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Abstract

In this paper we solve an optimal stopping problem with an infinite time
horizon, when the state variable follows a jump-diffusion. Under certain con-
ditions our solution can be interpreted as the price of an American perpetual
put option, when the underlying asset follows this type of process.

We present several examples demonstrating when the solution can be in-
terpreted as a perpetual put price. This takes us into a study of how to risk
adjust jump-diffusions. One key observation is that the probability distribu-
tion under the risk adjusted measure depends on the equity premium, which
is not the case for the standard, continuous version. This difference may be
utilized to find intertemporal, equilibrium equity premiums, for example.

Our basic solution is exact only when jump sizes can not be negative. We
investigate when our solution is an approximation also for negative jumps.

Various market models are studied at an increasing level of complexity,
ending with the incomplete model in the last part of the paper.

KEYWORDS: Optimal exercise policy, American put option, perpetual op-
tion, optimal stopping, incomplete markets, equity premiums, CCAPM.

1 Introduction.

We consider the perpetual American put option when the underlying asset pays
no dividends. This is known to be the same mathematical problem as pricing an
infinite-lived American call option, when the underlying asset pays a continuous,
proportional dividend rate, as shown by Samuelson (1965).
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particular my sponsor, Eduardo Schwartz , and Michael Brennan for hospitality and stimulating
discussions, during my sabbatical stay for the academic year 2004-2005. Thanks also to Bernt
Øksendal for many discussions on these topics. Support from the Norwegian Research Council is
gratefully acknowledged.
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The market value of the corresponding European perpetual put option is known
to be zero, but as shown by Merton (1973a), the American counterpart converges
to a strictly positive value. This demonstrates at least one situation where there is
a difference between these two products in the situation with no dividend payments
from the underlying asset.

We analyze this contingent claim when the underlying asset has jumps in its
paths. We start by solving the relevant optimal stopping problem for a general
jump-diffusion, and illustrate the obtained result by several examples. Our method
does not provide a general solution when jumps can be negative. Here we consider
some special cases, and demonstrate that our basic solution can still be used as
an approximation for negative jumps. In many types of scientific applications the
accuracy obtained this way is shown to be adequate.

In the pure jump model the probability distribution under the risk adjusted
measure depends on the equity premium, which is not the case for the standard,
continuous version. We briefly demonstrate how this difference may be utilized to
find equilibrium equity premiums.

Various market models are studied from the rather simple to the more complex.
As is usually the case, it is from the simple models we gain the most transparent
insights.

The paper is organized as follows: Section 2 presents the model, Section 3 the
American perpetual option pricing problem, Section 4 the solution to this problem
in general, Section 5 treats adjustments to risk, Section 6 compares the solutions
for the standard, continuous geometric Brownian model to the geometric Poisson
model. In this section we see how equity premiums may be calibrated the the US
data of the previous century. Section 7 presents solutions for a combined jump
diffusion, Section 8 discusses a model where there are different possible jump sizes,
Section 9 combines the latter case with a continuous component, and Section 10
treats the incomplete model, where jump sizes are continuously distributed. Section
11 concludes.

2 The Model

We start by establishing the dynamics of the assets in the model: There is an un-
derlying probability space (Ω,F , {Ft}t≥0, P ) satisfying the usual conditions, where
Ω is the set of states, F is the set of events, Ft is the set of events observable by time
t, for any t ≥ 0, and P is the given probability measure, governing the probabilities
of events related to the stochastic price processes in the market. On this space is
defined one locally riskless asset, thought as the evolution of a bank account with
dynamics

dβt = rβtdt, β0 = 1,

and one risky asset satisfying the following stochastic differential equation

dSt = St−[µdt+ σdBt + α

∫
R

η(z)Ñ(dt, dz)], S0 = x > 0. (1)

Here B is a standard Brownian motion, Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is the
compensated Poisson random measure, ν(dz) is the Lévy measure, and N(t, U)
is the number of jumps which occur before or at time t with sizes in the set U
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of real numbers. The process N(t, U) is called the Poisson random measure of
the underlying Lévy process. The function αη(z) ≥ −1 for all values of z. We
will usually choose η(z) = z for all z, which implies that the integral is over the
set (−1/α,∞). The Lévy measure ν(U) = E[N(1, U)] is in general a set function,
where E is the expectation operator corresponding to the probability measure P . In
our examples we will by and large assume that this measure can be decomposed into
ν(dz) = λF (dz) where λ is the frequency of the jumps and F (dz) is the probability
distribution function of the jump sizes. This gives us a finite Lévy measure, and
the jump part becomes a compound Poisson process.

This latter simplification is not required to deal with the optimal stopping prob-
lem, which can in principle be solved for any Lévy measure ν for which the relevant
equations are well defined, subject to certain technical conditions which we return
to later. The processes B and N are assumed independent. Later we introduce
more risky assets in some of the examples as need arises.

The stochastic differential equation (1) can be solved using Itô’s lemma, and the
solution is

S(t) = S(0) exp
{
(µ− 1

2
σ2)t+ σBt

− α

∫ t

0

∫
R

η(z)ν(dz)ds+
∫ t

0

∫
R

ln(1 + αη(z))N(ds, dz)
}
.

(2)

From this expression we immediately see why we have required the inequality
αη(z) ≥ −1 for all z; otherwise the natural logarithm is not well defined. This
solution is sometimes labeled a ”stochastic” exponential, in contrast to only an ex-
ponential process which would result if the price Y was instead given by Y (t) =
Y (0) exp(Zt), where Zt = (Xt − 1

2σ
2t), and the accumulated return process Xt is

given by the arithmetic process

Xt := µt+ σBt + α

∫ t

0

∫
R

η(z)Ñ(ds, dz). (3)

Clearly the process Y can never reach zero in a finite amount of time if the jump
term is reasonably well behaved 1, so there would be no particular lower bound for
the term αη(z) in this case. We have chosen to work with stochastic exponential
processes in this paper. There are several reasons why this is a more natural model
in finance. On the practical side, bankruptcy can be modeled using S, so credit
risk issues are more readily captured by this model. Also the instantaneous return
dS(t)
S(t−) = dXt, which equals (µdt + ”noise”), where µ is the rate of return, whereas
for the price model Y we have that

dY (t)
Y (t−)

=
(
µ+

∫
R

(eαη(z) − 1− αη(z))ν(dz)
)
dt+ σdBt +

∫
R

(eαη(z) − 1)Ñ(dt, dz),

which is in general different from dXt, and as a consequence we do not have a simple
interpretation of the rate of return in this model. 2

1i.e., if it does not explode. The Brownian motion is known not to explode.
2If the exponential function inside the two different integrals can be approximated by the two

first terms in its Taylor series expansion, which could be reasonable if the Lévy measure ν has

short and light tails, then we have
dY (t)
Y (t−)

≈ dXt.
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3 The optimal stopping problem

We want to solve the following problem:

ψ(x) = sup
τ≥0

Ex
{
e−rτ (K − Sτ )+

}
, (4)

where K > 0 is a fixed constant, the exercise price of the put option, when the
dynamics of the stock follows the jump-diffusion process explained above. By Ex

we mean the conditional expectation operator given that S(0) = x, under the given
probability measure P .

For this kind of dynamics the financial model is in general not complete, so
in our framework the option pricing problem may not have a unique solution, or
any solution at all. There will normally be many risk adjusted measures Q, and
if it is not even clear that the pricing rule must be linear, none of these may be
appropriate for pricing the option at hand. If one is, however, the pricing problem
may in some cases be a variation of the solution to the above problem, since under
any appropriate Q the price S follows a dynamic equation of the type (1), with r
replacing the drift parameter µ, and possibly with a different Lévy measure νQ(dz),
absolutely continuous with respect to ν(dz). Thus we first focus our attention on
the problem (4).

There are special cases where the financial problem has a unique solution; in
particular there are situations including jumps where the model either is, or can be
made complete, in the latter case by simply adding a finite number of risky assets.
We return to the the different situations in the examples.

The stopping problem (4) has been considered by other authors from different
perspectives. Mordecki (2002) finds formulas based on extending the theory of
optimal stopping of random walks. It hinges upon one’s ability to compute the
quantity E(eI), where I = inf0≤t≤τ(r) Z(t), and τ(r) is an exponential random
variable with parameter r > 0, independent of Z, and τ(0) = ∞. No adjustments
to risk was considered. See also Boyarchenko and Levendroskǐi (2002).

In contrast, we base our development on the theory of integro-variational in-
equalities for optimal stopping. Although we do not obtain exact solutions in all
situations considered, our procedure is well suited to many applications of option
pricing theory.

4 The solution of the optimal stopping problem

In this section we present the solution to the optimal stopping problem (4) for
jump-diffusions. Let C denote the continuation region, and let τ be the exercise
time defined by τ = inf{t > 0;S(t) /∈ C}. We make the assumption that

S(τ) ∈ C̄ (C̄ is the closure of C). (5)

We then have the following result:

Theorem 1 The solution ψ(x) := ψ(x; c) of the optimal stopping problem is, under
the assumptions (5), given by

ψ(x) =

{
(K − c)

(
c
x

)γ
, if x ≥ c;

(K − x), if x < c,
(6)
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where the continuation region C is given by

C =
{
(x, t) : x > c

}
,

and the trigger price c is a constant. This constant is given by

c =
γK

γ + 1
, (7)

where the constant γ solves the following equation

−r − µγ +
1
2
σ2γ(γ + 1) +

∫
R

{(1 + αη(z))−γ − 1 + αγη(z)}ν(dz) = 0. (8)

Proof. As with continuous processes, there is an associated optimal stopping
theory also for discontinuous processes. For an exposition, see e.g., Øksendal and
Sulem (2004). In order to employ this, we need the characteristic operator, or
generator Ā of the process S. For any smooth function f : R → R not depending
upon time, it is defined as

Āf(x) = lim
t→0+

1
t
{Ex[f(St)]− f(x)} (if the limit exists),

where Ex[f(St)] = E[f(Sxt )], Sx0 = x. Thus Ā represents the expected rate of return
of continuing at t = 0. For a time-homogeneous problem this is the expected rate
of continuing at any time t > 0 as well. For our price process and with this kind of
time-homogeneous function f , the generator for a jump-diffusion takes the following
form:

Āf(x)) = xµ
df(x)
dx

+
1
2
x2σ2 d

2f(x)
dx2

+
∫
R

{f(x+ αxη(z))− f(x)− α
df(x)
dx

xη(z)}ν(dz),

where the last term stems from the jumps of the price process S. Since the objective
function depends upon time via the discount factor, our problem can be classified
as a time-inhomogeneous one. The standard theory of optimal stopping, and in
particular the verification theorem, is formulated for the time-homogeneous case,
but augmenting the state space of S by one more state, namely time itself,

Zt =
(
s+ t
St

)
; t ≥ 0

transforms the problem into a time-homogeneous one in the variable Z. (When
t = 0, the process Z(0) = (s, x).) Is is now convenient to reformulate our problem
as follows: We seek the discounted value function φ(s, x) defined by

φ(s, x) := sup
τ≥0

E(s,x)
{
e−r(s+τ)(K − Sτ )+

}
. (9)

The generator A of the process Z is given in terms of the generator Ā of the process
S by Af(s, x) = Āf(s, x) + ∂

∂sf(s, x), where Ā works on the x-variable.
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With a view towards the verification theorem - a version for jump-diffusion pro-
cesses exists along the lines of the one for continuous processes - we now conjecture
that the continuation region C has the following form

C =
{
(x, t) : x > c

}
,

where the trigger price c is some constant. The motivation for this is that for any
time t the problem appears just the same, from a prospective perspective, implying
that the trigger price c(t) should not depend upon time. See Figure 1. In the

Figure 1: Continuation Region

Time

τ*

c

Price

Continuation region of the perpetual American put option.

continuation region C, the principle of optimal stopping requires Aϕ = 0, or

∂ϕ

∂s
+ µx

∂ϕ

∂x
+

1
2
x2σ2 ∂

2ϕ

∂x2

+
∫
R

{ϕ(s, x+ αxη(z))− ϕ(s, x)− α
∂ϕ

∂x
xη(z)}ν(dz) = 0.

This is a typical dynamic optimization criterion saying that it is not optimal to
exercise so long as the expected rate of change of the value function is not strictly
negative.

Furthermore we conjecture that the function ϕ(s, x) = e−rsψ(x). Substituting
this form into the above equation allows us to cancel the common term e−rs, and
we are left with the equation

− rψ(x) + µx
∂ψ(x)
∂x

+
1
2
x2σ2 ∂

2ψ(x)
∂x2

+∫
R

{ψ(x+ αxη(z))− ψ(x)− α
∂ψ(x)
∂x

xη(z)}ν(dz) = 0
(10)

for the unknown function ψ.
Thus we were successful in removing time from the PDE, and reducing the

equation to an ordinary integro-differential-difference equation.
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The equation is valid for c ≤ x < ∞. Given the trigger price c, let us denote
the market value ψ(x) := ψ(x; c). The relevant boundary conditions are then

ψ(∞; c) = 0 ∀c > 0 (11)
ψ(c; c) = K − c (exercise) (12)

We finally conjecture a solution of the form ψ(x) = a1x + a2x
−γ for some

constants a1, a2 and γ. The boundary condition (11) implies that a1 = 0, and the
boundary condition (12) implies that a2 = (K − c)cγ . Thus the conjectured form
of the market value of the American put option is the following

ψ(x; c) =

{
(K − c)

(
c
x

)γ
, if x ≥ c;

(K − x), if x < c.

In order to determine the unknown constant γ, we insert this function in the
equation (10). This allows us to cancel the common term x−γ , and we are left with
the following nonlinear, algebraic equation for the determination of the constant γ:

−r − µγ +
1
2
σ2γ(γ + 1) +

∫
R

{(1 + αη(z))−γ − 1 + αγη(z)}ν(dz) = 0. (13)

This is a well defined equation in γ, and the fact that we have successfully been
able to cancel out the variables x and s, is a strong indication that we actually have
found the solution to our problem.

If this is correct, it only remains to find the trigger price c, and this we do by
employing the ”high contact” or ”smooth pasting” condition (e.g., McKean (1965)).

∂ψ(c; c)
∂x

∣∣
x=c

= −1.

This leads to the equation

(k − c)cγ(−γc−γ−1) = −1,

which determines the trigger price c as

c =
γK

γ + 1
,

where γ solves the equation (13) (or (8)). See Figure 2.
We can now finally use the verification theorem of optimal stopping for jump-

diffusions (see e.g. Øksendal and Sulem (2004)) to prove that this is the solution
to our problem. The main component of the verification theorem is the Dynkin
formula, which states that

Ex{ψ(S(τ))} = ψ(x) + Ex{
∫ τ

0

Aψ(S(t)) dt}. (14)

Here the requirement that S(τ) ∈ C̄ comes into play, a sufficient condition for the
theorem to hold. �
Remarks:
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Figure 2: Perpetual American put option value

Stock price

Put value

Market value of a perpetual American put option as a function of stock
price.

1. If we use the exponential pricing model Y defined in Section 2 instead of the
stochastic exponential, where Y (t) = Y (0) exp(Zt), Zt = (Xt − 1

2σ
2t) and the the

accumulated return process Xt is given by the arithmetic process in equation (3),
this problem also has a solution, the above method works, and the corresponding
equation for γ is given by

− r − γ
(
µ+

∫
R

(eαη(z) − 1− αη(z))ν(dz)
)

+
1
2
σ2γ(γ + 1) +

∫
R

(
e−γαη(z) − 1 + γ(eαη(z) − 1)

)
ν(dz) = 0.

(15)

2. By the verification theorem we get smooth pasting for free.
3. We may interpret the term

(
x
c

)−γ
I{τ(ω)∈[t,t+dt)}(ω) as the ”state price” when

x ≥ c, where I indicates if exercise happens at time t or not: If exercise takes place
at time t, then (K − c) units are paid out at a price (x/c)γ per unit when x ≥ c,
and (K − x) units are paid at price 1 per unit if x < c. Hence the term (x/c)γ can
be interpreted as an ”average state price” when x ≥ c.
4. The assumption (5) may seem restrictive at this point, as it basically rules out
jump processes having negative jumps. The problem arises if exercise occurs at a
jump time of S. When this jump is negative it may carry S(τ) inside the exercise
region where the value function ψ(·) is linear according to equation (6), in which
case Dynkin’s formula does not apply, since the value function has another form
inside the integral in (14), also illustrated in Figure 2.

In the examples we indicate a direct method to solve the problem when jumps
are negative, based on Dynkin’s formula. We also demonstrate that the solution
provided by Theorem 1 may still be a good approximation in this situation, espe-
cially when the current stock price x is away from the exercise boundary c. For the
calibrations we consider, it turns out that the solution of Theorem 1 works well for
price processes containing also negative jumps.
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5 Risk adjustments

While the concept of an equivalent martingale measure is well known in the case
of diffusion price processes with a finite time horizon T < ∞, the corresponding
concept for jump price processes is less known. In addition we have an infinite time
horizon, in which case it is not true that the ”risk neutral” probability measure Q
is equivalent to the given probability measure P .

Suppose P and Q are two probability measures, and let Pt := P |Ft
and Qt :=

Q|Ft
denote their restrictions to the information set Ft. Then Pt and Qt are equiv-

alent for all t if and only if σP = σQ and the Lévy measures νP and νQ are
equivalent.

We now restrict attention to the pure jump case, where the diffusion matrix
σ = 0. Let θ(s, z) ≤ 1 be a process such that

ξ(t) := exp
{∫ t

0

∫
R

ln(1− θ(s, z))N(ds, dz) +
∫ t

0

∫
R

θ(s, z)ν(dz)ds
}

(16)

exists for all t. Define Qt by

dQt(ω) = ξ(t)dPt(ω)

and assume that E(ξ(t)) = 1 for all t. Then there is a probability measure Q on
(Ω,F) with the property that if we define the random measure ÑQ by

ÑQ(dt, dz) := N(dt, dz)− (1− θ(t, z))ν(dz)dt,

then ∫ t

0

∫
R

ÑQ(ds, dz) =
∫ t

0

∫
R

N(ds, dz)−
∫ t

0

∫
R

(1− θ(s, z))ν(dz)ds

is a Q local martingale. Notice that ÑQ(dt, dz) = Ñ(dt, dz) + θ(t, z)ν(dz)dt.
This result can be used to prove the following version of Girsanov’s theorm for

jump processes:

Theorem 2 Let St be a 1-dimensional price process of the form

dSt = St−[µdt+ α

∫
R

η(z)Ñ(dt, dz)].

Assume there exists a function θ(z) ≤ 1 such that

α

∫
R

η(z)θ(z)ν(dz) = µ a.s. (17)

and such that the corresponding process ξt given in (16) (with θ(s, z) ≡ θ(z) for all
s) exists, with E(ξt) = 1 for all t. Consider a measure Q such that dQt = ξ(t)dPt
for all t. Then Q is a local martingale measure for S.

Proof. By the above cited result and the equality (17) we have that

dSt = St−[µdt+ α

∫
R

η(z)Ñ(dt, dz)]

= St−[µdt+ α

∫
R

η(z){ÑQ(dt, dz)− θ(z)ν(dz)dt}]

= St−
[
α

∫
R

η(z)ÑQ(dt, dz)
]
,
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which is a local Q-martingale. �
We will call Q a risk adjusted probability measure, and θ the market price of risk

(when we use the bank account as a numeraire). The above results can be extended
to a system of n-dimensional price processes, see e.g., Øksendal and Sulem (2004) for
results on a finite time horizon, Sato (1999), Chan (1999) and Jacod and Shiryaev
(2002) for general results, and Huang and Pagès (1992) or Revuz and Yor (1991))
for results on the infinite time horizon.

Recall that the computation of the price of an American option must take place
under a risk adjusted, local martingale measure Q in order to avoid arbitrage pos-
sibilities. Under any such measure Q all the assets in the model must have the
same rate of return, equal to the short term interest rate r. Thus we should replace
the term µ by r in equation (10). However, this may not be the only adjustment
required when jumps are present. Typically another, but equivalent, Lévy measure
νQ(dz) will appear instead of ν(dz) in equation (10). We return to the details in
the following sections.

6 Comparing two different models of the same un-
derlying price process.

In this section we illustrate the above solution for two particular models of a financial
market. We start out by recalling the solution in the standard lognormal continuous
model, used by Black and Scholes and Merton.

6.1 The standard continuous model: α = 0.

The standard geometric Brownian motion is given by

dSct
Sct

= µdt+ σdBt. (18)

Here the accumulated return process is defined by Rct := µt+ σBt. It has mean µt,
and variance σ2t.

The equation (8) has to be solved under a risk adjusted, local martingale measure
Q in order for the solution to be the price of an American put option, we know that
this is achieved in this model by replacing the drift rate µ by the interest rate r,
and this is the only adjustment for Q required in this equation. Recall that the
process BQt := Bt+ θct is a standard Brownian motion for all t ≥ 0 under Q, where
θc = (µ− r)/σ is the market price of risk, the Sharp ratio. Thus we have that the
dynamics of Sc under Q is given by

dSct
Sct

= rdt+ σdBQt . (19)

The equation for γ then reduces to

−r − rγ +
1
2
σ2γ(γ + 1) = 0 (20)

which is a quadratic equation. It has the two solutions γ1 = 2r/σ2 and γ2 = −1.
The solution γ2 is not possible, since the boundary condition ψ(∞; c) = 0 for all c
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simply can not hold true in this case. Thus the solution is γ = 2r
σ2 , as first obtained

by Merton (1973a).
Comparative statics can be derived from the expression for the market value in

(6). The results are directly comparable to the results for the finite-lived European
put option: The put price ψ increases with K, ceteris paribus, and the put price
decreases as the stock price x increases. Changes in the volatility parameter have
the following effects: Let v = σ2, then

∂ψ

∂v
=

{
c
v

(
c
x

)γ ln
(
x
c

)
, if x ≥ c;

0, if x < c.
(21)

Clearly this partial derivative is positive as we would expect.
Similarly, but with opposite sign, for the interest rate r:

∂ψ

∂r
=

{
− 2c
γv

(
c
x

)γ ln
(
x
c

)
, if x ≥ c;

0, if x < c.
(22)

The effect of the interest rate on the perpetual put is the one we would expect, i.e.,
a marginal increase in the interest rate has, ceteris paribus, a negative effect on the
perpetual put value.

Notice that we have used above that

∂ψ

∂γ
=

{
− c
γ

(
c
x

)γ ln
(
x
c

)
, if x ≥ c;

0, if x < c,
(23)

in other words the price is a decreasing function of γ when x := St ≥ c, a result we
will make use of below.

From the derivation in Section 4 we notice that the relationship (23) is true also
in the jump-diffusion model, and because of this property, one can loosely think of
the parameter γ as being inversely related to the ”volatility” of the pricing process,
properly interpreted.

6.2 A discontinuous model: The jump component is propor-
tional to a Poisson process.

In this section we assume that ν(dz) is the frequency λ times the Dirac delta function
at z0, i.e., ν(dz) = λδ{z0}(z)dz, z0 ∈ R\{0} so that all the jump sizes are identical
and equal to z0 (which means that N is a Poisson process, of frequency λ, times
z0). We consider the pure jump case (σ2 = 0), and choose the function η(z) ≡ z
and α = 1. The dynamic equation for the discontinuous risky asset is then

dSdt
Sdt−

= µdt+ z0dÑt (24)

where Ñt = (Nt − λdt) is a compensated, mean zero Poisson processes, and Nt is a
Poisson process having frequency λ. This process is to be compared to the standard
geometric Brownian motion given in equation (18).

We see that the accumulated return process is here Rdt := µt + z0Ñt to be
compared to Rct . Both have means µt, and their respective variances are z2

0(λt) and
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σ2t. Since the Poisson process is known to be infinite divisible, meaning that Nt
can be ”divided” into an arbitrary number of i.i.d. Poisson random variables, the
Central Limit Theorem comes into play stating that for sufficiently large λt, the
probability distribution of the return processes Rdt will be approximately normal.

We now use the results of Section 5, where we employ the risk free asset as a
numeraire. By Theorem 2 the market price of risk θ(z) in equation (17) must satisfy
the equation ∫ ∞

−1/α

zθ(z)ν(dz) = µ− r. (25)

Due to the form of the Lévy measure ν(dz), this equation reduces to

θ0 := θ(z0) =
µ− r

z0λ
. (26)

The constant θ0 (or perhaps θ0λ) could be compared to the familiar Sharpe ratio µ−r
σ

in the standard lognormal case. Here the term z2
0λ is the variance rate corresponding

to the term σ2 in the geometric Brownian motion model. This model is complete,
and there is only one solution to the above equation (25).

Consider the risk adjusted probability measure Q. If we derive the dynamics of
the discounted process S̄t := e−rtSt, this process has drift zero under the measure
Q, corresponding to the market price of risk in (25), or equivalently, S has drift r
under Q. Turning to the American perpetual put option, we must e.g., replace µ
by r in the equation (8). It turns out that this is not the only adjustment to Q we
have to perform in this regard. Let us first turn to the frequency λ.

Recall that ν(dz) = λδ{z0}(z)dz so we have that ÑQ(dt, dz) := Ñ(dt, dz) +
θ0λδ{z0}(z)dzdt or

dÑQ
t := dNt − (1− θ0)λdt. (27)

The term λ(1− θ0) can be interpreted as the frequency of the jumps under the risk
adjusted measure Q, since θ0 does not depend upon the jump size z, or

λQ := λ(1− θ0) = λ+
r − µ

z0
. (28)

Thus
dSdt
Sdt−

= rdt+ z0dÑ
Q
t , (29)

which is the analogue of (19) in the standard model.
Turning to the jump size parameter z0, consider two Poisson processes with fre-

quencies λ and λQ and jump sizes z0 and zQ0 corresponding to two measures P and
Q respectively. Only if z0 = zQ0 can the corresponding Pt and Qt be equivalent.
This means that changing the frequency of jumps amounts to ”reweighting” the
probabilities on paths, and no new paths are generated by simply shifting the in-
tensity. However, changing the jump sizes generates a different kind of paths. The
frequency of a Poisson process can be modified without changing the ”support” of
the process, but changing the sizes of jumps generates a new measure which assigns
nonzero probability to some events which were impossible under the old one. Thus
z0 = zQ0 is the only possibility here.
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By the stochastic exponential solution formula (2), it follows from (27), (28) and
(29) that Sd has the following representation under Q:

Sdt = Sd0 exp{rt+ (ln(1 + z0)− z0)λQt+ (ln(1 + z0))Ñ
Q
t }. (30)

By properly approximating the logarithmic function, this can be written

Sdt ≈ Sd0 exp{rt− 1
2
z2
0λ

Qt+ z0Ñ
Q
t }, (31)

which can be compared to the representation for the standard price process Sc

under Q:

Sct = Sc0 exp{rt− 1
2
σ2t+ σBQt }. (32)

An completely analogous comparison can be made under the probability measure
P .

Here we notice an important difference between the standard continuous model
and the model containing jumps. While it is a celebrated fact that the probability
distribution under Q in the standard model does not depend on the drift parameter
µ, a direct consequence of (32), in the jump model we see from (30) that it does. The
risk adjusted frequency λQ enters both the drift term, and is part of the variance
of ÑQ

t , and it follows from (28) that λQ depends upon the drift term µ. This will
have as a consequence that values of options must also depend on µ in the latter
type of models. For the American perpetual put option we see this directly from
the equation for γ

λQ(1 + z0)−γ = (r − λQz0)γ + λQ + r. (33)

Since this equation depends on the drift parameter µ through the term λQ, given
in equation (28), the solution γ = γd also depends upon µ, and finally so does the
option value given in equation (6).

Let us briefly recall the argument why the drift parameter can not enter into the
pricing formula for any contingent claim in the standard model: If two underlying
assets existed with different drift terms µ1 and µ2 but with the same volatility
parameter σ, there would simply be arbitrage. In the jump model different drift
terms lead to different frequencies λQ1 and λQ2 through the equation (28), but this
also leads to different volatilities of the two risky assets, since the volatility depends
upon the jump frequency (under Q). Thus no inconsistency arises when the drift
term enters the probability distribution under Q in the jump model.

We may solve the equations (28) and (33) in terms of the equity premium ep,
which we here define as ep := r − µ. This results in a linear equation for ep with
solution

ep = z0

{
r(γ + 1)

(1 + z0)−γ − (1− z0γ)
− λ

}
. (34)

Although this formula indicates a very simple connection between the equity pre-
mium and the parameters of the model, it is in some sense circular, since the param-
eter γ on the right hand side is not exogenous, but depends on all the parameters
of the model.

13



Let us focus on the equation (33) for γ. This equation is seen to have a positive
root γd where the power function to the left in equation (33) crosses the straight
line to the right in (33). If z0 > 0, there exists exactly one solution if r < λQαz0
for positive interest rate r > 0. If r ≥ λQαz0 > 0 there is no solution.

Example 1. Here we illustrate different solutions to the equations for γ, first
without risk adjustments, but where we calibrate the variance rates of the two noise
terms. Recall that the variance of a compound Poisson process Xt is var(Xt) =
λtE(Z2), where Z is the random variable representing the jump sizes. We can
accomplish this by choosing λ = σ = 1, when the jump size parameter z0 = 1,
noticing that z2

0 here corresponds to E(Z2). Fixing the short term interest rate
r = .06, we get the solution γd = .20 of equation (33), while the corresponding
solution to the equation (20) is γc = .12. Suppose the exercise price K = 1. Then
we can compute the trigger price cc = .11 in the continuous model, while cd = .17
in the discontinuous model. This means that without any risk adjustments of the
discontinuous model, it is optimal to exercise earlier using this model than using
the continuous model, at least for this particular set of parameter values. �

Using the respective formulas for the prices of the American put option in Ex-
ample 1, by the formula for the price ψ(x, c) in equation (6) of Section 4 it is seen
that the price ψc based on the continuous model is larger then the price ψdu based
on the discontinuous model with no risk adjustments, or ψc(x; cc) > ψdu(x; cd) for
all values x > cc of the underlying risky asset, ψc(x; cc) = ψdu(x; cd) for x ≤ cc.
According to option pricing theory, this ought to mean that there is ”less volatility”
in the jump model without risk adjustment than in the continuous risk adjusted
counterpart. Thus risk adjustments of the frequency λQ must mean that λQ > λ,
when z0 > 0.

6.3 Solution when jumps are negative.

In this section we demonstrate a direct method based on Dynkin’s formula to deal
with the case of negative jump sizes. to this end, consider the pure jump model
with negative jumps only

dSt = St−[µdt+
∫ ∞

−1

zÑ(dt, dz)] (35)

where the Lévy measure ν(dz) = λδ{z0}(z)dz, and z0 < 0 (α = 1). Define the
operator A by

Aψ(x) = −rψ(x) + µxψ′(x) +
∫ ∞

−1

(ψ(x+ zx)− ψ(x)− ψ′(x)z0x)ν(dz).

We want to find a constant c ∈ (0,K) and a function ψ on (0,∞) such that ψ is
continuous in (0,∞) and (i) ψ(x) = K − x for 0 < x ≤ c and (ii) Aψ(x) = 0 for
x > c. We construct ψ on (c,∞) by induction:

Case 1: x ∈ C1 := (c, c/(1+z0)). Then x(1+z0) < c and therefore S jumps from
C1 down to (0, c) if it jumps, where ψ is given by (i). Thus condition (ii) becomes

Aψ(x) = −rψ(x) + µxψ′(x) + [K − x(1 + z0)− ψ(x)− ψ′(x)z0x]λ = 0

14



for x ∈ C1. This leads to the following standard first order in-homogeneous ODE

ψ′(x) +G(x)ψ(x) = H1(x)

where G(x) = − r+λ
(µ−z0λ)x and H1(x) = − [K−x(1+z0)]λ

(µ−z0λ)x . The solution, denoted ψ1(x)
in C1, is

ψ1(x) = e−
R x

c
G(v)dv

[ ∫ x

c

e
R v

c
G(u)duH1(v)dv + k1

]
. (36)

By continuity of the value function we determine the integrating constant k1 by
ψ1(c) = K − c, implying that k1 = K − c.

Case 2: x ∈ C2 := (c/(1 + z0), c/(1 + z0)2). Then x(1 + z0) < c/(1 + z0) and
therefore S jumps from C2 down to C1 if it jumps, where ψ is given by ψ1(·) just
determined. Thus condition (ii) becomes

Aψ(x) = −rψ(x) + µxψ′(x) + [ψ1(x(1 + z0))− ψ(x)− ψ′(x)z0x]λ = 0

for x ∈ C2. This leads to the same kind of ODE as above

ψ′(x) +G(x)ψ(x) = H2(x)

where G(x) = − r+λ
(µ−z0λ)x and H2(x) = −ψ1(x(1+z0))λ

(µ−z0λ)x . The solution, denoted ψ2(x)
in C2, is

ψ2(x) = e
−

R x
c/(1+z0)G(v)dv[ ∫ x

c/(1+z0)

e
R v

c/(1+z0) G(u)du
H2(v)dv + k2

]
. (37)

By continuity of the value function we determine the integrating constant k2 by
ψ1(c/(1 + z0)) = ψ2(c/(1 + z0)). Thus k2 = ψ1(c/(1 + z0)), where ψ1(·) is given
above. This determines the value function ψ on C2.

Next we define C3 = (c/(1+z0)2, c/(1+z−0)3) and proceed as above to determine
ψ on C3 etc. We summarize as

Theorem 3 The solution of the optimal stopping problem

φ(s, x) = sup
τ≥0

Es,x
{
e−r(s+τ)(K − Sτ )+

}
,

with St given by (35) has the form φ(s, x) = e−rsψ(x) where ψ(x) is given induc-
tively by the above procedure. In particular we have that

ψ(x) =


K − x, for 0 < x ≤ c;
ψ1(x) for x ∈ C1;
ψ2(x) for x ∈ C2;

and ψ(x) = ψn(x) for x ∈ Cn, n = 3, 4, · · · , where ψ1(x) is given in equation (36),
ψ2(x) is given in equation (37), etc.

Since we here have a first order ODE, it is not a natural requirement that the first
derivative of the value function ψ′(x) is continuous in the patching point x = c. It
is true that the function itself is continuous there, a requirement we have already
used. Thus we may seem to be lacking a criterion to determine the trigger price c.
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The solution ψ(x) above is the value of an American perpetual put option if we
adjust for risk, i.e., when µ = r and λ is interpreted as the risk adjusted frequency
under Q. If we consider the requirement ψ′(c) = −1, we only get a solution for c
if µ 6= r, and hence this trigger value does not correspond to the solution of the
American put problem. One could perhaps conjecture that requiring the function
ψ(x) to be C1 in the point c/(1+z0) would provide the ”missing” equation, but this
turns out to yield a tautology, i.e., ψ′2(c/(1− z0)) = ψ′1(c/(1 + z0) is automatically
satisfied by the solution provided above and thus does not give anything new. The
value of c must in fact be determined in the other end, namely by requiring that
ψ(x) approaches zero as x→∞.

Let us turn to an approximate solution when jumps are allowed to be negative,
and focus on the equation (33) for γ. If −1 < z0 < 0 this equation has exactly
one solution for r > 0 provided that αz0 > −1, and is accordingly well defined.
Reexamining the exact procedure above, notice that if we approximate the linear
function (K − x(1 + z0)) by the curved one ψ(x(1 + z0)) in the term dictating the
inhomogeneous part of the first order ODE, we would obtain the solution given in
Theorem 1. The effect of this perturbation will be more and more diluted as x
increases. This we can see by comparing ψ1 to ψ2, where the linear term in the
numerator of H1 has already been replaced by a curved one in the numerator of
H2. Thus we conjecture that for reasonably large values of the spot price x of the
underlying asset, the solution obtained using Theorem 1 is a good approximation.

Example 2. Consider now the case where z0 < 0, and let us pick z0 = −.5.
Now γd = .29 for the same set of parameter values as above. In order to properly
calibrate the variance rates of the two models, we compare to the continuous model
having σ2 = λz2

0 = .25 or σ = .50. This yields γc = .48, which means that the
situation is reversed from the situation in Example 1. The price commanded by the
continuous model has decreased more than the corresponding price derived using
discontinuous dynamics, without risk adjustments. Thus risk adjustments of the
frequency λQ must now (z0 < 0) mean that λQ < λ. For K = 1 we find a trigger
value cd = .23, while the corresponding one in the standard model is cc = .32,
meaning that exercise tends to come earlier in the continuous model than in the
discontinuous one. �

The results in this example does not seem unreasonable. From these numeri-
cal examples it seems like we have the following picture, at least at the moment:
When the jumps are all positive (and identical) and we do not adjust for risk, the
jump model produces put option values reflecting less risk than the continuous one.
When the jump sizes are all negative (and identical), and we continue to consider
the risk neutral case, the situation is reversed. These conclusions seem natural for
a put option, since price increases in the underlying tend to lower the value of this
insurance product. In Example 1 only upward, sudden price changes are possible
for the underlying asset, whereas the downward movement stemming from the com-
pensated term in the price path is slower and predictable. Thus a put option that
is not adjusted for risk ought to have less value under such dynamics, than in a
situation where only negative, sudden price changes can take place.

In the next section we consider numerical results after risk adjustments of the
jump model. This leads to some interesting, economic results.
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6.4 A calibration exercise.

We now use the two different models of sections 6.1 and 6.2 for the same phenomenon
to infer about equity premiums in equilibrium. In order to do this, we calibrate
the two models, which we propose to do in two steps. First we ensure that the
martingale terms have the same variances in both models, just as in Example 1.
Second, both models ought to yield the same option values. Let us present the
argument for the latter. Recall the accumulated return processes for the two models.
For the continuous standard model it is

Rct = µt+ σBt

and for the geometric Poisson processes it is (α = 1)

Rdt = µt+ z0Ñt.

In both cases E(Rct) = E(Rdt ) = µt and the variances are σ2t and z2
0λt respectively.

Furthermore the quantity Ñt/
√
λt converges in distribution to the standard normal

N (0, 1)-distribution as λt increases, and of course, Bt/
√
t is N (0, 1)-distributed for

any value of t. As a consequence, when we calibrate the variances, these two models
come across as almost identical, at least for large enough values of λt. When a
reasonably large value of λ is multiplied by the average time a typical investor would
choose to hold this option, the normal approximation should be very appropriate
for the Poisson process. Since the Poisson random variable is infinitely divisible,
the normal approximation is particularly adequate. Note that this argument does
not depend upon the size of the jumps parameter z0.

Also consider the solutions to the option valuation problem in these two cases.
The value functions are in both cases given by

ψ(x) =

{
(K − c)

(
c
x

)γ
, if x ≥ c;

(K − x), if x < c,
(38)

where the trigger price c is

c =
γK

γ + 1
. (39)

If investors are convinced that the probability distributions are approximately the
same, they would typically equate the average state prices in the two situations.
These are both being given by (x/c)γ when x ≥ c. Clearly for the same contracts
both the prices (x) of the underlying at initiation of the contract, and the exer-
cise prices (K) are the same, which means that it suffices to equate the two γi
-parameters and the trigger prices ci, i = {c, d}. From the equations (38) and (39)
we see that it is enough to equate the γ-values, and this leads in turn to the same
values for the American put options in these two situations. Consider the following
example:

Example 3. Choose σ = .165 and r = .01. (The significance of these particular
values will be explained below.) Our calibration consists in the following two steps:
(i) First, we match the volatilities. This gives the equation z2

0λ = σ2 = .027225.
We start with z0 = .01, i.e., each jump size is positive and of size one per cent. The
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compensated part of the noise term consists of a negative drift, precisely ”compen-
sating” for the situation that all the jumps are positive. Then means that λ = 272.27
which is a roughly one jump each trading day on the average, where the time unit
is one year.

(ii) Second, we calibrate the average state prices. From the discussion above,
it follows from the equations (38) and (39) that this is equivalent to equating the
values of γ. Thus we find the value of λQ that yields γd as a solution of equation
(33) equal to the value γc resulting from solving the equation (20) for the standard,
continuous model. For the volatility σ = .165, the latter value is γc = .73462. By
trying different values of λQ in equation (33), we find that the equality in prices is
obtained when λQ = 274.73.

Finally, from the equation (28) for the risk adjusted frequency λQ we can solve
for the equity premium ep = (r − µ), which is found to be .0248, or about 2.5 per
cent.

Equivalent to the above is to use the formula for the equity premium ep in
equation (34) directly, using γ = γc in this equation and the above parameters
values of z0, r and λ.

Is this value dependent of our choice for the jump size z0? Let us instead choose
z0 = .1. This choice gives the value of the frequency λ = 2.7225 in step (i), the risk
adjusted frequency λQ = 2.9700 in step (ii) and the value for the equity premium
is consequently (r − µ) = .0248, or about 2.5 per cent again. Choosing the more
extreme value z0 = 1.0, i.e., the upward jump sizes are all 100 per cent of the current
price, gives the values λ = .0272 in step (i), the risk adjusted frequency λQ = .0515
follows from step (ii), and finally the equity premium (r−µ) = .0248, again exactly
the same value for this quantity. �.

In the above example the value of σ = .165 originates from an estimate of the
volatility for the Standard and Poor’s composite stock price index during parts of
the last century. Thus the value of the equity premium around 2.5 per cent has
independent interest in financial and macro economics.

Notice that µ < r in equilibrium. This is a consequence of the fact that we are
analyzing a perpetual put option, which can be thought of as an insurance product.
The equilibrium price of a put is larger than the expected pay-out, because of risk
aversion in the market. For a call option we have just the opposite, i.e., µ > r, but
the perpetual call option is of no use for us here, since its market value equals x,
the initial stock price.

Notice that in the above example we have essentially two free parameters to
choose, namely z0 and λ. The question remains how robust this procedure is re-
garding the choice of these parameters. The example indicates that our method is
rather insensitive to the choice of these two parameters as long as the volatility z2

0λ
stays constant.

Example 4. Set σ = .165 and r = .01, and consider the case when z0 < 0.
Using Theorem 1 to approximate the put price also for negative jumps, first choose
z0 = −.01. i.e., each jump size is negative and of size one per cent all the time.
The compensated part of the noise term will now consist of a positive drift, again
”compensating” for the situation that all the jumps are negative. Now we get
λ = 272.27 in step (i) and the risk adjusted frequency is λQ = 269.78 in step (ii).
This gives for the equity premium (r − µ) = .0247, or again close to 2.5 per cent.
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The value z0 = −.1 gives λ = .0273 in step (i), the risk adjusted frequency
λQ = 2.473 in step (ii) and an estimate for the equity premium is (r − µ) = .0251.
The more extreme value of z0 = −.5, i.e., each jump results in cutting the price in
half, provides us with the values λ = .1089 in step (i), λQ = .0585 in step (ii) and
(r− µ) = .0252 follows. This indicates a form of robustness regarding the choice of
the jump size parameter and frequency. �

Note how well the results of this example match the results in the previous one.
This we take as an indication that the procedure of approximating the value of the
American perpetual put option in Example 3 by the one obtained in Theorem 1, is
fairly accurate, at least for our purposes.

Comparative statics using numerical solutions of the equation for γ show that
when z0 > 0 and increases, the values of γ decreases, so by (23) the put price
increases. When z0 < 0 and decreases to −1, the parameter γ decreases, and conse-
quently the option value increases. When λQ increases, the parameter γ decreases,
and the option price increases.

This can be used to show that when the drift rate µ decreases, the put option gets
more valuable. Similarly, when the equity premium ep increases, the put option gets
more valuable. An increase in the risk premium typically go along with an increase
in the risk aversion in the market, in which case it is natural for for the put price
to increase, since this product can be interpreted as an insurance product.

Notice that this kind of economic reasoning does not apply to the standard
model, which must be considered as a weakness of that model, compared to the
equally simple, pure jump Poisson model.

In turns out that the results of the examples 3 and 4 are robust to the choice
of the parameter values z0 and λ (as long at they produce the same volatility).
We have tried ranges of z0 from z0 = −0.9 to z0 = 100, and the variations in the
corresponding equity premiums are insignificant. When we change r to 0.04, the
corresponding values for the equity premium is about 0.045. The full explanation
behind this really requires a jump version of the Consumption based Capital Asset
Pricing Model (CCAPM), and is pursued elsewhere (see Aase (2005)).

7 A combination of the standard model and a Pois-
son process.

7.1 A complete model.

We now introduce diffusion uncertainty in the pure jump model of the previous
section, and choose the standard Black and Scholes model as before for the diffusion
part. Taking a look at the equation (8) for γ, at first sight this seems like an easy
extension of the last section, including one more term in this equation. But is is
more to it than that. First we should determine the market price of risk. We have
now two sources of uncertainty, and by ”Girsanov type” theorems this would lead
to an equation of the form

σθ1 + αz0λθ2(z0) = µ− r,

where θ1 is the market price of diffusion risk and θ2(z) is the market price of jump
size risk for any z. This constitutes only one equation in two variables, and has
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consequently infinitely many solutions, so this model is not complete. The problem
is that there is too much uncertainty compared to the number of assets. In the
present situation we can overcome this difficulty by introducing one more risky
asset in the model. Hence we assume that the market consists of one riskless asset
as before, and two risky assets with price processes S1 and S2 given by

dS1(t) = S1(t−)[µ1dt+ σ1dB(t) + α1

∫
A

z1Ñ(dt, dz)], (40)

where S1(0) = x1 > 0 and

dS2(t) = S2(t−)[µ2dt+ σ2dB(t) + α2

∫
A

z2Ñ(dt, dz)], (41)

where S2(0) = x2 > 0. Here the set of integration A = (−1/α1,∞) × (−1/α2,∞),
and z = (z1, z2) is two-dimensional. We now choose the following Lévy measure:

ν(dz) = λδz1,0(z1)δz2,0(z2)dz1dz2

meaning that at each time τ of jump, the relative size jump in S1 is z1,0 units
multiplied by α1, and similarly the percentage jump in S2 is z2,0 units times α2.
(One could perhaps say that the jump sizes are independent, but since there is
just one alternative jump size for each ”probability distribution”, we get the above
interpretation.)

These joint jumps take place with frequency λ. These returns have a covariance
rate equal to σ1σ2 from the diffusion part and λα1α2z1,0z2,0 from the jump part, so
the risky assets display a natural correlation structure stemming from both sources
of uncertainty. This gives an appropriate generalization of the model of the previous
section.

In order to determine the market price of risk for this model, we are led to
solving the following two equations:

σ1θ1 + α1

∫
A

z1θ2(z)ν(dz) = µ1 − r,

and
σ2θ1 + α2

∫
A

z2θ2(dz)ν(dz) = µ2 − r.

Using the form of the Lévy mesure indicated above, the market price of jump size
risk θ2(z) = θ2, a constant. The above two functional equations then reduce to the
following set of linear equations

σ1θ1 + λα1z1,0θ2 = µ1 − r,

and
σ2θ1 + λα2z2,0θ2 = µ2 − r,

which leads to the solution

θ1 =
(µ1 − r)α2z2,0 − (µ2 − r)α1z1,0

σ1α2z2,0 − σ2α1z1,0
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for the market price of diffusion risk, and

θ2 =
(µ1 − r)σ2 − (µ2 − r)σ1

λ(σ2α1z1,0 − σ1α2z2,0)
(42)

for the market price of jump size risk. Here (σ2α1z1,0 − σ1α2z2,0σ2) 6= 0, and the
constant θ2 ≤ 1 . This solution is unique, so the model is complete provided the
parameters satisfy the required constraints.

Consider the risk adjusted probability measure Q determined by the pair (θ1, θ2)
via the localized, standard density process for the infinite horizon situation of Sec-
tion 5. If we define ÑQ(dt, dz) := N(dt, dz) − (1 − θ2(z))ν(dz)dt, and BQ(t) :=
θ1t+B(t), then

∫ t
0

∫
A
ÑQ(dt, dz) is a local Q-martingale and BQ is a Q-Brownian

motion. The first risky asset can be written under Q,

dS1(t) = S1(t−)[rdt+ σ1dB
Q(t) + α1

∫
A

z1Ñ
Q(dt, dz)], (43)

and thus S̄1(t) := S1(t)e−rt is a local Q-martingale. A similar result holds for the
second risky asset.

We are now in the position to find the solution to the American put problem.
Consider the option written on the first risky asset. It follows from the above that
the equation for γ can be written

λQ(1 + α1z1,0)−γ = (r − λQα1z1,0)γ −
1
2
σ2

1γ(γ + 1) + λQ + r, (44)

where λQ := λ(1 − θ2), and θ2 is given by the expression in (42). Again we have
dependence from the drift term(s) µ on the risk adjusted probability distribution.
Here both of the parameters of the second risky asset enter into the expression for
the risk adjusted frequency λQ, which means that the market price of jump risk
must be determined in this model from equation (42) in order to price the American
perpetual put option.

In the case when z1,0 > 0 (and α1 > 0), this equation can be seen to have one
positive solution for r > 0. (When r ≤ 0 there is a range of parameter values where
the equation has two positive solutions, then one solution, and finally no solutions.)

Example 5. In order to compare this situation to the two pure models considered
in examples 1 and 2, let us again choose the parameter values such that the variance
rates of all three models are equal, and first we do not risk adjust the pure jump
model, neither do we risk adjust the jump part of the model of this section. This
means that we have set θ1 = 0 and θ2 = 0. This is accomplished, for example, by
choosing α = 1 and λ = .7, σ = .55 and z0 = 1. For r = .06, we get the solution
γd,c = .17 to the equation (44), while the solution to the equation (33) is γd = .20,
and the corresponding solution to the equation (20) is γc = .12. Thus the present
solution lies between the two first numerical cases considered in Example 1.

Considering the situation when z0 < 0, we now calibrate to the situation of
Example 2. When −1 < z1,0 < 0, there is exactly one solution of equation (44)
when r > 0 (and no positive solutions when r ≤ 0). Using the approximation in
Theorem 1, we can choose α = λ = 1 and σ2 +λα2z2

0 = .25, which is accomplished,
for example, by choosing σ2 = .125 and z0 = −.35. This gives the solution γd,c
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to the equation (44) equal to γd,c = .40, while the solution to the equation (33)
is γd = .29, and the corresponding solution to the equation (20) is γc = .48, still
using the same value for the short interest rate. Thus the present solution also lies
between the two pure cases in Example 2. �

As a preliminary conclusion to this example we may be led to consider a com-
bined jump-diffusion model as a compromise between the two pure counterparts.

Turning to calibration, with two risky assets we quickly get many parameters,
and it is not obvious that we can proceed as before. We choose to equate both the
drift rates and the variance rates, but use different characteristics for the latter.
This way the market price of risk parameters will be well defined. According to the
CCAPM for jump-diffusions we may then get different equity premiums, but the
discrepancies may be small if the jump sizes are small, so we shall ignore them here.

Example 6. We choose α1 = α2 = 1, and consider the two equations σ2
c =

σ2
1 + λz2

1,0 = .027225 and σ2
c = σ2

2 + λz2
2,0 = .027225, where we choose σ1 = .01

(σ1 ≤ .165 is the obvious constraint here), and z1,0 = .1, z2,0 = .01. This leads to
λ = 2.7125 and σ2 = .1642. Then we calibrate the solution γc,d to the equation (44)
to the value for the standard continuous model γc = .73462 for the US data, and
find that this corresponds to the risk adjusted frequency λQ = 2.9593. Assuming
that (µ1 − r) ≈ (µ2 − r) := (µ − r), the relationship λQ = λ(1 − θ2) can now be
written, using the expression (42) for the market price of jump risk θ2:

λQ ≈ λ+ (r − µ)

(
σ2 − σ1

σ2α1z1,0 − σ1α2z2,0

)
.

The only unknown quantity in this equation is the equity premium, which leads
to the estimate (r − µ) = .0261 when r = .01. The market price of diffusion risk
θ1 = −.14, and the market price of jump risk is θ2 = −.09.

The same procedure when r = .04 leads to λQ = 3.1658, and the estimate
(r− µ) = .048. Now the market prices of risk are θ1 = −.26 and θ2 = −.17. �

7.2 An exact procedure when the jumps are negative.

Again we attempt to solve the problem by a direct method when jumps can be
negative, using Dynkin’s formula. To this end consider the above jump-diffusion

dSt = St−[µdt+ σdBt +
∫ ∞

−1

zÑ(dt, dz)], (45)

where the Lévy measure ν(dz) = λδ{z0}(z)dz, and µ, σ and z0 ∈ (−1, 0) are all
constants (α = 1). Define the operator A by

Aψ(x) = −rψ(x)+µxψ′(x)+
1
2
σ2x2ψ′′(x)+

∫ ∞

−1

(ψ(x+zx)−ψ(x)−ψ′(x)z0x)ν(dz).

We want to find a constant c ∈ (0,K) and a function ψ on (0,∞) such that ψ ∈
C1(0,∞) (continuously differentiable) and (i) ψ(x) = K − x for 0 < x ≤ c and
(ii) Aψ(x) = 0 for x > c. Let us adjust for risk and set µ = r and interpret the
frequency λ to be under the risk adjusted measure Q. We construct ψ on (c,∞) by
induction:
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Case 1: x ∈ C1 := (c, c/(1+z0)). Then x(1+z0) < c and therefore S jumps from
C1 down to (0, c) if it jumps, where ψ is given by (i). Thus condition (ii) becomes

Aψ(x) = −rψ(x)+ rxψ′(x)+
1
2
σ2x2ψ′′(x)+ [K−x(1+ z0)−ψ(x)−ψ′(x)z0x]λ = 0

for x ∈ C1. This leads to the following second order inhomogeneous ODE

1
2
σ2x2ψ′′(x) + (r − z0λ)xψ′(x)− (r + λ)ψ(x) = λ(1 + z0)x−Kλ. (46)

The general solution solution of (46) in C1 we denote by ψ1(x). It has the following
form

ψ1(x) = C1x
γ1 + C2x

γ2 − x+
Kλ

r + λ
, (47)

where C1 and C2 are arbitrary constants and γ1 < 0 < γ2 are the two solutions of

1
2
σ2γ(γ − 1) + (r − λz0)γ − (λ+ r) = 0. (48)

By continuity of the value function and the assumption that ψ(x) is continuously
differentiable (high contact) we determine the integrating constant C1 and C2 from
the following two equations:

(I) C1c
γ1) + C2c

γ2 − c+
Kλ

λ+ r
= K − c

and
(II) C1γ1c

(γ1−1) + C2γ2c
(γ2−1) = 0.

The solution is
C1 =

Kr

(λ+ r)
γ2

(γ2 − γ1)
c(−γ1). (49)

and
C2 =

Kr

(λ+ r)
γ1

(γ1 − γ2)
c(−γ2). (50)

Case 2: x ∈ C2 := (c/(1 + z0), c/(1 + z0)2). Then x(1 + z0) < c/(1 + z0) and
therefore S jumps from C2 down to C1 if it jumps, where ψ is given by ψ1(·) just
determined. Thus condition (ii) becomes

Aψ(x) = −rψ(x)+µxψ′(x)+
1
2
σ2x2ψ′′(x)+ [ψ1(x(1+ z0))−ψ(x)−ψ′(x)z0x]λ = 0

for x ∈ C2. This leads to the following second order ODE:

1
2
σ2x2ψ′′(x) + (r − z0λ)xψ′(x)− (r + λ)ψ(x) =

λ(1 + z0)x−
Kλ2

r + λ
− λC1((x(1 + z0))γ1 − λC2((x(1 + z0))γ2 . (51)

Then we solve this equation in C2, denote the solution by ψ2(x), and proceed to
C3 = (c/(1 + z0)2, c/(1 + z − 0)3) etc.
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In this situation we have required that the solution satisfies the high contact
condition in x = c, and this led to the determination of the two constants C1 and
C2 from equations (I) and (II) above. However, we still seem to lack a criterion
to determine the trigger price c. One could perhaps conjecture that requiring the
function ψ(x) to be C2 in the point c/(1+z0) would provide the ”missing” equation,
but again this turns out to be void, i.e., ψ′′2 (c/(1 − z0)) = ψ′′1 (c/(1 + z0) is auto-
matically satisfied by the solution provided above. The determination of c must, as
before, be attempted in the other end as x→∞, where ψ(x) → 0. We summarize
as follows:

Theorem 4 The solution of the optimal stopping problem

φ(s, x) = sup
τ≥0

E
(s,x)
Q

{
e−r(s+τ)(K − Sτ )+

}
,

with St given by (45) is, under adjustments for risk, equal to the value of an Amer-
ican perpetual put option, and has the form φ(s, x) = e−rsψ(x) where ψ(x) is given
inductively by the above procedure. In particular we have that

ψ(x) =


K − x, for 0 < x ≤ c;
ψ1(x) for x ∈ C1;
ψ2(x) for x ∈ C2;

where ψ1(x) is given in equation (47), the two constants C1 and C2 are provided in
(49) and (50) respectively, and γ1 < 0 < γ2 are the two solutions of the equation
(48); etc.

8 Different jump sizes.

We now turn to the situation where several different jump sizes can occur in the
price evolution of the underlying asset. Suppose the Lévy measure ν is supported
on n different points a1, a2, · · · , an, where −1 < a1 < a2 < · · · < an < ∞, ai 6= 0
for all i. In our interpretation we may think of the jump size distribution function
F (dz) as having n simple discontinuities at each of the numbers a1, a2, · · · , an with
sizes of the discontinuities equal to p1, p2, · · · , pn, pi being of course the probability
of the jump size ai, i = 1, 2, · · · , n.

A purely mechanical extenison of the model in section 6.2 leads to an incomplete
model, since by proceeding this way we end up with one equation of the type

αλ
n∑
i=1

aiθ(ai)pi = µ− r,

containing n unknown market price of risk parameters θ(a1), θ(a2), · · · , θ(an). In-
stead we consider the following market. A riskless asset exists as before, and n risky
assets exist having price processes S(t) = (S1(t), S2(t), · · · , Sn(t)) given by

dSi(t)
Si(t−)

= µidt+
n∑
j=1

αi,j

∫ ∞

−1/αi,j

zÑj(dt, dz), i = 1, 2, · · · , n. (52)
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Here Nj is a Poisson process, of frequency λj , times aj , independent of Ni for
i 6= j, and Ñj is the corresponding compensated process. If we define the re-
turn rate process Ri of asset i by dRi(t) = dSi(t)

Si(t−) , this means that the jump
distribution of Ri is αi,1a1 with probability p1 := λ1Pn

j=1 λj
, αi,2a2 with probabil-

ity p2 := λ2Pn
j=1 λj

, · · · , αi,nan with probability pn := λnPn
j=1 λj

. The covariance rate

between returns Ri and Rj is given by (
∑n
k=1 αi,kαj,kλka

2
k), which can vary freely

because of the relatively large freedom of choice of the parameters αi,j . Also note
that jumps occur in any of the price processes with frequency λ :=

∑n
i=1 λi.

This model gives us the following n equations to determine the market price of
risk processes θ(z):

n∑
k=1

αi,kλk

∫ ∞

−1/αi,k

zθk(z)δ{ak}(z)dz = µi − r, i = 1, 2, · · · , n. (53)

Since δ{ak}(z) are the Dirac delta distributions at the points {ak}, this system of
equations reduce to the following system of n linear equations in n unknowns

n∑
k=1

αi,kakλkθk = µi − r, i = 1, 2, · · · , n, (54)

where
θi(z) = θi(ai) := θi, a constant for all z. (55)

This system of equations has a unique solution if the associated coefficient de-
terminant is non-vanishing. The solution to the system (54) is

θ = A−1(µ− r) (56)

where θ is the vector of θi’s, A−1 is the inverse of the matrix A with element
ai,j = αi,jλjaj , i, j = 1, 2, · · · , n, and (µ− r) is the vector with i-th element equal
to (µi − r), i = 1, 2, · · · , n. A unique solution exists when det(A) 6= 0, which is
equivalent to det(α̃) 6= 0, where α̃ is the matrix with (i, j)-th element αi,j . As an
illustration, if n = 2 this means that the requirement is (α1,1α2,2 − α2,1α1,2) 6= 0.

We now turn to the density process associated with the change of probability
measure from P to Q. It is given by

ξ(t) := exp
{ n∑
i=1

n∑
j=1

∫ t

0

∫ ∞

−1/αi,j

[ln(1− θj)Nj(ds, dz) + θjλjδ{aj}(z)dzdt]
}
. (57)

This means that the restriction Qt of Q to Ft is given by dQt(ω) = ξ(t)dPt(ω) for
any given time horizon t, where Pt is the restriction of P to Ft, and Eξ(t) = 1 for all
t, then Pt and Qt assign zero probability to the same events in Ft. As before we call
Q the risk adjusted measure for the price system S in the infinite time horizon case.
This means that if we define the processesNQ

i (dt, dz) := Ni(dt, dz)−(1−θi)νi(dz)dt,
i = 1, 2, · · · , n, the processes

∫ t
0

∫∞
−1/αi,j

ÑQ
i (ds, dz) are local Q-martingales for

j = 1, 2. · · · , n, where the risky assets have the following dynamics under Q:

dSi(t)
Si(t−)

= rdt+
n∑
j=1

αi,j

∫ ∞

−1/αi,j

zÑQ
j (dt, dz), i = 1, 2, · · · , n, (58)

25



implying that S̄i(t) := Si(t)e−rt is a zero drift local Q-martingale for all i.
This model is accordingly complete provided θi ≤ 1 for all i = 1, 2, · · · , n, and

pricing e.g., the perpetual American put option written on, say, the first asset, is a
well defined problem with a unique solution. The equation for γ for this option can
be written

−r − rγ +
n∑
j=1

λQj [(1 + α1,jaj)−γ − 1 + α1,jajγ] = 0, (59)

where λQj = λj(1− θj), j = 1, 2, · · · , n. Note that this equation follows from equa-
tion (8) after the appropriate risk adjustments of the various frequecies, if we set
α1,j = α for all j, and Lévy measure ν(dz) = λQF (dz), where the probability distri-
bution function F has discontinuities at the points a1, a2, · · · , an with probabilities
pq1, p

q
2, · · · , pqn, where pqi = λQ

i

λQ and λQ is the frequency of the jumps under the prob-
ability Q (λQ =

∑
i λ

Q
i ). Thus our model captures the general situation, under P ,

with a frequency of jumps equal to λ and a pdf of jump sizes F with support on n
different points. Here is an example:

Example 7. We consider the case of n = 2, where we do not adjust for risk. The
parameters α1,1 = α1,2 = 1, and a1 = −.5, a2 = 1 so that each price jump either
cuts the price in half, or doubles the current price of the underlying asset. We let
λ1 = λ2 = 1 so that the two different jump sizes are equally probable under P , and
the total frequency λ of jumps equals two per time unit.

Fixing r = .06 as before, we get the solution γ2d = .12 to the equation (59). In
order to compare to the standard model and the model with only upward jumps
of the same size (= 1) of Example 1, we find the corresponding γ-values adjusted
so that the various variance rates are equal. They are γc = .10 for σ2 = 5/4 and
γd = .16 for λ = 5/4, α = 1, and z0 = 1 in the jump model. Since γc < γ2d < γd,
the corresponding American perpetual put option prices are ranked ψc > ψ2d > ψd.

In this situation, when both upward and downward sudden jumps are possible
in the price paths of the underlying asset, the corresponding put price is between
the polar cases of only continuous movements or only upward jumps.

Comparing to the situation with only downward jumps of size −.5 of Example
2, this is calibrated to have the same variance by choosing z0 = −.5, λ = 5, α = 1
which gives γd = .06. Thus we get ψd > ψc > ψ2d, so here the situation with two
jumps reflects the ”least risky” situation. �

We notice that also in the situation with several jumps prices of contingent claims
depend on the drift rates µi of the basic risky assets. In addition to requiring a
risk adjustment of the frequencies λi, the probabilities pi of the different jump sizes
must also be risk adjusted under Q. Thus the system (54) of n linear equations in n
unknowns for the market prices of jump risk θi must be solved in order to correctly
price options and other contingent claims in this model.

8.1 Calibration when n = 2

An attempt to calibrate this model to the data from the Standard and Poor’s
composite stock index during the time period 1889-1979 is not likely to succeed,
since only estimates of the short time interest rate and the stock index volatility are
not enough to determine all the parameters in this model. Consider for example the
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case of n = 2. For the model to be complete, we need one risky asset in addition to
the index,

From the solution (56) of the system of equations (54) when n = 2, we get for
the market prices of risk parameters θ1 and θ2 the following two expressions:

θ1 =
α2,2(µ1 − r)− α1,2(µ2 − r)
λ1a1(α1,1α2,2 − α1,2α2,1)

, (60)

and

θ2 =
α2,1(µ1 − r)− α1,1(µ2 − r)
λ2a2(α1,2α2,1 − α1,1α2,2)

. (61)

From the equations λQi = λi(1− θi), i = 1, 2, we find the risk adjusted frequencies,

λQ1 = λ1 +
α2,2(r − µ1)− α1,2(r − µ2)
a1(α1,1α2,2 − α1,2α2,1)

, (62)

and

λQ2 = λ2 +
α2,1(r − µ1)− α1,1(r − µ2)
a2(α1,2α2,1 − α1,1α2,2)

. (63)

We must choose the constants in the matrix α̃ such that the determinant (α1,1α2,2−
α1,2α2,1) 6= 0. Choosing the first risky asset similar to the composite stock index,
its variance rate must satisfy

α2
1,1λ1a

2
1 + α2

1,2λ2a
2
2 = σ2, (64)

where σ2 = 0.027225 as for the index. The variance rate of the second risky asset
is given by

α2
2,1λ1a

2
1 + α2

2,2λ2a
2
2. (65)

In equilibrium there is a connection between the equity premiums and the standard
deviation rate, which we now wish to utilize. By the CCAPM for jump-diffusions
(Aase (2004)), while a linear relationship is almost exact for the model of Section
6, for the present model this is no longer the case. By Schwartz’s inequality this
linear relationship is at the best approximately true when the jump sizes are small
and different in absolute value. Assuming we can use this approximation here, we
get the following:

(µ2 − r) ≈ (µ1 − r)

√
α2

2,1λ1a2
1 + α2

2,2λ2a2
2

α2
1,1λ1a2

1 + α2
1,2λ2a2

2

. (66)

We are now in position to derive an approximate expression for the equity pre-
mium ep = (r−µ1). Using (66) in the expressions (62) and (63), we get λQ1 = λ1+k1e

and λQ2 = λ2 + k2e, where

k1 =
α2,2 − α1,2

√
α2

2,1λ1a2
1+α

2
2,2λ2a2

2

α2
1,1λ1a2

1+α
2
1,2λ2a2

2

a1(α1,1α2,2 − α1,2α2,1)
,
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and

k2 =
α2,1 − α1,1

√
α2

2,1λ1a2
1+α

2
2,2λ2a2

2

α2
1,1λ1a2

1+α
2
1,2λ2a2

2

a2(α1,2α2,1 − α1,1α2,2)
.

Inserting these expressions in the equation (59) for γ when n = 2, we get a linear
equation for ep, which solution is

ep =
[
r(γ + 1) + λ1

(
(1− a1α1,1γ)− (1 + a1α1,1)−γ

)
+ λ2

(
(1− a2α1,2γ)− (1 + a2α1,2)−γ

)]
/
[
k1

(
(1 + a1α1,1)−γ − (1− a1α1,1γ)

)
+ k2

(
(1 + a2α1,2)−γ − (1− a2α1,2γ)

)]
.

(67)

A numerical example is the following.
Example 8. Choosing the parameters α1,1 = α2,2 = α1,2 = 1 and α2,1 = 2,

the absolute value of the determinant |α̃| equals one, so the risk premiums are well
defined. We choose a1 = 0.02 and a2 = −0.01, and p1 = 0.5, and consider first
the case where the short term interest rate r = 0.01. Since p1 = λ1/(λ1 + λ2), we
obtain that λ1 = λ2 = 54.45 from equation (64). From the relation (66) we find
that (r − µ2) = 1.84(r − µ1), and this enables us to compute the market price of
risk parameters θ1 and θ2, and hence the risk adjusted frequencies, which are

λQ1 = 54.45 + 42.16(r − µ1), λQ2 = 54.45− 15.69(r − µ1)

in terms of the equity premium (r − µ1) of the index. By inserting these values in
the equation (59) for γ2d, we can find the value of the risk premium that satisfies
γ2d = γc, where γc is the corresponding solution for the standard model. For r =
0.01 this value is γc = 0.73462. This calibration gives the value (r − µ1) = 0.0226,
or 2.26 per cent equity premium for the composite stock index. The forgoing can
alternatively (and computationally less requiring) be accomplished by using γ = γc
in the expression for e given in (67), together with the other parameter values
indicated.

A similar procedure for the spot rate r = 0.04 calibrates γ2d to γc = 2.93848,
and this gives (r − µ1) = 0.041, or an equity premium of 4.1 per cent for the stock
index. Both these values are reasonably close to the values obtained in Section 6.
�

Our results for the present model indicate that linear relationship implied by
the CCAPM does not hold, so any calibration to the continuous, standard model
becomes less interesting here than for the simpler model in Section 6. This is not
to say that our results in Section 6 are not valuable, or correct, it only means that
the present model is not as well suited to produce these results as the geometric
Poisson.

For the present model one could instead proceed as follows: (a) Observe option
prices in the market. (b) Estimate the parameters of the index from historical
observations. From this one could find a market estimate of γ. Then the correct
version of the CCAPM should be used to improve the approximation (66), and
finally use the corresponding expression to (67) to compute ep. This procedure
would presumably need some consumption data when using the CCAPM.
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9 A combination of the standard model and the
jump model with different jump sizes.

By introducing also diffusion uncertainty in the model of the previous section, there
will be ”too much uncertainty” compared to the number of assets, but again we may
use the method of Section 8 to enlarge the space of jumps and add one risky asset.
This will lead to a complete model, and our valuation problem again becomes well
defined. The equation for γ is now

−r − rγ +
1
2
σ2

1γ(γ + 1) +
n∑
j=1

λQj [(1 + α1,jaj)−γ − 1 + α1,jajγ] = 0, (68)

where σ1 is the volatility parameter of the continuous part of the first risky asset.
Example 9. We compare the combined model of this section, not adjusted for

jump risk, with the purely discontinuous model of the previous section, also not risk
adjusted, and the standard, continuous model. Using the same parameter values
as in the first part of Example 7, we again obtain γ2d = .12, and γc = .10 from
the standard model having the same variance rate. Choosing α1,1 = α1,2 = .9 and
σ2 = .2375, the combined model of this section has the same variance as the other
two models. This gives the solution to equation (68) equal to γ2d,c = .11. Thus
γc < γ2d,c < γ2d, or ψ2d > ψ2d,c > ψc so that the combined model fits in between
the two pure models, as we also saw in Example 5. �

10 The model with a continuous jump size distri-
bution.

We round off this paper by considering the situation with a continuous distribution
for the jump sizes in the jump part of the model. In this case the model is incomplete
as long as there is a finite number of assets, since there is ”too much uncertainty”
compared to the number of assets.

The case with countably many jump sizes in the underlying asset could be
approached along the lines of Section 8, by introducing more and more risky assets.
In order for the market prices of risk θ1, θ2, · · · to be well defined, presumably only
mild additional technical conditions need to be imposed. One line of attack is to
weakly approximate any such distribution by a sequence of discrete distributions
with finite supports. This would require more and more assets, and in the limit,
an infinite number of primitive securities in order for the model to possibly be
complete.

Here we will not elaborate further on this, but only make the assumption that
the pricing rule is linear, which would be the case in a frictionless economy where
it is possible to take any short or long position. This will ensure that there is some
probability distribution and frequency for the jumps giving the appropriate value
for γ, corresponding to a value for the perpetual American put option.

Below we limit ourselves to a discussion of the prices obtained this way for two
particular choices of the jump distribution, where the risk adjustment is carried out
mainly through the frequency of jumps.

29



The model is the same as in Section 2 with one risky security S and one locally
riskless asset β. The risky asset has price process S satisfying

dSt = St−[µdt+ α

∫ ∞

−1/α

zÑ(dt, dz)], (69)

where the density process of S is given by

ξ(t) = exp{
∫ t

0

∫ ∞

−1/α

ln(1− θ(z))N(ds, dz) +
∫ t

0

∫ ∞

−1/α

θ(z)λF (dz)ds}, (70)

Here θ(z) is the market price of risk process and F (dz) is the distribution function
of the jump sizes, assumed absolutely continuous with a probability density f(z).
According to our results in Section 5, if the market price of risk satisfies the following
equation ∫ ∞

−1/α

zθ(z)f(z)dz =
µ− r

λα
, (71)

then the risk adjusted compensated jump process can be written

ÑQ(dt, dz) = N(dt, dz)− (1− θ(z))λf(z)dzdt. (72)

This means that the term

λQfQ(z) := λ(1− θ(z))f(z) (73)

determines the product of the risk adjusted frequency λQ and the risk adjusted
density fQ(z), when θ satisfies equation (71). If the market price of risk θ is a
constant, there is no risk adjustment of the density f(z). The densities f(z) and
fQ(z) are mutually absolutely continuous with respect to each other, which means
in particular that the domains where they are both positive must coincide.

Clearly the equation (71) has many solutions θ, so the model is incomplete.
In solving the American perpetual put problem for this model, it follows from

our previous results that the equation for γ is given by

−r − rγ +
∫ ∞

−1/α

{(1 + αz)−γ − 1 + αγz}λQfQ(dz) = 0, (74)

where we have carried out the relevant risk adjustments.
As before, the corresponding solution in Theorem 1 is only an approximation

when jumps can be negative. The problem arises if exercise can happen at a time
of jump of the underlying price process S. For a given stock price St = x and
jump size z, we are asking what is the probability that x(1 + αz) < c. In this case
the term ψ(x + αxz) in equation (10) should be replaced by the linear function
(K − (x+ αxz)). This probability is∫ ( c

αx−
1
α )

(− 1
α )

f(z) dz

which is seen to become small as x increases. Thus we conjecture that the error
committed can not be large if we approximate the linear function by the curve ψ
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in this situation, which is what Theorem 1 does. Below we consider two situations
where the jumps can be both negative and positive, but still we use Theorem 1, so
one may interpret our results as approximations, and relatively more accurate the
larger the values of x.

We now turn to the illustrations by considering two special cases for the jump
density f(z).

10.1 The truncated normal case

Here we analyze normally distributed returns. In our model formulation, where we
have chosen the stochastic exponential, we observe from the expression (2) for S
that we can not allow jump sizes less than −1/α, so the domain of F is the interval
[−1/α,∞). In this case we choose to consider a truncated normal distribution at
−1/α. By and large we restrict our attention to risk adjustments associated with
a constant θ only. In the present case the most straightforward risk adjustments of
the normal density f(z) having mean m and standard deviation s would be another
normal density having mean mQ and standard deviation sQ, with a similar adjust-
ment for the truncated normal distribution. Here we only notice that a joint risk
adjustment of the jump distribution f to another truncated normal with parameters
mQ and sQ, and of the frequency λ to λQ, means that the equity premium can be
written

ep = α
(
λQEQ{Z|mQ, SQ} − λE{Z|m, s}

)
, (75)

where the expectations are taken of the truncated normal random variable Z with
respect to the parameters indicated. The above formula then follows from (71) and
(73). Notice that α does not change under the measure Q, since the supports of f
and fQ must coincide.

The exponential pricing model with normal jump sizes was considered by Mer-
ton (1976). In that case the probability density of the pricing model St is known
explicitly. In contrast to Merton, who assumed that the jump size risk was not
priced, or, he did not adjust for this type of risk, we will risk adjust precisely the
jump risk, and our model is the stochastic exponential, not the exponential as he
used.

Below we have calibrated this model to the standard continuous one using the
same technique as outlined earlier. Since the equity premium is not proportional to
the volatility of S in this model, we can not expect to confirm the simple results of
Section 7. For Z a random variable with a truncated normal distribution at −1/α,
we first solve the equation λα2E(Z2) = σ2

c = .027225, or

λα2

∫∞
−1/α

z2 1√
2πs

e−
1
2

(
z−m

s

)2
dz∫∞

−1/α
1√
2πs

e−
1
2

(
z−m

s

)2
dz

= σ2
c

for various values ofm and s, and find the frequency λ. Then we solve equation (74),
using the relevant values for r and γ = γc(r), to find the risk adjusted frequency λQ,
and finally we use equation (71) to find the equity premium ep = (r−µ), assuming
θ is a constant, so that λQ = λ(1 − θ) and f = fQ. Some results are summarized
in tables 1 and 2.
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α 1 1 1 .01 .8 3
(m, s) (.1, .1) (.4, .7) (.4, 2.0) (10, 10) (.01, .01) (.01, .01)
λ 1.36 .042 0.0065 1.36 212.70 15.13
λQ 1.60 .079 .019 1.60 215.78 15.94
ep 0.024 0.026 0.025 0.024 0.025 0.024

Table 1: The equity premium ep when r = 0.01 and γ = 0.73462, for various values
of the parameters. The jumps are truncated normally distributed.

By decreasing the parameter α we notice from the above equation that this has
the effect of increasing the frequency of jumps λ. Alternatively this can be achieved
by decreasing the values of m and s, as can be observed in Table 15, where the spot
rate is equal to 4 per cent. A decrease in the standard deviation s, within certain
limits, moves the present model closer to the one of Section 7.

α 1 1 1 .9 2 10
(m, s) (.1, .1) (-.01, .01) (1.0, 0.1) (.01, .01) (.011, .01) (.01, .01)
λ 1.36 136.13 0.027 136.06 30.80 1.36
λQ 1.79 131.62 .076 173.01 32.91 1.79
ep 0.043 0.045 0.049 0.045 0.046 0.043

Table 2: The equity premium ep when r = 0.04 and γ = 2.93848, for various values
of the parameters. The jumps are truncated normally distributed.

10.2 Exponential tails

In this model the distribution of the jump sizes is an asymmetric exponential with
density of the form

f(z) = pae−a|z|I[−∞,0](z)/(1− e−a/α) + (1− p)be−bzI[0,∞](z)

with a > 0 and b > 0 governing the decay of the tails for the distribution of
negative and positive jump sizes and p ∈ [0, 1] representing the probability of a
negative jump. Here IA(z) is the indicator function of the set A. The probability
distribution of returns in this model has semi-heavy (exponential) tails. Notice
that we have truncated the left tail at −1/α. The exponential pricing version of
this model, without truncation, has been considered by Kou (2002).

Below we calibrate this model along the lines of the previous section. Also
here we restrict attention to risk adjusting the frequency only. We then have the
following expression for the equity premium:

ep = α(λQ − λ)
(
p
( e−a/α

α(1− e−a/α)
− 1
a

)
+ (1− p)

1
b

)
, (76)

where the frequency is risk adjusted, but not f . A formula similar to (75) can
be obtained if also the density f is to be adjusted for risk. The simplest way
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to accomplish this here is to consider another probability density fQ of the same
type as the above f with strictly positive parameters pQ, aQ and bQ. This would
constitute an absolutely continuous change of probability density, but there are of
course very many other possible changes that are allowed. In finding the expression
(76) we have first solved the equation (71) with a constant θ, and then substituted
for the market price of risk using the equation λQ = λ(1− θ).

Proceeding as in the truncated normal case, we first solve the equation λα2E(Z2)
= σ2

c = 0.027225, which can be written

λα2

(
p
(
1− e−a/α

)−1( 2
a2
− e−a/α(

1
α2

+
2
aα

+
2
a2

)
)

+ (1− p)
( 2
b2
))

= σ2
c . (77)

Then we determine reasonable parameters through the equation αE(Z) = Re for
various values of Re. This equation can be written:

Re := α

(
p

(
e−a/α

α(1− e−a/α)
− 1
a

)
+ (1− p)

1
b

)
. (78)

In order to arrive at reasonable values for the various parameters, we solve the two
equations (77) and (78) in a and b for various values of the parameters α, p and R,
where we have fixed the value of λ = 250. Then for the spot rates r = 0.01 and
r = 0.04 with corresponding values of γ = γc(r) respectively, we solve the equation
(74) to find the value of λQ. Finally we compute the value of the equity premium
from the formula (76). Some results are the following:

(α, p) (1, .45) (1, .55) (1, .60) (.01, .40) (.01, .45) (.01, .60)
Re .004 -.004 -.004 .0045 .004 .0035
a 350.23 104.07 110.34 3.76 3.50 5.54
b 140.07 350.23 278.21 1.08 1.04 .87
λQ 255.92 243.92 244.55 255.85 252.71 257.41
ep 0.024 0.024 0.022 0.026 0.024 0.026

Table 3: The equity premium ep when r = 0.01 and γ = .73462, for various values of
the parameters, where λ = 250. The jumps are truncated, asymmetric exponentials.

(α, p) (1, .40) (1, .45) (1, .60) (.01, .40) (.01, .45) (.01, .60)
Re - .0035 -.0035 -.0035 .0045 .004 .0035
a 87.29 93.62 113.58 3.76 3.50 5.54
b 554.30 420.88 224.41 1.08 1.04 .87
λQ 236.24 237.53 241.29 260.54 260.67 263.38
ep 0.048 0.044 0.048 0.047 0.043 0.047

Table 4: The equity premium ep when r = 0.04 and γ = 2.93848, for various
values of the parameters, where λ = 250. The jumps are truncated, asymmetric
exponentials.

Since the equity premium is not proportional to the volatility of S in this model,
we can not expect to obtain the simple and unique results of Section 6. As in the
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case of several jumps in Section 8 and the truncated normal case of the previous
section, we typically get a wide variety of equity premiums for a given standard
deviation of the price process, as the parameters vary. There is simply too much
freedom in these models to obtain the unique results of Section 6. The volatility of
the stock is not a ”sufficient statistic” for its risk premium in these models.

The tables 1-4 identify parameters that are consistent of the simple results ob-
tained in Section 6, and are not meant to be representative of the variation one may
obtain for ep. Obviously there is a large amount of parameter values that satisfy
this. These tables primarily illustrate numerical solutions of the basic equation (8)
for γ, and how the calibration procedure works to infer about ep in more complex
models.

Notice that, as for the simple case of the geometric Poisson process, the proba-
bility distribution of returns under any risk adjusted probability measure Q depends
on the equity premium here as well, as we have demonstrated in this section. This
means that once we have estimated the various process parameters from, say, time
series data, and observed option prices in the market, we may find implied equity
premiums in much the same manner as implied volatility is found in various option
pricing models. This method does not require a comparison to the standard model.

11 Conclusions

In this paper we have solve an optimal stopping problem with an infinite time
horizon, when the state variable follows a jump-diffusion. Under certain conditions,
explained in the paper, our solution can be interpreted as the price of an American
perpetual put option, when the underlying asset follows this type of process.

We present several examples demonstrating when the solution can be interpreted
as a perpetual put price. This takes us into a study of how to risk adjust jump-
diffusions. One key observation is that the probability distribution under the risk
adjusted measure depends on the equity premium, which is not the case for the
standard, continuous version. This difference may be utilized to find intertemporal,
equilibrium equity premiums, for example.

We applied this technique to the US equity data of the last century, and found
an indication that the risk premium on equity was about two and a half per cent if
the risk free short rate was around one per cent. On the other hand, if the latter
rate was about four per cent, we similarly find that this corresponds to an equity
premium of around four and a half per cent.

Our basic solution is exact only when jump sizes can not be negative. We
investigate when our solution is an approximation also for negative jumps.

The advantage with our approach is that we needed only equity data and option
pricing theory, no consumption data was necessary to arrive at these conclusions.

Various market models were studied at an increasing level of complexity, ending
with the incomplete model in the last part of the paper. In these models the equity
premiums are no longer proportional to the volatility of the assets. An econometric
investigation, where option prices are observed in the market, would enable us
to find implied equity premiums also for these more complex models, since the
probability distribution under the risk adjusted measure still depends on the equity
premium.

34



References

[1] Aase, K. K. (2005). ”Using option pricing theory to infer about historical eq-
uity premiums.” Working Paper, Anderson Graduate School of Management,
UCLA.

[2] Aase, K. K. (2004). ”Jump Dynamics: The Equity Premium and the Risk-Free
Rate Puzzles.” Discussion Paper No. 12, Norwegian School of Economics and
Business Administration.

[3] Aase, K. K. (2002). ”Equilibrium pricing in the presence of cumulative divi-
dends following a diffusion.” Mathematical Finance 12(3) 173-198.

[4] Aase, K. K. (1999). ”An Equilibrium Model of Catastrophe Insurance Futures
and Spreads.” The Geneva Papers on Risk and Insurance Theory 24, 69-96.

[5] Aase, K. K., B. Øksendal, and J. Ubøe (2001). ”Using the Donsker Delta
Function to compute Hedging Strategies.” Potential Analysis 14, 351-374.

[6] Aase, K. K., B. Øksendal, J. Ubøe, and N. Privault (2000). ”White noise
generalizations of the Clark-Haussmann-Ocone Theorem with applications to
Mathematical Finance. ” Finance and Stochastics 4, 4, 465-496.

[7] Bick, A. (1987). ”On the Consistency of the Black-Scholes Model with a General
Equilibrium Framework.” J. Financial Quant. Anal. 33, 259-275.

[8] Boyarchenko, S. I. and and Levendorskǐi, S. Z. (2002). Non-Gaussian Merton-
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