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THREE DIMENSIONAL MODELING OF FRACTURES IN ROCK: FROM DATA TO A 
REGIONALIZED PARENT-DAUGHTER MODEL 

Kevin Hestir, Jean-Paul Chiles, l Jane Long, and Daniel Billaux2 

Earth Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California, 94720 

Abstract. We introduce a stochastic model for fracture systems called the parent-daughter 
model. The model uses circular discs to represent fractures. The discs are placed in three­
dimensional space according to a random process called the parent-daughter point process. This 
process will give a clustering of fractures that cannot be produced with the usual Poisson process. 
We then outline a procedure for fitting the model to a particular data set. 

Introduction 

Those who observe fractures in rock often note that the fractures are arranged in swarms or 
zones. Also, both the density of zones and number of fractures in a zone can vary in space. Our 
aim is to build a stochastic fracture model which includes these features. Further, we wish to 
describe a procedure for using field mapping of fractures to identify reasonable parameters for the. 
model. 

Stochastic models of fracture networks often employ Poisson processes to generate the frac­
tures [Baecher et aI, 1977; Long et aI, 1982; Dershowitz, 1985; Robinson, 1985; and others]. A 
Poisson process model for fractures has the characteristic that placement of each fracture is 
independent of every other fracture. Thus, there is no spatial correlation. between the fractures. 

Clearly, if the fractures (orm swarms and there is a spatial variability of fracture density, 
there is a spatial correlation between fractures. An appropriate stochastic model for these cases 
must therefore be more complex than a simple Poisson model. Some work has been done on this 
problem in two dimensions, [Long and Billaux, 1987] and [LaPointe and Hudson, 1981]. 

We have developed a three-dimensional model, called the parent-daughter model which 
includes the features described above. In this model, fractures (daughters) are nucleated around 
seeds (parents). On a local scale, the parents are randomly located in space. That is, the parents 
have a Poisson distribution. Over the entire region, however, the density of the parents can vary. 
The daughter fractures are generated in a cluster around each parent. The number of daughters 
per parent is a Poisson random variable. 

We describe this model in more detail below. We also describe the process for finding the 
parameters of the model. The fundamental problems in finding parameters are: (1) We have a 
truncated two-dimensional sample of an extensive three-dimensional system. Large changes in the 
three-dimensional system produce small changes in the two-dimensional sample; and (2) it is not 
possible to know where the parents are as there is no "mark" in the rock indicating a parent and 
it is not always clear to which parent a daughter belongs. Due to these problems we must use 
trial and error to find the parameters. We choose a reasonable set of parameters by comparing 
the data which would be derived from the stochastic model to the data derived from the field. 

The Parent-Daughter Model 

To model fractures we first assume that all fractures are circular discs. We place the discs in 
space by choosing the locations of their centers according to a random process called a point pro­
cess. A point process in three-dimensional space is defined as a scheme for randomly placing 
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points in space. The most tractable point process to use for the location of disc centers is the 
Poisson process. This process simply places points in space independently of each other. For this 
reason the Poisson process will not duplicate the clumping of fractures that is often observed in 
the field. The doubly stochastic Poisson process and parent-daughter process are generalizations 
of the basic Poisson process that produce clumps of fractures. 

In the following we define the Poisson process, the doubly stochastic Poisson process, and the 
parent-daughter point process. 

A Poisson process with rate A can be defined by the two properties: 

(i) If B is a subset of 3-space with volume V the number of points in B is a Poisson random 
variable with rate A V, A a constant. 

(ii) The number of points occurring in disjoint volumes of space are independent random vari­
ables. 

A slight generalization of the Poisson process can be made by replacing the constant rate A, 
by a va·riable rate A( x,y ,z). The independence property (ii) is still retained and in property (i) we 
replace the rate A V with 

J J J A(x,y,z)dxdydz . 
B 

To construct a doubly stochastic Poisson process we replace the constant rate A with random 
variable rate, A(x,y,z). Intuitively, we first choose a realization A(X,y,Z) of the random function 
A(x,y,z), then place points in 3-space according to a Poisson process with rate A(X,y,Z). 
Specifically, a qoubly stochastic Poisson process is a point process described by (i) through (iii) 
below. 

(i) A(x,y,z) is a random variable for each point (x,y,z) in 3-space. 
(ii) Given a fixed realization A(X,y,Z), of A(x,y,z), the number of points in B, a subset of 3-

space, is a Poisson process with rate --- . 

J J J A(x,y,z)dxdydz . 
B 

(iii) Given a fixed realization of A(x,y,z), the numbers of points In disjoint volumes are 
independent random variables. 

To duplicate the swarming patterns of fractures with a probability model we can place frac­
tures (discs) so that their centers lie on the points of a doubly stochastic Poisson process. These 
processes give the clumping effect because we see clumps where the rate of the Poisson process is 
high on the average. The problem with using this model is that the random rate A(x,y,z) can 
fluctuate wildly and be quite difficult to estimate. As a result, we have chosen to work with the 
parent-daughter model which is described below. 

The parent-daughter model can be described in the following steps. 

• Place points in 3-space according to a doubly stochastic Poisson process. These points will 
be called parents. 

• For each parent pick an independent Poisson number of daughters. 
• For each daughter choose an independent displacement from its' parent. 
• This yields a series of "daughter points" in 3-space called the parent-daughter point process. 

Placing discs of random diameter and orientation at each daughter point gives the parent­
daughter model for a fracture network. 

The advantage of using the parent-daughter point process in comparison to the doubly sto­
chastic Poisson process is that the rate of parents can be taken to be a much smoother random 
process while swarming effects can be accounted for by other parameters of the model, such as 
number and location of daughters. 

.. 

:-
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Parameters of the Parent-Daughter Process 

The parent-daughter process is completely determined by several parameters. We list these 
below with a detailed description of the process. 

(i) Ap(x,y,z) will denote the rate of parents. We take Ap to be a stationary random function. 
(ii) AD is the rate of daughters. We take each parent to have an independent Poisson number 

of daughters with constant rate AD. 
(iii) F( x,y ,z) is the distribution function of the vector displacement from a parent to a 

daughter. Each daughter is independently placed at a random location from the parent according 
to the distribution F. 

(iv) At each daughter we place a disc so that the center of the disc is at the daughter point. 
Each disc is independently assigned a diameter according to a lognormal distribution. 

(v) Each disc is then given an orientation according to some probability rule. 

Specification of each of the quantities (i) through (v) above, completely determines the model. 

Data 

The data is an extensive drift wall mapping of fracture traces and orientations taken at the 
uranium mine Fanay-Augeres in Lumison France. An illustration of the trace data appears in 
Figure· 1. A stereo net of fracture orientation is shown in Figure 2.· What we see is a two­
dimensional slice through a three-dimensional fracture system. Intersections of fractures with the 
sampling plane appear as traces (line segments) in the sampling plane. The data is a list of the 
two-dimensional coordinates of trace centers and orientations of most fractures intersecting the 
sampling plane; there will be some fractures that intersect the sampling plane in such a way that 
two end points of the intersection do not appear in the sample. Since over 80% of fractures inter­
sect the sampling plane with two endpoints showing, this censoring was not taken into account in 
the initial fitting of the model. There are techniques for dealing with this censoring error, see, for 
example, [Massoud, 1987]. 

Separation of Fractures into Sets 

We have divided the fractures into five different sets according to orientation. Figure 2 is a 
plot of fracture poles and set boundaries. The initial basis for set definition is a classification of 
fractures according to five different tectonic episo·des at Fanay-Augeres but the final set definitions 
are largely subjective, [Long and Bill aux , 1987]. Seven percent, 79 out of 1185, of the fractures 
do not fall in any set. Figure 3 shows traces of the five different sets in the sampling plane. We 
fit a different parent-daughter model to each set of fractures. 

Orientation Modeling 

Orientation is taken to be a stationary random function independent of all other quantities in 
the model. It might be that aperture or fracture length is related to orientation but we have no 
evidence of this. 

This illustrates one advantage of separating the fractures into sets according to orientation; 
since we have a different model for each set and fractures within a set have similar orientations, 
the probability model for orientation is a relatively simple one. 

In the following we discuss estimation of the parent-daughter parameters using the sampling 
plane measurements. 

Statistics Taken From Sampling Plane 

There are three obvious measurements that can be taken from the sampling plane. They are 
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• Trace lengths. These can be used to get an estimate of the fracture diameter distribution. 
• Trace density. This is the statistic used to check estimates of AD, A p' and F(x,y,z). 
• Interdistance between traces. This is used to get a heuristic estimate of the dispersion of 

daughters about parents. A theoretical relationship between the distribution or the variogram of 
interdistance and the parameters of the parent-daughter model is under development and will 
greatly aid the fitting of this model. 

Diameter Distribution Estimated Using Trace Lengths 

Assuming that the diameters of the discs have a lognormal distribution we show how to esti­
mate the parameters of the distribution using the trace lengths. Let 

D = diameter of a given fracture. 
X = distance between the fracture center and plane of intersection measured parallel to the 

fracture. 
I = the trace length of a fracture in the plane. 
J(D) = probability density function of fracture diameters, taken to be lognormal. 
f(D) = probability density function of fracture diameters for fractures that intersect a given 

plane. 
00 

D = mean of D = JDf(D) dD. 
o 

Figure 4 illustrates the relationship: 

1= h(x) 

h2(x) = D2_ 4x2 for x < D 
2 
D 

for x > -
2 

The distribution of diameters of fractures intersecting the sampling plane is not the same as the 
distribution of diameters in space. The reason for this is that a large diameter disc is more likely 
to intersect the sampling plane than a small diameter disc. Taking this into account, [Warburton, 
1980]' we get the result 

f(D) = .: Df(D) . 
D 

Since we assume that the distribution of diameters is lognormal we only need to estimate the 
first two moments to estimate the distribution. To do this we derive the relationship between the 
moments of I and the moments of D. First write 

Thus 

so 

D 
2 

E{ I I D) = ~ J h{x)dx = lTD 
D 0 4 

D 
2 

2 ')D2 
E( 12 I D) = - J h2(x)dx = --- . 

D 0 3 

00 

E{ I ) = E( E( I I D)) = J E( I I D )f{D)dD 
o 

" 

~ ... 



Likewise 

- 5 -

E( 1 ) = .!. E( D2 ) 
4 E( D ) 

00 

E( 12 ) = EE( 12 I D) = J E( 12 I D )r(D )dD 

so 

Write 

and 

o 

E( 12 ) = 2 E( D3 ) 
3 E( D ) 

J.Ll = 11" E( D2 ) 
4 E( D) 

2 2 _ 2 E( D3 ) 
J.Ll + 0'1 - 3 E( D ) 

J.Lo = E( D ) 

J.L6 + 0'6 = E( D2 ) 

Assuming D has a lognormal distribution we also have 

0'2 
J.L6 ( 1 + 2..)3 = E( D3 ) 

J.L6 

Solving for J.Lo and 0'0 we get 

128 { 1 } J.LO=J.Ll· --
311"3 0' 2 

1+_1 
J.L1

2 

and 

We estimate J.lo and 0'0 by simply substituting sample values of 0'1 2 and J.Ll into (2). 

Statistics for Density of Traces 

(1) 

(2) 

Trace density on the plane sample is our main measurement used for fitting the parent­
daughter model to the data. The idea is to measure trace density on sub-areas of the sampling 
plane, calculate sample covariances between the different sub-areas, then compare these covari­
ances to the theoretical covariances given by the model. 

We first introduce some terminology. When we calculate the number or density of traces on a 
sub-area of the sampling plane we call the sub-area the support of the density. For a stationary 
random function X( t) the variogram t{h), of X is defined by 

~h) = .!. E( ( X(t+h) - X(t) )2 ) 
2 

= var( X(t) ) - cov( X(t + h),X(t) ) 
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Comparison of sample and theoretical covarianc~s is accomplished by comparing sample and 
theoretical variograms. 

Theoretical Variogram for the Parent-Daughter Process 

We define some notation. Let 

x be a point in three dimensional space, R3. 
~p(x) be the stationary random process for the parent rate. 
Ap denote E( Ap(x) ), the average of Ap. 
CA (h) denotes E( Ap(x + h ) Ap(x) ), therefore we have 

p -2 
CAp(h) = Cov( Ap(x+h),Ap(x) ) + Ap. 

AO be rate of daughters 
F(x) be the probability distribution function for the location of a daughter relative to the 

parent. 
B , B be supports of density, (ie., sub-areas of the sampling plane). 
Q(B) denote the number of traces in B. 
1P(B,x) denotes the probability that a daughter from a parent at x intersects B. 

[Deverly, 1984] has derived an expression for E( Q(B) ) and E( Q(B)Q(B) ) for a parent­
daughter point process. These results hav~ been extended to our model. They show 

E( Q(B) ) = ApAo J ~B,x) dx 
R3 

and 

E( Q(B)Q(B) ) = (3) 

A6 J J ~B,x) ~B,y)C),p(x - y) dx dy 
R3 R3 

+ ApAo J 1/'(BnB,x) dx 
R3 

+ ApA6 J ~B,x) ~B,x) dx 
R3 

We want to simplify this expression enough to allow easy computer calculation of the theoreti­
cal variogram of trace densities. This simplification is given below. 

We will use x = (XlIX2,X3) and x = (XI,X2) to denote vectors in 3-space and 2-space respec­
tively. Expressions such as (Xl' xi , X3) + (YI , Y2 , Y3) will denote the usual vector addition. 
We write 

x = (XlIX2,X3) = (X,X3) with x = (XI,X2) . 

For X = (Xl, X2) we also use B_~ for 

{(hI, b2) - (Xl, X2) : (hI, h2) E B}. 

Finally, we will use a shorthand for multiple integrals where expressions such as 

J f(x'y,z,w)dx dy dzdw 

will denote 

J J J J f( x,y,z,w )dx dy dz dw . 
~ER2 YER2 "!ER2 WER2 

To simplify the formula for the variogram of density we make some additional assumptions 
about the model. 

,. 
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(i) Discs are perpendicular to the sampling plane and the coordinate system is chosen so that 
the z-axis is normal to the sampling plane. To compensate for this assumption we must remove 
an orientation bias from the density measurements. This is discussed in the next section. 

(ii) Let U = (VI' V2 , V3) = (V,V3) be the random displacement of a daughter from a 
parent. We assume VI> V 2, V3 are independent symmetric random variables with densities 
fl , f2 , f3 and distributions F 1 , F 2 , F 3' For ease of notation let 

g(x) = g(XVX2) = f1(Xl)f2(X2) 

and 

G(x) = G(Xl,X2) = F I(Xl)F i X2) 

be the joint density and distribution functions for V = (VI' V2)' 
(iii) Write h = (hI, h2 , h3) = (h,h3). As we consider only small values of h3 ( up to disc 

diameters), we can assume 

(4) 

Let D be a random variable having the distribution of diameters. To simplify notation further 
we write 

and 

The above assumptions give 

l/!{B,x) = P( X + V E B )P( -~ < x3 + V3 < ~ ) 

= X1(B,x)X2(D,X3) . 

(5) 

Substituting (4) and (5) into (3) and using Bn = S, x = (Xl>X2,X3), and y = (Yl,y2,y3), yields 

E( Q(B)Q(Bn) ) 

= A6 I X1(B,x)X1(Bn,Y)C( X - Y ) ) dx dY 

X IX2(D,x3)X2(D,y3) dX3 dY3 

+ ApAD IX1(BnBii,X) dx I X2(D,X3) dX3 

+ ApAJ I X1(B,x)X1(Br,x) dx I Xl(D,X3) dX3 

(6) 

(6i) 

(6ii) 

(6iii) 

(6iv) 

To continue the simplification we give some facts about convolution. Let w ES, gl(w) and 
g2( w) be real valued functions on space S. For our purposes S = R 1 or S = R 2. Let . 

gl*giw) = I gl(Z)g2{W - z) dz . 
zES 

This is the usual convolution product of gl and g2' If gi ( or g2 ) is an even function (ie., 
gl(-w) = gl(w) ) then we have the equivalent expression for convolution 

gl*g2(W) = I gl(Z)g2(W + z) dz . 
zES 

Let B C S. The indicator function Is{w), is defined by Is{w) = 1 if wEB, Is(w) = 0 other­
wise. The function Ks( w), called the geometric covariogram of B, is defined by 

Ks(w) = I Is(w + z)Is{z) dz 
zES 
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Both KB and g are even functions. 
We are now in a position to simplify the terms in (6). Looking at (6i) we can write 

J X1(B,x)X1(Bjj',Y)C( X - Y ) dx dY 

= J IB(x + z)IB(w + Y - h)g(z)g(w)C( X - Y) dz dw dx dY 

substituting X = u - z and Y = v - Vi yields 

J IBCu)IBCv - h)g(z)g(w)C( Ii - v + w - z) dz dw dli dv 

= J IB(Ii)IB(v - h)g(w)g*C( Ii - v + w) dw dli dv 

= J IB(Ii)IB(v - h)g*g*C( Ii - v ) dli dv 

Substituting v = Ii - Z gives 

J IB(Ii)Is(1i - z - h)g*g*C( z) du dZ 

= I KB(l + h)g*g*C( z) dZ = KB*g*g*C(h) 

Next we look at (6ii). If D is fixed then 

IX.J.D,Xa)dXa = II( -D !2}w + Xa)fs(w)dw dXa 
2, 2 

= II -D D (w + Xa)r(w)dxadw = D I f(w) dw=D 
(--) 

2, 2 

For D random and independent of U a we get 

J X2(D,xa) dxa = E( D ) = D 
So (6ii) equals 1)2. Note that the same argument gives 

E( Q(B) ) = ApAD J ?J.{B,x)dx = ApADD( area B ) 

For (6iii) we have 

J Xl(Bn~,x) dx 

= J IS(x + z)Is(x + z - h)g(z) dz dx 

Substituting X = u - z yields 

J Is("u)IsCu - h)g(z) du dz 

= Ks(h) . 

= Ks*8(h) 

where 8(h) denotes the Dirac delta functional. So (6iii) equals 

ApADKS*8(h)D . 

Finally we consider (6iv). 

J X1(B,x)X1(Bjj,x) dx 

= J IB(x + z)IB(x + w + h)g(z)g(w) dz dw dx 

Substitute X = Ii - z to get 

J IS(u)IS(u + Vi - z + h)g(z)g(w) dz dw du 

= J Ks(w - z + h)g(z)g(w) dZ dw 
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= J KB*g(w + h)g(w) dw = KB*g*g(h) . 

Next we see X~l(D,X3) < XiD,X3) so there is a constant a, 0 < a < 1 such that 

J X22(D ,X3) dX3 = a J X2(D ,X3) dX3 = aD 

Therefore 

E( Q(B)Q(Bti) ) 

= KB*[f52A6g*g*C + ApADD8 + ApAJ5aDg*gJCh) 

(7) 

This form is sufficiently simplified to allow computer estimation of the theoretical variogram of 
trace density. 

Correcting for Orientation Bias 

To compare theoretical trace density covariances to data trace density covariance we need to 
correct for orientation bias. Recall that the theory developed was based on the assumption that 
fracture discs are perpendicular to the sampling plane. When we measure density in the drift we 
see density of traces for discs that are not perpendicular to the sampling plane. This causes a 
bias which we call the orientation bias. To compensate for this we use the following develop­
ment. 

Suppose we have a spatial process with fixed rate Ay,(ie., the number of disc centers in volume 
V is Ay V). Suppose also, that we have a sampling plane B, and that the normal vector to a disc 
is at angle 0 with B. We take 0 < 0 < 90. 

Let f(O) be the density oC-O and g(d) be the density of the disc diameter,D. For 
d tlc E (dk,d k + .6.d) and Otic E (Ok,Ok + .6.0) the rate, A(dk,Ok), of discs of diameter d tk and angle 
Otic intersecting B will be 

X(dk,Ok) = )..y(area B)dtlccosOt}(Otlc)g(dtlc).6.0.6.d . 

Hence the total rate, )..angle, of intersecting discs of any diameter and any angle is 

)..angle ~ E )..y(area B)dtlccosOt}(Ot.)S(dtlc).6.0.6.d 
k 

or in the limit as .6.0 - 0 and .6.d - 0, 

Aangle = Ay(area B)DcosO 

If all discs were perpendicular to B the total rate would be 

Aper = Ay(area B)D 

Hence 

\ _ Aangle 
"per - -­

cosO 

So we count the number of traces, N, in a support and take the average, cosO, of cosO for all 
traces in the support, then use 

N 
cosO 

.for our bias corrected density count. This result is equivalent to correction factors given in [Ter­
zaghi, 19651. 

Computer Estimation of The Trace Density Variogram 

One of the authors [Chilesl, has written a program called SALVE that calculates the 
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theoretical variogram of trace density using (7). The parameters that need to be specified to run 
the program are: 

(i) Ap 
(ii) AD . 
(iii) Distribution of U is assumed to be multivariate normal with mean zero and variances 01, 

al, ul The variances must be estimated because they cannot be determined directly from the 
data. 

(iv) The average and standard deviation of disc diameter must be specified. As mentioned 
before, these are estimated from trace lengths. 

(v) Ap{x) is assumed to be either a Gaussian or lognormal stochastic process. If ~he Gaussian 
process is used we must truncate any values below zero. This seems reasonable when Ap is large in 
comparison to C{ 0). The covariance structure of Ap is specified in geostatistical terms as a mix­
ture of two components each of which can be taken to be spherical or cubic models, [Journel and 
Huijbregts, 1978; pp 116] and [Chiles, 1977; pp 132]. 

(vi) The support of the density is specified. 

Method of Parameter Estimation 

To implement the program note that 

E( Q(B) ) = ApAoD( area of B) 

so the total number of traces on the plane fu~ishes an estimate of ApAo, Hr'nee the parameters 
we can estimate directly are E(D), var(D), ApAo. The remaining paramekrs have no concrete 
estimates. We therefore resort to heuristic guesses and check the guesses 11.~ing SAL YE. To see 
an example of the comparison between the theor~tical and data variograms ::iCt.: Figure 5. 

Obviously, there is much room for improvement in this process. Our present direction is to 
look for other measurements that can provide statistical estimates of the parameters. Interdis­
tance statistics show some promise for this purpose. 

Conclusion 

We have discussed fitting a probability model to a 3-dimensional fracture network using data 
collected from a 2-dimensional slice. Our primary method is to compare trace density covariances 
to theoretical covariances given by our model. Our preliminary experience shows that this 
method does not provide enough information to determine all of the parameters of the model. It 
is however, a useful check of parameter estimates once they are made. To get the estimates, 
development of a theory for interdistance statistics is recommended. 

Acknowledgment. This work was supported through U.S. Department of Energy Contract 
No. DE-AC03-76SF00098. 
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Fig. 1, Plot of fracture traces recorded on an 80 m section of drift wall. 
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Fig.!!. Stereo net of fracture poles showillg set. boundaries. 
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Fig. 4. Fracture disc intcrsccting samplillg plane; dia.meter of disc := D, tr:.lce length = 1. 
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