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ABSTRACT

The purpose of this investigation is to study nonlinear
behavior of plates considering both geometric and physical nonlinearities.

Large deflections are accounted for using the von Karman strain
expressions for plates and initial deformations are considered using the
Marguerre shallow shell theory. Establishing the variational principles,
the equilibrium and incremental equations for general Rayleigh-Ritz type
solution methods are derived.

The finite element method is adopted for the numerical
solution of the problem. A doubly curved quadrilateral element including
nonlinear geometric effects is derived. Special simplifications are made
resulting in a highly efficient technique.

Inelastic material behavior is accounted for using the flow
theory of plasticity. In particular, the Prandtl-Reuss flow rule and
isotropic hardening are utilized. Inelastic, quadrilateral finite elements
allowing for both membrane gnd flexural behavior are developed. The

tangent stiffness approach is adopted forming the incremental stiffnesses

by numerical integration over the volume of the elements.

Different general numericé] techniques for solving nonlinear
structural problems are considered. The problems of convergence and
accuracy of iteration methods are also discussed.

A wide range of numerical examples are presented, such as
large deflections of different plates, post buckling behavior of plates,

snap-through problems and inelastic behavior of various plates.
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1. INTRODUCTION

1.1 GENERAL REMARKS

Today, structural plates constitute important load carrying
components of numerous types of structures, such as ships, airplanes,
aerospace structures, plate girder bridges and various other constructions.
Economy, weight and other functional requirements together with new
developments in materials technology have resulted in a drive for
increasingly daring design, which indeed represents a great challenge
to modern methods of ana1ysis; The demand for a better utilization of
the material most often leads to “thinner" structures for which
geometric nonlinearlities are of significant importance and also to
Structures in which nonlinear material behavior occurs. Economy and
other considerations call for an ever increasing precision of the method
of ané]ysis itself. Further, the whole concept of structural "safety"
must be viewed in the light not only of "allowable stress" or "ultimate
Toad", but also considering the entire structural behavior in the non-
linear range. |

A1l of this points to the need for accurate and efficient
methods of analysis of nonlinear behavior of plates. Such methods
should be capable of accounting for both geometric and material non-
linearities and have a high degree of precision. Fortunately, modern
computers and recent advances in the field of structural mechanics make
such computations feasible for plates of general geometry and with
general boundary conditions. This will be demonstrated in the course

of the present study. Moreover, imperfections in the plate geometry or



deliberately made initial deformations will also be accounted for in the
present investigation. Such deformations may have a dramatic influence

on the overall behavior of the plate.

1.2 PREVIOUS STUDIES

The complete differential equations for large deflections of
plates were formulated by von Karman in 1910 [1]. Three years'ear1ier,
an approximate method of analysis had been suggested by Foppl [2].
Timoshenko [3] and Marguerre and Trefftz [4] derived the expressions
for the strain energy of plates with large deflections in the nineteen
thirties, Since then, a long series of approximate and nearly exact
solutions to the nonlinear plate problem has emerged. In 1937,
Marquerre [5] presented an approximate solution for postbuckling
behavior of simply supported rectangular plates in compression. S. Way
[6] studied uniformly Toaded clamped plates with large deflections using
the Ritz method. In some important papers published in 1942, Levy derived
solutions of a theoretically exact nature to large deflections of simply
supported [7] and clamped [8] rectangular plates subjected to varijous
loading conditions. Levy's results will be used for comparisons later
in this study. Noteworthy are also the works by Wang [9] who used the
differential equations and the finite difference technique, and by
Coan [10] who studied buckling of plates with initial deformations.

The development of modern electronic computers now makes it
possible to use extremely complicated and involved methods of analysis
that earlier were completely inconceivable. Since its origin in the
middle of the nineteen-fifties [11], the so-called finite element

approach for structural problems has been developed with almost



explosive rapidity. This method has proven to provide a very powerful
approach to a wide range of linear and nonlinear structural problems.
The first attempt of inciuding geometric effects into the method for the
purpose of studying buckling, was made by Turner et. al. in 1960 [12].
Later, a long series of papers has extended the method to be applicable
to various types of buckling and large deformation problems [13 - 18].
Among the papers dealing specifically with large deformations of plates,
the ones by Murray and Wilson [19 - 21] should be noted. They used a
triangular element and re-assembled the deformed plate inka global
coordinate system. An investigation by Brebbia and Connor [22] was
based on von Karman's large deflection strain expreésions for plates.
The same strain expressions will be used in the present investigation.
Although elastic-plastic behavior of metals has been well
understood and documented for a couple of decades, not much theoretical
work has so far been done with general elastic-plastic deformations of
plates. The reasons for this are obvious; the problem is extremely
complicated and closed form solutions cannot be obtained for more general
types of plates. However, the extremum principles of plasticity may be
used to obtain upper and lower bounds for the true solution [23]. The
finite element method has proved to be a powerful method also for
solving elastic-plastic problems [24 - 31]. Most of the finite element
studies performed so far have dealt with rotationally symmetric shells
and with simple plane stress problems. Among previous investigations of
elastic-plastic plates in bending, the ones by Marcal et. al. [29] and

Armen et. al. [30] deserve mentioning.



1.3 PURPOSE AND SCOPE OF PRESENT INVESTIGATION

This study is concerned with the nonlinear behavior of plates.
Flat plates and plates with initial deformations under loads for which
second order geometric effects become significant are investigated.
Based on the principle of virtual work, the equilibrium and incremental
equations are derived using a Lagrangian description. Assuming a Ritz-
type of approach, the equilibrium and incfementa] equations for a plate
with initial deformations (shallow shell) are developed utilizing matrix
notations,

In Chapter 3, it is shown how the finite element method can be
used for solving the nonlinear plate problem. The plate is idealized by
general quadrilateral finite elements, considering, of course, both
membrane and bending actions. The elements have 5 degrees of freedom at
each corner node. Initial deformations of the plate are accounted for
using a special 12 parameter interpolation polynomial for the initial
deflections, thereby obtaining a doubly curved element. Special
simplifications are made for the deflection interpolation polynomials to
achieve highly increased efficiency when computing the nonlinear |
stiffness terms. These terms are obtained numerically using Gaussian
quadrature,

The elastic-plastic behavior of plates is dealt with in
Chapter 4. The flow theory of plasticity is adopted, utilizing the
von Mises yield criterion,the Prandtl-Reuss equation and the isotropic
hardening rule. It is shown how this theory can be formulated for the
finite element approach. The plastic behavior is accounted for using an
incremental tangent stiffness approach. Again, both membrane and

bending actions are dealt with. The displacement functions of the



elastic-plastic elements are identical to those of the purely elastic
elements. However, numerical integration over the entire volume of the
elastic-plastic elements is necessary when computing the incremental
stiffnesses due to the variable material properties.

The numerical problems associated with the analysis of non-
Tinear structures are specifically dealt with in Chapter 5. Different
methods for solving the nonlinear equations are discussed, partially
from a mathematical point of view, but also in the Tight of experience
gained from dealing with different classes of nonlinear problems. The
questions of convergence and accuracy are also discussed, suggesting
some new approaches to these probiems.

Chapter 6 compares a great variety of different examples. Two
different computer programs have been developed, one for studying non-
lTinear geometric effects and one for dealing with nonlinear material
effects. Large deflection behavior of various types of plates is
studied, carrying the analysis far into the nonlinear range. Post-
buckling behavior of flat and initially deformed plates is also
investigated. The study of the "snap-through" behavior of transversally
Toaded shallow shells is a particularly interesting problem. Several
examples in which the plate is loaded above the elastic Timit are
considered. These examples demonstrate the versatility and efficiency

of the elastic-plastic finite elements derived in Chapter 4,



2. BASIC EQUATIONS

2.1 CLASSIFICATION OF THE PROBLEMS

It is a well known fact that during continuously increasing
Toad application, all real structures, sooner or later, start behaving
in a nonlinear fashion. The sources of nonlinearities may be classified
into two main groups, namely geometric and material nonlinearities. The
geometric nonlinearities account for the fact that the shape of the
structure itself changes during deformation which in turn results in
relative changes of the force pattern. Nonlinear material behavior may
be due to nonlinear elastic behavior, plasticity, creep or other material
effects. Which of these two main sources of nonlinearities is most
important, depends, of course, on the geometry and material properties
themselves. In general, the geometric effects are most important for
"thin" structures whereas for "thick" structures the latter group of
effects is prevailing.

Considering a plate subjected to transversal loading, the
midsurface will start stretching during deformation and the plate will
act in a hammock-like manner. In this case, a stiffening geometric
effect is observed. However, the opposite effect will be observed if
large compressive membrane forces are applied at the time of transversal
Toading.

Geometric effects do frequently result in stability problems.
Such cases can sometimes be idealized as Tinearized eigenvalue problems.
However, in the following, a much broader concept which includes
1hteract1ng membrane-bending behavior will be adopted. This approach

makes it possible to study the entire course of deformations.



Nonlinear problems require that extra care must be taken when
defining strains and stresses. This in turn leads to very complicated
kinematic relations, frequently unfit for practical applications.
'Lucki1y, some substantial simplifications may be made in the strain
expressions for plates with only insignificant loss of accuracy. Such

approximations will be discussed later in this chapter.

2.2 BASICS FOR NONLINEAR ELASTICITY PROBLEMS

2.2.1 Fundamental Concepts

Great progress has been made in the fields of continuum and
solid mechanics during the last few decades. This is mainly due to
investigators Tike Green, Truesdell, and others [32 - 35]. A powerful
system of mathematical symbols has been developed parallel to the
progress in these fields. However, it is inherent to the nature and the
complexity of these problems that this mathematical language is rather
complicated and that its understanding calls for special studies.
Therefore, the theoretical derivations to follow are generally presented
in the matrix and simple tensor symbols which are familar to most
investigators in the structural field. The use of this notation is
possible because the plate is a special type of structure for which
several simplifying assumptions may be made.

Some vitally important concepts need to be defined before
attacking the plate problem. In this discussion, only Euclidian spaces
(En) will be considered. The Euclidian is the "real" space in which
distances can be observed and measured. A set of base vectors with a
corresponding field of scalars is used to locate any point in this

linear vectorspace.



A "material body" is used to denote elements (particles) say
{X}, which are isomorphic (1 to 1 correspondence) to points in

Euclidean space. A confiquration of a body is a one parameter family

of deformations of the set {X}, at time t. Of special importance is
the reference configuration. Usually, this is the unloaded, stress-free
state of a material body at time t = 0.

In large deformation theory one basically deals with motion
and deformations of material bodies. A set of configurations as a
function of the time parameter t defines the motion of a body. The
lTocal measure of deformation, called strain will be dealt with further
in the next section.

There are several ways in which motion and deformation can be
described. The two classical approaches to the problem are the material
description and the spatial description. Both methods are due to Euler
although the first method is usually denoted the "Lagrangian
description". The material description is based on following the path
of single material partic]es.of the body. A special form of material
description is the "referential description" based on reference
configuration and time (the entire body is considered).

The spatial description is frequently used in mechanics of
fluids. Fixed points in space are observed while particles flow
through these locations. Displacements are found by integrating
velocities.

A further method is "current configuration as reference”.
This method is used in fluid mechanics and viscoelasticity.

Finally, a method of great importance for large deformation

theory is the convected description. In this case the coordinate



system remains fixed in the body and deforms as the body deforms. ATl
particles in the body will therefore have the same coordinates throughout
the deformation while the metric tensor of the coordinate system changes

continuously.

2.2.2 Definition of Strains and Stresses

Different methods of describing motion were discussed in
Section 2.2.1. Further derivations will now be limited to the Lagrangian
description only and the reference coordinate system to be used is the
rectangular Cartesian one.

Let Xi be the coordinates of an arbitrary point P in the
reference system and let xiﬁ denote ﬁhe Tocation of that material point

after deformation (point transformation). Hence,
X. = X, + u, (2.1)

where u; are the displacement components. Fig. 2.1 shows an arbitrary
infinitesimal line element PQ mapped into P'Q' after deformation.
The squared lengths are given by

d.S,z = C{Xk C{Xk = g".l d)(:d)g
(2.2)

ds® = dx, dx, = .:;; ;;E% d X dX;
¢ 0%

Since Cartesian coordinate systems will be used, only lower
indices are used and summation should be performed on repeated indices.
The symbol 61j is the Kronecker delta. Latin indices range from 1 to
3.

The Lagrangian (or Green) finite strain tensor Eij is now

defined by the foi]owing relation
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2

ds™ - dsg; = 2 Eij qui de (2.3)

2
0
The strain tensor represents the local measure of deformation.
Substituting Eq. (2.2) into Eq. (2.3) and using Eq. (2.1) the following
expkession is obtained

ox;, Ox, Ky
(b)( BX “ )

Eq, Ju, Ju, Ju,
( + )(J -+ aX£ a}('l )

S (2.4)

Note from the definition Eq. (2.3) that the strain tensor Eij refers
back to the reference configuration. It is seen from Eq. (2.4) that
Eij is symmetric in i and Jj. Of course, this strain definition‘
satisfies the fundamental requirement that finite rigid body displace-
ments render Eij equal to zero. For derivation of the Green strain
tensor in general curvilinear coordinates, see for instance Fung [36].
The more familiar symbols Xy ¥z and u, v, w will now be
introduced instead of coordinates Xi and displacements u, - As an

example, three of the elements of the strain tensor are now written out

fully
L= 20 £((2 ) %)+ (32))

Je12 w2
Eyy = au /(( ) * (%)) (2.5)

( ?%¢ Q. dudu 3ur'3ur)
—t—
ax- e 733: ox 33 Dx 351

£,y -

If the quadratic strain terms are neglected, Eq. (2.5) 1is reduced to the

usual engineering strains.
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The definition of the stress vector (traction) and the

corresponding stress tensor in Cartesian coordinates is given by

Ti = Uj O3 (2.6)

where Ti are the components of the traction vector, uj the components
of a outward unit vector of the surface and 953 is the stress tensor.

Extra care has to be exercised when dealing with large deformations. The
Eulerian stress tensor, also called Cauchy-stress, for large deformations

is defined by

dTi = vj 953 ds (2.7)

where dS 1is the surface area of the deformed body.

Since the Lagrangian approach is employed and strains are
referred back to the reference configuration, the definition of stresses
should also be based on the reference configuration. The (second)

Piola-Kirchhoff stress tensor Sji is defined by the following relation

dX,

aX" dT; = ‘5,]‘- ch dsa (2~8)
dSO and vbj are taken in the reference configuration and a trans-
formation is performed on di. The definition of the Piola-Kirchhoff
stress tensor in Cartesian coordinates is illustrated in Fig. 2.2. It
can easily be shown that Sji is a symmetric tensor [36, 37].

2.2.3 Variational Principles - The Principles of Virtual Work and
Stationary Potential Energy

The objective of this analysis is to establish the state of

static equilibrium of a body subjected to known loads and known boundary
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conditions. In such a state, equilibrium of an arbitrary infinitesimal
element of the body must also be satisfied. Still using the Lagrangian
approach and referring back to the reference configuration, the Cauchy

equilibrium equation can be expressed as [34, 36]
2_ (2% 5 )+ p = 0O 2.9
aX%_( X, é%k ) /{ (2.9)

where Pi is the body force per unit volume of the reference
configuration. An additional term accounting for acceleration may
easily be incorporated on the right hand side of the equation if the
equation is to be used in dynamic conditions.

The equilibrium equations will now be used for derivation of
the principle of virtual work. A general material body B will be
considered. The surface S of the body is assumed to consist of two
parts, S1 where the surface traction is prescribed and 32 where
displacements are prescribed. Now, using the equilibrium Equations (2.9),
the prescribed conditions on the surface and Gauss' divergence theorem,

the virtual work equation can be estab1ished [37a;38]7\5“
- - -0 (2.10
V/\s‘.j!&g‘.j dV 5/7: Su; dS y/,q Su; dV=0 (2.10)

¢ 1is the variational symbol. S E.. and u; were defined in the

ij’ "ij

previous section. The principle of virtual work as given by Eq. (2.10)
is just an equivalent way of stating the equilibrium conditions for the
body. However, a variational formulation has many computational
advantages. Both the surface integral and the volume integral are
taken ovér the reference configuration. Subscript zero is’neg]ected
since it is understood that the Lagrahgian approach 1is used. § u, is

an arbitrary, kinematically admissible, virtual displacement field, that

is, U, must satisfy the rigid boundary conditions on 52.
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| Equation (2.10) is valid for large displacements. However, it
is not the only form in which the principle of virtual work may be stated.
For instance, Reference [37] gives similar equations using Cauchy-stresses.
Note that the principle of virtual work 1is independent of material
properties.

Another important variational principle is the principle of
complementary virtual work, which is, as indicated by its name,
complementary to the principle of virtual work. The complementary virtual
work principle is based on variation of stresses and forces instead of
strains and displacements. From these two basic principles, several
other variational principles may be derived, such as the principle of
stationary potential energy, the principle of stationary complementary
energy, the Hellinger-Reissner variational principle [39, 40] and the
very general Hu-Washizu variational principle [38]. However, for the
purpose of this investigation only the pkincip]e of stationary potential
énergy among the derived principles will be discussed further.

The principle of stationary potential energy is based on the
existence of a single valued state function called the strain energy
function. For the Lagrangian approach employed here, the stress tensor

must be given by

oW
L= 2 2.11
S, 5, (2.17)

where W 1is the strain energy function defined per unit volume of the
reference body.
Substituting the strain energy function into Eq. (2.10), the

principle of stationary potential energy can be formed as
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§[Wiw)dV - [T, §u, dS - [P S, dV = 0 (2.12)
v S v

The first term eXpresses the variation of the strain energy integrated
over the volume of the reference body. Among all admissible displacement
functions Uss the actual ones are those under which the total potential
energy becomes stationary. In many cases potential functions may be
substituted in Eq. (2.12) instead of surface tractions and volume forces.
Limiting the principle to small displacements only, it can be
shown that the stationary state is a minimum potential energy state [36].
However, in Targe displacement theory the energy does not necessarily
attain a minimum for the stationary condition. A broad study of the

stability of the stationary configuration was made by Trefftz in 1930
[41].

2.2.4 Incremental Form of the Variational Principle

The purpose of this section is to extend the virtual work
principles to a special incremental form. The need for the incremental
form will be evident when numerical methods for solving nonlinear
equations are beind discussed later.

Cauchy [42] was the first to‘derive the correct constitutive
equations for a body under initial stress. Since then, much work has
been done in studying the behavior of elastic bodies under initial stress.
Truesdell [43] and Yaghmai [28] have given historical accounts of the
development in this field and this history will not be répeated here.

The possible choices that can be made of coordinate systems
and ways of referring stresses and strains are indeed numerous. Here,
the Lagrangian approach using one global coordinate system will still be

used. Figure 2.3 shows the material body at three different stages
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during deformation. At the initial (reference) configuration, a
material point is located by coordinates Xi + the same point has
coordinates X; at an arbitrary, deformed configuration 1, and at a
later configuration 2, the coordinates are ii.

Using Eq. (2.10) the virtual work equation in configuration 1

can be expressed as

[S SEy dV = [T SuldS-[ P suldV = 0 (2.13)
v J J i ¢ J ¢ ¢

Superscript 1 indicates configuration 1. Similarly, for configuration 2
[SESEY dY - [TH6d dS - [PiSutdV = 0 (2.14)
v Y 3, ‘ ’ v

Since forces are referred to the reference configuration, one may write

AT, = - T

/ (2.15)
aR=FR-P
and also
Su= &' = 8§ (2.16)

By subtraction of Eq. (2.13) from Eq. (2.14), an incremental

form of the variational principle can be established

[5]5E; - 5;8E; dv-s{fal’gu‘. oS -V/A@ S dv =0  (2.17)

However, in this form the equation is not very convenient. Employing
the X., x; and 21 coordinates and the definition of Eq. (2.4), the

strain at configuration 2 can be expressed as
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2 { 7 9%, OF
Ly = 205 5% - &)

o L% ¢\ 1/3F R, 0, 3%,  (2.18)
205 5 - Sl 7 (52 3~ )i o

! ox,, 9x,
E.. + WEEM

where Eij is the Green strain in configuration 2 referred to

confiqguration 1.

Introducing
s e O, (2.19)
501 -ax‘: a){/ Ll ]

the strain at configuration 2 is
2. = gl o+ g, (2.20)

Substitution of Eq. (2.20) into Eq. (2.17) yields

oS GES + S S8, dv-s/ﬂmuids ~[aBSu;dv-0  (2.21)
where ’ ' Y

85, = S2-5.. (2.22)

& tJ &

Yaghmai [28] has shown that for hyperelastic materials the
first term of Eq. (2.21) can be transformed into the variation of the
incremental free energy function. Instead, Equation (2.17) will again
be considered here, Assuming an elastic material for which the stress
can be found from a strain energy function, Equation (2.21) can be

rewritten in a fashion similar to Eq. (2.12)



18

/SW(uf) - JW(u';)dV-g/AﬁA’uidS-jA,ggu‘.dV:o (2.23)

Now, expanding the strain energy function

Wl = (u]) + o u (u}) + higher order terms  (2.24)

and taking its variation

SWd) = SWeul) + 8wiuh) + higher order terms (2.25)
= W) + £ W)
Equation (2.23) can finally be written
[EWi) dV ~[aT; SuidS - [aP: Su, (2.26)

l

= higher order terms

When configuration 2 is close to 1, the higher order terms become small
and can be truncated. Hence Eq. (2.26) can be used to find a new
configuration when displacements at configuration 1 and the 1oad

increments are known.

2.3 PLATE EQUATIONS

2.3.1 Basic Assumptions for Small Displacement Theory

The membrane and bending theories of plates are widely known
and extensively described in the 1iterature [44, 45]. However, for
clarity and completeness, the basic assumptions will be repeated here
briefly.

The motion of the plate will be referred to a right handed
rectahgu1ar Cartesian coordinate system Xs ¥, Z whose axes x and y
tie in the midplane of the undeformed plate, see Fig. 2.4. The

displacement components of points lying in the midsurface are Uy> Vg
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and W To reduce the problem from a 3-dimensional to a 2-dimensional
one, certain restrictions must be imposed on the displacement field.
The Kirchhoff theory for thin plates will be adopted resulting in the

following kinematic assumptions.

a) Normals to the midsurface remain straight and normal after

deformation.

b)  The strain in the z-direction is negligible in establishing the

displacement of a material point.

After introducting these assumptions, only 3 non-zero strain

components are Tleft, namely €y Ey and ny; furthermore
Wosow (2.27)
Introducing the rotations
dwr
6 = 3o
%, (2.28)
- ur
8, = X
the inplane displacements are found from
u=u-+ z6,
(2.29)
v= u- 26,
and the corresponding strains are
-au, a%, 'b"w* 2 30
Ex = ox dx z D)2 ( )
du- ou o%ur (2.31)
= m— = — _T
Eﬂ B‘_‘f '63 2 33
.= 20 20 du, Dy D (2.32)




21

2.3.2 A Nonlinear Strain - Displacement Relationship for Flat Plates

The strain - displacement Equations (2.5) will now be
reconsidered, having applications to plates especially in mind. For
almost all practical purposes when dealing with thin plates, the
rotational terms %ﬁ? and gﬁ? are large compared to the other terms
involved in the quadratic part of Eq. (2.5). This justifies retaining

only the rotational contributions among the higher order terms,

resulting in

Exx h _5;+ :2{-(:57}(.
D)l
= g_;-,,. z/.(#’) (2.33)

E gy
E)(y: _I z‘f+_3;z+ ?Eé&‘:)

These equations were first used by von Karman [1] who derived
two fundamental partial differential equations for the deflection and the
stress function based on Eq. (2.33). By examining these equations it is
seen that the primary, effect of the stretching of the reference surface
is included. Timoshenko [45] has shown how the Equations (2.33) can be
derived in a more direct manner by considering the straining of an
infinitesimal plate element during a rotation and truncating higher order
terms. |

Novozhilov [46, 53] has classified the von Karman strain
equations as "the case of small strain components and small angles of
rotation, the Tatter considerably exceeding the former". One should
note that these equations cannot be classified as "finite strain"

expressions. However, as will be demonstrated by a wide range of
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examples later, the accuracy of these strain terms is sufficient for
almost all practical applications to nonlinear plate problems.

These strain terms will now be appiied to the midsurface of
the plate. The Kirchhoff assumptions will still be employed as for the
Tinear small deflection theory and integrals formulated according to the

variational principles will be evaluated over undeformed volumes.

2.3.3 Strain - Displacement Relations for Initially Deformed Plates

This section will deal with the special strain expressions for
plates which are not perfectly plane in the initial configuration but
have some initial deflection. Such initial deformations may have
important consequences for the overall behavior of the plate and will
have to be accounted for using a so-called “shallow shell" theory.

The classical shallow shell theory was suggested by Marguerre
in 1938 [47]. He referred the initial deflections of the midplane of
the shallow shell to a rectangular global coordinate system, see Fig.
2.5. letting W denote the initia] deflection of the plate and w the
additional deflection, the Marguerre strain-displacement equations read

r du . & dur l('Bw-)z

o™ 5 T 3 50 I3,

r v, 3 wr /(‘aw-)z (2.34)

5151——-354 35 '§§""ZW

S, P, 3w, W e, Dwdw
2L, o9 " ax " ox By T 3y 3k T Bx By

As was demonstrated by Marguerre, these equations can be

derived by considering the straining during rotation of an infinitesimal
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plate element and truncating higher order terms. However, it is of
interest to note that the same equations can be obtained using the Green
strain tensor Eq. (2.4). This will now briefly be demonstrated.

Introducing

U, = u, + u, (2.35)

where ﬁi represents the initial deformation. The "effective" strain

will be defined as
e = L)
Eij = Eij Eij
w . au:: Bu.: Jd&; Oy O, Of,

-_-_’.(3“4--3; — - ——————-——) (2.36)
2YoX ¥y dx ax  ax % O ok '

J

u

(o s Qe P D | 30, Dy | e Duy )
2YoX. 2 3k 2 oK, OX; X,

Imposing u = v

i

0 and neglecting quadratic terms of the
derivatives of u and v, one is Teft with exactly the equations of
Marguerre (2.34). However, the derivation demonstrated here is believed
to be more consistent with the previous use of the Green strain tensor
and the von Karman type of simplification of those expressions.

Fligge and Conrad [48] reformulated the Marguerre equations
defining the displacements in a curved coordinate system lying in the
midplane of the shallow shell. It turns out that fheir expressions can
be obtained from a more general derivation using curvilinear coordinates
given by Green and Zerna [32]. However, the original approach defining
the displacements in a global Cortesian coordinate system as given by
Marguerre proves to be more suited for the numerical methods to be

applied later.
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The range of validity of the Marguerre shallow shell theory
has been studied by several investigators such as E. Reissner [49],
Vlasov [50], and Fligge and Conrad [48]. Reissner stated in reference

[49] that shallow shell theory 1s more than sufficiently accurate as

M and W

long as X 3y

are less than 1/8.

2.3.4 Calculation of the Strain Energy for the Plate

The strain-displacement Equations (2.33) and (2.34) correspond
to the strain of an infitesimal element lying parallel to the surface of
the plate during deformation. Adopting the Kirchhoff assumptions also
for initially deformed plates and using matrix notation, the strains at

a distance $ from midsurface can be expressed in general as

e} = &} + ¢ {%} (2.37)

where the strains at the midsurface are

&)= [E.,

\c,,| (2.38)

P

..ZE;

#ﬁi

and the curvatures

. (2w
{K}— 'axa

32

%?; ! . (2.39)
2w
fEEkByJ

The §—axis is perpendicular to the midsurface.
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A corresponding set of stresses are defined by

{o}= [on] = [DI{e)

(2.40)

! Z;sﬂ
where [D] is the constitutive relation for generalized plane stress. For

isotropic Hookean materials [D] is, of course,

E
[D] = {E} = I_va / 14 O
v [ 0O (2.41)
/-
0 0 ‘EYJ

~where E is Youngs modulus and v 1is Poissons ratio. Expressing the
Strain energy function direct}y in terms of the strains, as shown in
Reference [36], for instance the total strain energy is obtained by

integrating over the entire body

U= [Weeydv = £[(e)"[D] fe} dv
v v
(el Ip o1
- 'le‘ 4_?f, D,_O ff’.L dﬁ‘ dA
| 54 10 1D ] sy (2.42)
A~z
[ -D ' D' [
ﬁ@ u ' = &
= Z/— 4"‘—} __—_i.—_f ""”}' dA
K. I Dy ; DeeJ .‘Kl
A

where

D] = f[p] ds (2.43)
-

[D’Z]g [Dz.].rm fS[D] C!§ (2.44)
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and

]
[D,.] = fﬁ‘g [D] d¢ (2.45)
h
"2

dA is taken at the undeformed midsurface and h is the thickness.
When the material properties are symmetric about the midplane, [D]2]
and [02]] become identical to zero.

Finally, the total strain energy Eq. (2.42) will be divided

into three separate terms as follows:

Zl:g/{f” I e }dA+ 5 Aj {3}[D,,1{x } dA (2.46)
Af €.y D 1{%} A

where Um is the membrane contribution, Ub stands for the bending

'y

contribution and Umb is the combined membrane-bending term which

vanishes for homogeneous Hookean materials.

2.4 MATRIX FORMULATION OF THE PLATE PROBLEM

2.4.1 The Ritz Method

The variational principle as stated in Eq. (2.12) can be used
for derivation of the differential equation of equiTibfium (Euler
equation) and the natural boundary conditions. 1In fact, the variational
formulation and thé differential equations are equivalent ways of
stating the same physical kequirements, However, the differential
equation with arbitrary boundary conditions generally cannot be solved
using analytic functions. Therefore some numerical method has to be

applied to find an approximate solution to the problem.
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The Ritz-method has extensively been used for solution of
Structural problems. This method, which was proposed by Ritz in 1908,

deals with solution of the differential equation
Lu = f - (2.47)

where L is a positive definite, linear operator defined in domain DL’
u 1is the field function sought in DL’ and f dis a known function
that has a finite norm. The Ritz method is throughly discussed in
Reference [51] and [52], and will not be described in detail here. The
method basically consists of using a sequence of linearly independent
functions segq (un) that is complete in energy; then by minimizing a
functional F (un), it can be shown that seq (un) is a minimizing
sequence that converges to the exact solution 1in energy. For elasticity
problems, the functional F corresponds to the potential energy of the
Structure; and the minimal functional theorem [51] on which the Ritz
procedure is based, corresponds to the principle of minimum potential
energy in the theory of elasticity. A basic theorem necessary for the
proof of convergence of the Ritz-method is that when the operator L is
positive definite, Eq. (2.47) cannot have more than one solution. This
corresponds to the Kirchhoff uniqueness theorem in linear elasticity.
However, the main objective of this study is to solve a class
of nonlinear elasticity problems for which the differential operator
generally does not satisfy either Tinearity or positive definiteness.
Consequently, uniqueness of the so]ytion cannot be proved, which in
turn implies that convergence of the Ritz method generally can not be
proved. On the other hand, Ritz-type solution techniques 1ike the

finite element method have been used successfully for solving nonlinear
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structural problems. But it is also known that using these methods,
convergence to the exact solution is hard to obtain in some cases and
that a wide range of numerical difficulties may be encountered. At
this stage, therefore, it will only be stated that experience has shown
that Ritz-type solution methods can in most cases be used for solving
nonlinear problems. No doubt, much work is left to be done in studying
in a rigorous mathematical manner the application of Ritz-type methods

to problems for which L 1is not linear and positive definite.

2.4.2 Matrix Formulation of the Strain Expressions

The strain expressions will now be rewritten in a matrix form
that is more suitable for numerical calculations. The strains at the
middle surface as given by Equations (2.38) and (2.34) consist of three

separate contributions:

e} = fe) + (e} + (e],

(20, [ 2% 2w £ (2w’
D ox 2x 2 \ox
_ 2 2.48
. L:;L@ L, | 20 Bw + .L(?L‘f{‘) & (2.48)
y 2y 2y 2hy
O, 20| |2 Our, BE Dur 2ur dur
29 ax)  [2x 2y 2y “ox L 9X 2y )

The first two terms are both linear, the second of these is due to the
shallow shell effect. The last term is the nonlinear von Karman strain
contribution.

The Ritz method requires a set of field functions with a
corresponding set of coefficients to be chosen. The inplane and out of

plane variables will now be separated, so that



30

[ﬁ} = [8.] (v} (2.49)

and

w= <@,> {w]) (2.50)

where [:é@j and < @ > are the field functions satisfying the

displacement boundary conditions and {Vi} and {Wi} are the

corresponding coefficients.

For later use, let the following two linear differential

operators be defined

= |° ]
[a,] = [%3; 0
°_ (2.51)
0 3y
2. 2
|9y 2]
and
- [»
fa}= |2
) 2.52
2 (2.52)
°9
The first strain contribution in Eq. (2.48) then becomes
(2.53)

ey, = [A10& T} - [B,]{x)

where [Bv] contains the first derivatives of the field functions.

The shallow shell contribution of Eq. (2.48) can be expressed

as a product of two matrices
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{go}z - r’gg o] [2w = [fci]{ﬁ}

D
0 o Bur (2.54)
o 2w
9y x|

Using the differential operator defined in Eq. (2.52), {M} becomes

[M} = {42} < Fur> {WLJ = [Bwa] {""1} (2.55)

It is assumed that the initial deflection of the plate can be expressed

in a manner similar to Eq. (2.50)
e < G (&) (2.56)

“where {Wi} is a set of known coefficients, not necessarily of the

same dimension as {Wi}‘ Arranging the two vectors in corner matrices

(W] = (& | o
- o (2.57)
o i &
and
[9.] - [7.1 o
R (2.58)
o 1 4.

the matrix [M] in Eq. (2.54) can finally be expressed as

[(M] = [aA][8.][W] = (B,.][%] (2.59)

The shallow shell strains in Eq. (2.48) therefore become



koh = [E@J[;z][Bwﬁj@%}

The remaining term in Eq. (2.48) is the nonlinear one.

Expanding it in a manner similar to Eq. (2.54)

(T2
{Eo}g = 2— dx
0

oo/
§

L °Y

0

and defining two new corner matrices

[Vﬁ] = Wy i

0

S R,

and

the nonlinear strain term becomes

(€3, = AT EALWI{A,} < g0 ()

- é[BWJ[MHB“"J {"‘"z.}

Dwr

B
Qur

2y
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(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

The Equations (2.55), (2.61) and (2.64) now constitute the total strain

expression Eq. (2.48).

To obtain the curvatures of Eq. (2.39) the following second

order operator is introduced
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{233} = -

—a&

L

gﬁr ) (2.65)
0y

The curvatures are now found from

(e} - MJ**?M{%} = [B,3]{w] (2.66)
and the strains at any point are easily obtained using Eq. (2.37).

2.4.3 The Total Strain Energy Expression

The strain energy of the body was expressed as a sum of three
terms in Eq. (2.46). The strain expressions derived in the proceding
section are now to be used for rewriting the energy expression Eq. (2.46).
By substitution of Eq. (2.48), the membrane energy is seen to be made

up by 6 separate terms

Un = 7 (e [D,1(.) dA
= #Je) [0.0{e), dA+ Lfe) 0,7k}, da
(2.67)

s 2!‘:{ [E@}: [D“] {&0}3 dA + A/ {EE}’T[D,,] {Eo.}z_ dA

+ J{el [n]fe),dA + [ {e)[0,]{c), dA
A A

Ui * U+ U
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The strain expressions given in the Equations (2.53), (2.60) and (2.64)
can now be inserted in Eq. (2.67) and the membrane strain energy terms

can be stated as

Uni = 3 (" L] i)

Unz = 5 () J 18,1 T%)TPI [W][BL2]dA fuw]

Vs = 5 {wid [ (BT TWAT TPT W] [B,dA o]
A (2.68)

Ue = (ol JIRIIWI[B..] dA {u)

Uns= 5 fer ] (Bl [, 1' P [wi] [Bu] oA {ur)

Uns = 5 fi] [ [Bua] IWIIRT dA fir)

where the following symbols have been introduced

[k,] = ;! [B.J°[D.) [B,] dA
P = [ [0]08,]
[F] = [B.,] [0,][B..] (2.69)

(P] = (8,1 [D][B,.]
[R] = [B.,]'[0,]][8.]

[B,110](8,]

P
[ #yn]
)

k1]
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A closer Took at these energy terms 1is worth while. In linear
elasticity, the strain energy is known to be a quadratic function of the
displacements (strains). It is seen that Uops U, and Una are such
terms, the last two of which are due to the shallow shell effect. [kv]
is easily recognized as the linear membrane coefficient (stiffness)
matrix. The other terms are'higher order contributions of nonlinear
elasticity. Um3 is a quartic function of the displacements. Neverthe-
less, this term is not negligible; it accounts for the stretching of the
plate when it deflects during zero inplane displacements.

Some simplifications of the terms (2.69) can be obtained when
the initial deflection w 1is chosen to be represented by the same field
function as w. (<q>w > = <$W > ) In that case the following identities

hold true

[P1 = [P] = [p,] (2.70)
and
- T
[Pyl = [Py] (2.71)

The next energy term of Eq. (2.46) to be evaluated is the
bending contribution. Substituting the curvature as given by Eq. (2.66),

it becomes

&
"

£ 1)) [T 10,118,5) 44 fur)
(2.72)

L 1] [le,] i)

where the linear bending stiffness is
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= AfwaJT[Dgz] [B,s]dA (2.73)

The remaining term in Eq. (2.46) is the membrane - bending
coupling term. By substitution of Eq. (2.48) and Eq. (2.66) into
Eq. (2.46) and then after using Eqs. (2.53), (2.60) and (2.64), the

following expression for Umb is obtained

Ung = S Le)+ (e, + (&3,TID,] { %) 44
) (2.74)
= Umbl + Umbz + UM63
where
UmM = {U:‘.}-F [l(u-w] {WJ
Ungz H B TLW,I"[P,1dA (w:) (2.75)
Unps = 3 {w;) AﬂszJ (W1 IR ] dA fu}
and
] = [[B,] [D,][B,] dA
A
[B] = [B:,.,]T[D,J[Bwa] (2.76)
[@] = [Bwl]T[D;g][BwJ]
When
P > = <G > (2.77)

the following identity holds

[P4] = [P5] (2.78)
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2.4.4 The Equilibrium Equations

The variational principle was stated in Section 2.2.3.
According to Eq. (2.12), the first variation of the total strain energy
is needed for establishing the equilibrium equations. First, considering
the membrane strain energy as expressed in Eq. (2.63) and remembering
that the only quantities to be varied are the disﬁ]acement coefficients

{vi} and {wi}, the following equations are obtained.

§U, = 8{v) [k,]{u}
5Ung = & (un)”[I8,TTHTTPIWI[8, ] {u}
8Uns = 7 8{wi}/ BT TWITPI[W,][B.,]d4 {ur}
§Uny = S(uf IPIIW]LB,] dA ()
* 8w [BLITNTTRT A {w) C(2.79)
§Uns = 5 8{ur) [ (B2 T TTRIIW, LB, ]dlA {ur)

+ 8 w8 T T TRT (W [B,.] A i)

§Usg = S {u] [ [B.T [W]'[PIdA (v)
* 78wl JIRT I (B, ]dA [u)

Note that transposition of energy terms can be performed unrestrictedly
here since they are scalar quantities. The variations §{w;} and 8{w:)

can also be interchanged since they represent the same quantities.
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The variation of the bending strain Eq. (2.72) goes in a

similar manner

JUb = waﬂ}TA[[Bus]T[Daz] [ng]dA (w;}
(2.80)

= 8{w) [k,] {w;)

and finally the first variation of the combined membrane-bending energy

Eq. (2.75) becomes

§Ungr = 800 kol i} + 8fr) [hipur] {0z}

S Unpz = 5{%}}' (Bl [W.]T[R,] dA {%}
. 5{%}7’1 [PT (W] [Bura] A fur) (2.81)
§Unss = & ()[BT TWT'[R ] dA ()

’ 2‘1‘5{%}1/[%17(M][5,.,z]d,4{%}

The virtual work Equation (2.12) includes two terms accounting
for work done by surface tractions and body forces. Since the plate is
a sbecfa] form of geometry degenerated to two dimensions, the work done
by these forces can be expressed by work done by forces defined at the
midsurface. Making use of field functions as was done for the

displacements (2.49), (2.50), the midsurface loads can be written

[} =[] = [8,]) fpuc) (2.82)
Py



and

-39

P = < Ppuw> {Puré} (2.83)

The field functions are assumed to be of a very general form, capable of

expressing concentrated forces and boundary loads. {p,;} and {Pwi }
are the known load coefficients. Again, using Egs. (2.49) and (2.50),

the virtual work done by these forces is

8V, = S{w.-}TAf[@v]T[@,w]dA {p:)

(2.84)
+ S{WC}T j< ?‘J)T( ?Pw’> dA {Pw,:}
A
Let two generalized force vectors be defined
()= 18T 8,01 dA poi) (2.85)
and
{Eri} = J< ?‘V ;.( ?pw‘> dA {Pw'i} (2-86)
A .

Eliminating the virtual displacement vectors, the virtual
work Equation (2.12) for the domain in which the field functions are

defined may be stated as

[kI{r}= [P} (2.87)

or

1
kmr : ku'ur v Pm_
_____ (R R S G T
|
kw-u- : kww‘ w_é Pwi

(2.88)
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This equation expresses the state of equilibrium for the system, and it
is valid for the entire plate or a subdomain of the plate (as in finite
element method). The submatrices of the coefficient matrix are obtained

directly from the Equations (2.79), (2.80), and (2.81)

[k,,] = [k] (2.89)

[k..] = JIRI[W][B..1dA+ é/[%]’cws.,zldm[iw] (2.90)
A

(ko] = [IB,JTWTIRT A + [ [Bua] T, JTRTAA + [len]" (2-97)
A A

Koo = ,;[ (Bl [W.T[PI[W]ILB,,] dA
+ -/[ ot TWeTT PT IV [ Bug] 4A
+ /18, T T TRI[WiI (8. dA
+ Z[sz]T[M]r[%][LT&J[szJdA (2.92)
k] + [[BaI%ITe,]dA
JIRTIW][B.]dA + /[ o] [W.]TTR ] dA

n{;/ [RT [w.][B,,]dA

The equilibrium Equation (2.88) is nonlinear since the
coefficient matrix is a function of the displacements. Further, it is

not symmetric, in general
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(kyo] + [k, J"

[kl + [y

(2.93)

This last fact may, at first glance, seem rather disappointing. How-
ever, it is without significant importance since the numerical solution
methods to be applied do not depend on inversion of [k]. As will be
seen in the next section, the incremental form of the variational
principle Teads to a symmetric coefficient matrix, a fact which is of
great importance.

A noteworthy fact is also that many of the terms become zero
when there is no initial deflection or when the constitutive equation

is constant through the thickness.

2.4.5 The Incremental Equations

The incremental form of the variational principle was given in
Eq. (2.26). It is assumed that this principle is to be applied to two
consecutive configurations that are close to each other. The higher
order terms mentioned in Eq. (2.26) will therefore be neglected.

The second variation of the total strain energy is obtained by
taking the variation of the Egs. (2.79), (2.80) and (2.81) in the

previous section. Equation (2.79) results in

U = S0k 8 (0}

§'U,,,

n

8w} JIB, T[] TPILW,1[Bu,TdA & (ur)
A

JZUMS

2 8 () [ 1B T Wi [P D] (Bl dA 6(ur)
A
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& Uy, = Sl JIRIIW1[Bud dA §fer)

+

5wl f (bl (W IRT'dA $(0)

gzUMS'

§{w [ B, TTRTIRIIW,][B, JdA 8w}
A (2.9)

2 8 (o) [BuraT (W TRI 71 [BiJdA 3}

+

SIU-».; = 4 {“’crg[ﬁwzlr[wé]r[%] dA J{U'J

+ 5{w)”3f[P3]’£wL](Bm] dA 8 (w)

Second variation terms of the displacements have been neglected here.

Since the energy is a scalar quantity, 62Um5 can be rewritten as

s = 3 Sl (8] TWIT LRI [B,,] dA Tur)
1 (2.95)
+ 25 (o] ] (B (T [RITI(BunldA 6 us]

The second variation contribution from the bending energy is obtained

from Eq. (2.80)

SV, = 8{w) [k,] §{uw:) (2.96)

Finally, using Eq. (2.81)
5 Uy = (v} ko] § (s} + 8w} o] L)

5 Uppa = S{W]TA“BW]T(Q]T[HJ §A &{ur}
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+

8{uwn)" JIRTW1(B,,,] dA &(ur)

8 Uz = 5 8{ur)" J (Bl W ][R ] A 6 (ur]

(2.97)

+

76l [ [RTTW] [BL.]dA 6 (]

Reconsidering the incremental Eduation (2.26), the object is to apply
it in going from one configuration to another nearby configuration, as
shown in Fig. 2.3. The second variation 62U will be replaced by
A2y which is a function of the finite displacement parameters {Au; }
and {aw;}. Again, crossing out the premultiplying displacement

vectors, the following incremental equation remains

“‘x] (Af‘.-.} = {a P} (2.98)
or
kIu'u- E '(Io-w' Av; AE),..‘. .
----- e B ot (L (2.99)
kI“""’ i klww— Aw‘i A wri

Here, A denotes the difference between configuration 2 and 1. This
equation has a form similar fo the equilibrium Equation (2.88) but
deals with increments. [kI] is therefore denoted the incremental
coefficient matrix.

The submatrices of the incremental coefficient matrix are

now easily obtained from the Equations (2.94) to (2.97).
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(k] = (k] (2.100)

f[P][W][ ,]dA+/fPHWHB JdA+ [k ] (2.101)

ke, 3 = [l T TWI[RTdA ][B“,z][w][P]dA+[I<W] (2.102)
(ki) = J BT (WTTPI LW [Boo] o A

+ 2 1Bl TPI[wi] (Bl dA
« 2B, JIWITRI(WILB, ]dA
' (2.103)

+ 3118, I (W RT W] BunldA

+ [ko]+ [[B T [WITR,1dA

+ JIRYIWILB,.1dA+ £ [[8,,]Tw][RTdA
A A

+ 2 IRTIW.][B,,]dA
A

It is seen that the incremental coefficient matrix is
symmetric, which is of great importance for the numerical applications.
Again, one should note that many terms cancel for special cases. For
instance, only two terms remain for [kiww] when considering a plate
without initial deformations which is made of an elastic homogeneous

material.
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2.4.6 Effect of Temperature

A frequently occurring problem in structural mechanics is that
of determining the effect of heating or cooling on the structure. The
strain energy contribution resulting from temperature changes of a
thermo-isotropic plate is as follows, using Helmholtz's free energy
function [36, 54, 55]:

j((au., au; N, « (25 Efs_r)M ) dA (2.104)

% T oyt /T

%%— and %%‘ are strains at the midsurface. Assuming a Hookean

material, the two thermal functions are

. #
NT = ‘I-_;" !o(TdS‘
z_h_ (2.105)
£
MT= _I_:v—h «T? d}‘
"2

Here T is the temperature change from the stress free initial state
and o s known as the coefficient of thermal expansion. NT and MT
are frequently termed the temperature force and temperature moment,
respectively.

Let it be assumed that thermal forces can be expressed by

field functions as

e = g (] (2.106)

M = < @2 {”ra}
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where {NTT} and {MTT} are known coefficients. Using the operator
defined in Eq. (2.52) and Eq. (2.49), the sum of the strains at the mid-

surface becomes

e 35 = () 1810w} - <8 ) (2.107)

Introducing a new differential operator

?° ?* (2.108)
A, = =+ =y .
4 ox? ?y

and using Equation (2.50), the sum of the curvatures is

4 Ch
%;::4“ «é% = A$<PW'> {(,U‘;} = <B.'_w_> {LU'L} (2-]09)

Substitution of Egs. (2.106), (2.107) and (2.109) into the thermal

energy expression Eq. (2.104) yields

Up = ~{n}S<8r,>"< 9,5 da {n,,)
A

(2.110)
N {wC}TJr< Brw >Te Pr, > dA [Mn]
A

This energy expression will now be inserted into the

variafiona] equation. Taking the first variation leads to

5UT = - S{U-‘.}TJ<BW>T< P > dA {Nn]
A
(2.111)
- 5{""2}:‘!< B, >" < ?Tz”d’q {mr;)

This equation shows that the temperature field gives contributions to

the Toad vector. These forces correspond to the forces necessary to
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restrain the plate against deformation when it is subjected to a
temperature change, T. The stresses originating from restraining the
e]emént are known as initial stresses and the corresponding load vector
is termed initial loads. Transferring the initial loads to the right
hand side of the equilibrium equation as in (2.84) results in a sign

change, thus

{Pv'"}temp = A[( BTu- >T< ?Tl > dA {NT‘&} (2.]]2)
and
{P“"}ump = Af< B, > < P> dA {M.] (2.113)

The temperature field can also be changed stepwise using increments of
the coefficients {NTi} and {MTi} combined with the incremental form

of the variational principle.
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3. THE FINITE ELEMENT METHOD

3.1 FINITE ELEMENT FORMULATION

3.1.1 Choice of Method

The derivations of the previous chapter can be adopted for
any Ritz-type solution technique. Three specific methods will now be

suggested for solving the nonlinear plate problem, as follows:

1) The traditional Ritz method
2) The finite element method

3) Energy formulation of the finite difference method

The Ritz method could be applied directly to the equilibrium
and incremental equations using some appropriate field function
expansion, for instance Fourier series, defined over the entire domain
of the plate. The main disadvantage associated with this method is its
lack of generality. That is, it is very difficult to account for
arbitrary shape and boundary conditions of the plate. In addition,
this solution method frequently turns out to be numerically i11- |
conditioned and unstable.

The second method is a further development of the Ritz-
technique. The finite element method is based on expansion of field
functions in subdomains called elements instead of over the entire
domain. Certain continuity conditions are required to be satisfied
between each subdomain. This method has proved to be very powerful,
and is capable of dealing with complicated shapes and boundary

conditions. It is also well suited for automatic computations. For
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Tinear problems, the method results in a symmetric banded system of
Tinear equations that is well conditioned. The finite element approach
will be discussed more in detail in the following.

The third method that could be applied is an energy
formuTation of the finite difference method. Usually, the finite
difference method is used to satisfy, at discrete points, the
differential equations of equilibrium of the problem [56, 57]. However,
investigations in which the difference technique has been applied
directly to associated functional have been reported by Greenspan [58, 59].
This approach has been effectively utilized for structural problems by
Almroth, Bushnell [60] and others. It is believed that the finite
difference method could be successfully applied to the equations
derived in the preceding chapter. The differénce operators defined in
the Equations (2.51), (2.52) and (2.65) would then have to operate
directly on disp1acemeﬁts at discrete nodal points. The equilibrium
and incremental equations would be essentially the same, only with
substitution of discrete difference operators instead of B-matrices.
NeVerthe]ess, the finite difference approach will also suffer from some

of the same shortcomings as method 1; in particular, it is complicated

to apply this method to non-rectangular domains. It may be note that
some work is presently beind done toward;app]ying the finite difference
method to completely irregular meshes [61].

On the basis of the preceding considerations, it was
concluded that the finite element approach would be the best method
here; it is well suited for computer programming and easily applicable

to complicated geometry and boundary conditions. But it also is
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possible that the finite difference technique is equally efficient for
plates with rectangular boundaries; this question is left to be decided

by later investigators.

3.1.2 A Brief Description of the Finite Element Method

It was stated in the previous section that a special form of
the Ritz technique, called the finite element method, will be used for
solving the nonlinear plate problem. The basic idea of this method is
that the total domain is divided into subdomains, in each of which the
field variables are expressed as polynomial expansions. Certain
continuity conditions must be éatisfied between each subdomain in the
assumed expansions. The finite element method was originally proposed
for solving a limited class of structural problem, namely the case of
plane stress elasticity [11]. Since that classical paper, the method
has successfully been extended to all kinds of two and three-dimensional
struc£ura1 continua. Moreover, the method has been applied effectively
to a wide range of physical field problems, such as heat conduction,
electro-magnetism, seepage problems and many others. Several textbooks
dealing with theory and applications of this method have been published
[62, 63, 64]. The method has been dealt with in a more rigorous~:
mathematical sense in the‘References [65, 66, 67]. "

Considering the method applied to structural problems in a
more practical physical manner, the structure can be said to be
1deajized as an assemblage of small inter-connected "pieces" (finite
elements). Each element is connected to adjacent elements at joints
called nodal points, through which continuity of certain displacement
parameters is maintained (nodal degrees of freedom). The total number

of degrees of freedom for one element is the same as the number of
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functions assumed to represent the displacements within the element. A
set of nodal point forces corresponding to the nodal degrees of freedom
is also defined. A stiffness relationship between the nodal forces and
displacements is then established using the virtual work principle for
each element.

Even for the solution of a specific type of problem, many
different types of finite elements may be considered, depending on the
particular form of the displacement functions, choice of nodal degrees
of freedom and the general geometry of the elements. The choice of
the displacement polynominals is a rather crucial one. Based on
mathematical analysis and experience, certain requirements should be
satisfied by these function to obtain convergence and good results.

One such requirement is that of "completeness" which essentially states
that the field functions must be capable of expressing rigid body
displacements without resulting in "self-straining" and also capable of
expressing so-called "constant straining modes" of the element. Another
basic requirement deals with inter-element continuity of the displacement
polynomials. In theory, the polynomials should satisfy inter-element

Cn'] when differentials of order n enter the

continuity of class
energy expression. However, there are many examples of elements that
violate one or more of these requirements and still do converge to the

right solution.

3.1.3 Element Idealization of the Plate Problem

The equilibrium equations and incremental equations of
Chapter 2 will now be applied to single elements, thus establishing the

element stiffness relations. Then by assembling all elements (which
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corresponds to integration over the total plate) the total structural
response of the plate will be obtained. The assemblage procedure is
further discussed in Section 3.6.1.

The nodal point degrees of freedom will be separated into two
groups, namely those associated with inplane displacements {Vi} and
those associated with transverse displacement {Wi}' Correspondingly
according to Equations (2.49) and (2.50), two sets of displacement
functions must be prescribed. These functions will from now on be
denoted "interpolation functions" since they are expressed directly in
terms of the nodal degrees of freedom.

The two sets of interpolation polynomials that will be chosen
for membrane and bending actions have both previously been reported in
the Tliterature. They have both proved to give very good and reliable
results for Tinear analysis. Since not all plates are rectangular,

general quadrilateral elements will be utilized in this investigation.

3.2 THE PLATE BENDING ELEMENT

The plate bending element that will be used here is one which
was developed over a period of several years. Clough and Tocher
reported in 1965 a confbrming(*) triangular bending element with only 9
degrees of freedom [68]. This element uses 3 subdomains, each having
separate displacement expansions. By prescribing certain continuity
conditions between the subregions, the conforming element is obtained.
It can be shown [15] that a conforming triangular element with only 3
degrees of freedom per corner node cannot be obtained using a single

cubic expansion.

(*)

Conforming means here that slope and displacement continuity
between elements is satisfied.
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This element was further developed by Felippa [15] who used
natural (triangular) coordinates instead of Cartesian ones. He also
extended the element to include a prescribed number of midside
rotations, thus making it possible to form a conforming quadrilateral
element called Q19 from 4 subtriangles with 11 degrees of freedom each
called LCCTll(**). 7 internal degrees of freedom of the Q19 element can
be eliminated by so-called static condensation, thus leaving 4 corner
nodes with only 3 degrees of freedom each. The derivation of the Q19
element was later simplified by Clough and Felippa [69], and also
extended to include transversal shear deformation. This element which
satisfies both completeness and conformity seems to be the most
efficient quadrilateral bending element yet developed.

Only the main steps of the derivation of the Q19 element will
be described here since the details can be found in Reference [69].
Fig. 3.7 shows how the quadrilateral element is assembled from 4 LCCTN
triangles. Node 5 is chosen to be the centroid of the quadrilateral.

A LCCTI2 triangle with 12 degrees of freedom is shown in more detail
in Fig. 3.2. The triangle shown is divided into 3 subdomains, each
having separate interpolation polynomial expansions expressed by
natural coordinates of the entire triangle. For subtriang1e 1 the

deflection is given by

w't o :g)> [un(U} (3.1)

L

%)

LCCT stands for "Linear Curvature Compatible Triangle", the eleven
indicates 11 degrees of freedom.
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where for instance the nodal displacement vector for subtriangle 3 is

{w’_’t‘b)}"s <w(, Q’(l '99“ w;.’ ka '632 W 9 9 9" > (3.2)

L ) 0) Xey ﬁol

By matching the deflections and rotations at the centroid 0 for all 3
subtriangles and enforcing continuity of slopes between these sub-
triangles, the internal degrees of freedom can be eliminated. This is
a very extensive and tedious algebraic operation [69], but the result
turns out to be quite simple. The resulting compatible interpolation
polynomials for subtriangle number 3 are given in Appendix A.

The 12 degrees of freedom LCCT12 triangle can easily be
reduced to LCCT11 triangle by prescribing a kinematic constraint such
that the midside rotation on one of the sides is set equal to the
arithmetic average of the corresponding slopes at the adjacent corner
nodal points. This results in a s1igﬂt modification of the inter-
polation polynomials in Appendix A. The linear stiffness matrix of the
LCCT11 element is obtained using Eq. (2.73) and performing the
integration utilizing natural coordinates over each of the subtriangles.
The stiffness matrix of the Q19 element is obtained simply by assembling

the 4 LCCT11 stiffness matrices.

3.3 THE MEMBRANE ELEMENT

- A general quadrilateral membrane element is needed to match
the plate bending element. Use of so-called “refined" elements
utilizing polynomials of higher order will be avoided because stiffness
evaluations of such elements will be extremely time consuming when
including the nonlinear geometric effects. Therefore an element with
only 2 degrees of freedom at each corner node has been chosen for

this study.
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Such elements can easily be built up using 2 or 4 triangles
followed by a static condensation of internal nodes, [15, 70]. However,
a simpler formulation may be obtained using natural coordinates and
Hermitian interpolation expansion over the entire quadrilateral. Such
an element is the Zienkiewicz-Irons quadrilateral described in
Reference [62]. An improvemeit of this element may be obtained by
including an internal nodal point with 2 degrees of freedom as shown
in Figure 3.3. The interpolation polynomials for this element are given
in Appendix B. The derivation of the linear membrane stiffness [kv] as
defined in Eq. (2.69) is demonstrated in Reference [62]. 2 by 2 or 3 by
3 Gaussian quadrature is used for the numerical computation of the
stiffness.

As has been pointed out {n Reference [71], the performance of
the element when used for plates with discretized eccentric stiffeners
can be substantially improved by including additional midside nodes with
each having one tangential degree of freedom. This makes it possible for
the element to pick up high stress gradients near the stiffeners. Such
additional nodes are not desired for plates without stiffeners due to
the increased band width of the system of equations. The flexibility of
the element can also be considerably increased by using a mixed energy
formulation including the shear stress as an additional parameter [70].
This idea was originally proposed by Doherty et. al. in [72], then
based on a more practical physical observation. This approach is
particularly useful for improving the inplane bending mode response of
the element, but it is not expected to be of great importance for large
plates with combined bending membrane type of action. Besides, this

mixed energy element is not invariant, its stiffness depends on the



orientation of the Tocal Cartesian coordinate system in which the
stiffness relation is formed. Therefore, the expansions given in
Appendix B will be used here. An invariant quadrilateral element with
improved bending mode action and with only 8 remaining degrees of

freedom has been suggested by Wilson [73].

3.4 NONLINEAR GEOMETRIC EFFECTS

3.4.1 The Concepts of Secant and Incremental Stiffness

As mentioned in the Introduction, the finite element method
has been extended to be applied to a wide range of nonlinear problems
during the last decade. Some authors, particularly during the first
period of development, took a rather physical approach to the problem
by including nonlinear corrections to the Tinear solution. Such an
approach will frequently lead to incorrect solutions due to the
omission of significant terms, although it might work well for the
Tinearized buckling problem. A more proper and safe way to proceed
is to start with a correct energy or variational principle from which
a set of nonlinear equation may be deduced and solved numerically.
This latter approach was adopted in Chapter 2.

Figure 3.4 shows a typical load-deflection curve for a
nonlinear structural problem, which for simplicity in this discussion
has only 1 degree of freedom. The various slopes on the figure

represent different stiffnesses defined for point P of the curve

KL is the Tinear stiffness originating from linear small

displacement theory

KS is the secant stiffness relating forces directly to
displacements

57
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KI is the incremental stiffness which relates the incremental
forces to the incremental displacements. KI is also calied
the tangent stiffness by many authors.

KGI 1s the geometric stiffness accounting for the additional
stiffness due to changed geometry.

From Figure 3.4 it is seen that
(3.3)

Some authors 1like to call the geometric stiffness contribution "initial
stress matrix". Such an expression is inadequate since a complete
derivation reveals that there are indeed stiffness terms that cannot

be classified as initial stress terms. The "initial stress"
designation fits better for the special case of a linearized eigenvalue

formulation for buckling which can be stated as

[ [k, -k I] {r} = {0} o (3.4)

where [KG] can be expressed in terms of membrane stresses and A
represents the eigenvalue which actually is a load multiplier.

In Appendix C it is shown that the nonlinear coupling term
between the inplane and the transverse displacements of Eq. (2.90) can
be rewritten in a form that is like the traditional "initial stress"
stiffness for plates [14]. However, the form used in Eq. (2.90) is far
more convenient for the present computational purposes.

Marcal suggested in Reference [74] that the incremental
stiffness be separated into 3 contributions, namely a small displace-

ment linear stiffness, an initial stress matrix and an initial strain
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or initial displacement matrix. Such a classification gives a more
complete picture of the situation. However, in connection which the
derivations used here, it seems more Togical to classify all nonlinear
terms only as "geometric" since they indeed are due to the change of
geometry after load application. Besides, all stiffness contributions
have here been expressed directly in terms of displacements for
computational convenience and efficiency.

The numerical solution of the nonlinear equations s

extensively discussed in Chapter 5.

3.4.2 The Calculation of Nonlinear Stiffness Terms

The numerical evaluation of the nonlinear stiffness terms
given by Equations (2.90) through (2.92) and (2.101) through (2.103)
can be carried out in a straight-forward manner. It is seen from the
stiffness expressions that some value of the nodal point displacements
{Wi} must be used when the calculation is performed. As will be
discussed later in Chapter 5, the solution of nonlinear problems
involves repeated recalculation of nonlinear stiffness terms, often a
substantial number of times. Consequently, it is of vital importance
that the nonlinear terms be calculated in a very efficient manner.

The interpolation functions for the deflections (Eq. (A.3) of
Appendix A) yield very good results for the linear bending of plates,
but they are rather complicated. This indicates that the formulation
time of nonlinear stiffness terms might be rather high when performed
in a straight forward manner. However, a crucial observation is that
the nenlinear stiffnesses are functions only of the first derivatives
of the deflections, not of the secbnd derivatives which is the case

for the Tinear bending stiffness. This suggests that simplified
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interpolation polynomials can be employed when calculating the non-
Tinear terms, still yielding good results. Indeed, the numerical
results of Chapter 6 do verify this hypothesis. A similar conclusion
for linearized buckling was reached by Clough and Felippa [69].

Several simple interpolation polynomials with only deflectional
and rotational degrees of freedom at the four corner nodes are available
for rectangular and parallelogram elements. Such functions are the'
Hermitian po]ynomia1s [75] and the ones suggested by Melosh [76] and
Argyris [77]. These polynomials do not satisfy both conformity and
constant curvature nodes; only expansions of the type described in
Section 3.2 do that. However, the results obtained by using the
different polynomials mentioned above for the nonlinear geometric
stiffness terms turn out to be very close to each other. The Hermitian
polynomial interpolation was perferred here since it satisfies jnter—
element slope continuity, and it is the slopes that are essential for
computation of the nonlinear stiffness terms. Its lack of a so-called
"constant twist mode" is not important in this connection. This
interpolation polynomial is given explicitly in Appendix D.

The nonlinear stiffness contributions of Sections 2.4.4 and
2.4.5 are now obtained using a 2 by 2 or a 3 by 3 Gaussian quadrature
scheme. Although not tested here, the Hermitian interpolation
polynomials could also be used for general quadrilateral elements if
expressed in a natural coordinate system like that of Fig. 3.3. The
Jacobian matrix would then enter the stiffness evaluation and a trans-
formation to the rectangular global coordinates would have to be

‘performed for the rotational degrees of freedom.
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3.5 PLATES WITH INITIAL DEFORMATIONS

The initial shape of the plate surface was defined in Eq.
(2.56) by a set of field functions and a corresponding set of arbitrary
coefficients. It will now be assumed that the coefficients are real
initial deflection quantities at the nodal points of a finite element
and that <$w> represents the corresponding interpolation polynomials.
There are several computational advantages connected with using the
same interpolation polynomials for the initial shape as used for
calculating the nonlinear effect of the additional displacements. <$W>
is therefore chosen to be defined by Eq. (D.3) (Appendix D) and the

corresponding nodal point vector 1is

{‘J'af < ‘:’ugxﬂ, By1,55;, 6, ,éggz, Wy, 9"3.953,%,,'9*,,'9,.,7’ (3.5)
where the subscript numbers indicate nodal point number. The [éw]]
matrix defined in Eq. (2.59) thereby becomes identical to [Bw]] of
Eq. (2.64) and consequently the identities Egs. (2.70), (2.71) and
(2.78) also hold true. It is demonstrated in Sections 2.4.4 and 2.4.5
that the initial displacements results in both linear and nonlinear
stiffness contributions. The numerical evaluation of these terms is
similar to what was described in the preceeding section.

The element defined by Eq. (3.5) and Eq. (D.3) is a doubly
curved quadrilateral element. It is well known that for such an
element it is difficult to satisfy both the requirement of rigid body
modes and constant straining modes as described in Section 3.1.2. The
translational rigid body modes however, are seen to be included

directly since the displacements are described in a global Cartesian
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coordinate system and the interpolation polynomials of all three
displacement components contain a constant term. However, the
rotational modes are harder to satisfy. Fig. 3.5 shows a shallow shell
element rotated about the y-axis. The displacements caused by such a

rotation are

e
it

(cosé - 1) x - (sing) w (x, y) (3.6)

(sind) x + (coso - 1) w (x, y) (3.7)

=
1]

It is seen that Eq. (3.6) can be satisfied identically only as long as
u s a polynomial of at least the same degree as W. Since u s of
lower degree than w here, Eq. (3.6) will not be identically satisfied.
However, as long as the linear terms dominate w and the curvature
(quadratic) terms are relatively small this equation is satisfied with
sufficient accuracy. Further, it is also seen that Eq. (3.7) is
satisfied identically as long as w is at least of the same order as
w, which is the case here. Moreover, the rigid body rotation mode
about the z-axis is also included since u and v are of higher order
than the 'bilinear expansion which is required to represent this specific
rigid body motion. The constant straining modes are also satisfied
within the range of validity of the shallow shell strain Equations (2.48).
According to the variational principle, the energy should be
integrated over the volume of the undeformed body, that is, integration
should be performed over the initial volume of the shallow shell itself.
However, for convenience the integration will be performed over the

projection of the shell onto the X-y plane. Thence

dA

Vo= dg At = g SA
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where dA is the projection of dA' onto the x-y plane as shown in
Fig. 3.6 and o is the angle between the tangential plane of the shell
and the x-y plane. A correctional term accounting for the curvature
could be included but is without significance here. In most practical

cases, coso can be approximated by 1.

3.6 ASSEMBLAGE PROCEDURE AND STRESS COMPUTATION

3.6.1 Assemblage Procedure

The variational principle has been applied to a subdomain of
the total body for deriving the element stiffness terms. The principle,
of course, also is valid for the entire body. This implies integration
over the entire domain which in fact Just corresponds to arranging and
adding together element stiffness terms. This procedure can easily be
carried out in a computer and is known as the "direct stiffness method".
Capital K's are here used to denote the system stiffness matrices.

Thus, corresponding to the element equilibrium expansioﬁ Eq. (2.87),

the equilibrium equation of the total system becomes
[KI {r} = {Rr} (3.9)

in which [K] 1is a function of the noda] point displacements {r} of
the assembled system. The incremental equation of the total system

reads
[KI] {ar} = {aR} (3.10)

which corresponds to Eq. (2.98) for a single element. The system

incremental stiffness matrix is banded and symmetric, but not always
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positive definite for nonlinear problems. Kinematic constraints ére
introduced into the stiffness matrix after the assemblage procedure is
completed. |

Calculation of nodal point loads is performed elementwise
according to Equations (2.85) and (2.86). A load matrix consistent
with the complete displacement expansion for the plate bending element
1s not computed since experience shows that Tumped corner Toads yield

equally good results.

3.6.2 Stress Computation

After the displacements of a stationary state have been found
using some numerical technique the corresponding stresses can be easily
obtained. 'The midplane strains and the curvatures were defined in
Eqs. (2.48) and (2.66) respectively. Thus the membrane stresses and
the moments are found at any location by premultiplying these vectors
by the corresponding constitutive matrices Eqs. (2.41) and (2.45).
Membrane stresses and moments are not continuous between adjacent
elements, but good stress estimates are obtained by taking the
arithmetic average of the stress value of adjoining elements at such

points.
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4. THE ELASTIC-PLASTIC PROBLEM

4.1 SOLUTION OF ELASTIC-PLASTIC PROBLEMS USING THE FINITE ELEMENT
METHOD

An ultimate strength analysis of a structure usually requires
the nonlinear behavior of the structure material to be taken into
consideration. In the present discussion, attention will be confined
to metallic materials exhibiting an elastic-plastic type of behavior.
The analysis will further be limited t05ﬁﬁvisﬁgaﬁmater1a1s under isg-
thermal conditions, and subjected toiquasfs£a£fée1oading. Before
approaching the problem numerically, two’méjor decisions must be made.
The first is the selection of a mathematical model (plasticity theory)
by which fhe macroscopic behavior of the material is described. The
second important decision is related to the numerical technique itself,
and concerns the incorporation of the elastic-plastic effects into the
numerical equations of the discretized system.

The two major plasticity theories that will be considered
here are the deformation theory and the flow theory. Comparative
discussions may also be found in the classical book by Hill [78] and a
very comprehensive review paper by Naghdi [79]. The deformation theory,
which was suggested by Hencky in 1924 [80], assumes a unique relation
between total stresses and total strains. The plastic strain components
are given by a proportionality factor (which is only a function of the
prevailing equivalent stress) times the corresponding deviatoric stress
components. Because of its mathematical simplicity, the deformation

theory is indeed attractive both for analytical and numerical approaches.
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However, many experiments clearly contradict the Hencky theory,
particularily for repeated loading and unloading [78]. Real materials
exhibit a "memory" of previous plastic deformations, while the
deformation theory does not account for such effects.

For the sake of mathematical consistency and physical
appropriateness the flow theory will be adopted here. The basic
equation of this theory is that of Prandtl [81] and Reuss [82] assuming
the increment of plastic strains to be proportional to the corresponding
deviatoric stress components. The plastic deformations are "memorized"
by integrating the equivalent plastic strain increment over the
prevjous Toad history, thereby accounting for hardening effects. The
concept of the Bauschinger effect can be incorporated using a
kinematic hardening model as suggested by Prager [83]. The flow
theory can be classified as a nonconservative and "nonholonomic" type
of theory. A result of this definition is that the true Toadpath must
be followed during load application. A pure incremental method must
therefore be used for solving problems of this type. It is of interest
to note that the deformation theory and the flow theory coincide when

A the stra1n path is a straight l1ine [78].

.

The second important decision that must be made is the
selection of a method for 1ncorporating the elastic-plastic material
behavior into the finite element analysis. Two approaches are readily
available; they are the so-called "initial strain" method and the
"tangent stiffness" method. The method of initial strains is based
on the same principle that was used for incorporation of thermal

strains in Section 2.4.6. The plastic strains are accounted for by

introduction of a set of equivalent body forces. The analogy between
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plastic strains and body forces was first suggested by Ilyushin in 1943
[84]. Later, this approach has been developed and used in the finite
element approach by Padlog et. al. [24], Argyris et. at. [25], and many
others. The main advantage of this method is that the system stiffness
matrix remains independent of the plastic deformations, the effects of
which appear only in nodal forces. However, since the plastic incre-
ments are not known in advance, an iteration has to be carried out at
each Toad level.

The tangent stiffness method, on the other hand, requires
that a new stiffness matrix be formulated (or the previous one be
updated) for every loadstep. This method also has been widely used for
finite element éna]ysis of elastic-plastic problems [85, 15, 26] and it
will be further discussed in the next sections. Comparative studies
between the two methods have been reported by Khojasteh-Bakht [27] and
Marcal [31, 86]. Although the initial strain method seemingly is the

simpler of the two, it is Tess reliable and breaks down for elastic-

”perfgctlymp1g§ﬁjc”materiq}ig which truly is an important special case.
Furthermore, when plasticity is combined with large displacements, the
incremental stiffness has to be recalculated anyway during load
incrementation. For these reasons, the tangent stiffness method was

chosen to be used here.

4.2 THE GOVERNING EQUATIONS OF THE FLOW THEORY

4.2.1 Basic Principles and Assumptions

The basic equations of the flow theory needed for deriving

the incremental stiffness relation will briefly be discussed in the
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following, Detéi]s and proofs will not be pursued since more complete
derivations may be found in the references by Hi1l [78], Naghdi [79],
and Koiter [87].
 Stresses and strains will be referred to a rectangular

Cartesian coordinate system, and the strains are assumed to'be
infinitesimal. In spite of the small strain assumption this plasticity
theory can be used in connection with the large displacement theory for
plates based on the von Karman strain expressions. As will be recalled
from Section 2.3.2, the strains of the von Karman'theory are
infinitesimal, it is only the rotations that are finite quantities.

Some attempts at -deriving a large deformatibn theory of
- plasticity have been made, notably by Green and Naghdi [88] and by
Yaghmai [28] Who applied the théory té rotational symmetric shells.
However, this theory is questionable since it is assumed that the
elastic and plastic strains may be additively decomposed. Some recent
papers by Lee and Liu [89, 90] and by Tseng [91] do not make use of the
addition of elastic and plastic strains. Anyway, the large deformation
theory of plasticity is extremely complicated, and it seems that no
theory which,satisfies the laws of both thermodynamics and continuum
mechanics is available for general practical use at the present time.

The derivation of the plasticity theory will be based on three
major assumptions. The firsf is that elastic and plastic strains may

be added

- E p
€5 = €ij + €43 (4.1)
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where superscripts E and P denote elastic and plastic respectively.
This assumption is perfectly sound for infinitesimal strains. The
elastic strains are related to the total stresses by Hookes Taw:

£
%y = Eijkl el = l‘gi,j SiL + /M(S;k it + Ok 8. ) (4.2)

where X and L are Lame's constants:

Ev E

=Y o 4.3
= (1+v)1-2y) and T 2(01+y) (4.3)

The plastic part of the deformation is postulated to be incompressible

EP. = { : (4.4)

Experimental results confirm this assumption,
The second major assumption is that there exists a socalled
Toading function f in 9-dimensional stress space. This function is

such that the state of the material is given by the value of this

function
f < 0 - elastic state (def = 0, de’ = o)
) P
f = 0 dcij can cause de i £ 0 , (4.5)
f > 0 inadmissible state

The special value f =0 at time t constitutes the yield condition
at that time. Further load incrementation can only cause f to change,

it is impossible to get outside f = 0. As it turns out that f is a

function of 05 5 and E?j’ (see the next section) three different

foading conditions from a plastic state result from Eq. (4.5)
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of - <D f = 0 (during unloading)
’36‘;5 o ’
2

6..=0 f
’2)6‘;‘-_3 ‘) !

it

0 (during neutral loading) (4.6)

°f 550 f
/BO'LJ ) !

0 (during loading)

The dot denotes time differentiation.

The third basic assumption to be made is that the material is
stable as defined by Drucker [92]. Drucker's quasi-thermodynamic Taw
may be stated as follows [79]: "Consider an element initially in some
state of stress to which by an external agency an additional set of
stresses is slowly applied and slowly removed. Then, during the
application of the adided stresses and in a cycle of application and
removal of the added stresses, the work done by an external agency is
non-negative”. This postulate has three important implications, namely
"convexity", "consistency" and "normality". Convexity means that the
initial yield surface and all subsequent loading surfaces are convex.
Consistency implies that if a stress point moves inside the yield
surface, then e?j = 0. The third result, normality, means that at a
regular point of the loading surface f = 0, the vector deﬁj‘ (in
stress space) is in the direction of the odtward normal to the yield

surface, so that

DF . ©of
def. = d) == or P = (4.7)
] 'ao:J 'BG‘EJ.

di is a non-negative scalar. This important result constitutes a flow
rule, i.e. determines the direction of the incremental plastic strains.

When the material obeys the von Mises yield criterion, this equation is
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equivalent to the Prandtl-Reuss equation. By virtue of Eq. (4.7), the

loading function plays the role of a plastic potential.

4.2.2 The Yield Criterion and the Hardening Rule

The explicit form of the loading function will not be studied.
f can in general be written as a function of the state of stress,

plastic strains and a hardening parameter &

_ P
f=fle; €y, ) (4.8)
The hardening parameter is again a function of Oij and eﬁj, there-
fore without loss of generality
f=foy, &) (4.9)
f remains zero when going from one plastic state to another
{(consistency}, hence
?f of P
= erm—— T —— .. = 4.]0
df CLH d% ’aa‘fj dc‘J 0 ( )
Substitution of Eq. (4.10) into Eq. (4.7) yields
£ d
T Gy,
dX = — 3oy, doy (4.11)
B DFf
’a&"ﬂ'\ ’ao—mn

for a hardening material.
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Evaluation of Eq. (4.11) requires an explicit expression for
fat f=0. Itwill be assumed that the material is initially isotropic,
Both the Tresca and the von Mises yield criteria satisfy isotropy,
however, most experimental evidence for metals is in favor of the
latter criterion. The von Mises criterion for initial yielding may be

written
J2 - k> =0 : (4.12)
J2 is the second deviatoric stress invariant defined by
J, = % s.. s (4.13)
2 2 2ij °ij :
in which the deviatoric stresses are defined by
s = 0., - 4 §.. o (4.14)
id ij 3 Fij “kk *

kO denotes the initial yield stress in pure shear. In many cases it
is more convenient to use the initial yield stress in pure tension T0

instead, which is related to k0 by

2 _ 2
T = 3k0

0 (4.15)

For convenience, the symbol for equivalent stress & is introduced

&= 130, - Yoy, (4.16)
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The initial loading function and yield criterion now reads
f =0 - T =35 - k /3 = 0 (4.17)

Further, it is assumed that the material exhibits an isotropic
hardening behavior. This implied a uniform expansion of the initial
yield surface, as shown in Fig. 4.1. One way of measuring the amount
of hardening that has taken place is to consider the plastic work

carried out

el
Y

W= [ oy del (4.18)
/]

or here also
EP
P —_ -

w'= | & dz® | (4.19)

]

where it can be shown that the equivalent plastic strain is given by

/
de® = 7/32 (defj def; /2 (4.20)
The yield stress in uniaxial tension is then

T = 6 (WP) (4.21)

On the other hand, the plastic strain hypothesis assumes that

T = H(Ep) (4.22)
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where

P = .! dEP (4.23)

For the von Mises yield criterion (and Tresca when there is no yielding
at corners), Eqs. (4.21) and (4.22) are quivalent [93]. After initial

yielding has occurred, the von Mises yield criterion now becomes
- = =Py .
f =0 - H () =0 (4.24)

Figure 4.2 shows a typical curve obtained from uniaxial tension testing.

As will be seen later, H' = %H?E is of special interest and is

easily obtainable from the curve in Fig. 4.2

hence

/

I _ =
H' & 2&
DEP

(4.25)

d_ L
E.E
ET being the tangent modulus which can be obtained from a simple
tension test. |

One apparent weakness of the isotropic hardening hypothesis is
that it does not account for the Bauschinger effect. One attempt of
including this was made by Prager [83] who suggested kinematic hardening

in which the yield surface is translated without rotation. Other

theories attempt to account for corners of the yield surface [94] since
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such corners have been observed experimentally [95]. Because cyclic
loading is not of particular interest here, the isotropic hardening
approach 1is considered adequate and is adopted in the following.

derivations.

4.2.3 Derivation of the Incremental Stress-Strain Relationship

The scaling factor dx for a hardening material was given by
Eq. (4.11) and will now be considered again. The partial derivatives of
the Toading function Eq. (4.24) are needed for this purpose. Use of
Egs. (4.16) and (4.14) yields
2+ _ 0F

’06:.1 36'”

, (4.26)

2 2 I "

(13

Differentiation with respect to the plastic strains using Egs. (4.19) and

(4.18) gives

2f DH(EP)
vef; 2¢eh
! (4.27)
?H  B&* W' g
= - 2 = - —_— 0.
in which H' is obtained from Eq. (4.25). Now, substitution of
Eqs. (4.26) and (4.27) into (4.11) yields
J3 - 23' s dsij dbj' (4.28)
H' &
and using Eq. (4.7)
3 S d&
defy= N2 - 3 9T (4.29)
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Equation (4.29) gives the plastic strain increments in terms of the
state of stress and the stress increments. This equation represents the
Prandt]-Reuss equation for a isotropic hardening material obeying the
von Mises yield criterion. However, using the displacement formulation
of the finite element method, the objective is to express the plastic
strains by the total displacement (strain deij) increment. This cah‘
be obtained by substituting Hookes Taw Eq. (4.2) and Eq. (4.1) into dx
Eq. (4.11):

?Ff of of of
D 2 ) B (do 2

which yields

o
d = P Sk TEg (4.30)

The relation

4.31
E,_Jl{{_ S&L = Z/M. SLJ ( )

has been used here, u being Lambe's constant of Eq. (4.3)
Then, substituting Eq. (4.30) into Eq. (4.7) and utilizing
Eq. (4.31), the desired result is obtained

P of
Y

in which

T pa S S (4.33)
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The incremental stress-strain relationship is now easily obtained

ol g = E’;J'kl. (e, - df—fl) = Ciu dey (4.34)

where

9/4‘(_Z S(,'J' ‘SkL (4.35)
0""'(“'*‘3/&)

CLJ'&L = Eéjkt -

This incremental relation is valid between two consecutive plastic

states. According to Eq. (4.6) when
o < H =T (4.36)
or

o = T and S..de.. < 0 (4.37)

the last term of Eq. (4.35) should be neglected and only Hookes law
femains. Note also the symmetry properties of Cijk]' |

The incremental stress-strain relation could also be obtained
by direct inversion of the strain-stress relationship obtainable from
Eq. (4.29). However, this operation is more time consuming and
Eq. (4.29) is not defined for a non-hardening material (H' = 0). By
taking the Timit, it is seen that Eq. (4.35), on the other hand, is
still valid for H' = 0. The uniqueness and existence of this
inversion has been discussed by Koiter [87].

A more general incremental stress-strain relation was

*
previously obtained by Hi1l [78] . This form of the flow equation has

“ Eq. 25, page 69 in Hill's book
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been adopted by several investigators using the finite element method
[27, 28, 29, 96]. Here it was chosen to show the derivation for the
preselected yield criterion and hardening rule. The more general
expression given by Hill can easily be adopted for kinematic hardening

as demonstrated in [27] by using

- 2

f = ?'(513 - aij) ( ij - a1J) - k (4.38)
in which %y 5 represents the translation of the yield Tocus.
4.2.4 Plane Stress.

- The special case will be considered in which

Oi3 = d013 =0 i=1,2,3 (4.39)
and the incremental total strain components

de = de = 0 (4.40)

13

as is generally done for thin plate theory. The only nonvanishing terms

of the incremental constitutive relation therefore become

doy, Ci911 Cu22 G192 Cgqs3 deq,
do,, Coo11 o2z Cop12 Copsg de,y,

) L { o (4.41)
doy, G211 G222 G212 Cyass 2deq,

9733 “31m1 P332 C3312 C3333 | o33
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or

do;ﬁ - Cews de,, + Cupas dey, (4.42)
and

d6yy = Cpyp de,; + Csass de,y =0 (4.43)

which yields a contracted relation

. Casys - 4.44
d oz, - (C«ym - Coysss cj:33 )deyg - Dayswde&a‘ (4.44)

Greek indices span 1 and 2 only.
The contraction Eq. (4.44) of the 4 by 4 matrix in Eq. (4.41) can also
be stated as

C.4 C.

.= C.. - _i4 “j4 . ,
D, Ci o i=1,2,3 (4.45)

where indices i and J of C now refer to the matrix defined in
Eq. (4.41) [D] is also symmetric. Numerically, it is faster to use
Eq. (4.45) directly rather than to obtain and use an-explicit
expression for each element of [D] as suggested by Yamada [97].

Now using matrix symbols, the stress-strain relation becomes
{do} = [D] {de} = [E] {deE) (4.46)

where [E] is Hookes law for plane stress given by Eq. (2.46).
Solution of Equation (4.46) with respect to the plastic strain

increment yields
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tde’} = [A] {de} (4.47)

where

[A] = [1] - [F] [D] (4. 48)

[F] being the inverse of [E]. [A] is generally not symmetric. As will
be discussed later, the membrane and the bending stiffnesses of Eqgs.
(2.43) to (2.45) are obtained by substituting Eq. (4.45) into the
equations just mentioned and employing numerical integration through
the thickness.

Special simplified equations for rotationally symmetric plane

stress was given by Popov et. al. in Reference [98]

4.3 VARIATIONAL FORMULATION OF THE ELASTIC-PLASTIC PROBLEM

Special caution must be exercised when formulating a
variational principle for an elastic-plastic material. Whenever the
flow theory of plasticity is used, the variational principle must deal
with stress rates and strain rates since there is no unique solution for
a given set of total Toads. The current configuration depends on the
previous load history. Furtﬁer discussions may be found in the
References [23], [78] and [87]. As demonstrated by Prager and Hodge
[78] two basic extremum principles dealing with admissible stress and
strain fields can be derived and used for establishing upper and lower
bounds for 1imit load problems.

In Chapter 2, the virtual work principle including its
incremental form was derived. This principle is based on the
equilibrium equations only, and is therefore applicable for any

material including elastic-plastic types. When there exists a strain
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energy function which is uniquely defined by the displacement field
(Eq. (2.11)), the virtual work principle can be transferred into the
principle of stationary potential energy and its incremental form as
shown in Sections 2.2.3 and 2.2.4. In flow theory plasticity, however,
no strain energy function exists which is uniquely defined by current
displacements. Such a function would depend on previous load and
deformation history.

It should be recalled that the incremental form of the
variational principle in the Lagrangian description of Section 2.2.4
was Tater simplified due to special assumptions for plates with
moderately large deflections. These simplifications lead to the result
that only the rotations become finite quantities, not the deformation
part of the strains. This justifies using the small strain plasticity
theory previously derived in this chapter. Moreover, the derivations
of Section 2.4.5 account for all geometric nonlinear contributions to
the incremental equations. Again, Eq. (4.34) constitutes a linear
incremental stress-strain expression, dependent on previous load
history.

In brief, the nonlinear strain expressions of von Karman can
also be used for inelastic materials since the strain itself is
infinitesimal, only rotations are finite. The incremental form of the
variational principle is also applicable since it arises from the
virtual work principle applied to two consequitive equilibrium
configurations between which the constitutive equations throughout the
body can be assumed to be known. The material nonlinearities thus can
be accounted for by substituting Eq. (4.45) into Eqs. (2.43), (2.44)

and (2.45) and into the matrix equations of Section 2.4.5.
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4.4 FINITE ELEMENTS FOR THE ELASTIC-PLASTIC ANALYSIS

4.4.1 The Plate Bending Element

The derivation of the Q19 plate bending element was discussed
in Section 3.2. The same interpolation polynomials as used in the Q19
element will be utilized for the elastic-plastic element. However, after
initial yielding has occurred in some part of the element, the material
properties will no longer be uniform throughout the element. Two basic
approaches can be used for handling this problem. The material
properties can be expressed by a special interpolation polynomial, and
an explicit strain energy integration then carried out for the stiffness.
This method was used by Felippa [16] for elastic-plastic plane stress
elements, but it turns out that such an approach is rather complicated
for the Q19 element. Instead, the integration here will be carried out
numerically, using a "natural" set of integration locations defined by
the centroids A(i), B(i) and C(i) of the 12 subtriangles, see Fig.
4.3. The numerical error committed by using such an integration scheme
is very small. For instance, this integration scheme was tested for a
square elastic plate subjected to uniform transversal load, the plate
being divided into a 4 by 4 element mesh. For this case the midpoint
deflection increased only 0.4 percent by using numerical instead of
exact integration, the result for the numerical integration being
closer to the true solution.

The numerical computation of the element stiffness requires
evaluation of the curvatures at the centroids of the subtriangle

elements. For instance, the location of the centroid of subtriangle
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3 of Fig. 3.2 expressed by natural coordinates is (4/9, 4/9, 1/9).
Using the interpolation polynomial of Appendix A the incremental

curvature at the centroid subtriangle is given by
Yy _ ()
%"} = [BY] {auw) (4. 49)

where [Bég)] is obtained by differentiation of <Q@.> in Eq. (3.1)

at the centroid and {¥1} 1is defined in Eq. (2.39). Since the strains
are assumed to vary linearly through the thickness also for the elastic-
plastic solution, the element incremental stiffness for one LCCTT

triangle is

3 . ) )
k.T= 4 2 [BT09 8] (4. 50)

g 22

where, as in Eq. (2.43)

h

[0,"] = [ ¢*r0%¢)1dg (a.5)
h
T

and A is the area of the triangle. The constitutive equation for
plane stress [D (§ )] was given in Section 4.2.4.

Computation of the curvature-displacement relations [Bég)]
need be carried out only once and stored for later use during load
application. The integration of Eq. (4.51) has to be carried out at
each load level because the material properties change as the state of
stress is altered. 9 to 11 point Gaussian quadrature through the
thickness yields excellent results. For pure bending, only half of

these points need to be considered because of symmetry about the
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mid-plane . Integration is always carried out starting with the stress
State of the integration point closest to the surface. If this point

is elastic, the integration of Eq. (4.51) need not be performed since

the entire cross-section is elastic (provided that there is no unloading).
As will be demonstrated by examples later, this approach turns out to

be very efficient.

4.4.2 The Membrane Element

The membrane element has previously been discussed in
Section 3.3 and Appendix B, moreover, further details may be found in
Reference [62]. The numerical integration scheme for the elastic
element was a 2 by 2 or a 3 by 3 Gaussian quadrature. However, to
match the elastic-plastic bending element of the preceeding section, the
stiffness integration for the elastic-plastic membrane element will be
based on the same 12 integration locations chosen for the Q19 element.

The interpolation polynomia]s for the membrane element was
given in a &-n system in Appendix B, whereas the infegration points
of the Q19 element was described in natural triangular coordinate
systems. Noting that the mid-point of the Q19 element is the same as
the origin of the &-n system, the following relation between the two

natural coordinate systems is valid for triangle 1 (Fig. 4.3)
§ . gc-) 4 (n
] 2

7780 g

The three centroid points of the subtriangles of triangle 1 therefore

(4.52)

have the following coordinates in the E€-n  system



FIG. 4.3 INTEGRATION POINTS FOR ELASTIC-
PLASTIC PLATE BENDING ELEMENT
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a0V (479, 49, 1/9) > (0, - 8/9) (in £-n system)
B0 (179, 479, 4/9) > (1/3, - 5/9) (4.53)

¢V (w9, 179, 479) > (- 1/3,- 579)

Similarily, for triangle 2

@) (a9, 479, 1/9) + (89, 0)

82} (179, 4/9, 4/9) + (579, 1/3) (4.54)

@ (a9, 179, 49) > (59, - 1/3)

The results for triangle 3 and 4 ake the same as for 1 and 2
respectively, only with sign change for £ and 7.

The numerical computation of the incremental stiffness now
f follows the usual pattern by establishing the strain-displacement

relationship for all integration points
[ (m)} (m) {AU_(M)} o= | e 12 (4,55)

The Jacobian matrix must also be considered at all 12 locations for

computation of [Bég)]. The incremental stiffness is now

12
[k,]= % A”[BTI0™][BS] (4.56)

mMe|

where, as in Eq. (2,41)

h
2
(m) j [ D‘m)(ggdéx (457)
h
3




90

The area of the surrounding subtriangle A(m) is associated with each
integration point. For pure membrane stress only one integration point
through the thickness is needed for the numerical computation of Eq.
(4.57).

Again [BS?)] has to be calculated only once for each
integration point, while the éonstitutive relation and the stiffness

matrix has to be recomputed for each load increment.

4.4.3 Combined Bending and Membrane Action

When the plate is in a state of combined bending and membrane
action, the material properties will no Tonger remain symmetric about
the midplane after initial yielding has occurred. Consequently,
integration has to be carried out through the entire plate thickness to
compute the stiffness properties of Eqs. (4.51) and (4.57). Moreover,
the coupling stiffness of Eq. (2.76) will no Tonger cancel out. This
incremental stiffness can also be obtained by numerical integration

using the 12 centroid points.

[k,.] = ZA 18,7 101 [BS] (4.58)

where

b
[0,"'] - fS[D ()] d¢ (4.59)
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The same Gaussian integration points through the thickness could be
used for numerical computation of [Dgg)] as used in Eqs. (4.51) and
(4.57). However, it is believed that the trapezoidal integration rule
in this case might be more efficient for some extreme States of
yielding. This integration should be performed simultaneously for all
three D-matrices, considering the total stress-state resulting from

combined membrane and bending action.



5. NUMERICAL METHODS

5.1 NUMERICAL TECHNIQUES FOR SOLVING THE NONLINEAR EQUATIONS

5.1.1 Review of Methods

The numerous numerical solution techniques that can be used
for solving nonlinear structural problems can roughly be divided into

the following four main groups

1. Energy minimization
2. Direct interation methods
3. Incremental methods

4, Combined methods

The first group covers methods that employ some nonlinear
programming scheme for a direct search of the extremum values of the
potential energy expression. One of the most efficient minimization
techniques available today is the F]etcher—Powe]] method [99] that
employs a very fast approximation to the inverse gradient (inverse
Jacobian matrix). This nonlinear programming method reportedly has
also been applied with some success for structural problems [100, 101,
102]. However, the energy minimization approach is not reliable when
used for problems in which structural instability occurs, due to the
existence of local minima. It is also doubtful whether this method
offers any time saving compared to the other methods described in the
following; therefore it will not be considered further in this work.

The second group comprises methods that utilize some direct
interation technique applied to the equilibrium equations. Physically

these methods are equivalent to those of group 1, although the problem

92

is formulated differently. The lowest order interation method available
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is functional iteration [103] which implies successive substitutions of
the displacement vector into the inverted equilibrium equation. The
method is illustrated for a one degree of freedom system in Fig. 5.1a.
Although this method has been used by some authors, it converges only
when special conditions are fulfilled and should generally be avoided.
The same warning applied to the "chord" method of Fig. 5.1b where a
Newton type iteration is performed maintaining a constant preselected
gradient such as the initial Tinear stiffness of the system.

A higher order iteration scheme is Newton-Raphson interation
which utilizes the gradient of the stiffness relation, see Fig. 5.1c.
This method has proved to be both efficient and reliable and will be
described in greater detail in Section 5.1.3. Quasi-Newton methods
based on based on approximations to the gradient can also be used; in
fact they are highly recommendable in most cases in which they do not
impede convergence. The method of false position and Aitkens 62
process [103] have also been used by some investigators.

The third group comprises methods treating the incremental
form of the equilibrium equations as a first order differential equation
which is solved as an initial value problem by applying Toad increments.
Numerous numerical methods capable of solving this problem has been
described in the literature [103, 104, 105]. Such methods have been
characterized as single step or multistep, implicit or explicit, and
they are based on quadrature, series expansions or finite differences.
The most important features of the various methods from a numerical
point of view are their stability (related to round-off errors) and
truncation errors (resulting from omission of higher order terms). For

practical applications, their efficiency or time consumption per step is
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also highly critical quantity. The simplest incremental scheme is the
Euler-Cauchy method (simple step-by-step) shown in Fig. 5.1d. This
method will be discussed more in detail in the next section.

The fourth group of methods comprises those procedures which
in some way are combinations of group 2 and 3. A noteworthy method of
this category is a step-by-step procedure combined with Newton iteration
at certain load intervals, see Fig. 5.le. A somewhat similar method
uses residual force (equilibrium) corrections combined with load
incrementation. This method is shown in Fig. 5.1f.

Many different factors are involved when choosing a numerical
solution method. The main objective is usually to find a method which
comprises high precision and reliability at low cost. However, before
the choice can be made it is necessary to define precisely the purpose
of the analysis: 1is it to find the entire load-deformation curve, one
point on the curve or several sections of it? Also of importance for
the choice of method is whether the system to be analysed is structurally
stable or not and whether it is conservative or nonconservative. There-
fore, one method generally cannot be said to be "better" than another,
and a computer program should ideally include optional methods. In
this study it has been decided to incorporate in the computer program
both simple step-by-step and Newton-type iteration, or combinations of
both. This gives the desired flexibility allowing for solving different

classes of problems efficiently.

5.1.2 The Step-by-step Method

The incremental stiffness was derived in Chapter 2 using the
incremental form of the variational principle. Equation (2.98) can be

written in continuous form as a set of first order differential equations
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d{F} _ 51" | (5.1)
Ty [KI( )]

where {r} is used to denote the exact solution. The simplest

numerical solution scheme is the Euler-Cauchy method which can be

written as
{ar™V} = [K;M(r‘)]-‘{a R~} (5.2)
where
{Arlnﬁ)} - {F“m“>} - {r(n»} (5'3)
{Aern} - {Rmm} _ {R(m} (5.4)

and (n) denotes the loadstep number. Of course, only triangularization
is performed on [KI] during the computation rather than the formal
inversion denoted in Eq. (5.2).

For practical ranges of Toad increments for quasistatic'
problems fhe_roundoff errors are negligible compared to the truncation
errors assdciated with a solution technique such as Eq. (5.2). It can
easily be shown that the total associated truncation error for one step
is proportional to the square of the load increment multiplied by the
second derivative of the load-displacement relationship computed at some
point within the range of the loadstep. This gives a good indication of
how the size of the loadstep should be chosen: the steps should be

small where the curvature of the load-displacement curve is high.
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Since there are uéua]]y many variables involved, a simplified measure of
curvature could be used. A displacement component that characterizes the
nonlinearity of the problem should preferably be se]eﬁted. Having chosen
this variable, a parabolic fit through 3 consecutive points of the load-
displacement curve for this variable gives a good indication of the
truncation error associated with the next linearized loadstep. Fig. 5.2
shows how the truncation error due to linearization can be computed as
the distance between the parabola Q(R) and the tangent T(R). Given an
"allowable" truncation error T for the chosen displacement component,

the corresponding load increment is obtained by solving for AR

AR = %T(R.‘Rz)(ﬁz‘Rs)(Rs-R.) (5.5)
R(ReRy) +0(R,-R) + 13 (R-R,)

This formula is identical to the one obtained by direct use of the

expression for the truncation error

(aRrR)* d*QR)

T 5 u (5.6)

where the second derivative of the parabola is a constant.

When more general functions are used for the fit, the second
differential of the load-displacement curve should be taken at some
point in the new interval.

Practical computer applications of Eq. (5.4) show its ability
to decrease the loadsteps when the structural behavior changes more
rapidly. Having concentrated the results in these regions also makes it
more easy to reproduce results for intermediate 1oad levels. Moreover,_

when this load criterion is used in combination with iteration at each
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Toad Tevel the number of iteration cycles needed to obtain convergence
seems to be relatively constant during load application. However, the
explicit measure of the truncation error T by Eq. (5.3) does not prove
to be very accurate. This is because the interpolating parabola has a
constant curvature and consequently introduces considerable inertia into
the formula for the truncation error (5.6) For instance, when the true
curvature of the load-displacement curve decreases with increasing load
intensity, Eq. (5.5) will result in too small a load increment for the
desired truncation error, and visa versa when the curvature increases
with increasing load intensity. Being aware of these facts, Eq. (5.5)
is still a useful formula for determining of the load increment
automatically.

A somewhat simpler method that has proven to be quite useful
consists of increasing or decreasing the steplength by a constant factor
a. So if the system is known to have an increasingly changing load-
displacement curve, the step-length is decreased by using a
multiplication factor less than one in magnitude. Conversely an o
value larger than one is used for systems that become increasingly
Tinear for higher loads. Given the maximum load-level Rmax’ the Toad
increment factor o and the desired number of steps N, the first

Toad-step is found from

AR me (5.7)
el

and in general

AR = o RW | (5.8)
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An even more obvious method that can be used to improve computational
efficiency is to give all load-levels as input.

"Snap-through" problems require special caution. These
probTems have local maximum points after which the slope of the load-
deflection curve becomes negative. A further continuation along the
deflection path requires a decrease of the external loading. Such an’
extremum point can be detected either by computation of the sign of the
determinant of the incremental stiffness or the sign of the increment
of external work. However, in practical loading cases, the decreasing
curve will not be followed; instead, a "snap" to another stable
configuration will occur. By means of the formulation that is chosen
here, it is possible to "Jump" directly from an extremum point to a new
stable configuration when load incrementation is combined with iteration.
No errors are accumulated in the snap-through since the stresses and
strains are expressed directly in global coordinates. An example of
this is given 1in Section 6.2.5.

A "chord stiffness" method based on computing the incremental
stiffness using the extrapolated displacements at éome point (usually
midpoint) of each new load increment, in general yields more accurate
results than the Euler-Cauchy method [106]. However, this "chord
stiffness" method is not too well suited when the incremental method is

combined with equilibrium corrections or iterations.

5.1.3 Newton-Raphson Iteration

Using a direct iteration scheme 1ike the Newton-Raphson
method, the numerical solution of the equilibrium Equations (2.98) can

be written symbolically as
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[k}qJ{Anﬁn}= [ARqJ (5.9)

in which the unbalanced forces are

la Q‘D} = {R} - [Kq)] {r?j)} (5.10)

and the new improved displacement vector is found from

{Pt_jﬂ)} = {Ptj)} + {Ar:jﬂ} (5.11)

Subscript j denotes the iteration cycle. The unbalanced forces
(often termed "out-of-balance" forces) are found as the residue of the
equilibrium Eq. (5.10)

The incremental stiffness of Eq. (5.9) is usually termed the
"Jacobian matrix" by numerical analysts. The expression "incremental
stiffness" will be retained here, however, because of the direct
physical meaning of the matrix. It can be proved that convergence of
the Newton iteration method depends on the closeness of the start vector
{ r(o)-} to the true solution, as well as on various properties of the
Jacobian matrix at the initial state and on a bound on the second |
derivative of the function (equilibrium expression) for all vectors
within some distance from the initial vector. Further details and proof
of the theorem can be found in Reference [103].

Each iteration cycle involves three major computational efforts:

(i) Computation of the functional stiffness of Eq. (5.10)
(ii) Computation of the incremental stiffness of Eq. (5.9)

(iii) Triangularization of [K;] of Eq. (5.9)
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It becomes evident by comparing the equations of Section 2.4.4 with the
equations of Section 2.4.5 that the computation of the incremental
stiffness terms does not involve much additional work when the functiona]
stiffness is computed. In fact the only additiona] cost is in assemblage

and introduction of boundary conditions into the total matrix [KI].
However, for each new incrementa] stiffness a triangularization is

required. This suggests that an approximation to the Jacobian matrix
might be kept constant during the iteration procedure thereby saving
the operations of (ii) and (ii1). It turns out that this technique
saves a substantial amount of computer time (on the order of 25% per
cyc]g for small systems) and is highly recommendable for many cases,
H&weVer this simplification has coﬁsequences both regarding the
existence of convergence and the rate of convergence. In particular
when -the convergence is of oscillatory type, this quasi-Newton method
may not be reliable. Therefore the simplified method is not recommend-
able when the initial vector is far from the true solution or in many
stability problems. On the other hand, the simplified iteratfcn
technique converges equally as fast as true Newton iteration for some
cases. In the present work, an option of computing a new tangent
stiffness only for the second iteration cycle and keeping it constant
during the rest of the itertion procedure was used for many applications.
It was noted above that iteration convergence is dependent on
the closeness of the initial vector. A combination of incrementation
and iteration as shown in Fig. 5.1e is therefore advisable in many
cases, to avoid moving too far from the true Toad path. This is
particularly true when a simplified iteration scheme is used. The
equations for the combined solution method are obtained just by

combining Equations (5.2), (56.3), (5.4) and Equations (5.9),(5.10),(5.11).
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One should also note that a simplified two-dimensional
diagram, showing the load Tevel and one displacement component, may
very often give a highly distorted picture of what really happens in
N - dimensional space. For a system with only one free variable, the
slope of the load-displacement curve at a point outside the path always
corresponds to the slope at some point on the true path. This is not so far
the general multidimensional case. For a discretized system with several
degrees of freedom, the true path corresponds to a specific displacement
vector function of the given loading. The incremental stiffness for some
point on the path is a function of all elements of the associated
displacement vector. Any other disp]acement'vector that does not
correspond to a point on the true path yields a "slope" (really a
hypersurface) that is different from any "slope" at the true path. For
some cases, even a small perturbation of the displacement vector has a
tremendous influence on the incremental stiffness. For instance, this
is a serious problem in the analysis of very thin plates for which the
membrane stiffness is high compared with the bending stiffness. Only a
small perturbation in the inplane displacemeat components in the non-
linear range{gives a significant change of the stiffness associated
with the transverse displacements. For such cases, the rate of
convergence is usually very slow, particularly when the Jacobian matrix
is kept constant during the iteration

Similar difficulties are known to be encountered when
applying various nonlinear programming techniques to optimization
problems. Following a "narrow valley" towards an extremum point may

results in "zig-zag"-ing and slow convergence. A special approach that
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has proved to be useful for special cases of slow convergence of plate

problems will be discussed next.

5.1.4 A Special Method for Slowly Converging Systems

As was mentioned in the preceedingvsection, special geometries
of the strucfure may result in slow convergence of the Newton-Raphson
method. A method based on the principle of "extrapolating errors to
zero" has proven to be useful in such cases. This approach which
resembles the method of "double false position" can be used directly in
connection with slowly converging Newton-Raphson iteration. Fig. 5.3
shows how the out-of-balance force associated with one arbitrary
displacement component is used for finding a new displacement value for
which this force presumably is zero. The following formula is easily

derived by consideration of the figure

_ % AQ(j) 5.12
Ahjw) = Af‘”“) R . — R-% (5.12)
AR(jy ™ OR 4y

The values marked with an asterisk represent intermediate values that
are improved by using Eq. (5.12). This equation should be used for all
displacement components. The extrapolation method itself is generally
not stable and should be used only as a "single shot" adjustment in
connection with a stable type of iteration.

A cantilever beam divided into 10 quadrilateral elements and
subjected to a concentrated end moment is used'to demonstrate the method.
The thickness/length ratio is chosen to be 1/100, thereby creating a
system with slow convergence due to the small bending stiffness compared
to the membrane stiffness. The total load is applied in only four

increments, the first and third of which are intoduced without
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FIG. 5.2 PREDICTION OF TRUNCATION ERROR BY
INTERPOLATION POLYNOMIAL

FIG. 5.3 METHOD FOR FINDING IMPROVED
DISPLACEMENT VALUES
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iteration thereby creating a strongly unbalanced system. Fig. 5.4
reveals the slow convergence of the Newton-Raphson method at the last
load increment. The figure also demonstrates the improved results when

a "single shot" is used at the third iteration cycle. It should be noted
that this example converges easily using regular iteration when the plate
thickness is increased to a more realistic value. The method described
may also be used in connection with simplified Newton iteration, of

course .

5.2 CONVERGENCE AND ACCURACY

When an iteration technique is used for solving the nonlinear
equations, a convergence criterion capable of determining when the
procedure has converged to the desired degree of accuracy is needed.

Use of a fixed number of iteration cycles will not work satisfactorily
since some systems converge rapidly and others very slowly; even the
same structure may completely change character during load application.
| Some investigators have compared the unbalanced forces with
the applied external loading to determine when convergence has occurred,
However, inplane forces, transversal forces and moments may all be of
different order. For instance, if the only external loading lies in
the plane of the plate, how can it be determined in an automatic manner
whether the transversal out-of-balance forces are sufficiently small? A
more correct approach would be to compare the unbalanced forces with the
characteristic stiffness properties of the structure. This again
corresponds to studying displacement properties, so why not work
directly with displacements?
According to the convergence criterion proposed here, an error

vector is defined as follows
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+

fe,,}) = (&L &6 = (5.13)
() ) ) (i)
M, res M2, ret r;, yref

where Ar], Arz, ... etc are the changes of the displacement components
during’cyc]e j, and N is the total number of nonzero components .
Every component is scaled by a reference quantity to obtain a non-
dimensional measure. These reference quantities are generally not
chosen to_be equal to the torresponding total components because if e
is a number close to zero, the ratio Ark/rk could be a large number
even after "convergence" has occurred. Therefore, the change of
transversal displacements are scaled by the largest of the transversal
components, the changes in rotations are scaled by the largest rotation
and similarily with the inplane displacements.

It is well known that vector norms are used in numerical
analysis for measuring the "size" of vectors. Three alternative norms

are now suggested to measure the "size" of the error vector:

(i) Modified absolute norm

N
| Am ;
lel, = g2 | == (5:14)
k=t rkwe{

(11) Modified Euclidian (spectral) norm

[
lel, = Vi S| .15
2 le=1 rk)re{

(ii1) Maximum (uniform) norm

(5.16)

el = mox




108

The two first norms are modified by dividing by N to get quantities
that are independent of the total number of displacement components.
(i) and (i1) still satisfy the requirements for true norms. These
definitions yield convergence criteria that have a direct physical
significance. Error bounds on the displacement vector indicate the
accuracy both of total displacements and of stresses.

The use of the error norms is illustrated here by two examples.
Fig. 5.5 shows the convergence of the different norms for a shallow shell
subjected to transversal loading and for a plane plate subjected to
inplane loading right after the bifurcation buckling load. It is wortﬁ‘
noting that the convergence stabilizes to a linear relationship in the
semi-logarithmic diagram. The same result was found for a wide range
of other examples, although in a few cases with extremely slow con-
vergence, some "zig-zag"-ing was observed. Note also that the three
different norms follow each other in a parallel manner. Therefore it
can be concluded that it is of minor importance what specific norm is
being used. The maximum norm is, however, probably the safest measure
of convergence since it gives a specific error bound on all disp]acement
componenfs; the other norms yield more of an average error bound. The.
practical range of ||&| 1is approximately from 1072 to 1074 |

{ €(4) } as defined by Eq. (5.13) really represents the
change of the displacement vector during iteration cycle j and is not
the true "errdr" itself. As is illustrated by Fig. 5.6, two cases with
the same IIEII (represented by the slope of the curves) may have quite
different total errors. A case when the convergence is extremely slow
might thus ihcorrectly be believed to be close to the true solution.

However, a bound on the total error Eij” at cycle j 1is obtained from
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Eg = flleil dn (5.17)

ns J

where n denotes the iteration cycle. Since it turns out that the
convergence is linear in a semilogarithmic scale, "6]] can be

approximated by

el = eij or Log el = o(-pj (5.18)

The constants o and B can be obtained using a couple of points of

the]l&[l-— j diagram or by using a "best" Tlinear fit. B represents
a logarithmic "rate of convergence" and is identified by the slopes of
Fig. 5.5. Substituting Eq. (5.18) into Eq. (5.17) and carrying out the

integration yields

o ~p| :
Ey = E e P (5.19)

Fig. 5.7 shows the maximum norm and the integrated maximum norm of Eq.
(5.17) for one case of fast and one case of slow convergence. At cycle
3> E(j) represents the integral (sum) of || €]l at all consecutive
cycles. As demonstrated by Fig. 5.7, E(j) is larger than " £1l in
case of slow convergence whereas it is smaller when convergence is fast.
The integrated error norms E yield more correct estimates
of the error than the ||E||-— norms, although when the convergence is
oscillatory about the equilibrium configuration, the E- norms result in
over-estimates of the total error. Usually, the convergence is uniform.
They]inearity of the Togarithmic convergence (Eq. 5.16) makes it
possible during iteration to estimate how many more cycles are necessary

to satisfy a given convergence criterion.
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It is also necessary to impose a maximum number of iteration
cycles for computer pruposes since there is always a limit on how many
cycles can be afforded. Moreover, in the case of buckling, the load-
displacement curve is very flat near the buckling load and an exact
displacement value (which is hard to obtain) is not needed. Finally, it
will be repeated that even the |&€] criteria as defined in Egs.
(5.14), (5.15) and (5.16) are useful and dependable measures of con-

vergence and a bit simpler to use than the integrated norms.



113

’

6. COMPUTER STUDIES

6.1 COMPUTER PROGRAMS

In accordance with the previously derived theory, two separate
computer programs were developed:

Program A, which handles plate and shallow shell problems
accounting for nonlinear geometric effects, and

Program B, which deals with elastic-plastic behavior of plates.
The main operations and capabilities of the two programs will be out-
lined briefly here.

Program A. This program is based on the nonlinear theory for
flat and initially deformed plates developed in Chapter 2, combined with
the specific finite element approach described in Chapter 3. The linear
stiffnesses of all elements are computed once only and stored for later
use during load application. Additional nbn]inear terms are reformulated
when desired, using the simplified interpolation polynomials of Section
3.4.2 and Gaussian quadrature. The derivatives of the 1nterp01ation
polynomials at the integration points are computed only once. They are
efficiently multiplied by nodal point displacements when formulating
nonlinear stiffness terms. The incremental stiffnesses and the out of
balance forces are thus directly obtained without first having to
compute the state of stress within the element.

Having these operations available, a long series of numerica]
methods are made available in the program to govern the solution
procedure. Load increments can be applied in equal steps, using a
"Toad increment factor”, automatic load incrementation or by specifying

load Tevels in the input, see Section 5.1.2. Iteration can be performed
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as a pure Newton-iteration process or using a simplified approach in
which the tangent stiffness is recomputed only for the second iteration
cycle. The special method of Section 5.1.4 is also available,
Combinations of incremental and iteration methods are allowed for,
performing an iteration for every specified number of load increments.

For each load increment, the membrane stresses and the
moments are computed at all nodal points. These stress values are taken
to be the arithmetic averages between corner values of the adjacent
elements. Principal stresses and moments are also computed at all nodal
points.

Program B. This program is based on the flow theory of
plasticity and the finite element approach to elastic-plastic plate
problems, as described in Chapter 4. Program B does not consider
geometric nonlinearities. The element stiffnesses for pure bending,
pure membrane or a combination of these two states are formulated
according to Sections 4.4.1, 4.4.2 and 4.4.3. Only the tangent modulus
method is considered. Integration of the stiffness re]ationships are
performed through the thickness as previously described. The external
load is automatically scaled so that initial yielding is obtained at
the integration point having the highest equivalent stress. Constant
lToad increments being a given ratio of the initial yield load are
succeedingly applied to the structure. The computational procedure js
terminated when a prescribed number of Toad steps have been executed or
when the equivalent strain at some point exceeds a prescribed maximum
value. The experimental curve for the equivalent stress versus the
equivalent strain is identified in the input by a set of discretized

values. Linear interpolation is performed for intermediate points.
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When a new Toad increment has been applied and the nodal point
displacement increments have been evaluated, the corresponding strain
increments at all integration points are easily obtained from the
interpolation polynomials. Using Eq. (4.47), these strain increments
can be separated into an elastic and a plastic part, the elastic strain
increment yielding the corresponding stress increment and the new total
stresses. If the new state of stress Ties outside the current yield
surface according to the & - & curve (error due to linearization),
the stresses are scaled Tinearly back to the ébntour of the yield
surface. The new constitutive equations at all integration points are
thus found according to Eqs. (4.35) and (4.45). When initial yielding
has not occurred or when unloading appears, the constitive equation
becomes identical to Hooke's Law. Also, new A- matrices (Eq. (4.48))
for all integration points are computed and stored to be used for the
next load step.

The state of stress including principal stresses are printed
at all integration points where yielding has occurred and also all
elastic points adjacent to the surfaces on the elastic-plastic
boundaries. In mahy cases it is convenient tg suppress some of the
printing, for inétance, printing of stresses may be executed only

every third Toad step.

6.2 NONLINEAR GEOMETRIC EFFECTS

6.2.1 Simply Supported Platestrip Subjected to Uniform Pressure

To check the accuracy of the theory derived here, some
comparisons will be made with other solution methods. The first case

to be considered is cylindrical bending of a uniformly loaded, simply
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supported plate strip. A closed form solution to this problem was given
by Timoshenko [45]. Numerical values according to his solution were
obtained utilizing the computer and the "successive substitution"
iteration technique*.

The same geometry and material properties as used by Murray
[19, 20] were chosen. Due to the inplane restraining of the sides and
the relatively small thickness, this system is extremely nonlinear.
Half the plate was divided into 2 and into 4 elements, see Figure 6.1.
The load was applied in 5 steps only from 0 to 5000 psi, using a Toad
increment factor of 1.25 (see Section 5.1.2). Newton iteration was
performed at each load level.

The transversal load versus the midspan deflection is shown
in Fig. 6.1, whereas the curves for the membrane and bending stresses
are given in Fig. 6.2. It is interesting to note that the results
continue to improve the further beyond the linear range the load is
applied. For instance, the midpoint deflection values are 5.0 and 1.3
percent off in the Tinear range for 2 and 4 elements, respectively,
while the errors are only 3.0 and 0.3 percent for 5000 psi. It is

also remarkable that even 2 elements yield quite good results.

6.2.2 Simply Supported Square Plate Subjected to Uniform Pressure

The next example to be considered is a simply supported
square plate subjected to uniform transversal load. The edges are

restrained against movement perpendicular to the boundary, thereby

*

Eq. (8), page 8 in Reference [45] was solved using successive
substitutions.
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allowing buildup of membrane forces. This case has previous1y been
studied by Levy [7], who used the von Karman large deflection
differential equations for plates and trigonometric series expansions.

The plate is assumed to be 16 by 16 inches and 0.1 inches
thick. Youngs modulus is 30 x 106 psi and, as chosen by Levy, Poisson's
ratio is 0.316 ( =}/5TT’), ‘The normal pressure is applied in 6 steps
from 0 to 15 psi, the two first load increments being 1.5 psi and the *
rest 3.0 psi. A Newton-iteration is performed at each load level.
Because of symmetry properties, only one quarter of the plate need to
be considered, and it is divided into a 4 by 4 finite element mesh.

| The results are compared against those obtained by Levy [7].

Figure 6.3 shows the load plotted against the midpoint deflection while
Figures 6.4 and 6.5 show membrane and bending stresses, respectively.
The discrepancy between the deflection values are very small, in fact
Tess than 1 percent. However, the bending stresses of Fig. 6.5 are
nearly 10 percent lower than Levy's results. Here, it shou]d’be noted_
that Levy's solution cannot be considered as being "exact" since only
6 nonzero terms of the trigonometric expansion were considered by him.
Even though his deflection values allegedly are within 1 percent of the
true solution, the error of the bending stresses, being functions of
the second derivatives of the deflection, may probably amount to
several percent. Further, almost identical bending stresses to those
obtained here were reported by Murray [19, 20] who used a quite
different finite element approach.

This case was also tested using a 2 by 2 finite element mesh.
The deflection values were still Jess than 5 percent off while the

computed bending moment were substantially too Tow.
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Several interesting points are revealed by the numerical
results. For instance, the deflected shape changes during load
application, it becomes relatively more flat in the central region of
the pTate for higher load levels. This again implies that the maximum
bending moments move away from the midpoint of the plate during
increasing pressure. At»a pressure of 15 psi the maximum Mx-moment
is Tocated at the midpoint between C and D, as shown in Fig. 6.3,
As seen from Fig. 6.4, the maximum membrane stresses occur at point B
and C, and not at the midpoint D. For p = 15 psi, the maximum
principal surface stresses ( = 28.4 ksi ) appear at midpoints between

C and D, and between B and D.

6.2.3 Postbuckling Behavior of Uniaxially Compressed Plate

A simply supported square plate which is uniformly
compressed in one direction will now be considered, see Fig. 6.6. The
geometric and elastic properties are chosen to be the same as those of
the preceding example. The critical stress for linearized buckling of

a square plate is [107]

_ 41D | (6.1)
dz:cr - a® h
Substitution of numerical values yields q. = 4.28 ksi.

The main attention will here be concentrated on the post-
buckling behavior of the plate since such plates have considerable
stiffness and carrying capacity after the so-called "critical load"
has been reached. Also this case has been studied by Levy [7] who
used the von Karman differential equations for plates and trigonometric
series expansions. Before him, several investigators studied post~

buckling of plates by more approximate methods [5, 108].
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The plate is here analyzed by dividing one quarter of the plate
into a 3 by 3 finite element mesh. The compression is imposed by
displacing side ACA' (Fig. 6.6) as a straight line. Side AB is allowed
to move freely in the plane of the plate.

Fig. 6.8 shows the midpoint deflection as a function of the
average compression stress. The average stress was computed by
averaging the integrated resulting stresses. A sharp transition of
behavior is observed at the "critical® load. The result obtained by
Levy [7] is also shown in the figure. The discrepancyvbetween the two
curves in the post-buckling zone is due to the different boundary
conditions along AB. The finite element computation allows this side
to warp freely, whereas the Levy solution forces it to remain a
straight line, thereby causing a stiffer system. The finite element
solution is again very close to the results reported by Murray [19, 20]
who used the same type of boundary conditions as employed here. As
pointed out in [19], if inplane displacements normal to boundary AB
are restrained, the "buckling Toad" will be greatly reduced due to the
Poisson's ratio effect, whereas the system will become stiffer further
out in the post-buckling domain.

Fig. 6.9 demonstrates how the membrane stress-distribution is
altered after the "critical" stress has been exceeded. The carrying
capacity near the axis CB is strongly reduced whereas the boundary
region near AB takes a much larger fraction of the load. Finally,
Fig. 6.7 shows the midpoint def]eétion against the edge compression,
assuming that axis BD does not displace in the x-direction. This
diagram can easily be combined with Fig. 6.8, yielding the relationship

between the average stress and the edge compression.
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It is worth noting that division of the quarter of the plate
into only a 2 by 2 mesh yields results within a few percent of what was

obtained with the 3 by 3 mesh.

6.2.4 Postbuckling Behavior of Square Plate Subjected to Pure Shear

A simply supported square plate subjected to pure shear will
be considered. The critical shear stress for linearized buckling is

£107]

2 2
Ter = 934 T2 o g44EN
a'h a

where a is the side length and assuming v = 0.3. Choosing
E=6.4x 104, a = 1000 and h = 12.5, the multiplying factor is set
equal to unity and hence .= 8.44,

The plate is idealized by a 3 by 3 finite element mesh. The
choice of boundary conditions is essential for postbuckling behavior.
Fig. 6.10 shows the deflections obtained for pure force (stress)
boundary conditions; that is, the consistent noda] point forces along
the boundaries are 1ncre§sed proportionally during load application.

It is seen from the deflection plots that the initial buckling shape is
symmetric about both the compression and the tension diagonal. However,
at about two times the critical load, the buckled shape changes quite
drastically. The shape no longer remains symmetric about the tension
diagonal, whereas symmetry about the compression diagonal is retained.

This behavior can roughly be explained by considering the
compression diagonal of the plate as a "beam on elastic foundation"
Subjected to compression. The elastic support is furnished by second
order effects of the tension stresses perpendicular to the compreSsion

diagonal. This "foundation" becomes increasingly stiff as the
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deformations increase. It is expected that the plate would exhibit even
higher modes when increasing the load further. This kind of post-
buckling behavior where wrinkles occur along the compression diagonal
has been observed experimentally for very thin plates and the ultimate
shear strength of such plates can be estimated using a "diagonal
tension" method [107].

The same kind of behavior as shown in Fig. 6.10 was also
obtained by imposing pure displacement boundary conditions on the plate
so that a rhombic shape of the plate was maintained during deformation.
The parallel sides were not allowed to move closer to each other, hence
high tension stresses in x and y directions were gradually built up.
For these reasons, the deflections obtained were smaller than for the
force boundary conditions (roughly 2/3). A 4 by 4 mesh revealed the
same general behavior as the 3 by 3 idealization, the results are not
shown here because of unfavorable Tocations of the nodal points with

respect to the deflected shape.

6.2.5 Snap-Through of Initially Deformed Plates

The case of initially deformed plates subjected to uniform
pressure will now be studied. When the pressure is applied to the
convex side of the plate and if it is given a sufficiently large initial
deformation, this case constitutes a very interesting problem due to
the sudden Toss of transversal stiffness of the plate during load
application. This type of problem which usually is termed "snap-
through", has been extensively studied for the cases of arches and
shallow caps [109 -112]. Seemingly, no similar study has previously

been performed for general rectangular plates.
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A simply supported square plate of the same geometry as
previously given in Section 6.2.2, and with edges restrained against
inplane movement perpendicular to the plate boundary, will now be
studied. As shown in Fig. 6.11, one quarter of the plate is idealized
by a 3 by 3 finite element mesh. Both the cases of loading on the
convex and on the concave sides as illustrated in Fig. 6.12, will be
examined, assuming the initial deflection at the midpoint of the plate
to be one and two times the plate thickness. Thus a total of four cases
of initial deformation will be considered: 6§ =+ h and & = # 2h. But
first the initial shapes are computed as separate problems by giving
the displacement & at the midpoint of the plate and calculating the
corresponding elastic shapes. These shapes are later used as input for
the initially deformed plates.

The load-deflection curves resulting from the four different
cases are plotted in Fig. 6.13. It is seen that even small initial
deformations increase the stiffness of the plate substantially when the
pressure is applied to the concave side. On the other hand, réduction
of the initial stiffness concluding with a sudden "snap" is observed
for the 6 =-h and & = - 2h. In all these cases, the Tload was
applied incrementally with "true" Newton iteration at each load Tlevel.
For the two cases in which snap occurred, the iteration converged to
the second branch of the curve when the pressure was increased above
the snap-Toad. Some difficulties were encountered in obtaining con-
vergence for loads just slightly higher than the snap-load, however,
convergence to the second branch was easily obtained after additional

load incrementation.
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The case in which & = - 2h was tested for a full Toad cycle,
see Fig. 6.14, _The pressure was first increased to + 15 psi, after-
wards it was reduced to - 15 psi, thereby obtaining a sort of
"hysteresis" loop. The load increments are numbered in the figure
thereby demonstrating how the load was applied. A 2 by 2 mesh
idealization was utilized for one quarter of the plate, thereby
reducing the required computer time. The discrepancy between the
results obtained in this manner compared to those obtained with the
3 by 3 mesh were in general very small although the coarser mesh gave
a 10 percent higher snap-Toad.

Figure 6.14 does also furnish a good test of the method. The
1oad—def1ection curve for & =+ 2h (pressure on concave side) is also
plotted in the same figure. However, it is displaced by 4h from the
origin corresponding to a complete inversion of the initial shape. The
discrepancy between this curve and the second branch of the snap—cufve
is merely additional flexural bending stiffness associated with the
deformation of the initial shape during the snap. The shap-curve does
correctly lie above the "displaced" curve. These two curves would in
the 1imit coincide if the thickness of the plate were reduced to zero.

When the ratio &/a is large, the entire plate should be
considered for the snap-through analysis, although the problem seemingly
is a doubly symmetric one. This is due to the fact that an unsymmetric
buckling configuration gives a lower critical load. This phenomenon is
hard to observe experimentally because the snap happens extremely fast
and the shape is symmetric both before and after the buckling has

occurred. This general unsymmetric case can be handled readily by the
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present method; only a small, unsymmetric perturbation in the loading
must be added to enable the analysis to achieve the unsymmetric mode.
Initially deformed plates or shallow shells open interesting
perspectives for new designs. Such plates have increased stiffness and
stress computations reveal that the maximum Stresses are substantially
reduced due to the altered initial shape. When the Toading is applied
to the concave side of initially deformed plates, no stability problems
are encountered and the plates are greatly improved from a structural
point of view. Deformed plates for which snap may occur also have the
same favorable characteristics, but a more thorough analysis is
required to avoid buckling. A "tool" for such analysis is now
available, and the use of shallow rectangular shells should be given
serious consideration in many designs for which plane surfaces are not

a requirement.

6.3 ELASTIC-PLASTIC PROBLEMS

6.3.1 The Elastic-Plastic Beam

To demonstrate the accuracy and capabilities of the methods
described in Chapter 4, a simply supported beam with rectangular cross-
section and subjected to a uniform transversal load will be considered.
Assuming an elastic-perfectly plastic material and a uniaxial state of
‘Stress in the beam, a closed-form solution to this problem was given
by Prager and Hodge [23]. Denoting the uniaxial yield stress by

0&1e1d and choosing

P = 4V3— kob = q%ieldb
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as a reference load, a nondimensional loading parameter'UP can be
defined by

p= L (_9;)2 (6.3)

P\t
where p 1is the actual Toad per unit ]ength of the beam. The geometric
dimensions of the beam are defined in Fig. 6.15. P 1s chosen such that
it is identical to 1 for the ultimate load. The midpoint deflection
of the beam will also be described in a nondimensional form making use
of the deflection of the initial yielding load
» 5 poal

AR .éh;; | (6.4)
The ratio of wo/wg thus describes the actual midpoint deflection.
The load-deflection curve given by Prager and Hodge is shown in
Fig. 6.18.

The numerical computations will be based on the plate bending

element of Section 4.4.1and the membrane element of Section 4.4.2. The

Poisson's ratio is equal to zero and for simpiicity o jeld = 100.

N
Plate Bending Elements. The following numerical properties

are chosen

5

E=2.10%

3

thus leaving p = p and wg = 1. As shown in Fig. 6.15, half of the
beam is divided into 4 equal elements and a 11 point integration scheme

through the entire thickness is employed.
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Membrane Elements. For this case, a slightly different

geometry is chosen

=2,
E = iV 10

still yielding p = p and w; = 1. As shown in Fig. 6.15, 10 equal
elements are used to model one quarter of the total beam. It turns
out that for this geometry, the decreased stiffness due to the
integration scheme using the subtriangle centroid§ very well balances
the overestimated stiffness due to the displacement expansion used for
the element.

The results obtained using the two different types of
elements are shown in Fig. 6.16. Constant load increments equal to 3
percent of the initial yield load were applied up to the collapse load.
The results seem highly satisfactory, the divergence from the true
curve is mainly due to the truncation error caused by linearization.
As for purely elastic problems, the bending elements are in general
more fit for bending type problems like a beam than the membrane
elements. However, it is reassuring to observe that the membrane
elements are equally accurate in the plastic as in the elastic range.

The Tocations of the elastic-plastic boundary in the beam for
different lToad levels have also been given in Reference [23].
Comparisons with the numerical results for the bending and the membrane
elements show very good correlations in both cases.

Bilinear Material. The plate bending elements were also

tested for a bilinear material for which the tangent modulus

ET = 0.25 E
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after the initial yield stress has been reached. A11 other properties
were kept the same as for the elastic-perfectly plastic beam. The
stress distribution through the thickness of the plate near the midpoint
is shown = 0.667 andlg = 0.984 in Fig. 6.17. The load-deflection
curve for the same beam is plotted in Fig. 6.16 and can be compared

with the curve obtained for an elastic-perfectly plastic material.

Combined Bending and Axial Load. Finally, a case of combined

bending and axial deformation will be studied, using the element
derived in Section 4.4.3. Keeping the same geometry and material
properties as for the case of pure bending using plate bending elements,

an axial force N where

N o= 3 B - 600 p

is applied to the beam. For this ratio between the transverse and
axial load, 50 percent of the maximum stress at the onset of yielding
is due to bending, the other 50 percent is due to axial deformation.
The transverse and the axial Toading are increased proportionally
after yielding has occurred, the load steps being 1.5 percent of the
jnitia] yield load (po = 0,33, N, = 200). An analytical calculation
fevea]s that the ultimate capacity of the cross-section is reached
for p = 0.48 and N = 288, The neutral axis is then located at the
distance 0.279 from the free surface, see Fig. 6.18.

The computed stresses for p = 0.333 and p = 0.412 are also
plotted in the same figure. It turns out that this case becomes
rather unstable for higher loads since small load increments result in
large changes in deformation and stress pattern. Indeed, infinite

deformations are required to obtain the theoretical collapse stress
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pattern shown in the figure. For these reasons, the numerical
procedure become unstable for loads higher than p = 0.412 when only
one element (with 11 Gaussian integration points) was employed through
the entire thickness.

After initial yielding has taken place, Oy stresses
different from zero occur in the beam. This is due to the adopted
Kirchhoff assumptions that require the sides of the beam to remain
plane whereas deformations in the plastic zone result in a strong
Poisson's ratio effect. For these reasons, the o, Stresses may rise
in accordance with the adopted yield criterion to values sTlightly

higher than Oyie]d'

6.3.2 Elastic-Plastic Behavior of a Simply Supported Square Plate

A simply supported square plate made of an elastic-perfectly
plastic material will now be considered. The plate is shown in'Fig.
6.19. Using the extremum principles of plasticity, Prager and Hodge
[28] presented an upper bound solution to this problem when the plate
is subjected to a uniform pressure
=2 k(Efs Z (2 6Ba.(E) 6.5

Pupper yield

An estimate of the ultimate load may also be obtained by a
Timit analysis approach 1like the "yield line theory". This approach
is based on maximum moment Capacity for a fully yielded cross-section

in an uniaxial state of stress

Me = G'gi@(.d tz (6.6)
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Assuming a collapse mechanism along the two crossing diagonals of the

plate, a work and energy analysis yields the ultimate load.

° t \?
Pur= 5 = 6 Gpea () (6.7)

Making use of a constant M0 is not a very accurate assumption when the
von Mises yield criterion is employed. The true state of stress in the
plate is indeed two-dimensional. Thus the actual stress perpendicular
to the plastic hinge line may be higher than Oyie]d' For these
reasons, Eq. (6.7) probably represents an underestimation of the true
ultimate pressure load.

Also here, the Tloading can be expressed in a nondimensional

fashion

_pat P (&)Z (6.8)
£ Uem, T Ca,lE
thus P =1 for the limit load predicted by the yield line approach.
One quarter of the'pane] is analyzed using 2 by 2 and 4 by 4
finite element meshes. As shown in Fig. 6.19, the geometry and
material properties are the same as used in Reference [30] for a
similar problem. Here, an 11 point integration scheme through the
thickness of the plate is employed, and the load increments are 3
percent of the initial yield load. Denoting the midpoint deflection at
the onset of yielding by W,*, the resulting load-deflection curves
are given in Fig. 6.19. As expected, the ultimate Toading obtained by
the finite element solutions 1ie between the values predicted by the

yield line theory and Prager and Hodge's upper bound solution.
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Moreover, the curve obtained using the 4 by 4 mesh is almost identical
to the one given by Armen et. al. [30] who used a 6 by 6 idealization
for a quite different type of finite element.

The extensions of the plastic zones for pressures close to
the ultimate loading are demonstrated in Fig. 6.20 and Fig. 6.21. The
number of yielded points through the entire plate thickness is indicated
by using three different forms of shading. Yielding always starts from
the Surfaces and is symmetric about the plate's midplane. The
development of plastic bands that run diagonally is evident. In Fig.
6.21 in particular, it is interesting to observe a rather sharp yield
Tine extending from the corner to the midpoint of the plate. The amount
of yielding through the thickness gradually decreases in moving away

from the diagonal,

6.3.3 Trapezoidal Plate Under Uniform Pressure

The final example of inelastic material behavior is a plate
of trapezoidal shape shown in Fig. 6.22. The plate which is clamped
on three sides while the fourth side is free, is subjected to a uniform
pressure. The plate is assumed to be made of an elastic-perfectly
plastic material. Geometric and material properties are given in
Fig. 6.24. Due to symmetry about the B-D axis, only half the plate
need be considered during the analysis.

An estimate of the ultimate load the plate can carry is made
using the yield Tine theory. The assumed collapse mechanism is shown
in Fig. 6.23, the distance x being a variable denoting the location
of yield line C-E. After an expression for p s obtained by means of
work considerations, x may be found by minimizing p with respect to

X. When a = b,
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X = 0,555 a

and the ultimate pressure is

eta_h?
Pa = 546 % = 5‘.%%—— = 0.213

Since the yield line theory has Timited validity for metallic materials,
the value above only represents a rough estimate of the ultimate load.
‘The collapse mechanism shown in Fig. 6.23 is not the only one possible.
However, introduction of more complicated patterns are not expected to

change the resulting Puit Very much.

Half the plate is analyzed using a 4 by 4 quadrilateral
element mesh shown in Fig. 6.24. The element mesh is chosen to be more
refined close to the clamped boundaries. The pressure versus the
deflection at point B is plotted in Fig. 6.15. The collapse load seems
to be somewhat higher than the prediction by the Timit Toad analysis,
The Toad was applied in steps equivalent to 10 percent of the initial
yield pressure, thus a total of 25 Tload increments produced the curve
in Fig. 6.25. 11 integration points were utilized through the total
thickness of the plate. .

The extent of the yielded zones for three different pressure
Tevels are illustrated in Figs. 6.27, 6.28 and 6.29. The formation of
of p]astic hinges along the}c]amped boundaries are evident, Any
deveTopment of a sharp yield line corresponding to line C-E in Fig.
6.23 is not evident; however, an increased yielding activity about this
line is apparent. Another interesting feature is the change of the
deflected shape during loading in the plastic domain. This is

demonstrated in Fig. 6.26 by plotting the deflected shapes along the
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free edde A-B during elastic and inelastic loading. It is evident
that the shape becomes increasingly 1like the one assumed for the yield

line theory in the inelastic lToading range.

6.4 COMPUTER TIME REQUIREMENTS

A11 computations in the preceding were performed with a CDC
6400 computer (65 K memory). Some characteristic computer times per

element for the nonlinear analysis are:

Time
Operation CP sec's
Basic matrices 0.034
Tangent stiffness 0.044
Plane element Unbalanced forces 0.048
Tangent stiffness plus
unbalanced forces 0.057
Basic matrices 0.060
Tangent stiffness 0.072
Shallow shell Unbalanced forces 0.077
element
Tangent stiffness plus
unbalanced forces 0.089

Incremental stiffness for inelastic plate
bending element, 11 integration points 0.170 - 0.330
through thickness

Incremental stiffness for inelastic membrane
element 0.125 - 0.160

Incremental stiffness for combined bending and
membrane action, 11 integration points through | 0.540 - 0.690
thickness
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The nonlinear large deflection stiffnesses were computed using a 2 by 2
Gaussian quadrature. These times do not include assemblage of the
system stiffness matrix or printing of stresses for the inelastic
elements. "Basic matrices" indicates formu]afion time of matrices from
which the tangent stiffness and the unbalanced forces are obtained by
direct Tinear combination, see Sections 2.4.4. and 2.4.5, Since the
formulation time of the incremental stiffness for the inelastic elements
is dependent on the number of integration points where yielding has
occurred, the time is indicated by its lower and upper limits.

Some typical computer time requirements for some of the

previous examples are:

No. of No. of Total No. of[ CP time

Example elements |load increments| iterations | in secs.
Platestrip
Sec. 6.2.1 4 5 41 20
Square plate
Sec. 6.2.2 16 6 20 75
Snap-through
Sec. 6.2.5 4 23 88 72
Inelastic beam,
bending element 4 19 0 24
Sec. 6.3.1
Inelastic beam
membrane element 10 19 0 35
Sec. 6.3.1
Trapezoidal plate .
Sec. 6.3.3 16 29 0 171
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For the inelastic examples, a considerable amount of peripheral
processor time was spent in addition to the central processor time,
However, the total storage requirement for the inelastic program is
moderate (50, 000 octal) and cost of "PP"-time is therefore small.
The computer time requirements indicated here for large
deflection and inelastic analysis of plates clearly demonstrates that

such calculations are highly feasible from an economic standpoint.
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7. SUMMARY AND SUGGESTIONS FOR FURTHER DEVELOPMENT

Efficient procedures for solving nonlinear plate problems
have been developed in the present investigation. Assuming a Ritz-tybe
method of approach, a set of equilibrium and a set of incremental
equations have been derived for large deflections of initially deformed
plates (shallow shells). These equations are well suited for numerical
computations using modern electronic computers.

Based on these equations, a nonlinear, doubly curved, quadri-
lateral finite element accounting for both flexural and membrane be-
havior has been developed. This e1ement has proven to be computationally
highly efficient and accurate. Using this element a great variety of
different problems can be analyzed, such as large deflection plate
problems, post buckling problems, problems of combined inplane and
transversal loading, snap-through problems and many others.

A general quadrilateral finite element accounting for inelastic
material behavior has also been developed. The derivation of this
element is based on the flow theory of plasticity, the von Mises yield
Criterion'and isotropic hardening of the material. Both membrane and
flexural behaviors are accounted for. This element is capable of
inelastic analysis of plates of general shapes and under general loading
conditions. Using an incremental technique, the complete deformation
and stress patterns throughout the load application are obtained. This
analysis also reveals the ultimate Toad and the corresponding collapse
mechanism,

Several numerical techniques for solving nonlinear structural

problems have been tested and discussed. It was concluded that for
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large deflection problems of plates, a combination of load-incrementa-
tion and Newton-Raphson iteration is generally the best approach. The
problems of convergence and accuracy have also been studied.

Two computer programs were developed in connection with this
investigation, one for handling large deflections of initially deformed
plates and one for treating inelastic behavior of plates. Computer time
comparisons with other numerical methods previously reported in the
literature reveal that the methods developed here undoubtedly are among
the most efficient yet available. In several cases the present methods
proved to be more than one order faster than similar methods reported
previously.

One obvious extension of the present work is to combine
the two existing computer programs into one which accounts for both
geometric and material effects. The effort required for this extension
is merely a matter of programming since the theoretical derivations for
such an operation is readily available in the present report.

A Togical extension of the present 1ine of research would be
to include the effect of discrete, eccentric stiffeners on the plate.
Stiffened plates constitute a frequently occurring type of structure.
The interaction between the stiffeners and the main plate is believed
to be essential for the postbuckling behavior and the ultimate strength
of the structure. The stiffeners could probably be accounted for using
the same nonlinear element as was developed for the plate itself. The
inclusion of discrete stiffeners would then essentially be a matter of
combining and assembling these elements in a global, 3-dimensional
coordinate system. However, a major problem would be the complexity

and the proportions of the stiffened plate problem itself requiring many
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finite elements for the modeling. This is particularly true for an
extensive nonlinear analysis.

Another natural extension would be to use the presently
developed finite elements for the analysis of general shell structures.
Since the large deflection quadrilateral is doubly curved, it could be
used for arbitrarily shaped, thin shells. Using a Lagrangian description,
the deformation of each element would have to be referred to a local
coordinate system lying in an "average" plane of the reference configura-
tion of the element concerned. A1l stiffnesses would have to be trans-
formed to a global, Cartesian reference system before assemblage. Whether
such an approach, which in fact only would require a simple extension of
the present plate program, would be sufficient for highly nonlinear sys-
tems, remains to be tested. In the case of really large shell deforma-
tions, an updating of the local coordinate systems throughout deformation
might become necessary.

Although much research already has been done in the field of
nonlinear finite elment analysis, some basic foundations of the method
st11i remain to be clarified. In particular, the mathematical foundations
for applying Ritz-type solution techniques to nonlinear problems ought to
be further investigated. Hopefu11y9 this will result in formal proéfs

of convergence as presently available for linear finite element analysis.
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APPENDIX A
DISPLACEMENT FUNCTIONS FOR THE LCCT12 ELEMENT

The compatible displacement functions for subtriangle 3 of

Fig. 3.2 is given by

w_(?r): <§(3)> {u’};] (A.])
where
A (3) A3} 233 AB) A3) A8 A 4 (3) A(8) aqs) a) AW ALY A.2
<? >= < ?w‘l, ?QNI; ?95' )?wzj%Az ;?052)@”3,?0”3,%33'?94;9“1?06>( ’ )
and

AT
{w;.} - <W'D9ka16‘lj':w§l xZ '632,145'@*3,653’ B‘e, 65, B‘ >

The individual terms of the interpolation polynomial given in terms of

the geometry and rational coordinates of the entire triangular element

*
are [69]
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*
These are the same terms as given in Reference [69], except for a
sign error that was detected in that publication
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For 9?;:: (¢=1,2,3) change all b's in Po.: to a's.
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The expressions of (A.3) apply to subtriangle 3 where 6.2 53, gzk {3 .

Similar functions are obtained for the subtriangles 1 and 2 by
permuting cyclically all superscripts and subscripts like 1-2-3 to
2-3-1 and 4-5-6 to 5-6-4.

The natural coordinates are defined by

G, - (A.4)

that is the natural coordinates of a point P in the triangle is
defined as the ratios of the areas Ai of the subtriangles subtended
by that point to the total area of the triangle. The differences

between the corner coordinates defines the following quantities

a, = X - X - b. = Yi - Yy (A.5)

L 23 3. J L

where i, j, and k are cyclic permuntations of 1, 2 and 3 (when

i=1, then j=2 and k=3). Finally
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L; = a; + b (A.6)

o O+ b; b
2 - ot (A.7)

and

(A.8)
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APPENDIX B
DISPLACEMENT FUNCTIONS FOR THE MEMBRANE ELEMENT

The inplane displacements for the quadrilateral are given by

4 1
uz V2
u = <¢> §uzp Vo= <92 9 V3 4 (B.1)
U4 V4
Us Sy

where us and v, are the nodal point displacements. Using the
natural coordinate system as shown in Fig. 3.3, the interpolation

polynomials become

@2t =7 [ 08 ()]
(1+g) ~ (1-n)
{8 (1) (8.2)
(1-6) (1)
4 (1-£%) (109 |

Note that the corner points have coordinate values of + 1 in the
natural system. The transformation from a natural coordinate system

to a Cartesian one is a simple bilinear form,see Reference [62].
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APPENDIX C
REFORMULATION OF ONE OF THE NONLINEAR STIFFNESS TERMS

One of the nonlinear stiffness terms of the equilibrium
equation given by Eq. (2.87) will now be further studied. Multiplying
this matrix (Eq. (2.91)) by the inplane displacement vector the following

set of forces is obtained
{Rd=jlmafh%f{%]dA (v} (c.1)

Use of Eq. (2.69) yields

[ (8,1 W, [B,1"[D.1[B,1dA [}

A

JIB.,T W 1T (B EN,) dA (c.2)

A

(R.)

i

where { Ne } is a set of membrane forces, corresponding to the mid-
plane- stresses,

Now, using Eqs. (2.55), (2.62) and (2.64)

T T v ! ! T
’a w-"’bw- ! w-' wr
()= SO 12 oo 28] 0 1228 fu) an
A Nty IR TS B
T L IR
2x2n 2nx 3
29, T PP : w7 ;
= A/E%)« %)[w;} ; <2—3,- ><:5W> {ur‘-_}: (c,ont.)

(28> R+ B 200) fur) |, )dA

T (C.3)
22T [N, N, ] [P0
=|]?2x °xy °x dA &J}
? Pur D Pur ‘
ey /\lb,‘5 N“j T
The matrix defined by the last integral is the geometric stiffness for

plates as given by Martin [14].
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APPENDIX D

SIMPLIFIED DISPLACEMENT FUNCTIONS FOR COMPUTATION OF NONLINEAR
STIFFNESS TERMS

In a non-dimensional &-n coordinate system for a rectangle,

the Hermitian interpolation polynomials yield
W= <@, > [u&} (D.1)

where

1
{w-u} = <w—|)91fl;9‘j'/wlnekll9‘12luheﬂlg'ﬂ'w‘“e""e‘:!") (b.2)

and

< = '(2-3§+§3)(2-3@2~wl3)
b(2-33 +3%) (1=m =9+ 7’)
mali=p -yt (2-dn )
R+33-8)(2-39 * 7%
bla+33 -8 (== 1)
,a(-,-§*§2+§3)(2-37 +n3)
(2+3% -8°) (239 -’) ? (D.3)
b(2+33=3°)(-1-n 4"+ 7) |
~a(~1 -§+§‘4 53)(2 4'3’?"723)
(z~5;+5-”)(2+3»2—vz3)
b(2-33«3")(<1-q+n"+n’)
~a(1=5 -3 ) (2 van 1)

The local nodal point numbering is that of Fig. 3.3. a and b are

\

half the side-lengths.
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