/2)R(−z1/4)]

+
1

4
[H0(−z1/2)R(jz1/4)]

+
1

4
[H0(−z1/2)R(−jz1/4)] (3.25)

=
1

4
[H0(z

1/2)P (z1/4)]

+
1

4
[H0(z

1/2)P (−z1/4)]

+
1

4
[H0(−z1/2)P (jz1/4)]

+
1

4
[H0(−z1/2)P (−jz1/4)] (3.26)

EBLL is comprised of four distinct terms. For the first term, L0(e
jω/4) ≈ 1

when |ω| < π, thus this term is ≈ 0. For the second term, H0 is a low-pass filter.

H0(−ejω/4) ≈ 0 by construction and the second term is ≈ 0. For the remaining two

terms, H0 is a low-pass filter. H0(−ejω/2) ≈ 0 by construction and those terms are

≈ 0. In order to make EBLL small, H0 should approximate an ideal low-pass filter

as much as possible. By adding more coefficients to our filters, an improvement

in performance is expected. Since the frequencies in this sub-band are passed by

L0(e
jω/4), a small error EBLL is produced by this estimate.

Consider generalizing L0:

L0(e
jω) ≈

{
1 if |ω| < ω0

0 if ω0 < |ω| < π

}
(3.27)

In order to reduce the overall error, the algorithm can increase the level c

decomposition until π
2c

≤ ω0 ≤ π
2c−1 . Choosing a large c, parts of the frequency

spectrum are discarded by the algorithm which the lens does not corrupt. Choosing

a small c, the error is increased because in the low band of the frequency spectra

0 6= 1− L(z).
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The B̂LH, B̂HL, and B̂HH are blurred by the optical properties of the

lens. A high approximation error is produced. ĜLH, ĜHL, and ĜHH are better

estimates of the edges of the original blue signal.

EBLH = BLH − B̂LH

EBHL = BHL− B̂HL

EBHH = BHH − B̂HH (3.28)

EGLH = BLH − ĜLH

EGHL = BHL− ĜHL

EGHH = BHH − ĜHH (3.29)

Here, |EGHH | ≤ |EBHH |, |EGHL| ≤ |EBHL|, and |EGLH | ≤ |EBLH |.

The ĜLH, ĜHL, and ĜHH terms are passed through the rest of the

system. The reconstruction conditions in [20] must be satisfied by the filter bank.

The output of the system is shown in the expression below:

Ã(z) = z−lB(z)− F0(z)F0(z
2)EBLL

−F0(z)F1(z
2)EGLH − F1(z)F0(z

2)EGHL

−F1(z)F1(z
2)EGHH (3.30)

More EG terms are produced as the decomposition level is increased. To

reduce EBLL without introducing extra EG terms, the level c is increased until

π
2c

≤ ω0 ≤
π

2c−1 .

Designing a Pre-Filter

The number of EG terms is limited by the algorithm. Only the sub-bands

with small EB terms are used. In Section 3.2 , EBLL had four terms in (3.26).

Following the same line of reasoning, the error EBLH between BLH and B̂LH is

considered:
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P (z) = H0(z)B(z)(1− L0(z)) (3.31)

EBLH(z) = BLH(z)− ̂BLH(z) (3.32)

EBLH(z) =
1

4
H1(z

1/2)P (z1/4)

+
1

4
H1(z

1/2)P (−z1/4)

+
1

4
H1(−z1/2)P (jz1/4)

+
1

4
H1(−z1/2)P (−jz1/4) (3.33)

Similar to (3.26), (3.33) has four terms. The first three terms are ≈ 0

by construction because H1(e
jω/2) ≈ 0 and H0(je

jω/4) ≈ 0. However, error is

contained in the last term.

To reduce this error, B̂LH is replaced with the highly correlated ĜLH. For

the lower frequency sub-bands, the correlation is poor and errors are seen in the

reconstruction. To reduce the error further, before placing the image through the

filter bank, pre-filter W0(z) is added directly after L0(z). By adding this filter, the

fourth term of (3.33) changes:

1

4
Q(−jz1/4)[1− L0(−jz1/4)W0(−jz1/4)] (3.34)

Here, Q(z) = H1(z
2)H0(z)B(z).

To make the last term approximately zero, a filter W0(z) is designed that

satisfies the following condition:

1− L0(−jz1/4)W0(−jz1/4) = 0 (3.35)

Assume that more about L0(e
jω) is known.

L0(e
jω) ≈





1 if |ω| < ω0

δ if ω0 < |ω| < ωδ

0 if ωδ < |ω| < π





(3.36)

0 < δ < 1 and represents the transition band. The first zero of L0(e
jω) has a higher

frequency than ωδ. A modified Wiener filter can be designed [9] to reduce the error
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in all sub-bands with frequencies below ωδ. Through testing, the regularization

problems associated with Wiener filtering were found to occur when δ < 0.1.

W0(e
jω) ≈

{
1

L0(ejω)
if |ω| < ωδ

0 if ωδ ≤ |ω| < π

}
(3.37)

The EB terms for these lower sub-bands are reduced by the W0 pre-filter.

During reconstruction, all B̂ sub-bands are used when the frequencies is less than

ωδ. The level of decomposition is increased by the filter bank design so that

the highest B̂ sub-band used in reconstruction has a transition frequency that is

arbitrarily close to ωδ. In practice, the number of levels of decomposition is limited

by complexity and image size issues.

3.3 Experimental Results

3.3.1 Results without Pre-filtering

In Fig. 3.6, the blue image of Barbara is shown. The blue color plane

is blurred with a 10x10 Gaussian kernel with a standard deviation (STD) of 5.

Poisson noise is added to the image after blurring. In Fig. 3.6(d), the results

are shown of a four-level decomposition from modified code in [40] without any

additional pre-filtering. The reconstruction does well on the high edge correlation

between color planes of the table cloth. Compared to the Lucy-Richardson de-

convolution results, significant improvement is seen in the results of the proposed

method.1

To illustrate possible artifacts of the method described in Section 3.2, an-

other example image is shown in Fig. 3.7. At the center of the blue image (Fig.

3.7(a)), the dark object is shown with a light background. For the green image

(Fig. 3.7(b)), the light object is shown with a light background. The assumption of

strong edge correlation is no longer valid, a poor reconstruction with color bleeding

is produced (Fig. 3.7(b)).

1More simulation results including video are available at:
http://videoprocessing.ucsd.edu/∼jack865/IEEETranColor/
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(a) (b)

(c) (d)

Figure 3.6: This test simulates blur using a Gaussian blur kernel. The proposed
image has sharper edges than the Lucy-Richardson deconvolution image. (a) Orig-
inal image; (b) blurred and noisy image; (c) Lucy-Richardson deconvolution; (d)
proposed algorithm.
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(a) (b)

(c)

Figure 3.7: Poor edge correlation between the original blue and green images can
lead to color bleeding during reconstruction. (a) Original blue image; (b) original
green image; (c) reconstructed blue image.
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By sharing information in the reconstructed color image, a sharp color edge

is produced by the green image and the blue image. In Fig. 3.8(a), the original

color image is shown. In Fig. 3.8(b), the blurred blue image has reduced edge

quality and a yellow tint. In Fig. 3.8(c), the proposed method is visually closer to

Fig. 3.8(a).

(a) (b) (c)

Figure 3.8: Color images show that the proposed algorithm removes a yellowish
tint that appears in the blurred color image. (a) Original image; (b) blurred image;
(c) proposed image.

In Fig. 3.9, the PSNR results of the proposed algorithm are compared

with conventional Wiener deconvolution method when the standard deviation of a

Gaussian kernel is increased for a fixed window size and Additive White Gaussian

Noise (AWGN) with standard deviation 0.05 has been added. For all other graphs

in this chapter, noise is not added to the system. In Chapter 4 and Chapter 6,

AWGN and Poisson noise are more fully explored.

The proposed method without a pre-filter has PSNR values approximately

5 dB higher than traditional methods for different blur kernels. Listed as PR, the

proposed algorithm uses different wavelets. As the number of filter coefficients

increases, the Daubechies wavelets [19] have slightly improved results. This obser-

vation matches the derivation in Section 3.2. Comparable results to the Daubechies

filters are produced by the Farras nearly symmetric orthogonal filters [40].

In Fig. 3.10, the PSNR results are shown of different levels of decomposition

when the standard deviation for the blur kernel is fixed, and the kernel size is

increased. At smaller kernel sizes, the best result is produced by a three-level

decomposition. However as the size of the kernel increases, the best PSNR is
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Figure 3.9: Different deconvolution methods to the proposed (noted as PR)
method are compared in this simulation when using a fixed 21x21 window. The
proposed method performs 5 dB better than the Wiener method.

produced by higher levels of decomposition. The four-level decomposition curve

has three regions: kernel size 5 to 12 when the three-level decomposition has the

highest PSNR, kernel size 13 to 22 when the four-level decomposition has the

highest PSNR, and kernel size 23 to 50 where five and six-level decomposition

have the highest PSNR.

In region one, ω0 ≥
π
23
. Uncorrupted information is discarded by the four-

level decomposition and additional EG terms are added. In this region the best

performance is seen with less than 4 levels. A flat slop is seen for the 4 level curve.

The minor incremental effect that the EG terms have is indicated by this flat slope.

In region two, π
23

≥ ω0 ≥ π
24
. The highest PSNR is produced by the four-

level decomposition. In this region, all the information that the lens has not blurred

is used and extra EG terms are not present.

In region three, π
24

≥ ω0. Blurred parts of the frequency spectrum are used

by the four-level decomposition. L0 < 1 for portions of the low frequency sub-

band. The original assumption is broken and EBLL is increased. A larger level
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of decomposition is needed. A steep slope is seen in the four-level decomposition

curve in this region. The major effect that an increase in the EBLL term has on the

reconstruction error is indicated by this observation. A larger penalty is suggested

by the model and the simulation results when the algorithm uses a small level of

decomposition.
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Figure 3.10: The relationship between kernel size and decomposition level are
tested in this simulation. A fixed standard deviation at 50 and a Daubechies 5 tap
filter are used in this simulation.

In Fig. 3.11, the PSNR results are shown of different levels of decomposition

with a window size for the blur kernel that is fixed and a standard deviation that

is increasing. As the standard deviation is increased, the best PSNR value is

produced by a higher level of decomposition. For a six-level decomposition, the

PSNR does not change with respect to the standard deviation. The image is down-

sampled several times. Changing the standard deviation has little effect on the

resulting reconstruction. A better result is produced by the six-level decomposition

than the results of the one or two-level decomposition. A small penalty for using

too high a level is indicated by these results. A large penalty for using too small
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a level is also indicated.
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Figure 3.11: The relationship between standard deviation of Gaussian kernel and
level of decomposition are shown. A fixed 25x25 window with a Daubechies 5 tap
filter is used by this simulation.

3.3.2 Simulation on Different Wavelets

In Fig. 3.12, the results are shown of different wavelet filters on a synthetic

image. In Fig. 3.12(a) and Fig. 3.12(b), the effects of different correlation values

between the edges of the blue and green images are highlighted. An extremely

poor edge correlation case is shown in the middle and top portions of the images.

A high edge correlation case is shown in the bottom portions of the images. Fix-

ing the number of filter coefficients, the results of the Daubechies 5, Symlets 5,

Biorthogonal 2-4 and Biorthgonal 4-4 wavelets [19] are shown in Fig. 3.12(c) to

Fig. 3.12(f). For the high edge correlation case, good results are produced by

all reconstructions. The correct shading level is maintained throughout most of

the image. For the poor edge correlation case, poor results are produced by the

reconstructions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Reconstruction results of different wavelets are compared by this
synthetic image test when using a fixed number of filter coefficients. The cases
of both strong and weak edge correlation between the blue and green images are
shown in this test. (a) Blurred blue image; (b) green image; (c) Daubechiews 5;
(d) Symlets 5; (e) Biorthogonal 2-4; (f) Biorthogonal 4-4.
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3.3.3 Simulation Results with Pre-filtering

The pre-filter W0(z) is used to recover a piece of the lower frequency band

directly from the blurred blue image. However, ωδ of the blurring filter is needed.

At frequencies higher than ωδ, the green image sub-bands are favored by the trade-

off.

(a) (b)

(c) (d)

Figure 3.13: A reconstruction which more closely resembles the original image
is produced by the addition of a pre-filter. (a) Original image; (b) blurred image;
(c) proposed image without pre-filtering; (d) proposed image with pre-filtering.

In Fig. 3.13, the effects of pre-filtering are demonstrated. In Fig. 3.13(c),

without the pre-filtering, smudged edges in the reconstructed image are the result

of the poor correlation between green and blue in this area. However, this poor

correlation is overcome by the addition of pre-filtering in 3.13(d). In 3.13(d), the

problem of smudging of color is no longer present.

In Fig. 3.14, the best results are compared from the proposed algorithm

with and without pre-filtering. The same simulation from Fig. 3.10 is repeated

using a pre-filter. Only the best PSNR results among all the levels of decomposition
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Figure 3.14: The effectiveness of additional pre-filtering is tested in this simula-
tion. A fixed standard deviation at 50 is used in this simulation.

are shown.

Initially, a 3 dB higher PSNR is produced by this simulation. Looking at

(3.36) for this region, the ω0 point of L0 has a much lower frequency than the ωδ

point. Without pre-filtering, the frequency sub-bands of the blue image between ω0

and ωδ are replaced with sub-bands from the green image. With pre-filtering, the

low frequency blue image sub-bands are used and fewer EG terms are produced.

When the kernel size is 9, 16, and 32, approximately 1 dB of gain is produced

by pre-filtering. In these regions, the same number of sub-bands is used by both

algorithms. The same number of EG terms is contained. A smaller difference in

PSNR is produced by this effect. 8-10 dB higher performance than the blurred

image is produced by the proposed algorithm with a pre-filter.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: This image shows actual images taken from the device with blur
caused by the FLCS. This experiment compares the proposed algorithm to the
Lucy-Richardson algorithm. (a) Actual blue image; (b) actual blue image; (c)
Lucy-Richardson algorithm; (d) Lucy-Richardson algorithm; (e) proposed algo-
rithm; (f) proposed algorithm.
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3.3.4 Actual Images Taken from the Device

In Section 3.3.1 simulated blur kernels were used. In Fig. 3.15, actual

images were used from the device. In Fig. 3.15(a) and Fig. 3.15(b), actual lens

blur and not simulated blur is shown. The images taken were from a distance of 15

cm from the lens in a well lit laboratory setting. Additional information about the

test conditions and lens functionality can be found in [1]. For this test, the lens

parameters are set to maximize the quality of the green color plane at the expense

of the other color planes. By adjusting these parameters, the FLCS is tuned to

favor an alternate color plane at the expense of the remaining two.

In Fig. 3.15, the results of the Lucy-Richardson algorithm are compared to

the proposed algorithm. The Lucy-Richardson method has a problem with over

sharpening (Fig. 3.15(c)). This problem is mitigated by the proposed algorithm.

The shading layer is preserved by the blue image. The green image edges of the

reconstruction are improved (Fig. 3.15(e) and Fig. 3.15(f)). The blur artifacts

caused by the lens are reduced and the results are sharpened.

The text of Chapter 3 is adapted from Image Enhancement for Fluid Lens

Camera Based on Color Correlation, Jack Tzeng and Truong Nguyen, in the Febru-

ary 2009 issue of IEEE Transactions on Image Processing. The dissertation author

was the primary author of these publications, and the co-author listed directed and

supervised the research which forms the basis for this chapter.



Chapter 4

Contourlet Sub-band Meshing

In Chapter 3, the Wavelet Sub-band Meshing algorithm is proposed to

deal with the non-uniform color blurring of the FLCS. When the edges between

the green and blue color planes match, a large increase in sharpness is seen in

the reconstructed images. However, when the edges do not match, color bleeding

artifacts are seen in the image. Smudged edges are produced by these color bleeding

artifacts.

Compared to the wavelet transform [20, 19], images containing contours and

textures are better represented by the contourlet transform [17, 18]. A Laplacian

pyramid and a directional filter bank are used to produce a multi-scale image with

several directional sub-bands. The contour information is represented efficiently

by this directional filter bank. The wavelet transform does not have a directional

filter bank. The natural contours of the image are preserved by the contourlet

transform.

The Contourlet Sub-band Meshing algorithm is an attempt to reduce the

color bleeding artifacts. Similar to the wavelet-based method, a complicated PSF

estimation is not required. The smudging and ghosting artifacts produced by the

wavelet-based method are reduced by this directional filter bank approach. In areas

where the green and blue color planes have similar edges, this method performs

as well as the Wavelet Sub-band Meshing algorithm. In areas where the green

and blue color planes do not have similar edges, these color bleeding artifacts are

reduced using the Contourlet Sub-band Meshing algorithm.

36
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4.1 The Algorithm

For the Contourlet Sub-band Meshing algorithm, the same basic framework

as the Wavelet Sub-band Meshing algorithm is followed. A directional contourlet

filter bank is used to extract edge information from the green image. Fewer ghost-

ing artifacts than the wavelet-based algorithm are produced.

1. A contourlet filter bank is selected and the images are decomposed into sub-

bands by filtering and down-sampling.

2. As the size of the PSF increases, the blue image will become more blurry with

fewer sharp edges. More levels of decomposition are introduced by further

down-sampling and filtering the lowest frequency sub-band.

3. The green contourlet coefficients for the higher sub-bands are selected to

replace the corresponding blue sub-bands.

4. In the lowest sub-band, the original blurred blue color sub-band is kept in

order to reduce false coloring.

5. Reconstruction is performed by up-sampling and filtering.

4.2 Analysis of the algorithm

4.2.1 Mean Squared Error of Contourlet Sub-band Mesh-

ing

// HL
//̂

BLL

// HL
// WVUTPQRS↓ 2, 2 // HH

// HD
//̂

BLH

B(ω1, ω2)
// L0

B̂
// HH

// HD
//̂

BHH

Figure 4.1: A 2-D Contourlet Filter Bank.

In Fig. 4.1, the basic contourlet transform [18] is shown where L0 represents

the lens blur. All filters are assumed to have unity gain at DC. Reducing the MSE
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between the result and the clean blue image, B(ω1, ω2) is the goal of this algorithm.

Compared to the wavelet based algorithm, the contourlet coefficients are able to

adjust to the natural contours of the image. A more natural looking image is

produced during reconstruction.

Fig. 4.1 has three outputs: the low-pass output B̂LL, the band-pass output

B̂LH, and the high-pass output B̂HH. The respective ĜLH and ĜHH are sub-

stituted into the algorithm. The conditions under which the proposed algorithm

better estimates B(ω1, ω2) and reduces the MSE are discussed.

Consider B̂LH expressed in terms of B(ω1, ω2).

B̂LH = 0.25HD(ω1, ω2)HH(ω1, ω2)[
1∑

m=0

1∑

n=0

HL(
ω1

2
+ nπ,

ω2

2
+mπ)L0(

ω1

2
+ nπ,

ω2

2
+mπ)

B(
ω1

2
+ nπ,

ω2

2
+mπ)] (4.1)

HL is a low-pass filter, HH is a high-pass filter, and HD is a group of

directional filters. The first order term is the m = 0, n = 0 term. All other values

are close to 0 and produce second or third order terms. The focus of this analysis

is centered around the m = 0, n = 0 term. Similar BLH and ĜLH terms are

created by the clean blue image and the green image.

The ĜLH is used when it produces a smaller MSE.

|BLH − ĜLH|2 < |BLH − B̂LH|2 (4.2)

In this case, the |BLH − B̂LH|2 term is the error in the reconstruction

when the algorithm uses the original blurred blue sub-band. The |BLH − ĜLH|2

term is the error in the reconstruction when the green sub-band is extracted and

is substituted into the system. For this approach to be effective, the MSE of this

term must be lower than the MSE of the other term.

Many of the similar terms are combined into variable a:

a = 0.25HD(ω1, ω2)HH(ω1, ω2)HL(
ω1

2
,
ω2

2
) (4.3)

a2[B(
ω1

2
,
ω2

2
)− Ĝ(

ω1

2
,
ω2

2
)]2

< a2[B(
ω1

2
,
ω2

2
)− L0(

ω1

2
,
ω2

2
)B(

ω1

2
,
ω2

2
)]2 (4.4)



39

The following equation is produced by removing a2B(ω1

2
, ω2

2
)2 from both

sides:

[1−
Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
]2 < [1− L0(

ω1

2
,
ω2

2
)]2 (4.5)

0 < [1− L0(
ω1

2
,
ω2

2
)]2 − [1−

Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
]2 (4.6)

The following inequality is produced by a difference of squares:

0 < [
Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
− L0(

ω1

2
,
ω2

2
)][2

−L0(
ω1

2
,
ω2

2
)−

Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
] (4.7)

Two conditions are created:

L0(
ω1

2
,
ω2

2
) < min[

Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
, 2−

Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
] (4.8)
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,
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2
) > max[

Ĝ(ω1
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2
)

B(ω1

2
, ω2

2
)
, 2−

Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
] (4.9)

If the system satisfies either (4.8) or (4.9), then a better MSE is achieved

by the proposed system. By construction, the camera produces a blurred blue

image, L0(
ω1

2
, ω2

2
)B(ω1

2
, ω2

2
) = B̂(ω1

2
, ω2

2
). These two conditions are rewritten as the

following equations:

B̂(
ω1

2
,
ω2

2
) < min[Ĝ(

ω1

2
,
ω2

2
),

2B(
ω1

2
,
ω2

2
)− Ĝ(

ω1

2
,
ω2

2
)] (4.10)

B̂(
ω1

2
,
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2
) > max[Ĝ(

ω1

2
,
ω2

2
),

2B(
ω1

2
,
ω2

2
)− Ĝ(

ω1

2
,
ω2

2
)] (4.11)

Conditions similar to (4.8), (4.9), (4.10), and (4.11) can be produced for

each of the outputs in Fig. 4.1. In the high frequency sub-bands, L0(
ω1

2
, ω2

2
) ≈ 0

and these coefficients are blurred out by the lens. x ≈ y means that |x−y| < 2−10.

Under these conditions, (4.8) becomes the following inequality:

0 <
Ĝ(ω1

2
, ω2

2
)

B(ω1

2
, ω2

2
)
< 2 (4.12)
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For natural images, the magnitudes of the higher frequency components are

typically within a factor of 2. Under this condition, the upper bound is satisfied by

Ĝ(ω1

2
, ω2

2
) and B(ω1

2
, ω2

2
). As shown in (4.12), for these high frequency sub-bands,

the MSE will be reduced when the green and clean blue coefficients have the same

sign and a strong match between the color planes. The condition is not met in

areas where they have different signs.

Color bleeding is produced by the poor match. In the green color plane, an

edge can go from a dark object to a light background. In the blue color plane, the

same edge can go from a light object to a light background. In this instance, the

direction of the edges is different. In the color image, yellowish blurred edges are

produced by this condition.

For the lowest frequency components, a minor effect on these frequencies is

caused by the blur kernel, thus L0(
ω1

2
, ω2

2
) ≈ 1. In this case, B(ω1

2
, ω2

2
) ≈ B̂(ω1

2
, ω2

2
),

leaving (4.10) and (4.11) unsatisfied.

4.3 Results

Several results are presented in this section. In Section 4.3.1, the initial

sharp image is blurred with a kernel and no noise is added to the system. The

deblurring results of the proposed algorithm and wavelet-based algorithm are com-

pared. In Section 4.3.4, real results are presented of images from a prototype of

the FLCS in a lab setting. For all tests, in the proposed contourlet algorithm, the

Daubechies (db5) [19] filter set is used for the pyramidal structure and PKVA8

filter set developed by Phoong et al. [41, 42] is used as the directional filter. In

the wavelet algorithm, the Daubechies (db5) filter set is used. Unless otherwise

noted, five levels of decomposition are used.

4.3.1 Noise Free Simulation Results

In Fig. 4.2, the previous wavelet-based method is compared to the proposed

method. The blue color plane of a color image is blurred by a 15x15 pixel Gaussian

kernel with a standard deviation of 50 and no noise is added. Four levels of
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(a) (b)

(c) (d)

Figure 4.2: For these images, the natural boundaries between objects are pre-
served by the proposed image. (a) Original blue image; (b) blurred image; (c)
Wavelet Sub-band Meshing; (d) proposed algorithm.

decomposition are used in both the contourlet-based and wavelet-based methods.

Throughout the wing of the butterfly, color bleeding artifacts in Fig. 4.2(c) are

caused by ghosting artifacts. In Fig. 4.2(d), the contours of the image are preserved

by the proposed algorithm in order to reduce these artifacts and appear closer to

the original image.

In Fig. 4.3, the results of processing a color image are shown. In Fig.

4.3(b), the colors are altered and edge details are lost by the blurring of the blue

sub-band. For this test, the blue sub-band is blurred by a Gaussian blur kernel of

size 5x5 with a standard deviation of 20. For the wavelet-based image, Fig. 4.3(c),

smudging that did not appear in the original image is produced by color bleeding

in the red oval area. For the proposed contourlet-based image, Fig. 4.3(d), an

overall sharper image is produced with fewer false colors and less smudging than

the wavelet-based method.

In Fig. 4.4, the proposed algorithm is compared to the wavelet-based algo-

rithm under extreme examples of edge mismatch. The test results are presented

for different cases. Areas of high edge matching and areas of low edge matching

between the green and blue images are considered. In Fig. 4.4(a) and Fig. 4.4(b),

the initial blurred blue and sharp green images are shown. In Fig. 4.4(a), the
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(a) (b)

(c) (d)

Figure 4.3: In the color images, the natural boundaries between objects are pre-
served and less color bleeding artifacts are seen. The improvement of the proposed
algorithm can be seen best in color. (a) Original color image; (b) blurred color
image; (c) Wavelet Sub-band Meshing; (d) proposed algorithm.

(a) (b)

(c) (d)

Figure 4.4: The results of extreme test cases of strong and weak edge matching
between color planes. (a) Blurred blue image; (b) original green image; (c) wavelet;
(d) proposed.
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blue image has been blurred by a Gaussian window of size 21x21 with a standard

deviation of 20. In each of the images, three different degrees of edge matching

between blue and green color planes are presented. At the top of Fig. 4.4(a), the

transition goes from light to dark, while at the top of Fig. 4.4(b) the transition

goes from dark to light. Here, the green and blue edges are in opposite directions.

A different case is presented in the middle of the two images. A transition from

light to dark is seen in the blue image, while no transition is seen in the green

image. Lastly, in the bottom of Fig. 4.4(a) and Fig. 4.4(b), the case when the

transitions match is shown.

The wavelet-based method in Fig. 4.4(c) does well in the strongly corre-

lated blocks along the bottom of that image. However, in the areas of weak edge

matching, ghosting artifacts and color bleeding problems are suffered by this al-

gorithm. In Fig. 4.4(d), the proposed algorithm is able to align the edges of the

image better and to produce a more natural looking result. The original shading

levels of the blurred blue image are also maintained.

4.3.2 Noise Added Simulation Results
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Figure 4.5: The proposed algorithm achieves the highest PSNR.

In the previous experiments, noise is not added to any of the images. In Fig.

4.5, AWGN has been added to the blue channel image after blurring. The goal of



44

this test is to determine the effects of increasing the size of the blur kernel on each

deconvolution algorithm. The standard deviation of the noise is 0.1 and the mean

of the noise is 0. The green channel is assumed to be noise free and without blur.

The standard deviation of the blur kernel is fixed at 50 while the size of the square

blur kernel is increased. For a small kernel, the blurring is a weighted average over

a small number of points. For a large kernel, a larger number of points is used.

Points on the edge of the blur kernel have a lower weight than points in the center

of the kernel. The weights take the shape of a 2-D Gaussian distribution.

The proposed method, wavelet-based method, and Wiener deconvolution

method are compared. For the Wiener deconvolution case, the exact PSF used

to blur the system is given. The noise autocorrelation matrix and the sharp im-

age autocorrelation matrix are calculated using the noise signal and sharp image

signal. These exact values are provided to the Wiener deconvolution to maximize

performance. The Lucy-Richardson deconvolution method is not run because a

Poisson noise statistic is assumed for that method. With AWGN, the performance

of the Wiener deconvolution method is lower than the proposed and wavelet-based

methods. The proposed and wavelet-based algorithms rely on edge information

from the green channel which does not have noise. For these methods, only the

lowest sub-band from the blue image is used. In this sub-band, the noise has zero

mean and does not significantly affect performance.

For the proposed algorithm, a higher PSNR over all other algorithms is

consistently achieved. Compared to the results from the Wiener deconvolution

algorithm, about a 2-3 dB higher PSNR is achieved by the proposed algorithm.

Compared to the results from the wavelet-based method, 0.25-0.5 dB higher PSNR

is achieved by the proposed algorithm. Although not shown in the graph, as the

level of blur is increased, a higher number of decompositions is needed by the

algorithm. This effect means that as the blur is increased, more green coefficients

are required by the algorithm. False coloring and poor edge matching is increased

when more of the green coefficients are used.

While PSNR is used in Fig. 4.5, Structural Similarity (SSIM) is an alterna-

tive image quality measure of an output image against a reference original image
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Figure 4.6: The proposed algorithm achieves the highest SSIM.

[43]. The mean and variance of pixel values within a window are compared be-

tween the two images. In Fig. 4.6, the same simulation setup is presented as in Fig.

4.5. In both graphs, the highest value is produced by the results of the proposed

algorithm. A slightly lower SSIM is achieved by the results of the wavelet-based

algorithm. For images produced by the Wiener deconvolution method, the SSIM

improvement over the blurred blue image is between 0.2 and 0.3. For images pro-

duced by the proposed method, the SSIM improvement over the blurred blue image

is between 0.3 and 0.7.

In Fig. 4.7, Poisson noise has been added to the blue channel image after

blurring. The green channel is assumed to be noise free and without blur. With

Poisson noise, the Lucy-Richardson deconvolution method attempts to achieve the

maximum likelihood solution. The exact PSF used to blur the image was used by

the algorithm. The algorithm is run for 20 iterations with a damping parameter

set at 0.2. The damping parameter of 0.2 was found to achieve the highest PSNR.

The Wiener deconvolution method is not run because AWGN is assumed for that

method

In Fig. 4.8, the same experiment is run as in Fig. 4.7. Poisson noise is added

to the image and the Lucy-Richardson, wavelet-based, and proposed algorithms

are used. The SSIM of the outputs are compared. For all values of the kernel
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Figure 4.7: The proposed algorithm adjusts to the Poisson noise.
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Figure 4.8: The proposed algorithm achieves the highest SSIM.
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size, the SSIM is highest for the proposed algorithm and slightly lower for the

wavelet-based method. For images produced by the Lucy-Richardson algorithm, a

0-0.1 gain in SSIM over the blurred input is achieved. For images produced by the

proposed algorithm, a 0.15-0.55 gain in SSIM over the blurred input is achieved.
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Figure 4.9: The proposed algorithm maintains a stable PSNR.
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Figure 4.10: The proposed algorithm maintains a stable SSIM.

In Fig. 4.9 and Fig. 4.10, the standard deviation of the AWGN was in-

creased. The goal of this simulation is to understand the effect that AWGN has



48

on the proposed algorithm. In this experiment, the blue image was blurred by a

constant Gaussian Kernel of size 25x25 with standard deviation 50. After blur-

ring, different amounts of AWGN noise were added to the blurred blue image. The

standard deviation of the AWGN was increased from 0.02 to 0.2 and the mean is

set to 0. The exact PSF and autocorrelation values are provided to the Wiener

deconvolution method. As the level of noise is increased, the PSNR and SSIM

values of the proposed and wavelet-based methods remain stable. For these al-

gorithms, the green channel which does not have noise is the source of the edge

information. The proposed and wavelet-based algorithms only require the lowest

sub-band of the blue channel. Noise in this sub-band has only a minor effect on

the performance of the proposed algorithm.

4.3.3 Mean Squared Error of Different Domains

In this chapter, the claim is made that more information about the higher

frequency components of natural images is contained in the contourlet domain

over the color domain. Specifically, less error is produced by a replacement of the

contourlet coefficients in the blue color plane with the coefficients in green color

plane than a similar replacement of just the blue color pixels with the green color

pixels.

In order to support this claim, the relationship between the green and blue

color planes in each domain is measured. However, measuring the correlation

between coefficients in each domain becomes problematic. Because the blue co-

efficients are directly replaced with the green coefficients, a better metric is the

distance rather than correlation between two color planes. A simpler Normalized

Root Mean Squared Error Metric (NRMSE) is used:

NRMSE =

√∑n
i=1

(Xi−Yi)2

n

max(X, Y )−min(X, Y )
. (4.13)

Here, X and Y are the vectorized versions of the green and blue color planes

in each domain.

Shown in Fig. 4.11, 64 different natural images were taken from two online
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databases [44, 45]. This set of images is then compared in three different do-

mains, the color domain, the wavelet domain, and the contourlet domain. For the

contourlet and wavelet domains, information in the different sub-bands is further

compared. Information about the relative distance between color planes within a

domain is provided by the NRMSE. The normalization insures that this is a fair

comparison and is independent of the range of a particular domain. As with the

previous experiments, the images are first transformed to the wavelet domain using

the db5 filter set and the contourlet domain using the db5 and PKVA8 filter sets.

Five levels of decomposition are used in both domains.

Figure 4.11: The set of random images used for the NRMSE test is shown.

In table 4.1, the results of the NRMSE test are shown. For each of the rows,

the lowest NRMSE is in the Green Blue NRMSE column. A strong relationship

between the green and blue color planes is indicated by this trend. The middle

and high wavelet coefficients have a much lower NRMSE than the color domain

coefficients. This observation supports the claim that more information about

high frequency components can be found in the contourlet domain than in the

color domain. The FLCS is designed to maintain the sharpness of the green color

plane. Post processing is used to improve the red and blue color planes.
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Table 4.1: Results from NRMSE Test at different sub-bands.

Domain Green Blue Green Red Red Blue
NRMSE NRMSE NRMSE

Color 0.1306 0.1504 0.2252
Wavelet Low 0.1480 0.1530 0.2338

Contourlet Low 0.1419 0.1466 0.2271
Wavelet Middle 0.0267 0.0304 0.0394

Contourlet Middle 0.0215 0.0251 0.0328
Wavelet High 0.0117 0.0125 0.0159

Contourlet High 0.0117 0.0127 0.0153

4.3.4 Results from the FLCS

In Fig. 4.12, real images taken in a lab setting with a prototype of the FLCS

are shown. The basic set up is a well lit room with a camera lens approximately

30 cm away from the object. The FLCS is a two lens system. The curvature of

each lens is adjusted by altering the amount of liquid in the lens. By altering the

curvature of the lens, the focus and magnification of the image is adjusted. More

information about the testing set up can be found in [1].

In Fig. 4.13, real medical images taken with a prototype of the FLCS are

shown. In this case, the image was taken in a surgical setting where the object

was illuminated with a separate light source. The FLCS was approximately 6 cm

away from the object. The typical effects of the algorithm on medical images are

shown.

The results of the Lucy-Richardson and Wiener deconvolution are sharper

than the original blurred image but these results also contain noise artifacts. An

estimate of the PSF was derived from test images taken with the device. For the

Lucy-Richardson algorithm, the damping parameter was set to 0.2 and 20 iterations

were run. For the Wiener deconvolution, the noise-to-signal ratio was set to 0.06.

Several values were tested for these parameters and the most consistent results

were produced by these values. Ringing artifacts that occur in the blue images for

the Wiener and Lucy-Richardson algorithms are created by this estimation error.

For the blue image set, the difference between the original image, previous
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.12: The difference between the algorithms on real data is shown. The
color images must be viewed in color. (a) Original blue image; (b) original color
image; (c) Wiener blue image; (d) Wiener color image; (e) Lucy-Richardson blue
image; (f) Lucy-Richardson color image; (g) wavelet blue image; (h) wavelet color
image; (i) contourlet blue image; (j) contourlet color image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.13: These image were taken using the FLCS in a surgical setting. The
color images must be viewed in color. (a) Original blue image; (b) original color
image; (c) Wiener blue image; (d) Wiener color image; (e) Lucy-Richardson blue
image; (f) Lucy-Richardson color image; (g) wavelet blue image; (h) wavelet color
image; (i) contourlet blue image; (j) contourlet color image.
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results, and the proposed result are presented. A sharp image with consistent edges

is produced by the proposed algorithm. In the color images, the color bleeding

artifacts are shown. The yellowish artifacts which blur the original color image do

not occur in the contourlet color image. For the proposed algorithm, estimates of

the PSF are not needed and the ringing artifacts are avoided. However, the green

color plane is required to be sharper than the other color planes.

The text of Chapter 4 is adapted from Contourlet Domain Multiband De-

blurring Based on Color Correlation for Fluid Lens Cameras, Jack Tzeng, Chun-

Chen Liu, and Truong Nguyen, to be published in 2010 in IEEE Transactions on

Image Processing. The dissertation author was the primary author of these pub-

lications, the first co-author listed supplied ideas, and the second co-author listed

directed and supervised the research which forms the basis for this chapter.



Chapter 5

Support Vector Regression

In Chapter 3, the Wavelet Sub-band Meshing algorithm is used to share edge

information between the green and blue color planes. In Chapter 4, the Contourlet

Sub-band Meshing algorithm is used to reduce color bleeding artifacts by adjusting

to the natural contours of the image. These methods are general methods that do

not require previous knowledge about the types of images taken with the FLCS.

In this chapter, SVR is used to build prediction models. The domain is restricted

to abdominal images. The edge and shading information from the FLCS image

input is used to predict the pixel values. A sharp image is constructed from this

prediction.

5.1 Review of Support Vector Regression

SVR is a class of supervised learning methods used to solve various regres-

sion problems [21, 22]. For a basic 2-D regression problem, the curve which best

fits a series of training points is found. With this curve, future predictions can be

made given one of the dimensions. With more training points, typically a more

accurate curve can be produced.

During SVR, a curve is found to fit the data. As shown in Fig. 5.1, a

margin is a specific radius ǫ surrounding the curve [46]. This margin is a buffer.

No error is produced by all points inside this area. An error according to the loss

function is produced by all points outside of this margin. A smaller ǫ is more

54
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desirable. With a smaller ǫ, more points are outside of the margin and contribute

error. This margin can be represented by support vectors. The goal of SVR is

to fit a curve while minimizing the number of support vectors and minimizing the

error produced by the points outside of the ǫ margin.
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Figure 5.1: The upper and lower ǫ margin around the model are shown. Most of
the training points are inside the margin.

In multiple dimensions, a hyper-plane is produced rather than a curve.

With a large amount of training data, the problem y = f(x) is solved using a

multi-dimensional regression. x can be a multi-dimensional vector, and f is some

unknown function [46]. Labels (y1, y2, ...yn) and the associated data (x1,x2, ...xn)

are provided by the training set. With this training data, an estimate of the

function f is produced by the SVR algorithm. During the testing phase, test data

(xt1,xt2, ...xtm) is given. The labels for (ŷt1, ŷt2, ...ŷtm) are predicted by the model.

The amount of data supplied, the significance of the features x, and the accuracy

of the model compared to the unknown f(x) are all factors which affect the quality

of the prediction.

ν-SVR [47] is used by this algorithm. One goal of ν-SVR is to avoid high

complexity models. Overfitting occurs when the training data noise is tuned while

learning the model. In the overfitting case, a high complexity model is created with

a large number of support vectors. During the testing phase, error is increased

because the model does not generalize well. To avoid this problem, the complexity
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of a model is considered during training for ν-SVR.

A brief overview of the ν-SVR algorithm taken from [48] is presented below.

A more complete overview of Support Vector Machines can be found in [46]. ν

is a parameter used to control the number of support vectors. The training error

is balanced with the model complexity. The overall testing error is reduced. The

primal form of the original problem is the following:

min
w,b,ξ,ξ∗,ǫ

0.5wTw + C(νǫ+
1

l

l∑

i=1

(ξi + ξ∗i )) (5.1)

subject to (wTφ(xi) + b)− zi ≤ ǫ+ ξi

zi − (wTφ(xi) + b) ≤ ǫ+ ξ∗i

ξi, ξ
∗

i ≥ 0, i = 1, 2, ...l, ǫ ≥ 0

Here, xi is the training vector, w is a weight vector which measures the complexity,

ξ is a slack variable which measures the error, b is the bias, and φ(.) is the mapping

to a feature space.

The dual problem is solved as:

min
α,α∗

0.5(α− α∗)TQ(α− α∗) + zT (α− α∗) (5.2)

subject to eT (α− α∗) = 0, eT (α + α∗) = Clν

0 ≤ αi, α
∗

i ≤ C, i = 1, ...l.

Here, Qij = K(xixj) is defined to be φ(xi)
Tφ(xj). The kernel function used

in this chapter is the radial basis function. A decision function for the SVR is

produced.

l∑

i=1

(−αi + α∗

i )K(xi,x) + b (5.3)

The number of support vectors is minimized using this algorithm. Overfit-

ting the training data is avoided and the testing error is reduced.
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5.2 The Algorithm

A Two-Stage SVR system is proposed in this chapter. In order to train

an SVR, training data with the training features x and the output value y are

provided. During testing, the data points x′ are given to the model and the labels

y′ are predicted. These ideas can be expanded to multiple dimensions for x and a

hyperplane that predicts the value of y is produced.

// Color SVR

Input Image // Combination Stage SVR

// Edge SVR

Figure 5.2: This flowchart shows the Two-Stage SVR

A set of sharp medical images taken from a conventional laparoscope is

used as the training data for this model. During training, the data sets were

drawn uniformly at random from a set of 50,000 data points. For all the SVR

models, the data was produced from the same underlying set of images. As shown

in Fig. 5.2, the algorithm presented is a two-stage system with three separate

SVRs: a Color SVR in the color domain, an Edge SVR in the contourlet domain,

and an SVR to combine the two other SVRs.

A different purpose is served by each regression. The blur is reduced by

the Edge SVR. Consistent color is maintained by the Color SVR. Information is

combined by the Combination Stage SVR. As shown in Fig. 5.3, each model is

composed using a few basic steps: transform to a specific domain, vectorize the

data, run the prediction, inverse the vectorization, and inverse the transformation

back to the color domain. A C++ library called LibSVM [48] is used for the

underlying library of functions for the SVR.

Trans. // Vec. // Pred. // Inv. Vec. // Inv. Trans.

Figure 5.3: This flowchart shows the SVR modeling setup
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5.2.1 Color Support Vector Regression

The SVR is performed in the color domain. A transformation is not required

for this model. The green and red of components of the image are used to predict

the blue component.

1. Each image is separated into the R, G, and B color planes.

2. An SVR is constructed based on the color data.

3. Each color plane is vectorized into (r, g, b) and x = (r, g) and y = (b) are

used to construct a SVR model.

4. The predicted values for yp1 are used to construct a predicted blue image b1.

The color gamut of visible light can be thought of as a 3-D space in RGB. For a

24 bit color image, 2563 possible values are contained in this color gamut. A 2-D

surface model in this color space is created by the SVR. This 2-D surface is limited

to 2562 possible color values. Colors represented in the human body are chosen by

the SVR. By limiting the training data to medical images, a 2-D surface is created

which encompasses all colors expected to appear in the abdomen. False colors not

observed in the human body are produced by noise and color blur. These artifacts

are reduced by this SVR. The number of features in this SVR is two, one feature

from the green color plane and one feature from the red color plane.

5.2.2 Edge Support Vector Regression

An Edge SVR is constructed in the first stage of the system. The image

is first transformed into the contourlet domain to separate the edge components

from the shading components. Once in the contourlet domain, the green and the

red contourlet coefficients are used to predict the blue contourlet coefficients.

1. The R, G, and B color planes are transformed into the contourlet domain.

2. The contourlet domain can be partitioned into several levels, for each level a

separate model is trained using the x = (rc, gc) and y = (bc).
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3. The predicted yp2 values are used to invert the contourlet transformation and

to construct a predicted blue image b2.

The construction of this model is much more complex than the other ones.

The levels of the contourlet decomposition was chosen to be the [2,2,2,2] set. Four

high frequency levels of decomposition are produced. For each level, the spectrum

is broken up into four neighboring directions. A low band frequency level with only

one direction is added as an additional direction. One coefficient is contributed

by each direction. 17 different contourlet coefficients are created. In Fig. 5.4, the

coefficients are grouped by frequency level and then by neighboring direction.

Figure 5.4: The contourlet decomposition is shown in this diagram. Four high
frequency sub-bands each with four neighborhood coefficients as well as one low
frequency sub-band are shown.

Accurate data is required for the SVR prediction method. An accurate

prediction cannot be obtained, due to excessive noise in the highest frequency sub-

band. The green contourlet coefficients are directly used for all four directions in

the highest frequency sub-band. The remaining 13 directions are predicted using

SVR.
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Described above is the basic set up of the prediction. 13 different models

are produced by this setup, one for each direction. The blue contourlet coefficients

are used for the labels. For the features x, the four red and four blue neighboring

contourlet coefficients are used. The lowest frequency green coefficients are used

to predict the lowest frequency blue coefficients with no neighboring coefficients.

After the prediction of the blue contourlet coefficients, the result is trans-

formed back to the color domain. The goal of this model is to sharpen the blue

image. By learning from sharp edges, the blur is reduced. The contourlet coeffi-

cient space is limited to sharp edge coefficients.

5.2.3 Combination Stage Support Vector Regression

For each of the previous regressions, the space of possible values is limited

to those desired for the system. The space of possible color values is limited by

the Color SVR to colors in the human body. The space of possible contourlet

coefficients is limited by the Edge SVR to sharp edges. These two models are

combined by this final SVR.

1. Using the two predicted blue images found in Section 5.2.1 and Section 5.2.2,

a combination stage is introduced.

2. b1 and b2 images are vectorized and a third SVR model is trained with x =

(b1, b2) and y = (b).

3. With the predicted values for yp3, a predicted blue image b3 is constructed.

The results from each of the previous models are used to predict a sharp

blue image. The color model is used to predict color data consistent with the

internal human body. The contourlet model is used to produce sharp edges. Color

bleeding produced by previous algorithms is avoided by this combination stage.

The sharpness from the contourlet model is maintained. To generate the training

set for this SVR, the image results of the previous two SVR’s were used as training

data. The original sharp blue images were used as labels. The number of features

in this SVR is two, one feature from the Color SVR result and one feature from

the Edge SVR result.
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5.2.4 Testing Algorithm

Three different models are constructed by the proposed Two-Stage regres-

sion. During the testing phase, a simpler algorithm is used.

1. A color image from the device is provided with a sharp green image and a

blurred blue image.

2. The R, G, and B images are vectorized. The data x = (r, g) is used with the

Color SVR Model trained in Section 5.2.1 to predict the labels b1.

3. The R, G, and B images are transformed into the contourlet domain. The

data x = (r, g) is used with the Edge SVR Model trained in Section 5.2.2 to

predict the labels yp2. The inverse contourlet transform is used to construct

a predicted b2.

4. The x = (b1, b2) is used with the Combination Stage SVR Model trained in

Section 5.2.3 to predict the labels y = b3.

5.3 Results

5.3.1 Simulated Image Test

The results of learning the Two-Stage implementation discussed in the pre-

vious section are shown in Fig. 5.5. Sets of 500, 5000, 10000, and 20000 random

points are applied to the various SVR methods. This modeling was repeated over

20 iterations. For each iteration, a new set of random points was selected. A

two-fold cross validation scheme was implemented to find the best parameters for

the SVR. Overfitting of the data is prevented by this cross validation. For all of

the training, a radial basis function (RBF) kernel was used. For every model pro-

duced, model parameters for ν-SVR were created by the cross validation. Through

testing, ν = 0.5 and the cost parameter 0.5 ≤ c ≤ 8 were found to be a good range.

The width of the RPF kernel is set 0.5 ≤ γ ≤ 8. Based on the results of the cross

validation, a slightly different set of parameters is used by each of the 20 iterations.
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Once the system has learned these models, the system was tested with a

new set of images. These images were taken using a sharp laparoscopic camera. A

Gaussian blur window of 15 x 15 with a standard deviation of 15 was convolved

with that image to simulate blur. The Gaussian blur window was chosen because

it resembles the blurring from the lens. The 20 different Two-Stage models were

then used to produce the resulting deblurred image. The average PSNR between

the deblurred image and the original sharp image are presented in the graph. In

addition, the errors representing one standard deviation are presented as well.
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Figure 5.5: The effects of the number of training data points for the SVR using
only green data are shown.

The effects of the Two-Stage implementation are shown in Fig. 5.5. The

model is trained using sharp green data with the blue and red color planes blurred.

As the number of training points is increased, the standard deviation is decreased.

The PSNR is improved by the Two-Stage SVRmethod over the Color SVRmethod.

Both the edge and the color information are required to produce the best results.

As the number of training points is increased, a flattening out is seen in the Color

SVR and Edge SVR curves. However, continued improvement is seen in the Two-

Stage SVR curve. This effect suggests that the Two-Stage model has a higher

upper bound in the gains produced by these regressions. More points are required
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for the Two-Stage model to fully realize the algorithm’s potential to reduce blur.
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Figure 5.6: The effects of the number of training data points for the SVR using
red data and green data are shown.

The results of training the system using sharp data from both the green

and red images are shown in Fig. 5.6. For the previous figure, the model is trained

using the sharp data from the green color planes. In the actual liquid lens, the

red image is moderately blurred under certain magnifications. By training from

the green and red color planes, the number of feature dimensions used is doubled.

While the Color SVR and Edge SVR decrease in standard deviation as the number

of points increases, the standard deviation for the Two-Stage SVR is stable. The

PSNR is high for the Two-Stage SVR. As indicated by the graph, a minimum of

5000 points is required for the Two-Stage SVR to consistently produce a higher

PSNR than the Color SVR. The Color SVR is able to train quickly. A small

number of points is required to be effective. At 20,000 points, better results than

the other two models on average are achieved by the combination stage model.

As indicated by the large standard deviation, more data must be trained to yield

stronger conclusions about the effectiveness of training on multiple color planes.

A sample output of the Two-Stage implementation is shown in Fig. 5.7.

The results from the Color SVR, Edge SVR, and Two-Stage SVR are shown in the
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(a) (b)

(c) (d)

Figure 5.7: The edge and shading information is combined using the Two-Stage
SVR. These images are best viewed in color. (a) Original color image; (b) predicted
image using Color SVR (c) predicted image using Edge SVR; (d) predicted image
using Two-Stage SVR.
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figure. Using the original color image, blur is introduced. To test how accurately

the SVR would reproduce the original color image, the Two-Stage implementation

is then run. The goal of these algorithms is to produce an image as close as possible

to the original image. The correct colors for the image are extracted by the Color

SVR. The edges of the system are enhanced by the Edge SVR. These two pieces of

data are combined in the Combination Stage SVR, making the model more robust

to noise and to blur.

(a) (b)

(c) (d)

Figure 5.8: The results of applying the model on non-medical images are shown.
This image is best viewed in color. (a) Original color image; (b) predicted image
using Color SVR; (c) predicted image using Edge SVR; (d) predicted image using
Two-Stage SVR.

The results of implementing the algorithm on non-medical data are shown
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in Fig. 5.8. The original training set of medical image data is performed by the

proposed algorithm. A problem for the Color SVR is presented by this training

set. Incorrect predictions are suffered when applying this model to non-medical

images. Poor results are produced by the color surface created by the SVR. The

PSNR is severely degraded by the change in colors. The Edge SVR results are

not affected by the change in domain. Sharp and blurry images are differentiated

by the Edge SVR. The sharp non-medical test images are produced by the Edge

SVR. As shown in this example, the Edge SVR is more robust to changes in the

training data.

The results as the blur increases for the blue image are shown in Fig. 5.9.

The degree of blur added to the input is represented by the size of the Gaussian

blur kernel. Previous methods begin to degrade as more blur is added to the

system. The proposed method is able to remain stable. The green and red data

are used to train this method. The reconstruction results are marginally affected

by the increase in blur of the blue data. At different spatial locations and different

magnifications, the PSF of the FLCS is changing. The proposed method is robust

to these variations in the PSF. Once the model has been trained, multiple degrees

of blur can be corrected.

5.3.2 Computation Costs

All simulations were run on an Intel Core 2 Duo CPU with a 3.00 GHz

processor at 3.0 GB of RAM. All algorithms are run using Matlab. Depending

on the number of training points, training all of the SVR models can take a few

minutes with 500 points to several days with 20,000 points. The computation

times are compared in Table 5.1 of various algorithms during the testing phase.

For the proposed algorithm, linear growth with respect to the size of the

image and the number of training points is shown in Table 5.1. The implementa-

tions of the Richardson-Lucy, Wiener, and Total Variation method using TV/L1

[27] is faster than the proposed method. However, these algorithms all rely on

accurate PSF estimation. For the FLCS, an accurate PSF cannot be produced.

A comparison of PSNR results is shown in Table 5.2. At the largest image
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: As the blur level of the input image increases, a similar level of
consistency in terms of sharp edges is maintained by this SVR. (a) Blur image at
5 pixel wide blur; (b) Two-Stage SVR image for 5 pixel wide blur; (c) blur image
at 17 pixel wide blur; (d) Two-Stage SVR image at 17 pixel wide blur; (e) blur
image at 29 pixel wide blur; (f) Two-Stage SVR image at 29 pixel wide blur.
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Table 5.1: A comparison is shown of the computation time in seconds required
to deblur a test image. The following methods are analyzed: Richardson-Lucy,
Weiner, Contourlet Sub-band Meshing, Total Variation, and Proposed with 500-
20000 training points.

Image Size RL Wiener Cont- TV Prop. Prop. Prop. Prop.
ourlet 500 5000 10000 20000

128x128 0.15 0.022 0.142 1.70 1.91 12.8 25.2 49.2
256x256 0.46 0.072 0.379 5.68 6.64 49.8 97.5 193.0
512x512 3.57 0.403 1.689 27.98 27.5 200.1 390.9 778.9

Table 5.2: A comparison is shown of the PSNR in dB. The following methods are
analyzed: Richardson-Lucy, Weiner, Contourlet Sub-band Meshing, Total Varia-
tion, and Proposed with 500-20000 training points.

Image Size RL Wiener Cont- TV Prop. Prop. Prop. Prop.
ourlet 500 5000 10000 20000

128x128 19.72 25.52 23.41 24.37 25.64 25.76 25.82 25.99
256x256 20.24 24.60 24.87 24.12 27.97 27.86 27.96 27.79
512x512 21.26 24.50 26.73 23.68 27.61 27.62 27.76 28.14

size, the contourlet deblurring method is able to achieve results 2 dB higher than

conventional methods. The proposed method is able to achieve slightly higher

results than the contourlet-based method. For the largest image size, better results

are achieved by the proposed method as the number of training points increases.

For this test, the Richardson-Lucy algorithm was given the exact PSF and

run for 10 iterations. The Contourlet Sub-band Meshing algorithm was run on

four levels of decomposition. The Total Variation method was given the exact

PSF. Only the test times are listed and the training is assumed to have been

completed.

5.3.3 Real Image Test

Images taken during a pig experiment from a prototype of the FLCS are

used in this section. Surgical incisions were made on a pig and the FLCS was

inserted into the abdomen. As shown in Fig. 5.10, incorrect coloring with a

yellowish tint and blurring of the original images are caused by the lens. The best
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Once the blue image has been sharpened, the yellowish blur is
removed from the color image. (a) Original blurred color image; (b) original blurred
blue image; (c) Color SVR color image; (d) Color SVR blue image; (e) Edge SVR
color image; (f) Edge SVR blue image; (g) Two-Stage SVR color image; (h) Two-
Stage SVR blue image
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color results are produced by the Two-Stage SVR. The yellow tint is removed by

this method. For the blue image results, after each SVR, the edges become more

refined. The blur of the blue color planes are reduced by the proposed algorithm.

Images from several algorithms are shown in Fig. 5.11. The goal of each

algorithm is to remove the blur and to sharpen the edges. Regularization noise is

seen in the results from the Richardson-Lucy deconvolution and Wiener deconvo-

lution. A lack of sharpness is seen in the Total Variation method. Only a rough

estimate of the PSF is provided to this method. The edges that were lost during

blurring are not recovered by this algorithm.

Stronger edges are seen in the Contourlet Sub-band Meshing [16] results.

The shading of the image is not maintained. The edge results of the image are

improved by the Two-Stage proposed algorithm. The correct levels of shading are

also maintained by the proposed method. 1

The text of Chapter 5 is adapted from Multiband Deblurring using Support

Vector Regression for Fluid Lens Cameras, Jack Tzeng and Truong Nguyen, sub-

mitted February 2010, in preparation for IEEE Transactions on Image Processing.

The dissertation author was the primary author of these publications, and the co-

author listed directed and supervised the research which forms the basis for this

chapter.

1More simulation results are available at: http://videoprocessing.ucsd.edu/∼jack865/TIP3SVR/index.html
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: The differences between various algorithms are shown in this real
image test. (a) Original Blurred Blue Image; (b) Richardson-Lucy deconvolution;
(c) Wiener deconvolution; (d) Total Variation; (e) Contourlet Sub-band Meshing;
(f) Two-Stage proposed algorithm.



Chapter 6

Adaboost Classification

In this chapter, three previous methods are considered: a contourlet-based

method, a Color SVR in the color domain, and an Edge SVR in the contourlet

domain. Adaboost is used to combine the three methods to produce a sharp

image. The goal of this classification is to determine which algorithm will succeed

in different areas of the image. Once the predicted algorithm is applied to each

pixel location, the images that are produced have less error than each component

method.

6.1 Background

6.1.1 Adaboost

Adaboost is a method for turning a series of weak classifiers into one strong

classifier [49]. In the first iteration, every training point is given an equal weight

and a weak classifier is applied by the algorithm. Points which have been correctly

identified are given a small weight, while points which are incorrectly identified

are given a large weight. For the next iteration step, a new classifier is added and

points with higher weight are more heavily focused on. The weights are readjusted

to focus on any points which have been misclassified and the iteration step is

repeated. This iterative approach is used until convergence of the classification

training error [50].

72
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An important component of Adaboost is the type of features used. Features

which discriminate between the classes are the most useful. The spatial derivatives,

local pixel values, color derivatives, and contourlet ratio are all used as features of

this system.

In order to produce labeled training data, a blue image is blurred using a

Gaussian kernel. Each of the three methods is applied. Every pixel is labeled with

the method that produced the result closest to the sharp blue image. The features

for each of the pixels are also calculated. These labels and features are used by

Adaboost to build a strong classifier. Once a strong classifier is built, every pixel

location is classified into one of the three classes.

6.1.2 Mean Noise Filter

After the strong classifier created by Adaboost is run, an image map is

created. The pixel locations where the algorithm believes each method will succeed

is represented by the image map. This choice is a hard decision boundary and a

pixel is chosen to be in one of the three classes. In certain instances, different classes

may be chosen for neighboring pixels. If the results of each component method are

significantly different, artifacts are caused by this method. The neighboring pixels

are not blended well by the algorithm.

To reduce these artifacts, a soft transition between pixels is created. A 3x3

window is swept across the image map. At each pixel location, the classes given

to each of the 9 pixels in a neighborhood window are collected. Three coefficients

are calculated, the percentage of pixels in the 3x3 neighborhood which fall into

each of the three classes is defined by these coefficients. A weighted average of the

local results from the classifier is represented by these coefficients. Areas where

multiple pixels are classified as a particular class will have a high coefficient for

that class. At each pixel location, these coefficients are multiplied with the image

result from each of the three respective methods. The final result is a weighted

average at each location of the output from the three methods, B̃i, as shown in

(6.1). A soft transition between pixels is produced by this weighted averaging.
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B̃(x) = c1(x)B̃1(x) + c2(x)B̃2(x) + c3(x)B̃3(x) (6.1)

Here, ci is the weighting coefficient at each pixel location for each method.

B̃i is the output from each individual method. B̃ is the final output of the system.

6.2 The Algorithm

1. The Contourlet Sub-band Meshing algorithm is applied. The high frequency

edge information is extracted from the green channel and is applied to the

low frequency edge information from the blue channel. An estimate of the

Blue image, B̃1, is formed.

2. The Color SVR is applied. The red and green pixel values are used to predict

the blue pixel values at every location. An estimate of the Blue image, B̃2,

is formed.

3. The Edge SVR is applied. The contourlet coefficients at every location are

predicted using the red and green contourlet values. The image is recon-

structed back to the color domain. An estimate of the Blue image, B̃3, is

formed.

4. The features that will be used by Adaboost are calculated. The spatial

derivatives, local pixel values, color derivatives, and contourlet ratio are all

used as features of this system.

5. Using the features, the strong classifier is applied. Each point is classified

into one of the three classes.

6. In order to reduce noise, the mean noise filter is applied to the mapping.

Three coefficients at each pixel are produced which represent the weight of

each method.
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7. Using (6.1), the entire image is processed. The final estimate, B̃, is produced

by using B̃1, B̃2, and B̃3 as well as the three coefficients formed by the

previous step.

6.3 Results

In this section, experimental results are presented. Simulation results are

shown by taking a sharp image and blurring it with a blur kernel and adding noise

to the system. Non-medical and medical images are analyzed. Graphical results

are presented which compare the proposed algorithm against the Contourlet Sub-

band Meshing algorithm as well as two metrics using both AGWN and Poisson

noise. Experimental results are also presented showing images taken from the

FLCS. For the contourlet method, the Daubechies (db5) [19] filter set is used for

the pyramidal structure and the PKVA8 filter set [42] is used as the directional

filter. Between four to eight levels of decomposition were used to maximize the

performance of the contourlet-based algorithm.

6.3.1 Simulated Images

In Fig. 6.1, a sample medical image is shown running the contourlet method

and the proposed method. For this test, the original blue image in Fig. 6.1(a) is

blurred with a size 21x21 Gaussian kernel with a variance of 50. AWGN noise

with a standard deviation of 0.25 has also been added to form Fig. 6.1(b). In

Fig. 6.1(e), the absolute difference between the contourlet method results and the

proposed method results is shown. This image has been scaled and inverted to

make the differences appear more clearly.

Looking at the difference image in Fig. 6.1(e), the largest differences are

along the edges of the rim in the right side of the image and the dark lines that

appear on the left of the image. While the two result images appear to have the

same level of sharpness, the difference is in the level of shading. A closer level of

shading to the original image is produced by the results of the proposed method.

The proposed method is a mixture method that uses the Color SVR and
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(a) (b)

(c) (d)

(e)

Figure 6.1: On medical images, the proposed algorithm reduces false coloring
artifacts. (a) Original blue image; (b) blurred and noisy blue image; (c) contourlet
method; (d) proposed method; (e) difference image between (c) and (d).
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Edge SVR in areas where the original contourlet algorithm has failed. The lowest

sub-band of the blue image is affected by the AWGN. The blue shading values of

the contourlet algorithm are dependent on the lowest sub-band. In the Color SVR

case, the blue shading values are dependent on the red and green pixel values. The

Color SVR is not affected by noise in the blue image. During the classification

step, the Color SVR is chosen for certain pixels to compensate for the shading

problems in the contourlet method.

(a) (b)

(c) (d)

Figure 6.2: On non-medical images, the proposed algorithm contains noise arti-
facts. (a) Original blue image; (b) blurred and noisy blue image; (c) contourlet
method; (d) proposed method.

In Fig. 6.2, a sample image is shown of the results of each method on

non-medical images. For this test, the original blue image in Fig. 6.2(a) is blurred

with a size 21x21 Gaussian kernel with a variance of 50. AWGN noise with a

standard deviation of 0.25 is added to the image. The edges of the butterfly are

reconstructed by the contourlet method because those edges are from the unblurred

green image. The lowest sub-band is altered by the noise in the blue image which

affects the shading values along the wing.

The output of the proposed algorithm is significantly affected by the change

in domain. Because the butterfly is not in the same domain as the training set of
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medical images, several steps are affected. During the training stage of the Color

SVR and Edge SVR, the initial data set is composed of abdominal images. A 2-D

surface of colors found in the abdomen is formed by the Color SVR. The colors

produced by the butterfly are not found in the human body and the prediction is

poor. The classification algorithm is dependent on features found in the abdomen.

Poor classification results are produced by the change in domain. Noise artifacts

are produced by the algorithm.

6.3.2 Graphical Results
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Figure 6.3: The proposed algorithm achieves the highest PSNR.

In Fig. 6.3, the effects of increasing the size of the square Gaussian blur

kernel under AWGN are shown. Here, the standard deviation of the AWGN is

fixed at 0.2 and the mean is 0. The image is blurred by a square Gaussian blur

kernel. The size of the kernel is increased from 5x5 to 49x49. The blue channel is

the only channel which has been altered, the red and green channels are assumed

to be clean and unblurred. For a small kernel size, the PSNR of the outputs

from the proposed method and the Contourlet Sub-band Meshing method are

close. As the blur increases, the image quality of the proposed algorithm is stable,

while the image quality of the Contourlet Sub-band Meshing algorithm is lower.
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For comparison, the conventional Wiener deconvolution method is run. For this

test, the Wiener deconvolution method was given the exact PSF as well as the

noise and signal autocorrelation functions in order to maximize results. Lucy-

Richardson deconvolution is not run because a Poisson noise statistic is assumed

for that method.

The contourlet method is more affected by the increase in the size of the blur

kernel. The lowest sub-band of the blue image and the other sub-bands from the

green image are used by the contourlet method. As a result, the shading component

of the reconstruction is affected by blur and noise while the edge component is not.

The Color SVR is a prediction method that uses data from the green and the red

color planes. This SVR is not affected by blur in the blue channel. The blue

contourlet coefficients are used by the Edge SVR and that method is affected by

the blur. Using the strong classifier, the proposed method is more robust to blur.

Using the Color SVR, the areas of the image where noise disrupts the contourlet

method are improved by this classification method. The loss in shading quality

from the contourlet image is compensated for by the strong classifier.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of Square Gaussian Kernel

S
S
IM

Size of Square Gaussian Kernel vs SSIM
with Additive White Gaussian Noise

Proposed

Contourlet

Wiener

Blurred

Figure 6.4: The proposed algorithm achieves an equivalent SSIM to the contourlet
method.

In Fig. 6.4, the same experiment as in Fig. 6.3 is run, and the SSIM is

shown. The contourlet and the proposed algorithm have very similar SSIM values.

A higher SSIM than the conventional Wiener deconvolution method is achieved by
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both these methods.

SSIM is an image quality metric which looks at the sharpness and the local

variance of an image against the unblurred reference image [43]. The SSIM of the

two methods is very close while the PSNR deviates. This difference between the

results of the two metrics is an indication that the two methods produce similar

levels of sharpness and different levels of shading. Because the proposed method

uses the contourlet method in several areas, the sharpness of the two methods is

similar. The shading values differ when the Color SVR and Edge SVR methods

are chosen by the strong classifier.
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Figure 6.5: The proposed algorithm achieves the highest PSNR.

In Fig. 6.5, the image is blurred by a Gaussian blur kernel. Poisson noise

is added to the blurred image. The size of the square Gaussian kernel is increased

from 5x5 to 49x49. The variance of the Gaussian kernel is fixed at 50. For compari-

son purposes, the Lucy-Richardson algorithm is run. The regularization parameter

for the Lucy-Richardson algorithm ranges from [0-0.2], whichever values maximized

the PSNR. Wiener deconvolution is not run because that method assumes AWGN.

In low levels of blur, when Poisson noise is added, the two methods have

comparable results. As the blur kernel size increases, the image quality of the

contourlet method is reduced. A stable PSNR is maintained by the proposed

method. As noted earlier, the Color SVR method is not dependent on the blur in
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the blue channel. Results that are more robust to the blur in the blue channel are

developed by the strong classifier.
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Figure 6.6: The proposed algorithm achieves an equivalent SSIM to the contourlet
method.

In Fig. 6.6, the same test is performed as in the previous figure and the

SSIM is measured. The SSIM of the proposed method and the contourlet method

are extremely close because the edge structure of the two methods is similar. The

same regularization parameter used in Fig. 6.5 are used for the Lucy-Richardson

algorithm. The slight bump in the Lucy-Richardson graph at size 21x21 comes from

the fact that for each size the regularization parameter was chosen to maximize

the PSNR. This region is a transition region for the regularization parameter.

In Fig. 6.7 and Fig. 6.8, the effects of increasing the variance of the

white noise are described. The AWGN mean is fixed at 0. The blur kernel is

fixed at 15x15 with a variance of 15. The PSNR of the proposed algorithm and

the Contourlet Sub-band Meshing algorithm are initially close. However, as the

noise increases, the Contourlet Sub-band Meshing algorithm begins to degrade

while the proposed algorithm is more robust to the increase in noise. The Wiener

deconvolution method is given the exact PSF used to blur the image as well as the

autocorrelation functions of the noise and the original image.

For low levels of noise, similar levels of PSNR are achieved by the proposed

algorithm and the contourlet algorithm. For high levels of noise, the PSNR of the
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Figure 6.7: The proposed algorithm maintains a stable PSNR.
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Figure 6.8: The proposed algorithm maintains a stable SSIM.
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proposed algorithm is stable while the contourlet algorithm degrades. At these

levels, the proposed algorithm achieves 0.5-1 dB gain over the contourlet method.

In Fig. 6.8, the SSIM is the same between the two methods. Under large amounts

of the noise, the shading of the two methods is different while the edge and structure

information is similar.
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Figure 6.9: The noise affects the PSNR of Wiener deconvolution.
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Figure 6.10: The noise affects the SSIM of Wiener deconvolution.

In Fig. 6.9 and Fig. 6.10, estimation error in the PSF is introduced to the

system. For this test, an image is blurred with a Gaussian kernel of size 15x15 and
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standard deviation 15. An alternate PSF is used during the deblurring phase. The

alternate kernel is of size 15x15 and the standard deviation ranges from 10-20. To

isolate the effects of noise in the PSF, no noise is added to the image.

When the standard deviation of the alternate kernel is at 10, the estimate

of the PSF is poor and deblurring is not successful with Wiener deconvolution. In

this region, the reconstruction error from the proposed method and the contourlet

method is smaller than the Wiener method. When the standard deviation of the

alternate kernel is 15, an exact match between the original and the alternate PSF

is used. No noise is added to the system and no errors are produced by estimating

the PSF. In this case, Wiener deconvolution is equivalent to inverse filtering and

is the optimal solution. When the standard deviation is 20, Wiener deconvolution

results are higher than the proposed method. The kernel size is 15x15, the kernel

shape changes only slightly between kernel size 16 and kernel size 20. The alternate

PSF in this case is a reasonable estimate of the original PSF.
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Figure 6.11: The noise affects the PSNR of Wiener deconvolution.

In Fig. 6.11 and Fig. 6.12, noise is added to the PSF and each algorithm is

run. The goal of this test is to show which of the algorithms is robust to errors in

estimating the PSF. In this test, the original image is blurred with a blur kernel

of size 15x15 with standard deviation 15. An alternate PSF is used during the

deblurring phase. The alternate PSF is created by adding noise to the original
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Figure 6.12: The noise affects the SSIM of Wiener deconvolution.

PSF. The noise is a 15x15 AWGN matrix with a standard deviation ranging from

0 to 0.2. A component-wise multiplication is performed between the original PSF

and the AWGN matrix. After multiplication, the result is added to the original

PSF to form a noisy estimate of the PSF. Wiener deconvolution is run with the

noisy estimate of the PSF. Several regularization parameters were tested at each

point and the highest PSNR and SSIM values are shown.

When the standard deviation of the AWGN added to the PSF is 0, no

noise is contained in the estimate of the PSF. Wiener deconvolution is able to

recover the original image and out performs all the other algorithms. Without any

sources of noise, Wiener deconvolution is the optimal solution to the deblurring

problem. The standard deviation of the AWGN added to the PSF is increased.

Wiener deconvolution is dependent on an accurate PSF. The algorithm is affected

dramatically by the increase in noise to the PSF. The proposed method and the

contourlet method are robust to estimation errors in the PSF. A major advantage

of these algorithms is that a PSF is not required. As the error increase, the PSNR

and SSIM values of the Wiener method are worse than the values of the proposed

and contourlet algorithms.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.13: Simulated blur and noise was added to these images. The color
images must be viewed in color. (a) Original blue image; (b) original color image;
(c) blurred and noisy blue image; (d) blurred and noisy color image; (e) Contourlet
Sub-band Meshing blue image; (f) Contourlet Sub-band Meshing color image; (g)
Color SVR blue image; (h) Color SVR color image; (i) proposed blue image; (j)
proposed color image.
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6.3.3 Natural Image Training Set

In Fig. 6.13, images are shown of a daisy flower. The goal of this simulation

is to show that these ideas extend to other domains. For this set, the entire system

was retrained using images of daisies. The Color SVR and Edge SVR were given

new data points extracted from the daisy images. The Adaboost method was used

to build a strong classifier on the daisy image data.

The domain of daisy images is different than the domain of the abdomen

in a few key ways. In the abdomen domain, the edge correlation between green

and blue pixels is high. The edges characteristics of the blue image are similar

to the edge characteristics of the green image. In the daisy domain, green edge

components are present that do not appear in the blue image. A poor match is

produced between the edge components. Recovery of the correct blue image is not

possible using the Contourlet Sub-band Meshing method.

The bud of the flower in Fig. 6.13(e) does not match the color of the original

blue image. Using the Adaboost classification method, the problem of mismatched

edges is reduced by the Color SVR. The classification is able to identify the regions

where recovery of the green edges is possible using the Color SVR.
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Figure 6.14: The proposed algorithm maintains a higher PSNR.

In Fig. 6.14 and Fig. 6.15, the results of adding AGWN to a daisy image

are shown. In this test, a 15x15 Gaussian blur window with a standard deviation
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Figure 6.15: The proposed algorithm maintains a higher SSIM.

of 15 is used to blur the system. The standard deviation of the AWGN noise

is increased. For this test, the models produced using the Daisy image set were

applied. The contourlet algorithm begins to suffer because as more noise is added

to the system, more of the green image edge coefficients are used. The green

image edges are poorly correlated with the blue image edges. The shading values

are altered significantly by the increase in green edge coefficients. The PSNR and

SSIM values are lower as a result. The proposed algorithm is able to reduce this

problem by using the Color SVR and Edge SVR models. The PSNR and SSIM

are still affected by the increase is noise power.

6.3.4 Simulation Results from the Fluid Lens Camera

In Fig. 6.16, images taken from the device are presented. The FLCS was

inserted into the abdomen of a pig. The abdomen was inflated and the FLCS

was placed approximately 6 cm away from the object and was illuminated with a

separate light source. The FLCS is a two lens system. The curvature of each lens

is adjusted by filling and emptying the amount of liquid in the lens. By altering

the curvature of the lens, the focus and magnification of the image is adjusted.

More information about the testing set up can be found in [1].

In Fig. 6.16(c) and Fig. 6.16(e), the results of Lucy-Richardson and Wiener
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deconvolution are shown. These images have fewer blurring artifacts than the

original images from the device. However, the noise artifacts are still prominent

in both results. The PSF for these two algorithms was estimated from the device.

The effectiveness of these algorithms is limited by the estimation errors produced

by this unique PSF. For the Lucy-Richardson algorithm, the damping parameter

was set to 0.2 and 20 iterations were run. For the Wiener deconvolution, the noise

to signal ratio was set to 0.06.

In Fig 6.16(g), the results of the Contourlet Sub-band Meshing algorithm

are shown. By using the sharp green image, the edge information is extracted

by the contourlet method. This information is applied to the blue sub-band. In

Fig 6.16(i), the results of the proposed algorithm are shown. Compared to the

contourlet algorithm, this image has the same level of sharpness. However, certain

blurring and shading problems along the right side of the image are removed. The

varying levels of blur and noise presented by the FLCS are dealt with effectively

by the proposed algorithm.

In Fig. 6.17, a non-medical image from the device is examined. For this

test, the camera was placed in a well lit room approximately 30 cm away from the

object. The Lucy-Richardson and Wiener deconvolution methods were given the

same parameters as in the example in Fig. 6.16.

Similar to the results of the butterfly simulation in Fig. 6.2, noise artifacts

are shown in the proposed algorithm. An image is produced by the contourlet al-

gorithm with sharp edges and a few color bleeding artifacts. However, the change

in domain is not compensated for by the proposed method. The colors presented

by this test are not seen in the human body, thus the poor predictions are pro-

duced by the Color SVR. Similarly, the strong classifier produced by Adaboost is

tuned for abdominal image data. Different portions of the image are not correctly

classified. Because of the change in domain, more accurate results are produced

by the contourlet-based method.

The text of Chapter 6 is adapted from Multiband Deblurring using Adaboost

for Fluid Lens Cameras Based on Color Correlation, Jack Tzeng, Yoav Freund,

and Truong Nguyen, submitted April 2010, in preparation for IEEE Transactions
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.16: These image were taken using the FLCS. The color images must
be viewed in color. (a) Original blue image; (b) original color image; (c) Wiener
blue image; (d) Wiener color image; (e) Lucy-Richardson blue image; (f) Lucy-
Richardson color image; (g) contourlet blue image; (h) contourlet color image; (i)
proposed blue image; (j) proposed color image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.17: These image were taken using the FLCS in a lab setting. The color
images must be viewed in color. (a) Original blue image; (b) original color image;
(c) Wiener blue image; (d) Wiener color image; (e) Lucy-Richardson blue image;
(f) Lucy-Richardson color image; (g) contourlet blue image; (h) contourlet color
image; (i) proposed blue image; (j) proposed color image.
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on Image Processing. The dissertation author was the primary author of these

publications, the first co-author listed supplied ideas, and the second co-author

listed directed and supervised the research which forms the basis for this chapter.



Chapter 7

Conclusion

A viable and ground breaking technology is produced by the FLCS. The

ability to miniaturize the lens and to achieve 5x zoom are presented by the system.

A challenging area of research is the non-uniform color blurring caused by the lens.

The conventional Lucy-Richardson and Wiener deconvolution algorithms

are outperformed by the proposed methods. Two more recent methods are also

compared to the proposed methods: Dark Flash Photography and Total Variation.

Information from infrared sensors is required for Dark Flash Photography. This

additional requirement is not feasible for the FLCS because of the size restrictions

of the lens body. Total Variation is also not feasible because an accurate estimate

of the PSF is required.

In this work, four separate methods are explored:

Wavelet Sub-band Meshing

This algorithm is based on correlation of edges between color planes. The

problem of a complicated PSF estimation is circumvented by this algorithm.

Contourlet Sub-band Meshing

In this method, directional filters are applied to adjust to the contours of the

original image. Over the wavelet algorithm, color bleeding which occur when

color edges exhibit weak correlation is reduced by this contourlet method.

SVR deblurring

In this method, different domains are utilized to extract the edge and shading

93



94

characteristics of a color image. After extraction, the edge and shading

information are combined with a combination SVR. Medical image training

data is used by this SVR in order to restrict the domain of possible outputs

to only sharp medical images and colors found in the human body. Over

previous methods, color bleeding is reduced in areas of weak edge correlation

and performance is maintained in areas of strong edge correlation.

Adaboost classification

This method is a combination method. The results are combined from thee

previous methods: the Contourlet Sub-band Meshing algorithm, the Color

SVR, and the Edge SVR. Using Adaboost, a strong classifier is built to

determine when each of the three algorithms will succeed. This classification

is used to produce an image which has less error than the results from each

of the three component methods.

The strengths of each algorithm are built upon while the challenges of the

each algorithm are reduced. For a lens hardware solution to the color blurring

problem, the intractable challenge of designing several surfaces in tandem is re-

quired. In order to improve the optical quality of the FLCS, viable solutions are

proposed in the area of image processing. Overall, multiband solutions to the

non-uniform blurring caused by the fluid lens are presented in this work.

7.1 Future Work

7.1.1 Improving proposed algorithms

As shown in Chapter 6, the Adaboost classification method has been shown

to work on a set of daisy images and a set of abdominal images. One area of future

research could be to develop training sets of other organs of the body such as the

brain, heart, and lungs. Each domain may require unique image sets. A future

area of work could be to explore the robustness of the algorithm to changes in

lighting conditions, perspective, and location.
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Another area of research is to expand the number of methods utilized by the

Adaboost classification method. The current method compares three component

algorithms to build one strong algorithm. Utilizing more than three algorithms may

be able to improve results. One challenging issue is that Adaboost was originally

developed as a two-class system. The current implementation accommodates three

classes by using a cascade structure where two classes are initially compared and

a third class is added. While the results appearing in this thesis are significant,

generalizing this strategy to more than three classes may require exploration.

Features are a crucial component of the Adaboost method. The current

implementation uses several surrounding derivatives in the color, spatial, and con-

tourlet domain. This system could be improved by removing less important fea-

tures and finding features which are more selective. In addition, reducing the total

number features needed would dramatically improve the efficiency of the Adaboost

algorithm.

7.1.2 Applying this work to other areas

The work discussed here may have broad applications in other fields of

image processing. Satellite mapping, fluorescent medical imaging, and infrared

imaging could all directly benefit from edge information sharing. Multi-resolution

systems with several types of sensors could improve image fidelity by applying

these techniques.

This work may also be applicable to compression. As shown in Chapter 6,

the Adaboost algorithm and the Contourlet Sub-band Meshing algorithm are only

slightly affected by significant amounts of noise and blur in the blue channel. Only

a few number of low frequency components from the blue image are required. The

edge components can be recovered by using the green image. A lossy encoding

scheme may be able to utilize the redundancy in edge information to improve

current compression techniques. These types of ideas are implicitly used in the

YCrCb 4:2:2 standard which subsamples the chroma components by a factor of

two. However, the proposed methods suggest that a much higher compression ratio

can be achieved with only a slight degradation in image quality.
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