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PATHOGENESIS

A Novel HIV-1 Nef Mutation in a Primary Pediatric Isolate
Impairs MHC-Class I Downregulation and Cytopathicity

Ayub Ali,1,2 Robert L. Furler,3 Livia Pedroza-Martins,4 Arnaud D. Colantonio,1,5 Deborah Anisman-Posner,1,5

Yvonne Bryson,1,6 Otto O. Yang,1,2 and Christel H. Uittenbogaart1,5–7

Abstract

HIV-1-induced cytopathicity of thymocytes is a major cause of reduced peripheral T cells and rapid disease
progression observed in HIV-1-infected infants. Understanding the virulence factors responsible for thymocyte
depletion has paramount importance in addressing the pathogenesis of disease progression in children. In this
study, thymocyte depletion was analyzed following infection with two primary CXCR4-tropic HIV-1 pediatric
isolates (PI), PI-2 and PI-2.1, which were serially derived from an in utero-infected infant. Although highly
similar to each other, PI-2 showed markedly decreased thymocyte depletion in vitro compared with PI-2.1.
Further analysis showed a novel deletion in the Nef protein (NefDK7S) of PI-2, which was absent in PI-2.1.
This deletion inhibited Nef-mediated major histocompatibility complex class I (MHC-I) downregulation in
infected thymocytes in vitro and in vivo; in contrast, the mutated Nef continued to downregulate CD4 surface
expression in vitro. These results suggest that HIV-1 Nef contributes to thymic damage in infants through
selective functions.
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Introduction

The thymus is particularly active during early life as
the immune system develops in infants. Thymocyte in-

fection with HIV-1 leads to severe thymic involution and
dysfunction, resulting in declined thymopoiesis and subse-
quent depletion of peripheral T lymphocytes.1 Although di-
rect killing of thymocytes has been suggested as a major
mechanism responsible for thymic dysfunction,2,3 HIV-1 also
causes nonspecific activation and proliferation of intrathymic
progenitor cells through secretion of proinflammatory cyto-
kines in the thymic microenvironment that result in elevated
viral infection, exhaustion of precursor cells, and destruction
of thymic architecture.4,5 These conditions within the thymus
have been observed in children infected with HIV-1 and are
suggested to be a leading cause of rapid disease progression
in perinatally infected children.5,6 Studies to understand the
underlying pathological and molecular aspects of thymus
dysfunction in HIV-1 infection suggest that the Nef protein of

HIV-1 plays a key role in impairing thymocyte development
in addition to interfering with peripheral T cell function.7–10

Nef is a phosphorylated and myristoylated 27 kDa protein
that is unique to HIV/SIV and is relatively conserved with a
75%–85% similarity within clade B of HIV-1.11 Nef is a
multifunctional protein that is suggested to play multiple key
roles in HIV-1 and SIV pathogenesis.8,12 Deletion of Nef
markedly attenuates SIV pathogenicity in the rhesus macaque
model of AIDS,8,13 and dysfunctional Nef has been associ-
ated with delayed disease progression in humans.14–16 Nef
has also been shown to impair T cell development10,17 and
enhance viral replication and infectivity.18,19 Its expression
begins early in the viral life cycle and localizes to the plasma
membrane, cytoplasm, and within the budding virions. Nef
promotes viral infectivity, immune evasion, and replication
capacity by altering the activation state of infected cells. It
does so by modulating cell signal transduction pathways and
altering cell surface expression of receptors. Nef regulates
various cell signaling molecules, such as Hck, Lck, Fyn, Lyn,
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Vav, Src, PAK1/2 (NAK), MAPK (Erk1), c-Raf1 kinase,
PI3K, and Ask1.20,21 Nef downregulates cell surface recep-
tors such as CD4,22–24 major histocompatibility complex
class I (MHC-I),23–25 MHC-II, and MHCII-associated in-
variant chain (Ii, CD74),26 CD28,27 and host restriction factor
SERINC5.28

Nef-mediated downregulation of surface expression of
MHC-I and CD4 has been extensively studied in vitro. The
downregulation of MHC-I A and B molecules protects in-
fected cells from CTL-mediated killing.29–31 Previously, we
described two closely related CXCR4-tropic HIV-1 primary
isolates [pediatric isolates (PI)-2.1 and PI-2] serially derived
from an in utero-infected infant, and their dissimilar abilities
to cause thymocyte depletion.32 PI-2.1 showed aggressive
thymocyte depletion in vitro, while isolate PI-2 showed di-
minished cytopathicity. Given the central role of Nef in HIV-1
disease progression, we performed a detailed analysis of Nef
sequences of these two pediatric isolates and their corre-
sponding abilities to downregulate MHC-I and CD4.

Materials and Methods

HIV-1 pediatric isolates and virus stocks

HIV-1 primary isolates and plasma samples for virus
isolation were obtained as close as possible to birth from 10
of 34 children born to 204 HIV-1-seropositive mothers
monitored prospectively in the Los Angeles Pediatric AIDS
Consortium between June 1988 and May 1995.32–34 The
isolates were characterized as syncytium inducing (SI) or
nonsyncytium inducing (NSI) by using the MT-2 assay.35

The characteristics of some of the children providing the
viral isolates were previously described: PI-2 is an SI HIV-1
isolate obtained 1 week after birth from an infant infected
in utero who developed AIDS and died within 6 months.34

PI-2.1 was isolated from plasma 1 month after birth from the
same infant. PI-2 and PI-2.1 isolation and propagation were
done by directly adding serum from an infected infant to
a pool of purified activated allogeneic CD4+ T cells, pre-
pared as described previously.36,37 Briefly, allogeneic CD4+

T cells from three normal donors were individually purified
by capture in CD4 monoclonal antibody-coated tissue cul-
ture flasks (Applied Immune Sciences, Santa Clara, CA) and
activated by stimulation with 200 ng/mL anti-human CD3
antibody (OKT3; Ortho Biotech, Inc., Raritan, NJ) plus
5,000 U/mL recombinant human interleukin-2 (IL-2) for
5 days. Cells from three donors were combined, cryopreserved
in liquid nitrogen, and then thawed and cultured in medium
with IL-2 for 2–3 days before infection. The makeup by
phenotype of the CD4+ T cell pool at the time of infection by
the pediatric isolates was as follows: 95% CD4+ CD8-, 5%
CD4+ CD8+, <1% CD8+ CD4-, 60% CD27+, and 50% HLA-
DR+. In addition, 94% of the cells from the stimulated CD4+

T cell pool expressed CXCR4 and 30%–40% expressed
CCR5 (data not shown).32 The same CD4+ T cell pool was
used for isolating PI-2 and PI-2.1 virus from plasma (passage 1)
and for preparing virus stocks (passage 2) and for preparing
the control viruses including CCR5-tropic virus HIV-1 NF-
NSX (NF-NSX) and the CXCR4-tropic virus HIV-1 NL4-3
(NL4-3).38,39 The infectivity of the pediatric isolates and of
the molecular-clone-derived laboratory viruses was deter-
mined by limiting dilution assays in PBMC. The CCR5-tropic

pediatric isolate PI-8 was prepared similarly to PI-2 and PI-
2.1 and used as control for the Western blot studies.32

Cloning and sequencing of the nef gene in pediatric
HIV-1 isolates

RNA was isolated from plasma using the TRIzol reagent
(Invitrogen, Carlsbad, CA) and was reverse transcribed into
complementary DNA (cDNA) using the High-Capacity cDNA
Reverse Transcription Kits (Applied Biosystems, Foster City,
CA). Reverse transcription was primed with a random primer
(Applied Biosystems) and following nested polymerase chain
reaction (PCR), the cDNA of full-length nef was amplified.
First and second rounds of PCR were carried out using Nef
8687F (5-GTAGCTGAAGGGACAGATAGGGTTAT-3) and
Nef 9589R (5-TAGTTAGCCAGAGAGCTCCCA-3) as the
outer primer set and Nef 8787 XbaIF (5-GCTCTAGAATG
GGTGGCAAGTGCTCAA-3) and Nef 9495R (5-TTATATG
CAGCATCTGAGGGC-3) as the inner primer set, respectively.
Numbering of primers is based on the NL4-3 sequence. High
Fidelity Advantage� HD Polymerase Mix (Clontech, Mountain
View, CA) was used for PCR, according to the manufacturer’s
instructions. After cloning of PCR products into the Topo TA
cloning vector (Invitrogen), plasmid DNAs were isolated from
at least six colonies for sequencing with the ABI 3130 Genetic
Analyzer (Applied Biosystems).

Production of single-round infectious, pseudotyped
HIV-1 reporter virus

The reporter HIV-1 construct AA1305#18 plasmid con-
taining an NL4-3 backbone with reporter antigens heat shock
antigen (HSA) or mouse CD24 (mCD24) and deletions in
Vpu, Env, and Vpr was used to produce VSV-G pseudotyped
virus as described previously.40 Insertion of isolated nef
genes was done using PCR products that were gel purified
with Quick Spin Column (Qiagen, Valencia, CA) and di-
gested with XbaI and BspEI restriction enzymes (New Eng-
land Biolabs, Ipswich, MA). Single-round infectious
pseudovirus was produced by cotransfecting 293T cells with
the whole-genome plasmid AA1305#18 containing nef al-
leles and a plasmid encoding the envelope glycoprotein from
VSV-G using BioT transfection reagent (Bioland, Para-
mount, CA).

Western blot

HIV-1 nef genes from the pediatric isolates (PI) were
cloned into a plasmid containing the NL4-3 genome (pNL4-
3) to make infectious virus as described previously.41 To
construct NL4-3/PI-nef, the nef gene of NL4-3 was replaced
with either individual nef obtained from Topo cloning or
quasispecies or nef obtained from the nested PCR as de-
scribed above. T1 cells were infected with NL4-3 virus
containing nef alleles from either wild-type NL4-3 or alleles
from the pediatric isolates (multiplicity of infection [MOI] =
1). On day 5, lysates harvested from the infected cells were
run onto 10% polyacrylamide gel electrophoresis (PAGE) for
protein separation. Following transfer to a PVDF membrane
(Millipore, Billerica, MA), HIV-1 proteins were detected by
an anti-Nef antibody (Nef#2949; NIH AIDS Reagent Pro-
gram) or an anti-Gag antibody (Gag#6457; NIH AIDS Re-
agent Program) followed by detection using the SuperSignal
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West Pico Chemiluminescent Substrate (Thermo Scientific,
Rockford, IL).

Immunophenotyping

Surface expression of MHC-I and CD4 in HIV-1-infected
and uninfected cells was done using flow cytometry. Study of
MHC-I downregulation by Nef on infected thymocytes40,42

with FITC- and PE-conjugated monoclonal antibodies was
done as previously described.42–45 PE-conjugated or FITC-
conjugated KC57 mAb (Beckman Coulter, Brea, CA) was
used to determine intracellular HIV-1Gag protein expression
in distinct thymocyte subsets43,46 and was performed fol-
lowing surface immunophenotyping.44,45 Study of CD4
downregulation by Nef on infected cells was described pre-
viously.40 Briefly, 2x106 T1 cells were infected with 100 lL
(10 ng p24) of viral stock. Three days postinfection, surface
expression of CD4 and mCD24 was detected with PE-
conjugated human anti-CD4 (BioLegend, San Diego, CA)
and FITC-conjugated mouse anti-CD24 (BioLegend). Mul-
tiparameter data acquisition was done on a dual-laser FACS
Calibur flow cytometer (BDIS, San Jose, CA) or an
MACSQuant VYB, and data analysis was performed with
FCS Express 6.0.

In vitro infection of postnatal thymocytes

Normal human postnatal thymus specimens were obtained
from infants and children undergoing corrective cardiac
surgery. The tissue was cut into small pieces, red blood cells
were removed by NH4Cl/Tris lysis buffer, and the me-
chanically disrupted tissue was passed over a cell strainer to
generate a single-cell suspension of thymocytes as previously
described.39,44,46 Thymocytes were infected in vitro with
CXCR4-tropic pediatric isolates (PI-2 and PI-2.1), the
CXCR4-tropic molecular clone NL4-3, the CCR5-tropic
molecular clone NF-NSX, or mock infected with the super-
natant from the same CD4+ T cell pool used for virus stock
preparation. The thymocytes were cultured in serum-free
medium for 14 days with IL-2 and IL-4 as previously de-
scribed.32 All thymocyte infections with pediatric isolates
were standardized by using equal numbers of virus infectious
units/107 cells. HIV-1 virion production was measured by
HIV-1 Gag p24 enzyme-linked immunosorbent assay as
previously described.44

In vivo infection of SCID-hu mice

C.B-17 SCID mice were bred at UCLA and implanted with
human fetal thymus and liver graft (thy/liv) under the murine
kidney capsule.47 Four to six months postimplantation, the
thy/liv grafts of SCID-hu mice implanted with thy/liv grafts
from the same donor were infected with different HIV-1
isolates (PI-2, PI-2.1, NL4-3, or NFN-SX) by injecting 10–
30 ng of p24 in a 50-lL volume directly into the graft as
previously described.44 Mock-infected implants, used as
controls in the experiments, were prepared by injecting im-
plants with 50 lL of appropriate control supernatants. Two
different experiments consisting of 10–12 SCID-hu mice per
3-week time point were conducted. MHC-I and CD4 phe-
notyping in HIV-1-infected cells was done at 3 weeks post-
infection as previously described.45

Results

PI-2 is less cytopathic to thymocytes in vitro
than PI-2.1 or NL4-3

HIV-1 strains isolated from in utero and perinatally in-
fected children vary in rates of disease progression and ex-
hibit differential effects on thymopoiesis during in vitro
culture.6,32 Beyond the observation that CXCR4-tropic HIV
isolates cause more thymocyte depletion than CCR5-tropic
HIV isolates,48 it is unclear what molecular mechanisms
determine differential effects on thymocyte depletion and
thymic development by HIV-1. Two CXCR4-tropic HIV-1
isolates (PI-2 and PI-2.1) were isolated from an in utero-
infected infant and were found to infect CD4+ thymocytes
differently.32 Primary human thymocytes were infected
in vitro with PI-2, PI-2.1, or NL4-3 viruses in parallel with a
mock-infection control and cultured in serum-free medium
supplemented with IL-2 and IL-4 for 14 days. Flow cyto-
metric analysis of surface CD4 and CD8 expression was done
on the thymocytes to measure subset depletion. Apoptotic
and dead cells were excluded using 7-AAD, and quadrants
were set using isotype controls. Following in vitro infection
of human thymocytes, PI-2 was less efficient in depleting
CD4+ thymocytes (9% CD4+ depletion) compared with PI-
2.1 (40% CD4+ depletion) or the CXCR4-tropic molecular
clone NL4-3 (90% CD4+ depletion) as related to the per-
centage of CD4+ cells in mock-infected thymocytes
(Fig. 1A). Despite initial infection with equal infectious units,
PI-2 in vitro replication was also lower than PI-2.1 as mea-
sured by p24 levels in the culture supernatants (Fig. 1B).

PI-2 contains amino acid mutations in the Nef protein

The Nef protein was previously shown to affect the patho-
genicity of HIV-1 in cultured thymocytes17 and the thy/liv
implant in the SCID-hu mouse model.49 Sequencing of the nef
alleles found in PI-2 and PI-2.1 was done to examine a possible
cause of their discrepancy in thymic cytopathicity. Analysis of
the two nef sequences revealed that the amino acids (aa) of these
two isolates were highly similar, and the majority of reported
functional motifs were conserved in both isolates (Fig. 2A). The
myristoylation residue (G2) required for membrane localiza-
tion, the oligomerization domain needed for all functions, and
motifs such as WL58, LL165, DD175, and EE155, which are re-
quired for CD4 binding and lysosomal degradation function,
were found to be preserved in both isolates. However, a deletion
of seven amino acids (NefDK7S) from amino acid positions 82
to 88 (82KGALDLS88) was present in PI-2 but not in PI-2.1.
This sequence falls within the core domain of Nef (aa 72–203),
which is a relatively conserved and structured type II polypro-
line helix (aa 72–77) followed by two a-helices (aa 81–120).50

This novel deletion is also 4 amino acids downstream of a
polyproline helix (72PXXPXR/K77) binding site for Src-
homology domain 3 (SH3) that mediates cellular activation and
MHC-I downregulation.15,29 In addition to NefDK7S, a single
amino acid mutation at position 71 from K to R (K71R), adja-
cent to the SH3 binding site, was observed in PI-2.

Nef mutations in PI-2 do not inhibit expression
of structural proteins

To assess if the identified mutations in the nef gene of PI-2
inhibited Nef protein expression, Western blot analysis was
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done on cells infected with CXCR4-tropic molecular clone
NL4-3 (lane 1), CCR5-tropic pediatric isolate PI-832 (lane 2),
and CXCR4-tropic isolate PI-2 (lane 3). The results show that
PI-2-infected cells expressed similar levels of HIV-1 Gag
(Fig. 2B) and Nef (Fig. 2C) as cells infected with PI-8 or
NL4-3 and used as controls. Accordingly, PI-2-infected cells
express HIV-1 Nef despite mutations.

PI-2 is impaired in MHC-I downregulation in vitro
and in vivo

While a myriad of cellular effects have been shown for
Nef, two of its most clearly defined functions are to down-
regulate cell surface expression of MHC-I and CD4 mole-

cules. These functions were assessed in thymocyte cultures
infected with PI-2 and PI-2.1 and compared with cultures
infected with the HIV-1 molecular clones NL4-3 or NFN-
SX (NL4-3 with a substituted CCR5-tropic Env from strain
JR-FL). Mock-infected cultures were prepared by adding
supernatants of uninfected activated allogeneic CD4+ T cell
pools. Thymocytes infected in vitro (Fig. 3) were analyzed
for surface expression of MHC-I. Following infection,
MHC-I downregulation was assessed by the mean fluores-
cence intensity (MFI) of MHC-I in HIV-1 Gag+ cells
(KC57+). The cells were surface stained with antibodies to
MHC-I (HLA-ABC-FITC) and CD3-APC followed with in-
tracellular staining for HIV-1 Gag proteins using the KC57-PE
antibody. Isotype controls were used to set the quadrants.
MHC-I expression on mock-infected thymocytes is shown in
Figure 3A. Cells productively infected (KC57+) with CXCR4-
tropic NL4-3 containing a functional Nef (Fig. 3B) had
decreased expression of MHC-I (MFI = 263) compared with
uninfected (KC57-) cells (MFI = 745). Cells infected with the
CCR5-tropic virus NF-NSX containing a functional Nef
(Fig. 3C) had a decreased expression of MHC-I (MFI = 217)
compared with uninfected cells (MFI = 551). Cells infected
with the pediatric isolate PI-2.1 containing a functional Nef
(Fig. 3D) also had decreased MHC-I expression (MFI = 220)
compared with uninfected cells (MFI = 639). However, cells
infected with the pediatric isolate PI-2 containing the Nef
mutation (Fig. 3E) showed a smaller decrease in MHC-I sur-
face expression (MFI = 417) compared with uninfected cells
(MFI = 573).

The ability of the pediatric isolate Nef proteins to down-
regulate MHC-I was also tested in vivo using an SCID-hu
mouse model implanted with human fetal thy/liv tissue that
forms a thymus-like organoid as previously described.44,45

SCID-hu mice were infected with NL4-3, PI-2, PI-2.1, or
mock-negative control supernatant. MHC-I downregulation
in productively infected (KC57+) thymocytes was measured
ex vivo at 3 weeks postinfection by measuring the HLA-ABC
MFI. As shown in Figure 4A, cells infected with NL4-3 (n = 5
mice) and PI-2.1 (n = 5 mice) showed decreased mean surface
expression of HLA-ABC compared with cells infected with
PI-2 (n = 6 mice). PI-2 expressing thymocytes had simi-
lar levels of MHC-I expression as mock infection (n = 5
mice). Statistical analysis was done using two-tailed unpaired
t tests. Similar to the in vitro experiments, infections of
thy/liv implants with PI-2, PI-2.1, or NL4-3 again demon-
strated diminished capabilities of PI-2 to downregulate MHC-I
following infection, whereas PI-2.1 exhibited comparable
MHC-I downregulation with NL4-3 (Fig. 4A). The percentages
of CD4+ expression on thymocytes in thy/liv implants fol-
lowing infection with PI-2 were the same as in mock-infected
implants, contrary to our earlier in vitro experiments. However,
PI-2.1-infected implants showed a similar decrease in the
percentage of CD4+ thymocytes as NL4-3-infected implants
(Fig. 4B).

HIV-1 PI-2 Nef downregulates CD4 but not MHC-I
expression in the absence of Vpu and Env in vitro

To investigate the small discrepancy in CD4 down-
regulation between our in vitro and in vivo experiments, we
analyzed the Nef proteins separately from other HIV-1
proteins, Env and Vpu, which have previously been reported

FIG. 1. Thymocytes infected with the CXCR4-tropic HIV
isolate PI-2 in vitro show less CD4 depletion and lower
HIV-Gag p24 levels than thymocytes infected with PI-2.1 or
NL4-3. Thymocytes were infected in vitro with CXCR4-
tropic pediatric isolates (PI-2 and PI-2.1), the CXCR4-tropic
NL4-3 molecular clone NL4-3, or mock infected with the
supernatant from the same cells (CD4+ T cell pool).
(A) Fourteen days postinfection, thymocytes were stained
for CD4 and CD8. Apoptotic and dead cells were excluded
using 7-AAD, and quadrants were set using isotype controls.
(B) Viral replication was followed by measuring HIV Gag
p24 antigen in the supernatants. PI, pediatric isolates.
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FIG. 2. Nef mutations from
HIV isolate PI-2 do not in-
hibit the expression of struc-
tural proteins. (A) Amino
acid sequence comparison of
Nef protein from CXCR4-
tropic molecular clone NL4-
3 and pediatric isolates PI-2
and PI-2.1. Asterisks indicate
common amino acids; hyphen
indicates a deletion; colon
indicates a similar amino acid
substitution; space indicates
nonsimilar substitution. (B,
C) Western blot of virions
from CXCR4-tropic molec-
ular clone NL4-3 (lane 1),
and pediatric isolates CCR5-
tropic PI-8 (lane 2) and
CXCR4-tropic PI-2 (lane 3)
containing the Nef mutation
were screened for expression
of HIV-1 viral proteins Gag
(B) and Nef (C). Molecular-
weight markers are displayed
on the left side of the Western
blots. Pediatric isolate PI-2
expresses viral protein HIV-1
Nef despite mutations.

FIG. 3. Pediatric HIV isolate 2 (PI-2) is impaired in MHC-I downregulation in vitro. Thymocytes were infected in vitro
with CXCR4-tropic pediatric isolates (PI-2 and PI-2.1), the CXCR4-tropic NL4-3 and CCR5-tropic NF-NSX molecularly
cloned HIV-1 isolates, or mock infected with the supernatant from the same cells (CD4+ T cell pool). (A–E) MHC-I
downregulation was measured to assess Nef function by using the geometric MFI of MHC-I (HLA-ABC) in KC57+ (HIV-1
Gag+) cells. (A) Mock infected negative control; (B) CXCR4-tropic virus NL4-3; (C) CCR5-tropic virus NF-NSX;
(D) pediatric isolate PI-2.1; and (E) pediatric isolate PI-2. MFI, mean fluorescence intensity; MHC-I, major histocom-
patibility complex class I.
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to contribute to CD4 surface downregulation.51,52 To test
the effect of Nef separately from Env and Vpu while
maintaining their physiologic expression levels, PI-2 and
PI-2.1 nef genes were inserted into an NL4-3-based ge-
nome containing deletions of env and vpu.40 Single-cycle
infection was done using VSV-G pseudotyped viruses ex-
pressing a CD24 tag and the various nef genes. In agree-

ment with our earlier in vitro data obtained in thymocytes
infected with the original pediatric isolates, PI-2 Nef was
unable to downregulate MHC-I in infected cells as much as
Nef from PI-2.1 and NL4-3 (Fig. 5A–E). Confirming our
previous experiment, PI-2 Nef was still able to down-
regulate CD4 surface expression in vitro, even in the ab-
sence of Vpu and Env (Fig. 5F–J).

FIG. 4. Pediatric HIV isolate 2 (PI-2) is impaired in MHC-I downregulation in vivo, but is less cytopathic than PI-2.1.
SCID mice implanted with human fetal thy/liv (SCID-hu mice) were infected with NL4-3 or pediatric isolates PI-2.1 and PI-
2. (A) MHC-I downregulation was measured ex vivo at 3 weeks postinfection. The MFI values show the levels of MHC-I on
productively infected (KC57+) thymocytes. Cells infected with NL4-3 (n = 5 mice), PI-2.1 (n = 5 mice), and PI-2 (n = 6
mice). Error bars depict standard error of the mean. Statistical analysis was done using two-tailed unpaired t tests. PI-2
expressing thymocytes had similar levels of MHC-I expression as mock infection (n = 5 mice, data not shown).
(B) Percentages of thymocytes expressing CD4 were measured ex vivo at 3 weeks postinfection. The percentages of CD4+

thymocytes in PI-2 infected are similar to the mock-infected thy/liv implants. thy/liv, thymus/liver.

FIG. 5. HIV PI-2 Nef downregulates CD4 but not MHC-I expression in the absence of Vpu, Env, and Vpr. To assess the
MHC-class I downregulation of the nef genes in pediatric isolates PI-2.1 and PI-2 in the absence of Vpu, Env, and Vpr
proteins, the nef genes were cloned out of the PI-2.1, PI-2, and NL4-3 isolates and placed in an NL4-3 vector lacking Vpu,
Env, and Vpr. To determine the effect of PI-2.1 and PI-2 Nef proteins on MHC-I and CD4 downregulation, VSV-G
pseudotyped virus, including a CD24 tag and the various nef genes, was used to infect T1 cells. HLA-A2 and CD4 surface
expression in T1 cells infected with (A, F) mock control; (B, G) VSV-G Nef pseudotyped defective NL4-3 lacking Vpu,
Env, and Vpr; (C, H) NL4-3 DNef; (D, I) VSV-G pseudotyped PI-2.1 nef lacking vpu, env, and vpr; or (E, J) VSV-G
pseudotyped PI-2 nef lacking vpu, env, and vpr.

A NOVEL HIV-1 NEF MUTATION AFFECTS CYTOPATHICITY 127



Discussion

Following comparison of two primary HIV-1 pediatric iso-
lates from the same in utero-infected infant, PI-2 and PI-2.1, we
identified a unique in-frame deletion NefDK7S in PI-2, which
attenuates the depletion of thymocytes in vitro. Nef proteins
bearing this mutation are defective for MHC-I downregulation,
but this effect is not due to reduced Nef expression or global Nef
dysfunction. Nef proteins bearing this mutation were still able to
downregulate CD4 surface expression in vitro. This novel
DK7S in-frame deletion is in a location that is not known to
contain any specific motifs required for previously defined Nef
functions. However, it is adjacent to the SH3 binding site that is
critical for multiple Nef functions, including cellular activation
and MHC-I downregulation.53,54 It is possible that DK7S alters
the tertiary structure of Nef and thus interferes with interactions
with host factors. While there is a K versus R polymorphism
that falls within the PXXP motif between residues 72–75 when
comparing PI-2.1 with PI-2, this is unlikely to contribute to
impaired MHC-I downregulation by PI-2. Although the NL4-3
Nef sequence has T71 (Fig. 2A), the subtype B consensus se-
quence is actually 71R, and thus, PI-2 actually matches ‘‘wild-
type’’ Nef more closely than PI-2.1 or NL4-3 at position 71.
Moreover, K71R is a conservative substitution. Although
highly unlikely, however, we cannot definitively rule out that
71R somehow contributed to the impaired MHC-I down-
regulation by PI-2.

Previous data show that various mutations in Nef affect
oligomerization as well as ternary complex formation with
cell molecules such as AP-1 and MHC-I,50,55–57 and a survey
of in vivo Nef sequences demonstrated frequent examples of
Nef with impaired MHC-I downregulation despite no iden-
tifiable mutations in the defined motifs involved in this
function.58 Similarly, the significance of the K71R substitu-
tion mutation in PI-2 Nef is unclear. This mutation is also
located in proximity to the canonical sequence required for
SH3 binding. Mutational studies have demonstrated that
residues flanking the motif play critical role in determining
binding specificity to SH3 domain.59

Others have reported that Nef-mediated CD4 down-
regulation correlates with increased viral pathogenesis in
thymocytes, and MHC-I downregulation has diminished in-
fluence in cytopathicity.60 In contrast, our findings indicate
that PI-2-mutated nef containing virus was less cytotoxic in
thymocytes than PI-2.1, despite having a similar ability to
downregulate surface expression of CD4 in vitro. PI-2-
infected cells did not downregulate MHC-I but did decrease
CD4 surface expression in vitro, indicating that the novel
identified mutations in PI-2 Nef may not have affected
binding to several host factors reported to be involved in
CD4 downregulation.61,62 Point mutations in the nef gene
(WL57AA, LL164AA, and DD174AA) of the NL4-3 mo-
lecular clone abrogate CD4 downregulation and decrease
Nef-mediated pathogenesis.60 These mutations were not
present in PI-2. Van Nuffel et al. have previously reported
that Nef:PAK2 and an intact VGF motif within Nef are re-
quired for reduced thymic output.63 Despite having intact
VGF and PAK2 binding motifs and representative CD4
downregulation in vitro, PI-2 still lacked the virulence and
thymic depletion seen in thymocytes infected with PI-2.1 or
molecular clones, indicating a correlation between MHC-I
downregulation and Nef’s ability to deplete thymocytes.

Given the importance of MHC-I molecules in T cell de-
velopment, it is unclear whether the defect in MHC-I
downregulation by HIV isolate PI-2 is directly related to the
attenuated thymic cytopathicity, or if the novel identified
mutations disrupt another pathway that potentiates the neg-
ative effect of Nef in the thymopoiesis. Further unraveling
this phenomenon may provide greater insight into the par-
ticularly rapid disease progression seen in HIV-1-infected
children, and may offer therapeutic targets for this particu-
larly vulnerable population.

Sequence Data

The nucleotide sequences for PI-2 and PI-2.1 nef genes
have been deposited in GenBank under accession numbers
KC702883 and KC702882, respectively.
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