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Abstract

Modeling and Optimization Framework for Optical Design of Next-Generation Food
Systems

by

Emre Mengi

Doctor of Philosophy in Engineering - Mechanical Engineering

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair

Agriculturally viable land has been the target of renewable energy production efforts, such
as solar panels and wind turbines. The competition between energy production and agri-
cultural production has led to restrictions on non-agricultural activity on agricultural land
while pushing for sustainable agriculture and renewable energy production to reach the
state’s carbon-neutrality goals. Next-generation food systems are needed to alleviate such
problems. The goal of this study is to analyze next-generation food systems from an opti-
cal modeling standpoint. This study develops a reduced-order geometric raytracing model
to evaluate the performance of various food production systems, namely solar greenhouses,
open-field agrophotovoltaics, and indoor pod farming systems. A digital-twin approach,
where a digital replica of the physical system is modeled, is used to quickly and efficiently
evaluate designs and optimize them using a genomic-based optimization algorithm. The
digital-twin consists of modeling the optical properties of the system to accurately simulate
the power distribution within the food systems through the raytracing algorithm. In addi-
tion, power sizing analysis of a real-life indoor farming system is performed. Extensions of
the digital-twin framework and how it can be coupled with other physics models are provided
using a crop performance driven optimization case study of an open-field agrophotovoltaic
system. This computational framework and optimization scheme aims to provide a foun-
dation for understanding, evaluating, and optimizing the food systems of the future and
prove a useful tool to efficiently and sustainably produce food and generate power, driven
by innovation and cutting-edge technology.
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Chapter 1

Introduction

Agriculturally viable land has been the target of renewable energy production efforts,
such as solar panels and wind turbines. The competition between energy production and
agricultural production has led to restrictions on non-agricultural activity on agricultural
land in California [1] while pushing for sustainable agriculture and renewable energy pro-
duction to reach the state’s carbon-neutrality goals [2]. Alternative solutions are needed to
alleviate such problems. One possible way is by employing systems which combine solar en-
ergy generation with agricultural production, so-called agrophotovoltaic (APV) systems [3–
5]. While there are many examples of APVs installed in open outdoor fields, a similar setup
could be utilized for greenhouses, which offer more precise climate control of plant growth.
Carbon-neutral agrophotovoltaic greenhouses, combined with vertical farming, can reduce
agricultural land shortage problems and increase crop yields, regardless of the weather or
season. These greenhouses also have the potential to be used in prospective space-exploration
applications, where climate control and efficient use of habitable space are crucial.

Several experimental studies have been conducted on the feasibility of agrophotovoltaic
greenhouse systems [6–10]. While experimental setups can provide insight for the best con-
figuration for agrophotovoltaic systems where plant growth and energy production are maxi-
mized, physically testing all possible configurations is time-consuming and requires substan-
tial financial undertaking.
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Figure 1.1: Agrophotovoltaic greenhouse. Photo from public domain: https://pixabay.com.

Another approach to next-generation food production is through the use of indoor ver-
tical farms, where crop production occurs in highly-controlled environments (i.e. tempera-
ture, hydroponic nutrient delivery, irradiation), supporting the continuous growth of crops
throughout the year, regardless of the prevailing local climate conditions. These indoor farms
can be installed in highly-populated areas, supplying fresh and local produce while offsetting
the carbon footprint of food delivery from the field to the customer. The controlled envi-
ronment also allows for reduced pesticide use and increased yield. With humanity grappling
with food scarcity exacerbated by climate change and population growth, indoor farming
emerges as a promising avenue, providing a more efficient and sustainable approach to food
production. In this study, we will focus on indoor vertical farm designs with hydroponic
nutrient delivery.

Hydroponics involves cultivating plants in a nutrient-rich solution, eliminating the re-
quirement for soil. Depending on the crop, this technique can be implemented through
various methods such as drip irrigation, aeroponics, nutrient film technique, ebb and flow,
aquaponics, or deep-water culture. Despite the diverse physical approaches, these techniques
generally follow similar principles: a specialized delivery system pumps a nutrient solution
to the plants, and then the solution circulates back to a reservoir for replenishing the nu-
trients [11–15]. These types of methods use only 10% of the water utilized in traditional
farming [16] in average since nutrients are delivered directly to the plant roots and no soil is
used. Since the nutrient delivery is precise and without soil, there is also no risk of fertilizer
runoff. These systems can be easily adjusted for growing a specific type of plant in the most
optimal way due to the highly-controlled nature of the growing environment. However, these
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systems have high start-up financial costs [17] and need high operational efficiency and yield
to recoup these costs during the lifetime of the system.

Similarly, vertical indoor farming in highly controlled environments, enabled by LED
lighting and hydroponic or aeroponic nutrient delivery, needs significant improvements to
make it viable for crops beyond leafy greens and little work has been done to quickly and
efficiently assess system performance of different indoor farming designs. A digital-twin
approach for modeling and optimizing an indoor farming pod will provide a quick and efficient
way of evaluating the performance of different system designs and identifying the optimal
design parameters.

Figure 1.2: Indoor vertical farm. Photo from public domain: https://pixabay.com.

In order to alleviate these problems, this study will focus on building computational
frameworks for different next-generation food systems to assess system performance, includ-
ing solar power generation, crop growth metrics, irrigation requirements using optical mod-
eling of the system, where various next-generation food system designs are computationally
generated and light rays are tracked through a representative domain.

First, we will construct a system model for a representative agrophotovoltaic system.
This involves simulating the absorption and reflection of solar rays on three-dimensional
thin film panels enveloping the greenhouse. The simulation technology is then integrated
with genomic optimization algorithms to determine system parameters, aiming to optimize
the greenhouse’s performance. While the agrophotovoltaic studies previously mentioned
have either experimentally or computationally tested APV designs to find the best design,
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the proposed framework will enable the user to quickly evaluate solar greenhouse designs
with the reduced order model and find the “optimal” configuration within the design space
using the genomic optimization framework. This would reduce the experimental testing of
greenhouse designs to the top designs found by the genomic-based optimizer.

The system presents many challenges with regard to optimizing solar farm characteristics
to ensure energy and agricultural needs are simultaneously met. The goal would be to
balance plant growth and energy generation in a way where the greenhouse is self-sufficient
and carbon neutral. In this study, a reduced-order digital-twin is proposed that allows the
user to simulate a day of irradiation in seconds, which allows for optimization of system
parameters on the order of minutes. Thus, the simulated APV greenhouse can be regarded
as a digital-twin that can be simulated and optimized in real-time. It is noted that the
optimized designs outputted by the genomic optimization algorithm can be then fed into
higher fidelity models to evaluate the best designs further. This virtual setup allows the
user to reduce the time and capital spent on the experiments to develop a carbon-neutral
greenhouse APV system.

The greenhouse structure simulated provides a foundation for the capabilities of the ray-
tracing model to accurately evaluate the power distribution within agrophotovoltaic systems.
The next addition to the simulation will be modeling the interior of the greenhouse in terms
of the plant configuration, namely the hydroponic structures. Greenhouses employ a va-
riety of different configurations to grow plants. These include: (1) planting the crops in
soil similar to an open field and using the greenhouse structure for sole purpose of climate
control and protection from weather elements, (2) placing potted plants on benches in the
greenhouse and repotting them as they grow, or (3) stacking them vertically by utilizing the
most amount of space possible and precisely delivering nutrients to exposed roots. The third
method is called vertical farming and includes the use of aeroponics and hydroponics [18],
which we will focus on modeling the latter in terms of solar power absorption of plants and
irrigation pump power requirements.

We will follow closely the digital twin framework used for the initial solar greenhouse
model, where we will simulate different greenhouse geometries, as well as different hydroponic
tower configurations, including the tower shape, sizing, refractive index, and proximity of
towers to each other. The resulting solar power distribution within the system, namely the
solar panel and plant energy absorption, and the irrigation pump power requirements will
determine the “fitness” of the agrophotovoltaic design.

In addition to the increase in the popularity of agrophotovoltaic greenhouses, AI in food
systems are moving towards aeroponic or hydroponic farming in indoor spaces, where light,
nutrients, and water is precisely controlled and artifically supplied. One can extend the ray-
tracing capabilities described in this dissertation so far to optical modeling and optimization
of indoor farming systems. In this chapter, we will evaluate the optical performance of an
indoor farming pod where plants are situated in vertical and horizontal racks. The indoor
farming pod design parameters will consist of the LED properties, namely the aperture,
lighting area per face, and the irradiated power on each side of the pod. A similar raytracing
algorithm will be used to evaluate power absorption of the targets, a.k.a. plants, to deter-
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mine the design fitness. Then, the aforementioned genomic optimizer will be used to find the
optimal set of LED design parameters that produce the “best” indoor farming pod design.

(a) (b)

Figure 1.3: Solar farms. Photos from public domain: https://pixabay.com.

We have so far mentioned a digital-twin approach where the computational model of
the system will inform the design of the real-life system. The next chapter will then bridge
the gap between the models described in this dissertation with a real-life application of a
next-generation food production system by analyzing an indoor farm in terms of its power
requirements. The power sizing of an indoor farming system coupled with a solar farm and
energy storage system will be performed on a UC Berkeley indoor farming container that
is located at Richmond Field Station, CA. The power sizing of the indoor farming system
will consist of determining the solar farm and energy storage system size and specifications
needed to match the power draw of the equipment needed to run the farm within a day.

Lastly, we will look at possible extensions of the light-based simulation methods devel-
oped in this dissertation and how they can be connected to different physics models. The
raytracing model developed can be used for a similar agrophotovoltaic setup for an open-
field agricultural configuration. While the energy optimization function that evaluates the
power absorption of surfaces provides a good starting point, the intricacies of crop growth
require us to model the crop dynamics of the system for a more accurate system optimiza-
tion framework. Therefore, this presents a great way to demonstrate how the optical model
can be combined with a crop model in order to optimize the agrophotovoltaic system using
crop performance and solar energy production metrics. The light model is run to obtain
the solar panel power absorption and ground surface power absorption. Daily radiation val-
ues obtained through the light-based simulation are then passed into the crop model which
calculates the reference and agrivoltaic crop yield. The crop model then outputs agrophoto-
voltaic and reference crop yields as well as other crop performance metrics. The light model
simulates the sun’s position for the crop season and calculates average ground radiation,
which is then passed onto the crop model to calculate the crop biomass, evapotranspiration,
water, and light use for a given agrophotovoltaic design. This routine is repeated for each
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agrophotovoltaic design in the genetic optimizer in each generation to calculate the design
fitness, rank designs, and use evolutionary principles to retain the best performers.

In summary, the goal of this study is to develop a reduced-order geometric raytracing
model that can be used for system performance analysis for next-generation food systems and
apply genomic-based optimization algorithms to improve system performance. Agrophoto-
voltaic greenhouse and indoor farming pod systems are used to demonstrate the capabilities
of the computational framework. In addition, power sizing analysis of a real-life indoor farm-
ing system is performed. Extensions of the digital-twin framework and how it can be coupled
with other physics models are provided using a crop performance driven optimization case
study of an open-field agrophotovoltaic system.
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Chapter 2

Solar Greenhouse Raytracing

The push for sustainable agriculture enabled various next-generation food production
systems to be developed. One of the most prominent systems are what are called agrophoto-
voltaics (APVs). These systems enable food production and power generation to exist in the
same domain. Example APV systems include (1) open-field agrophotovoltaics which crop
production or livestock grazing occurs underneath an array of solar panels that provide both
shade and energy production, (2) greenhouses that incorporate solar panels on the structure
while allowing portions of the light to go into the greenhouse for crop production.

We will start developing our modeling and optimization framework by capturing the
physics of light scattering in a solar greenhouse where the absorption and reflection, and
refraction of solar rays hitting 3-dimensional thin film panels wrapped around the greenhouse
is simulated (see Figure 1.1) [19]. This simulation technology is combined with genomic-based
machine learning algorithms in order to ascertain the “optimal” system design parameters
to maximize greenhouse food and energy production.

2.1 Model Overview

While the agrophotovoltaic studies previously mentioned have either experimentally or
computationally tested APV designs to find the best design, the proposed framework in
Figure 2.1 will enable the user to quickly evaluate solar greenhouse designs with the reduced
order model and find the “optimal” configuration within the design space using the genomic
optimization framework. This would reduce the experimental testing of greenhouse designs
to the top designs found by the genomic-based optimizer.
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Figure 2.1: Digital-twin and genomic optimization framework.

In this study, the system parameters are greenhouse shape, solar panel translucency
and solar panel refractive index. It is important to note that the complexity in determin-
ing the optimal translucency of the solar panels poses a significant challenge. La Notte et
al. [20] presents novel translucent PV-cell technologies that use organic solar cells (OSC),
dye-sensitized solar cells, and perovskite solar cells (PSC). These approaches utilize the
wavelength-sensitive nature of photosynthesis, which favors radiation in the 400-700 nm
range, called photosynthetically active radiation (PAR). These special solar cells absorb
light outside of the PAR and transmit PAR to plants, where it is absorbed by the chloro-
phyll. Wavelength-specific transmittance of the solar panels can be part of the optimization
algorithm to determine the optimal solar-cell technology to be used, as well as to aid the
design of new solar cells with specific transmittance parameters on a per-plant basis.

The system presents many challenges with regard to optimizing solar farm characteristics
to ensure energy and agricultural needs are simultaneously met. The goal would be to balance
plant growth and energy generation in a way where the greenhouse is self-sufficient and
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carbon neutral. Accordingly, in this work, a computational framework is developed to trace
light rays through agrophotovoltaic greenhouses, in order to calculate the power generated
by greenhouse solar cells, as well as the power absorbed by crops within the greenhouse.
A geometric ray-tracing algorithm is developed to track the propagation, reflection, and
refraction of light interacting with a translucent greenhouse. Genomic-based optimization
techniques are utilized to meet a target greenhouse power generation level, as well as a
targeted photosynthetic power absorption by optimizing the geometry, translucency, and
material characteristics of the greenhouse. Representative numerical examples are provided.
The framework can be used to generate tailored, temporal and location-specific, greenhouse
designs.

There are high-fidelity light and plant modeling tools, such as HELIOS and Raytrace3D,
which would most accurately simulate the energy distribution in agro-solar environments
and provide useful insight into power generation and crop production while needing extensive
libraries and relatively more computational power. In this study, a reduced-order digital-
twin is proposed that allows the user to simulate a day of irradiation in seconds, which allows
for optimization of system parameters on the order of minutes. Thus, the simulated APV
greenhouse can be regarded as a digital-twin that can be simulated and optimized in real-
time. It is noted that the optimized designs outputted by the genomic optimization algorithm
can then be fed into higher fidelity models to evaluate the best designs further. This virtual
setup allows the user to reduce the time and capital spent on the experiments to develop
a carbon-neutral greenhouse APV system. We aim to create a digital-replica of a solar
greenhouse to optimize land use and energy generation by calculating the ground and solar
panel power absorption due to solar light-scattering within the system. This approach has the
potential to deliver a tailored, situation-specific, self-sufficient agrophotovoltaic greenhouse
system.

2.2 Physical Model and System Optimization

Creating Solar Panel Geometries

Surface functions are assumed to be known for the roof and side walls of the greenhouse
F (x1, x2, x3). The ground is assumed to be flat at a constant height x3 = 0. We check for
light interactions between the greenhouse or ground by checking if F (x1,j, x2,j, x3,j) ≤ 1 for
the greenhouse surface or if x3,j ≤ 0 for the ground. The ray position at the time of surface
impact is used to compute the absorptivity and reflectivity of that beam.

We can use a generalized equation for an ellipsoid appended with a generalized sinusoid
equation to represent a broad range of greenhouse geometries centered at the origin:

F (x1, x2, x3) =

∣∣∣∣ x1

R1

∣∣∣∣p1 + ∣∣∣∣ x2

R2

∣∣∣∣p2 + ∣∣∣∣ x3

R3

∣∣∣∣p3 + a1 sin(ω1x1) + a2 sin(ω2x2) ≤ 1 (2.1)
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where (R1, R2, R3) are the generalized radii, (p1, p2, p3) are the exponents of the generalized
ellipsoid, (a1, a2) are the amplitudes of the sinusoid, and (ω1, ω2) are the associated frequen-
cies of the sinusoid component. These scaling factors will be the design parameters used
to optimize the shape of our greenhouse. It is assumed the solar panels will be form-fitted
to the shape of the greenhouse. The resulting topology of the greenhouse can range from
simple geometrical shapes to complex sinusoidal shapes, as visualized in Figure 2.2. The
generalized radii and exponents control the ellipsoidal features of the greenhouse while the
amplitudes and frequencies control the sinusoidal features. The contour nature of the green-
house equation enforces an infinitely long greenhouse along its length. For visual purposes,
the domain of the greenhouse has been constrained by the domain of simulated light rays.
In practice, one can extend the cyclical greenhouse design according to land available.

(a) (b)

Figure 2.2: Example greenhouse shapes for (a) (R1, R2, R3) = (0.5, 5, 0.5), (p1, p2, p3) =
(20, 20, 20), (a1, a2) = (0, 0), (ω1, ω2) = (0.1, 0.1) and (b) (R1, R2, R3) = (0.5, 5, 0.5),
(p1, p2, p3) = (0.5, 20, 0.5), (a1, a2) = (0.5, 0.5), (ω1, ω2) = (4, 7).

Reflection and Absorption of Rays

We assume the rays travel through a vacuum and thus we can use the nominal speed of
light (3 × 108 m/s). The design string parameters that are refined by the genomic-based
optimizer can be selected by the user. The total power per surface area is given by Ptot which
is evenly distributed among the rays based on the total area of light cover being considered
Ab. The ray positions are generated randomly over a square region with a side length of
2sReg. The center of the region is defined to follow the sun’s trajectory during the day,
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meaning that each run of the simulation will base the square beam at a point at which the
beam is calculated to hit the greenhouse at that specific beam angle.

With these parameters, we can define the power per ray in a light pulse as follows:

Pr =
PtotAb

Nr

(2.2)

We follow a standard euclidean basis (e1, e2, e3) indicating horizontal, vertical, and in
depth directions. To obtain the angle of incidence of the ray of light, θi, we first compute
the inward unit surface normal vector n of the greenhouse surface F given by:

n =
−∇F

||∇F ||
(2.3)

where

∇F =
∂F

∂x1

e1 +
∂F

∂x2

e2 +
∂F

∂x3

e3 (2.4)

is the gradient of the greenhouse surface equation. Note that for the flat ground, the inward
normal vector is constant and defined by ng = [0, 0,−1]. Next, we can then compute the
angle of incidence (θi) via the cosine formula between the ray velocity vector (v) and the
inward unit normal vector of the solar panel surface (n):

θi = cos−1

(
vj · nj

∥vj∥∥nj∥

)
(2.5)

The component of the ray velocity normal to the surface of the solar panel is given by

vj,⊥ = ∥vj∥ cos θinj (2.6)

We can calculate the outgoing reflected velocity (vref
j ) by turning the inbound normal velocity

outward by subtracting it twice:
vref
j = vj − 2vj,⊥ (2.7)

Next, we consider the material properties of the solar panel. We define n̂ as the ratio
of the refractive indices of the ambient (incident) medium (ni) and absorbing medium (na)
such that

n̂ =
na

ni

(2.8)

The absorbing medium refractive index, na (solar panel), is to be user designed based on
the optimization model. We assume the incident refractive index to be that of a vacuum as
ni = 1. Figure 2.3 outlines the decomposition of an individual ray on the greenhouse surface.
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Figure 2.3: Beam decomposition for a geometric ray-tracing model.

With the above parameters defined, the refractive angle of incoming light can be obtained
using Snell’s law, namely:

θr = sin−1(
1

n̂
sin(θi)) (2.9)

This angle is utilized for the light rays traveling into and out of the greenhouse. It is assumed
that once refracting through the solar panel, the inner medium of the greenhouse is the same
as that of outside the greenhouse. It is also assumed that the solar panel is sufficiently
thin such that the change in curvature between the outer and inner surface is negligible.
For computational efficiency, the refracted light rays were not tracked through time within
the surface of the solar panel. Rather, refracted rays were manually translated through the
medium according to Figure 2.4.
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Figure 2.4: Evolution of light refraction through wall of greenhouse.

In this figure example, the light travels from the ambient environment, through the solar
panel, and into the greenhouse. We define t as the thickness of the solar panel, θr as the
refractive angle, and dlight as the translational distance the light ray travels before exiting
the solar panel. Since it is assumed that the medium inside and outside of the greenhouse
is the same, the light retains its initial incidence angle θi once it enters the greenhouse.
Accordingly, the translational distance can be calculated as follows:

dlight = t tan(θr) (2.10)

In practice, each light ray is manually translated according to Equation 2.10 when it comes
in contact with the solar panel surface for both incoming and outgoing rays.

Power Tracking and Splitting

We consider a ray of light incident upon a material interface which produces a reflected
ray and a transmitted/absorbed (refracted) ray. The ratio of reflected electromagnetic power
(Ir) to the total incident electromagnetic power (Ii) defines the total reflectance IR ≡ Ir

Ii
where 0 ≤ IR ≤ 1 for unpolarized electromagnetic radiation. We refer the reader to Zohdi
[21] for a detailed derivation of IR. The reflectance is a function of the angle of incidence of
the incoming rays, the medium which the rays travel through, and the material which the
rays intersect with. For this model, we will consider applications with non-magnetic media
and frequencies where the magnetic permeability is virtually the same for both the incident
and absorbing medium. Following Zohdi [21], we define the reflectivity IR as follows:
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IR(n̂, θi) =
Ir
Ii

=
1

2

(
n̂2 cos θi − (n̂2 − sin2 θi)

1
2

n̂2 cos θi + (n̂2 − sin2 θi)
1
2

)2

(2.11)

+
1

2

(
cos θi − (n̂2 − sin2 θi)

1
2

cos θi + (n̂2 − sin2 θi)
1
2

)2

The reflectance is used to obtain the total amount of absorbed power by a material as
follows:

Pabs = (1− IR)Pr (2.12)

We track the total power and position of a ray and stop tracking it if either the ray has
moved outside of the user defined domain, or the ray’s power is reduced below a user defined
threshold.

The power absorbed by the ground and solar panel surfaces are obtained using the fol-
lowing flowcharts, shown in figures 2.5 and 2.6 during reflectance/absorptivity calculations
that occur within the ray-tracing algorithm.

Figure 2.5: Power distribution on solar panels.

The incident light rays which come in contact with the solar panel are split into reflected,
refracted, and power-converted light rays. The light that refracts into the greenhouse is based
on the transmissibility of the solar panel defined by γ ∈ [0, 1]. The refracted power Prefracted

is set to be proportional to the transmissibility, namely:
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Prefracted = γPabsorbed (2.13)

whereas the utilized light contains the remaining power, namely

Ppanel = (1− γ)Pabsorbed (2.14)

Similarly, the power distribution of the refracted ray when it hits the ground surface is
determined by the reflectance parameter.

Figure 2.6: Power distribution on the ground.

While the power conversion efficiencies of the solar panels and the plants are dependent
on ambient parameters, this study only takes the surface power absorption into account for
simplicity.

Time-stepping Algorithm

We use the power propagation and ray-tracing algorithm described above in conjunction
with an explicit time-stepping scheme (Forward Euler Method) to track the rays from time
t = 0 to t = tfinal or until all rays are deactivated, whichever comes first. The time-stepping
algorithm is as follows for all light rays j = 1, . . . , Nr:

1. Initialize ray positions rj(t = 0) and velocities vj(t = 0)

2. Iterate ray positions in time using:

rj(t+∆t) = rj(t) + ∆tvj(t) (2.15)

3. Check for surface-ray collisions. If ray has collided with a surface:

a) Update power absorbed by the surfaces (Pabs = (1−IR)Pr) and remaining power
for all rays (Pref,j = IRjPr,j),
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b) Calculate new ray velocity values after reflection vref
j ,

c) Calculate ray refractions if ray hits the greenhouse surface,

4. Check for active rays:

a) If no active rays are remaining: End simulation,

b) Otherwise: Move to the next step,

5. Increment the time step to (t = t+∆t) and go back to Step 2.

The time-step size ∆t is chosen accordingly to capture all ray surface interactions using

the formula ∆t = ξ
hray
0

c
, where hray

0 is the initial height of the generated rays, c is the speed
of light, and ξ is a tunable parameter such that ξ ∈ (0, 1]. The high velocity of the light
rays requires a time step size scaled to accurately observe the motion of the rays with a
sufficient number of time steps. For this study, the parameter was chosen to be ξ = 0.01.
This parameter was chosen to be sufficiently small to capture all ray interactions, while not
causing a significant bottleneck for simulation time. Further refinement of this parameter
can be obtained by conducting a convergence study in which an average F is calculated for
all surface ray interactions as a function of ξ.

Process Optimization

The “design string” for this process contains all 8 controllable constants:

Λi ≡ {Λi
1, ...,Λ

i
N} ≡ {γ, n̂s, p1, p3, a1, a2, ω1, ω2} (2.16)

where γ is the transmissibility of the solar panels and n̂s is the refractive index of the
solar panels. These parameters can be controlled within user-specified bounds. All system
parameters used in this simulation are displayed within Table 6.3.

A good set of characteristic parameters of our greenhouse design will allow for user-
defined absorptivity of the solar panels (for energy production) as well as absorbed light by
the ground (for plant growth). These two opposing objectives force the optimizer to design a
solution which balances the two goals. It should be noted that this model does not penalize
for over-irradiation/heating of crops in a time period throughout the day given that this
framework is developed independently of specific crop characteristics. An application of this
framework to a specific set of crops should consider this in choosing Pplant,des and add a
penalty term to the cost function which drastically increases the crops if the photosynthetic
power exceeds a power threshold detrimental to the crops’ growth.

With these objectives in mind, we construct the following cost function,

Π = w1

∣∣∣∣Psolar,des − Pelec

Psolar,des

∣∣∣∣+ w2

∣∣∣∣Pplant,des − Pphotosynth

Pplant,des

∣∣∣∣ (2.17)
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where the weights are chosen to be w1 = 2 and w2 = 1. The weights can be assigned
arbitrarily by the user as long as they are positive and reflect the relative importance of
each objective term. The choice of weights in this work’s numerical example is chosen to
prioritize designs in which the electrical power is as close to the desired solar power as
possible. Each term in equation 3.15 attempts to set power absorbed by the solar panels and
power absorbed for plant growth as close as possible to their desired counterparts, Psolar,des

and Pplant,des. Note that all terms in the cost function are non-dimensional.

Process Optimization Scheme: Genetic Algorithm

The greenhouse digital twin is optimized using a genetic algorithm. All genetic algorithm
parameters and search bounds chosen are displayed in Table 6.3. For applying a genetic
algorithm, the algorithm is as follows:

1. Generate S random genetic strings, where Λi ∈ [Λ−
i ,Λ

+
i ]

Λ = (Λ(1),Λ(2), ...,Λ(i), ...,Λ(S)) (2.18)

where

Λ(i) =



γ− ≤ γ(i) ≤ γ+

n̂−
s ≤ n̂

(i)
s ≤ n̂+

s

p−1 ≤ p
(i)
1 ≤ p+1

p−3 ≤ p
(i)
3 ≤ p+3

a−1 ≤ a
(i)
1 ≤ a+1

a−2 ≤ a
(i)
2 ≤ a+2

ω−
1 ≤ ω

(i)
1 ≤ ω+

1

ω−
2 ≤ ω

(i)
2 ≤ ω+

2


(2.19)

2. Compute fitness of each string by evaluating Π(Λ(i)) ∀ i

3. Rank the genetic strings where the top rank has the minimum cost function Π(Λ(i))

4. Mate the top pairs of genetic strings to obtain 2 children, such that:

Λ(ci) =


γpiϕ1 + γp(i+1)(1− ϕ1)

...

...

ω,pi
2 ϕ8 + ω

,p(i+1)
2 (1− ϕ8)


where ϕj ∈ rand[0,1].
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Λ(c(i+1)) =


γp(i+1)ϕ̂1 + γpi(1− ϕ̂1)

...

...

ω
p(i+1)
2 ϕ̂8 + ωpi

2 (1− ϕ̂8)


where ϕ̂j ∈ rand[0,1].

5. Remove bottom S − P original strings from population. Generate S − P − P new
random genetic strings.

6. Repeat steps 2-5 with a new population until either one of these conditions is met:

• G generations has been reached.

• min(Π) ≤ TOL.

2.3 Results

Convergence Study

A convergence study was conducted to observe the dependence of the physical model on
sources of randomness of the simulation. The variance of the cost was observed as a function
of the number of rays in the simulation. To do so, a single set of design parameters were
chosen. For each number of rays tested, the simulation was run 100 times, and the cost
parameters were saved.

Figure 2.7 outlines the results of the sensitivity study. Figures 2.7a, b, and c depict
the variance of the overall cost, the solar cost, and the plant cost parameter over 100 test
runs for the same design parameters. Figure 2.7d summarizes the standard deviation of the
performance parameters as the number of rays increases. For the chosen number of rays for
the numerical example outlined in the next section (500 rays), the standard deviation for all
of the parameters falls below 3× 10−3.
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(a) Sensitivity of Total Cost over 100 simulation
runs

(b) Sensitivity of Solar Cost Parameter over 100
simulation runs

(c) Sensitivity of Plant Cost Parameter over 100
simulation runs

(d) Standard Deviation of Cost Parameters for
varying Number of Rays

Figure 2.7: Summarized Results of Sensitivity Study

In choosing a representative numerical example discussed in the following section, it was
important to consider a number of rays that would lead to reproducible and accurate results
while not sacrificing efficiency of the simulation.

Numerical Example

A numerical example is generated based on the model previously described (source code
available at https://github.com/ucb-msol/AgroPV.git). A single “flash” of light was used
to represent an hour of irradiation. The pysolar python package was used to determine the
azimuth and elevation angle of the incoming rays of light for a specified date, time, and
location [22]. Based on these angles, the clear sky solar irradiance was determined from the
package. The greenhouse was simulated for July 1st, 2021 in Berkeley, California. Figure
2.8 outlines the solar irradiance distribution over the simulated day and location. It was
assumed that the greenhouse had no obstruction from the sun in its surroundings, and there
were no terrain obstructions on the sun throughout the day. The model can be trivially
extended to include terrain obstructions but was not considered for this study.
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Figure 2.8: Evolution of clear sky solar irradiance on July 1st, 2021 in Berkeley, California.

The simulation was run for every hour throughout the day at which the altitude of the
sun was above the horizon. For this particular time of year, the sun was located over the
horizon from the hours of 5:00 and 19:00. As such, 15 iterations of the ray-tracing simulation
were conducted for each design to determine its associated cost. The physical parameters
used in the system are outlined in Table 6.1. The ground refractive index was chosen based
on that of a leaf [23]. The fixed geometric exponent in the e2 axis was chosen to ensure
the projected shape of the greenhouse would be rectangular from an aerial view. Lastly, the
fixed generalized radii were fixed to allow the topology optimizer to be agnostic to the size
of the incoming beam of light. This allowed for topological updates focused on the shape
and waveform of the greenhouse rather than its size. A volume penalty term could be added
to the cost if space constraints are of concern for a particular system.

Table 2.1: Numerical Example - Greenhouse System Parameters

Symbol Type Units Value Description

Nr scalar none 500 Number of light rays
ng scalar none 1.4 Ground refractive index
c scalar m/s 3× 108 Speed of light
t scalar m 0.1 Solar panel thickness

[R1, R2, R3] scalar none [0.5, 5, 0.5] Generalized radii
p2 scalar none 20 Geometric exponent

Table 6.3 outlines the parameters used to set up the genetic algorithm in the numerical
example shown. The number of design strings, parents, and generations were chosen to



CHAPTER 2. SOLAR GREENHOUSE RAYTRACING 21

be relatively low to highlight the efficacy of the computational framework without looking
for a true optimized solution. The search bounds for the solar panel transmissibility were
chosen from opaque to transparent. The solar refractive index was designed for optimal
light reflection and refraction angles. It does not account for the particular wavelengths of
the incoming rays. This is discussed further in Section 2.4. Ultimately, the search bound
parameters chosen for this example are arbitrary as further verification and application of this
framework requires an advanced degree of expertise in manufacturing, material, and ambient
constraints to drive realistic search bounds for the design parameters of this system.

Table 2.2: Numerical Example - Genomic Optimization Parameters

Symbol Type Units Value Description

parents scalar none 6 Surviving strings for breeding
S scalar none 20 Designs per generation
G scalar none 200 Total generations

[γ−, γ+] scalar none [0.25,1] Solar panel transmissibility
[n̂s

−, n̂s
+] scalar none [2,5] Solar panel refractive Index

[p−1 or 3, p
+
1 or 3] scalar none [1, 20] Geometric exponents

[a−1 or 2, a
+
1 or 2] scalar none [0, 1.75] Sinusoid amplitudes

[ω−
1 or 2, ω

+
1 or 2] scalar none [0, 10] Sinusoid frequencies

w1 scalar none 2 Weight of solar panel power in net cost
w2 scalar none 1 Weight of photosynthetic power in net cost

Psolar,des scalar W 1/3 P0 Desired power absorbed by solar panel
Pplant,des scalar W 1/6 P0 Desired power absorbed by plants

Figure 6.4 depicts the convergence of the cost function across 200 generations. The figure
at the top indicates the cost of the best performing design after each generation while the
figure at the bottom highlights the average cost of the parent strings at the end of each
generation. The optimal design string parameters at the end of the final generation are
displayed in Table 6.4. The uncertainty in the cost was determined using the results of the
convergence study, and is reported with a 95% confidence interval over 100 test runs. Given
the limited number of generations used, uncertainty in the optimal design parameters is
not trivially quantifiable given the random nature of the genomic-based optimizer and the
non-convexity of the cost function.
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Figure 2.9: Evolution of best cost (top) and average parent cost (bottom).

Table 2.3: Numerical Example - Optimal Greenhouse Design Parameters

Π γ n̂ p1 p3 a1 a2 ω1 ω2

1.35 ± 0.0028 0.26 2.00 12.45 6.64 1.00 1.55 4.76 7.51

These “optimal” design parameters translate into the “optimal” greenhouse illustrated in
Figure 2.10. The ellipsoidal components of the generalized greenhouse contour equation are
highlighted by the average value between the peaks, and follow a unique version of the shape
depicted in Figure 2.2a while the alternating patterns denote the sinusoidal component of
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the generalized greenhouse contour equation as depicted in Figure 2.2b. The intended nature
of this optimized shape and physical intuition is further discussed in Section 2.4.

(a) Isometric view of optimized greenhouse
design (b) Side view of optimized greenhouse design

(c) Top view of optimized greenhouse design
(d) Front view of optimized greenhouse de-
sign

Figure 2.10: Detailed views of optimized greenhouse design.

Figure 2.11 outlines key snapshots of the simulation at different times of the day. The
times are broken down by every two hours to illustrate significant changes in the angle of
incoming light to the greenhouse. The time was chosen to depict collision of the light rays
with the greenhouse and ground as well as reflection of the rays simultaneously. In the earlier
part of the day, the light rays are observed to become entrapped in reflections within the
”sawtooth” convex section of the greenhouse, allowing for increased reflections. The convex
portions of the greenhouse on the opposite end of the y axis (see Figure 2.11) are not as
large in magnitude, but still provide an entrapment effect for the greenhouse.
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Figure 2.11: Full day simulation of best design.
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A closer look at a full simulation is outlined in Figure 2.12 which outlines an incoming
flash of light at 12PM on July 1st, 2021. As expected, the light rays enter the domain nearly
perpendicular to the ground. The initial impact of the rays leads to pure reflection from the
concave portion of the greenhouse. Refraction is not observed until rays come in contact
with the convex portion of the greenhouse situated along the x-axis. At this point, there is
a period of reflection and refraction within the ”sawtooth” until the rays are reflected out
or move below the designated power threshold. The simulation is stopped when no active
rays are remaining in the domain.
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Figure 2.12: Detailed simulation of light flash at 12PM.
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2.4 Discussion

The physical intuition of the optimized results can be understood through the design
of the cost function. Based on the cost, the optimization scheme worked to maximize the
power absorbed by both the solar panels as well as the crops (defined by the ground within
the greenhouse). The physical nature of an agrophotovoltaic system deems the majority of
the light will come in contact with the greenhouse exterior before refracting into its interior.
As such, the algorithm is able to find an optimal path by first designing the greenhouse to
generate as much power as possible since it will originally capture the clear sky radiation.
It is observed that the optimal design was chosen such that the greenhouse was 74% opaque
and thus greenhouse power generation is still prioritized.

This work provides a framework for producing fast, optimized agrophotovoltaic green-
house designs given a particular location and time of year. Tuning parameters such as opacity
to enforce the algorithm to allow a baseline power of light within the greenhouse could allow
for a less prioritization of greenhouse power generation. An alternative and potentially more
effective strategy for equal prioritization of both power generation and plant growth is to
consider wavelength sensitive greenhouses. One such example of these systems is explored
by Loik et al. [7]. This agrophotovoltaic system utilizes thin-film solar cells surrounding a
greenhouse which work to filter designated wavelengths of light that are solar cell sensitive
while refracting wavelengths of light that are crop sensitive for photosynthesis. This not only
refines the power sharing strategy outlined in Figures 2.5 and 2.6, but also allows for more
efficient processing of light for power generation and photosynthesis.

A wavelength-dependent computational framework also provides merit in addressing the
cost reduction limitations of this physical system. These limitations are apparent in the cost
evolution shown in Figure 6.4. The cost reduction after 200 generations is limited to roughly
a 42.5% improvement from the best design in the initial generation. Ultimately, a wavelength
dependent simulation would allow for a more refined cost reduction if the photosynthetically
active radiation band of plants is utilized when designing the greenhouse system.

The optimal shape of the greenhouse follows a sawtooth cyclical pattern. The top view
shown in Figure 2.10c most clearly illustrates this pattern. The physical intuition of this
optimized geometry follows providing convex caves as a means of entrapping the incoming
light throughout a single day. These entrapment zones are aligned along the x-axis, consistent
with the incoming direction of the radiation. It is also observed that these entrapment zones
are biased towards the rays in the first half of the day. This can be attributed to the particular
nature of the solar irradiance for this particular day and location. As shown in Figure 2.8,
the sun is above the horizon just before 5:00 in the morning, and the sun is below the horizon
just after 19:00. As such, the first half of the day simulation includes one more flash of light
in comparison to the second half of the day leading to a skewed entrapment of light for
the first half of the day. This design, nonetheless, can be utilized as design inspiration for
potential transparent greenhouse designs in which the greenhouse is symmetric about the
x-axis to account for multiple different seasons within the year.
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2.5 Summary

The solar greenhouse model captures the essential physics of ray scattering in a com-
putationally efficient manner. However, the surfaces included in the geometric raytracing
framework, the translucent greenhouse structure and the ground is only a starting point and
needs improvement if it were to be used as a digital-twin of a real-life agrophovoltaic green-
house which can be controlled and optimized in real-time. In real greenhouse systems, the
plants are grown in different configurations, which include having them uniformly planted on
the ground, grown in pots on benches, or stacked vertically to maximize the space utilized.
Therefore, the next logical addition to our current modeling framework would be to incor-
porate racks or towers where the plants could be placed within the greenhouse. These plant
racks, combined with soilless precise nutrient delivery systems, are often called hydroponics
or aeroponics. The next chapter will improve our solar greenhouse model by adding hydro-
ponic towers to the raytracing simulation as well as improve our optimization algorithm by
adding a water pumping power penalty term to the design fitness function.
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Chapter 3

Hydroponics and Irrigation

The solar greenhouse structure simulated in Chapter 2 provides a foundation for the
capabilities of the raytracing model to accurately evaluate the power distribution within
agrophotovoltaic systems. To build on this foundation, we need to consider and model how
real-life greenhouses situate the plants inside. While the plants could be planted in the
ground similar to an open-field agricultural setup, many greenhouses and indoor farming
containers try to maximize the crop production space by stacking the plants vertically. In
order to improve our modeling and optimization framework, we will next incorporate the
structures plants are placed in within the greenhouse, which are often combined with precise
nutrient delivery systems and are called hydroponics or aeroponics.

3.1 Model Overview

Greenhouses employ a variety of different configurations to grow plants. These include:
(1) planting the crops in soil similar to an open field and using the greenhouse structure for
the sole purpose of climate control and protection from weather elements, (2) placing potted
plants on benches in the greenhouse and repotting them as they grow, or (3) stacking them
vertically by utilizing the most amount of space possible and precisely delivering nutrients to
exposed roots. The third method is called vertical farming and includes the use of aeroponics
and hydroponics [18], which we will focus on modeling the latter in terms of solar power
absorption of plants and irrigation pump power requirements.

Hydroponics is a method of growing plants in a nutrient rich solution without the need
for soil. Depending on the type of crop, this method can be executed via drip irrigation,
aeroponics, nutrient film technique, ebb and flow, aquaponics, or deep-water culture. Al-
though physically very different in the method of delivery, most of these techniques share
the same fundamentals: a nutrient solution is pumped to the plants via a specialized deliv-
ery system and then circulated back to a reservoir where the nutrients are replenished. We
refer the reader to [11–15] for a comprehensive description of these techniques. Hydroponic
methods use, on average, 10% of the water utilized in traditional farming [16] as nutrients
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are delivered directly to the plant roots, minimizing water lost to evaporation. This mode
of growing plants can be easily automated and, combined with the fact that the lack of soil
protects against pests, these systems make it easier to cater to the unique physiological needs
of the plants while eliminating the need for pesticides and other chemicals. These systems,
however, have high start-up costs [17] and thus present a dire need for high operational
efficiency to recoup these costs.

In this chapter, we will follow closely the digital twin framework used for the initial
solar greenhouse model, where we will simulate different greenhouse geometries, as well
as different hydroponic tower configurations, including the tower shape, sizing, refractive
index, and proximity of towers to each other. The resulting solar power distribution within
the system, namely the solar panel and plant energy absorption, and the irrigation pump
power requirements will determine the “fitness” of the agrophotovoltaic design.

3.2 Hydroponics Model

Creating Hydroponic Tower Geometries

We will employ the 3D-ellipsoidal equation previously used in generating the greenhouse
shape without the sinusoidal terms to create the hydroponic towers described by a surface
function, F (x1, x2, x3):

F (x1, x2, x3) =

∣∣∣∣x1 − x1o

R1

∣∣∣∣p1 + ∣∣∣∣x2 − x2o

R2

∣∣∣∣p2 + ∣∣∣∣x3 − x3o

R3

∣∣∣∣p3 ≤ 1 (3.1)

where (R1, R2, R3) are the generalized radii, (p1, p2, p3) are the exponents of the general-
ized ellipsoid, and (x1o, x2o, x3o) are the center location of the ellipsoid. In this context, the
center location will be determined by the design parameters that dictate the tower spacing
within the greenhouse. While nearly all the scaling factors in this equation will be the hy-
droponics design parameters, R3, the generalized radii in x3 direction will be constricted by
the height of the greenhouse structure at a given hydroponic tower location. Since the green-
house scale is arbitrary, meaning is not part of the design optimization and set as constant
in the model described in Section 2, the hydroponic tower spacing parameter is in terms of
the fraction of the available greenhouse space on the ground level. The variety of hydroponic
tower shapes and spacing that can be achieved is visualized in Figure 3.1.
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(a) (b)

(c) (d)

Figure 3.1: Example hydroponic greenhouse configurations created by greenhouse shape
parameters (pg,1, pg,3, a, b, w1, w2) and hydroponic shape (ph,1, ph,2, ph,3) and size (Rh,1, Rh,2)
parameters and spacing (∆x1,∆x2).

Raytracing Algorithm

The details of the raytracing algorithm is identical to the greenhouse raytracing model in-
troduced in Section 2, where rays are propagated in time using a Forward Euler time-stepping
scheme. The ray-surface interactions are simulated using a collision check against the ellip-
soidal elements (i.e. greenhouse structure and each hydroponic tower) and the ground. Once
a hit is detected, the ray is split in the case of it hitting the translucent greenhouse structure
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due to refraction and reflection or is only reflected if it hits the hydroponic towers or the
ground.

The surface power absorption and ray power retention are calculated at each ray-surface
interaction throughout the simulation. The power absorbed by the surface can be calculated
by

Pabs = (1− IR)Pr (3.2)

The remaining power in the ray is calculated as follows:

Pref = IRPr (3.3)

The ray is tracked in the system as long as:

• the ray is within the system domain limits,

• its power is above the specified power threshold Pmin.

Hydroponic Pump Power Requirements

The design fitness of the solar greenhouse so has so far only evaluated the power ab-
sorption of the solar panels situated on the greenhouse structure and the plants that were
previously situated on the ground. With the addition of hydroponics to the model, we now
need to assess the “cost” we will incur by placing hydroponic towers that vary in number,
size, and shape. For example, this cost could be in terms of reduced solar power absorption
by plants if the hydroponic towers placed are too many, too big, or have suboptimal shapes
that block sunlight at given angles. While the power absorption penalty of the hydroponic
towers will be evaluated through the raytracing model, another important aspect to assess
hydroponics performance will be the irrigation pump power requirements due to the size and
number of the hydroponic towers in the agrophotovoltaic system design.

To be able to calculate the pumping power, we will go through the following steps of
calculations:

1. Calculate greenhouse model scale given common greenhouse sizing [24] of (L: 96 ft x
W: 30 ft) and model size of (L: 1 u x W: 0.5 u). Since the length of the greenhouse in
the model is not constrained and can be expanded, we will use the width in calculating
the scaling factor:

rscale =
0.5

30
=

1

60
(3.4)

2. Choose hydroponics plant spacing per row (dh) and between rows (dv). In this study,
we will choose the values arbitrarily while keeping it close to recommendations for
real-life applications [25]:

dh = 1 ft, dv = 2 ft (3.5)
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3. Calculate tower radius (Ravg) in e1 − e2 plane given ellipsoidal radii (Rh,1 and Rh,2):

Ravg =
Rh,1 +Rh,2

2
(3.6)

4. Calculate number of plants per rack (Nppr) and the number of racks (Nrack) using the
tower circumference and height, respectively:

Nppr =
2πRavg

dh

1

rscale
(3.7)

Nrack =
htower

dv

1

rscale
(3.8)

5. Calculate the total number of plants housed on a given tower:

Nptot = (Nppr)(Nrack) (3.9)

6. Calculate total water reservoir volume needed to irrigate the plants in the tower. This
will depend on the hydroponic system used. We will use nutrient film technique (NFT)
for our numerical example. Nutrient film technique system uses a slanted tray to move
the nutrient solution from the top of the tray and use gravity to direct it to the plants at
lower levels [26]. The rule of thumb described in many sources on hydroponic farming
is that water needed per plant is: 1) 1/2 gal for small, 2) 1-1.5 gal for medium, and 3)
2-2.5 gal for large plants [27].

Then, choosing 1.5 gal per plant for our calculations, the water reservoir required per
tower is:

Vwater = (1.5)Nptot (3.10)

7. Next, we will choose the flow rate for our system, in terms of the circulation time of
the solution. This will be specific to the hydroponic application and can be adjusted
by the user using this framework. We will use an arbitrary 2-hour cycle for the system,
which then gives us the gallons per hour rate of flow:

GPH =
Vwater

2
(3.11)

8. Finally, we will employ a simple power pumping calculation dependent on the height
of the hydroponic tower:

Ptower = (flow rate)(ρ)(g)(htower) (3.12)

9. Repeat Steps 1-8 for every hydroponic tower within the greenhouse to get total power
needed to pump nutrients to the plants in the hydroponic system:

Ppump = (Ntower)(Ptower) (3.13)



CHAPTER 3. HYDROPONICS AND IRRIGATION 34

The hydroponic pumping power required for a given greenhouse configuration will ulti-
mately depend on the size and shape of the hydroponics, which are also tied to the greenhouse
shape. Calculating the pumping power will allow us to include it in the design fitness function
to better assess the power generation and consumption of our agrophotovoltaic system.

Process Optimization

The “design string” for this process contains all 17 controllable constants:

Λi ≡ {Λi
1, ...,Λ

i
N} ≡ {γ, n̂s, p1, p3, a1, a2, ω1, ω2, ,∆x1,∆x2, ph,1, ph,2, ph,3, Rh,1, Rh,2, n̂h, n̂g}

(3.14)
where γ is the transmissibility of the solar panels, n̂s is the refractive index of the solar

panels, n̂h is the refractive index of the hydroponic towers, n̂g is the refractive index of the
ground. The remaining design parameters relate to the shape parameters of the greenhouse
and the hydroponic towers and the spacing of the said towers. These parameters can be
controlled within user-specified bounds. All system parameters used in this simulation are
displayed within Table 6.3.

A good set of characteristic parameters of our greenhouse design will allow for maximum
absorptivity of the solar panels (for energy production) as well as absorbed light by the
ground (for plant growth) and minimize the pumping power required to deliver nutrients
and water to the plants situated in the hydroponic towers. As mentioned in Section 2, the
necessary next step in improving the design cost function definition is to connect the plant
solar energy absorption to crop performance metrics such as crop yield and water and light
use efficiencies. This will ensure the plant power absorption is penalized when the crops
are overexposed to sunlight during the day in the same way it will be penalized when there
isn’t enough sunlight. The details regarding improving the cost function will be discussed in
extensions of this dissertation, in Section 6. Going back to the current hydroponic greenhouse
model, given the objective of maximizing power absorption by the panels and plants, as well
as minimizing the pumping power, we construct the following cost function,

Π = w1

∣∣∣∣Po − Pelec

Po

∣∣∣∣+ w2

∣∣∣∣Po − Pphotosynth

Po

∣∣∣∣+ w3
Ppump − Pmax

NtowerPmax

(3.15)

where the weights are chosen to be w1 = 2, w2 = 3, and w3 = 1. The weights can be assigned
arbitrarily by the user as long as they are positive and reflect the relative importance of each
objective term. The choice of weights in this work’s numerical example is chosen to prioritize
designs in which the hydroponic plant power absorption is maximized.

Note that all terms in the cost function are non-dimensional. In addition, the pumping
power penalty term is divided by the number of towers within that design to avoid penalizing
designs that include more towers and evaluate the cost to pump per tower basis. It is also
normalized using the maximum solar power density achieved during the day simulation,
Pmax.
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Given the cost function, the system can be optimized using the genetic algorithm de-
scribed in Section 2. The genetic algorithm parameters and design parameter search bounds
used in this work are included in Table 3.2.

3.3 Results and Discussion

A numerical example is used to demonstrate the capabilities of the hydroponic greenhouse
digital-twin framework. Similar to the previous solar greenhouse model described in Section
2, the system is pulsed at hourly intervals with given clear sky radiation values, altitude and
azimuth angles for July 1st, 2021 in Berkeley, California, using pysolar Python package [22].
In addition to the design parameters of the previous solar greenhouse model, we expect the
genomic optimizer to find the optimal hydroponic design parameters that will maximize the
power absorption of the panels, and plants, and minimize the hydroponic pumping power
required for the system. The system parameters chosen for this numerical example are given
in 3.1.

Table 3.1: Numerical Example - Greenhouse and Hydroponics System Parameters

Symbol Type Units Value Description

Nr scalar none 500 Number of light rays
c scalar m/s 3× 108 Speed of light
t scalar m 0.1 Solar panel thickness

[R1, R2, R3] scalar none [0.5, 5, 0.5] Generalized radii
p2 scalar none 20 Geometric exponent

rscale scalar none 1/60 Greenhouse model scale
dh scalar ft 1 plant spacing per row
dv scalar ft 2 plant rack spacing
Vwpp scalar gal 1.5 water needed per plant (medium-sized)
ρw scalar kgm−3 1000 water density
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Table 3.2: Numerical Example - Genomic Optimization Parameters

Symbol Type Units Value Description

parents scalar none 6 Surviving strings for breeding
S scalar none 20 Designs per generation
G scalar none 150 Total generations

[γ−, γ+] scalar none [0.25,1] Solar panel transmissibility
[n̂s

−, n̂s
+] scalar none [2,5] Solar panel refractive index

[n̂h
−, n̂h

+] scalar none [2,5] Hydroponics refractive index
[n̂g

−, n̂g
+] scalar none [2,5] Ground refractive index

[p−g,1 or 3, p
+
g,1 or 3] scalar none [1, 20] Greenhouse geometric exponents

[a−1 or 2, a
+
1 or 2] scalar none [0, 1.75] Sinusoid amplitudes

[ω−
1 or 2, ω

+
1 or 2] scalar none [0, 10] Sinusoid frequencies

[∆x−
1 or 2,∆x+

1 or 2] scalar none [0.10, 0.50] Tower spacing per axis
[p−h,1 or 2 or 3, p

+
j,1 or 2 or 3] scalar none [1, 20] Hydroponics geometric exponents

[R−
h,1 or 2, R

+
h,1 or 2] scalar none [1, 20] Hydroponics generalized radii

w1 scalar none 2 Solar panel power penalty weight
w2 scalar none 3 Plant power penalty weight
w3 scalar none 1 Pump power penalty weight
Pmax scalar Wm−2 873.9 Maximum solar power density

Optimization results for the numerical example is given in Figure 3.2 for the first 150
generations. We clearly see an approximate 12% improvement of the system after the op-
timization run. While the improvement can be considered minor, a different set of system
parameters and user defined objective function weights can drastically change the “optimal”
design, as well as the percent reduction of the best design fitness across generations. The
shortcomings and the proposed extensions to the model, as well as the optimization function,
will be further discussed in the next section.
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Figure 3.2: Evolution of system design costs (parent average, and best design cost).

Table 3.3: Numerical Example - Optimal Hydroponic Greenhouse Design Parameters

Π γ ns pg,1 pg,3 a

3.51 0.272 2.79 5.66 11.3 1.13

b ω1 ω2 ∆x1 ∆x2 ph,1

0.096 3.53 4.80 0.167 0.182 5.35

ph,2 ph,3 Rh,1 Rh,2 nh ng

7.04 2.638 0.032 0.045 3.23 50.8

The optimal agrophotovoltaic system design parameters can be seen in Table 3.3 and is
also illustrated in Figure 3.3. We can see that the greenhouse shape follows the progression
of the solar angles and maximizes the incoming radiation into the interior of the greenhouse,
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as seen in Figure 3.5 and 3.6. In addition, the hydroponic towers are situated to maximize
power absorption of the plants due to the nonzero azimuth angle of the sun.

The results shown demonstrate a framework to model and optimize a hydroponic agropho-
voltaic system. While the intricacies of indoor farming and solar power generation expand
beyond the capabilities of the current model described in this study, this model serves as
a foundation for a fast simulation that can utilize GPU parallelization techniques and be
used in genomic optimization. Further additions to this model can be made by coupling the
raytracing algorithm with crop modeling, heat modeling, as well as ventilation systems, and
air flow modeling.

(a) Isometric view of optimized greenhouse. (b) Side view of optimized greenhouse.

(c) Top view of optimized greenhouse. (d) Front view of optimized greenhouse.

Figure 3.3: Detailed views of optimized greenhouse design.
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Figure 3.4: Detailed simulation of a light flash generated perpendicular to the ground.
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Figure 3.5: Full day simulation of best design. Moment rays hit the greenhouse is visualized
for hours of the day (6AM-1PM).
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Figure 3.6: Full day simulation of best design. Moment rays hit the greenhouse is visualized
for hours of the day (2PM-7PM).

3.4 Summary

Agrophotovoltaic systems offer agricultural production and power generation to exist in
the same space. While the efficacy of these systems has been experimentally proven, there
is a significant avenue yet to be explored using computational methods to model and opti-
mize such systems. To drive innovation and utilize state-of-art food systems, we introduced
a digital-twin of a greenhouse agrophotovoltaic system with hydroponics by modeling the
optical properties of the system and the power requirements of the hydroponics. This frame-
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work can easily be adapted to include other multiphysics models such as crop, heat, and
ventilation models. The upgraded framework can be used as an invaluable tool to optimize
real-life systems and reduce the financial cost of experimentally testing system designs.

It is important to note that next-generation food production systems span a variety of
different configurations including open-field APVs, solar greenhouses, and indoor farming
pods. While the hydroponic solar greenhouse model developed is a great tool to simulate
and optimize an agrophotovoltaic greenhouse system, we need to look at other types of next-
gen food systems. The optical modeling approach developed so far can also be applied to
another popular crop production system: indoor farming pods. Indoor farming is a type
of controlled environment agriculture (CEA) that allows the precise control of nutrients,
climate, and lighting of food production. Since one of the most important factors that drive
crop growth is radiation, the next step of our modeling and optimization framework for
next-generation food systems is the optical modeling of indoor farming pods.
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Chapter 4

Optical Design of Pod-Based Indoor
Farming Systems

In addition to the increase in the popularity of agrophotovoltaic greenhouses, AI in food
systems is moving towards aeroponic or hydroponic farming in indoor spaces, where light,
nutrients, and water is precisely controlled and artificially supplied. As the lighting inside the
indoor farming pod is highly controlled, there is a compelling reason to model and optimize
the light scattering and absorption to improve crop growth efficiency. Therefore, the next
step of our next-generation food system modeling and optimization framework is the optical
simulation of the LED lighting inside an indoor farming pod using the previously developed
raytracing approach [28].

4.1 Background Information

Vertical indoor farming

Indoor farming is a promising mode of next-generation agriculture, enabling year-round
cultivation of produce, independent of local climate conditions. Indoor farms can be built
in urban areas, making fresh, local produce available at lower prices to consumers, thanks
to reduced transportation and irrigation costs. They also offer increased yields and reduced
pesticide usage as, with soil-free hydroponics and a highly controlled growth environment,
fewer plants are lost to pests and disease. In the face of a changing climate and “food deserts”
prevalent in both urban and rural settings, indoor farming offers a sustainable solution to
scarcity of fresh produce.

The concept of indoor farming has been explored for millennia. The concept of shielding
plants from vacillating weather conditions by growing plants inside a greenhouse was first
implemented by agrarian communities in 30 CE [29]. As time and technology progressed, full
control over ventilation, air flow, growth medium, and light exposure became feasible. One
of the first fully-fledged controlled environment research facilities began operation at North
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Carolina State University in 1968 [30]. Recent developments in the semiconductor industry
have made it cost effective for light-emitting diodes (LEDs), which can provide specific
wavelengths of light for photosynthesis, to supplant broad-spectrum sunlight. This has
given rise to “plant factories” [31] and indoor farming “pods” [32] (Figure 4.1): warehouses
and shipping containers outfitted with LEDs, hydroponics, cameras and advanced sensors
which are nominally more efficient than traditional farms and greenhouses.

Shade is not a concern for indoor farms as, with optimal optical design, all plants can
receive the requisite light for photosynthesis. As such, many indoor farms will organize
hydroponically grown plants in either 1) vertically stacked shelves or 2) adjacent panels
hanging from the ceiling [33]. This dense packing of plants facilitates more growth on less
land. To put this into perspective, a 30-story vertical indoor farm with a 5-acre base could
produce a crop yield equivalent to 2400 acres of a traditional farm [34].

Figure 4.1: A general schematic of an indoor container farming pod.

LEDs: Light-emitting diodes

Different plants require different wavelengths of light for optimal photosynthesis and opti-
mal growth of features such as stem length and leaf thickness [35]. LEDs are perfectly suited
to supply plants with the specific, optimal combinations of colors of light they need, because
LEDs emit a narrow band of wavelengths depending on the bandgap of their constituent
semiconductor material. Thus, indoor pod farms with “walls” of LED light strips reduce
energy waste by maximizing the amount of power absorbed by the plants and minimizing the
power lost to excess heat. Beams of light supplied by LEDs can be collimated by the addition
of optical lenses, further reducing energy lost to non-plant targets and reducing the distance
between the plants and LEDs. Additionally, exponential development in the semiconductor
industry over the past three decades has made LEDs smaller, faster-actuating, more efficient,
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and more durable than traditional incandescent light sources, rendering LEDs economically
viable for indoor farming applications.

Digital-twins and optimization

The practice of vertical indoor farming in shipping container “pods,” enabled by LED
light sources and hydroponic nutrient sources, is still nascent and little work has been done
to quickly and efficiently model and optimize such systems. A digital-twin of an indoor pod
farm can be safely and cheaply manipulated without jeopardizing the system or the plants’
well-being, making it an exceedingly quick, inexpensive, and useful approach for identifying
optimal operational parameters.

The indoor farming pod is a complex system with a multitude of physical phenomena
including air flow, light propagation, and energy transfer. Several digital-twin frameworks
have been developed to capture the physics of light propagation in greenhouse, agrophoto-
voltaic, and food decontamination applications using ray tracing techniques [21, 36] and to
capture and optimize the physics of energy flow [37–39] and air flow [40, 41]. Ray tracing
techniques decompose light into rays whose interactions with surfaces are quickly geomet-
rically traced, facilitating fast computation of a large number of interactions between rays
and surfaces and optimization of the surface shape for maximum absorption/reflection.

Digital-twins have been scarcely employed in optimizing agricultural systems [42–44], and
they are even more rarely implemented in indoor farming pods. Two such implementations
were carried out by Randolph et al. [45] and Sambor et al. [46] to optimize the energy
consumption of an off-grid indoor farming pod to determine optimal operation time for each
component of the system. These implementations, however, do not allow for manipulation of
the orientation and/or shape of the system’s components for maximum operational efficiency.
In [47], computational fluid dynamics (CFD) methods were utilized to model the air flow
inside an indoor farming pod, but such methods have a prohibitively high computational
cost, especially when running various configurations and performing optimization. Thus, an
easily manipulated, computationally inexpensive model that accurately captures the system’s
physics is desired.

Objectives

Over the past few years, around the world, many indoor farming companies have been
proving that indoor farming is a viable mode of next-generation farming, but the systems
remain energy-intensive, and little analysis has been performed to assess system efficiency. To
optimize these systems and drive innovative solutions, this work develops a flexible digital-
twin for the optical design of sustainable, small-scale indoor farming “pods,” containing
vertically grown plants with energy supplied by carefully controlled LEDs. Flow of LED
power is rapidly computed with a reduced order model of Maxwell’s equations based on
high-frequency decomposition of the LED irradiance into multiple rays. These rays are then
propagated forward in time to track their reflections and ultimate absorption. We simulate
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thousands of source-system configurations, varying the emission characteristics of the LED
“walls” and optimizing for maximal power absorption by the plant “targets.”

The digital-twin consists of

• A model for the LED optics and tracking of power flow,

• A model for the absorption of the optical power by the pod components, and

• A genomic optimization of LED configuration and emission characteristics.

The digital-twin and optimization framework described in this work can be quickly and
easily run on a laptop, making it more accessible than computationally-intensive alternatives.
This work is motivated by the possibility that indoor farming researchers and practitioners
will tailor this simulation paradigm to their specific system’s needs.

4.2 Indoor Farming Model

Pod farm, plant, and LED geometries

We model an indoor pod farm as an enclosed rectangular box defined by “wall cutoff”
values (xw1±, xw2±, xw3±) which can be adjusted to simulate any pod size. Each wall has
an array of LEDs whose beam spread, power, and geometric configuration (limited to a
rectangle within the wall plane) can be configured for optimal performance. We can label
the six walls by their inward surface normal in the standard Euclidean basis (e1, e2, e3).
Using Cartesian coordinates (x1, x2, x3), we designate the center of the pod as the origin.
Plants racks can then exist in planes parallel to x1 = 0, x2 = 0, and/or x3 = 0. Example
plant rack configurations are shown in Figure 4.2.

Once rays are emitted from one of the six walls of the pod, they are propagated forward
in time. In each time step, we check to see if the ray has hit a wall or a plant or will simply
continue propagating as in the previous time step. Once a ray-surface interaction happens,
we determine the power absorbed by either the wall or plant, the residual power in the ray,
and reflection normal for the ray.

Plant targets are modeled as generalized ellipsoids. We define the surface of plant i with

Fi(x1, x2, x3) =

∣∣∣∣x1 − x1i

R1

∣∣∣∣p1 + ∣∣∣∣x2 − x2i

R2

∣∣∣∣p2 + ∣∣∣∣x3 − x3i

R3

∣∣∣∣p3 ≤ 1 (4.1)

where (R1, R2, R3) are the generalized radii, (p1, p2, p3) are the generalized exponents, and
(x1i, x2i, x3i) define the center of the plant.
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(a) (b)

(c) (d)

Figure 4.2: Example pod configurations for (a) rack: x1x2, number of targets: x1 : 9, x2 : 3,
(b) rack: x1x3, number of targets: x1 : 6, x3 : 3, (c) rack: x1, number of targets: x1 : 9, and
(d) racks: x1x2, x1x3, x2x3, number of targets: x1 : 9, x2 : 3, x3 : 3. Plants are visualized as
cubes for plot simplicity.



CHAPTER 4. OPTICAL DESIGN OF POD-BASED INDOOR FARMING SYSTEMS 48

For ray j at location (x1j, x2j, x3j), if

x1j ≤ xw1− or
x1j ≥ xw1+ or
x2j ≤ xw2− or
x2j ≥ xw2+ or
x3j ≤ xw3− or
x3j ≥ xw3+,

(4.2)

then we say the ray has hit a wall. If for plant target i

Fi(x1j, x2j, x3j) ≤ 1, (4.3)

then we say that ray j has hit plant i.

Initializing rays

Ray positions, r(x1, x2, x3), are randomly initialized within a rectangular area defined by
the “source tube” values ST1−12 (defined in Table 4.1) on the surface one of the six walls.
For example, for the wall with surface normal +e1, rays will emanate from the point

x1 = xw1+,
x2 ∈rand [−ST11, ST11],
x3 ∈rand [−ST12, ST12].

(4.4)

As there are six walls and two source tube values per wall, there are a total of 12 source
tube values.

Ray velocities, v, are initialized with magnitudes equal to the speed of light and directions
randomly determined from a set of “aperture” values A1−18. As there are six walls and three
aperture values per wall, there are a total of 18 aperture values. Once a direction of travel
is determined from the aperture values, the direction is normalized and then scaled by the
speed of light. That is, we first determine the un-normalized components of the direction
(a1, a2, a3): 

a1 ∈rand [0, Ax1 ],
a2 ∈rand [0, Ax2 ],
a3 ∈rand [0, Ax3 ],

(4.5)

then normalize 
v̂1 =

a1
||a||

,

v̂2 =
a2
||a||

,

v̂3 =
a3
||a||

,

(4.6)
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where ||a|| =
√
a1 + a2 + a3. Finally, we scale by the speed of the light, c, to obtain the

components of the full initial velocity vector:
v1 = cv̂1,
v2 = cv̂2,
v3 = cv̂3.

(4.7)

Initial ray position and velocity determination is visualized in Figure 4.3.

(a) (b)

Figure 4.3: (a) Aperture settings determining initial ray direction. (b) Source tube param-
eters determining ray initialization area.

Ray power values are initialized as a fraction of the total power, Pw, coming from the
wall associated with the initial ray position. If the total number of rays coming from the
wall is Nr, then the power in each ray emanating from wall w is

Pray =
Pw

Nr

. (4.8)

As there are six walls and one total power value per wall, so there are a total of 6 wall
power parameters P1−6. The source tube, aperture, and wall power parameters comprise the
36 design parameters for optimization in this study.
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(a) (b)

(c)

Figure 4.4: Ray initialization with 6 walls, aperture values A1−18 : 0.5 and source tube
lengths ST1−4 : 0.5 and ST5−12 : 3. Ray color added for visual clarity.

Raytracing method

The details of the raytracing algorithm is identical to the greenhouse raytracing model
introduced in Section 2. The power absorbed by the surface, Pabs, and the power retained



CHAPTER 4. OPTICAL DESIGN OF POD-BASED INDOOR FARMING SYSTEMS 51

by the ray, Pref, are computed as:{
Pabs = (1− IR)Pinc

Pref = IRPinc
(4.9)

where Pinc is the incident power. Ray power values are updated in each time step until
the power in the ray falls below some threshold. At that point, the ray is considered fully
absorbed and deactivated.

Time-stepping scheme

The power propagation scheme outlined in the previous section is achieved through an
explicit time-stepping scheme with a time step size defined by

∆t =

(
∆x1 +∆x2 +∆x3

3c

)
ξ (4.10)

where (∆x1,∆x2,∆x3) are the voxel sizes per axis, c is the speed of light, and ξ is a tunable
parameter for refining the step size. With higher values of ξ, the simulation runs faster and
with lower values of ξ the collisions are modeled more accurately. In this study, we use ξ = 2
to accurately capture the ray interactions without significantly slowing down the simulation.
A convergence study could be conducted by including ξ in the set of design parameters for
more refinement, but this is beyond the scope of this study.

The rays are propagated in the system using the same explicit Forward Euler time-
stepping scheme.

4.3 Machine-Learning, Optimization, and Automatic

Design

Design parameters

The indoor farming system design consists of the following 36 design parameters:

Λi ≡ {Λi
1, . . . ,Λ

i
N} ≡ {A1, . . . , A18, ST1, . . . , ST12, P1, . . . , P6} (4.11)

where A1−18 are the aperture parameters (3 per wall) are used to determine the initial light
direction, ST1−12 are the source tube values (2 per wall) that dictate the wall area in which
the ray will be randomly initialized, and P1−6 are the total power values (1 per wall). Table
4.1 outlines which design parameters belong to each wall, where each wall is identified by its
inward normal in the standard Euclidean basis.
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Table 4.1: Design parameters associated with each wall.

Inward normal Aperture parameters Source tube length [m] Power [W]

−e1 A1, A2, A3 ST9, ST10 P1

e1 A4, A5, A6 ST11, ST12 P2

−e2 A7, A8, A9 ST5, ST6 P3

e2 A10, A11, A12 ST7, ST8 P4

−e3 A13, A14, A15 ST3, ST4 P5

e3 A16, A17, A18 ST1, ST2 P6

Design fitness

The 36 design parameters define a design space which we can explore and evaluate with
a cost function. Different parameter sets will result in different indoor farming system
performance with lower values of the cost function corresponding to stronger design fitness.
The definition of design fitness may differ between applications and the cost function can be
tailored to each application. In this study, we seek to maximize the power absorbed by the
plants inside the indoor farming pod. Accordingly, we construct the cost function

Π = 1−

Np∑
i=1

Pi

6∑
w=1

Pw

(4.12)

where Np is the total number of plants and the sum over Pw values represents the total initial
power emitted by all 6 walls. The genomic optimization scheme will attempt to minimize Π,
which ultimately maximizes the power absorbed by the targets. Note that the ratio of power
absorbed over power irradiated in the cost function is non-dimensional and normalized.

Machine-learning optimization scheme: genetic algorithm

Given the cost function, the system can be optimized using the genetic algorithm de-
scribed in Section 2. The genetic algorithm parameters and design parameter search bounds
used in this work are included in Table 4.3.
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4.4 Results and Discussion

Table 4.2: Indoor farming system parameters.

Symbol Units Value Description

Nr none 2000 Number of rays per face
activeRacks none x1x3, x1x2, x2x3 Active rack axes/planes

Np,±1, Np,±2, Np,±3 none [9, 3, 3] Number of plants per axis
∆x1,∆x2,∆x3 none 0.05 Voxel size

c m/s 3× 108 Speed of light
R1, R2, R3 m 2.75∆x Generalized radii
p1, p2, p3 none 6 Generalized exponents

Table 4.3: Genetic algorithm parameters.

Symbol Units Value Description

P none 4 Surviving parent strings for breeding
K none 4 Number of offspring per generation
S none 24 Designs per generation
G none 150 Total generations

A1−18 none [0, 1] Aperture parameters
ST1−4 m [0, 0.5] Source tube search bounds
ST5−12 m [0, 3] Source tube search bounds
P1−6 MW [1, 10] Total face power search bounds

We simulate a completely enclosed indoor farm with LED light sources on all six walls
using the previously described digital-twin framework and optimization scheme. The dimen-
sions of the simulated farming pod were 6 × 1 × 1 m. We allow racks of plants to exist
in the x1x2, x1x3 and x2x3 planes with generalized radii R1 = R2 = R3 = 0.1375 m and
generalized exponents p1 = p2 = p3 = 6, effectively simulating the plants as bevelled cubes
with volume 0.1375 m3. For the racks in planes x1x2 and x1x3 there were 18 × 6 = 108
plants each and for the rack in plane x2x3 there were 6 × 6 = 36 plants, meaning the
pod farm contained 252 plants in total. In each time step, we track the power absorbed
by each plant, the fraction of rays interacting with a plant, and the total number of ray-
surface interactions. Figure 4.6 shows the relative power absorption of different plants with
red corresponding to the highest power absorption and blue corresponding to the lowest
power absorption. While adjustable, we set the indices of refraction for the 6 walls to
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(nw1− = 10.0, nw1+ = 4.0, nw2− = 1.5, nw2+ = 3.0, nw3− = 9.0, nw3+ = 2.0) and the index of
refraction of the ambient container medium to ni = 1. In all simulation figures in this work, a
unique ray color denotes a distinct wavelength, but wavelength was not accounted for by the
raytracing method used. Each wall w = 1, . . . , 6 was initialized with power Pw ∈rand 1− 10
MW and with ray density 2000 rays per source tube area. The indoor farming system param-
eters and the genetic algorithm parameters for optimization used in this study are included
in Tables 4.2 and 4.3 respectively.

When simulating with equal index of refraction among all walls and plants, we find that
the best design reduced the source tube areas to more closely overlap with the plant racks,
increasing the ray density per source tube area and increasing the number of rays directly
incident on the plants. With a larger number of rays directly incident on the plants, the
number of reflections a ray makes is reduced, thereby decreasing the energy waste from
reflections with each surface.

Optimal results are visualized in Figures 4.5 and 4.6 and are produced using the design
parameters in Table 4.4. The relatively small optimal source tube areas depicted in Figure
4.6 can be attributed to not specifying a power absorption limit for the closest plant targets.
The evolution of the best design cost and average design cost across the population over
150 generations with 24 design strings per population is shown in Figure 4.7. Every 10
generations, we allow the population to re-adapt by redefining the search bounds for each
design parameter to be a range about the parameter values of the best string seen thus far.

These results serve to demonstrate a framework for the modeling and optimization of an
indoor farming pod. This framework can be modified to better capture all aspects of the
system by extending the design parameters and modeling other physical phenomena such as
water absorption, air flow, multi-wavelength energy tracking, and setting power absorption
caps for different plant types.



CHAPTER 4. OPTICAL DESIGN OF POD-BASED INDOOR FARMING SYSTEMS 55

(a) Isometric view of optimized indoor farm-
ing design.

(b) Side view of optimized indoor farming
design.

(c) Top view of optimized indoor farming de-
sign.

(d) Front view of optimized indoor farming
design.

Figure 4.5: Detailed views of optimized indoor farming system design. Ray color added for
visual clarity.
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Figure 4.6: Optimal indoor farming system light pulse snapshots. Ray color added for visual
clarity. Colorbar added to show differential power absorption by plants. Red corresponds to
higher power absorption and blue to lower power absorption.
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Table 4.4: Optimal indoor farming design parameters corresponding to Πbest = 0.153. aper-
ture values are unitless. Source tube values in meters. Power values in megawatts.

A1 A2 A3 A4 A5 A6

0.567 0.108 0.174 0.636 0.216 0.195
A7 A8 A9 A10 A11 A12

0.515 0.252 0.421 0.740 0.416 0.578
A13 A14 A15 A16 A17 A18

0.586 0.394 0.198 0.597 0.690 0.199

ST1 ST2 ST3 ST4 ST5 ST6

1.909 0.207 1.692 0.295 0.326 0.328
ST7 ST8 ST9 ST10 ST11 ST12

0.914 0.334 0.120 0.283 0.215 0.360

P1 P2 P3 P4 P5 P6

5.66 5.68 7.22 6.29 3.28 4.03
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Figure 4.7: Cost function evolution over 150 generations. The plots show the cost of the best
performing design (red) and the average cost of the entire population (green) as a function
of successive generations. The GA was allowed to re-adapt every 10 generations. The lowest
cost in generation 1 was Πg=1

best ≈ 0.2826 and was reduced to Πg=150
best ≈ 0.1531 by generation

150. This is a reduction of ∼ 45.82%.

4.5 Summary

Indoor farming is a promising mode of next-generation agriculture offering numerous
benefits such as year-round crop cultivation, reduced transportation costs, and enablement
of urban farms. However, these systems still face challenges related to energy consumption,
and there has been limited quantitative analysis of their overall efficiency. To fill this gap
and promote innovative design, we introduce a cost-effective digital-twin to analyze the
optical properties of an indoor farming pod using a raytracing model. We utilize a genomic
optimization scheme to identify the most optimal LED geometric configurations and emission
characteristics toward maximizing energy absorbed by the constituent plants. The proposed
digital-twin and optimization framework serves as a foundational framework that takes a
physics-driven approach to optimize energy flow and paves the way for more sustainable
indoor farming practices.
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To adapt the framework to other indoor farming configurations, we can adjust design
objectives via cost function design and incorporate constraints via parameter search bounds.
The framework could also be extended to include models for water usage or crop-specific
reactions specific to different chemicals/pesticides, thereby enhancing the accuracy of the
digital-twin. Extending the framework to include wavelength-specific power flow could fur-
ther improve predictions of energy efficiency and crop yield by providing each plant with
its ideal lighting conditions. Such refined models can serve as valuable tools for testing and
estimating how a particular design would perform in the real world, enabling farmers to
make informed decisions and effectively optimize their own indoor farming setups.

The physics model developed in this chapter is effective in the preliminary evaluation of
an indoor farming pod system. However, since our aspiration is to build a digital-twin frame-
work, which allows for real-time control and optimization, we need to base our simulation on
a real-life system. Thus, we will analyze an indoor farming pod that is currently installed in
Richmond, CA by UC Berkeley in the next chapter. This will allow us to analyze the power
consumption of the different components (irrigation, climate control, lighting) of an indoor
farming pod and size a solar power generation station which will allow for sustainable crop
production.
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Chapter 5

Power Sizing Analysis

The optical model of the indoor farming pod explored in the previous chapter provides
useful information regarding the optical power characteristics of the system. However, it
is important to note that the aforementioned next-generation indoor farming systems are
costly to build and operate due to the highly controlled nature of the environment, requiring
precise lighting, irrigation, and climate control. In order to complete our digital-twin model
framework, we will need to base our simulation on a real-life farming pod system, which can
be then controlled and optimized in real-time. We have so far developed the light scattering
model and will be evaluating the optical power characteristics of a real-life indoor farming
container next. This chapter will explore the power requirements to build and operate
an example indoor farming system and will develop power generation and energy storage
solutions.

5.1 Background Information

Indoor farming has been a prominent way of agricultural production for a long time in
the form of greenhouses. The basic types of greenhouses are translucent structures that
allow sunlight to reach the plants while shielding them from the outside weather conditions.
In addition, these greenhouses would block any evapotranspiration from exiting the crop
growth area and keep the environment humid, as well as keep the heat from exiting due to
the greenhouse structure.

The emerging food production technologies include augmenting the indoor farming sector
by incorporating state-of-the-art lighting, irrigation, climate control and crop harvesting
devices. One popular approach is the aforementioned indoor “vertical” farming, which stacks
plants in the most optimal way to maximize number of plants grown in a given amount of
space. To be able to pack these plants in the best way possible, it implements an irrigation
method that delivers nutrients directly to the plant roots with no soil (i.e. hydroponics and
aeroponics).



CHAPTER 5. POWER SIZING ANALYSIS 61

Figure 5.1: Indoor farming system example. Photos from public domain:
https://pixabay.com.

Aeroponics suspend plant roots in air and use mist to deliver nutrients and water, while
hydroponics submerge the plant roots in water and cycle nutrients within a time period. We
have previously explored hydroponic nutrient delivery systems within the context of the solar
greenhouse digital-twin model, in Section 2 through the hydroponic tower raytracing and
irrigation power requirements. Similarly, we have also alluded to the use of hydroponics in the
indoor farming optical model in Section 4 through the racks the plants were installed in the
indoor farming pod. While the hydroponics power requirements is a significant contribution
to the overall system power characteristics, one would need to evaluate the entirety of the
indoor farming system to assess the cost to run such systems.

Indoor farming systems, depending on the type, can be costly to install and to operate,
in terms of equipment cost and electricity use. While conventional greenhouses provide a
passively controlled environment, novel approaches such as vertical farming use considerably
more electricity to grow the same crop [48, 49] due to artificial lighting and climate control.
While vertical farming has its advantages, such as freshness of produce, food safety, and
reduced water use, the cost to install and operate these systems prevents them from being
widely used for crops other than leafy greens, which are said to represent 57% of the vertical
farming crops [50]. Leafy greens are said to be the most financially viable crop to grow in
vertical farms due to the short crop season, mostly edible biomass, and the light weight the
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vertical farming structures need to support. To be able to utilize vertical indoor farming
systems to grow other crops, the systems need to be financially viable.

The cost of running an indoor vertical farm will be in two forms: capital cost (i.e.
equipment purchase, structure construction) and the running cost (i.e. electricity, water,
nutrients, equipment, and structural maintenance). While the capital cost is fixed and will
be dependent on the equipment choices, we would expect the cost per crop to go down as
the facility scales up. The running cost of the system will also be dependent on the scale
of the facility, one can employ sustainable and renewable practices to alleviate the major
running cost: electricity. It has been disclosed in a 2021 CEA Census that only 37% of the
CEA facilities use renewable sources for electricity, for which 2/3 generate it onsite and 1/3
obtain it from the utility provider [48].

This chapter will evaluate the power requirements to operate an example indoor farming
system based in Richmond, CA. This will provide a useful insight into the current state of
indoor farming, in terms of the container sizing, equipment used, and power draw. We will
then explore possible renewable energy sources and energy storage solutions that can power
the said indoor farm and size it accordingly.

5.2 Indoor Farm Power Requirements

In this chapter, we will explore the power requirements of an indoor farm. The indoor
farming system that will be used throughout this study was recently acquired by the Univer-
sity of California, Berkeley and AI Institute for Next Generation Food Systems (AIFS) and
is installed at the Richmond Field Station Facility in Richmond, California, USA. This unit
will provide an essential tool to validate currently developed models by the AIFS researchers
and conduct experiments. Given the container size and the equipment needed to operate
the pod, we can assess the power requirements of the system on a day-to-day basis.

Figure 5.2: CropBox indoor farming system installed at RFS.
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The indoor farming system, CropBox, was purchased from Vertical Crop Consultants
[51] as a Type 40’ High Cube Reefer structure with included HVAC, electrical, lighting,
nursery, hydroponics, and sensor equipment, as seen in Figures 5.2 and 5.3. The indoor farm
specifications and equipment are tabulated in Table 5.1.

Table 5.1: Indoor Farm Equipment Specifications.

Equipment Type Specs

Container Structural 40′ × 8′ × 9.5′ High Cube Reefer
Air Conditioner HVAC TGM Seer 21 48,000 BTU Minisplit
Dehumidifier HVAC 180 Pint Ideal-Air Pro Series

Fan HVAC (4) Quest F9 Air Mover 925 CFM
LED Grow Light Lighting (48) (Model-V) ThinkGrow Horticulture
Nursery Tray Hydroponics (3) 2′ × 4′ Vertical Ebb and Flow
Nursery Light Lighting (3) AgroLED Sun 48 6500k 187 Watts

Tank Hydroponics 120 gal Reservoir
Pump Hydroponics Leader Ecojet 110 Pump

Dosing Pump Hydroponics Nuravine Parastaltic (3 per reservoir)
EC Module EC Trolmaster EC
Sensors EC Temperature, Humidity, CO2, Light Levels
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(a) (b)

(c) (d)

Figure 5.3: Detailed views of the indoor farming container located in Richmond, CA.

The total power draw of the indoor farming container can be calculated by first tabulating
the power draw of each component. Note that only major contributors to the power usage
are considered, which include the air conditioning, lighting, and pumping equipment. The
power draw of these equipment is tabulated in Table 5.2.
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Table 5.2: Indoor Farm Equipment Power Draw.

Equipment Name Power Draw

Air Conditioner TGM Seer 21 48,000 BTU Minisplit 48,000 BTU/hr [52]
Dehumidifier 180 Pint Ideal-Air Pro Series 1350 W [53]

Fan (4) Quest F9 Air Mover 925 CFM 228 W [54]
LED Grow Light (48) (Model-V) ThinkGrow Horticulture 350 W [55]
Nursery Light (3) AgroLED Sun 48 6500k 187 Watts 187 W [56]

Pump Leader Ecojet 110 Pump 800 W [57]

The total power draw of the indoor farming container is then calculated to be 34.5 kW.
While there are other contributors to the power usage of the indoor farming system (i.e.
external water pumps, electrical connectors, environment control units, lighting control units,
etc.), the subsequent power calculations will use the power draw of the major contributors.

The indoor farming container is able to grow a variety of plants that span specialty
plants for vaccine development to common leafy greens. In this study, we will use the
common June-bearing strawberry [58] as an example. This type of strawberry produces
the crop in 2-3 weeks in spring. We will use the crop season duration and the time of the
year the crop grows naturally on an open field to base our power source sizing and energy
storage calculations. Note that the crop dynamics of the strawberry in an indoor farming
setting are beyond the scope of this power-sizing study. The indoor farming container power
requirement calculations will assume that the system is running for the entire day during
the crop season.

While the required power can be supplied by the utility provider, the goal is to operate
this next-generation food production system in a sustainable way. The area where Richmond
Field Station is located can be used to install a photovoltaic field that can supply the
necessary electricity to the pod. While the environmental concerns about disrupting the
flora or fauna of the RFS are valid and highly important, we will only explore this as a
hypothetical scenario. Solar power is only available during the day hours, therefore, we will
also explore energy storage strategies to power the indoor farm at night. The next section
will calculate the required sizing of the solar field and the energy storage solutions.

5.3 Power Generation and Energy Storage Solutions

The state-of-the-art indoor farming systems provide a more sustainable way of food
production by allowing the crops to be grown in densely populated areas by packing the
plants in a smaller space through vertical farming and soil-free nutrient delivery systems.
However, the indoor farming container this study is focused on is powered by the local utility
provider, which may or may not generate the electricity delivered from renewable sources. In
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addition, the power grid can be overloaded during peak times, requiring an alternative power
solution. Another possible issue that may arise from indoor farming getting more popular
in the future is the overloading of the grid due to many of these farms running concurrently.

We will develop renewable energy generation strategies to power our indoor farming
container to reduce the carbon footprint and increase sustainability. this study will evaluate
the power generation required to operate the indoor farming container as well as the energy
storage solutions needed to run the farm when the power source is not available due to
weather conditions.

Power Generation

Possible renewable options to power our indoor farming container are wind and solar.
While the Bay Area is particularly windy, installing large wind turbines is not feasible due
to high seismic activity and the local wildlife in Richmond Field Station area. Therefore,
this study will use solar power to calculate the sizing required to power our container.
While multiple solar power technologies are gaining popularity (i.e. photovoltaics (PVs),
concentrated solar power (CSP)), photovoltaics would be the most feasible due to their ease
of installation, wide availability, and cost.

Solar panel technologies have improved significantly with certain research modules reach-
ing efficiencies of approximately 39% [59]. Different companies and research institutions such
as Fraunhofer, and Hawnwa Qcells have been working on developing novel and more effi-
cient solar cells with different materials. We will perform the solar farm sizing calculations
with the assumption that the solar panels are of the most common type, monocrystalline
silicon photovoltaics with efficiencies up to 20% [59]. These panels are widely available for
purchasing and would be a reasonable indoor farmer’s choice of solar panels.

Energy Storage

The aforementioned concentrated solar power (CSP) technology inherently enables energy
storage by focusing the solar radiation onto a receiver tower which has a working material
that absorbs thermal energy. This energy can then be used to power a conventional steam
turbine to generate electricity. On the other hand, solar panels directly generate electricity
using the photovoltaic effect. Thus, we also need to consider energy storage in the form of
solar batteries to power the indoor farming system when sunlight is not available to generate
electricity. The solar batteries will enable the solar farm to store excess electricity.

Power Sizing

The power sizing of the solar farm field will be based on the energy requirements of our
indoor farming container, which is assumed to be operating 24 hours a day for 3 weeks to
produce the June-bearing strawberries in Spring. We will first need to get the solar profile
of Richmond, CA during the crop season to accurately size the solar panel field needed
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to power the container. The study will be based on a crop season spanning from March
1st to March 21st of 2023. We can utilize the pysolar package previously used to simulate
the agrophotovoltaic greenhouse in Section 2. The solar profile is discretized in 15-minute
intervals during the 3-week period.

Figure 5.4: Richmond, CA clear sky radiation profile for March 1st - March 21st, 2023.

Figure 5.4 shows that the solar radiation, with the assumption that the weather conditions
are clear skies, varies slightly throughout the year and reaches a maximum of 967 W/m2.
The solar irradiance will let us calculate the power output from the solar panels that will
be hypothetically installed at Richmond Field Station. The commercial solar panels list
their power output in Watts at Standard Test Conditions (STC). STC provides a common
standard for testing and evaluating the solar panel performance under certain conditions:
(1) zero solar incident angle, (2) 1000 W/m2 solar irradiance, (3) 25◦C ambient temperature,
(4) 1.5 air mass coefficient (AM), and (5) zero system losses [60].

For our power sizing calculations, we will assume that the solar farm will consist of
monocrystalline solar panels with tracking that will ensure the solar incident angle is always
zero. The temperature and wind variation and their effect on solar panel performance are
far more complex than the solar irradiance effect and is out of scope of this study. Similarly,
losses within the individual systems, including PV panels, inverters, and other electrical
equipment, as well as the battery packs to store excess energy, will not be considered.

The solar panel chosen for sizing the solar farm is the Renogy 550WMonocrystalline Solar
Panel which outputs 550 W of power at STC using Passivated Emitter and Rear Contact
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(PERC) solar cells with an efficiency of 22.8% [61]. We will assume that the power output
will scale linearly with the solar irradiance, where the actual solar power output of the panel
is:

Pactual =

(
Pirrad

1000

)
∗ 550 W (5.1)

Then, we can calculate the power output profile of a single panel during the crop season:

Figure 5.5: Power output profile of a single solar panel.

The power draw of the indoor farm was previously calculated to be 34.5 kW, which
needs to be supplied by the solar panels during the day and the solar batteries at night.
The number of solar panels and the solar battery capacity required to power the system
day and night can be assessed by matching the solar farm energy production to the energy
requirement of the pod over the crop season. The energy profile of the pod and a single
panel for March 1st, 2023 is shown in Figure 5.6.
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(a)

(b)

Figure 5.6: Energy profiles for: (a) Power output of a single solar panel and cumulative
energy output for March 1st, 2023. (b) Power draw of container and cumulative energy
draw.
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In order to power the pod purely on solar power generated during the day, the cumulative
energy production per day needs to match the cumulative energy requirement of the pod.
While one can match the cumulative energy production for the entire crop season, this study
will evaluate it on a daily basis and size the solar panel field according to the “worst” day
in terms of solar power generation, determined by the solar irradiance profile for Richmond,
CA during the crop season.

Figure 5.7: Energy output profile of a single solar panel between March 1st - March 21st.

As seen in Figure 5.7, the solar power generation efficiency will be the lowest on March
1st and will be the basis for our solar field sizing calculations. The indoor farming pod
requires 827.98 kWh of energy per day to operate. Since the minimum amount of energy
produced by a single solar panel during the crop season is 4.73 kWh, our calculations yield
that Npanel = 176 panels are needed to satisfy the energy requirements on the day with the
lowest solar irradiance. The resulting configuration produces the following energy profile:
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(a)

(b)

Figure 5.8: (a) Power output and (b) Total energy output profile of the solar farm (Npanel =
175).
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As the solar irradiance increases throughout the crop season, the energy produced by the
solar panels will be more than the pod energy requirements and can be sold back to the grid,
if possible. Lastly, we need to calculate the number and the capacity of the solar batteries
required to store the excess energy the solar panels produce to power the pod at night. The
batteries will be expected to reach full capacity on the day with the most solar radiation,
March 21st. The calculation yields 261.12 kWh of energy that needs to be stored to be
used when solar power is unavailable. While there are many solar batteries commercially
available, we will use the Tesla Powerwall 3 [62] with a capacity of 13.5 kWh and an 11.5
kW continuous power output. We would then require 20 of these solar batteries to power
the system.

Table 5.3: Solar farm and energy storage parameters for the indoor farming system.

Parameter Value

Solar panel type Renogy 550W Monocrystalline Solar Panel
Solar panel power output at STC 550 W

Solar farm size 176 solar panels
Solar farm peak power output 93.59 kW

Total energy output of the solar farm 18071.97 kWh
Total energy draw of the container 17387.62 kWh
Total excess energy of solar farm 684.35 kWh

Battery type Tesla Powerwall 3 (Lithium-ion)
Battery capacity 13.5 kWh

Energy storage size 20 batteries
Combined energy storage 270.0 kWh

The solar farm and battery storage solution parameters to completely power the indoor
farming system on renewable and sustainable energy practices are tabulated in Table 5.3.
While the calculations performed simplify the power analysis of the real-life indoor farming
system, this can provide a useful tool in evaluating the feasibility of using on-site renewable
energy sources to power the next-generation food systems.

5.4 Summary

Indoor farming systems, depending on the type, can be costly to install and to operate,
in terms of equipment cost and electricity use. While conventional greenhouses provide a
passively controlled environment, novel approaches such as vertical farming use considerably
more electricity to grow the same crop due to artificial lighting and climate control. To be
able to utilize vertical indoor farming systems to grow other crops, the systems need to be
financially viable. The running cost of the system will also be dependent on the scale of the
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facility, one can employ sustainable and renewable practices to alleviate the major running
cost, which is electricity.

This chapter analyzed the power requirements of an indoor farm, run by the University
of California, Berkeley, and AI Institute for Next Generation Food Systems (AIFS) and
installed at the Richmond Field Station Facility in Richmond, California, USA. This unit
will provide an essential tool to validate currently developed models by the AIFS researchers
and conduct experiments. Given the container size and the equipment needed to operate
the pod, we can assess the power requirements of the system on a day-to-day basis. While
the calculations performed simplify the power analysis of the real-life indoor farming system,
this can provide a useful tool in evaluating the feasibility of using on-site renewable energy
sources to power the next-generation food systems.

We have so far developed simulation and optimization strategies for different next-
generation food systems, including hydroponic solar greenhouses and indoor farming pods
by using optical modeling strategies. One advantage of our geometric raytracing simulation
method is that it can be coupled with other physics models (i.e. heat modeling, crop model-
ing, etc.). To conclude our study, we will finally look at how the developed optical modeling
framework can be coupled with a crop model, which will allow for a more accurate crop
growth response to the lighting of the domain.
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Chapter 6

Extensions: Crop-driven Optimization
of Agrophotovoltaics

The optical modeling and optimization framework developed in this study can easily be
adapted to include other physics models to more accurately represent the real-life system and
create a more realistic digital-twin. One possible coupling of the raytracing model is with a
crop model, which will provide insight into the crop growth and light and water use efficiency
of the plants. While the energy optimization function that evaluates the power absorption
of surfaces provides a good starting point, the intricacies of crop growth require us to model
the crop dynamics of the system for a more accurate system optimization framework. The
light response of the surfaces can inform the crop model to better represent the incoming
radiation and therefore the crop performance metrics.

6.1 Model Overview

This chapter aims to combine the raytracing framework with a crop model to evaluate
agrophotovoltaic performance based on a crop-centered approach [63]. A digital-twin of an
open-field agrophotovoltaic system is generated using the light model and the crop model to
optimize the system design over a specified crop season with associated ambient parameters.

6.2 Digital-Twin Model

Light Model

Model Assumptions

The light model simulates a light pulse applied to the agrophotovoltaic system at hourly
time intervals for hours where the sun is above the horizon for every day in a specified
crop season. Solar angles are simulated using an open-source python package pysolar while
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solar radiation values are read from a weather file. Increasing the number of simulated days
rapidly increases runtime for the simulation, therefore, certain assumptions are made to
reduce computational load:

• The solar panels are identical in shape, installation angle, and material,

• The light model flashes a unit area of the agrophotovoltaic field, assuming the distri-
bution of solar panels on the field is uniform,

• The solar panels are bifacial, therefore able to absorb energy reflected from ground and
other solar panels.

The detailed assumptions regarding the raytracing framework can be found in Zohdi [21].

Figure 6.1: Left: Modeled APV system. Right: Beam decomposition for the raytracing
model.

Solar Panel Geometry

The solar panel geometry is assumed to be known and described by a surface function,
F (x1, x2, x3). The solar panel shapes are generated using the 3D-ellipsoidal equation:

F (x1, x2, x3) =

∣∣∣∣x1 − x1o

R1

∣∣∣∣p1 + ∣∣∣∣x2 − x2o

R2

∣∣∣∣p2 + ∣∣∣∣x3 − x3o

R3

∣∣∣∣p3 (6.1)

where (R1, R2, R3) are the generalized radii, (p1, p2, p3) are the exponents of the general-
ized ellipsoid, and (x1o, x2o, x3o) are the center location of the ellipsoid. These are the design
parameters we will optimize using the genomic optimization framework. Figure 6.2 shows
various shapes the solar panels can attain.
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(a) (b)

Figure 6.2: Example solar panel shapes generated using the 3D-ellipsoidal equation for (a)
(θ1, θ2, θ3) = (0, π/2, π/2),(R1, R2, R3) = (0.002, 0.2, 0.2), (p1, p2, p3) = (5, 1/2, 1/2) and (b)
(θ1, θ2, θ3) = (0,−π/4, 0),(R1, R2, R3) = (0.002, 0.15, 0.15), (p1, p2, p3) = (20, 20, 20) . The
shadow cast by the panels at noon can be seen on the ground surface.

Rays traveling through the system collide with the solar panels if F (x1,j, x2,j, x3,j) ≤ 1,
where j indicates each ray. As the agrophotovoltaic system includes more than one panel on
the field, the algorithm will check if a ray has collided with any of the solar panels located
at (x1o,i, x2o,i, x3o,i). Similarly, the ray is assumed to hit the ground surface if x3,j ≤ 0. The
power absorption by the surface and power reflected by the ray can be determined using
reflectivity calculations, which are described in the next section.

Raytracing Algorithm

It is assumed the light incident on the agrophotovoltaic system can be discretized as a
collection of rays, which are propagated through the system using a time-stepping scheme.
The initial collective power of the rays, Ptot, is read from a weather file for the given date,
time, and location as the clear sky radiation given in W

m2 .
The details of the raytracing algorithm are identical to the greenhouse raytracing model

introduced in Section 2. The surface power absorption and ray power retention are calculated
at each ray-surface interaction throughout the simulation. The power absorbed by the surface
can be calculated by

Pabs = (1− IR)Pr (6.2)

The remaining power in the ray is calculated as follows:
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Pref = IRPr (6.3)

The ray is tracked in the system as long as:

• the ray is within the system domain limits,

• its power is above the specified power threshold Pmin.

The rays are propagated in the system using the same explicit Forward Euler time-
stepping scheme.

Crop Model

Crop modeling aims to take in measured inputs and an understanding of plant physio-
logical processes to determine when and how a crop will grow. This framework utilizes the
SIMPLE Crop Model [64].

SIMPLE Crop Model

The SIMPLE Crop Model is a model designed to simplify crop modeling to basic com-
ponents. It is well-validated and uses simple parameters allowing for straightforward and
fast implementation. The model works on a daily time step by first looking at the crop’s
temperature, and determining where in the growth process it should be through cumulative
thermal time. Once crop temperature is determined to be within the proper range, the
growth stage and light input plus other crop parameters are used to simulate daily biomass
growth, which is them summed through the season. At the end of the season, the cumulative
biomass is multiplied by a harvest index to represent yield. The exact details are delineated
in the original publication [64], but are summarized below:

Brate = P × f(Solar)×RUE × f(CO2)× f(Temp)×min(f(Heat), f(Water)) (6.4)

Bcumulative,i+1 = Bcumulative,i +Brate (6.5)

Y ield = Bcumulative,maturity ×HI (6.6)

Where Brate and Bcumulative is the daily biomass gain and cumulative biomass respectively,
and P is the daily radiation into the system.

Agrophotovoltaic theory is built on the analysis of CO2 limited photosynthesis at high
light levels resulting in a light saturation point [65–68] which facilitates dual use of the
energy in excess to crop demands. While it would be preferable to use a more representative
photosynthesis model to simulate plant growth, this paper presents an agrophotovoltaic
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modeling framework and any crop model will serve as a substitute. It is not strictly necessary
to undergo the complex studies required for a more accurate photosynthesis model to modify
the SIMPLE model given the scope of this framework.

The SIMPLE Crop Model also has a robust air temperature response model, but no
extensions are included in this framework to model the specific temperature impacts of
agrophotovoltaics for either air or crop temperatures. While the agrophotovoltaic literature
suggests there is some impact relating to air temperature at the plant level in the agrophoto-
voltaic installation [69], previous modeling has shown the overall impact of air temperature
differences to not have meaningful impact on plant growth [70] (it is suggested light is the
primary driver in any growth differences), particularly if the photovoltaics are sufficiently far
from the plants [71] (over 1.5 m). This suggests modeling air temperature dynamics would
have a marginal impact on this framework while dramatically increasing computational de-
mands and simulation time, and for this reason is not conducted in this framework.

In addition to the outputs of the model, two additional metrics are added: Light Use
Efficiency (LUE) and Water Use Efficiency (WUE).

LUE =
Y ield

TLI
(6.7)

WUE =
Y ield

TWD
(6.8)

Where Y ield is the total crop yield for the simulated season (which in this case is the
system for either the or the reference crop, depending on which step of the simulation is
being done), TLI is the sum total light into the system for the simulated season, and TWD
is the sum total reference evapotranspiration for the simulated season as described below:∫ Harvest

P lanting

Pcrop,dailydt (6.9)

∫ Harvest

P lanting

ETodt (6.10)

The purpose of these additional metrics is to facilitate agriculturally focused optimiza-
tion which allows for improved agricultural performance without strictly requiring increased
yields. To support the WUE calculation, water use was also simulated by utilizing the
Penman-Monteith equation to calculate daily reference evapotranspiration (ETo) as de-
scribed in [72]. ETo is chosen over ETc because the SIMPLE Crop Model does not contain
a simple method for integrating crop coefficients (Kc values), and Kc values for agrophoto-
voltaic production are not well developed making the direct calculation of ETc values difficult
and beyond the scope of the framework.
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Linking the Light and Crop Model

Figure 6.3: Digital-twin and genomic optimization framework.

The framework proposed in this study combines the light simulation model with the crop
model in order to optimize the agrophotovoltaic system using crop performance and solar
energy production metrics, as seen in the framework diagram in Figure 6.3. First, the light
model is run to obtain the solar panel power absorption and ground surface power absorption.
Daily radiation values obtained through the light-based simulation are then passed into the
crop model which calculates the reference and agrophotovoltaic crop yield via the SIMPLE
model. The crop model then outputs agrophotovoltaic and reference crop yields as well as
other crop performance metrics discussed earlier. The entire framework has been built in
Python 3.9 with only numpy and pysolar external packages. The main program with system
parameters, the light model, and the genetic algorithm calls the crop model in a secondary
program. The light model simulates the sun’s position for the crop season and calculates
average ground radiation ( W

m2 ), which is then passed onto the crop model to calculate the
crop biomass, evapotranspiration, water, and light use for a given agrophotovoltaic design.
This routine is repeated for each agrophotovoltaic design in the genetic optimizer in each
generation to calculate the design fitness, rank designs, and use evolutionary principles to
retain the best performers. Currently, the code uses manually inputted system parameters
(i.e. weather data, crop type, solar panel properties, etc.) to optimize the design, although
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it is possible to develop a GUI for crop growers to use this framework for their own choice
of crops, solar panels, and location in future extensions.

6.3 Genomic Optimization Framework

Design Parameters

The system design is defined by the following variables:

Λi ≡ {Λi
1, ...,Λ

i
N} ≡ {θ2, θ3, n̂s, n̂g, h0, R2, R3, p1, p2, p3} (6.11)

where n̂s and n̂g are the refractive indices of the solar panels and the ground, R2 and R3 are
generalized radii of the solar panels, θ2 and θ3 are the solar panel rotation around e2 and
e3 axes, p1, p2, and p3 are the geometric exponents. The thickness of the solar panel, R1,
and the rotation around e1 are kept constant. The rotation of solar panels around all three
axes is not practical since the panels only need to adjust for the sun altitude and azimuth
angles. While only stationary panels are considered for this study, solar tracking panels can
be implemented by having one altitude and azimuth angle pair per day as part of the design
variables. The design parameters in Λi can be chosen within user-specified bounds.

Design Fitness

The “fitness” or cost associated with a given agrophotovoltaic system design is determined
by a custom cost function. A good agrophotovoltaic design will appropriately distribute
incoming sunlight between the solar panels and the ground. However, the ground energy
absorption does not fully represent the crop performance. Therefore, the crop yield from
the agrophotovoltaic system needs to be comparable to the reference crop yield, which is
independently calculated using the same ambient parameters but without the solar panels
on the field. The following cost function is proposed to evaluate the agrophotovoltaic system
performance:

Π = w1α + w2β + w3ηL + w4ηW (6.12)

where are defined by the following equations:

α =
Pref − Psolar

Pref

(6.13)

β =
Yref − YAPV

Yref

(6.14)

ηL =
LUEref − LUEAPV

LUEref

(6.15)
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ηW =
WUEref −WUEAPV

WUEref

(6.16)

where the weights can be chosen by the user to prioritize agriculture, solar power gen-
eration, etc. The lack of an absolute value function on the agricultural cost parameters
enables the optimizer to generate designs that can exceed the reference crop performance in
terms of the individual cost parameters, as demonstrated in a 2017 German potato crop [73]
where yields exceeded the reference yield. While this is a single example, and the SIMPLE
crop model cannot strictly replicate this performance, there is the theoretical possibility of
a more complicated crop model outputting improved yields compared to the reference crop.
As such, this framework allows for the possibility of improved yields, even if only theoret-
ical, to incentivize high crop yields in the designs. Note that all the cost parameters are
non-dimensional and normalized.

Constraints

There are many critical constraints when considering design, however, two important
ones identified in the literature are considered in this framework:

1. Agrophotovoltaics should focus on supporting agricultural production and should have
a constraint that minimizes the negative impacts of shading on crop yield [74–76],

2. Agrophotovoltaic land use should not excessively compromise agricultural or photo-
voltaic production and should have a constraint ensuring the combined land equivalent
ratio of agricultural and photovoltaic production is greater than single use of the land
for either type of production to ensure any production compromises ultimately yield a
net gain to the efficiency of the land use [77–80].

These two constraints are selected as they well represent the desire for agrophotovoltaics
to provide value centered around agriculture, and can be mathematically described with the
following equations:

YAPV

Yref

≥ δ (6.17)

YAPV

Yref

+
Psolar

Pref

≥ 1 (6.18)

where Yref refers to the reference crop yield (no solar panels on field), Pref refers to the
reference solar energy generation (no crops) and δ refers to the percent of acceptable loss
of crop yield related to installing agrophotovoltaics. Because these constraints need to be
enforced on the cost parameters rather than the design parameters, the design space cannot
be limited to acceptable designs a priori. One option is to enforce soft constraints to the
system by including penalty terms in the cost function with very large weights to eliminate
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designs that do not abide by the constraints during the design evaluation process of the
genomic optimization framework. The modified cost function can be written as:

Π = w1α + w2β + w3ηL + w4ηW + P1 + P2 (6.19)

where,

P1 =

{
10000 for YAPV

Yref
< δ

0 for YAPV

Yref
≥ δ

(6.20)

P2 =

{
10000 for YAPV

Yref
+ Psolar

Pref
< 1

0 for YAPV

Yref
+ Psolar

Pref
≥ 1

(6.21)

Given the cost function, the system can be optimized using the genetic algorithm de-
scribed in Section 2.

6.4 Numerical Example

A numerical example is generated using the light model parameters in Table 6.1, and the
optimization parameters in Table 6.3. An entire season was simulated with the crop model
using weather data from a California Irrigation Management Information System weather
station [81] located in Davis, California (38.53 N, 121.77 W) from April 10, 2021 to July 19,
2021. The crop model was run using settings in Table 6.2 to simulate SunnySD tomatoes for
every day and hour in the aforementioned season where the altitude of the sun was above
the horizon. The ground refractive index was made a variable to simulate various planting
densities. The simulated agrophotovoltaic field has been rescaled to be of unit size to allow
for a smaller number of rays to be used for the light model. Lastly, the reference solar
power for the agrophotovoltaic constraint was calculated by running the genomic optimizer
to maximize solely the solar power generation.

Table 6.1: Light Model Parameters

Symbol Type Units Value Description

Nr scalar none 196 Number of light rays
c scalar m/s 3× 108 Speed of light
R1 scalar m 0.02 Solar panel thickness

npanel scalar none 4 Number of solar panels
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Table 6.2: Crop Model Parameters

Symbol Units Value Description

Crop none Tomato Crop species
Cultivar none SunnySD Specific crop variety
Tsum

◦C day 2800 Cumulative temperature requirement from
sowing to maturity

HI none 0.68 Harvest index (i.e. percent of harvestable
biomass)

I50A
◦C day 520 Cumulative temperature requirement for leaf

area development to intercept 50% of radiation
I50B

◦C day 900 Cumulative temperature till maturity to reach
50% radiation interception due to leaf senes-
cence

I50maxH
◦C day 100 Maximum daily reduction in I50B due to heat

stress
I50maxW

◦C day 5 Maximum daily reduction in I50B due to
drought stress

Tbase
◦C 6 Base temperature for phenology development

and growth
Toptimal

◦C 26 Optimal temperature for biomass growth
Tmax

◦C 32 Threshold temperature to start accelerating
senescence from heat stress

Textreme
◦C 45 The extreme temperature threshold when

RUE becomes 0 due to heat stress
RUE g

MJ∗m2 1 Radiation use efficiency (above ground only
and without respiration)

SCO2 none 0.07 Relative increase in RUE per ppm elevated
CO2 above 350 ppm

Swater none 2.5 Sensitivity of RUE (or harvest index) to
drought stress (ARID index)

δ none 0.66 ratio of yield to reference yield (see eq. 6.17)

These parameters were selected based on the values given in [64] with the only modi-
fication being to the I50B term to generate a senescence more in line with expected crop
behavior.

This study presents a framework for crop-driven agrophotovoltaic optimization rather
than searching for the “true” optimal solution. Thus, the agrophotovoltaic design is opti-
mized for 20 design strings in the population and 50 generations of genomic optimization.
The agrophotovoltaic design includes the altitude and azimuth angles, solar panel and ground
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refractive index, solar panel height, size, and shape.

Table 6.3: Genomic Optimization Parameters

Symbol Units Value Description

parents none 6 Surviving strings
for breeding

S none 20 Designs per gener-
ation

G none 50 Total generations
[θ−2 , θ

+
2 ] degrees [−π/2, π/2] Solar panel alti-

tude angle
[θ−3 , θ

+
3 ] degrees [−π, π] Solar panel az-

imuth angle
[n̂−, n̂+] none [1,100] Solar panel refrac-

tive index
[h−

0 , h
+
0 ] none [0.05,0.15] Solar panel height

[R−
2 or 3, R

+
2 or 3] none [0.0125, 0.125] Generalized radii

[p−1 or 2 or 3, p
+
1 or 2 or 3] none [1, 20] Geometric expo-

nent
w1 none 1 Weight of solar

panel power in net
cost

w2 none 1 Weight of crop
yield in net cost

w3 none 1 Weight of light use
efficiency in net
cost

w4 none 1 Weight of water
use efficiency in
net cost

Pref W 83.51 Reference solar
power

Yref
tons
acre

1.7 Reference crop
yield

LUEref
tons
acre

/ MJ
season

0.0006 Reference light
use efficiency

WUEref
tons
acre

/ mm
season

0.002 Reference water
use efficiency

The evolution of the design total cost per generation can be seen in Figure 6.4 over 50
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generations of optimization. The design and cost parameters associated with the optimal
agrophotovoltaic design are tabulated in Table 6.4.

Figure 6.4: Evolution of total cost Π and individual cost parameters. Top: Average cost
evolution of parent and overall population. Bottom: Individual cost parameter and best
design cost (excluding penalty terms) evolution.
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Table 6.4: Optimal Agrophotovoltaic Design Parameters for the Numerical Example

Π α β ηL ηW θ2 θ3 n̂s

0.818 0.561 0.196 0.0 0.061 -0.154 0.344 60.64

n̂g h0 R2 R3 p1 p2 p3

1.20 0.094 0.103 0.093 18.24 8.80 13.64

The “optimal” design parameters obtained through the genomic optimization scheme are
used to visualize the agrophotovoltaic design, seen in Figure 6.5.
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(a) Isometric view of optimized APV design. (b) Side view of optimized APV design.

(c) Top view of optimized APV design. (d) Front view of optimized APV design.

Figure 6.5: Detailed views of optimized APV design where yellow indicates the solar panels
and green represents the agricultural area.

An example of a single light pulse traveling through the medium and interacting with the
surfaces is visualized using snapshots of the simulation, shown in Figure 6.6. It is important
to keep in mind that these light pulse simulations are done hourly for the number of days
the crop is simulated. We can see that the “optimal” design places the relatively reflective
(n ≈ 60) solar panels with an altitude of 81◦ and azimuth angle of 290◦ (converting θ3 to
the azimuth angle using ϕazimuth = θ3 × 180

π
− 90◦), which results in sunlight reflecting off

the panels and hitting the crops at lower solar angles.
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Figure 6.6: Raytracing of a single light pulse. The incoming light is discretized into rays
which reflect off the solar panels (shown in yellow) and hit the ground (shown in green).
Solar energy is absorbed by the solar panels, at locations marked as red dots and by the
ground, at locations marked as blue dots.
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(a) Cumulative biomass for control and crops.

(b) Daily ETo compared with daily solar radiation.

Figure 6.7: Crop model outputs.
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For any simulated crop design, a variety of different outputs are available for analysis
within this framework. Outputs relating to crop growth, water use and light are shown in
Figure 6.7. From the analysis of these graphs and related data, the crop performance of an
agrophotovoltaic crop can be compared to a reference crop. These results are discussed in
the next section.

6.5 Discussion

The optimized agrophotovoltaic design can be analyzed through the individual cost pa-
rameters that form the total cost. It can be seen that the best design has avoided violating
the critical agrophotovoltaic constraints regarding the crop yield and solar power generation
limits and incurring the large penalty terms described in Section 3. The genetic algorithm
is conducting a global search within the design space and was able to obtain the presented
lowest cost. Once there are designs that satisfy the soft constraints (i.e. negating the penalty
costs), the genetic algorithm continues to reduce the cost by minimizing the individual cost
parameters (α, β, ηL, ηW ) as much as possible. Only a limited number of designs satisfies
these agricultural constraints and reduces the cost further. The restrictions imposed by
these constraints limit the design space which is the reason the cost can not be reduced
beyond a certain number of generations.

The robustness of the genetic algorithm was tested by using different seeds in the random
number generator for initializing the design population and got similar optimization results.
The top plot in Figure 6.4 displays the parent cost for individual cost parameters which is
expected to show a monotonically decreasing behavior while the average design cost is seen
to be zig-zagy, which is due to random designs added to the population in each generation.

It is seen that the best agrophotovoltaic design after 50 generations employs highly reflec-
tive near-vertical panels that reflect sunlight for crop production while still generating solar
power. This is in line with the genomic optimization setup where a minimum requirement on
crop production was enforced by the use of a penalty term for the crop yield cost parameter.

These results of nearly vertical panels are interesting as they are counter-intuitive to the
theory of agrophotovoltaic production discussed earlier where light during the most radiation-
dense part of the day should be reduced to below the light saturation point. However, vertical
panels match the findings of a similar design methodology [82] in Sweden which is driven more
by photovoltaic performance relative to this work’s crop-focused methodology. This finding
is likely related to two particular limitations of this crop model: 1) a constant value is used
for converting light into biomass (RUE) meaning a linear response between light and growth,
and 2) the daily timestep used in the crop model does not characterize the time-sensitive
responses to shading and photosynthesis and it appears designs which maximize light when
light is most dense (i.e. the afternoon) are preferred as the timing of the energy makes no
difference in this implementation. This highlights the need for specific agrophotovoltaic crop
models to be developed. Resolving these challenges are beyond the scope of this study, but
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the power of the framework presented allows for this modification to be made once more
research is conducted into agrophotovoltaic crop modeling.

The cost reduction after 50 generations was determined to be 28.9% for the best design
(excluding penalty terms) and 59.0% for the average design, meaning the design space was
restricted to the design subspace that satisfied the agrophotovoltaic constraints. The crop
performance as modeled was found to be 1.70 tons

acre
for the reference versus 1.43 tons

acre
for the

agrophotovoltaic, representing an 18% loss of yield, which is less than the 34% loss acceptable
in the design framework. The reference crop ETO was calculated to be 853 mm of water
for the season compared to 751 mm of water for the agrophotovoltaic, representing about a
12% decrease in reference evapotranspiration.

6.6 Summary

Agrophotovoltaic systems are rapidly developing as a solution to the land competition be-
tween agriculture and solar power generation. There have been several modeling approaches
that integrate the dynamics of the agrophotovoltaic system to predict crop performance and
power generation. Optimization through such high-fidelity models requires immense com-
putational power. Instead, an alternative framework with a reduced-order order digital-twin
is used in tandem with a genomic optimization scheme to find optimal agrophotovoltaic
designs. The proposed framework would help justify investment in photovoltaic arrays over
agricultural settings in a way that benefits crop production using genomic multi-objective
optimization to simulate the impact of photovoltaic panels on the crop environment, the
subsequent crop response, and solar power generation.

Overall, this framework demonstrates the potential to link light modeling with crop
modeling to simulate agrophotovoltaic performance. Although the proposed digital-twin has
limitations on crop model and raytracing accuracy, it provides a foundational framework
that utilizes a physics-driven optimization approach for agrophotovoltaics.

This model can be extended to include thermal modeling of the system, wavelength-
specific raytracing, and a more advanced crop model to further increase the accuracy of
the digital-twin. Ultimately, a validated and refined digital-twin can be used to design and
test agrophotovoltaic configurations for a given crop, location, and desired power generation
before the real-life version is built.

The coupling of the optical model developed in this study with a crop model concludes
the simulation and optimization framework presented in this dissertation. We will go over
key findings and extensions of the proposed framework in the next chapter.
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Chapter 7

Conclusions

The goal of this study is to analyze next-generation food systems from an optical modeling
standpoint. We have developed a reduced-order geometric raytracing model to evaluate
the performance of various food production systems, namely solar greenhouses, open-field
agrophotovoltaics, and indoor pod farming systems. A digital-twin approach, where a digital
replica of the physical system is modeled, is used to quickly and efficiently evaluate designs
and optimize them using a genomic-based optimization algorithm. The digital-twin consists
of modeling the optical properties of the system to accurately simulate the power distribution
within the food systems through the raytracing algorithm. In addition, power sizing of a
real-life indoor farming system is performed. Extensions of the digital-twin framework and
how it can be coupled with other physics models are provided using a crop performance
driven optimization case study of an open-field agrophotovoltaic system.

The initial solar greenhouse digital-twin framework developed in this project certainly
has its limitations in terms of its accuracy and speed. While the solar energy production
and photosynthesis are closely tied to the amount of sunlight absorbed, it is known that
there are other factors such as water stress on plants, optimal temperature for solar panel
operation, etc. that affect the efficiency of these processes beyond the values provided in
literature for when there are ideal conditions. In addition, the resulting greenhouse shape
can also be evaluated in terms of the cost-to-build and ease-of-build. Since the greenhouse
takes any shape within the design space of the ellipsoidal and sinusoidal terms that constitute
the greenhouse geometry, a cost parameter that penalizes a design for being hard to build
or expensive to build will enable the genomic optimization scheme to favor easier-to-build
designs for the user. Next, we have expanded the model capabilities to include a simple
irrigation model. This expension included equipping the solar greenhouse raytracing model
with hydroponics by modeling the optical properties of the hydroponic nutrient delivery
system and the power requirements of the hydroponics. This framework has the flexibility
to seamlessly incorporate additional multiphysics models, such as those related to crops,
heat, and ventilation. The enhanced framework proves to be a valuable asset, serving as
a tool to optimize real-world systems and curtail the financial expenses associated with
experimental testing of system designs.
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This system captures the essential physics in a computationally efficient manner. How-
ever, there are many improvements to the model presented. For example, this work can be
extended to include detailed solar panel translucency analysis, which includes exploring the
wavelength-specific nature of photosynthesis, which occurs when the plant receives a sun-
light in a certain wavelength range called photosynthetically active radiation (PAR). Using
solar cells that utilize this fact can be deployed for the greenhouse system where the solar
panels would absorb certain wavelengths of light - this requires extending the light-scattering
simulation described in this project to include a wavelength-specific power and ray tracking
algorithm. As mentioned earlier, solar panel translucency is directly tied to the photosyn-
thetically active radiation a plant needs, which will ultimately influence the optimal solar-cell
design for a specific plant to be grown in a self-sufficient greenhouse.

The optimization framework used in this project is adequate for the given system, but
it should be noted that any increase in the computational cost of the greenhouse simulation
will result in a larger increase in the runtime of the genomic optimization scheme. Therefore,
alternative machine-learning algorithms (i.e. artificial neural networks (ANN)) can be uti-
lized to circumvent this issue, where the optimization of the system can take place without
running an extensive physical simulation of the system and allow us to test more designs
within our design space.

Overall, the greenhouse digital-twin framework developed can be both used to assess
the performance of a greenhouse system, as well as find the optimal greenhouse design for
specific system parameters. The digital-twin can used as design tool that can be deployed
for customers that plan on building a solar greenhouse with specific objectives, whether it
is to maximize crop yield or maximize solar energy production, etc. Indoor agricultural
production integrated with solar energy production has a potential to alleviate the energy
and food demands of the world and machine-learning can help us achieve that, as seen in
this study.

Then, we moved onto another innovative food production system, indoor pod farming,
to demonstrate the capabilities of our reduced-order geometric raytracing algorithm and
genomic optimization framework. Indoor farming emerges as a promising frontier in the
evolution of agriculture, presenting various advantages like continuous crop cultivation, de-
creased transportation expenses, and the possibility of urban farming. Nevertheless, these
systems grapple with energy consumption challenges, and there exists a scarcity of com-
prehensive quantitative analyses gauging their overall efficiency. To address this gap, we
introduced a digital-twin model of the optical design of an indoor farming pod, where the
LED lighting system parameters are able to be optimized for maximum plant power ab-
sorption using the proposed genomic optimization framework. The suggested digital-twin
and optimization framework lays the groundwork by adopting a physics-driven approach to
optimize energy flow, thereby paving the path for the implementation of more sustainable
practices in indoor farming.

The proposed modeling framework captures the overall optical characteristics of an in-
door farming system, however, it can be connected to other multiphysics simulations such
as heating, ventilation, irrigation, and crop models to form a complete digital-twin of the
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system. However, this study sets the foundation for implementing such models by providing
the solar/optical power absorption characteristics of these systems. Possible improvements
to this model include adjusting the design objectives via cost function design and incorporate
constraints via parameter search bounds. Extending the framework to include wavelength-
specific power flow, similar to the greenhouse digital-twin extensions mentioned above, could
further improve predictions of energy efficiency and crop yield by providing each plant with
its ideal lighting conditions. Such refined models can serve as valuable tools for testing and
estimating how a particular design would perform in the real world, enabling farmers to
make informed decisions and effectively optimize their own indoor farming setups.

We then analyzed an indoor farming system in terms of power requirements and energy
storage. The indoor farming pod used in this example was based on a real-life indoor farming
container situated in Richmond Field Station in Berkeley, California, run by the University
of California, Berkeley and AI Institute for Next Generation Food Systems (AIFS). Given
the container size and the equipment needed to operate the pod, we assessed the power
requirements of the system on a day-to-day basis. While the calculations performed simplify
the power analysis of the real-life indoor farming system, this can provide a useful tool
in evaluating the feasibility of using on-site renewable energy sources to power the next-
generation food systems.

Lastly, we looked at extensions for the light-based simulation methods developed within
this dissertation. The proposed extension was to form a multiphysics model of an open-field
agrophotovoltaic system by connecting the raytracing algorithm to an external experimental
crop model to simulate the growth conditions of crops in a given agrophotovoltaic setup. This
alternative framework with a reduced order digital-twin is used in tandem with a genomic
optimization scheme to find optimal agrophotovoltaic designs. The proposed framework
would help justify investment in photovoltaic arrays over agricultural settings in a way that
benefits crop production using genomic multi-objective optimization to simulate the impact
of photovoltaic panels on the crop environment, the subsequent crop response, and solar
power generation. Overall, this framework demonstrates potential to link light modeling
with crop modeling to simulate agrophotovoltaic performance. Although the proposed digital
replica has limitations on crop model and raytracing accuracy, it provides a foundational
framework that utilizes a physics-driven optimization approach for agrophotovoltaics. This
model can again be extended to include thermal modeling of the system, wavelength-specific
raytracing, and a more advanced crop model to further increase the accuracy of the digital-
twin. Ultimately, a validated and refined digital replica can be used to design and test
agrophotovoltaic configurations for a given crop, location, and desired power generation
before the real-life version is built.

In conclusion, this dissertation aims to provide insight to next-generation food systems
through the lens of optical modeling. The devised geometric raytracing model is used to as-
sess the efficacy of the food production systems with given numerical examples, namely solar
greenhouses, open-field agrophotovoltaics, and indoor pod farming systems. Employing a
digital-twin methodology, which involves creating a digital replica of the physical system, we
swiftly and efficiently assess designs and optimize them using a genomic-based optimization
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algorithm. The digital-twin encompasses the modeling of optical properties within the sys-
tem, facilitating accurate power distribution simulations through the raytracing algorithm.
I hope that this computational framework and optimization scheme provide a foundation for
understanding, evaluating, and optimizing the food systems of the future and prove a useful
tool to efficiently and sustainably produce food and generate power, driven by innovation
and cutting-edge technology.
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