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* FOR TWO DIMENSIONAL POLYGONAL REGIONS 

Joseph V. Lepore and Robert J. Riddell, Jr. 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

.!>Brch 24, 1976 

ABSTRACT 

The Helmholtz equation together with associated boundary 

conditicns can be solved using a dipole distribution on the boundary 

of any region of interest. If the region has corners, ·the distribu-

tion satisfies a singular integral equation. In this p1.per numerical 

techniques for the solution of this equation which take into account 

the analytic properties of the solution are discussed. Although a 

complete error analysis has not been develo~, some indicators of 

the errors generated ar~ considered. The technique is illustrated 

by comparing the numerical solution of the eigenvalue problem asso-

ciated with various two-dimensional polygonal regions with exact 

solutions. 
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I. INTRODUCTION 

In a recent article, we have analyzed the solution of the 

Helmholtz equation for two dimensional regions with corners [1]. In 

that method the solution was given in terms of a boundary dipole 

distribution, D, which must be determined in order to satisfy the 

boundary conditions. It was shown that D satisfies a singular 

integral equation which can be solved using techniques .which have 

been developed for such equations; these techniques showed that in 

the vicinity of a corner D has a nonanalytic behavior. The method 

was illustrated by results which were obtained for the eigenvalues of 

the Laplacian for various regions, each of which either could also 

be found analytically or had been studied previously in the published 

literature. These results, which were obtained using a computer 

program of general applicability, were very competitive with com-

parable programs using finite element or finite difference techniques. 

In view of .this successful application of the boundary 

distribution technique to the solution of the Helmholtz equation, we 

feel that it is desirable to describe some of the specific techniques 

employed in achieving the results. Thus, in this p1.per we will 

present some of the methods which were used in solving the singular 

integral equation for the dipole distribution. In Section II we give 

the basic results of the previous analysis of this equation, and then 

in subsequent sections various aspects of the computation are discussed 

together with a consideration of the accuracy of the solution. 
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II. BASIC RESULTS FOR THE INTIDRAL EJ:iUATION 

The method which we have used. for the solution of the boundary-

value problem for the Helmholtz equation is based on the classic 

solutions to the Dirichlet and Neumann problems in which a dipole 

distribution, automatically satisfying the· Helmholtz equation, is 

introduced on the boundary. The boundary conditions are then expressei 

in terms of an integral equation for the distribution. For the 

solution inside a region, one can write: 

f (1) 

where w(;) is the solution of the equation 

0 ' 

N1(x) is the Neumann function of first order, D(;') is the dipole 

distribution on the boundary at ;. , the integration element dO' is 

a vector in the direction of the outward normal to the boundary and of 

magnitude equal to the differential path length, ds ', on the 

boundary. The integral is to be carried over the entire boundary, C , 

enclosing the region. To express the boundary condition, we let ; 

approach the boundary. Thus if the boundary is taken as the limit for 
... 
r from the inside of C , 

(2) 

where *c(;) is the boundary value for w(;), and the integration is 
... ... 

to be carried out for r' - r as a principal value integral. We thus 

obtain an integral equation. for D. 
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If the boundary is smooth (satisfies a Liapunov condition) it 

can be shown that the equation is a Fredholm equation and so the 

usual Fredholm theorems apply to its solution. On the other hand, at 

a corner the equation is singular and the techniques of singular 

integral equations [2] must be used. In the previous paper [1] it was 

shown that in the neighborhood of a corner one could consider an even 

solution, D+(s), and an odd solution, D_(s), on the two sides of 

the corner, where s is the distance from the corner, and that each 

would have a series expansion of the form 

(3) 

where the • are functions of the angle between the sides of the sn 

corner, a Specifically, we found two sequences of 

type of solution: 

s(+) ~2n - l)n: ~2n - 2)n: 
n a 21! -a) 

and 

(-) 2nn: f2n - 1~1! 
sn a' 2n: - a ' 

s for each 
n 

( 4) 

(5) 

where n takes on all nonzero positive integral values. In addition, 

if two s's for the same type of solution are equal, a term of the 

form ss log s will appear. Further, it was shown that an additional 

even series of powers of s is generated beginning· with each f n 

These results can be compared with what is known for the 

direct solution of the Helmholtz equation for a bounding wedge of· 

angle a on which the solution vanishes. In this case, expressed in 

the polar coordinates (r, e), we have: 

I 
I 
I ~, 

I 

''"' 
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where 

ljr{r, e) 

1-L = n 
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\""'an JI-L (ttr) sin(!-L e), L n n 

The first sequence arises if the interior angle, a, is used for the 

boundary condition on the wedge, while the second arises for the 

exterior angle, 2:rc - a. It is seen that the expansion 1jr generates 

the same powers as are found for D(s), except that for D (s) a 
+ 

term ~(+) = 0 is present and this term would be identically zero in 
1 

the Bessel expansion for 1jr • 

III. NUMERICAL TECHNIQUE 

We have developed an approximation technique for the solution 

of Eq. (2) for arbitrary polygons where the sides are straight line 

segments, and for which D(s) near a corner bas the behavior 

specified by Eq. (3). In reducing the integral equation to an 

approximate finite form we first introduced a set of points, rk , on 

the boundary for which D(~) was to be obtained. 

Near a corner we chose Nc points spaced equidistantly on 

each side of the corner in addition to the corner point itself. 

Identical treatment on the two sides of a corner greatly facilitated 

the separation of D(s) into D+(s) and D_(s). Some consideration 

of other than uniform point spacing was made, but no particularly 

suitable choice seemed indicated. A choice of points analogous to 

that made in Gaussian integration techniques does not seem to apply 

here since we are not dealing with an analytic function, and further-

more since -; appears as a p:l.rameter in the integration over -;, 
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-+ 
one might wish to have different points for each r The actual 

corner spacing, he' was fixed as 

where t is the length of the side, N is the number of points on 
d 

the side, and hf is a free parameter. Thus if hf = l , he is 

chosen so that the corner points cover a space equivalent to 2 average 

steps in the remainder of the side, and if Nc = 2, he will be 

simply t/Nd • This choice was made to allow simple variation in the 

number of terms in the corner expansions leaving the mid-range points 

unaffected. 

Once the choice of .Nc was made, it was then assumed that the 

D:t(s) could be expanded as: :1 (+) 

D+(s) 
d(+) ~n 

s n 

and 
!\: (-) 

D_(s) ~ d~-) ~n 
s 

where the set of ~·s was chosen to be the lowest Nc + l elements 

from Eq. (4) or the lowest Nc elements from Eq. (5). It is found 

that generally the powers of s included do not increase very rapidly 

and so the various functions, ss, are not very "orthogonal." 

It is found that, although the J.ower-powered terms are quite stable 

in regard to variation of parameters in the calculation, the coeffi­

cients of the higher powers tend to vary considerably and show little 

convergence over the range of parameters used. There is one special 

case in which convergence was excellent: In order to r.educe the 
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number of points used, the distribution was "mirrored" about one side, 

thus autc:matically guaranteeing that 1jr(:;) = 0 there. A corner on 

that side has only D_(s) different from zero, and if a= n/2 then 

D (s) has an expansion of only odd integers which.was typically 

highly convergent. 

Once the set of points and 5n's was chosen, the expansion 

coefficients were determined by solving the equations: 

N 

D(s.) 
1 I i N' (6) 

J=l 

so that the dj 's couid be expressed in terms of the D(si)'s The 

lack of orthogonality of the expansion functions could be seen from 

the relatively large size of some individual elements in the inverse 

matrix. 

For the remaining points on a side, the spacing was chosen to 

vary linearly from the corner points to the center of the side. This 

provided some flexibility so that more points could be chosen either 

near a corner or near the center of a side as desired, or one could 

chose a uniform spacing if one wished. The parameters were so chosen 

that the first point away from the Nc corner points would fit as if 

the corner had two such steps times a free parameter, gf , while the. 

linear variation in step spacing was chosen so that half the steps 

on a side would cover half of the side. 

The integrals in the integral equation were approximated in 

two ways, depending on whether the integration variable was near a 
.... 

corner or not. For r' not near a corner, the integrand has no 
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singularity in D(s'), while the principal value contribution is 

zero for a straight side which' includes :; = :;. • Thus we assumed 

that in this mid-range case the entire integrand could be well 

approximated by a polynomial of finite degree, and we used a three­

point Lagrangian interpolation approximation which was integrated 

analytically. To minimize truncation error the integration was 

divided into subpieces each of which had an integration region which 

was chosen to be symmetric about the central point, thereby 

eliminating contributions from cubic terms in the integrand. Further, 

if the step size between points was constant, each sub-integration 

was carried out from half a step on one side of the center point to 

half a step on tlE other side. For nonconstant steps a generalization 

of this idea was used which still retained the symmetry. 

This technique may be contrasted with that used to produce 

Simpson's rule. In that case, one uses the value of the integrand 

at three points to construct an approximating quadratic form which 

is then integrated over the entire region covered by the three points. 

If one wishes to integrate over a larger region, the next sub-region 

would include the integrand at the end-point of the sub-region just 

integrated. In our approximation the approximating quadratic form is 

constructed as for Simpson's rule, but the integration is only carried 

out for half a step on either side of the central point, and on moving 

on to the next sub-region two of the preceding values of the function 

plus one new evaluation are used to produce the next quadratic 

approximation. In both techniques the lowest order truncation error 

is proportional to the quartic term in a Taylor expansion of the 

function in a sub-region, but one easily finds the magnitude of such 

I 

L 
i 
! 

l ~ 

I 
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errors is reduced by a factor of 16 in our method as com]Rred with 

the use of Simpson's rule as described. 

For uniform step size, our explicit integration formula is 

easily found to be: 

s +h/2 

J 
s -h/2 n 

f(s' )ds' 

This approximation, or its generalization for nonuniform steps, was 

used to integrate over each sub-region with a mid-range point as the 

center. A 4-point interpolation formula which included cubic terms 

was also used, and in this case errors similar to those found with 

the 3-point formula were obtained. 

For points ;k near a corner, we assumed that D(s') could 

be ex]Rnded in a finite series of terms of the form (s')s, as 

described above. In additon to the analytic complexity of D(s), 

the integrand also includes N1 (x)/x in the kernel. This is singular 

at x = 0 ; since [3] 

N1 (x) - -2/(rrx) + (2/rc)log x · J 1 (x) + ¢(x) , 

where ¢(x) is an entire function. The first term in N1 (x) 

produces the singular behavior of the integral equation at a corner, 

and this was integrated accurately in conjunction with the expansion 

for D( s). In the second term, J 1 (x) was truncated to two terms of 

its series expansion, and the remainder of N1 was assumed to have 

a power series expansion of a few terms. These, too, were integrated 

together with the terms ss • These integrals were carried over the 
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region from the corner to the beginning of the mid-range integration 

described above. 

Specifically, we handled the corner integrals as follows: 

A typical integral over the first term in N1 is of the 

form 

I(;,a,£) -1 r 2 
- 2rs cos e + s

2 
r sin e • ss ds 

where (r,e) are the polar coordinates of the point -; This can 

easily be converted to 

Im { .[ ss d\e} 
s - r e 

0 

and, if r > a , 

For r > a , this series can be used to evaluate the integral, 

although for r ~ a the rate of convergence is slow and an 

(7) 

alternative form shown in the appendix was then used. For r <a 

the series is divergent but we can obtain its analytic continuation 

by first observing that [4]: 

a 
ss ds s+l 

1 a 
2Fl <;' s+l; £+2; ~ ) , 

(; + l)z -s + z z 

where 2Fl is the ordinary hypergeometric function. This expression 

can be converted into a form useful for computation by using the 

Kummer relation [sl: 
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( ~ + 1 ) ( z ) F (1, - ~; 1- s; - ~) s a 2 1 a 

11(s + 1) 
sin 1lS 

s+l 
z ) 
a 

The new hypergeometric function can then be expanded in a power series 

in (z/a). 

The second term in the expression for N1 (x)/x includes 

log(s
2 

- 2sr cos e + r 2 ), and this term can be reduced to the 

previous forms via an integration by parts. Thus, for example, 

a. s+l - 2 2 m log(a - 2ar cos e + r ) 

ss+l (s - r cos e) 

s
2 

- 2rs cos 9 + r
2 ds . 

The remaining term in N1 (x)/x, which is an even polynomial in x, 

can be integrated directly. 

By using these techniques the integral equation was reduced 

to an approximate set of linear, algebraic equations which could then 

be solved for D(sk) using standard methods. This approach has been 

used to find the eigenvalues of the Laplacian for a variety of 

polygonal regions. The eigenvalues were determined by finding 

approximate zeros of the determinant of these equations. Unfortuna~ 
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th~ kernel in the integral equation involves the eigenvalue, K , in 

a complicated way, and so an iteration approach for finding K was 

necessary. 

IV. RESIDUAL ERRORS 

If the technique presented here is to be useful for the 

solution of practical problems, it seems very desirable to have an 

estimate of the accuracy achieved far various choices of the 

parameters in a particular calculation. The method has been applied 

to find a few eigenvalues for problems with known analytic solutions 

and this is of course helpful. On the other hand, the eigenvalue as 

calcUlated here does not seem to satisfy an extremum condition, and 

we have seen numerically that by varying the parameter hf , for 

example, K can change from below the correct value to above it. 

Thus it is very desirable to have some other criterion of accuracy 

for a solution; presumably one which is more closely related to the 

solution, '¥(;) 

Unfortunately, the system is quite complicated and we have not 

succeeded in developing a satisfactory ove~all error analysis. On the 

other hand, we have used the methods above described to calculate the 

value of 'lf(;) at points on the boundary halfway between the points 

at which D(s) was fixed in the equation. If the solution obtained 

were exact, these values would all be zero, so the deviation from 

zero (with the solution normalized to l at some central point in the 

region) presumably indicates the errors present. There is one 

difficulty with this calculation: Although the integral term in the 

equation can be calculated in exactly the same fashion regardless of 

I 
I -
I 
\ 
j 
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where the point ; is located, the term D(s)/2 cannot. This term 

is obtained in the solution at precisely the original points used, 

but it must be deduced by interpolation or otherwise at the halfway 

residual points. Thus there is a potential for an additional error 

generation in the residual ~ calculation which is not present in 

the original approximating equation. At any rate, the same ideas for 

the evaluation of D(s) were used for this purpose as went into the 

original approximating scheme so the result should be meaningful. In 

particular, for points near a corner we used expansions for D( s) as 

given by Eq. (6), but in the mid-range, D(s) was interpolated using 

a 6-point formula after a 4-point formula was· found to produce a 

substantially larger residual ~ . 

V. RESULTS 

A program bas been developed which incorporates the above 

ideas and it has been applied to a variety of problems, most of which 

have known analytic eigenfUnctions. Results obtained for the eigen­

values for various cases were discussed in [1]. For completeness, 

some of these results are repeated here in Table I. As has been 

mentioned already, in order to reduce the number of points in the 

calculation, we have chosen to generate ~(;) by D(s) together with 

its mirror image as reflected in one side of the figure considered. 

It is found that results for incompletely symmetric figures, such as 

the 30°-60°-90° triangle thereby become dependent on"which side is 

used for the reflecting. Thus, in Table I, an indication is stated 

as to which side was used for the reflection. In this Table, the 

results were obtained using 5 points near each corner to determine 
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the expansion in powers of s£ , and the parameters hf and gf were 

chosen to be 1.0 and 0.7, respectively. A total of 53 points were 

used 6n the boundary to express D(s). For each figure, the longest 

side was chosen to have unit length. 

The analytic value for the lowest eigenvalue for each figure 

·is as follows: Equilateral triangle, K = 4n~; 45° isosceles 

triangle, K = n\{5 30°-60°-90° triangle, K = 4n.y7/3 ; and 

, square, K = n-{2 • 

In Table II, we show similar results for an equilateral 

triangle. In this case, we have made calculations for a variety of 

parameters, In this table we also include 

one higher eigenvalue. This is in good agreement with that found in 

Table I for the 30°-60°-90° triangle. We also give an eigenvalue 

which leads to a null solution for ~(;) , as is more fully discussed 

in [1]. 

In this table the significance of the number of points per 

side, Nd , is clear, and it is seen that the accuracy of the eigen­

value, K , is greatly enhanced by increasing Nd . The dependence of 

K on Nc is not particularly marked, but it will be seen that the 

residual .1jr(;) is substantially improved as Nc is changed, for 

example, from Nc = 3 . to N c = 5 • Because of the way in which the 

parameters enter· in the determination of points, the mid-range points 

are essentially unaffected if Nd - 2Nc is kept fixed. This explains 

the particular choice made for Nd in the table. The parameter hf 

affects primarily the step size in the corner region; as it is 

decreased the steps are decreased proportionately. Since the mid-

range points are linked to the corner points, they are similarly 
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affected. on the other hand, if gf is varied the corner points are 

unaffected while the mid-range points are modified. Evidently if hf 

or g is reduced the steps near the corners are reduced and so the 
f 

steps in the middle of a side will be increased. For the choice of 

these two parameters we have typically found that values larger than 

1.0 produced less satisfactory results than did smaller values, with 

the choice hf = 1.0, gf = 0.7 usually producing a slightly better 

K and residual v than did hf = 0.7, gf = 1.0. 

!n Table III we present some calculated values for the 

expansion coefficients for D+(s) at the corner not on the "mirror" 

side. (From symmetry D_(s) at this corner is zero.). It should be 

noted that, because of the linearity of the equation for D(s), these 

coefficients are somewhat arbitrary. They have been fixed by fitting 

D(s) to a quadratic form near its maximum value; this maximum was 

then set equal to 1.0. It is seen that for fixed Nc , as the step 

size in the corner is reduced, the lowest coefficient (which gives 

D(s) at the corner) is accurately obtained. The second coefficient 

is quite small and is perhaps converging to zero, while the third 

coefficient shows good convergence to a finite value. The highest 

terms are fairly large and since they are of opposite sign they may 

be indicative of the effect of truncation of the series. In this 

table we have also given the coefficients for cases in which the 

number of terms in the expansion is changed, and here, too, it is 

seen that the lowest coefficient is accurately fixed. 

Finally, in the figures we present some results for the 

residual v(~) as obtained using various choices for the parameters. 

In each case we have superimposed on the figure the solution for D(s) 
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as a smooth curve. The v's are normalized by calculating the value 

of v(~) at the center of the triangle and tl;len scaling all of the 

v's so that the central value is 1. 

In Fig. 1, we present the results for cases in which 

Nd = 26, 36, 46 while Nc = 5, hf = 0.7, and gf = 1.0 to 

illustrate the decline of the residual v as the number of points is 

increased. In Fig. 2 similar results are given for cases in which the 

number of points in the corner expansion was varied, and, as would be 

expected, it is seen that the residuals are decreased as N 
c 

is 

increased. Since these values are essentially the same in the mid-

range, we only plot the corner region. It is seen that the largest 

error in the residual is typically found for the point nearest the 

corner. This is a common property of the process used here in which 

the approximating series to a given function is forced to agree at a 

set of points. Experimentally it was found that functions such as 

s~ showed the largest error for small s when fitted by the series 

of Eq. (3), if ~ was not in the set of sn I s used. In Fig. 3 we 

compare the four cases in which Br and hf are each either 0.7 or 

1.0. This demonstrated how compression of the point spacings at the 

corner improves the accuracy there but decreases it in the center of 

a side. 

As was discussed in [1), the integral equation generates both 

nontrivial eigensolutions of the Helmholtz equation, 

null solutions for v~(~) for which, however, D~(s) is not zero. 

It is found that eigenvalues for these two cases (K and ~ 

respectively) can be quite close together (see Table I), and that the 

solutions for D(s) are then very similar, We suggest that the errors 
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in V may be reduced by calculating VK(;) -VA(;), so in Fig. 4 we 

give both the residual v K c a~d also the difference of v K and VA 

for which VA is normalized using D~(s) , rather than VA at the 

center of the triangle, since the latter is .<< l.O. Finally, in 

Fig. 5 we give the ·residual w calculated for the L-shaped region. 

VI. CONCLUSION 

In this article we have described techniques which have been 

developed for the solution of a singular integral equation. This 

equation arises when a boundary dipole distribution is used to effect 

the solution of the Helmholtz equation for.tvo-dimensional regions 

with sharp corners. These techniques make extensive use of analytic 

properties of the solution of the equation which were deduced in an 

earlier paper. In particular, these properties include the series of 

fractional powers in ·terms of which the solution can be expanded in 

the vicinity of a corner, and the regular behavior elsewhere on the 

sides. 

Using these techniques we have obtained very accurate results 

for the eigenvalues of the Laplace operator for various two dimen-

sional polygonal doma~ns. In addition, we have a good indication 

from the residual w values calculated at extra points on the sides 

that the solution for V is quite accurate. We have also shown that 

the series expansion for D(s) is adequately convergent near a 

corner, with leading coefficients which are quite stable. Thus we 

feel that analytic properties can be very successfully invoked in 

obtaining satisfactory solutions for such equations. 
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APPENDIX 

In the numerical calculation~ the series of Eq. (7) was used 

directl~; for small (a/r). For larger ratios, the convergence of the 
'. . 

series becomes very slow, so a modification was made to improve the 

convergence: Using the identity: 

l 
ii'""+1" 

we can obtain 

co 
\~ 

L 
n=O 

z 

_1_ + 
n+a 

co n 

(n + ~ )(n + a) ' 

ri 
co 

n'' z z [ £)) (1 -Ii"+I n + 1 + (n+1Hn+2) 
+ ••• 

L... 
n=O n=O 

00 

+ (1- ~)···(k- ~) ~ 
n=O 

co 

+ (l - ~) ... (k + l- ~) ~ 
n=O 

n z 
(n + l)···Cn + k + l) 

(n + l) • · · (n + k + lX n +£ ). 

Each of the series except the last can be obtained in analytic form, 

while the final series converges rapidly because of the high power of 

n which appears in the denominator. 
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TABLE I 

Calculated Eigenvalues for Various Figures. 

Case Refl. Side K 

Equilateral Triangle Any 7.255218367 

Long Side 9· 934553730 

Short Side 9· 933726725 

Long Side 1l.o825o607 

Middle Side ll.o8234361 

Short Side 11.08187716 

Square Any 4.442863650 

i 
I 

Error I 
I "' 
l 

10-5 
I 

2.09 X I 

l -3.45 X 10-5 
i 

-8.62 X 10-4 . 

8.89 X 10-6 

-1.54 )( 10-4 

-6.20 )( 10-4 

-1.93 )( 10-5 



'::'l 

0 

0 

'•' 

Nd 

22 

24 

26 

28 

36 

46 

26 

26 
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TABLE II 

Eigenvalues for an Equilateral Triangle. 

In all cases gf = 0.7, hf = 1.0. 

N K c 

3 7.255065020 

4 7.255144251 

5 7.255192959 

6 7.255225547 

5 7.255191813 

5 7.255194590 

* * * * * * * 

5 7.084753232 

5 11. o8269983 

Nd 

22 
Error 

24 

-1.32 X 10-4 26 

-5.32 X 10-5 28 

-4.50 X 10-6 26 

2.81 X 10-5 36 

-5.65 X 10-6 46 

-2.87 X 10-6 26 

("Null" case) * 
2.03 )( 10-4 
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TABLE III 

Corner Expansion Coefficients. 

N gf hf do dl ~.2 d2 d2.4 d3 c 

3 0.7 1.0 -0.1494165 0.016 1.927 4.76 

4 0.7 1.0 -0.1494316 0.169 1.52~ 7.07 - 3·3 

5 0.7 1.0 -0.1494506 -0.063 2.225 -1.31 18.2 -22.6 
* 6 0.7 1.0 -0.1494586 -0.026 2.112 0.26 13.1 -18.8 

5 1.0 0.7 -0.1494551 -0.015 2.075 0.78 12.4 -15.5 

5 0.7 1.0 -0.1494522 -0.024 2.107 0.14 14.5 -18.7 

5 0.7 1.0 -0.1494705 -0.013 2.072 0.64 13.1 -17.3 

5 1.4 0.7 -0.1495963 0.012 1.983 2.51 6.8 - 7.3 

= 6 For N there is also a coefficient (= -1. 74) of a term c 

of the form s3 log s. 
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FIGURE CAFTIONS 

Fig. 1. Residual *(;) and D(s) on the boundary for an equilateral 

triangle: Nd = 26(+), 36(x), 46(.()). 

Fig. 2. Residual *(;) and D(s) for an equilateral triangle near 

a corner. In each case, gf = 0.7, hf = 1.0. 

Fig. 3. Residual *(;) and D(s) for an equilateral triangle for 

various choices of gf and hf. In each case, Nc = 5, 

Nd = 26. 

Fig. 4. Residual * K(:!_.') and [ * K(:!_.') - *:>-... (:!_.') l for Nc = 5, Nd = 26, 

gf = 0.7, hf = 1.0 for an equilateral triangle. The solid 

curve gives DK(s), and the dashed curve, DA.(s). 

Fig. 5. Residual 1fr(r) and D(s) for the "L"--shaped region for 

Nc = 5, Nd = 28, gf = 0.7, hf = 1.0. 
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.---------LEGAL NOTICE---------... 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 
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