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ABSTRACT: Exposure to heat is associated with a substantial
burden of disease and is an emerging issue in the context of climate
change. Heat is of particular concern in India, which is one of the
world’s hottest countries and also most populous, where relatively
little is known about personal heat exposure, particularly in rural
areas. Here, we leverage data collected as part of a randomized
controlled trial to describe personal temperature exposures of adult
women (40−79 years of age) in rural Tamil Nadu. We also
characterize measurement error in heat exposure assessment by
comparing personal exposure measurements to the nearest ambient
monitoring stations and to commonly used modeled temperature
data products. We find that temperatures differ across individuals in
the same area on the same day, sometimes by more than 5 °C
within the same hour, and that some individuals experience sharp increases in heat exposure in the early morning or evening,
potentially a result of cooking with solid fuels. We find somewhat stronger correlations between the personal exposure measurements
and the modeled products than with ambient monitors. We did not find evidence of systematic biases, which indicates that adjusting
for discrepancies between different exposure measurement methods is not straightforward.
KEYWORDS: India, heat, temperature, exposure assessment, personal monitoring

■ INTRODUCTION
Exposure to hot temperatures is a top environmental risk factor
for global mortality.1,2 In 2019, an estimated 308 000 deaths
were attributed to heat exposure;3 this already substantial
burden is expected to increase as the climate continues to
warm.4 Heat is also associated with a substantial morbidity
burden, as well as with reductions in labor productivity.5 Heat
exposure is of particular concern in India�a hot country and
also the world’s most populous6�where a large fraction of the
population works outdoors, lives in dwellings that are
thermally inefficient, and is unable to access cooling
technologies such as fans or air conditioners.7

Despite these concerns, relatively little is known about
personal exposure to ambient temperatures in India,
particularly in rural areas. Ambient monitoring stations are
sparse and even where present may not accurately represent
individual exposures, as people frequently move between
indoor and outdoor environments, both in the sun and in the
shade. Improving exposure assessment for temperature can
enhance our understanding of the health effects of heat and
cold by reducing potential biases and measurement errors
associated with ambient monitors and modeled products,
which are commonly used in epidemiological and burden of
disease studies.1,8,9 Personal measurements may also highlight

opportunities for intervention by identifying high-exposure
activities.
In this study, we leverage data collected as part of the

Household Air Pollution Intervention Network (HAPIN)
randomized controlled trial of cookstove replacement to
describe personal temperature exposures of adult women in
rural Indian villages in Tamil Nadu. In addition, we compare
personal exposure measurements to the nearest identified
ambient monitoring stations, as well as to two sources of
modeled temperature data often used in health effect studies
(due in part to the limited spatial coverage of the ambient
monitoring network).8 Through these comparisons, we assess
potential measurement errors when using proxies for personal
temperature exposure.
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■ METHODS
HAPIN Trial: Overview, Study Site, and Data

Collection. The HAPIN multicountry randomized controlled
trial (RCT) evaluated the effect of a liquefied petroleum gas
stove and fuel intervention during pregnancy on birth weight,
growth, and severe pneumonia in children and on blood
pressure among adult women (40−79 years of age). The trial’s
research sites are in four diverse low- and middle-income
settings: Guatemala, India, Rwanda, and Peru. The study began
in 2017; the analysis of trial findings is ongoing. Details of the
HAPIN trial have been published elsewhere.10,11 The trial is
registered with ClinicalTrials.gov (Identifier NCT029446282).
Here, we focus exclusively on non-pregnant adult women

participants from the Indian site of the HAPIN trial, which
consists of two districts, Villupuram, and Nagapattinam, in
Tamil Nadu (Figure 1). The hilly Villupuram study site is
located at an altitude of approximately 800 m above the sea
level, while the Nagapattinam site, a coastal area, is located at
an average elevation between 10 and 50 m above the sea level
(full details on the sites, and how they were selected, are in
Sambandam et al.12).
As part of the trial, participants were asked to wear a vest

holding an Enhanced Children’s MicroPEM (ECM, RTI
International, North Carolina), a robust, lightweight, and
validated nephelometric and gravimetric PM2.5 monitor. Vests
were codesigned with community members to minimize

discomfort from wearing devices while also ensuring that
samplers were properly oriented and placed.10 The ECM
weighs approximately 150 g and is capable of operating
continuously for up to 48 h. These instruments measure
temperature and humidity to correct real-time estimates of air
pollution levels; here, we take advantage of these measure-
ments as a representative of temperatures experienced by
participants as they move through space and time. Temper-
ature is logged every 30 s. Participants were asked to wear the
vest while awake during the day and to hang the vest nearby
when it is not being worn (such as while bathing or sleeping).
The study evaluated exposures for 24 h periods on at least
three occasions for each participant over the course of the 18-
month HAPIN follow-up period.

HAPIN Ambient Monitors. In addition to personal exposure
assessment, two ambient PM2.5 monitors (Met One E-Sampler,
Grants Pass, Oregon) were installed in the HAPIN study
districts in Tamil Nadu to measure outdoor particulate air
pollution (Figure 1). They also log meteorological parameters
at 5 min resolution. We use these monitors, which we refer to
as “HAPIN ambient monitors,” as one point of comparison
with personal monitors.

GHCN Ambient Monitoring Stations. As a second point of
comparison with personal monitors, we obtained daily
contemporaneous temperature measurements from the nearest
established ambient monitoring stations available from the
archive of the Global Historical Climatology Network

Figure 1. Map of the study villages and ambient monitors overlaid with grids from the two modeled temperature products. The districts of
Villupuram (to the north) and Nagapattinam are shaded in pink.
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(GHCN), accessed via the US National Oceanographic and
Atmospheric Administration’s National Centers for Environ-
mental Information. The data were extracted by using the R
package rnoaa. The locations of the stations relative to the
study locations can be found in Figure 1.
Modeled Temperature Data. As a final point of

comparison, we extracted contemporaneous temperature
estimates from two modeled data products. The first is the
ERA5-LAND product, which is a high-resolution (9 km)
reanalysis data set based on the H-TESSEL land surface
model.13 The data set provides hourly estimates at 2 m above
the land surface. ERA-5 data have been increasingly used in
health effect studies.1,9,14 The second product is NASA’s
GLDAS-2 product,15 which provides temperature estimates
every 3 h at a spatial resolution of 0.25 × 0.25°, a scale coarser
than ERA-5 (Figure 1). GLDAS generates its estimates by
fusing satellite- and ground-based observational data products,
using advanced land surface modeling and data assimilation
techniques.15

Data Analysis. First, we calculated descriptive statistics
summarizing the personal exposure measurements by month
and season, including mean temperature across all measure-
ments, empirical distributions by month, and minima and
maxima. Next, we assessed the correlation between personal
exposures and corresponding estimates from the alternate data
sources. For comparison with the temperatures measured by
HAPIN ambient monitors, we matched all observations in each
district to the closest corresponding station. To identify the
closest GHCN station by Euclidean distance, we utilized the
rnoaa R package. Finally, for comparison with the two modeled
products (ERA5 and GLDAS), we used the GPS coordinates
of each participant’s block of residence to assign the relevant
grid square. All correlations are based on daily average
exposures, as the different data sources provide measurements
at varying temporal resolutions.
In order to further summarize the differences between the

personal measurements and the alternate data sources, we
produced Bland−Altman plots.16 Bland−Altman plots charac-
terize the agreement between two different data sources or
measurement techniques, displaying the variance between the
two measurements, the direction of any bias, and if or how the
bias changes along the exposure (temperature) distribution.
Bland−Altmann analyses provide associations between the bias
and the average temperature for the measurement data being
compared. This enables the assessment of the strength of
agreement between two sources, similar to a correlation
coefficient, and how agreement varies across the observed
temperature distribution. All Bland−Altmann analyses were
generated relative to the personal measurements, again using
daily averages for consistency across data sources.
Analyses were performed in R version 4.1.3 (R Foundation

for Statistical Computing, Vienna, Austria).
Ethics. The study protocol has been reviewed and approved

by institutional review boards (IRBs) and Ethics Committees
at Emory University (00089799), Johns Hopkins University
(00007403), Sri Ramachandra Institute of Higher Education
and Research (IEC-N1/16/JUL/54/49), the Indian Council of
Medical Research�Health Ministry Screening Committee (5/
8/4-30/(Env)/Indo-US/2016-NCD-I), Universidad del Valle
de Guatemala (146-08-2016), Guatemalan Ministry of Health
National Ethics Committee (11-2016), Asociacioń Benefica
PRISMA (CE2981.17), the London School of Hygiene and
Tropical Medicine (11664-5), the Rwandan National Ethics

Committee (No. 357/RNEC/2018), and Washington Uni-
versity in St. Louis (201611159). The study has been
registered with ClinicalTrials.gov (Identifier NCT02944682).

■ RESULTS
Personal Measurements. A total of 614 measurements

(approximately 1.7 million data points) were recorded from
104 different participants, for an average of 5.9 times (SD 2.2,
range 1−11) per participant. The first measurement was on 13
June 2018, and the last one available in this data set was
recorded on 29 June 2021. The average age was 49 years (SD

Table 1. Baseline Characteristics of the Study Population

characteristics (N = 104)

participant characteristics
age at screening
mean (SD) 49.0 (6.5)
highest level of education
no formal education or primary school incomplete 99 (95%)
primary school complete 5 (5%)
main occupationa

agriculture 87 (84%)
household 10 (10%)
unemployed 7 (7%)
other 9 (9%)
household characteristics
household size
mean (SD) 4.4 (1.3)
roof type in the main home
thatch 28 (27%)
concrete 28 (27%)
ceramic/fired tile 25 (24%)
other 23 (22%)
wall type in main home
concrete 55 (53%)
mud 39 (38%)
other 10 (10%)
floor type in the main homeb

concrete 58 (56%)
mud 42 (40%)
other 6 (6%)
air cooler/air conditioner
no 104 (100%)
time to take to go get water and come back (minutes)
mean (SD) 34.2 (32.9)
categorical household food insecurityc

none (0) 83 (80%)
mild (1−3) 17 (16%)
moderate/severe (4−8) 4 (4%)
baseline exposure
primary fuel type
wood 104 (100%)
primary heating source
do not use heating 91 (88%)
traditional cookstove/three-stone fire 11 (11%)
other 2 (2%)

aEight respondents reported more than one main occupation (7
indicated two occupations, while 1 indicated three). bMultiple
materials may be reported for the same household, so households
may appear more than once. cThe Food Insecurity Experience
Scale�Developed by the Food and Agriculture Organization of the
United Nations, http://www.fao.org/3/as583e/as583e.pdf
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= 6.5 years), most participants received little formal education,
and most worked in agriculture (Table 1). House construction
was a mix of traditional (e.g., thatch/ceramic/mud) and
modern (e.g., concrete) materials, and no household had air
conditioning.
The density functions of 30 s personal temperature exposure

on the HAPIN participants by month for each of the three
seasons (winter, summer, and monsoon) are reported in Figure
2. The overall average temperature exposure was 28.4 °C (SD
3.1), with seasonal differences; average exposure was 26.5 °C
in winter (SD 2.9), 30.4 °C (SD 2.8) in summer, and 28.3 °C
(SD 3.0) during the monsoon.
Figure 3 presents hourly personal exposures from multiple

individuals for the same 24 h period, starting at 8:00 am on
25th November 2019. Two heat exposure-related features of
interest in the study area are illustrated in this figure. First,
temperatures differ across individuals on the same day,
sometimes by more than 5 °C within the same hour. Second,
the data suggests that some individuals experience sharp
increases in heat exposure in the early morning or late

afternoon/evening, potentially a result of cooking with solid
fuels and, thus, proximity to stoves or other combustion
sources (for example, for household heating). During these
times, heat exposure for an individual can vary by several
degrees within an hour.
Comparison of Exposure Sources. Summary statistics

overall and by season for the different temperature sources are
listed in Table 2. In general, the personal measurements tend
to be intermediate between the lower temperatures reported
by the modeled products and the slightly higher temperatures
reported by the ambient monitors.
Scatterplots and correlations between personal exposures

and alternate data sources are shown in Figure 4. Over the full
study period, there were somewhat stronger correlations with
the modeled products than with the semilocal ambient
monitors. Correlations varied across seasons but were
uniformly highest in the monsoon season and, with the
exception of the HAPIN ambient sampler, were lowest in the
summer. An analogous plot to Figure 4 but restricted to

Figure 2. Density plots of personal exposure by month during the 2018−2021 study period. The vertical line indicates the average temperature
over the study period. Dots are monthly average minimum and maximum values. Fill colors are seasons (blue is monsoon, red is summer, and green
is winter).
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extreme heat days (>35 °C) is reported in Supporting
Information Figure S1.
The Bland−Altmann plots (Figure 5) indicate that the mean

bias for both the ERA5-Land and GLDAS products was
negative for the majority of the measurements in all seasons. In
contrast, the distribution for the GHCN and HAPIN ambient
sampler data is centered closer to zero, with a relatively even
number of measurements with positive and negative biases. In
the all-year analyses for all sources, slopes were ≤ ±0.21,
indicating that the bias remained somewhat similar across the
temperature distribution. Confidence bands were wider for the
monitors compared to the modeled products, indicating more
error. An analogous plot to Figure 5 but restricted to extreme
heat days (>35 °C) is reported in Supporting Information
Figure S2.

■ DISCUSSION
We have presented the results of opportunistic monitoring of
personal temperature exposures in Tamil Nadu, India, which
were collected as part of a large-scale household air pollution
intervention study. To our knowledge, this is one of the very

few studies of its kind in India, a country highly vulnerable to
climate change and extreme heat, and the first conducted in
multiple rural districts. We find that personal measurements
follow expected seasonal trends but that even within a season
or month, individuals experience a wide range of temperature
exposure. The average exposure across the study period was
28.4 °C, but in all months, study participants experienced
many exposures above 30−35 °C; exposures above 40 °C
occurred in most months. We also found that differences of
several degrees may be evident across individuals in the same
district even within the same hour of the same day and that
individuals themselves may have highly variable exposures
within a short period of time. In some individuals, the daily
pattern of heat exposure is suggestive of cooking or heating
with solid fuels and other behaviors that likely impact
exposure.
A previous study in peri-urban Telangana, India, compared

personal measurements of temperature opportunistically
collected from a similar monitor to the one employed in
HAPIN with ambient measurements among a population of 50
participants.17 They noted limited agreement between personal

Figure 3. Personal exposure of six individuals (three in each district) from 8:00 am on 11/25/2019 to 8:00 am on 11/26/2019. Each individual is
represented by a unique color-shape combination, and each small colored shape represents a single temperature measurement during a given hour.
Points are slightly jittered to prevent overlap. White points with a black outline are average hourly measurements across all participants within a
district.

Table 2. Daily Summary Statistics by Data Sources (Overall and by Season)

all seasons monsoon summer winter

data source mean (SD) range mean (SD) range mean (SD) range mean (SD) range

HAPIN personal 28.4 (3.1) 19.6−36.3 28.3 (3.0) 20.1−36.3 30.4 (2.8) 22.4−36.3 26.5 (2.9) 19.6−32.8
HAPIN ambient 28.5 (3.2) 19.1−37.6 28.2 (3.1) 22.1−37.5 31.0 (3.8) 19.9−37.6 27.8 (2.6) 19.1−37.6
GHCN ambient 28.9 (2.7) 23.7−35.2 28.9 (2.7) 24.2−35.2 30.3 (2.0) 24.2−35.2 26.4 (1.3) 24.2−35.2
ERA5 25.4 (2.8) 19.5−32.5 25.2 (2.7) 19.6−32.1 27.7 (2.1) 19.6−32.1 23.8 (2.2) 19.5−27.9
GLDAS 25.3 (3.3) 18.0−34.6 25.2 (3.2) 18.1−33.7 28.0 (2.5) 22.2−34.6 23.2 (2.2) 18.4−28.5
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and ambient samplers and suggested that additional factors,
like altitude and demographic data, may help explain the
discordance between the monitoring types. To the best of our
knowledge, that study did not investigate relationships between
modeled ambient temperature products and personal exposure
as we did here.
We also compared our data from personal monitors with

contemporaneous data from the study and government
ambient monitors and two gridded meteorological products.
In general, the modeled products performed best, having a
higher correlation with the personal measurements and smaller
mean errors, as shown in the Bland−Altman analyses. This
information may be relevant in the choice of exposure data
when conducting observational studies on the relationship
between temperature and health (or nonhealth) outcomes.
Nevertheless, differences were often ≥3−5 degrees in either
direction, which may be problematic for the design of
interventions to protect against extreme heat. The finding
that there seemed to be no clear systematic relationship
between the personal measurements and the alternative data
sources indicates that adjusting for the discrepancies is not

straightforward. The overall implication is that epidemiological
studies based on existing options for exposure assessment may
introduce exposure misclassification and therefore produce
imprecise or inaccurate health effect estimates. Such
misclassification could also affect the burden of disease
calculations.
This study has several important limitations and raises the

need for additional research. One key limitation is that we
present data only for adult women, which may not be
representative of the study population at large. Even within our
population of adult women, more measurements would
enhance the robustness of the results, particularly with respect
to potential seasonality in correlations with the ambient
monitors and modeled products. We also emphasize that the
performance of these alternative sources of data in Tamil Nadu
does not necessarily hold in other study locations, particularly
those with more (and closer) monitoring stations. However,
for many rural locations in low- and middle-income countries,
we expect that similar discrepancies will be apparent.
Additionally, we note that while our measured temperature
exposures fell within expected bounds, further evaluation of the

Figure 4. Scatterplots and simple correlations comparing personal exposures with ambient monitors and modeled products. Red lines are 1:1 lines;
points represent daily average values.
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use of these types of instruments as temperature monitors is
warranted. Future work could compare the use of these
opportunistic measures with other instrumentation, such as the
well-validated temperature monitors used in occupational
health assessments.
Future research can replicate these results with more data in

other locations by exploring the drivers of differences between
data sources and by explicitly analyzing how potential biases
may influence epidemiological or econometric studies on the
consequences of heat exposure. We believe that there are many
opportunities to leverage existing data to answer these and
other questions. Real-time particulate matter sensors have been
used in hundreds of settings in dozens of contexts around the
world to assess exposure to household air pollution arising
from the use of solid fuels for cooking and heating. Because
these real-time particulate matter monitors must measure
temperature (and often also measure humidity), there is
potentially a large amount of existing data that can be analyzed
to characterize and describe heat exposures across a broad area
of a typically unmonitored population. Furthermore, given the
proliferation of these types of sensors around the globe, as part

of primarily urban low-cost air monitoring networks, like the
Purple Air network, there may be utility in assessing the
information they provide on heat and humidity at a finer
geographic and temporal scale. Such opportunistic monitoring
may enable more advanced epidemiological analyses and
provide a better estimation of personal temperature exposure.
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