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Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome
and are used to predict risk of complex diseases, such as obesity. Current PRSs only
include common variants (minor allele frequency (MAF) ≥1%), whereas the contribution of
rare variants in PRSs to predict disease remains unknown. Here, we examine whether
augmenting the standard common variant PRS (PRScommon) with a rare variant PRS
(PRSrare) improves prediction of obesity. We used genome-wide genotyped and imputed
data on 451,145 European-ancestry participants of the UK Biobank, as well as whole
exome sequencing (WES) data on 184,385 participants. We performed single variant
analyses (for both common and rare variants) and gene-based analyses (for rare variants)
for association with BMI (kg/m2), obesity (BMI ≥ 30 kg/m2), and extreme obesity (BMI ≥ 40
kg/m2). We bui l t PRSscommon and PRSsra re using a range of methods
(Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected
the best-performing PRSs and assessed their performance in 36,757 European-
ancestry unrelated participants with whole genome sequencing (WGS) data from the
Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRScommon

explained 10.1% of variation in BMI, and 18.3% and 22.5% of the susceptibility to obesity
and extreme obesity, respectively, whereas the best-performing PRSrare explained
1.49%, and 2.97% and 3.68%, respectively. The PRSrare was associated with an
increased risk of obesity and extreme obesity (ORobesity = 1.37 per SDPRS, Pobesity =
1.7x10-85; ORextremeobesity = 1.55 per SDPRS, Pextremeobesity = 3.8x10-40), which was
attenuated, after adjusting for PRScommon (ORobesity = 1.08 per SDPRS, Pobesity =
9.8x10-6; ORextremeobesity= 1.09 per SDPRS, Pextremeobesity = 0.02). When PRSrare and
PRScommon are combined, the increase in explained variance attributed to PRSrare was
small (incremental Nagelkerke R2 = 0.24% for obesity and 0.51% for extreme obesity).
Consistently, combining PRSrare to PRScommon provided little improvement to the
prediction of obesity (PRSrare AUC = 0.591; PRScommon AUC = 0.708; PRScombined

AUC = 0.710). In summary, while rare variants show convincing association with BMI,
obesity and extreme obesity, the PRSrare provides limited improvement over PRScommon in
the prediction of obesity risk, based on these large populations.
Keywords: polygenic risk score, rare variants, obesity risk, burden score, PRS-CS, lassosum, C+T, BMI - body
mass index
INTRODUCTION

With an estimated prevalence of 12% among adults worldwide
and up to 42% in the US (1, 2), obesity is a growing epidemic,
causing major public health concerns (1, 3). Risk prediction and
early prevention of weight gain is key to reducing the personal
and global burden of obesity and its comorbidities (4).
Developing obesity across the lifespan is the result of an
interaction between environmental and innate biological
factors, encoded by our genomes. Twin and family studies
n.org 2
have reported heritability estimates of obesity that range
between 40 - 70% (5).

In the past 15 years, genome-wide association studies (GWAS)
have identified thousands of variants associated with obesity-
related traits (6). Polygenic risk scores (PRSs), which are based
on GWAS summary statistics, represent an individual’s overall
genetic predisposition to obesity. In recent years, PRSs have been
studied for their use in the prediction of future obesity and the
identification of individuals at risk of obesity early on in life (7).
The promise is that accurate estimation of people’s genetic
May 2022 | Volume 13 | Article 863893
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predisposition would allow more targeted lifestyle intervention for
those at risk. However, current PRSs, which are based on
traditional GWAS, have been shown to be suboptimal, with
unsolved challenges remaining (8). For example, existing
methods to develop PRSs only include common variants (MAF
≥ 1%), they explain little of the variation (< 10%) in BMI and, thus,
have limited ability to predict obesity (7, 9). There is a pressing
need to incorporate rare variants (MAF < 1%), which have been
shown to capture a proportion of the ‘missing heritability’ (10),
and are currently not considered in the PRS construction.

Including rare variants in the PRS may improve the accuracy
with which we estimate individuals’ genetic predisposition. Because
of the large sample size of studies, such as the UK Biobank,
association summary statistics for rare variants (0.1% ≤ MAF <
1%) can be assessed by single variant testing (11). However, for
ultra-rare variants (MAF < 0.1%), which occur by definition very
infrequently in the population, even current large-scale studies are
not large enough to study their individual effects (12). The accuracy
of the PRS depends largely on the power of the discovery GWAS
summary statistics (13). Therefore, aggregating ultra-rare variants in
genes, based on their predicted functional consequences, offers a
potentially powerful complementary approach to the single variant
testing (14) and subsequently, building rare variant PRSs.

The aim of our study is to leverage sequencing data from the UK
Biobank and the Trans-Omics for Precision Medicine (TOPMed)
Frontiers in Endocrinology | www.frontiersin.org 3
program to build obesity PRSs that use rare variants (PRSsrare) and
test their associations with obesity and extreme obesity. In addition,
we will test the predictive power of PRSsrare for obesity outcomes
alone or in combination PRSscommon.
MATERIALS AND METHODS

Study Design
We built and tested PRSs from common variants (MAF ≥ 1%),
rare variants (MAF < 1%) and ultra-rare variants (MAF < 0.1%)
for three traits; BMI, obesity and extreme obesity. We used data
from the UK Biobank to conduct single variant GWAS analyses
and gene burden analyses (ultra-rare variants). Then, the GWAS
summary statistics, calculated using the UK Biobank data, were
used to build PRSs for which we tested the predictive
performance in the TOPMed program (Figure 1).
Study Populations
UK Biobank
All GWAS analyses were performed using data of the UK
Biobank, a prospective cohort study with extensive genetic and
phenotypic data collected in approximately 500,000 individuals,
aged between 40–69 years (11). Briefly, participants were
FIGURE 1 | Overview of the study framework.
May 2022 | Volume 13 | Article 863893
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enrolled from 2006 to 2010 at one of 22 assessment centers
across the UK to provide baseline information, physical
measures, and biological samples according to standardized
procedures (11, 15). All participants provided written informed
consent. We restricted analyses to individuals of European
ancestry (described in detail below), excluded individuals who
underwent weight loss surgery before recruitment and women
who were pregnant at the time of recruitment. Data for 451,145
individuals was available for analyses.

TOPMed
For constructing and testing the PRS, we used data from 22 parent
studies of the TOPMed program (Supplementary Table 1). We
restricted analyses to 43,251 individuals of European ancestry that
have cleaned phenotype data (described in detail below) andWhole
Genome Sequencing (WGS) data. We removed one individual
from each related pair (Nexcl = 6,494; genetic relatedness ≥.0625). In
addition, we removed Data for a total of 36,757 individuals were
available for analyses (Supplementary Table 1).

Phenotype Definitions
UK Biobank
Height and weight, used to calculate BMI as weight (kg) divided
by height squared (m2), were collected at the baseline visit. BMI
was used to categorize individuals with underweight (BMI < 18.5
kg/m2), normal weight (18.5 kg/m2 ≤ BMI < 25 kg/m2),
overweight (25 kg/m2 ≤ BMI < 30 kg/m2), obesity (BMI ≥ 30
kg/m2) or extreme obesity (BMI ≥ 40 kg/m2). More details can be
found elsewhere (11, 15).

TOPMed
Data on height and weight, used to calculate BMI, were
harmonized across studies by the TOPMed Anthropometry
Working Group. BMI was calculated based on weight and
height measurements, collected from the participating studies.
We excluded individuals with known pregnancy at measurement,
with implausibly high BMI values (> 100 kg/m2), and those < 18
years old. In the presence of duplicated samples, the sample with
the highest sequencing depth was retained.

Genotyping, Imputation
and Sequencing Data
UK Biobank
All UK Biobank participants were genotyped using the UK
Biobank Axiom Array. More than 800,000 variants were directly
genotyped and > 90 million variants were imputed, using the
Haplotype Reference Consortium or UK10K + 1000G reference
panels (11). Variants with imputation INFO score of ≥ 0.3 for
common (MAF ≥ 1%), and imputation INFO score of ≥ 0.8 for
rare variants (MAF < 1%) were included in analyses.

We identified individuals of European ancestry based on their
genetic information, using k-means clustering. First, we
calculated principal components and their loadings for 488,377
genotyped UK Biobank participants based on the intersection of
~121,000 variants after quality control and 1000G Phase 3v5
reference panel. Reference ancestries are 504 European (EUR),
Frontiers in Endocrinology | www.frontiersin.org 4
347 American Admixed (AMR), 661 African (AFR), 504 East
Asian (EAS) and 489 South Asian (SAS) samples (overall 2504).
We projected the 1000G reference panel dataset based on the
calculated PCA loadings from UK Biobank. We then used k-
means clustering with a pre-specified amount of 4 clusters to the
UK Biobank PCA and the projected 1000G reference panel
dataset. Individuals that clustered within the EUR individual
cluster from the 1000G reference panel were assigned as
individuals of European ancestry (N = 453,812). Because PRSs
based on current methods generalize poorly across other
ancestries, and because of the smaller sample sizes of non-
European ancestry population, we performed analyses only in
European ancestry populations.

In addition to the genotyped and imputed data, we used data
of the first release of exome sequencing (N=184,385). The
approach used to perform exome sequencing and quality
control is described in detail elsewhere (16, 17). We annotated
variants using Variant Effect Predictor (VEP) v104.3 with
genome build GRCh38 (18).

TOPMed
WGS, targeting a mean depth of >30X coverage, was performed
at seven different Sequencing Centers. For this study, we used
WGS data from Freeze 8 release (19). Information about genome
sequencing, variant calling, and quality control procedures can
be accessed through the TOPMed website (20). The genetic
relationship was estimated using the PC-Relate algorithm (21).
We removed one from each pair of the individuals with genetic
relationship closer than 3rd degree (≥.0625) of relatedness (21).

Population groups in TOPMed were based on a combination
of participants’ self-reported race/ethnicity and genetic ancestry
represented by PCs. When participants’ self-reported race/
ethnicity values were “Other”, “Multiple” or missing, the
HARE method was used to classify individuals into “Asian”,
“Black”, “White”, or “Hispanic/Latino” subgroups using the first
nine PC-AiR PCs (22). For this project, we limited our analyses
to those either self-identified as “White” or they had overall
genetic ancestry that closely resembled groups of European
ancestry (HARE strata classified as ‘White”).

Genome-Wide Association Testing:
Single Variant and Gene Burden Tests
in UK Biobank
BMI residuals were generated in men and women separately,
adjusting for age, age2, and the first 10 genetic principal
components (PCs). Residuals underwent inverse normal
transformation, to achieve a normal distribution with a mean
of 0 and a standard deviation of 1.

Single Variant Association Testing
Association analyses of the inverse normal BMI residuals,
obesity, and extreme obesity were carried out using a
(generalized) linear mixed-model approach in BOLT-LMM
(23) and REGENIE (24). Models were adjusted for age, age2,
sex and first 10 PCs for obesity and extreme obesity. For all single
variant association testing, variants with a minor allele count of
May 2022 | Volume 13 | Article 863893
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≤20 were excluded. We performed single variant association
testing using [1] genotyped and imputed variants, and [2] WES
data, separately.

Gene Burden Testing
We aggregated ultra-rare variants (MAF < 0.1%) from the WES
data for gene burden testing. For each gene, we considered five
categories of masks (i.e. variant sets considered in burden test): [M1]
a strict burden of rare loss-of-function (LoF) variants (i.e.
splice_acceptor, splice_donor, stop_gained, frameshift, stop_lost,
and start_lost), [M2] a permissive burden of rare LoF variants
and inframe indels, [M3] a more permissive burden of all high and
moderate impact rare variants (including LoF, inframe indels, and
missense variants) [M4] moderate impact variants (inframe indels
and missense variants), and [M5] high, moderate and low impact
variants (LoF, inframe indels, missense and synonymous variants,
Figure 2). We aggregated MAF ≤ 0.1% variants for each of these
masks, that is up to 5 burden tests per gene.

Polygenic Risk Score Derivation
in TOPMed
Based on the single variant association testing and gene burden
testing results in UK Biobank, we generated PRSscommon and
PRSsrare using three different approaches (PRScommon: Clumping +
Thresholding [C+T], PRS-CS (18), lassosum (25); PRSrare: C+T,
lassosum, gene-burden test) in 36,757 unrelated individuals of
European ancestry of TOPMed. Summary statistics from GWAS
Frontiers in Endocrinology | www.frontiersin.org 5
of the UK Biobank were filtered for variants present in
TOPMed (Figure 2).

C+T denotes the Linkage Disequilibrium (LD) clumping and
P value thresholding method, which was conducted using the
PRSice-2 software (26). For clumping, we used the entire sample
of 36,757 unrelated individuals of European ancestry as the
reference panel for LD and set clumping parameters to R2 =

0.2, 0.5 and 0.8, with each region being 250kb in size. We varied
the P value thresholds from 5x10-5 to 0.8, with a step-wise
increase of 1x10-4. The C +T method was used to build both
PRScommon and PRSrare.

PRS-CS is a Bayesian method that infers the posterior mean
effect size of each variant using GWAS summary statistics and
external LD (27), but is distinct from previous methods by
placing a continuous shrinkage (CS) prior on the variant effect
sizes (27). A 1000G LD reference panel for European ancestry
populations was provided by the developers. We followed the
PRS-CS author recommended protocol by removing ambiguous
A/T or G/C variants and restricting to common variants (MAF ≥
1%) included in HapMap3. Therefore, this method was used only
to build PRScommon. We considered the shrinkage prior (phi =
1x10-3, 1x10-4) and the PRS-CS auto option, which allows the
software to learn the continuous shrinkage prior from the data.

lassosum is an approach that uses penalized regression on
summary statistics and accounts for LD using an external
reference panel or target sample to produce more accurate
weights for building PRSs (25). To accurately assess the LD –
A B

FIGURE 2 | Allele frequency spectrum of imputed variants and number of aggregated sequenced variants captured in the UK Biobank and the TOPMed. (A) Minor
allele frequency spectrum of imputed variants present in the UK Biobank (rare variants imputation INFO ≥ 0.8, common Hapmap3 variants imputation INFO ≥ 0.3)
and TOPMed; (B) Number of variants for different functional class of variants and masks (aggregation model) in the UK Biobank WES ultra-rare variants (MAF < 0.1%).
May 2022 | Volume 13 | Article 863893
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particularly important for rare variants – we used the entire
sample of 36,757 unrelated individuals of European ancestry
TOPMed as the reference panel. lassosum’s model parameters (s,
the shrinkage parameter: 0.2, 0.5, 0.9 and 1; and l, the penalty
parameter: varied from 0.001 to 0.1) were tuned. We applied the
lassosum method to common and rare variants separately to
build PRScommon and PRSrare.

Lastly, we built ultra-rare variant burden scores using the
gene burden test results from the UK Biobank. For each of the
five masks, we tested the following P value threshold of gene
burden tests; P = 0.05, 0.001, 0.0001, 10-5, and 2.8x10-6 (i.e.
exome-wide significance level). For assigning weights to variants
within each gene, we tested two methods: 1) a simple method,
which assigned the same weights to all variants in the same mask
(i.e. using the aggregate effect size estimated from LoF (mask1)
gene A in UK Biobank to the LoF (mask1) variants in gene A in
the TOPMed samples); 2) a nested method, which assigned a
weight to each variant equal to the aggregate effect size of
variants with annotation at least as severe as the variant
(Supplementary Figure 1 provides an example to illustrate the
nested method).

For each individual in the testing sets (TOPMed), PRSs were
calculated as the sum of the dosages multiplied by the given
weight at each variant. Taken together, we generated six sets of
PRSs (PRScommon-C+T, PRScommon-lassosum, PRScommon-PRS-CS,
PRSrare-C+T, PRSrare-lassosum, and PRSrare-burden) for each trait
(BMI, obesity and extreme obesity) using the different methods
under a range of tuning parameters.

Statistical Analyses
BMI in TOPMed was inverse rank normalized, in men and
women separately. We split unrelated individuals in TOPMed by
randomly selecting 20% for PRS training (N=7,433, tuning
parameter and selecting the best performing PRS) and 80% for
evaluation (N=29,324, validating R2 and predicting
performance). For each PRS method applied, we calculated
adjusted R2 values for BMI and Nagelkerke R2 values for
(extreme) obesity. Models were adjusted for age, sex, the first
ten PCs and study. 95% confidence intervals were calculated
using bootstrapping. We selected the best-performing PRS for
each method and PRS combination (i.e. the largest variance
explained (adjusted R2 values or Nagelkerke R2), resulting in six
best-performing PRSs in total (one for each from PRScommon-C+T,
PRScommon-lassosum, PRScommon-PRS-CS, PRSrare-C+T, PRSrare-
lassosum, and PRSrare-burden).

In the 80% withheld TOPMed individuals, we tested the
association between each PRS and obesity/extreme obesity
status using logistic regression. The best-performing
PRScommon and PRSrare across multiple methods were then
combined to study the joint effects of PRScommon and PRSrare
to predict obesity. To evaluate the prediction performance of
PRSrare, we calculated the area under the receiver operator curve
(AUC) in a Cox regression model with the obesity/extreme
obesity status as the outcome. We also assessed the net
reclassification index (NRI) and the Integrated Discrimination
Increment (IDI), which evaluated the model improvement in
discrimination and reclassification.
Frontiers in Endocrinology | www.frontiersin.org 6
RESULTS

Best-Performing Polygenic Risk
Scores Based on Common
Variants (PRSscommon)
Using BMI-GWAS summary statistics derived in the UK
Biobank (Supplementary Figure 2), the PRScommon built with
the lassosum method (Supplementary Table 2 and Figure 3)
explained the most variation in BMI (R2 = 10.1%, 95% CI =
9.4-10.7%).

Similarly, the best-performing PRSscommon based on summary
statistics of obesity and extreme obesity GWASs, was built using
lassosum (Nagelkerke R2 = 16.7% for obesity and 20.7% for
extreme obesity, Supplementary Table 2 and Figure 3). Of
interest is that that the PRScommon based on BMI-GWAS
summary statistics explained more of the variation in (extreme)
obesity (Nagelkerke R2 = 18.3% for obesity and 22.5% for extreme
obesity) than the PRScommon based on (extreme) obesity GWAS
summary statistics (Figure 3). This likely reflects the relatively
higher power of the BMI GWAS.
Best-Performing Polygenic Risk Scores
Based on Rare Variants (PRSsrare) at
Single Variant Level
The best-performing PRSrare for BMI was built using the
lassosum method, based on BMI-GWAS summary statistics,
explaining 1.49% of variation in BMI (95% CI = 1.23-1.77%,
Supplementary Table 2 and Figure 3). Consistent with our
observations for the PRSscommon, a PRSrare based on BMI-GWAS
summary statistics explained more of the variance for (extreme)
obesity liability (Nagelkerke R2 = 2.97% for obesity and 3.68% for
extreme obesity) than a PRSrare based on (extreme) obesity
GWAS (Nagelkerke R2 = 2.28% for obesity and 2.55% for
extreme obesity) (Figure 3).
Best-Performing Polygenic Risk Score
Based on Ultra-Rare Variants (PRSrare-
Burden) Using Gene Burden Score
Aggregating variants using mask1 (LoF variants) with an
association significance of P < 2.8x10-6 resulted in the best-
performing PRSrare-burden, explaining a mere 0.03% (95%CI =
0.002-0.08%) of variation in BMI (Methods, Supplementary
Figure 3 and Supplementary Figure 4). However, this PRSrare-
burden aggregated LoF variants in only two genes (MC4R andUBN2)
and identified 2,957 individuals (8% of the TOPMed population)
with non-zero values of the score (Supplementary Figure 4).

We repeated the gene burden score approach using summary
statistics of obesity and extreme obesity (Supplementary
Figure 5), yielding slightly improved results than for a PRSrare-
burden based on BMI summary statistics. Mask3, which aggregates
variants in genes that reached exome-wide significance—only
MC4Rmeets this P-value threshold (P < 2.8x10-6)—provided the
best-performing PRSrare-burden score, explaining 0.08% of
variation in obesity and 0.39% of variation in extreme
obesity liability.
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Association of PRSscommon and
PRSsrare With Risk of Obesity
We next tested the association of the best-performing PRSs (i.e.
PRScommon-lassosum and PRSrare-lassosum based on BMI-GWAS
summary statistics and PRSrare-burden based on obesity-GWAS
summary statistics) with obesity outcome.

Each SD increase in the BMI-GWAS based PRSrare-lassosum was
associated with a 1.37 (P = 1.7x10-85) increase in the odds of obesity
(Supplementary Table 3). Adding PRScommon-lassosum to the model
substantially attenuated the association between PRSrare-lassosum and
risk of obesity (OR = 1.08 per SD, P = 9.8x10-6). This attenuation is
likely due to the correlation between PRSrare-lassosum and PRScommon-

lassosum (r = 0.31). Each 0.1 increase in obesity-GWAS based PRSrare-
burden (range: 0 - 0.41)was associatedwith a 1.83 higher odds of obesity
Frontiers in Endocrinology | www.frontiersin.org 7
(P = 0.02). Adding the PRScommon-lassosum, (r = 0.008) and/or PRSrare-
lassosum (r=0.01) had little impact on the association (Supplementary
Table 3).Weobserved a similar pattern for the PRSs’ associationswith
extreme obesity (Supplementary Table 3). Consistently, adding both
PRSrare-lassosum andPRSrare-burden in addition tomodelwith PRScommon

was extremely small (incrementalNagelkerkeR2 0.24% for obesity and
0.51% for extreme obesity, Supplementary Table 3).

Using the PRScommon-lassosum and PRSrare-lassosum to identify
individuals at high risk of obesity (top PRS decile), we observe that,
relative to the reference group (deciles 1-9), individuals in the top
decile for both PRSs had the highest risk of obesity and extreme
obesity (OR [95%CI] = 5.3 [4.2-6.7], 13.5 [9.6-18.9], respectively), as
compared to individuals that were defined as high risk by only one of
the two PRSs (Figure 4).
A

B

FIGURE 3 | Variance explained by PRS for BMI, obesity, and extreme obesity in BMI, obesity and extreme obesity. (A) PRScommon (B) PRSrare, We reported
adjusted R2 for BMI, Nagelkerke’s R2 for (extreme) obesity on top of covariates including age, sex, study and PCs. C+T: Clumping and Thresholding method. Error
bars indicates 95% CI.
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Using PRScommon and PRSrare to
Predict Common Obesity
Adding both PRSrare-lassosum and PRSrare-burden to PRScommon-

lassosum in the prediction model did not improve the prediction of
obesity (PRScommon only AUC [95%CI] 0.708 [0.701 – 0.716] vs
all three PRSs 0.710 [0.702 – 0.717], Figure 5). Adding both
PRSrare-lassosum and PRSrare-burden to a model with PRScommon-

lassosum only slightly improved the discrimination of the model
(IDI= 0.0014 [0.0008 - 0.0019], Supplementary Table 4).
Knowledge of individuals’ PRSrare-lassosum and PRSrare-burden, in
addition to the PRScommon-lassosum, would only reassign 0.9% of
individuals to their appropriate risk category (NRI=0.9%; 95%
CI= 0.49-1.32%; P = 2x10-5). Using extreme obesity as the
outcome yielded similarly small improvements in predictive
accuracy (Supplementary Table 4, Supplementary Figure 6).
DISCUSSION

In this study, we examined the contribution of rare variants to
the polygenic prediction of obesity by leveraging data from
451,145 European-ancestry individuals in UK Biobank and
Frontiers in Endocrinology | www.frontiersin.org 8
36,757 in TOPMed. We observed that PRSsrare were associated
with an increased risk of obesity and extreme obesity, partially
independent of PRScommon. Nevertheless, their explained
variance (up to 1.49%) as well as predictive accuracy were
small (AUC 0.591 for obesity and 0.630 for extreme obesity),
and particularly limited when considered in combination
with PRScommon.

As PRSs are becoming a standard tools in translational
research and clinical practice, there has been an increasing
interest to study the role of rare variants, in addition to
common ones, for a range of common diseases, such as breast
cancer, prostate cancer, coronary artery disease (CAD) and
obesity (28–31). Most previous studies that have reported on
the contribution of rare variants studied the role of pathogenic
variants in one or few high-penetrance genes and did not
investigate their predictive accuracy at a population level
(28, 29, 31). Consistent with our findings, though, these studies
demonstrated that rare variants act—at least in part—
independently from common variant PRSs and add to people’s
polygenic susceptibility to disease (28, 29, 31). Thus, knowing an
individuals’ PRSrare, in addition to PRScommon, may contribute to
identifying individuals at high risk of obesity. However, given the
FIGURE 4 | Risk of obesity among individuals with high PRSrare and PRScommon. Reference: deciles 1-9 of PRScommon and PRSrare, PRSrare High: top decile of
PRSrare, PRScommon High: top decile of PRScommon, Both PRS High: top decile of PRScommon and PRSrare.
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limited explained variance observed in our analyses, we expect
that few individuals will indeed score high on both scores.
Nevertheless, for these few individuals, knowing their high risk
may be valuable.

Recently, a new framework was developed to aggregate rare
variant burden into a rare variant PRS (30). As an example, a rare
variant genetic risk score for CAD was built, using UK Biobank
data. Similar to our findings for obesity and extreme obesity, a
significant association of this PRSrare with risk of CAD was
observed, although the explained variation was only 0.1% of the
population variance (30). We report a similar explained variance
of 0.2% for obesity and 0.5% for extreme obesity. The reasons
why the PRSrare’s explained variance is small, in particular in
addition to the PRScommon, are threefold. First, the PRSrare was
not completely independent from PRScommon, even after
including only non-overlapping variants. It is likely that the
true causal (rare) variants were tagged by common variants in
LD. Second, any new (rare) variant added to the PRS increases
the PRS’ uncertainty due to statistical noise associated with
estimating a new weight (32). The PRSrare might have suffered
more from this, as accurately estimating weights for rare variants
requires larger sample size in general. Third, rare variants,
although more likely to have larger effects (12), are too rare to
explain much of the obesity epidemic in the general population.

Consistent with the low variance explained, the predictive
power by the PRSrare over that of the PRScommon was limited. The
improvement in AUC for obesity (from 0.708 to 0.710) was
negligible, although the AUC for the PRSrare alone was up to
0.59. This supports our observation that the predictive power of
the PRSrare in part overlapped with that of the PRScommon. So far,
no other studies have reported on the contribution of PRSrare, in
the presence of PRScommon.
Frontiers in Endocrinology | www.frontiersin.org 9
In addition to using BMI summary statistics to build PRSs
and test their predictive performance for obesity and extreme
obesity, we built PRSscommon and PRSsrare based on obesity and
extreme obesity GWAS summary statistics. The PRScommon and
PRSrare based on BMI-GWAS summary statistics outperformed
those based on obesity or extreme obesity GWAS summary
statistics, which is in line with previous findings that PRScommon

based on the full distribution explains a larger proportion of the
variance than when based on the tails of the distribution (33). For
the ultra-rare variants, the PRSrare-burden based on obesity
summary statistics performed better than the those based BMI-
based summary statistics, which maybe be due to the role of
ultra-rare variants in (extreme) obesity, but less in BMI. Our
discovery GWASs were conducted in a relatively healthy and less
deprived UK Biobank population (34), which may have limited
our ability to capture the genetic contribution of rare variants for
obesity and extreme obesity.

We acknowledged that our samples for analyses were
restricted to one ancestry only. We focused our analyses on
European-ancestry populations for which the most data are
available. Because allele frequencies, LD patterns, and effect
sizes, differ between ancestries, the accuracy of European-
derived PRSs decays rapidly when applied to other ancestries
(35). PRSs derived from other ancestries are currently
underpowered because of relatively small sample sizes. As
more data becomes available for other ancestries, both GWAS
as well as sequencing data, the here described analyses should be
performed to examine whether observation are generalizable
across ancestries. Furthermore, we focused solely on obesity, a
common multifactorial trait that is moderately heritable. While
many complex traits have similar feature, we cannot guarantee
that our observations can be extrapolated to other outcomes as
A B

FIGURE 5 | The receiver operating characteristic curve (ROC) of obesity. (A) Model only included PCs as baseline covariates. (B) Additionally included age, sex, and
study. PRSrare includes PRSrare-lassosum and PRSrare-burden.
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the genetic architecture, explained variance from common
variants, and contribution from rare pathogenic variants may
differ (36).

Taken together, we demonstrate that while rare variants,
aggregated in PRSsrare, have been shown to independently
associate with obesity risk, they provide a minimal
improvement in prediction accuracy over PRScommon in
predicting obesity risk in the general population. Our findings
cast an important light on the potential value of rare variants in
the prediction of complex diseases, such as obesity.
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