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Abstract

Numerical explorations in MHD phenomena with connections to the solar, geo,

and lunar dynamos

by

Jacob B. Noone Wade

Many celestial bodies possess magnetic fields generated somehow by dynamo

action within the interior of the object. These magnetic fields can be dynamically

significant. For example, sunspots in magnetically-active regions of the sun are re-

lated to the flares and coronal mass ejections which create the space weather that

influences life on Earth. Furthermore, the earthly protection from such events is

created by the Earth’s interior geodynamo. Understanding such dynamics is in

general a complex highly nonlinear problem and we frequently turn to numerical

simulations. However, for many of these circumstances, even modern supercom-

puters lack the power to model the extreme parameter regimes of the true objects.

For that reason, we often resort to simpler simulations as experimental laborato-

ries to explore ideas that might be relevant. In this thesis, we adopt this approach

and use direct numerical simulations to study some unusual ideas on aspects of

MHD phenomena relating to the solar, geo, and lunar dynamos.

The first of these novel studies examines the operation of essentially nonlinear

dynamos (ENDs), where nonlinear effects are dominant from the start (as opposed

to becoming important after a linear epoch). Here the model design is inspired

by the solar tachocline where there is a strong toroidal shear, but this END study

has additional relevance to the subcritical nature of the geodynamo. In a second

study, we employ another novel theory, that of stoked nondynamos to provide an

alternative scenario for some unexplained observations of the lunar magnetic field.

xv



Here, we examine a non-closed system that combines a lunar core dynamo with a

surrounding nondynamo basal magma ocean as a plausible mechanism to explain

unexpectedly high paleointensities found in lunar surface rocks. In the final study

of this thesis, we return to the Sun to investigate the origin of the solar hemispheric

helicity rules (SHHR) via three dimensional simulations of twisted magnetic flux

tubes in the presence of rotating convection. This study examines the efficacy

of a highly-simplified theoretical mechanism, the Σ-effect, via fully resolved three

dimensional MHD simulations.
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Chapter 1

Introduction

Magnetic fields are present all over the universe at many different scales, from

galaxies and stars to many of the celestial bodies in our solar system (Weiss, 1971).

The observed magnetic fields tend to be dynamic, exhibiting complex features and

patterns. For example, the complex features and patterns of the sun’s magnetic

field can be observed in active regions of the solar photosphere. Active regions are

strongly magnetized areas where sunspots, solar flares, and other violent magnetic

eruptions originate. The features of sunspots and magnetic fields of active regions

exhibit spatially and temporally predictable patterns. Some of the most notable

observations of sunspots can be made by simply counting the number of sunspots

at a given time and noting the locations of their emergence. The first of these

observations reveals that the total number of sunspots varies on an eleven-year

cycle (Schwabe, 1843), known as the solar cycle. The second finds that the location

of emergence varies latitudinally (Carrington, 1858). At the beginning of a solar

cycle, sunspots tend to appear around mid-latitudes and gradually emerge closer

to the equator as the cycle progresses.

Further patterns appear when measuring the magnetic fields present in active

regions. Firstly, active regions tend to appear in latitudinally oriented bipolar

1



pairs of positive (outward) and negative (inward) magnetic fields (Hale et al.,

1919). In a given solar cycle, the polarity of these pairs in the Northern hemi-

sphere will be opposite those in the Southern hemisphere. For instance, consider

solar cycle “n,” if the leading polarity of active regions is inward and the trailing

polarity is outward (with respect to the rotation axis of the sun) in the Northern

hemisphere, the Southern hemisphere active regions will lead with outward polar-

ity and trail with inward polarity. Then in the next cycle “n + 1,” the polarity

orientations will swap between hemispheres. This hemispheric polarity preference

is referred to as Hale’s law. It is important to note that the active region pairs

are not perfectly aligned latitudinally, but they are “tilted” such that the leading

region is closer to the equator than the trailing one. Joy’s law states that the

degree to which pairs are tilted increases with latitude (Hale et al., 1919). An-

other interesting observation of solar magnetism is that during each solar cycle,

the sun’s large-scale dipole field undergoes a polarity reversal (Babcock, 1961).

The Earth also has a strong magnetic field and paleomagnetic records of rocks

on Earth show that the overall polarity of Earth’s magnetic field undergoes po-

larity reversals (Roberts & Glatzmaier, 2000). However, the polarity reversals of

Earth’s magnetic field happen more chaotically and on much longer timescales

than those at the sun. The average time between polarity reversals of the earth’s

magnetic field is about 200,000 years while the current polarity has remained for

roughly 780,000 years (Singer et al., 2019). This prolonged and more chaotic

sequence of polarity reversals of the earth’s magnetic field is likely due to how

rotationally constrained the earth is.

Other magnetic fields observed in the solar system are quite diverse (Levy,

1994). Jupiter and Saturn have very strong magnetic fields, while Mercury has a

very weak magnetic field. Most of the observed magnetic fields in the solar system
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have dipole axes aligned with the rotation axis of the object, but the magnetic axes

of Uranus and Neptune are tilted significantly. Even the Moon had a very strong

magnetic field at its surface in the past, as observed in paleomagnetic records of

crustal rocks from the lunar surface, but the generation mechanism has since died

out (Garrick-Bethell et al., 2009).

In addition to the bodies in our solar system, many stars are observed to

have magnetic fields of varying strengths and topology. These magnetic fields are

thought to play a role in nearly all evolutionary stages of a star’s life (Donati &

Landstreet, 2009). The existence of diverse and complex magnetic fields through-

out the universe suggests that some underlying dynamo process must continually

regenerate the magnetic field.

Dynamo theory describes processes by which electrically conducting fluids can

generate and maintain magnetic fields against dissipative effects by transferring

kinetic energy to magnetic energy (see, e.g. Roberts & Soward (1992); Moffatt

& Dormy (2019)). The evolution of magnetic fields in an electrically conducting

fluid can be modeled by the equations of magnetohydrodynamics (MHD). For an

adiabatic and inviscid fluid, the MHD equations are:

∂ρ

∂t
+ ∇ · (ρU) = 0, (1.1)

d

dt

(
P

ργ

)
= 0, (1.2)

ρ

(
∂U

∂t
+ (U · ∇)U

)
= −∇P + 1

µ0
(∇ × B) × B, (1.3)

∂B

∂t
= ∇ × (U × B) + η

µ0
∇2B, (1.4)

3



where ρ is the fluid density, U is the velocity field, P is the pressure, B is the

magnetic field, γ is the adiabatic index, η is the constant magnetic diffusivity, and

µ0 is the magnetic permeability of free space. In particular, dynamo theory tends

to focus on the induction equation (eq. (1.4)). The second term on the right hand

side (RHS) of eq. (1.4) describes the diffusion of the magnetic field while the first

term on the RHS describes the advection, or ‘stirring’ of the magnetic field by the

velocity field.

In the absence of fluid motions (U = 0), eq. (1.4) reduces to a diffusion equa-

tion describing the decay of magnetic field. However, for certain velocity fields

the magnetic field may be amplified and maintained against diffusion. This is,

in general, the problem dynamo theory seeks to address: given an infinitesimal

magnetic field, what types of velocity fields can counteract the diffusive decay

and create a growing magnetic field? This problem is traditionally studied from a

kinematic viewpoint, inserting a prescribed velocity field into the induction equa-

tion (Roberts, 1972). To be able to prescribe the velocity field in the induction

equation simply, one must assume that the Lorentz force in the momentum equa-

tion is negligible (the second term on the RHS of eq. (1.3)), i.e. that there is no

feedback of the magnetic field on the flow. In this case then, one can assume that

some forcing function can be found that maintains whatever prescribed velocity

field is desired to be prescribed. One can dispense with solving the momentum

equation altogether. With this approach, eq. (1.4) is linear in B, and any velocity

fields that produce exponentially growing magnetic fields are said to be kinematic

dynamos.

Dynamos have been mainly studied by adopting this kinematic framework

in mean field electrodynamics (MFE) (Steenbeck et al. (1966); Moffatt (1970);

Roberts (1972); Hughes et al. (2010); Rincon (2019)) to study the evolution of
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large-scale averaged magnetic fields, which are usually the components of the field

that are most observable and therefore of most interest. Assuming that the mag-

netic and velocity fields can be separated by an appropriate averaging into large-

scale mean portions with characteristic length scale L and small-scale fluctuating

portions with characteristic length scale l ≪ L, the fields are then decomposed

into B = ⟨B⟩ + b and U = ⟨U⟩ + u, where ⟨·⟩ represents an average over length

scales larger than l but smaller than L, and b,u are small-scale fluctuations of

the magnetic and velocity fields, respectively. Plugging these into eq. (1.4) and

taking the average ⟨·⟩ results in an evolution equation for the large-scale mean

magnetic field,

∂⟨B⟩
∂t

= ∇ × (⟨U⟩ × ⟨B⟩) + ∇ × E + η∇2⟨B⟩, (1.5)

where E = ⟨u× b⟩ is the average electromotive force (EMF). The EMF acts as a

source for the large-scale field from the small-scale fluctuations.

To solve eq. (1.5) in isolation, we need to close the system by writing the EMF

in terms of ⟨B⟩. An evolution equation for the small-scale fluctuating magnetic

component can be obtained by subtracting eq. (1.5) from the original equation,

∂b

∂t
= ∇ × (⟨U⟩ × b) + ∇ × (u × ⟨B⟩) + ∇ × G + η∇2b, (1.6)

where G = u × b − ⟨u × b⟩. If we assume that the large scale field is the major

source for the fluctuations (a dubious assumption at high degrees of turbulence),

then you can ignore the G term and the relationship between b and B, and

therefore the EMF and B are linear and homogeneous. Notice eq. (1.6) is linear

in b with ∇× (u×⟨B⟩) as a source term. We can then expand the EMF in terms

of ⟨B⟩ as E = αij⟨B⟩j +βijk∂k⟨B⟩j + · · · where the coefficients αij, βijk depend on
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the statistics of the small-scale fluctuations u. If we assume isotropic turbulence

then the coefficients take the form αij = αδij, βijk = βϵijk. Substituting these into

eq. (1.5) results in,

∂⟨B⟩
∂t

= ∇ × (⟨U⟩ × ⟨B⟩) + α∇ × ⟨B⟩ + (η + β)∇2⟨B⟩, (1.7)

where β is a contribution to diffusion from turbulent motions. The term α∇×⟨B⟩

is known as the α-effect (Steenbeck et al., 1966). This term is significant because

it drives a current parallel to the mean magnetic field, whereas in eq. (1.4) the

advective term drives a current perpendicular to the magnetic field. Current

perpendicular to the magnetic field can only strengthen (or weaken) the existing

field, yet current parallel to the magnetic field can amplify and generate new

components of the field.

The solar dynamo has been extensively studied using these MFE ideas by

considering the large-scale features of the observed solar magnetic and velocity

fields (see, e.g. Tobias (2002)). First, the sun rotates differentially in latitude,

with the equator rotating faster than at the poles. If we consider a large-scale

poloidal magnetic field on the sun, with any differential rotation the first term on

the RHS of eq. (1.5) can act to stretch the large-scale poloidal field into a strong

toroidal field by the differential rotation. This process is known as the ω-effect. It

is then the role of the α-effect term to convert this strong toroidal field back into

poloidal field, regenerating the large-scale poloidal field to complete a dynamo

feedback loop. The physical processes behind the α-effect are thought to be due

to the helical properties of rotating turbulence acting on a magnetically buoyant

toroidal field, although at exactly what scale this might happen is unclear. Mean

field models have been successful in reproducing some large-scale features of the

solar magnetic field (see, e.g. Charbonneau (2014)), but selecting values for the
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coefficients such as α are often done in an ad hoc manner by merely checking to

see if they produce desired results. This approach provides little insight into the

underlying physics and begs the question of whether or not the chosen values can

be justified for natural dynamo systems (Hughes et al., 2010).

The only way to explicitly calculate values for the coefficients α and β is to

determine the EMF, E = ⟨u × b⟩, but to deduce b one needs to solve eq. (1.6),

and to find u one needs to solve the entire nonlinear MHD system. At this point,

one knows whether the system is a dynamo, and determining α and β only helps

clarify the mechanisms. So, instead of explicitly calculating the parameters from

eq. (1.6), one can run numerical simulations to determine its value. An example

of this type of method was studied by Courvoisier et al. (2006) (CHT), where

they solved the kinematic induction equation with an applied large-scale mean

magnetic field to calculate the EMF. Using a well-known small-scale velocity field

CHT was able to calculate α and found that its value is very sensitive to the

parameters of the system. Importantly, they found that the α-effect can in no

way be related to the helicity of the flow, even though this is what is expected

from MFT.

The kinematic framework only requires solution of eq. (1.4), but modeling nat-

ural dynamo systems will likely require knowledge of the fully nonlinear coupled

MHD equations. Notably, the momentum equation describes the evolution of ve-

locities and contains the Lorentz force ((∇ × B) × B), which accounts for the

back reaction of magnetic fields on the velocity. From the kinematic perspective,

if the prescribed velocity produces an exponentially growing magnetic field, the

role of the inherent nonlinearity of the full MHD system is to saturate the growth

of the magnetic field by quenching the velocity through the Lorentz force. This

process is essentially kinematic (Tobias et al., 2011) and raises the question of
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whether or not this is the only role nonlinearity can play in the full MHD system.

In this dissertation, we are interested in novel ideas in dynamo theory and

some relationships and applications to naturally occurring systems. In the first

study of this dissertation, we investigate an alternative to the essentially kinematic

role of nonlinearity in dynamo systems. If a finite magnitude magnetic field exists

initially, then it can feedback on the velocity field from the onset, and then the

system will be essentially nonlinear (Tobias et al., 2011), that is, the role of

nonlinearity will not only be to saturate the growth of the magnetic field but to

drive the growth in the first place. In Chapter 2, we revisit a simple canonical

example of an END proposed by Cline et al. (2003b). We clarify the mechanisms

at work in that model, revealing further complications in the definitions of ENDs.

In a second study of this dissertation, we explore another novel way of thinking

about dynamos by considering non-closed systems. Dynamos are mainly studied

in systems isolated from external sources and the source of magnetic field gen-

eration can only be due to forces specifically contained within the domain. The

theory of stoked nondynamos is concerned with non-closed systems which allow

external sources of magnetic fields to influence the system and can often cause

nondynamo systems to exhibit dynamo characteristics (Byington et al., 2014). We

demonstrate the relevance of these ideas to natural systems in an application to

the extinct lunar dynamo. Specifically, we study spherical shell convection with

an imposed dipole boundary condition as a crude model for a lunar core dynamo

stoking a BMO non-dynamo region. Here we explore the possibility of reconciling

lunar surface paleointensity observations by extending the source of a relatively

strong field further out in radius in the lunar interior.

In the final study of this dissertation, we explore a specific element of the

magnetic fields observed in active regions of the solar photosphere. Detailed ob-
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servations of the topological properties of active region magnetic fields have been

studied by observing proxy measures for the current helicity, Hc = B · (∇ × B),

which describes the writhe of magnetic field concentrations and the twist of mag-

netic field lines. It has been found that 60%−80% of active regions in the northern

and southern hemispheres have a definite sign of twist, negative in the northern

hemisphere and positive in the southern hemisphere (Pevtsov et al., 1995). This

hemispheric bias is called the solar hemispheric helicity rules (SHHR). Many the-

ories of the origin of the SHHR abound, but perhaps the current most prominent

explanation is given by (Longcope et al., 1998). Their “Σ-effect,” describes a

mean-field model in which an untwisted thin flux tube in the presence of helical

turbulence can obtain the required handedness from a transfer of kinetic helicity

to magnetic helicity. We investigate the simply modeled ideas of the Σ-effect in a

more realistic context, involving fully 3D numerical simulations of a finite-sized,

twisted flux tube rising from a radiative zone through fully resolved 3D turbulent

convection. We seek to identify the process underpinning the Σ-effect in these

simulations by examining the evolution of the twist of the magnetic field lines in

our simulated finite-size flux tube.
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Chapter 2

Essentially Nonlinear Dynamos

2.1 Background

For the solar dynamo, the practical origin of the theoretical ω-effect is straight-

forward. Any strong radial or latitudinal shear can wind up weak poloidal field to

give rise to strong toroidal field. The solar tachocline is an outstanding candidate

for this, as it is a region of strong radial shear within the solar interior where a

radiative zone abruptly transitions to a differentially rotating convection zone at

about 70% of the solar radius. The origin of the α-effect is not so obvious. The α-

effect requires some helical motion, but the origin of this and the scale at which it

acts is still debatable. Parker’s original theory (Parker, 1955) requires rotationally-

influenced small-scale turbulence, whereas the Babcock-Leighton ideas ((Babcock,

1961); (Leighton, 1969)) assume rotation acts on large-scale magnetic structures

(active regions) to writhe such structures (Joy’s Law) and the breakdown of these

provides the poloidal component.

An understanding of the emergence of large-scale magnetic structures is cen-

tral to understanding all aspects of the solar dynamo, since these provide our

greatest observational insights. Since Parker introduced the concept of such rise
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by magnetic buoyancy (Parker, 1955), many papers have examined the magnetic

buoyant rise of concentrated magnetic structures under various assumptions, but

specifically always assuming the initial existence of a structure and not examin-

ing its origin ((Caligari et al., 1995), (Emonet & Moreno-Insertis, 1998)). Cline

et al. (2003a) (hereafter CBCa) examined the specific case where the structure is

formed out of a diffuse background magnetic field by the action of localized shear.

Using numerical simulations CBCa investigated a mechanism for producing

a series of rising magnetic structures. In the CBCa model, a steadily forced

sinusoidal shear flow stretches a weak poloidal background magnetic field to create

a strong toroidal field that is magnetically buoyant. The system can produce a

series of buoyant magnetic structures at regular intervals that are expelled from the

shearing region. They found that the forced velocity shear can become modified

by the buoyant magnetic structures and can experience a shear-buoyant (or shear-

steepening) instability which leads to 3D Kelvin-Helmholtz (KH) instability that

can twist the magnetic structures into a helical shape. Spurred on by the discovery

of these instabilities, Cline et al envisaged the prospects of using this as an actual

dynamo process.

In Cline et al. (2003b) (hereafter CBCb), they study the role of magnetic

buoyancy in a dynamo process through numerical simulations solving the 3D

MHD equations in a nonrotating stably stratified Cartesian domain with a differ-

ent forced velocity shear. The sinusoidal shear of CBCa creates a pair of equal

magnitude but oppositely signed magnetic structures, whereas the shear of CBCb

is a sawtooth profile designed to generate a single strong magnetic structure. The

shear produces a series of buoyant toroidal magnetic field from an initial poloidal

field similar to the CBCa model. The dynamo of CBCb operates by the inter-

actions of the created toroidal field, and the regeneration of poloidal loops from
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toroidal field due to the combined action of magnetic buoyancy and KH insta-

bilities. The nature of the dynamo process is such that it can occur only if the

initial magnetic fields exceed a critical value that typically depends on the mag-

netic Reynolds number. As such, this dynamo does not operate in the kinematic

limit. Several different behaviors are observed, including steady dynamo produc-

tion and cyclic as well as chaotic activity. In the cyclic regimes, the dynamo

process exhibits polarity reversals and periods of reduced activity.

There are two main aspects to the CBCb dynamo that we will focus on here.

They found that the key to the operation of the dynamo was the presence of

a strong initial magnetic field. With weak initial field, the magnetic buoyancy

instability is not triggered and therefore the shear cannot go unstable and no

dynamo develops. However, when the magnitude of the initial field is large enough

to trigger the magnetic buoyancy instability, CBCb claims that the gradients of the

shear flow would become steepened by the rising toroidal field and this induced the

previously investigated shear-steepening instability. The paper advocates that it is

then the poloidal flows of this steepening instability which provides the necessary

poloidal field regeneration and thus dynamo action. Since dynamo action in their

system depends on the initial interaction of a strong magnetic field with the shear

flow, no kinematic description would be satisfactory in treating such a dynamo.

As such, their system is that of an essentially nonlinear dynamo (END) where the

nonlinear dynamics not only saturate the initial growth of magnetic field in the

system, but drive its growth in the first place.

We sought to further investigate this type of END mechanism and we were

unable to reproduce the results obtained at the parameter values used in CBCb. In

simulations using a seemingly identical setup and parameter values to the CBCb

dynamo, we found that the shear velocity was linearly unstable to KH instabilities
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in the absence of magnetic field and found no evidence of the shear-steepening

instability with magnetic fields of any strength. We also found that dynamo

action would develop for even very small initial magnetic field strengths, contrary

to the key statement that only an initially large field will trigger dynamo action.

There are some plausible reasons as to why this mismatch may have occurred:

the function used for the shear profile is not an analytic function, and therefore,

may vary somewhat in interpretation between specific implementations in the

simulation code; there could have been some mix up over the Prandtl numbers or

other parameters. Regardless of origin, we sought to clear this issue up.

In this study, we therefore seek a more thorough understanding of the inter-

action between magnetic buoyancy and shear instabilities in simulations using a

similar construction to that of CBCb. We vary parameter values to first investi-

gate in detail the hydrodynamic stability of the velocity shear. Once we have a

complete understanding of the stability of the velocity shear at various parame-

ters, we will investigate the behavior arising in systems with an imposed poloidal

magnetic field of varying strength. We will search for the presence of different

dynamo mechanisms including the aforementioned shear-steepening instability.

2.2 Model Formulation

2.2.1 Equations

Our model is based on the setup from CBCb, solving the compressible 3D

MHD equations on a Cartesian grid spanning 0 ≤ x ≤ xm and 0 ≤ y ≤ ym in the

horizontal and 0 ≤ z ≤ d in the vertical with the z-direction pointing downward.

Throughout this study, we use xm = ym = 0.5 and d = 1. Here we refer to the

x-direction as toroidal and the y- and z-directions as poloidal. The domain is
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filled with a stably stratified ideal gas initialized in hydrostatic equilibrium with

polytropic relations for temperature T (z) and density ρ(z), having temperature

gradient θ and polytropic index m:

T (z) = T0(1 + θz/d), (2.1)

ρ(z) = ρ0(1 + θz/d)m, (2.2)

where T0 and ρ0 are the temperature and density at the top of the domain, re-

spectively. The specific heats cp and cv are considered to be constant, as are the

dynamic viscosity µ, thermal conductivity K, magnetic diffusivity η, and acceler-

ation due to gravity. The evolution equations away from some initial conditions

for the velocity u = (u, v, w), magnetic field B = (Bx, By, Bz), density ρ, temper-

ature T , and pressure p are nondimensionalized using T0, ρ0, and B0 for the units

of temperature, density, and magnetic field strength, the depth of the layer d as

the unit of length, and the isothermal sound crossing time d/[(cp − cv)T0]1/2 as

the unit of time, resulting in the following dimensionless governing equations:

∂tρ + ∇ · (ρu) = 0, (2.3)

∂t(ρu)+∇·(ρuu−αmBB) = −∇p̂+ρθ(m+1)ẑ+PrCk[∇2u+1
3∇(∇·u)]+F, (2.4)

∂tT +∇·(uT )+(γ−2)T∇·u = γCkρ−1∇2T +ζCkαm(γ−1)ρ−1|∇×B|2+Vµ, (2.5)

∂tB + u · ∇B = B · ∇u − B∇ · u + ζCk∇2B, (2.6)

∇ · B = 0, (2.7)

p = ρT. (2.8)

In these equations, F is a forcing function; Pr = µcp/K is the Prandtl num-
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ber; Ck = K/dρ0cp[(cp − cv)T0]1/2 is the nondimensional thermal dissipation;

ζ = ηcpρ0/K is the magnetic Schmidt number, representing the ratio of mag-

netic to thermal dissipation; Vµ is the viscous heating; γ = cp/cv is the ratio of

specific heats; αm ≡ PrζQC2
k is a measure of the scale of the magnetic field;

Q = B2
0d2/(µ0µη) is the Chandrasekhar number, representing the ratio of the

Lorentz force to viscosity with magnetic permeability µ0, and p̂ = p + αmB2/2 is

the total pressure.

2.2.2 Boundary conditions

The horizontal boundaries are assumed to be periodic. We impose stress-

free impenetrable velocity conditions at the upper and lower boundaries, and

require that the vertical gradient of the horizontal components of the magnetic

field vanish there. This condition on the magnetic field ensures that no horizontal

magnetic flux will be transported through these boundaries. This is important as

the field will always be initialized with only horizontal components and as such

they cannot play a role in maintaining magnetic fields in the domain. We also

impose a fixed temperature on the upper boundary and a fixed heat flux on the

the lower boundary such that altogether

w = ∂zu = ∂zv = 0 at z = 0, 1, (2.9)

∂zBx = ∂zBy = 0 at z = 0, 1, (2.10)

T = 1 at z = 0; ∂zT = θ at z = 1, (2.11)

The total mass in the domain is conserved and there is only a flux of heat through

the system.
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2.2.3 Initial conditions

Unless otherwise noted, all simulations begin with a static velocity field u = 0.

For the magnetic initial conditions, we chose a purely poloidal field of the form

Bi = (0, By(z), 0), with

By(z) =


+1, z ≤ 1/2,

−1, z > 1/2.

(2.12)

This field is chosen such that the system contains no net magnetic flux. Doing so

ensures that the initial condition will resistively decay to zero in the absence of

any flow that maintains it, making any dynamo action easily identifiable.

2.2.4 Forcing F

We set the forcing function F = (F, 0, 0) with F = −PrCk∇2U0 so that in

the absence of magnetic fields the system will evolve an initial condition u = 0 to

the profile U0 = (U0, 0, 0) and will maintain this profile against viscous diffusion

barring instability (Figure 2.1). This function, U0 = Ufg(y)f(z), is chosen such

that when the forcing interacts with magnetic fields, it will create a relatively

strong magnetic structure located in the center of the y-domain between y0 = 0.2

and y1 = 0.3, and localized vertically between z0 = 0.4 and z1 = 0.95. The

function g(y) describes a sawtooth profile in the y-direction, which is a piecewise

linear function of the form

g̃(y) =



−5y, 0 < y < 0.2,

20y − 5, 0.2 < y < 0.3,

−5y + 2.5, 0.3 < y < 0.5,

(2.13)
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where g̃(y) is then smoothed around the non-differentiable points at y0 = 0.2 and

y1 = 0.3 to produce g(y) as seen in Figure 2.2. The function in the z-direction

f(z) is a piecewise continuous quartic polynomial of the form (with coefficients

approximated to three decimal places)

f(z) =



0, 0 < z < z0,

−25.738 + 226.607z − 734.376z2 + · · ·

· · · + 1031.624z3 − 524.554z4, z0 < y < zv,

−262.348 + 1278.208z − 2292.302z2 + · · ·

· · · + 1800.970z3 − 524.554z4, zv < y < z1,

0, z1 < z < zm,

(2.14)

which localizes the shear vertically between z0 = 0.4 and z1 = 0.95 with the

peak maximum forcing at zv = 0.675 (Figure 2.3). In this study, the only forcing

parameter we will vary is Uf , leaving g(y) and f(z) as described above.
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Figure 2.1: Volume rendering of U0. Red shades are flow in the negative x-
direction, blue shades are flow in the positive x−direction. Values near zero are
transparent.
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Figure 2.2: U0 versus y at zv = 0.675, the location of peak forcing with Uf = 0.66.
The relatively strong gradient between y = 0.2 and y = 0.3 will create a relatively
strong magnetic structure.
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Figure 2.3: Target profile U0 in a y-z-slice at an arbitrary x-value. Dark shades
represent negative flow, light shades represent positive flow. The function f(z)
confines the vertical shear to a layer between z0 = 0.4 and z1 = 0.95. Magnetic
field lines of the initial condition By = ±1 also displayed.

2.2.5 Parameters of interest

The convective stability of the system is measured by the subadiabatic gradient

∇ − ∇ad = θ

[
1 − (m + 1)(γ − 1)

γ

]
. (2.15)

Here we chose θ = 2, γ = 5/3, and m = 1.6 so that ∇ − ∇ad = −0.08, therefore
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the atmosphere is stable to convective motions. It is useful to quote the Rayleigh

number Ra as the true measure of the convective stability,

Ra(z) ≡ θ2(m + 1)
PrC2

k

[
1 − (m + 1)(γ − 1)

γ

]
(1 + θz)2m−1. (2.16)

The appearance of αm = PrζQC2
k in the Lorentz force of the momentum

equation indicates that the strength of the initial magnetic field is to be set by

the parameter Q = B2
0d2/(µ0µη), the Chandrasekhar number. Since there is zero

net magnetic flux in this system, Q only determines the initial field intensity

and there is no clear characteristic magnetic field strength. We then define the

magnetic Mach number as the ratio of Alfven speed to the shear velocity,

MA ≡ Uf

By(z = 1/2)

√
ρ

αm

. (2.17)

Next, we define the Reynolds number Re, magnetic Reynolds number Rm,

and the Péclet number Pe to describe the importance of the viscous, magnetic,

and thermal diffusivities relative to advection by the shear as

Re ≡ Ufymρ

PrCk

, (2.18)

Rm ≡ Ufym

ζCk

, (2.19)

Pe ≡ Ufymρ

γCk

, (2.20)

where ρ is measured at the initial depth of maximum shear and we choose ym = 0.5

as the characteristic length.
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2.2.6 Numerics

The evolution equations are solved numerically using the HPS code, a hybrid

pseudospectral/finite-difference scheme. The HPS code enforces the solenoidal

constraint of the magnetic fields in eq. (2.7) using the vector potential approach.

See Tobias et al. (2001) for more details of the numerical methods of the HPS

code. A previous study by Arevalo (2017) found the CBCb system to be robust to

changes in resolution, so unless otherwise noted, all simulations have a resolution

of 643 and were performed using the Skylake compute nodes on the Stampede2

supercomputer.

2.3 Stability of the sawtooth shear profile

In this section we discuss the stability of the target sawtooth shear velocity

U0 that is being forced in our system via the function F. Recall from the previous

section that this forcing F is chosen to maintain the target velocity U0 against vis-

cous diffusion in the absence of magnetic effects, note that this is a solution of the

full nonlinear non-magnetic equations. However, depending on the hydrodynamic

stability of U0, the resulting velocities in the system may differ from the exact

form of U0. Since the function g(y) does not have a simple analytical form, the

goal of this section is to analyze the hydrodynamic stability of the target velocity

numerically, before examining the MHD system.

We discuss the results of a series of purely hydrodynamic simulations on the

linear and nonlinear stability of the sawtooth target profile U0 with differing values

of Uf (Figure 2.4). Modifying the parameter Uf allows us to have direct control

over the gradients in the shear. For all of the following stability simulations,

we perturb the hydrostatic equilibrium of the initial setup with 3D uniformly
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Figure 2.4: Sawtooth profile at zv = 0.675 for various values of Uf .

distributed random thermal noise of amplitude A injected into the shear layer.

Recall that the form of U0 = (U0, 0, 0) is independent of the x-direction and

such that v = w = 0, so there are no poloidal flows being forced in the system.

We expect, from CBCa, the instability to set in as three dimensional Kelvin-

Helmoltz modes. Therefore, the development of nonzero poloidal flows v and w,

and a spatial variation of u in the x-direction are expected when an instability

is present and will be diagnostic of an instability. Specifically, we will track the

maximum values of v and w over time in the domain.

The linear stability of the shear profile at various values of Uf was studied

numerically by injecting small thermal perturbations of amplitude A = 10−5.

Perturbations of amplitude about one order of magnitude smaller are on the or-

der of numerical noise and do not affect the system. At various Uf values, we

observe whether significant nonzero v, w are generated and note the structure of

the horizontal and vertical flow fields. We find that for simulations with Uf > 0.52,

23



Figure 2.5: With Uf = 0.66, maximum values of u (black), v (red), and w (blue)
over time. The development of nonzero v,w around t = 30 is indicative of the
onset of instability.

instability develops in systems initialized with thermal perturbations of amplitude

A = 10−5.

An example of a linear instability of the shear is depicted in Figure 2.5, showing

a time series tracking the maximum values of u, v, w in one such simulation with

Uf = 0.66 (the value used in CBCb). Initially, the forcing F evolves the system

to u = U0 with v = w = 0, values that are steadily maintained until t ≈ 30, where

the instability occurs and develops significant poloidal flows along with nontrivial

structure in the x-direction. Figure 2.6 and Figure 2.7 display the structures of

the horizontal and vertical flow fields at t = 298 which are indicative of a 3D KH

type instability.

We seek nonlinear instability where the flow is linearly stable by performing

a series of numerical simulations at various values of Uf < 0.52 with an injec-

tion of relatively large perturbations of amplitude A = 10−1. Again we use the
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same instability diagnostics as in the linear stability simulations. For instance,

Figure 2.8 and Figure 2.9 show the nontrivial variation in the x-direction of flows

for Uf = 0.50. We find that for simulations with Uf > 0.42, significant nonzero

poloidal flows will develop in the systems initialized with thermal perturbations

of amplitude A = 10−1. For simulations with Uf < 0.42, poloidal flows are not

maintained over time and we conclude that the shear profile is stable to large and

small amplitude perturbations. These results are summarized by the scatter plot

in Figure 2.10, where we plot the maximum value of v found in the system versus

Uf after allowing each simulation to evolve for several hundred sound crossing

times. In this Figure, three distinct stability regions are evident:

1. Uf > 0.52, the shear profile is linearly unstable,

2. Uf > 0.42, the shear profile is nonlinearly unstable,

3. Uf < 0.42, the shear profile is hydrodynamically stable.

We assume that this plot is evidence of a subcritical shear instability in the system

although we have not tried to map out the unstable branches.

2.4 Interaction with an imposed magnetic field

Now that we have established three distinct regimes of hydrodynamic stability

of the target shear U0, we investigate the interaction of this shear flow with

magnetic fields by imposing the poloidal field Bi = (0, By(z), 0) mentioned in

the model formulation. The goal here is to analyze the evolution and dynamical

interaction of flows and fields in simulations with differing Uf values, ie. different

regimes of hydrodynamic stability. Recall that the imposed field Bi is such that

there is zero net flux through the computational domain. If no dynamo mechanism
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Figure 2.6: With Uf = 0.66, x-y-slice of the horizontal flow field (u/5, v) at
depth z = 0.675 is displayed after the instability has developed (t = 298). The
nontrivial structure in the x-direction is a clear indication of instability. The
magnitude of u has been scaled by a factor of 5 for clarity.
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Figure 2.7: With Uf = 0.66, x-z-slice of the vertical flow field (u/50, w) at
y = 0.2 (left) and y = 0.3 (right) is displayed after the instability has developed
(t = 298). The nontrivial structure in the x-direction is a clear indication of
instability. The magnitude of u has been scaled by a factor of 50 for clarity.
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Figure 2.8: With Uf = 0.50, x-y-slice of the horizontal flow field (u/5, v) at
depth z = 0.675 is displayed after the instability has developed (t = 632). The
nontrivial structure in the x-direction is a clear indication of instability. The
magnitude of u has been scaled by a factor of 5 for clarity.

28



Figure 2.9: With Uf = 0.50, x-z-slices of the vertical flow field (u/50, w) at
y = 0.2 (left) and y = 0.3 (right) is displayed after the instability has developed
(t = 632). The nontrivial structure in the x-direction is a clear indication of
instability. The magnitude of u has been scaled by a factor of 50 for clarity.
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Figure 2.10: Maximum value of v in the system as an indication of instability.
Red diamonds indicate small perturbations and blue × indicate large perturba-
tions. Three distinct stability regions for Uf are evident.

is triggered, the field will resistively decay to zero and the system will evolve

according to the forcing function F. We will classify simulations as dynamos or

nondynamos based on the long time evolution and maintenance of magnetic field.

Since the initial setup here is not an equilibrium, there will always be an initial

transient amplification of toroidal field (Bx) as the forcing F begins to generate

the target velocity U0, regardless of instabilities or dynamo action. The induced

Bx from the stretching of the initial By by the shear will initially have the form

Bx ∼ tBy∂yU0. For instance, Figure 2.11 displays the transient amplification of

Bx in a simulation with Uf = 0.66 and no thermal perturbation. The peak in

Bx around t ≈ 30 corresponds to a strong toroidal structure independent of x

that sits stationary in the shear layer located at zv = 0.675 between y0 = 0.2 and

y1 = 0.3 where the shear is most significant (Figure 2.12). Since here we did not

include a perturbation to break the x-symmetry of the system, no shear instability

is triggered and no significant poloidal flows develop in the domain (although

negligible poloidal flows on the order of 10−6 develop due to the magnetic pressure
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associated with the induced Bx). This causes only a transient stretching of the

poloidal field into toroidal field as the target velocity ramps up. Once the target

velocity is steadily maintained (after t ≈ 30), the amplification of Bx via stretching

is roughly balanced by diffusion of Bx, but an equilibrium is not achieved since By

is resistively decaying without any mechanism to support it. If the system remains

perfectly two dimensional, then no dynamo action can occur and the magnetic

fields in the system decay to zero as some three dimensionality is required to

maintain a dynamo. We therefore examine the introduction of three dimensional

perturbations as in the hydrodynamic stability investigation. We will refer to

amplitude A = 10−5 as small and A = 10−1 as large and examine the effects

at various Uf , anticipating that linear or nonlinear instabilities may provide the

necessary three dimensionality for dynamo action.

2.4.1 Linearly unstable U0

In simulations with a linearly unstable target velocity (those having Uf >

0.52), we have analyzed the evolution of the non-equilibrium of our initial setup

with an injection of thermal perturbations similar to those used in the hydro-

dynamic stability. Here we present the results of a select simulation having

Uf = 0.66. Since the shear is linearly unstable, perturbations of any ampli-

tude A will trigger the hydrodynamic instability. In the linearly unstable regime,

the magnitude of A merely dictates how quickly the instability will manifest. The

shear instability is triggered around t ≈ 33 (Figure 2.13) with small perturbations,

regardless of the intensity of the initial field, which is set by the Chandrasekhar

number Q. Henceforth we will refer to setting Q = 10−2 as small initial field and

setting Q = 101 as large initial field. With Q = 10−2 the magnetic field magni-

tude is just below the threshold to become unstable to magnetic buoyancy and,
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Figure 2.11: Uf = 0.66, no thermal perturbation. Top: Maximum Bx (black)
and |minimum Bx| (red) throughout the domain. Middle: Maximum By (black)
and |minimum By| (red) throughout the domain. Bottom: Maximum u (black),
maximum v (blue) and maximum w (red) throughout the domain. Transient
amplification of Bx as the shear u ramps up, then steady decay of Bx as no shear
instability is present (hence v = 0 and w = 0).
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Figure 2.12: Uf = 0.66, no thermal perturbation. Volume rendering of the
transient amplification of toroidal field, Bx. Purple shades represent positive Bx,
green shades represent negative Bx. Values near zero are transparent.
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Figure 2.13: Uf = 0.66 with small thermal perturbations and small initial field
strength. Top: Maximum Bx (black) and |minimum Bx| (red) throughout the
domain. Middle: Maximum By (black) and |minimum By| (red) throughout the
domain. Bottom: Maximum u (black), maximum v (blue) and maximum w (red)
throughout the domain.

as we will demonstrate, will require the assistance of the shear instability flows to

become buoyant.

In all of the simulations of this section, the initial evolution is similar to that of

the unperturbed case where we see a transient amplification of Bx. However, this

transient is quickly disrupted by the onset of the hydrodynamic shear instability.

The nature of the transiently growing field is dictated by the initial field intensity.

As can be seen in the unperturbed simulation having a small initial field, the

transient field sits stationary in the shear layer with a balance of the induction
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of Bx and diffusion of Bx. Once the perturbations are included and the shear

instability is triggered, the poloidal flows generated by the shear instability further

amplify the field beyond the magnetic buoyancy threshold, inducing a buoyant

rise. Figure 2.14 displays volume renderings of Bx at four instances during the

rise of a toroidal structure in the weak initial field case. By is stretched into Bx in

the shear layer and forms a relatively smooth toroidal structure that then rises out

of the shear layer. Once the toroidal structure has left the shear layer, it starts to

resistively decay, but the combined poloidal flows generated from the rising tube

and the shear instability regenerate the poloidal field and cause another toroidal

structure to be formed in the shear layer. Again, the toroidal structure rises out

of the shear layer to continue the cycle, completing a dynamo feedback loop that

operates over many diffusion times (Figure 2.13).

This is an example of a kinematic dynamo. The magnetic buoyancy observed

will be activated independently of the magnitude or structure of the initial mag-

netic field in the presence of the linear shear instability. This is verified in simula-

tions with Q values many orders of magnitude smaller than mentioned above, as

well as those initiated with random magnetic noise as opposed to the organized

horizontal field mentioned previously. This suggests that the transient growth of

the toroidal field via the shear is supplemented by the poloidal flows of the shear

instability, acting to amplify the field beyond magnitudes required for magnetic

buoyancy to occur. The initial evolution is solely reliant on the linear instability

of the flow and is independent of the initial magnetic field configuration. As such,

we will refer to dynamos operating in the linearly unstable regime of the shear as

essentially kinematic dynamos (EKD).
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Figure 2.14: Uf = 0.66. Volume renderings of Bx at four time instances during
the equilibrated phase displaying the rising behavior of this dynamo. A strong
negative toroidal structure (purple) is formed in the shear layer and rises to ul-
timately decay away and another negative structure beings to form in the shear
layer shortly after.
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2.4.2 Nonlinearly unstable U0

In simulations with a nonlinearly unstable target velocity (those having Uf >

0.42), we have analyzed the evolution of magnetic fields in our system with an

injection of thermal perturbations to trigger any potential 3D instabilities as pre-

viously mentioned. Here we present the results of selected simulations having

Uf = 0.50. The shear at this value is linearly stable, so in the absence of magnetic

fields the shear instability will only be triggered at sufficiently high perturba-

tion amplitude A. At the parameters used, the larger perturbation amplitude

A = 10−1 is sufficient to trigger the shear instability in the absence of magnetic

fields. We vary perturbation amplitudes and initial field strengths in the following

three simulations. When including magnetic fields, the initial evolution is similar

to that of the unperturbed case and the linearly unstable regime where we observe

a transient amplification of toroidal field Bx. However, at the current parame-

ters the subsequent evolution of our system is dependent on the amplitude of the

thermal perturbations and the initial field intensities.

Figure 2.15 displays results from a simulation initialized with the relatively

small initial field and small thermal perturbations. The dynamical evolution of

our variables is nearly identical to that of the unperturbed linearly stable case.

The toroidal field is transiently amplified and sits stationary in the shear layer as it

resistively diffuses away. No shear instability is triggered as there are no significant

poloidal flows generated and the system remains symmetric in the x-direction.

We see quite different dynamics by just increasing the initial field intensity.

Figure 2.16 displays results from a simulation initialized with relatively large initial

field and small thermal perturbations. Despite having small thermal perturbations

which are insufficient to trigger the 3D hydrodynamic instability, we see the devel-

opment of significant poloidal flows (of similar strength to the flows generated by
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Figure 2.15: Uf = 0.50, small thermal perturbation and small initial field. Top:
Maximum Bx (black) and minimum Bx (red) throughout the domain. Middle:
Maximum By (black) and minimum By (red) throughout the domain. Bottom:
Maximum u (black), maximum v (blue) and maximum w (red) throughout the
domain.
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the purely hydrodynamic finite amplitude instability). With strong initial mag-

netic field, the flows of the magnetic buoyancy instability enhance the initially

weak perturbations beyond the finite amplitude threshold. Once the shear insta-

bility is triggered, the evolution proceeds similarly to that of the linearly unstable

(Uf = 0.66) case mentioned above. The poloidal flows of the shear instability

amplify and regenerate the poloidal magnetic field allowing strong toroidal field

to develop in the shear layer which leads to a dynamo process that is nearly iden-

tical to the workings of that mentioned in the linearly unstable regime. Although

the end dynamo state of this simulation behaves similarly to the EKD of the

previous subsection, the initial evolution operates very differently. The dynamo

process here is only triggered if the initial field is strong enough to nonlinearly

interact with the flow to provide the large-scale perturbation needed for the finite

amplitude shear instability. We will refer to dynamos operating in this manner as

essentially nonlinear dynamos (END).

An interesting situation occurs when we trigger the shear instability via a

large thermal perturbation, instead of allowing the presence of a strong initial

field to dictate the evolution of the instability. One may expect the presence of

the nonlinear hydrodynamic instability alone to be sufficient to generate dynamo

action, as it will provide the three-dimensionality and poloidal flows required.

However, we observe a different and unexpected outcome. The time evolution

of our variables in a simulation with large initial field along with large thermal

perturbations is displayed in Figure 2.17. The large thermal perturbations cause

the shear instability to occur very quickly in the system. The second peak in the

maximum value of Bx corresponds to another toroidal structure forming in the

shear layer quickly after the first structure rises out. The second structure rises

and diffuses away much faster than the first, resulting in much weaker poloidal field
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Figure 2.16: Uf = 0.50, small thermal perturbation and large initial field. Top:
Maximum Bx (black) and minimum Bx (red) throughout the domain. Middle:
Maximum By (black) and minimum By (red) throughout the domain. Bottom:
Maximum u (black), maximum v (blue) and maximum w (red) throughout the
domain.
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regeneration which halts the buoyant dynamics previously observed. The result

is a fundamentally different dynamo which sits in the shear layer in a “rolling”

motion governed purely by the shear instability, rather than an interaction of the

shear and magnetic buoyancy instabilities. The long time evolution of this system

results in an equilibrated dynamo maintained purely by the shear instability, as

seen in Figure 2.18 and Figure 2.19. This dynamo should be classified as kinematic

type because it is dictated by the hydrodynamic instability and does not rely on

the presence of strong initial magnetic field. However, overall, the system at these

parameters should be classified as an END, since there are two potential dynamo

end states, of which one is only achievable in the presence of strong initial field.

2.4.3 Hydrodynamically stable U0

In this section we analyze the interaction of a hydrodynamically stable target

velocity (having Uf < 0.428) with the initial field Bi. Since the shear is hydro-

dynamically stable to all perturbation amplitudes A, the x-symmetry breaking

KH instability will not be triggered from imposed thermal perturbations as in the

previously presented simulations. However, an instability of a different flavor may

exist. In CBCa, they present a model by which a stable shear profile is altered by

magnetic buoyancy to produce a shear-steepening instability. Their model gen-

erates buoyantly rising magnetic structures which temporarily and periodically

steepen a background target shear, allowing the otherwise stable shear to develop

KH like instabilities. The forced velocity and initial field B of that study differ

from what we use, and what CBCb use. In the latter paper, they use the shear-

steepening arguments of CBCa to explain the dynamo results without any clear

evidence. Here we will investigate if such an instability can develop in our model.

We have searched for this shear-steepening instability in simulations having
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Figure 2.17: Uf = 0.50, large thermal perturbation and large initial field. Top:
Maximum Bx (black) and minimum Bx (red) throughout the domain. Middle:
Maximum By (black) and minimum By (red) throughout the domain. Bottom:
Maximum u (black), maximum v (blue) and maximum w (red) throughout the
domain.
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Figure 2.18: Uf = 0.50, large thermal perturbation and large initial field. Top:
Maximum Bx (black) and minimum Bx (red) throughout the domain. Middle:
Maximum By (black) and minimum By (red) throughout the domain. Bottom:
Maximum u (black), maximum v (blue) and maximum w (red) throughout the
domain. Long time evolution that ultimately equilibrates into a steadily main-
tained dynamo.
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Figure 2.19: Uf = 0.50, large thermal perturbation and large initial field. Vol-
ume renderings of four time instances at the equilibrated phase displaying the
“rolling” behavior of this dynamo.
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Uf = 0.4. In the linearly and nonlinearly unstable regimes, we observed an inter-

action of KH instability and magnetic buoyancy where the KH instability appears

to help the toroidal structures become buoyant. However, at this low value of

Uf there is no KH instability available to help the initial transient structure be-

come buoyant and with the previously used values of the initial field (dictated by

our “small” and “large” values of Q) we do not obtain a buoyant structure and

therefore cannot achieve the shear-steepening instability. Following the lead of

the CBCb results, where magnetic buoyancy operates independently of the shear

instability, we greatly increase the magnitude of the initial magnetic field to 100

times greater than our “large” initial field (Q = 103). At this value we observe a

series of buoyantly rising magnetic structures, but this buoyant phenomena was

still unable to increase the gradients of the shear (as seen in the CBCa results)

so this simulation never developed the shear-steepening instability and ultimately

the field resistively decays to zero.

Our model, and that of CBCa, contain many similarities to that in CBCb, but

there are some very important differences which we shall discuss. One difference is

the choice of the target shear profile U0. The CBCa target profile is of a sinusoidal

(cosine) nature, which creates a pair of interacting strong toroidal structures whose

strengths are equal but have opposite sign. However, in the current study we

sought to analyze the evolution of a single toroidal structure, hence our choice of

one strong gradient in the center of the domain, with much weaker gradients on

either side. The interacting pair of toroidal structures in CBCa may be the reason

they are able to achieve a significant steepening of the shear profile. Analyzing

Figure 9 in CBCa, it appears that as one structure buoyantly rises out of the

shear layer, the opposite is amplified in the shear layer and creates a density

deficit, which not only induces a poloidal flow, but expands the extent of the
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local region developing the toroidal field, compressing the opposite shear region

and therefore inducing the steepening of the local shear there. This behavior is

starkly different to that which occurs with the sawtooth profile we use in the

current study. Here, at zv = 0.675 the gradient between 0.2 < y < 0.3 is four

times greater than the opposite signed gradient outside this range. As such, a

strong toroidal field is generated in the center of the domain and much weaker

field (of opposite sign) is generated outside of this region. While the stronger

toroidal structure experiences the magnetic buoyancy instability and rises out of

the shear layer, the weaker structure stays stationary so we do not observe the

expansion and compression seen in the cosine case.

Another important difference is that our initial magnetic field Bi is set such

that there is no net magnetic flux in our domain, whereas the initial magnetic field

in CBCa has a nonzero net flux. Since we are trying to understand the operation

of the dynamo mechanism present here, having zero net flux is convenient in iden-

tifying when a simulation results in a dynamo or not. If no dynamo mechanism is

present (that is, if no flow is being forced), the magnetic energy in the system will

ultimately resistively decay to zero. This is not the case in the CBCa simulations,

where their initial magnetic configuration has By = +1 everywhere in their do-

main. Simulations with this nonzero net flux will always have nonzero magnetic

energy regardless of what flows are present. We have also tested if we can observe

the shear-buoyant instability in the previous Uf = 0.4 set-up by simply chang-

ing the initial field configuration to contain nonzero net flux (setting By = +1

everywhere). The result of such simulation is a cyclic production of buoyantly

rising magnetic structures which, as the structures are generated and leave the

shear layer, alter the overall shape of the target velocity, but only trivially. No

3D instability is found nor does this process “steepen” (or increase the maximum

46



gradient of) the shear. In the end, we have found no evidence for a shear-steeping

instability in the sawtooth velocity forcing case.

2.5 ENDs in the presence of turbulence

The dynamo simulations of the previous sections are performed in laminar

systems where, by construction, the simulation environment is stable to convective

motions. If we want to move toward more realistic applications of these types of

dynamos, we might begin to ask how the dynamo mechanisms would behave in

the presence of turbulence. Perhaps a turbulent background flow may decorrelate

the timescales of the instabilities and prevent the dynamo from succeeding, or

will it act as a turbulent diffusion and enhance the dynamo process? In this

section we will present a first pass at answering this question by including a simple

representation of small scale turbulence by injecting spatial and temporal noise

perturbations into the magnetic field. Although artificially injecting noise into

the fields may be unrealistic, we will be able to study the effects of the smallest

turbulent scales in isolation while holding our key parameters fixed and saving on

computational resources.

2.5.1 Implementation of noise

The implementation of magnetic noise is similar to that in Byington (2013)

and Arevalo (2017). The noise is uniformly distributed and is introduced into a

wavenumber band in spectral space. The parameters governing the noisy simula-

tions are the maximum noise perturbation amplitude, A, correlation time between

additions of noise to the field, tcor, k-range over which perturbations are added,

and the extent of the z-domain that is perturbed.
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In Arevalo (2017), they tested the effect of small scale fluid motions on a

case similar to the EKD described above with Uf = 0.66 by injecting noise into

the velocity fields. This work studied the results of differing noise amplitudes,

frequencies, and the range of spectral wavelengths perturbed and observed that the

system still exhibits dynamo characteristics after varying these parameters over a

wide range of values. They did find that increasing the noise amplitude to the size

of the velocity field would cause the perturbations to become supersonic or induce

negative density perturbations and crash the simulations. Overall, they concluded

that velocity noise does little to disrupt the underlying dynamo mechanism as their

noisy simulations produced results consistent with the non-noisy case.

Although velocity perturbations are expected to create magnetic perturbations

on the same scale, if we consider embedding these mechanisms in a turbulent

environment, it is likely that a turbulent dynamo may develop and create separate

magnetic field on different scales, so we want to test the effect of magnetic scales

independently. Also, introducing magnetic noise will allow us to test the effects

of a turbulent diffusion directly in the induction equation.

Compared with implementing velocity noise, there are some additional diffi-

culties with implementing magnetic perturbations in the simulations. Perturbing

the magnetic fields with noise is essentially a constant injection of magnetic energy

into the system and since the measure of dynamo action is sustained magnetic

energy, having precise control over the magnitude of this noise is very important

so we do not drive the dynamo by adding too much magnetic noise. In the HPS

code, the magnetic field is calculated as B = ∇ × Tk + ∇ × ∇ × Pk, in order

to satisfy the solenoidal condition (∇ · B = 0), where Tk and Pk are toroidal

and poloidal magnetic potential functions, respectively. This form of B results in

separate equations for the scalar potential fields Tk and Pk, which together gov-
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ern the time evolution of magnetic fields in the simulations. Given the spectral

scheme used, in order to avoid calculating additional FFTs, we add the magnetic

perturbations directly to Tk and Pk in Fourier space. The derivatives that follow

in piecing together B cause complications in controlling the amplitude of the per-

turbation and result in different scalings for the toroidal and poloidal components

of the field. We remedied this issue by applying scale factors in k-space of 1/k

and 1/k2 to Tk and Pk, respectively. This implementation also guarantees that

our perturbations are divergence free, which is otherwise difficult to enforce with

noise.

2.5.2 Magnetic noise results on an EKD

Now that we have approximate control over the strength of the magnetic per-

turbations, we can analyze the effects of varying magnetic noise amplitudes on

the EKD having Uf = 0.66. In these simulations, we restrict the k-range to

k ∈ [30, 50] to mimic small scale turbulence at scales which are reasonably well-

separated from the laminar dynamo mechanism. The diffusion time for this range

of k is O(10−1) to O(10−2) so we set the correlation time to tcorr = 10−3, which

corresponds to an injection of noise about once every 10 time steps in the simu-

lations. With this fast tcorr we simulate decorrelated small-scale turbulence while

allowing perturbations to overlap, but also giving the field some relaxation time

between applications of noise. Perturbations are restricted to approximately 90%

of the inner z-domain to avoid complications at the top and bottom boundaries.

In Figure 2.20 we display volume renderings of Bx to illustrate the size of the

noise perturbations as compared with the resolved magnetic field structure. The

toroidal structures now appear “fuzzy” as compared with the non-noisy simula-

tions previously shown. At the smaller amplitude chosen, A = 25, the magnetic
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energy purely from the noise perturbations is less than 10% of the non-noisy EKD

magnetic energy. As we increase the noise amplitude, we progressively approach

adding magnetic energy on the same order as the non-noisy energy at A = 100.

This is quite unrealistic according to standard MHD turbulence theories in which

one might expect the power in the small turbulent scales we are imitating to be on

the level of 0.1% of the total dynamo magnetic energy (Boldyrev & Perez, 2012).

These high levels of noise will be quite significant sources of magnetic energy in

the system and will provide a test of the dynamos ability to maintain its operation

under harsh conditions.

We plot maximum values of Bx versus t in Figure 2.21 for simulations with

noise amplitudes A = 0, 25, 50, 100. The diagnostic dynamo signatures previously

observed become less and less distinct as we move to higher amplitude, and at

A = 100 the entire time series appears to be corrupted by noise. However, inspect-

ing volume renderings of Bx over time (Figure 2.20) reveals that the underlying

dynamo mechanism is still operating. One can observe the creation of Bx in the

shear layer which subsequently rises and diffuses away to create room for the cre-

ation of another toroidal structure in the shear layer, which is indicative of the

dynamo loop previously observed. The most discernible characteristics that seem

to be affected by the noise are the timescale on which the field undergoes polarity

reversals. Comparing time series of the maximum values of Bx with A = 0, 25, 50,

and 100 (Figure 2.21) we observe that the more noisy simulations have prolonged

periods of polarity dominance as compared to the lesser or non-noisy simulations.

These results show that the EKD is still continuing with little hindrance and that

the dynamo mechanism displays robust characteristics even in the presence of

intense magnetic noise.
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Figure 2.20: Time sequence volume renderings of Bx for Uf = 0.66 with As = 10.
Positive values are blue, negative values are red and we have made small values
transparent. Noisy field on the order of the dynamo field can be seen throughout
the domain. Observe a buoyant positive (blue) structure rising from the shear
layer which sheds off as a new smaller negative (red) structure forms (as can be
seen in frames (d) and (e)). The dynamo is still operational in the presence of
high magnitude magnetic noise.
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Figure 2.21: Bx versus t for Uf = 0.66, magnetic perturbation amplitudes
A = 0, 25, 50, 100 from top to bottom. Black lines are max|Bx| and blue lines are
min|Bx|.
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2.5.3 Magnetic noise results on an END

Here we analyze the effects of magnetic noise on simulations having forcing

parameter Uf = 0.50. We have to select the values of the magnetic noise amplitude

carefully as we alter the initial field strength with the parameter Q. We we will

quote a scaled noise amplitude as As = A
√

Q to maintain consistency across

simulations with varying Q values. Other than these changes to how we quote

the amplitude of the noise perturbations, the magnetic noise implementation in

this section will be identical to that used in the previous EKD noisy simulations;

injecting into the k-range to k ∈ [30, 50], setting tcorr = 10−3, and restricting the

vertical extent of the perturbations to approximately 90% of the inner z-domain.

Given the results of the EKD noisy simulations where we found that the dy-

namo mechanism was operational even at highly intense noise levels, we will test

two levels of noise perturbations. In the first one, the injected magnetic energy is

on the order of the dynamo energy (As = 10). In the second one we add a lower

level of noise where the energy is only a fraction of the dynamo energy (As = 0.1).

At the amplitudes As we have chosen, we anticipate that the magnetic noise will

induce hydrodynamic perturbations large enough to trigger the finite amplitude

instability in the shear flow. For that reason the size of the thermal perturbations

used in the non-noisy simulations will be irrelevant when adding magnetic noise,

so we will only analyze the two scenarios with small thermal perturbations.

Recall for the case of large initial field strength (Q = 100) with small thermal

perturbations, the evolution of the dynamo is characterized by the creation and

buoyant rise of toroidal structures from the shear layer. The time trace of this

appears in plots of Bx versus t (Figure 2.16) as oscillating spikes which continue

for many hundreds of sound crossing times. At small levels of magnetic noise

amplitude (As = 0.1) this is only altered slightly but closely resembles the non-
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noisy time trace (Figure 2.22). Increasing to As = 10, where the magnetic energy

of the noise perturbations are on the order of the non-noisy dynamo energy, the

signature time trace of Bx over time is completely distorted (Figure 2.22). This

is reminiscent of the EKD with A = 100 (which also corresponds to As = 10 in

that simulation).

When we initialize the non-noisy simulations with small thermal perturbations

and lower field strength (Q = 0.01), the initial evolution proceeds quite differently

to that with Q = 100. The finite amplitude instability is never triggered and we

only observe a transient amplification of toroidal field which ultimately decays

away. With the addition of noisy magnetic perturbations, we find that the shear

instability develops for the two levels of magnetic noise amplitudes we have chosen,

As = 0.1, 10. Since the initial field strength is small, the toroidal field generated

in the shear layer never begins to rise. Once the shear instability kicks in, the end

result is observed to be a dynamo of the “rolling” variety which we observed in a

previous section.

Similar to the noisy EKD results, the dynamo mechanisms present in the finite

amplitude shear instability regime are ultimately unhindered by small scale injec-

tions of magnetic noise even when the injected magnetic energy is on the order of

the dynamo energy. An important observation to note is that the dynamo regime

is not changed by the addition of magnetic noise. The buoyantly rising dynamo

with a strong initial magnetic field intensity, which we classify as an END in the

finite amplitude shear stability regime, maintains the same operational character-

istics of the non-noisy case. As pointed out in a previous section, when the finite

amplitude KH instability develops we will see a “rolling” type of dynamo when

the initial field intensity is too small because the magnetic buoyancy instability

is not active and this is still the case when such a system is subjected to high
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Figure 2.22: Bx versus t for Uf = 0.50, magnetic perturbation amplitudes
As = 0, 0.1, 10 from top to bottom. Black lines are max|Bx| and blue lines are
min|Bx|.
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intensity magnetic noise. Overall, our results show that these dynamos are quite

robust to small scale magnetic noise perturbations.

2.6 Discussion

The dynamo presented in CBCb was a conceptually nice example of an END.

This novel type of dynamo, which only exists if initialized with a finite amplitude

magnetic field, presents an interesting mechanism for nonlinear dynamo operation

that differs from the kinematic nature of traditional dynamo theory. However, we

realized that the CBCb dynamo is more complex than they originally envisaged,

but ultimately an END still exists of a more complex nature. We found that at the

parameters quoted in the CBCb study, the forced sawtooth shear velocity that

drives the system was in fact linearly unstable to hydrodynamic perturbations

whether or not magnetic fields are present. Consequently it appears that what

seemed to be an END was actually driven by a linear hydrodynamic instability,

qualifying this system as an EKD rather than an END. We speculate that this

may have been due to some confusion in the stability testing over parameter space

or some subtle effects having to do with the non-analytic nature of the sawtooth

shape, but we were not able to decipher the origin of the confusion. Therefore,

we re-examined the problem and recovered an END in the same system but in a

different form than was previously expounded.

Since the sawtooth shear velocity does not have an exact analytical form, we

performed a numerical survey of the stability of the shear at differing values of

Uf . We found three separate regimes in which the shear is linearly unstable,

unstable to finite amplitude perturbations, and fully stable to all hydrodynamic

perturbations. When including magnetic fields we found that in all cases where a

hydrodynamic instability is present, the resultant system would exhibit dynamo
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Figure 2.23: Bx versus t for Uf = 0.50, magnetic perturbation amplitudes
As = 0, 0.1, 10 from top to bottom. Black lines are max|Bx| and blue lines are
min|Bx|.
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action of some sort, which we have tried to qualify. In the linearly unstable shear

regime we were able to recreate the CBCb dynamo, although we found that the

system would always produce a dynamo regardless of the initial magnetic field

strength contrary to their previous results. At all initial field strengths we found

identically behaving dynamos which operate via an interaction between magnetic

buoyancy and the shear instability, where magnetic buoyancy frees the shear layer

of toroidal field allowing for the shear instability modes to regenerate poloidal

field and complete a dynamo feedback loop. This description of the dynamo

mechanism is independent of the initial magnetic field strength and as such fits

into the kinematic framework of traditional dynamo theory.

In the regime where the sawtooth shear is hydrodynamically stable to infinites-

imal perturbations but unstable to finite amplitude perturbations, we found that

there are various classes of dynamo solutions that depend on the initial conditions,

which can include various combinations of hydrodynamic perturbation sizes and

initial magnetic field strengths. The first class of solutions emerge when the sim-

ulations are initialized with hydrodynamic perturbations that are too weak to

trigger hydrodynamic instability alone. When magnetic fields are included, we

found different behaviors depending on the initial magnetic field strength. With

relatively weak initial magnetic field we do not see a dynamo. The system tran-

siently amplifies the magnetic field as the shear velocity ramps up, but the field

eventually decays away due to the absence of shear instability. However, when

initializing with a large amplitude magnetic field, the transient amplification be-

comes substantial enough to induce hydrodynamic perturbations via the Lorentz

force that are beyond the finite amplitude shear instability threshold. With the

presence of shear instability, the system develops into a dynamo characterized by

the buoyant rise of toroidal field combined with the poloidal field regenerating
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instability modes. Although the end result resembles the EKD of the linearly un-

stable shear regime, the initial development of the dynamo is dictated by the flows

created by an essentially nonlinear interaction of strong magnetic field with weak

hydrodynamic perturbations. The system at these parameters can be classified

as a clear END since the outcome depends on the initial strength of the magnetic

field, with the existence of a dynamo only occurring due to flows resulting from a

strong initial magnetic field.

Instead, if the initial hydrodynamic perturbations are large enough to trig-

ger the finite amplitude instability alone, we found that when including magnetic

fields the subsequent dynamo operation is still affected by the size of the initial

magnetic field. With a relatively weak initial magnetic field the finite ampli-

tude instability develops and becomes dominant over the transient amplification

of toroidal field. The relatively weak toroidal structure that is formed in the

shear layer never becomes buoyant and decays to an oscillatory equilibrium state

where it is supplemented by weakly regenerated poloidal field governed solely by

the shear instability modes. This dynamo regime is distinctly different from the

buoyant dynamos previously mentioned and fits into a kinematic framework as

the dynamics are purely dictated by the instability structure of the flow.

If we alternatively initialize the simulation with relatively strong magnetic field

such that magnetic buoyancy can develop, we recover a system that equilibrates

into a buoyantly driven dynamo identical to the previously mentioned dynamos op-

erating via an interaction between magnetic buoyancy and shear instability. These

results show that when the MHD system contains hydrodynamic perturbations

large enough to trigger finite amplitude instability, completely different dynamo

states of the system exist depending on whether or not the shear can amplify the

magnetic field beyond the threshold required to trigger magnetic buoyancy and
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this is dependent on the amplitude of the initial magnetic perturbation.

The operation of this buoyant variety of dynamo is characterized by the follow-

ing sequence of events. The poloidal flows of the shear instability amplify poloidal

field. This stronger (than the initial condition) poloidal field is then stretched into

strong toroidal field by the shear, which begins to suppress the flows of the shear

instability. Once the toroidal field becomes strong enough, it begins to buoyantly

rise out of the shear layer, allowing the instability flows to once again regenerate

strong poloidal field in the shear layer and complete the dynamo feedback loop.

This process is observed in Figure 2.24 where we have plotted normalized maxi-

mum amplitudes of Bx, By, and w in a simulation with Uf = 0.50, plus initialized

with a hydrodynamic perturbation large enough to trigger finite amplitude per-

turbation, and relatively strong initial magnetic field. We see smaller peaks of

By occur corresponding with peaks of w, followed by relatively stronger peaks in

By which are then sheared into Bx (as seen in the peaks in Bx just following the

strong peaks in By). The suppression of the shear instability is seen in the drops

of w as Bx develops, and the drop in peaks of Bx are due to the buoyant rise of

the field out of the shear layer which allow the shear instability to ramp back up

(peaks in w).

In the fully hydrodynamic stable regime of the shear, we were unable to recover

a dynamo due to the lack of poloidal flows needed to regenerate strong poloidal

field. We hoped to find the shear-steepening instability of CBCa since CBCb

thought that was the mechanism involved with the sawtooth shear profile they

used. In CBCa, they had demonstrated that a fully stable shear could steepen

and go unstable by a rising magnetic structure, but this was not to be found when

using the sawtooth shear of this study. At even more extreme initial magnetic field

strengths the presence of strong rising magnetic structures still leave the sawtooth
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Figure 2.24: The evolution of a system having Uf = 0.50 with perturbation am-
plitude large enough to trigger the finite amplitude shear instability and strong
enough initial magnetic field to experience magnetic buoyancy. Plotted are maxi-
mum amplitudes of Bx (solid black), By (dashed black), and w (red) all normalized
by their corresponding maximum value in the simulation for comparison.

shear virtually unaltered. We were never able to reproduce anything that looked

like a shear-steepening instability, and therefore no dynamos in the fully stable

regime.

After studying the varieties of dynamos we can produce in each shear stabil-

ity regime, we considered what might happen to these dynamos in the presence

of turbulence. Given that the system described in this chapter is a quiescent

convectively stable environment, understanding how robust these dynamos are to

turbulence would be important if we begin to consider how to apply these dynamo

concepts to real life systems that often exist in or along side of turbulence. As a

simplified and computationally cheap way to study the smallest scales of turbu-

lence, we injected uniformly distributed random noise of varying amplitudes into

large wavenumbers of the magnetic field. We found that all dynamos presented

in this chapter operate as described even when the system is nearly completely

engulfed by very large amplitude magnetic noise.
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To understand the effects of the larger scales of convection on these dynamo

mechanisms, we wanted to extend this turbulence study to actual resolved con-

vection. Preliminary attempts to embed the sheared system into a convectively

unstable environment brought about unforeseen difficulties in choosing proper

parameters and interpretation of the results. Including convection introduces an-

other energy source to power dynamo action in addition to the shear forcing. We

found that this interaction was out of the scope of the current study and would

require substantial future investigations.

Another way to study the interaction of convection with the dynamo mecha-

nisms presented in this chapter would be to set up a two layer penetrative system

having the forcing in a convectively stable layer beneath a convectively unstable

layer. This could plausibly allow the magnetic buoyancy and shear instability

interaction to occur independently of a separate convective dynamo. The setup

of such a system requires further extensive exploration of parameter space and we

found these efforts to also be out of the scope of the current study.
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Chapter 3

Stoking a Lunar BMO

3.1 Background

Apollo era missions to the Moon returned to Earth with samples of lunar

rocks. The age and inferred magnetic field intensities for these rocks is displayed

in Figure 3.1 from Weiss & Tikoo (2014). The abrupt increase in paleointensities

just after 4Ga suggests the onset of a lunar dynamo. The horizontal green dashed

line represents the theoretical limit of maximum paleointensities (≈ 12µT ) based

on energy flux scaling arguments of a core dynamo powered by convection (Chris-

tensen (2010); Dwyer et al. (2011)). As it can be seen in the Figure, many of

these rocks exhibit field intensities larger than the expected theoretical limit.

The key challenge with explaining the observed paleointensities comes with

the fact that dipole fields fall off like 1/R3, where R is the radius from the source

of the dipole. Given that the lunar core is estimated to be only about 20% of the

total lunar radius, the field is greatly reduced at the lunar surface. Evans et al.

(2018) argue that since core convection alone could not have sustained the lunar

dynamo for the duration and intensities observed then there must be either an

exotic mechanism or some unknown energy source to power the dynamo.
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An example of one of these “exotic” mechanisms was suggested by Scheinberg

et al. (2018). They proposed that the lunar dynamo was not generated in the core,

instead it was seated in a molten region of the lower mantle near the core referred

to as a basal magma ocean (BMO). They present arguments for the existence

of a BMO within the lunar interior that could have existed directly outside the

inner core region. If a BMO sitting atop the lunar core could sustain a dynamo,

the field intensities at the surface would not be attenuated as much because the

outer boundary of the BMO would be closer to the surface than the inner core

boundary. The question of whether a BMO can sustain a dynamo is dependent on

the type of material comprising the BMO. They argue that if the BMO contains

sufficiently high electrical conductivity, it would be expected to sustain a dynamo.

However, they note that the required BMO conductivity is “unusually high” for

the type of material that would likely form a BMO in the lunar interior.

Here we build on the ideas of Scheinberg et al. (2018), except we relax the

constraint on the electrical conductivity and allow the BMO to play a nondynamo

role. There are many studies showing that the moon likely had a core dynamo (for

instance, see Garrick-Bethell et al. (2009)), although it would have been too weak

to produce field strengths at the surface that match observations. We propose

that that the magnetic field produced by a lunar core dynamo could diminish less

rapidly than the typical 1/R3 drop off in the presence of a convecting nondynamo

BMO. We argue that a convecting BMO with electrical conductivity too low to

generate a dynamo can stretch, amplify, and advect field to its outer boundary so

that it does not drop off like 1/R3.

This lunar core-BMO scenario can be characterized as a type of stoked non-

dynamo (Byington et al., 2014). The novel theory of stoked nondynamos describe

systems which are known to be decaying nondynamos, but when continually sup-
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Figure 3.1: Figure 1 in Weiss and Tikoo (2014).

plied, or “stoked,” with magnetic energy from an external source can equilibrate

into a statistically stationary MHD state where the nondynamo decay rate is bal-

anced by the stoking field. In their study, Byington et al show that such stoked

systems can resemble and even be indistinguishable from actual dynamo systems

when supplied with a sufficient amount of stoking energy. Conventional dynamo

studies describe closed systems, ascertaining whether or not an MHD system will

result in dynamo action. However, many realistic dynamo systems do not occur

in isolation, rather the systems will surely interact with surrounding regions. The

lunar core-BMO scenario fits perfectly into the non-closed category and this is

what we wish to study here.
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3.2 Model Formulation

We create a stoked model of a lunar core-BMO scenario using numerical sim-

ulations of rotating spherical shell convection. Our model BMO will consist of ro-

tating spherical shell convection at parameters which are not capable of sustaining

dynamo action. We emulate a core dynamo and stoke the BMO by inputting a

constant source of magnetic energy through the inner boundary of the simulation

domain via a boundary condition. The boundary condition will maintain a con-

stant magnetic field at the inner boundary which matches to a dipole field being

emitted from a point source positioned at R = 0, the center of the sphere.

It is notable that in a real fluid core-BMO system the boundary between the

core and BMO would not necessarily be impenetrable. Convection would exist

in both regions and in modeling the regions together there would likely be some

overshoot and mixing of fluid near the interface between the two regions. This

would undoubtedly have an impact on the structure of the dynamo field which

feeds into the BMO region, i.e. the field would not be purely dipolar. The com-

plexities associated with modeling the two regions simultaneously is beyond the

scope of this study and implementing a boundary condition as opposed to solving

a dynamo solution within the inner sphere will greatly reduce the computational

cost of this study. The boundary condition also allows us to precisely control the

amount of magnetic energy flux into the BMO, which will simplify identifying the

impact of convection on the magnetic field.

3.2.1 Equations

Our numerical simulations will be performed using the open source code Rayleigh

(Featherstone et al. (2022); Featherstone & Hindman (2016); Matsui et al. (2016)).

The Rayleigh code solves the following nondimensional 3D MHD Boussinesq equa-
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tions for velocity u, magnetic field B, temperature perturbation Θ, and pressure

P (see documentation1 for more information):

[
∂u

∂t
+ u · ∇u + 2

E
ẑ × u

]
= Ra

Pr
Θr̂ − 1

E
∇P + 1

EPm
(∇ × B) × B + ∇2u,[

∂Θ
∂t

+ u · ∇Θ
]

= 1
Pr

∇2Θ,

∂B

∂t
= ∇ × (u × B) + 1

Pm
∇2B,

∇ · u = 0,

∇ · B = 0.

The equations are nondimensionalized using the imposed temperature difference

∆T between the inner and outer boundaries at r = ri and r = ro for tempera-

ture, respectfully, the shell depth L = ro − ri = 1 for length, viscous timescale

L2/νo for time, thermodynamic pressure νoΩ0 for pressure, and magnetic field as

(ρ̂µηoΩ0)1/2. Here, νo is the constant kinematic viscosity, Ω0 is the rotation rate

of the frame, ρ̂ is the constant density of the fluid, ηo is the magnetic diffusivity

at the top of the domain, and µ is the magnetic permeability of free space. The

key input parameters of these equations are the Prandtl number (Pr = νo/κo),

magnetic Prandtl number (Pm = νo/ηo), Ekman number (E = νo/(Ω0L
2)), and

Rayleigh number (Ra = αgo∆T L3

νoκo
) where α is the coefficient of thermal expansion,

go is the gravitational acceleration at the top of the domain, and κo is the thermal

diffusivity at the top of the domain.

1https://rayleigh-documentation.readthedocs.io/
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3.2.2 Boundary Conditions

Both boundaries employ no-slip conditions, u = 0 at r = ri and r = ro, and

the temperature perturbation is fixed to values of Θ = 0 and Θ = 1 at r = ro and

r = ri, respectively. The magnetic boundary condition at r = ri is set to maintain

a stoking dipole field of the form B = Br,i(r−3 cos(θ), (r−3/2) sin(θ), 0), where Br,i

is the magnitude of the radial component of the dipole field at r = ri. This is

a constant input of magnetic flux into the domain at r = ri and no magnetic

flux is allowed to escape though that boundary. At r = ro, the magnetic field is

set to match a potential field (for details of how Rayleigh handles the potential

boundary condition, see Matsui et al. (2016)).

3.2.3 Initial Conditions

Initially, velocities are set to zero and the temperature perturbation begins

with small normally distributed random noise. The magnetic field is initialized

with the stoking dipole field governed by the magnetic boundary condition at ri in

the absence of convection. We note that the choice of initialization of the magnetic

field does not significantly impact the results; whether we initialize with zero

magnetic field, a small normally distributed random magnetic noise perturbation,

or fill the domain with the resulting dipole field set by the boundary condition at

ri, the end result of the statistically steady state is unaltered.

3.3 Results

The goal of this study is to analyze the effect of nondynamo rotating con-

vection on the magnetic field generated via the boundary condition at ri. We

choose to set the magnitude of the boundary field to be small in order to study
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the kinematic effects of convection on the magnetic field. When specifying the

input parameters for our simulations, we will vary Ra to obtain a range of super-

criticalities between 2 and 50. Since we want to study nondynamo systems, we

select various values for Pm such that Pm < Pmmin, where Pmmin = 450E3/4

is the minimum magnetic Prandtl number at which one can find non-decaying

dipolar dynamos, as obtained by Christensen et al. (1999). We will fix Pr = 1

and E = 3×10−4 and have verified that with no stoking magnetic field convection

at the stated parameters cannot sustain dynamo action. With these parameters

fixed, the convective Rossby number, Roc = E
√

Ra/Pr, which is an estimate of

the ratio of buoyancy and Coriolis forces in the system, will vary with Ra. We note

that the value of Roc < 1 in all of our simulations, implying that rotational effects

may be significant.We further set the aspect ratio between the inner boundary

and outer boundary to ri/ro = 0.35. This aspect ratio implies a relatively large

lunar BMO, which in reality is likely not the case. However, this choice, along

with the selection of the other parameters allow us to maintain consistency with

many previous studies (for instance, see Christensen & Aubert (2006)).

3.3.1 Selecting the Boundary Dipole Field Magnitude, Br,i

In order to simplify our results we want to select the boundary field magnitude

to be small enough such that the Lorentz force of the momentum equation does not

significantly feedback onto convective velocities. To verify this, we will perform

several diagnostics at the largest value we will use for the magnetic Prandtl, Pm =

1. This serves as a good baseline as diffusion of magnetic field is more prominent

at smaller values of Pm. We first inspect the consistency of characteristic flow

speeds, Urms, for various supercriticalities, Ra/Rac, as we increase the value of Br,i.

We define the non-dimensional characteristic flow speed to be Urms =
√

2Ek/Vs,
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Figure 3.2: Time and spherically averaged characteristic flow speed, Urms, ver-
sus the input field strength Br,i for E = 3 · 10−4, P r = 1, Pm = 1 at various
supercriticalities ranging from Ra/Rac = 2 to 12. At all supercriticalities the
flow is unaltered by the presence of small amplitude field (Br,i = 10−2, 10−1), but
experience a suppression of velocities as Br,i increases.

where Ek is the time and spatially averaged kinetic energy in the shell and Vs

is the volume of the shell. In Figure 3.2 we plot Urms against Br,i for various

supercriticalities between Ra/Rac = 2 and 12. For the smaller values of Br,i

(= 10−2, 10−1), the variation in Urms is only dependent on Ra/Rac and increases

as expected with Ra/Rac. However, we observe a decrease in Urms at larger values

of Br,i and especially at Br,i = 101.

The suppression of convective velocities from large input field strength is fur-

ther illuminated when examining the effects of convection on the magnetic fields.

Following Christensen and Aubert (2006), we define the Lorentz number,

Lo =
√

2EB, (3.1)

70



as the characteristic non-dimensional magnetic field strength, where EB = 1
2B

2 is

the time and spatially averaged magnetic energy. We will measure the convective

amplification factor,

L = Lo/Lodiff , (3.2)

which defines a ratio between the Lorentz number, Lo, of a simulation in the

presence of convection with the Lorentz number, Lodiff , resulting from the purely

diffusive solution of the boundary condition magnetic field in the absence of fluid

motions, obtained numerically. Values of L > 1 indicate that convection has

increased the strength of magnetic fields in the simulation beyond that of the

diffusive value.

Next we inspect the robustness of the convective amplification factor L at

various supercriticalities between Ra/Rac = 2 to 12 as we increase the input field

strength Br,i. Displayed in Figure 3.3, we see a similar trend to the suppression

of convective velocities with larger values of Br,i, which is arguably more drastic

in the case of L. There is a clearly increasing trend in amplification when the

convective velocities are not suppressed by the boundary condition field, so to

maintain a regularity across our results we chose to use the most modest value

tested, Br,i = 10−2, throughout the remainder of this study.

As a final sanity check in ensuring the magnetic field has negligible nonlinear

interaction with the properties of convection, we have compared the magnitude

of the Lorentz force with the dominant forces of the momentum equation at var-

ious supercriticalities Ra/Rac = 6, 20, 50 with the boundary field at Br,i = 10−2.

Overall, in each simulation the Lorentz force is many orders of magnitude smaller

than the other forces. Although the dominant forces at each supercriticality have

differences, all dominant and subdominant terms greatly outsize the Lorentz force

by many orders of magnitude.
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Figure 3.3: Convective amplification factor, L = Lo/Lodiff , versus the input
field strength Br,i for E = 3 · 10−4, P r = 1, Pm = 1 at various supercriticalities
ranging from Ra/Rac = 2 to 12. The noticeable increase of L as supercriticality
increases diminishes as the input field increases due to the suppression of convec-
tive velocities at larger input field strength.
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3.3.2 Impact of Convection on a Weak Boundary Condi-

tion Dipole Field

Now that we have established that the flow is unaltered by the boundary

field with Br,i = 10−2, we seek to understand how the field is altered by the

presence of convection. Our results consist of a suite of simulations at various su-

percriticalities ranging from Ra/Rac = 2 to Ra/Rac = 50 with magnetic Prandtl

numbers ranging from Pm = 0.1 to Pm = 1. Before aggregating the collection

of results, we first display the structure of convection and the resulting mod-

ified magnetic field in select simulations of a few different supercriticalities at

Ra/Rac = 6, 20, 50 with Pm = 1. Figure 3.4 displays spherical shell cuts at

r = (ro + ri)/2 (the middle of the shell) of the components of velocity. The su-

percriticalities shown, Ra/Rac = 6, 20, 50, correspond to the convective Rossby

number Roc = 0.33, 0.60, 0.95, respectively. So we expect Ra/Rac = 6 to be the

most rotationally influenced, with Ra/Rac = 50 being the least rotationally influ-

enced. This is certainly the case, as can be seen in the columnar structure of the

flow at Ra/Rac = 6, which becomes less apparent at the larger Ra/Rac values.

At Ra/Rac = 50 the flows lack any well defined columns. The difference in the

convective velocities between the various supercriticalities is seen in Figure 3.5,

where we plot radial profiles of the time and spherically averaged characteristic

flow speed Urms. The trends are as expected, the more supercritical the convec-

tion, the larger the characteristic flow speed. Also, the characteristic speeds at

each supercriticality are quite consistent across the entire shell, barring effects

near the boundaries where we employ no-slip boundary conditions.

To visually understand the structural effects of convection on the field pro-

duced by the dipole boundary condition, we present spherical shell cuts of the

components of the magnetic field at the middle of the shell in Figure 3.6. The
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Figure 3.4: Spherical shell cuts at the middle of the shell, r = (ro + ri)/2,
displaying snapshots of ur, uθ, uϕ from left to right with reds corresponding to
positive values and blues corresponding to negative values. All plots are for
E = 3 · 10−4, P r = 1, Pm = 1, with the top, middle, and bottom rows show-
ing the difference in the flow structure for supercriticalities Ra/Rac = 6, 20, 50,
respectively.
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Figure 3.5: Radial profiles of the time and spherically averaged characteristic
flow speed, Urms, for E = 3 · 10−4, P r = 1, Pm = 1 at various supercriticalities
Ra/Rac = 6, 20, 50 having the weak boundary field amplitude Br,i = 10−2.
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rows unveil the resulting field in the presence of the different convective supercrit-

icalities Ra/Rac = 6, 20, 50. First note the emergence of nonzero Bϕ components

in each case, which is completely null in the absence of convective velocities. As

Ra/Rac increases, the structure of the field becomes completely unrecognizable

from the dipole boundary field, indicating a significant modification by the con-

vective flows. We further plot the radial distribution of the Lorentz number Lo in

Figure 3.7. This illustrates not only that the flow is modifying the dipole bound-

ary field, but that there is a significant amplification over the diffusive values,

especially at larger radii.

To combine results from our suite of simulations at various Pm, Ra, we plot L

versus PmUrms in Figure 3.8 for all simulation runs. For small values of PmUrms,

the convective amplification is insignificant (L ∼ O(1)), but around PmUrms ∼ 10

a separate trend emerges where the convective amplification factor becomes signif-

icant and appears to increases linearly with PmUrms. The region of insignificant

amplification and the linear trend can be understood through the following basic

analysis.

3.3.3 Analysis

Given that the magnitude of the boundary field is small, we perform a linear

analysis of a perturbation around a background magnetic field to predict how

convection will alter the field produced by the boundary condition at ri. Let

B = B̄+b, where B̄ is the steadily maintained diffusive solution of the boundary

condition field (such that ∂B̄
∂t

= ∇2B̄ = 0), b is the perturbation to the back-

ground field induced by a velocity u0. Substitution into the induction equation

yields,
∂b

∂t
= ∇ × (u0 × B̄) + ∇ × (u0 × b) + 1

Pm
∇2b. (3.3)
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Figure 3.6: Spherical shell cuts at the middle of the shell, r = (ro + ri)/2,
displaying snapshots of Br, Bθ, Bphi from left to right with reds corresponding
to positive values and blues corresponding to negative values. All plots are for
E = 3 · 10−4, P r = 1, Pm = 1. The rows from top to bottom show the dif-
ference in the field structure in the presence of convection for supercriticalities
Ra/Rac = 6, 20, 50, respectively. The dipole structure of the field largely remains
at Ra/Rac = 6 and we see the development of nonzero Bϕ. At larger supercriti-
calities, Ra/Rac = 20, 50, the dipole is no longer visible.
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Figure 3.7: Radial profile of the Lorentz number Lo for E = 3 · 10−4, P r =
1, Pm = 1 at various supercriticalities Ra/Rac = 6, 20, 50 having the weak bound-
ary field amplitude Br,i = 10−2. The amplification in the upper half of the domain
becomes quite significant at larger supercriticality.
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factor of Pm on the x-axis collapses the data into a clear trend.
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Then the first term on the right hand side of eq. (3.3) is a source term for b from

the stirring of B̄ by u0. If we then assume a dominant force balance between this

source term and the diffusion of b, dimensional analysis reveals the following rela-

tionship between the perturbation field amplitude and the characteristic velocity

of the flow u0,

b ∼ LPmB̄u0, (3.4)

where L is a characteristic length scale. This analysis suggests that the amplitude

of the perturbation to the background magnetic field will scale linearly with the

characteristic speed of the flow.

As seen in Figure 3.8, the convective amplification is very small when PmUrms ∼

O(1). To have PmUrms ∼ O(1) suggests that Urms ∼ O(1/Pm). Setting

u0 = Urms and substituting Urms = 1/Pm into equation eq. (3.4) results in the

relation b ∼ LB̄. Since B̄ is the magnitude of the input boundary field, the per-

turbation strength will correspondingly be small. Physically this suggests that the

induced magnetic field perturbation diffuses more quickly than the source term

can generate the perturbation. However, as PmUrms becomes large the advection

becomes relevant and the perturbation grows linearly with the characteristic flow

speed.

3.4 Discussion

Motivated by the lunar problem, we studied the effects of rotating spherical

shell convection at nondynamo parameters on a steady dipole magnetic field as a

proxy for an interior dynamo. This setup is an example of the novel concept of

stoked nondynamos. A stoked nondynamo is a system that is not a dynamo in its

own right, but may appear to be a dynamo when stoked by magnetic flux from
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some outside energy source. If a lunar core dynamo exists, a nondynamo BMO

might very reasonably exhibit dynamo characteristics as a stoked nondynamo. A

key difficulty in explaining the observed lunar magnetism is that the lunar core

radius is very small, so magnetic field produced there would be greatly attenuated

when measured at the lunar surface. A stoked lunar BMO may be able to rectify

this issue by advecting and even amplifying the field in a region further out and

closer to the lunar surface.

In this stoked scenario, we found that the magnetic field does not decay dif-

fusively in this convective region, rather it is amplified to a significant strength

beyond the diffusive solution (Figure 3.7). Since we are unable to perform these

simulations at the proper lunar parameters, we sought to understand how this

convective amplification effect scales. We found that the amount of amplifica-

tion is dependent on the supercriticality of convection (Ra/Racrit) as well as the

magnetic diffusion of the convection (Pm). Using a simple stretching argument

on a weak dipole input field, the product PmRa (or PmUrms if Ra ∼ Urms)

emerged as a scaling for the amplification of magnetic field beyond the diffusive

solution. When the input dipole amplitude is too large nonlinear interaction tends

to quench convective velocities and we observed an insignificant amplification, so

for the purposes of this study we used a relatively small amplitude to observe the

effects of stretching.

The parameters we used in this study are much more modest than the actual

lunar BMO parameters. For the real lunar BMO, the Rayleigh number is on the

order of Ra ∼ O(1012 − 1018), Prandtl number on the order of Pr ∼ O(103),

magnetic Prandtl number on the oder of Pm ∼ O(10−5), and the Ekman number

on the order of Ek ∼ O(10−9). Theses extreme values of a real lunar BMO are

unfeasible for computation, so we would like to understand if our scaling would
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hold at these extreme parameters. For the three main parameters of this study,

Ra, Pm, and E, there is a battle between altering their values up to those which

achieve a dynamo. For fixed Pm, E, increasing Ra makes it easier to obtain a

dynamo, at fixed Ra, E, it becomes easier to obtain a dynamo at larger values of

Pm, and with fixed Ra, Pm, decreasing E is more suitable for obtaining a dy-

namo. Increasing Ra looks to be a good way to increase convective amplification

but eventually it will push the system into being a dynamo. Then if we reduce

Pm or increase E enough we can reenter the nondynamo regime. So it is difficult

to chose a path toward more lunar BMO-like values while maintaining a non-

dynamo system. Although our we are specifically studying a nondynamo BMO,

understanding the dynamo boundaries of these parameters gives some insight into

how efficiently convection can stretch and amplify magnetic field.

A natural consideration thereafter is how efficient is the nondynamo convective

amplification and can this process achieve values for the magnetic field that are

comparable to dynamo values? This is a difficult question to address and depends

on several factors. First, if we consider fixed values of Ra, Pm, and E, the size of

the resulting field in the system is very much dependent on the size of the input

field. So technically, we can achieve any dynamo value from the input field, but at

some point this becomes pointless as the system is then driven by the input field

and not by a stoking of said input field, suggesting that the core dynamo is already

much stronger than anticipated. Secondly, if we are considering a nondynamo

BMO, it is difficult and arguably meaningless to chose a characteristic dynamo

value to compare with. It is not at all obvious which dynamo parameters are the

correct dynamo parameters. Christensen & Aubert (2006) provide a survey of how

the characteristic magnetic field strength of dynamos scales at various parameters,

but given that we are interested in a nondynamo BMO it is illogical to attempt
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to follow these scalings to our parameter space.
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Chapter 4

Evolution of Twisted Three

Dimensional Magnetic Flux

Tubes in Convection

4.1 Background

Active regions of the solar photosphere are thought to be the manifestation of

emerging magnetic flux, which buoyantly rises from the deep solar interior. The

emerging magnetic flux of the active regions are widely believed to be organized

into coherent concentrations of toroidal magnetic field, referred to as magnetic

flux tubes. In order for a flux tube, presumably formed deep in or below the solar

CZ, to survive a buoyant rise without being ripped apart even in the absence of

convection, the magnetic field lines of the flux tube must be sufficiently twisted

(Schüssler (1979); Longcope et al. (1996)). The field line topology of the flux tube

is therefore an essential component of its dynamics.

As a measure of the topological complexity of twisted magnetic field lines,
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studies often track the current helicity, HC = B ·(∇×B), where B is the magnetic

field observed at the active region. Observations reveal trends or “rules” in the

helical attributes of active region magnetic fields. The solar hemispheric helicity

rules (SHHR) have been built from many studies measuring the current helicity

of numerous active region observations (for instance, Pevtsov et al. (1995)). The

SHHR are a weak set of rules, describing mainly that 60%-80% of active regions

contain a bias where the sign of the observed helicity is negative in the northern

hemisphere and positive in the southern hemisphere.

Many models seek to explain the existence of the SHHR, but possibly the lead-

ing theory is that of the Σ-effect (Longcope et al., 1998). The Σ-effect is a thin

flux tube model (a thin flux tube is essentially a line, having no cross sectional

area and with forces assigned to that line) which describes a process of inducing

twist into an originally untwisted tube. In the Σ-effect model, rotationally in-

fluenced helical turbulence transfers the bias of its kinetic helicity into a bias of

magnetic helicity in an isolated thin flux tube by a mean-field parameterization.

The kinetic helicity results in a net writhing, or deformation of the tubes axis.

Under the ideal assumption of the conservation of net helicity, this writhing must

result in a compensating net twist of the field lines. The Σ-effect produces results

consistent with the SHHR, producing negative helicity in the northern hemisphere

and positive helicity in the southern hemisphere, and even captures the statistical

scatter of the SHHR due to the turbulent nature of the model.

The Σ-effect is one plausible explanation of the origin of how an isolated flux

tube obtains twist, which results in a natural explanation of the origin of the

SHHR. Another more recent study models non-isolated twisted non-thin flux tubes

in the presence of a background magnetic field (Manek & Brummell (2021), hereby

referred to as MB). The study of MB explains how finite-sized flux tubes created
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with any initial helicity can be filtered out depending on how their field line twist

aligns with a background magnetic field. The origin of the SHHR in MB does not

occur during the buoyant rise through the CZ, but rather it results from the initial

configuration of the flux tube and the background field. MB shows that tubes are

more likely to rise if the twist at the bottom of the flux tube is aligned with the

direction of the background field. Although the Σ-effect and the study of MB

present different arguments for the explanation of the origin of the SHHR, it is

conceivable that some combination of these mechanisms, among others, contribute

to the overall picture.

The studies of MB are direct simulations of finite-size flux tubes and follow the

full dynamical evolution of the field and its topology, unlike the model heuristic

equations of the Σ-effect. The ideas of MB have been tested in 2.5D and 3D

simulations both with and without a convection zone to rise through. The ideas

are robust and the filtration/selection mechanism pervades. The Σ-effect has never

been tested by more realistic simulations such as these, and the pursuit of this is

our intention here. In this study, we therefore perform 3D MHD simulations to

analyze how robust the ideas of the Σ-effect are on twisted, finite cross-section

flux tubes in the presence of fully resolved rotating convection. Here we do not

investigate the origin of twist, rather we examine how the helical properties of

initially twisted flux tubes evolve during transit through rotationally influenced

convection. We will measure the magnetic field line twist of flux tubes after rising

through CZs of various rotational influences and investigate how the twist changes

compared with the initial configuration. If the ideas of the Σ-effect are robust,

then there should be some correlation between the rotational influence of the

convection and the deviation of the twist during the flux tube’s evolution.

The measure of field line twist in this study will naturally be different from
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the quantities of the Σ-effect study. We will model fully resolved 3D flux tubes,

so we will have access to data allowing us to follow the actual field lines of the

flux tube. Calculating how twisted the tube’s field lines are will allow us to track

the evolution of twist itself, rather than inferring twist from writhe as in the thin

flux tube case of the Σ-effect.

4.2 Model Formulation

The model used in this chapter is similar to that in Chapter 2, but we now add

rotation and employ a two-layer configuration. Following Brummell et al. (2002),

the two-layer penetrative convection model is setup to have a convectively unstable

upper layer with a second layer beneath that is stable to convection. To build

the penetrative setup we essentially stack two Cartesian domains of horizontal

extents 0 ≤ x ≤ xm and 0 ≤ y ≤ ym, with the top layer from 0 ≤ z ≤ d and

the bottom layer from d ≤ z ≤ zmd. The polytropic background state is then

piecewise continuous with polytropic indices mt and mb for the top and bottom

layers, respectively. The values of mt and mb are chosen such that the top layer

is convectively unstable and the bottom layer is stable. A measure of the relative

stability between the two layers is given by the stiffness parameter S (Hurlburt

et al., 1994),

S = mb − mad

mad − mt

, (4.1)

where mad = 1.5 is the adiabatic polytropic index for a monatomic ideal gas with

the ratio of specific heats γ = cp/cv = 5/3. The thermal conductivities of the two

layers are related via S by,

Kb

Kt

= mb + 1
mt + 1 = S(mad − mt) + mad + 1

mt + 1 . (4.2)
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The differing conductivities between the two layers are enforced by a piecewise

constant thermal diffusivity which is smoothed at the junction between the two

layers over a depth of 0.1d.

4.2.1 Equations

Using the same nondimensionalization from Chapter 2 and including rotation

in our two layer setup, the governing equations are

∂tρ + ∇ · (ρu) = 0, (4.3)

∂t(ρu) + ∇ · (ρuu − αmBB)+PrCkTa
1/2
0 (Ω̂ × ρu)

= −∇p̂ + ρgẑ+PrCk[∇2u + 1
3∇(∇ · u)],

(4.4)

∂tT + ∇ · (uT )+(γ − 2)T∇ · u = γCkρ−1∇ · (Kz∇T )

+ζCkαm(γ − 1)ρ−1|∇ × B|2 + Vµ,
(4.5)

∂tB + u · ∇B = B · ∇u − B∇ · u + ζCk∇2B, (4.6)

∇ · B = 0, (4.7)

p = ρT. (4.8)

The Coriolis force in the momentum equation contains the Taylor number Ta0

which is a measure of rotation compared to diffusive effects,

Ta0 = 4Ω2
0d

4

(µ/ρ0)2 =
(

ρ

ρ0

)
Ta, (4.9)

where we will evaluate Ta at the initial polytrope in the middle of the top

layer. The parameter Ω0 is the magnitude of the rotation vector Ω = ΩΩ̂ =

Ω0(0, cos(ϕ), − sin(ϕ)), where ϕ is the latitudinal angle of our local Cartesian do-
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main on a sphere. To quantify the influence of rotation over convective motions

we use the convective Rossby number Ro,

Ro =
(

Ra

TaPr

)1/2
, (4.10)

where Ro < 1 implies that the influence of rotation is significant.

The Rayleigh number Ra is now dependent on the layer it is measured in,

Ra(z) = θ2(mi + 1)
σC2

kz

[
1 − (mi + 1)(γ − 1)

γ

]
(1 + θz)2mi−1, (4.11)

where mi is the polytropic index of the layer and the thermal dissipation parameter

of the layer is Ckz = CkKz where Kz = Ki/Kt and Ck = Kt/(dρ0cp[(cp − cv)T0]1/2,

with Ki being the thermal conductivity of the layer. We will measure Ra evaluated

at z = d/2 of the initial polytrope.

The layer dependent Prandtl number Prz,

Prz = cpµ

Kz

, (4.12)

is the ratio of the viscosity to the thermal diffusivity of that layer and has different

values in each layer. However, the dynamic viscosity is CkzPrk = CkPr, which

is independent depth, so we will quote the Prandtl number evaluated in the top

layer Pr = cpµ/Kt. The magnetic Schmidt number ζ,

ζ = cpρ0η

Kt

, (4.13)

is the ratio of magnetic diffusivity to the thermal diffusivity quoted in the top

layer. Similarly to that of the viscosity, the diffusivity of the magnetic field, ζCk,

is independent of depth.
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All of our simulations will be performed on a 5122 × 600 grid with physical

extents 0 ≤ x ≤ xm and 0 ≤ y ≤ ym in the horizontal and 0 ≤ z ≤ zm in the

vertical, having xm = 6, ym = 6, zm = 2.5, and d = 1. We fix mt = 1, θt = 10,

Pr = 0.1, ζ = 0.01 and vary Ra by altering Ck. The chosen values of Ro will then

dictate the value of Ta used.

4.2.2 Boundary Conditions

The boundary conditions here are the same as in Chapter 2 except at the

bottom boundary zm where we now have that the heat flux is determined by

fixing the temperature gradient at z = 1 to θt.

4.2.3 Initial Conditions

The magnetic field is initialized with a flux tube of the form Bi = (Bx, By, Bz).

For r ≤ ro,

Bx(r) = −2qBy(r)zc − z

ro

, (4.14)

By(r) = 1 − r2

r2
o

, (4.15)

Bz(r) = −2qBy(r)x − xc

ro

. (4.16)

Here q = 0.5 is the twist parameter, ro = 0.1 is the maximum radius of the

flux tube, r =
√

(x − xc)2 + (z − zc)2 is a radial vector measured from the center

of the tube, and xc, zc define the center of the tube in the x- and z-directions,

respectively. The tube is initially axially symmetric in the y-direction with xc =

3.0 and zc = 1.25 unless otherwise stated. This canonical initial condition can be

seen in Figure 4.1 where we display vertical velocities of a typical hydrodynamic
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initial condition of convection along with a volume rendering of B2 showing the

magnetic flux tube positioned just below the convection zone. In Figure 4.2 we

plot several magnetic field lines from the initial condition. Each line loops around

the center of the tube ∼ 9.55 times as discussed in more detail later.

Figure 4.1: Volume renderings of a typical initial condition. Flux tube (green)
centered at zc = 1.25 with convective velocities (vertical velocity w, downflows
in red, upflows in blue). The image at the right shows that the magnetic flux
tube sits clearly in the overshoot zone of the two-layer convection and begins to
interact with the overshooting convective flows there.
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Figure 4.2: Several magnetic field lines (blue) of the magnetic initial condition
(zoomed in on the tube). The lines all loop around the center of the tube (black
line) the same number of times regardless of their position within the tube and
therefore the winding number of this initial condition is well-defined.

The hydrodynamic variables are initialized with statistically steady convection

at the appropriately chosen parameters which evolve from the polytropic state in

the absence of magnetic fields. The stiffness parameter S dictates how far into the

stable region convective motions from the top layer are able to reach. At S = ∞

no motions from the top layer are allowed into the bottom layer and the interface

between the two layers at z = d will essentially act as a solid boundary. At lower

values of S convective plumes from the top layer can overshoot into the bottom

layer due to their inertia, creating a region of convective overshoot. The extent
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of this region, known as the penetrative fraction ∆p, is typically measured as a

ratio of the depth at which motions extend below the convection zone to the total

depth of the convection zone (Brummell et al., 2002). Throughout this study we

will use S = 3, which corresponds to ∆p ≈ 0.5. With this value of S the initial

flux tube will be placed approximately at the bottom of the overshoot region.

4.3 Results

Our initial conditions necessarily started with a twisted tube to allow a coher-

ent rise of the tube in the absence of convection. Our goal in this chapter is to

study the effect of convection on this twist under the influence of various levels

of rotational influence. In order to achieve an understanding of the relationship

between the rotational influence on the convection and the resulting dynamics of

the twist, we require a readily accessible measure of the twist.

Since we are studying a fully resolved 3D flux tube, measuring the helical

properties will require considerable care. We will measure the degree of twist

using a winding number (see for instance, Prior & Yeates (2014); Berger & Prior

(2006)). Consider two distinct field lines f1, f2 which always travel in the positive

y-direction. We can parameterize the curves in y and then the vectors f1(y) and

f2(y) contain the (x, z) locations of the lines at every y position. Then the winding

number, L, is defined as the net rotation of the vector r = f2 − f1 as we move

along the tube from y = 0 to y = ym, given by

L(f1, f2) = 1
2π

∫ ym

0

d

dy
Θ(f1(y), f2(y))dy, (4.17)

where Θ(f1, f2) = arctan
(

zf1 − zf2

xf1 − xf2

)
. (4.18)

93



Here Θ(f1, f2) measures the angle between the two lines at every point along the the

y-direction from 0 to ym. With this definition, L tells us how many times the lines

f1 and f2 wind around one another. In this chapter, we will select the line f1 such

that it will define the center of the flux tube, but note that with this selection f1

is not necessarily a field line. Then, we will measure the winding number between

this center line and a number of field lines of the flux tube to obtain an average W ,

quantifying how twisted the flux tube is. As we will demonstrate, when the tube

is fully 3D with diffusion present, many difficulties arise in obtaining an objective

and consistent value for the winding number.

We define the averaged winding number W as,

W =
N∑

i=1
L(fc, fi)/N, (4.19)

where fc is the vector containing the (x, y, z) locations of the field line defining

the center of the flux tube, fi is the vector containing the (x, y, z) locations of the

ith field line of the flux tube, and N is the number of field lines being averaged

over. We integrate the field lines fi using a standard second-order Runge-Kutta

scheme where we select seeds at y = 0 and integrate through the y-direction to

y = ym = 6. The seeds are selected on the grid for every point (x, 0, z) meeting

the criteria that the magnetic energy is within 80% of the maximum magnetic

energy in the y = 0 plane. We found that this value gives a substantial number of

field lines for integration and therefore a reasonable average, and generally omits

weak field lines that tend to have complex topology.

As we will discuss in more detail later, when the flux tube interacts with con-

vection its originally axially symmetric shape will become distorted (writhed), and

defining the center of the tube may become somewhat ambiguous. The (x, y, z)

locations of the center line fc that we use are selected in each y-plane as the loca-
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tion of the maximum magnetic energy in that y-plane. We found that this choice

consistently produces well-defined locations and creates a smooth line to represent

the center of the tube in our simulations.

The consistency of this method of calculating W is verified against the an-

alytical winding of the initial condition. The definition of the initial condition

allows us to analytically calculate the axial distance a field line traverses for a

full rotation around the tube. The pitch angle θ of a field line (see for instance,

Hughes et al. (1998)), is the arctangent of the ratio of the magnitudes of nonaxial

and axial field. In our case, within the tube for r ≤ ro,

tan θ = Bnonaxial

Baxial

=
√√√√B2

x + B2
z

B2
y

= 2qr

ro

. (4.20)

Then the pitch angle is θ = arctan(2qr/ro). A simple trigonometric argument

can then be used to find that the axial distance ℓ a field line traverses for a full

rotation around the tube is ℓ = πro/q. From this we have that the number of

times a field line will wind around the tube in the y-direction from 0 to ym is

W = ym/(πro/q) ≈ 9.55. Using our method described above numerically on the

initial condition produces results within ±0.01 of this value. However, obviously

this is a very simple test and we must bear in mind the caveats of this fast method

for more complex magnetic field topologies.

4.3.1 Evolution of W over time due to diffusion

Although the direct numerical simulations of this study are at relatively high

resolutions, moderately low Prandtl numbers, and therefore, moderate Reynolds

numbers, the presence of molecular diffusion is still relatively important due to

the presence of relatively strong gradients. The magnetic field is zero everywhere

95



outside of the radius of the tube, so at the edge of the tube the magnetic gradients

are quite high and we might expect the tube to diffuse and for this effect to have

an impact on W . We want to be able to distinguish the effects of convection

from the effects of the diffusion of the tube on the value of W , so we first run

simulations in the absence of convection.

Only varying the parameter Ro and setting all initial velocities to zero, Fig-

ure 4.3 displays the value of W versus time in simulations of various rotational

influence with Ro = 1.0, 0.5, in rotation corresponding to both northern and

southern hemispheres, as well as a case with Ro = ∞ (no rotation). The result-

ing decay of W in each case here overlap very closely, barring numerical errors

that may occur in the calculation of field lines fi. This confirms the notion that

W will diffusively decay in the absence of convection, but also that the decay is

independent of rotation.

Given the differing levels of rotational influence, the magnetic flux tube buoy-

ant rise speed is impacted (Hughes (1985); Ziegler (2001)). Any velocity vectors

that are not purely vertical associated with a buoyant structure are deflected by

rotation, causing tilting and therefore a decrease in the vertical component. We

observe slower rise speeds at larger values of Ta and the fastest rise speeds with

no rotation. However, these changes in the rise speed of the tube do not appear

to play a role in the diffusive decay of W over time.

It is important to note that the density perturbation which induces buoyant

rise is symmetric along the axis of the tube, so the tube remains in a perfectly

straight orientation similar to the initial condition throughout the rise and does

not become deformed along its axis in any way. However, a density perturbation

of the form of a Gaussian function in the y-direction resulting in the rise of an

Ω-loop structure can result in a writhe of the tube’s axis by the action of the
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Coriolis force on the flows in the “legs” of the Ω-loop. This result is consistent

with Joy’s law in the presence of rotation and can actually result in the correct

sign of twist (Longcope & Klapper (1997), hereafter LK). However, LK points out

that the resulting writhes of their model are too small to match observations and

that the model does not account for the statistical scatter of the SHHR. As such,

to avoid Joy’s law tilts as a source of twist and to only study the Σ-effect, we

only consider density perturbations that are invariant along the axis of the tube

to induce magnetic buoyancy.

Figure 4.3: Diffusive decay of W versus time for five different parameter sets in
the absence of convection. Parameters of the simulations plotted include, Ro =
0.5, 1.0 with ϕ = +90◦ and ϕ = −90◦ as well as a case with no rotation (Ro = ∞).
The nearly identical decay of W at various rotational influences suggests the decay
of W in the absence of convection is purely diffusive and is independent of rotation.
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4.3.2 Evolution of W in the presence of convection

We now discuss a suite of simulations that include convection. The mag-

netic flux tube initial condition is the same as in the previous non-convection

simulations, but now we initialize the hydrodynamic variables with fully resolved

convection with various rotational influences. The critical Rayleigh number (Rac)

at which convection occurs (at least for Boussinesq convection) is dependent on

the Taylor number (Ta) as Rac ∼ Ta2/3 (Chandrasekhar, 2013) so as we adjust

the rotational influence we must keep in mind that the convective vigor will also

be altered. However, we note that the differences in the supercriticality (Ra/Rac)

of convection across our simulations are small (∼ O(1)) so we do not compensate

for the changing Rac in this study. Table 4.1 lists the basic parameters of our

collection of simulations at various parameters.

To obtain an idea of the impact of statistical variations that occur in convection

in a weakly Monte Carlo sense, we have multiple cases at the exact same parame-

ters, but the hydrodynamic initial conditions are taken from different snapshots in

time. We therefore always try to analyze W for three different realizations of the

convection for any set of parameters of interest. This is only a mildly Monte Carlo

approach and more realizations would be better, but each of these simulations is

500 × 500 × 600 and must be run for a significant amount of time. The numerical

costs are prohibitive to running more realizations in the scope of this dissertation.

Based on the Σ-effect results, we anticipate that larger rotational influence will

have a larger effect, so we mainly focus on varying Ro. As such, we analyze W

with Ro = 1.0, Ra = 4 × 104, ϕ = 90◦ using three different time dumps of the

hydrodynamic convection as initial conditions. We also include results of three

instances of convection with Ro = 0.5, Ra = 4 × 104, ϕ = 90◦, a case with non-

rotating convection at Ra = 4 × 104, cases with ϕ = −90◦ (southern hemisphere),
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Case Name Ro Ra ϕ

ro1a 1.0 4 × 104 90◦

ro1b 1.0 4 × 104 90◦

ro1c 1.0 4 × 104 90◦

ro05a 0.5 4 × 104 90◦

ro05b 0.5 4 × 104 90◦

ro05c 0.5 4 × 104 90◦

no_rot ∞ 4 × 104 NA
ro1a_s 1.0 4 × 104 −90◦

ro1b_s 1.0 4 × 104 −90◦

ro05a_s 0.5 4 × 104 −90◦

ro05b_s 0.5 4 × 104 −90◦

ro05_ra 0.5 2 × 105 90◦

Table 4.1: List of convection simulations with flux tube initially located at
zc = 1.25. All simulations have S = 3, mt = 1, θt = 10, Pr = 0.1, Q = 4 × 107.

and a case with Ro = 0.5 and higher Ra = 2 × 105.

4.3.3 General Dynamical Form of the Simulations

Since the initial configuration with the insertion of the magnetic structure is

not an equilibrium, the structure immediately begins to rise out of the overshoot

zone and through the convection by magnetic buoyancy. As magnetic structures

rise through convection, they become disrupted by convective motions and quickly

lose their initial y-direction symmetry. To understand the degree of deformation,

in Figure 4.4 we plot multiple field lines for the three instances of convection at

Ro = 1.0, Ra = 4×104, ϕ = 90◦ (cases ro1b, ro1c, ro1a_s) at several times during

the rise through convection. The red lines displayed in each panel are the many

field lines used in the calculation of W . The black lines on the ‘walls’ of the

domain are the projection of the center line onto that plane. The black lines give

a clear indication of the degree of deformation from the perfectly straight axially

symmetric initial condition due to interaction with the convection. The top and
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middle rows show cases ro1b and ro1c, which are two instances of convection at

the same parameters Ro = 1.0 in the northern hemisphere, and the bottom row

is case ro1a_s, which has the same Ro, but the domain is placed in the Southern

hemisphere instead of the default Northern hemisphere (that is, ϕ = −90◦ instead

of ϕ = +90◦). All three cases begin with a slight deformation as they enter

the convection zone near z = 1 (leftmost column), but by the last time step

(rightmost column) all cases are significantly deformed. The major deformations

of each case in the final frame of these plots is due to the tube interacting with

significant convective downflows, which we analyze more closely later. We find

that the degree of deformation is strongly dependent on whether the tube directly

encounters a convective downflow. We will quantify this by showing that all cases

typically result in a significant decrease in W as we will demonstrate shortly.

4.3.4 Effect of non-rotating convection on W

We now calculate the evolution of W in convective simulations and compare

them to the purely diffusive evolution seen in Figure 4.3. In order to quantify

the change in writhe and twist due solely to non-rotating effects, we first plot the

resulting W in a simulation of non-rotating convection in Figure 4.5. The early

evolution remains relatively consistent with diffusive values until around t = 0.84

where W = 8.1 and then drops drastically to W = 4.7 by t = 1.25. This is

due to a significant deformation of the center of the tube, as seen in Figure 4.6.

The initial evolution of the tube remains largely symmetric in the y-direction as

the tube traverses the overshoot zone and enters the lower convection zone, but

becomes increasingly deformed as the tube traverses the convection higher up.

A strong convective downflow (red) seen in the center of the domain prevents

portions of the tube from rising, leading to the drastic drop in W that we observe
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Figure 4.4: Magnetic field line evolution over time (left to right). The top and
middle rows are cases ro1b and ro1c, two instances of convection at Ro = 1.0 in
the northern hemisphere, and bottom is case ro1a_s, an instance of convection
with Ro = 1.0 in the southern hemisphere.
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in Figure 4.5.

Figure 4.5: Evolution of W versus time comparing the purely diffusive decay
(black lines) with a case of non-rotating convection at Ra = 4 × 104 (blue line).
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Figure 4.6: Flux tube (green) in the presence of non-rotating convection (vertical
velocity w, downflows in red, upflows in blue). Shown are times t = 0.40, 0.84, 1.25
(top to bottom). As the tube rises it interacts with a strong downflow in the center
of the domain, significantly deforming the tube.

4.3.5 Effect of rotating convection on W

Let us now compare convective simulations influenced by various levels of rota-

tion as measured by the Rossby number. Figure 4.9 and Figure 4.10 plot W versus

time for multiple realizations of rotating convection at Ro = 1.0, 0.5, respectively.
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All simulations have an early evolution in which the evolution of W proceeds sim-

ilarly to that of the diffusive solutions, but once the tube reaches the convective

region and interacts with convective flows, W begins to drop significantly faster

than the diffusive decay. We visualize the effects of the flow on the tube in a

simulation of one realization of the system with Ro = 1.0 in a volume rendering

in Figure 4.7. The tube seems to traverse the convective region without encoun-

tering any significant vertical velocities and is apparently only slightly deformed

in regions which rise quicker than others. However, the slight deformation of the

tube leads to a significant decrease in the winding number as compared with the

diffusive decay. We plot several field lines of this case in Figure 4.8, where we can

see the impact of the axial deformation of the tube on the field lines, elongating in

some regions and compressing in others. It is hard to visually guess what the net

effect on W is, especially bearing in mind the net diffusive loss, although increases

and decreases in the tightness of winding along the length can definitely be seen.
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Figure 4.7: Flux tube (green) in the presence of rotating convection (vertical
velocity w, downflows in red, upflows in blue) of a cases with Ro = 1.0. Shown
are times t = 0.48, 1.07, 1.54 (top to bottom). As the tube rises, it is not impacted
significantly by any significant vertical velocities, but is slightly deformed.
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Figure 4.8: Several randomly chosen magnetic field lines (red) of a rotating case
with Ro = 1.0 at times t = 0.48, 1.07, 1.54 (left to right). Several randomly chosen
field lines of the initial condition (blue) are shown for reference. Field lines are
elongated as the tube is deformed.

In these cases the rotation is in the northern hemisphere (ϕ = +90◦), so the

expectation of the Σ-effect theory is that the convection will have predominantly

negative kinetic helicity (due to spin down of expanding upflows and likewise spin

up of compressing downflows). Such motions are expected to instill a right-handed

writhe on any horizontal tube. A right-handed writhe should cause the field lines

to twist in the opposite sense, thus obtaining a left-handed (or negatively signed)

twist. Since our initial condition of the flux tube contains positive twist, the Σ-

effect theory anticipates some twist to be lost due to the action of the rotating

convection. Furthermore, it is expected from the Σ-effect that higher rotational

influence should result in a greater effect due to greater magnitude of kinetic

helicity and that in the southern hemisphere (ϕ = −90◦), all these processes

should have the opposite handedness, and so our initially positively-twisted tube

should gain more positive twist in that hemisphere. We can test all these ideas

here.

Comparing the quantitative counting of the winding number for Ro = 1.0

and Ro = 0.5, there is not an obviously greater loss in the Ro = 0.5 cases than

the Ro = 1.0 cases. Note that the differences in the timing of the simulations,

where Ro = 1.0 cases typically ran around 1 to 1.5 time units while Ro = 0.5 cases
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typically ran about 2 to 2.5 time units. This is due to the fact that larger rotational

influence tends to suppress buoyant velocities somewhat, as mentioned earlier. We

always try to allow the tube to traverse the convective region until the tube reaches

the top of the domain where it will encounter nonphysical boundary effects. Since

we end each simulation before the tube reaches the top of the simulation domain,

the simulations end at different times. So even though the Ro = 0.5 simulations

experience and interact with the rotating convection longer, they still did not

acquire noticeably more negative twist, as observed in Figure 4.11.

Figure 4.9: Evolution of W versus time comparing the purely diffusive decay
(black) with three cases of rotating convection with Ro = 1.0 (blue). The average
of the three cases is shown in red.
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Figure 4.10: Evolution of W versus time comparing the purely diffusive decay
(black) with three cases of rotating convection with Ro = 0.5 (blue). The average
of the three cases is shown in red.

Figure 4.11: Evolution of W versus time comparing the purely diffusive decay
(black) with the averages of the Ro = 1.0 and Ro = 0.5 cases.
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4.3.6 Evolution of W in the southern hemisphere (ϕ =

−90◦)

So far it has been difficult to distinguish any obvious rotationally influenced

effect on the value of W in our rotating convection simulations. A more definite

test is to reverse the rotation, which is equivalent to placing the domain in the

southern hemisphere (ϕ = −90◦) rather than the northern hemisphere (ϕ = +90◦).

In the southern hemisphere, the expectation of the Σ-effect is that the chirality of

the kinetic helicity should change sign and therefore the handedness of the writhe

and twist should also change. We would then expect our twisted initial condition

to gain positive twist, rather than lose twist.

We plot results for southern hemispheric convection in Figure 4.12 and Fig-

ure 4.13, Ro = 1.0 and Ro = 0.5 respectively, and we find that not only is the

diffusive decay not counteracted in any noticeable fashion, but in fact W decreases

similarly to the northern hemisphere cases. The evolution of W tends to follow the

diffusive solution initially, and then decreases drastically as the tube is deformed

by convective motions. For instance, in Figure 4.14 we plot magnetic field lines

of one of the realizations of the Ro = 1.0 in the southern hemisphere at three

time steps t = 1.04, 1.27, 1.45 where a drastic decrease in W occurs. Especially

at later times, we observe that two large portions of the tube have risen much

further than the rest of the tube (this is easiest to see in the black centerline pro-

jection on the right-hand wall). Looking at the tube in a volume rendering of the

vertical velocities in Figure 4.15, we can see two strong upflows pushing portions

of the magnetic field upwards at around one-third and two-thirds of the length of

the tube. We further observe downflows around the center of the tube and near

the boundaries. These competing flows swiftly deform the tube drastically in the

vertical direction and cause field lines to be stretched out and unwound.

109



Figure 4.12: Evolution of W versus time comparing the purely diffusive decay
(black) with two cases of rotating convection in the southern hemisphere with
Ro = 1.0 (blue). The average of the two blue cases is shown in red.
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Figure 4.13: Evolution of W versus time comparing the purely diffusive decay
(black) with two cases of rotating convection in the southern hemisphere with
Ro = 0.5 (blue). The average of the two cases is shown in red.

Figure 4.14: Several randomly chosen magnetic field lines (red) of a rotating
case with Ro = 1.0 in the southern hemisphere at times t = 1.04, 1.27, 1.45 (left
to right). Several randomly chosen field lines of the initial condition (blue) are
shown for reference. Field lines are elongated as the tube is drastically deformed.
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Figure 4.15: Flux tube (green) in the presence of rotating convection (vertical
velocity w, downflows in red, upflows in blue) in a case with Ro = 1.0 in the
southern hemisphere. Shown are times t = 1.04, 1.27, 1.45 (top to bottom). As
the tube rises, portions of it interact with downflows and other portions interact
with upflows, causing significant deformation very quickly.

4.3.7 Evolution of W at increased Ra

Throughout this study, we have yet to observe a clear indication that rotat-

ing convection has a handed effect on the twist of buoyantly rising magnetic flux
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tubes. Despite the coarse nature of these explorations, it appears that, in all cases,

the deformations of the magnetic structures by the convective upflows and down-

flows seem to dominate over any kinetic helicity effect, and the trend is always

to unwind the twist of the structure at a rate faster than that of diffusion. One

reason we might be unable to detect any rotational influence is that convection

in these simulations may not have a sufficiently wide range of scale separation to

be in a regime consistent with the assumptions of mean-field theory. Observing

the previously shown volume renderings of convective velocities, one may notice

that the convection is dominated by large-scale features and not by small-scale

turbulent features much smaller than the tube length scale (although it should

be noted that it is these larger-scale convective features that might be expected

to have the sense of kinetic helicity that the Σ-effect desires). In an attempt to

increase convective vigor and its associated range of scales, and perhaps subse-

quently achieve dynamics closer to those of the mean-field Σ-effect models, we

have performed another calculation increasing the Rayleigh number five-fold to

Ra = 2 × 105 with Ro = 0.5.

In Figure 4.16 we plot W versus time for this increased Rayleigh number sim-

ulation. Again we observe an initial evolution that follows the diffusive decay and

subsequently drops off as the tube interacts with convection. The evolution is

quite similar to the previous cases until around t ≈ 1.5, where the value of W

begins to increase. Investigating the evolution of the tube over time, we see in

Figure 4.17, where we display volume renderings of the flux tube (green) with ver-

tical velocities (upflows in blue, downflows in red) at times t = 1.13, 2.16, 2.81 that

the tube does not substantially rise, but rather it rises slightly in the beginning

and then sits near the base of the convective region. This happens because when

increasing Ra, to fix Ro the value of Ta must correspondingly increase and thus
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the rise speed decreases. The impeded rise of the tube can be seen in Figure 4.18,

where we track the location of the flux tube in a non-convecting simulation.

Figure 4.16: Evolution of W versus time comparing the purely diffusive decay
(black) with a case of rotating convection (blue) with Ro = 0.5 and Ra = 2 × 105.
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Figure 4.17: Flux tube (green) in the presence of rotating convection (vertical
velocity w, downflows in red, upflows in blue) in a case with Ro = 0.5 and Ra =
2 × 105. Shown are times t = 1.13, 2.16, 2.81 (top to bottom). The tube rises
slightly and then sits in place near the bottom of the convective region. It becomes
deformed as it is pushed and pulled around by convective velocities.
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Figure 4.18: Location of the maximum magnetic energy in a non-convective
simulation with Ro = 0.5 and Ra = 2 × 105.

In order to counter this effect and increase the rise speed, one could increase

the magnetic field strength (governed by αm). However, at the convective param-

eters we are using, this is limited since too large of an increase in αm will result

in a negative density deficit when applying a density perturbation to account for

the presence of the tube. So an interesting conundrum is understanding the cir-

cumstances under which we could obtain a sufficiently turbulent convection with

sufficient rotational influence at the smaller scales (higher rotation rates), and a

sufficiently strong magnetic field that can not only buoyantly rise at the proper

parameters, but can also survive the vigorous convection.
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Figure 4.19: Several randomly chosen magnetic field lines (red) of a rotating
case with Ro = 0.5 and Ra = 2 × 105 at times t = 1.13, 2.16, 2.81 (left to right).
Several randomly chosen field lines of the initial condition (blue) are shown for
reference. The tube does not rise much but the field lines are elongated at early
times and compressed at later times.

4.4 Discussion

In order to examine a more realistic implementation of the Σ-effect model as an

explanation of SHHR, we studied the degree to which the magnetic field line twist

of rising flux tubes is impacted by the presence of rotating convection. Our two-

layer model only has a small number of scale heights in the CZ so it only represents

the lower solar convection zone and the RZ below it. The SHHR is a weak rule

(followed by only 60%−80% of active regions) describing a correlation between the

hemisphere that an active region resides in and the handedness of the magnetic

helicity (or current helicity) of said active region. Helicity describes the degree

at which a magnetic field is twisted and writhed and typically in observations

helicity refers to the twist component of helicity as these quantities are measured

in two dimensional regions of the solar photosphere (see, Pevtsov et al. (1995)).

The original paper by Longcope et al (1998) on the Σ-effect analyzed how an

untwisted flux tube may become twisted when in the presence of helical turbulence

that can alter the writhe of a flux tube and therefore affect its twist. The Σ-effect

produces results in agreement with some very important aspects of the SHHR,
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such as the proper correlation between hemisphere and handedness, as well as

the statistical variation of the observations. However, the Σ-effect is a mean-field

effect based on the thin flux tube approximation, which means the flux tubes in

the Σ-effect study have no cross-section and are represented as purely a line. This

means the only component of helicity that can actually be observed is the writhe

of the tube and the twist is inferred from the writhe. Thin flux tubes also do

not have realistic buoyant dynamics. There are no vortices driving the buoyant

rise as there are for finite-width tubes, and there is a lack of any real sense of

twist, which is known to substantially affect the dynamics by holding a 3D flux

tube together with magnetic tension forces during the buoyant rise. With these

points in mind, our aim in this study was to investigate a macro scale model of

the same underlying situation to see if we could recover the mean-field results or

not in simulations of fully three dimensional magnetic flux tubes in the presence

of fully resolved simulated rotating convection.

We want to point out that in the Σ-effect study, the helical turbulence uni-

formly contains a specific chirality, namely negative kinetic helicity in the northern

hemisphere and positive kinetic helicity in the southern hemisphere. There is an

implicit assumption in deriving the correct handedness rules that, in the bulk of

the convection zone at least, rising fluid expands and spins down, whereas down-

flows contract and spin up, to give the aforementioned helicities. However, this

is not always the case in full simulations of rotating convection (see for instance,

Brummell et al. (1998)). The sign of kinetic helicity is actually not uniform ev-

erywhere in resolved rotating convection models of this kind. To illustrate this in

our results, we plot time and horizontally averaged kinetic helicity versus depth

for several rotational influences in Figure 4.20. The non-rotating convection case

stands out as not having a definite sign of kinetic helicity, and the northern and
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southern hemisphere rotating cases clearly exhibit a pattern dependent on the

hemisphere. However, the dependence of the sign of kinetic helicity is not strictly

dependent on the hemisphere, as all cases have some positive and some negative

regions of kinetic helicity in the CZ. This disparity in the sign of kinetic helicity is

not accounted for in the Σ-effect model, but might play a large role when modeling

fully resolved flux tubes in rotating convection, especially when the lower regions

change sign (away from the upper boundary) since this is the region that our flux

tube traverses.
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Figure 4.20: Horizontally averaged kinetic helicity as a function of depth. The
dotted horizontal line indicates the base of the convection zone.

Given the thin flux tube nature of the Σ-effect, the calculation of how the
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tube is twisted is a direct consequence of the degree at which the tube is writhed

by the helical turbulence. In our three dimensional magnetic flux tubes, we can

directly examine the actual magnetic field lines of the tube and calculate a measure

to quantify how their twist might evolve over time in the presence of rotating

convection. As a measure of the twist of field lines in our simulations, we have

elected to measure a winding number, W , which counts the number of times field

lines complete a full rotation around the center of the flux tube (our winding

number calculation relates to the Gauss linking number; for instance, see Berger

& Field (1984) or Berger & Prior (2006)).

At various parameters of rotating convection we tracked the winding number

W over time as the magnetic flux tube rises into and through the convection

and compared this evolution with how W decays diffusively in the absence of

convection where an axially symmetric rise of the tube occurs. All of our results

are summarized in Figure 4.21. We found no clear indication of a Σ-like effect in

the 3D flux tube simulations. We could not discern a Rossby number dependence

of W over time, nor could we even see a clear difference even between simulations

in opposite hemispheres. However, in all convective cases we observed a decrease in

W which was faster than the diffusive decrease of the non-convection results. We

conclude that we are not observing a rotational influence like that in the Σ-effect,

but rather an effect that is more like a turbulent diffusion in the mean-field context

because it is associated with the randomness of the interaction with the convective

upflows and downflows rather than any acquired rotational effects. We do note

that different realizations of convection at the exact same parameters produce

substantially different changes in W , so it is possible that we might observe a

trend similar to the Σ-effect by taking averages over a much larger sample, but

taking a Monte Carlo-like approach with these large simulations would be very
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computationally expensive because of the resolutions we must use.

Figure 4.21: W versus time comparing the various degrees of rotational influ-
ence.

It should be noted that it is hard to guarantee comparability across our suite

of simulations when altering parameters. Given that we want to measure the ef-

fects of the transfer of kinetic helicity of the rotating convection, we ideally want

to make sure that the convection has the same chance to impart its properties

onto the magnetic field in all convective cases. This is difficult because to per-

form a survey of rotational effects and give a flux tube similar opportunities to

be influenced by the rotation, we must alter more than just the rotation. For

instance, the buoyant rise speed of the flux tube is dependent not only on the

strength of the field, but also on the influence of rotation (rise speed increases

with stronger field strength αm but decreases with stronger rotational influence

Ro). Therefore, to have similar rise times for a varying rotation rate, we should

consider compensating by varying the initial field strength. Also, in order for
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the flux tube to remain coherent as it rises through convection, the strength and

twist of the tube must be sufficient to hold it together against the vigorous flows

of convection (the tendency for the magnetic tube to remain coherent during a

buoyant rise increases with strength of field αm and increases with larger twist q

but decreases with stronger convective vigor Ra/Racrit where Racrit depends on

Ta). Since many of these relationships are not well understood, and even influence

each other (e.g. increasing the rotation decreases the supercriticality and vigor of

the convection), it is hard to guarantee perfect comparisons.

As for the calculation and definition of W , we found that it is difficult to

measure an accurate and consistent value for W with turbulent and diffusive effects

present. As the flux tube interacts with convection, magnetic field lines tend to

be dragged around by convective velocities and occasionally end up leaving the

domain or being diverted far from the bulk of the field lines, causing the flux tube

to appear to be fragmented. In these cases, it can be difficult to say whether the

fragmented field lines should be considered part of the flux tube and be included

in the calculation of W or not. Another difficulty arises when defining the center

line on which to base the calculation of W . In the initial condition and even in

the non-convection cases where the tube remains symmetric along the y-direction,

there is a clearly defined center of the tube and thus we are able to calculate a

consistent and repeatable value for W with ease. However, the tube loses its y-

symmetry as it becomes writhed when interacting with convective flows. With

diffusion involved, the convection tends to separate parts of the tube, which then

diffuses away faster than the bulk of the twisted flux tube, causing variations in

the flux tube radius along the axis of the tube. These difficulties require us to

make a decision as to what defines the tube itself and its center as it becomes

deformed by convection. With this in mind, we chose to measure the center of the
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flux tube as each point in the y-direction having the maximum magnetic energy

at each y-value and to avoid fragmented magnetic field lines we only calculate

field lines that fall within 80% of the maximum magnetic energy.

The overall conclusion that there is no obvious rotational influence observed in

our simulations might ultimately be due to the supercriticality of the convection.

Since we were essentially trying to do a full-scale version of a mean-field effect it is

possible that we do not have the proper separation of scales to be comparable to

the Σ-effect. To achieve a greater separation of scales we would have to increase

the supercriticality (Ra) of convection, but in order to ensure that the smallest

turbulent scales are influenced by rotation, the rotational influence would also have

to be very high (corresponding to low values of Ro). As mentioned previously,

if we increase the rotational influence and increase supercriticality the magnetic

flux tube will tend to rise more slowly in the domain and be more likely to lose

coherence. Simulations at these more extreme parameters may possibly show

something similar to the Σ-effect, since the trend would be more towards the

scale separation that is necessary for the mean-field effects to become relevant,

but it becomes hard to imagine how to achieve significant rotational influence on

the small scales without destroying the rise of the tube. Much stronger fields in the

tube would be required to circumvent both the rotational rise suppression effect

and the increased turbulent pumping of the stronger convection. Simulations at

such parameters are unfortunately extremely computationally intensive, so as yet

there is no clear answer to this conundrum.

This raises the questions of, if the Σ-effect is to operate, then how strong must

the flux tubes be to survive the transit and yet still be influenced by the kinetic

helicity of the convection, and what processes can produce such strong structures?

Overall, the Σ-effect appears to be a conceptually nice idea for the transfer of
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kinetic helicity into magnetic helicity, but our initial attempts at verifying these

with more realistic types of modeling have not succeeded in confirming the effect.

These simulations of course were fairly crude and definitely need more study (in

the statistical sense) for a better understanding of the possibilities.
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Chapter 5

Conclusion

In this dissertation, we studied novel ideas in dynamo theory having relation-

ships and applications to the solar, geo, and lunar dynamos. These applications

are classic examples of the many situations in the universe where dynamo action

is expected to be the primary support for the existence of a magnetic field. How

these processes generate and maintain the magnetic activity that we observe is

one of the significant problems of physics that is still not fully understood. Many

theories provide a framework for our current understanding, but many are reduced

models relying on suspicious assumptions. Much of this issue stems from the fact

that most relevant dynamos operate in a highly turbulent regime, which is only

tractable mathematically when such reduction assumptions are made. The alter-

native is to resort to fully nonlinear simulations, which can be as hard to interpret

as real-world applications. Furthermore, the reduced models and the simulations

often do not converge to a mutually acceptable answer. This tends to suggest

that often, we do not understand the role of nonlinearity, or we do not under-

stand dynamos at all. With these thoughts in mind, the work we have followed

has tried to better understand the role of nonlinearity in dynamos and examine

some novel relaxations of the restrictions of formal dynamo theory. Ultimately,
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we are interested in serious applications, so in the end, we return to a specific

process amongst solar dynamo theory.

In Chapter 2, we focused on the role of nonlinearities in dynamos. We exam-

ined the ideas of “essentially nonlinear dynamos (ENDs),” particularly a specific

dynamo model originally put forth in CBCb. In CBCb, the authors claim that

their dynamo system is essentially nonlinear, where an initially strong magnetic

field is required to drive a shear instability, which provides the necessary fluid flows

for maintaining dynamo action. However, upon further inspection, we found this

not to be the case. It turns out that at the parameters quoted in CBCb, the

existence of the shear instability was not reliant on the presence of a strong mag-

netic field (or any magnetic field for that matter). The shear instability in CBCb

can drive a dynamo regardless of the initial magnetic field strength. As such, the

system does not behave as an END, but rather as a more standard kinematic

dynamo. In this work, we investigated the CBCb model further. We eventu-

ally uncovered a parameter regime in the same system that exhibited essentially

nonlinear dynamo behavior, albeit in a different and highly subtle manner.

The work in Chapter 2 of this dissertation has demonstrated that the role

of nonlinearity in dynamo systems does not have to be confined to the role it

takes in mean-field dynamos, where nonlinear interactions between the magnetic

field and the velocity field only act to saturate growing magnetic fields (“essential

kinematic” behaviors). In these END systems, nonlinearity plays an important,

and even essential role, in driving the dynamo action from the start. Given that

the overwhelming majority of dynamo studies are looked at from the mean-field

perspective, this work provides a novel outlook for studying dynamo systems

which may be difficult or even impossible to understand by only invoking mean-

field ideas.
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The END model of Chapter 2 contains very particular aspects motivated by

processes found in many dynamos, such as shear and magnetic buoyancy. The

source of the essential nonlinearity, in this case, is due to a specific selection of the

shear forcing. The original suggestion of CBCb for the operation of an END in this

system was that the system was reasonably close to shear linear instability and the

role of the magnetic field was to “push the system over the edge” by introducing

modes that were not present in the absence of magnetic fields. Ultimately, we find

a different scenario, where an END is only possible at parameters in the system

where there are multiple hydrodynamic states due to subcritical instability, and

a sufficiently strong magnetic field can push the system into a new simultaneous

(in parameter space) but different dynamo states, depending on its interaction

with the hydrodynamic instability. The presence of multiple states makes the

END concept more complicated than it was initially. For example, the question

is raised as to whether the definition of an END requires that the final state

can only be achieved by the action of a large magnetic field, or whether merely

ending up in that state is enough. Future work in ENDs may study these two

somewhat different scenarios for achieving END systems (close to marginal, or

subcritical). These ideas may help locate simpler and perhaps even more directly

relevant examples.

In Chapter 3 of this dissertation, we built on another novel idea in dynamo the-

ory: stoked nondynamos. Stoked nondynamos are systems that cannot maintain

dynamo action in isolation, but can mimic a true dynamo system if continually

supplied with weak magnetic energy from an external source. The dynamo prob-

lem, identifying and classifying systems that can be capable of generating and

maintaining magnetic energy against dissipative effects, has generally and almost

exclusively been studied for closed systems. The systems studied in dynamo cal-
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culations typically have no imposed source of magnetic energy besides the initial

field. However, most realistic systems are not strictly closed. Realistic situations

are usually subdomains of a larger system and, likely, they are not completely

isolated from other sources of magnetic field. Thus we have extended the ideas of

stoked nondynamos to an application of the extinct lunar dynamo.

Measurements of the paleointensities of lunar rocks revealed that the moon

had a very strong magnetic field in the past which must have been due to a self-

sustaining dynamo within the lunar interior. However, dynamo models of isolated

core convection have been unable to explain the large magnitudes observed at

the lunar surface. An alternative model from Scheinberg et al (2018) proposed

that the lunar dynamo was seated solely in a BMO surrounding the lunar core.

Their dynamo model only explains the observations if the material of the BMO

has specific, possibly unlikely, properties. In Chapter 3, we built on the ideas

of Scheinberg et al (2018) and relaxed the dynamo constraint on the BMO. In-

stead, we assume the lunar core operates as a self-sustaining dynamo that can

continually supply a nondynamo BMO with magnetic energy, creating a stoked

nondynamo setup for the BMO where the external magnetic energy is supplied to

the domain from a magnetic boundary condition. With this setup, our model can

demonstrate the plausibility of this stoked system for explaining the unusually

high lunar paleointensities.

The study of Chapter 3 is, however, somewhat limited and can certainly be

improved upon. To simplify our study, the parameter space investigated was

quite narrow, restricted to only one value of the Ekman number and Prandtl

number. A natural extension of this study is to investigate whether the scaling

we obtained holds for more general values of our parameters. This would allow for

a more convincing scaling to extend to more realistic parameter values. Another
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limitation of this study is that the scaling we obtained is a purely kinematic

effect. It may be likely that a real lunar core dynamo would produce magnetic

field strengths that cannot be treated in a kinematic fashion. One way to improve

this would be to investigate a two-layer system with a fully resolved core dynamo

instead of emulating a core dynamo magnetic field from a boundary condition.

In Chapter 4 of this dissertation, we investigated twisted magnetic flux tubes

in an application to explain observations of the solar magnetic field. The SHHR

explains that helical magnetic fields observed in solar active regions in the northern

and southern hemispheres have a definite sign of twist, negative in the northern

hemisphere and positive in the southern hemisphere. The Σ-effect (Longcope

et al., 1998) seeks to explain the origin of the SHHR by modeling a process where

untwisted thin flux tubes can acquire twist in the presence of helical turbulence.

While the Σ-effect can produce results consistent with the SHHR, the model uses

mean-field effects where the helical turbulence is parameterized. Further, thin flux

tubes are essentially lines having no cross-sectional area. The twist of magnetic

field lines is then not directly measured, it is inferred by measuring the writhe of

the thin flux tube. Since there is no actual physical twist of magnetic field lines,

it is unclear what should happen to the thin flux tube during a buoyant rise. The

buoyant dynamics of 3D flux tubes are greatly impacted by the twist of field lines

that hold the flux tube together with magnetic tension forces.

With these points in mind, we sought to study the robustness of the Σ-effect

mechanism on 3D finite cross-section flux tubes. We perform fully resolved rotat-

ing convection simulations and measure the twist of finite cross-section flux tubes

as they buoyantly rise. Our measurements revealed that as flux tubes buoyantly

rise through convection the twist of the magnetic field lines decreases regardless of

the degree to which the convection is rotationally influenced. This was surprising
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because the Σ-effect demonstrates that larger rotational influence should have a

more significant effect on the twist of the thin flux tube and that there is even an

opposite effect in different hemispheres. However, we were unable to exemplify

these ideas in our 3D simulations. There is a recent study by Liu et al. (2023)

suggesting that the kinetic helicity of convection observed at the sun may not

have a hemispheric bias. If this is found to be true, then the arguments of the

Σ-effect for the origin of the SHHR may be invalidated.

It is possible that the convection in our simulations does not have the proper

scale separation to be comparable to the mean field Σ-effect. To achieve this we

would need to increase the convective vigor in the simulations significantly, but

the simulations of this study are already performed at large resolutions. Resolving

the smaller scales of more turbulent convection would require larger resolutions

and would be much more costly. It is also possible that our sample size in this

study is too small to represent the statistics of convection at the parameters we

used. It would certainly be more conclusive to take a Monte Carlo-like approach

to gather more data, but again, this could be quite computationally expensive.

Another difficulty that we found with this study is that it is quite difficult to

explore an ample parameter space and have the 3D flux tube transit a convection

zone without being ripped apart by convection. This may have implications when

considering the real solar scenario. If real flux tubes form at the solar tachocline,

will they be able to remain coherent as they rise through the entire convection

zone to emerge at the surface? Many factors are involved in determining this

question. Highly turbulent convection, such as that present in the solar CZ, tends

to pump magnetic fields downward. Additionally, strong rotation can suppress the

rise of magnetic flux tubes. These effects put constraints on the parameters that

help magnetic fields become buoyant as well as remain coherent during transit
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through the CZ. With these effects in mind, we may need to consider that the

magnetic flux tubes are produced elsewhere within the solar interior, perhaps in

the near-surface shear layer. This would lessen the amount of time the flux tube

takes to transit from where they are formed to emerge at the surface, so the flux

tube may be less influenced by the helical properties of the convection. This would

make the ingredients of the Σ-effect less potent and may explain the discrepancies

we observed in Chapter 4.

New information is being gleaned about magnetic fields in the universe all the

time. The solar magnetic field is constantly being monitored and new missions

seek to uncover detailed information that has never been discovered before. For

instance, the recent Parker Solar Probe travels into the Sun’s atmosphere, closer

to the solar surface than any other spacecraft before it. The Parker Solar Probe

will hopefully provide new insights into the operation of the solar dynamo by

making detailed observations of the workings of the solar wind. Dynamo theory

has not advanced tremendously since the early days of mean field models and

so we continue to look for novel avenues. Fortunately, numerical simulations

continue to inspire us by providing insights into highly nonlinear situations while

still providing us with enough information to be able to decipher the mysteries

they bring. It is therefore hopeful that the future of dynamo theory will continue

to expand and one day be able to explain the complex nonlinear dynamos that

are present throughout the universe.
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