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Abstract

Multi-Objective Optimization of Pricing Strategies for Sustainable Transportation

by

Jessica Lazarus

Doctor of Philosophy in Engineering - Civil & Environmental Engineering

and the Designated Emphasis in

Global Metropolitan Studies

University of California, Berkeley

Professor Alexandre Bayen, Co-chair

Professor Susan Shaheen, Co-chair

The digitization and automation of transportation systems is fundamentally transforming
the transportation landscape, creating important opportunities and challenges for improv-
ing the sustainability of transportation worldwide. There are more travel options to choose
from than ever before, with real-time information on the cost and time trade-offs between
alternative routes and modes of travel available in the palm of a hand. In particular, shared
on-demand mobility services such as transportation network companies (TNC) (e.g., Lyft,
Uber), bikesharing, and microtransit offer affordable and convenient alternatives to personal
auto ownership that can complement or supplement existing public transit services. In ad-
dition, these services may aid in reducing existing inequities in access to fast and reliable
transportation. However, despite the potential that innovative shared mobility service mod-
els bring forth to improve the sustainability of transportation, the inefficiencies of fleet-based
services such as TNCs and the low adoption rates of pooled rides that transport multiple
travelers in the same vehicle have contributed to worsening congestion in several regions
across the United States. Meanwhile, the design and deployment of transportation demand
management (TDM) strategies has not kept pace of disruption nor the corresponding evo-
lution in travel behavior.

In light of the pressing need to improve the sustainability of a rapidly evolving transportation
ecosystem, this dissertation contributes to the theory, methodology, and state of knowledge
of optimal mechanism design for multi-faceted TDM strategies. With a focus on congestion
pricing strategies, this research aims to facilitate the design and analysis of data-driven TDM
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strategies that incorporate a multitude of policy levers (e.g., congestion pricing, multi-modal
incentives, public transit operations) using a simulation-based multi-objective optimization
approach to inform decision-makers about the inherent trade-offs between congestion and
emission reductions, economic feasibility, and transportation equity.

In particular, I focus on the optimization of congestion pricing and targeted incentive schemes
in multi-modal transportation networks including pooled ride options. Congestion pricing
aims to reduce congestion by charging road users for driving on congested roads. A review
of the various aspects of the transportation pricing optimization problem as studied in the
literature is presented in Chapter 2, including the specification and analysis of various di-
mensions of demand sensitivity, congestion pricing structure and charging zone design, opti-
mization objectives, optimization approaches, and transportation equity analysis. Studies of
the optimization of pricing structures and charging zones for congestion pricing schemes have
established that greater toll levels and charging zone coverage produce greater reductions
in driving, which is deemed beneficial with respect to total system-wide travel time reduc-
tions. However, as is pointed out by public acceptance studies and literature on the equity
implications of congestion pricing, the cost burden of congestion mitigation is disparately
borne by lower-income individuals who are the most likely to be financially incentivized
to adopt less desirable alternatives to driving. Few congestion pricing optimization studies
have incorporated transportation equity objectives; none have included equity in addition
to other efficiency and environmental objectives. The contributions of this dissertation to
the literature on congestion pricing optimization span the theory of optimal mechanism
design for multi-objective congestion pricing strategies, methodology for simulation-based
multi-objective optimization of multi-faceted TDM strategies, and empirical understanding
of congestion pricing strategies optimized with respect to multiple policy objectives.

Mechanism Design for Optimal Congestion Pricing Policies

Chapter 3 establishes that equity-based objectives and the inclusion of monetary incentives
for the adoption of driving alternatives are feasible strategies for tackling the equity issues
inherent in congestion pricing optimization (i.e., the disparate distributions of increased costs
for lower income drivers and reduced travel times for higher income drivers). In this chapter,
I formulate a bi-level optimization problem to compute optimal link- and mode-specific
tolls and targeted mode-specific incentives (i.e., direct monetary transfers) using aggregate-
level information on the flows of network users using various modes of transportation. This
work contributes to the theory of congestion pricing optimization by proving the existence of
optimal multi-modal congestion pricing schemes including both tolls and monetary incentives
that are optimized with respect to equity-focused objectives defined on the basis of the
distributional impacts of the pricing scheme across travelers. Several functions inspired by
different theories of justice are presented as alternative social objective functions, including:

1. Utilitarian: maximize the sum of individual utility (i.e., a quasilinear function of travel
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time, cost, and other factors weighted by the individual demand sensitivity to each) of
travel,

2. Egalitarian: maximize the sum of individual utility using the average demand sensi-
tivity to weight travel time cost,

3. Equality of Opportunity: maximize a weighted sum of the individual utility, again
using the average demand sensitivity, with weights applied to the overall utility that
are scaled according to a societal ordering of disadvantage across network users (e.g.,
weights decrease with income, weights increase for residents of historically underserved
neighborhoods or members of historically underserved communities), and

4. Rawlsian: maximize the minimum individual utility of travel, again using the average
demand sensitivity.

Consideration of the three latter social choice functions offers a deviation from the tradi-
tionally utilitarian view on congestion pricing optimization. Implementation of the bi-level
optimization problem presented in chapter 3 and analysis of the impacts of each of the alter-
native objective functions on the optimal traffic assignment, toll, and incentive scheme are
under development for future work.

The Berkeley Integrated System for TRansportation
Optimization (BISTRO)

In chapter 4, I present a methodological framework for regional-scale multi-objective opti-
mization of transportation systems using agent-based simulation (ABS), called the Berkeley
Integrated System for TRansportation Optimization (BISTRO). BISTRO is an open source
transportation planning decision support system that enables the simultaneous optimiza-
tion of multiple transportation system interventions, including adjustment to public transit
operations and vehicle fleet mixes as well as pricing strategies, using state-of-the-art activity-
based travel models and ABS to explore the individual- and system-level impacts of packages
of TDM strategies. In contrast to the state of the practice in transportation planning of an-
alyzing a select few strategies across a discrete set of scenarios, the simulation-based multi-
objective optimization approach that I explore in this dissertation using BISTRO leverages
the machine learning principles of data exploration and exploitation to explore the interac-
tions of policy design parameters and their outcomes to a much greater extent, thereby pro-
ducing richer insights about the optimal trade-offs between the various competing objectives
of policy design and implementation. BISTRO was developed in partnership with researchers
at the Institute of Transportation Studies at UC Berkeley and Lawrence Berkeley National
Laboratory as well as a project team at Uber, Inc. I led the development of the objective
function design for BISTRO by translating municipal and regional transportation goals into
quantitative optimization objectives with consideration for social, environmental, and eco-
nomic sustainability implications and testing the efficacy with which these key performance
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indicators (KPIs) functioned when applied in simulation-based multi-objective optimization.
In addition, I led the design of the output analysis and visualization platform for BISTRO.
My individual contributions are presented in the Scoring function design, Inputs, and Out-
put analysis and visualization sections of chapter 4 in addition to the corresponding sections
of Appendix A. Chapter 4 also presents the results of a pilot study of BISTRO that was
conducted as a machine learning competition hosted within Uber Technologies, Inc. The key
lessons learned from the design and execution of this pilot study demonstrated BISTRO’s
utility as a human-in-the-loop cyber-physical system: one that uses scenario-based optimiza-
tion algorithms as a feedback mechanism to assist urban planners with iteratively refining
objective function and constraint specification on multi-faceted intervention strategies (e.g.,
pricing, public transit scheduling, vehicle fleet mix). The remainder of my dissertation re-
search focuses on the application of BISTRO for the design of congestion pricing strategies
with mode-specific incentives.

Congestion Pricing Optimization Case Study I: Sioux Faux

The fifth chapter of this dissertation presents a case study of the optimization of congestion
pricing policy design using BISTRO and the Sioux Faux benchmark model presented in
Chapter 4. The study exemplifies how the granularity offered by activity-based travel models
can be leveraged to enhance the interpretability of multi-objective transportation policy
optimization through rich analyses of the effects of policy design on both individual- and
system-level outcomes. The location and size of a circular charging zone as well as two
different pricing schemes (a cordon fee and a cordoned mileage fee) were encoded as inputs
to an ABS with an activity based travel model of 15,000 travelers. Through an analysis of the
effects of various weighting schemes across KPIs representing congestion- (i.e., total VMT,
average vehicle hours of delay (VD) per passenger trip, and total GHG emissions), social-
(i.e., average generalized travel cost burden of work and secondary trips), and revenue-
based (i.e., total toll revenue) objectives, I developed a method for interpretation of the
inherent trade-offs in transportation policy optimization and demonstrate the importance of
cultivating transparency in policy decision support systems that use black-box optimization
in order to produce explainable, defensible policy strategies.

I find that cordoned mileage fees Pareto-dominate cordon tolls, meaning they produce greater
improvements across all objectives studied. I estimated an empirical 3-dimensional Laffer
curve for each pricing strategy, representing the concave relationship between the main
components of the pricing scheme design - the average toll paid per driving/TNC trip and the
coverage of the cordon (in % of trips affected) - with the toll revenue and the driving/TNC
mode share. I analyzed the relationships between these design parameters and the other
KPIs, demonstrating the utility of simulation-based multi-objective optimization for human-
in-the-loop transportation policy design. I find that the prioritization of congestion reduction
poses a challenge for congestion pricing optimization in that it may result in unnecessarily
large mode shifts away from driving. This significantly worsens the cost burden of travel
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(i.e., the total generalized cost of travel - including both travel cost and VoT-weighted travel
time - as a portion of individual income) by disproportionately increasing the travel times
of lower income individuals in a manner that may arguably be incommensurate with the
benefits of congestion mitigation. Finally, I explore the role of weighting schemes in shifting
the priority of an optimal congestion pricing scheme to social equity while maintaining
congestion mitigation and toll revenue, the latter of which may be used to further improve
the transportation system.

Congestion Pricing Optimization Case Study II: The San
Francisco Bay Area

In chapter 6, I build upon the Sioux Faux case study by designing a Pareto-based opti-
mization of a cordoned mileage fee and incentive scheme for the City and County of San
Francisco using BISTRO. I developed and calibrated an activity-based model of 50,000 com-
muters in the San Francisco Bay Area for the case study, including both ride alone and
pooled on-demand rides in 7-seater vehicles and a multinomial logit mode choice model with
coefficients estimated from a general population stated preference survey of San Francisco
Bay Area residents that I conducted in 2018. I applied the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm to optimize the hypervolume of the Pareto frontier
of various transportation system objectives, including the minimization of the total VMT,
average VD per passenger trip, total GHG and PM2.5 emissions, average cost burden, and
net public revenue resulting from the congestion pricing and incentive scheme. Rather than
produce a single ’optimal’ policy design, the approach taken in this study produces rich
insights regarding the correlations between policy design parameters and the corresponding
outcomes and produces a set of policy design options representing the optimal trade-offs
between policy objectives.

I find that the inclusion of monetary incentives for pooled TNCs and public transit in a
congestion pricing scheme for San Francisco improves all KPIs under consideration except
for the net public revenue produced by the scheme, which may still be improved with respect
to a baseline with neither tolls nor incentives. Incentives serve to amplify the operational
and environmental benefits of congestion pricing by offering an additional positive financial
incentive for the use of pooled modes of transportation (in addition to the negative incentive
posed by the congestion charge), while reducing the average cost burden of travel across
the region. This is particularly important in the San Francisco Bay Area where a majority
of commuters traveling in the City of San Francisco either live or work in one of the other
eight counties of the region where there is comparatively poor access to alternatives to
driving. Incentives aid in compensating the most cost-sensitive drivers for the considerable
travel time or cost increases they experience when shifting to public transit or pooled on-
demand rides, respectively. This study demonstrates the value of Pareto-based optimization
using ABS for developing dynamic TDM strategies capable of adapting to ever-changing
travel behavior and policy priorities. I conclude this chapter with a discussion of actionable
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insights regarding the potential of congestion pricing and incentive schemes to achieve a
variety of policy objectives, particularly in the presence of high-capacity pooling services
such as microtransit.

Summary of Key Findings and Research Directions

This dissertation develops theoretical, methodological, and empirical contributions to the
field of transportation engineering, specifically for the design and optimization of sustainable
and equitable congestion pricing strategies. The multi-objective simulation-based optimiza-
tion framework I have developed and applied using BISTRO lays the foundation for the
continued development of algorithmic transportation policy decision support tools.

The use of activity-based travel models and ABS enables the examination of the network
effects of pricing strategies, which are particularly relevant when considering 1) the regional
impacts of pricing on mode shifts, since behavioral responses in one sub-region can influence
those of another through the secondary effects of the pricing strategy on travel times and
the level of service of alternative modes (e.g., reliability of public transit or on-demand ride
services), 2) on-demand vehicle fleet operations, which are designed to optimize the revenue
generated from the strategic positioning and dispatching of vehicles across a market, and
3) the economies of scale of pooling, which generate a virtuous cycle of higher pooled ride
match rates, better pooled ride service reliability and affordability, and reduced costs with
respect to greater density of pooled rides in any given area and time period. This disserta-
tion presents the first multi-objective congestion pricing and incentive scheme optimization
studies using ABS with an activity-based travel model that includes numerous travel options
to access/egress public transit and, in the second case study, includes pooled on-demand ride
services with survey-based estimates of the sensitivity of demand for pooling incorporated
into the behavioral dynamics of the model.

This research has produced applicable insights for both the immediate- and long-term. While
congestion pricing policies are currently under development in cities across the globe, there
is also a broad trend toward ’smart city’ technologies that has been underway for over a
decade, with increasing integration of sensors and connected control mechanisms to automate
the operation of certain civil systems such as water, energy, and traffic management. In
addition to updating traffic control systems (i.e., automated ramp metering, traffic lights,
etc.), transportation agencies are integrating fare payment across transportation services and
facilities and considering mobility as a service (MaaS) models that bundle transportation
services and enable the seamless allocation of credits and incentives to nudge travel behavior.

The results of the two congestion pricing optimization case studies (chapters 5 and 6) con-
tribute valuable insights for the ongoing development of transportation pricing strategies
such as congestion pricing and MaaS. The San Francisco Bay Area case study in chapter 6
suggests that low-income incentive schemes can drastically improve the efficacy of congestion
pricing to achieve congestion mitigation and environmental emissions reductions objectives
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while also reducing the average cost burden of travel. These benefits come at the cost of
reduced public revenues that could otherwise be used to expand and improve public transit
access. Targeted public transit improvements may also serve to reduce the cost burden of
congestion pricing schemes by reducing the travel time for individuals who shift away from
driving due to the congestion charges. However, in a region as large and varied as the San
Francisco Bay Area, strategizing which investments to make and where to make them is a
challenging task. The optimization of targeted reinvestment of congestion charging revenue
into public transit is an area ripe for future work using BISTRO. As was demonstrated in the
pilot BISTRO study (chapter 4), BISTRO can be used to optimize the public transit vehicle
fleet mix, route schedules and headways, and fares in addition to the pricing parameters
optimized in the congestion pricing case studies.

In addition to generating practical insights for the design of congestion pricing schemes,
this dissertation demonstrates the challenges and opportunities for algorithmic policy de-
sign. Building upon the lessons learned from the BISTRO pilot study presented in chapter
4, the methodological approach developed in chapters 5 and 6 focuses on improving the
explainability and interpretability of simulation-based multi-objective optimization by using
BISTRO to explore the various aspects of the transportation system optimization problem,
including the:

• design of policy input parameters and an appropriate search space that is both large
enough to enable exploration of potentially unexpected solutions and constrained
enough to avoid the unnecessary use of resources exploring extreme solutions with
undesirable outcomes,

• specification of KPIs that are both mathematically sound and representative of realistic
policy objectives (spanning congestion mitigation, equity, and financial feasibility) with
which to guide the optimization algorithm to find insightful solutions,

• development of a realistic and meaningful travel model that includes key behavioral,
physical, and operational dynamics relevant to the optimization problem at hand (e.g.,
configuring the mix of fuel consumption and seating capacity in the public transit and
on-demand vehicle fleets),

• implications of scalarization schemes and the impacts of weighting conflicting policy
objectives on the results of optimization, and

• application of nuanced analysis to interpret and communicate the implications of the
optimization results at both the individual- and system-levels.

The research presented in this dissertation offers a launching point for future work in the field
of transportation policy design and optimization. BISTRO offers the capability to expand
the scope of the congestion pricing optimization problem I have studied thus far to include
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aspects such as induced demand, vehicle-based charging, dynamic pricing structures, park-
ing pricing, and public transit investment. In addition, BISTRO may be used as a tool to
develop methodological approaches for robust transportation system optimization that pro-
duces strategies that perform optimally across a variety of scenarios. Such scenario-based
optimization may be conducted across multiple baselines (as opposed to a single BAU), each
representing a potential variation in the distribution of land use, mobility preferences, or
other factors that may affect the distribution of transportation supply or demand. BISTRO
can also be used to develop algorithms for transfer learning of policies across varying scenar-
ios and geographies. Such methodologies would characterize hyper-parameters representing
factors in the transportation network, services, and demand profile that are significant across
scenarios or geographies, thereby increasing the efficiency and robustness of the optimization.

Lastly, a policy optimization framework relies heavily on the design of the objective function.
The case studies in this dissertation applied just one of the three alternative social choice
functions presented in chapter 3. More work is needed to continue developing an equitable
approach for defining and operationalizing the notion of social optimality with respect to
both equity and sustainability. The level of service KPIs implemented in BISTRO, including
measures of public transit vehicle crowding, transportation cost burden, and accessibility
are a first step in this regard, and the research I have conducted thus far on the impacts
of weighted and Pareto-based optimization have illuminated the challenges in automating
public policy decision-making.
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Chapter 1

Introduction

1.1 Motivation

Transportation systems across the globe are increasingly failing to provide environmentally,
economically, and socially sustainable mobility. Road transportation alone accounts for
about 18% of global CO2 emissions each year [1]. Although efforts to improve fuel efficiency
and reduce emissions have been accelerating in recent years, the transition from internal
combustion engine (ICE) vehicles to electric vehicles (EVs) will not necessarily reduce the
number of miles driven nor the number of vehicles produced, both of which are key deter-
minants of energy consumption and traffic congestion. Population growth and increasing
suburbanization have driven the growth of vehicle miles traveled (VMT) per capita across
the United States by about three percent from 2009 to 2019, amounting to a ten percent
increase in total VMT [2]. As of 2019, the average American spent about 55 minutes com-
muting per day, amounting to an estimated 99 hours lost to congestion over the year per
person [3, 4]. Lastly, significant disparities in the affordability, accessibility, and convenience
of transportation are persistent, creating inequities in the distribution of both the positive
and negative impacts of transportation systems. Even though tremendous technological de-
velopment in the transportation field has created opportunities to advance towards many
of the most ambitious sustainability goals that have been set forth for decades, there is
still much to be desired in the public’s ability to steer the course of that development in a
sustainable direction.

This dissertation develops a holistic approach for transportation system design and de-
mand management to guide the development of data-driven strategies involving numerous
policy interventions that systematically improve the environmental, economic, and social
sustainability of transportation systems. The aim of this research is to advance data-
driven policy-making by leveraging simulation-based optimization to investigate the trade-
offs across conflicting policy objectives and their impacts on the design and resulting out-
comes of multi-faceted sustainable transportation strategies. In particular, I focus on the
optimization of congestion pricing and targeted incentive schemes in multi-modal transporta-
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tion networks including pooled ride options. Congestion pricing aims to reduce congestion by
charging road users for driving on congested roads. When optimized purely for the objective
of congestion reduction, pricing produces regressive financial impacts. However, congestion
pricing also has the potential to reduce transportation inequities by raising revenue that
may be distributed to individuals (i.e., as rebates or incentives) or strategically re-invested
in the transportation system (e.g., to increase public transit service quality or coverage).
In the following sections of this chapter, I provide a background of the emerging trends
affecting transportation sustainability and the role of pricing. A brief overview of the gaps
in the congestion pricing optimization literature is also provided, followed by a summary of
the theoretical, methodological, and empirical contributions made in this dissertation and a
roadmap of the organization of the following chapters.

1.2 Emerging trends

The digitization and automation of transportation systems is fundamentally transforming
both the supply and demand of personal transportation. Transportation services are increas-
ingly automated and centrally operated with unprecedented access to information delivered
via the internet of things (i.e., by mobile phones and other GPS-enabled devices as well
as other sensing technology). In particular, shared on-demand mobility services, includ-
ing shared micromobility (e.g., bikesharing, scootersharing) and ridesourcing (also known
as transportation network company (TNC)) services, have emerged as popular, mostly pri-
vately operated, innovative mobility service options with the potential to reduce VMT and
greenhouse gas (GHG) emissions by complementing traditional public transit services and re-
ducing personal auto ownership. Their growing adoption reflects important changes in travel
behavior, including an apparent willingness to pay for the relative convenience, reliability,
and other intangible factors that on-demand mobility services offer. Moreover, travelers -
particularly those in dense urban areas - have access to more travel options than ever before
and are able to trade off the levels of service and costs of each option in real-time, enabling
dynamic, highly flexible decision-making. In return, service operators are able to leverage
user- and system-level data to dynamically optimize fleet management and pricing.

However, unlike public transit and traffic operations, private transportation services are
not responsible for optimizing for social good. For example, the rapid deployment of TNC
services (e.g., Lyft, Uber) has contributed significantly to increases in congestion in several
large metropolitan areas of the U.S. due to increases in both the number of vehicle trips and
VMT per trip [5, 6, 7, 8]. The total VMT produced by TNCs includes the miles driven en
route to drivers’ markets of choice, as well as those driven while roaming and unreserved,
driving to pickup a passenger, and driving with a passenger in tow. The former three phases
of service represent ‘deadheading,’ or miles driven without a passenger in the vehicle. An
estimated 20 to 45 percent of miles driven by TNC vehicles are accounted for by deadheading
while awaiting a ride request and driving to the passenger pickup point [6, 8, 9, 10, 11].

Although the automation and electrification of transportation systems is expected to
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bring about reductions in VMT and emissions from road use, the possibilities of further
increases in demand for auto travel and continuing inefficiency in road use caused by zero- and
single-occupant travel pose significant challenges for realizing the greater benefits from these
strategies. Simulation-based studies of the potential impacts of shared, automated vehicle
(SAV) fleets project that adoption of SAVs in favor of personally owned vehicles can reduce
VMT and increase vehicle throughput in urban areas [12, 13]. Moreover, the electrification
of such fleets is projected to bring about significant reductions in energy consumption and
environmental emissions from road use [14, 15, 16]. However, it is important to note that
these projected benefits depend heavily on the SAV adoption rate as well as the occupancy
rates of the vehicles [14, 15, 12, 16, 13].

Increased adoption of pooling, in which multiple travelers with similar trips share a ride in
the same vehicle, can mitigate the increased VMT due to deadheading and induced demand
by increasing the average occupancy of vehicles on the road network [17, 18]. The emergence
of on-demand ride services has spurred the adoption of app-based pooling services and cre-
ated the potential to drastically expand the market for pooling. Although pooling, which
includes carpooling and vanpooling, is not a new concept, app-based pooling has broadened
the primarily commuter-based market for pooling to a more diverse set of users and use
cases. Moreover, in comparison to traditional carpooling/vanpooling in which drivers and
passengers are primarily matched by employer-based programs and informal pickup/dropoff
locations, app-based pooling enables travelers to consider pooling on-the-fly with minimal
effort needed to coordinate the logistics of sharing a ride. Prior to the COVID-19 pan-
demic, numerous app-based pooling services were in operation across the U.S., including
pooled TNC services (e.g., UberPool, Lyft Shares Rides), app-based carpooling/vanpooling
(e.g., Waze Carpool, Scoop), and microtransit services (e.g., Via). The growing adoption of
these services presented a unique opportunity to limit congestion, energy use, and emissions
through increased vehicle occupancy.

However, the success of pooled ride services is largely dependent on the decisions of
individual travelers to pool or not to pool, which are heavily influenced by the perceived
differences in the levels of service offered by pooling versus riding or driving alone [19]. The
COVID-19 pandemic drastically impacted travel behavior with immediate and potential
long-term effects on the willingness of travelers to share a ride. The trends in the reduction
of public transit ridership during the pandemic vary by socio-economic status, with ridership
decreasing the least among lower-income captive riders and essential workers and the most
among higher-income, higher-educated populations [20, 21]. In addition, many pooled TNC
services were suspended during the pandemic and have not been re-introduced in all of the
regions where they previously operated. Yet, even prior to the COVID-19 pandemic, the
rates of pooled ride requests among users of the TNC services Lyft and Uber were relatively
low, resulting in negligible impacts to overall vehicle occupancy [9, 7, 17]. In a survey
distributed across four California metropolitan regions in 2018, [19] found that only about
30 percent of TNC users consider requesting a pooled ride more than half the time they use
TNCs. In 2018 in New York City, only about 22 percent of requested Lyft Line (now Lyft
Shared) rides and 23 percent of Uber Pool rides resulted in matched trips [7].
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1.3 The role of pricing

Some jurisdictions have addressed the negative impacts of TNCs by imposing surcharges on
rides while providing discounts for pooled TNC trips that can help reduce VMT. Examples
include the: 1) New York State Congestion Surcharge, which applies a $2.75 fee to all ride-
alone TNC trips but only $0.75 to all pooled TNC trips that start, end, or pass through
Manhattan south of 96th Street; 2) San Francisco Rideshare Tax, which applies a 3.25
percent surcharge to all ride-alone trips but a 1.5 percent surcharge to pooled TNC trips
that start in San Francisco; and 3) City of Chicago congestion pricing, which applies a $3
surcharge to all ride-alone TNC trips but a $1.25 surcharge to pooled trips that start or end
in a designated downtown zone during weekday peak hours (between 6 AM and 10 PM) and
applies a $1.25 surcharge on all other ride-alone trips but a $0.65 surcharge to pooled TNC
trips. The disposition of funds from state and local TNC taxes and fees includes general
funds, ‘congestion mitigation’ funds, and even public school funds. However, it remains to
be seen whether these pricing policies are effective in curbing congestion and whether their
effects are distributed equitably across the population.

In several regions across the U.S., a broader pricing strategy for congestion mitigation
is under development: congestion pricing. Congestion pricing aims to reduce congestion
during peak travel periods by creating a monetary incentive for road users to shift their
preferred time or mode of travel [22]. This strategy is deeply rooted in economic theory which
establishes that congestion pricing can reduce the inefficiencies of selfish travel behavior by
charging road users for the externalities that they impose on the system (and other drivers)
[22, 23]. When applied to high-occupancy toll (HOT) lanes (also known as express ormanaged
lanes), congestion pricing is typically dynamic, with a distance-based rate that is optimized to
maintain a desired level of service (e.g., free-flow speed) on the tolled lane. Zonal congestion
pricing, including cordon- and area-based pricing schemes, charges vehicles for entry into or
movement within a designated area, respectively. Several successful zonal congestion pricing
policies have been in place across the globe for years, including in Singapore, London, United
Kingdom, and Stockholm, Sweden. These policies have brought about significant reductions
in road traffic and increased public transit ridership [24, 25, 26]. In the U.S., there are about
53 express and HOT lane facilities, amounting to about 1,858 lane-miles across 12 states [27].
In addition, the cities of New York, San Francisco, and Los Angeles are in various phases of
the development of zonal congestion pricing policies, with New York being the first North
American city to codify the strategy in law. However, concerns about the equity implications
of pricing road users out of driving pose significant challenges for the public acceptance and
political feasibility of congestion pricing.

By design, pricing-based transportation demand management (TDM) strategies leverage
the heterogeneity in the sensitivity of demand to travel time and cost to elicit a desirable
shift in behavior. The most price-sensitive travelers are likely to be the most effected by the
increased costs. When possible, they will shift their travel behavior to use other modes (e.g.,
carpool, public transit, bike or walk) or to travel during off-peak times (i.e., before/after
the times at which charges apply). In the event that alternatives are unavailable or inacces-
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sible, they will have to either forego travel altogether or pay the increased cost and likely
bear a greater cost burden for doing so compared to other travelers [28]. Thus, congestion
pricing poses a considerable risk for worsening disparities in mobility and accessibility across
groups of travelers with varying geographic and demographic characteristics. Underserved
communities, including low-income residents and people of color (POC) living in areas with
increasing costs of living and poor access to public or active transportation, are among the
most car-dependent travelers. As such, they are the most likely to have to make a mode shift
to an already undesirable alternative or to take on the additional costs of congestion pricing
in order to maintain the level of mobility they rely on for important trip purposes such as
commuting, doing groceries, and going to medical appointments. This is exemplified by the
findings of [19], which showed that low-income, POC, and non-vehicle owners were among
the most frequent TNC users across four metropolitan regions in California regardless of the
greater cost of traveling by TNC compared to public transit.

Zonal congestion pricing strategies are typically developed as part of the long-range trans-
portation planning process in which regional travel models are used to forecast the impacts
of the policy under a set of potential future scenarios. Agent-based simulations (ABS) us-
ing activity-based travel models, which simulate daily travel decisions (e.g., departure time,
mode, and routing choices) at an individual person- or vehicle-level are increasingly being
adopted for this purpose due their ability to represent the network effects of system inter-
ventions such as congestion pricing at a granular level [29]. ABS is sensitive to the impacts
of system-level interventions to individual-level decisions, enabling the analyses of detailed
forecasts of the behavioral and operational outcomes of each strategy option. However, the
time and resource intensity of simulating thousands of individual agents constrains the set of
policy design options that can be fully analyzed by public agencies. Only a discrete subset of
options are typically simulated under each scenario considered, resulting in point estimates
of relative performance metrics. Input from the public and other stakeholders may further
complicate the interpretation and application of these results, which are likely to reflect
conflicts between various policy objectives.

1.4 Gaps in the literature

The optimization of road pricing schemes and congestion pricing in particular has been
studied widely in the transportation literature. The vast majority of the congestion pricing
optimization literature employs the objective of social welfare maximization, typically defined
as the total toll revenue minus the sum of total user costs (e.g., travel time and/or cost) and
social costs (e.g., operational costs). While many studies have examined the distributional
equity implications of this efficiency-focused approach, few have incorporated notions of
equity into the congestion pricing optimization problem. Moreover, the inclusion of multiple
competing objectives in congestion pricing optimization is limited to congestion, emissions,
and toll revenue objectives, with no studies incorporating more than two trade-offs in the
optimization objective at a time.
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In addition, there is a lack of consideration for competition across multiple modes of
transportation, with most studies focusing solely on private auto users, some incorporating
mode choices between auto and public transit, and few considering the role of carpooling in
congestion pricing optimization. Although on-demand ride services have been in the market
for almost a decade, congestion pricing optimization studies have not yet begun to reflect
the impact of these dynamic ride services or app-based pooling options on congestion pricing
optimization from a public perspective.

1.5 Contributions

This dissertation aims to advance the state of the art in transportation policy design and
analysis by developing a scalable mechanism design-based approach for formulating, opti-
mizing, and analyzing transportation pricing policies. I develop a framework for the multi-
objective optimization of multi-faceted TDM strategies with a focus on congestion pricing
and incentives for reducing congestion and environmental emissions while producing net
public revenues and reducing the disparities in the cost burden of transportation. Using a
game theoretic approach, I first establish a theoretical foundation for the optimization of
road pricing and incentive schemes in a multi-modal network with heterogeneous road users
by formulating a bi-level optimization problem for the minimization of equity-based social
objectives. I establish the existence of an optimal road pricing strategy with mode- and link-
specific tolls and mode- and individual-specific incentives with respect to a social objective
function of the estimated travel costs of each user group in the network (defined by their
origin, destination, and individual characteristics) and propose various objective functions
representing different theories of justice, including Utilitarian, Egalitarian, Rawlsian, and
Equality of Opportunity. Each of these alternative objective functions have implications on
the distributional impacts of road pricing schemes.

Next, I develop a methodological approach for regional-scale optimization of multi-faceted
TDM strategies within the context of on-demand ride services. I co-developed the Berke-
ley Integrated System for TRansportation Optimization (BISTRO), an open-source trans-
portation planning decision support system that applies a simulation-based optimization
framework to leverage the power of ABS, activity-based travel models, and machine learning
to assist stakeholders in designing optimal system-level TDM strategies [30]. I conducted
two case studies of congestion pricing optimization using BISTRO. The first is focused on
developing the methodology for cordon-based congestion pricing optimization as well as in-
vestigating the impacts of policy and objective function design on optimization outcomes in
a benchmark scenario called Sioux Faux. Two pricing schemes are optimized and compared:
1) a simple cordon toll charging drivers and TNCs upon entry/exit to the cordon, and 2) a
cordoned mileage fee that charges drivers and TNCs per mile driven within a circular cor-
don. The methodology is refined in the second case study, which implements a Pareto-based
optimization of a cordoned mileage fee with multi-modal incentives in a realistic regional
model of the San Francisco Bay Area.
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1.6 Organization

The following chapter presents background on the academic literature related to road pricing
optimization. Next, chapter 3 formulates a mechanism design problem for optimal road
pricing and incentive schemes in multi-modal transportation networks with heterogeneous
users. Chapter 4 presents BISTRO, including the design and software implementation details
as well as the results and key takeaways from a pilot machine learning competition using
BISTRO that was conducted among employees of Uber, Inc in 2019. Next, chapters 5 and 6
present the two case studies of congestion pricing optimization, including the development
of the methodological approach, analysis of results, and discussion of the implications of the
findings for further research and policy development. Finally, chapter 7 summarizes the key
contributions of this dissertation and discusses the key takeaways for policy recommendations
and future research directions.
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Chapter 2

Transportation Pricing Optimization

Road pricing charges road users for access to a particular road or area within a road network.
Road pricing that is devised to elicit a reduction in the volume of vehicles in congested areas
and/or time periods, known as congestion pricing, can take various forms. When applied to
high-occupancy toll (HOT) lanes (also known as express or managed lanes), congestion pric-
ing is typically dynamic, with a distance-based rate that is optimized to maintain a desired
level of service (e.g., a target speed) on the tolled lane. Zonal congestion pricing, including
cordon- and area-based pricing schemes, charges vehicles for entry into or movement within
a designated area, respectively. Area-based pricing includes both flat-rate (e.g., the daily
London Congestion Charge) and distance-based pricing schemes (e.g., Singapore’s Electronic
Road Pricing 2.0).

The optimization of road pricing schemes has been studied widely in the transportation
literature. Historically, the optimization of road tolls has been studied using analytical
models of vehicle dynamics on a single road or in a simplified road network, with an emphasis
on the application of the theory of marginal-cost pricing wherein road users are charged
according to the marginal social cost of their individual consumption of a resource (i.e., a
road) [23, 22]. The literature focuses on determining the optimal rate to charge under various
assumptions regarding the behavioral and physical dynamics of the transportation system.
Under assumptions that a first-best price equal to the short-run marginal cost of road use
can be achieved, the resulting marginal costs and marginal benefits of the pricing scheme are
equal, which is considered a Pareto efficient outcome [31, 32]. Given the unrealistic nature of
such assumptions (e.g., zero implementation costs, ubiquity of charges, perfect information),
most of the contemporary literature on road pricing optimization focuses on second-best
pricing schemes in which market distortions are represented by constraints imposed on the
optimization problem [32, 33]. Increasing in complexity from the standard model of a single
congestible road, the study of second-best pricing schemes includes, but is not limited to,
the optimization of road pricing in the context untolled alternatives (e.g., managed lanes),
multi-commodity networks (i.e., with demand across multiple origin-destination (OD) pairs),
fully or partially private information about the heterogeneity of road user preferences, and
competition with other travel modes. The following sections provide an overview of the
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various aspects of the congestion pricing optimization problem as studied in the literature,
including the specification and analysis of various dimensions of demand sensitivity, pricing
structure and cordon design, optimization objectives, optimization approaches, and equity
analysis.

2.1 Demand sensitivity

The literature on congestion pricing optimization initially focused on single commodity net-
works (e.g., a single origin and destination) with fixed demand. The latency, or cost, of
alternative routes determine the distribution of demand, typically according to assumptions
of utility-maximizing (i.e., cost-minimizing) decision-making. In the simplest cases, travel
time and cost are traded off using a value of time (VoT) parameter which is assumed to be
uniform across the population. However, several studies investigating the role of the hetero-
geneity of travel demand in optimal tolling demonstrate that ignoring heterogeneity in VoT
can result in drastic underestimation of the welfare benefits of second-best tolling policies
[34, 35, 36, 37]. In addition to being a key determinant of the equilibrium distribution of
routing choices, heterogeneity is essential for determining the elasticity of demand with re-
spect to travel time (e.g., departure time, arrival time), mode (e.g., public transit, walking,
biking, choosing not to travel), and even longer term decisions such as home or work location
choices that may also be sensitive to the distribution of costs in a transportation network
[35, 38, 39, 40, 41, 42, 43].

Small (2004) examines the impacts of increased travel speeds and pubic transit ridership
on public transit service levels (number of routes and service frequency), operator costs, and
user costs optimized from the perspective of the public transit operator, demonstrating that
congestion pricing can induce a ”virtuous cycle” of mode shifts, service level improvements,
and cost reductions for both users and operators that can result in considerably greater
improvements to consumer surplus than is projected by models of the impacts to private
vehicles alone [43]. Although the model developed by [43] incorporates changes in speed
and public transit ridership as exogenously determined variables, several other studies that
explicitly model the choices between multiple modes support these findings [35, 38, 40, 44].
Glazer and Niskanen (2021) and Liu et al. (2009) study revenue-neutral pricing schemes
in which revenue from a toll applied to cars in a network with public transit alternatives
is entirely redistributed as subsidies for public transit fares [41, 35]. They concluded that
any revenue-neutral pricing scheme of this type is Pareto-improving as long as it minimizes
total system travel time. Similarly, [40] analyzed consumer surplus using an equilibrium
model with road tolls, transit fares, and transit scheduling all optimized by a central agency,
concluding that gains in consumer surplus are highly dependent on the portion of travel
demand that is dependent on public transit as well as the potential impact of the conges-
tion pricing scheme to significantly reduce public transit costs through reduced congestion.
Armelius (2005) demonstrates the importance of incorporating departure time sensitivity in
such contexts in order to reflect the relative impacts of pricing schemes on shifts in preferred
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travel times and/or modes in response to the changes in the travel times and costs of each
alternative [38]. Moreover, the consideration of the sensitivity and heterogeneity of demand
is essential for the evaluation of the equity implications of optimal tolling schemes [45, 46,
47, 48]

Traditional carpooling, as incentivized by high occupancy vehicle (HOV) and high oc-
cupancy toll (HOT) lanes has been examined in the congestion pricing optimization liter-
ature, typically in comparison to ubiquitous first-best tolling schemes. Yang and Huang
(1999) demonstrate that, in the absence of HOV lanes, price differentiation between single-
occupant vehicles (SOV) and HOVs is necessary to achieve a first-best tolling scheme [49].
In an analysis of various optimal pricing schemes, [46] find that the introduction of HOV
lanes improves efficiency by encouraging carpooling, which significantly reduces travel times
on the managed lanes. Moreover, they show that most of the gains of first-best pricing
(tolling all lanes on a highway) can be achieved by offering a carpool exemption for tolls,
which lessens some of the undesirable distributional effects of ubiquitous tolling. However,
they find that the magnitude of the potential benefits from carpool exemptions - including
discounts for carpools based on the number of passengers (e.g., HOV3+) - depend heavily on
the initial share of carpooling in the study area. Observational studies have found that HOV
to HOT lane conversions have had negligible and even slight negative effects on carpool-
ing and that the share of HOVs on a facility is generally insensitive to travel time savings
[50, 51]. More recently, the adoption of transportation network companies (TNCs) and the
development of automated vehicle (AV) technology has spurred a renewed interest in the po-
tential impacts of pooling rates on overall transportation system efficiency. Ostrovsky and
Schwarz (2019) postulates that the provision of pooled on-demand ride services by shared
AV (SAV) fleets in the presence of ubiquitous tolling will produce the optimal conditions
to achieve the economies of scale in pooling demand necessary to support high match rates
[18]. However, it remains to be seen whether pricing mechanisms and automation alone will
engender sufficient demand for pooling, particularly given several key socio-economic issues
including the willingness to share, curb management, social equity, personal safety, and labor
considerations [52].

2.2 Pricing structure and charging zone design

The optimization of congestion pricing schemes may also entail the design of the charging
zone itself. Network-scale studies predominantly formulate link-based tolling schemes. While
it is possible that the optimization of link-based tolls may result in schemes with discernible
tolled and untolled areas, it is unlikely that such a result would be produced without the
application of explicit constraints on the optimization problem. Examination of spatially
and/or geometrically constrained tolling schemes is valuable for understanding the trade-
offs in infrastructure investment decisions for pricing schemes that are more technically and
practically feasible than unconstrained link-based schemes [42, 44, 53].

In comparison to traditional cordon tolls in which drivers are charged upon entry to
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a charging zone, area-based, multi-cordon, and distance-based schemes have been found to
produce greater social welfare gains by increasing the coverage of the tolling zone and achiev-
ing a greater correlation with the marginal congestion contributed by each tolled vehicle [39,
42, 45, 54]. Generally, greater toll levels are found to produce greater reductions in driv-
ing which lead to greater social benefits [42], as does greater coverage of the charging zone
[maruyama˙efficiency˙2007 , 37, 42]. Distance-based and time-varying schemes are also
found to outperform simple cordon tolls with respect to social welfare [39, 54, 55]. How-
ever, greater complexity and charge rates generally lead to lower public acceptance rates
[42]. May et al. (2002) emphasize simplicity and ease of understanding as qualitative design
objectives for politically feasible pricing schemes in addition to aiming for a charge level that
is acceptable and perceived as fair to the public [42].

2.3 Optimization objectives

The design of optimal tolls is inherently dependent on the definition of objectives used in
the optimization. A vast majority of the literature defines optimality with respect to social
welfare, typically defined as the total user benefit (i.e., the total generalized travel cost)
minus the total social cost (i.e., the total travel time plus the total toll revenue) [34, 36, 45,
46, 56]. Mayet and Hansen (2021) demonstrate the significance of the definition of the social
welfare function itself, with a social welfare function defined in monetary terms resulting
in higher tolls (due to assumptions about the heterogeneity in marginal utility of income)
while a function defined in time units results in lower tolls (due to assumptions on uniform
marginal utilities of time) [36].

Few studies consider other objectives for toll optimization. Pricing optimization on man-
aged lanes tend to consider throughput and/or revenue maximization as primary objectives,
which follow from assumptions of the purpose of such facilities [37, 57]. The correlation of
efficiency objectives with environmental objectives depend strongly on the modeling assump-
tions made. Some studies find that minimizing congestion results in emissions reductions
due to the reduction in vehicle miles traveled achieved by mode shifts [42, 58]. Yet other
studies conclude that the two objectives are at odds due to the relationship of travel speeds
with optimal emission rates of road travel, though optimal tolling schemes with respect to
specified trade-offs between congestion and emissions are feasible [59].

2.4 Optimization approach

Low-dimensional models of pricing optimization are often employed for the purposes of
simplicity and interpretability. Such models can be solved numerically using mathematical
approaches. However, when modeling higher dimensional networks, computing the optimal
toll and traffic assignments using numerical methods becomes infeasible. A multitude of
methods are used to overcome the challenge of simultaneously optimizing road user choices
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and toll optimization in order to compute an equilibrium, including heuristic algorithms [37,
47, 53], genetic algorithms [60, 61], and macroscopic fundamental diagram (MFD) models
[39, 62].

A few studies have employed agent-based simulation (ABS) engines for this purpose,
which explicitly model the decisions and movements of individual road users throughout
discrete and/or continuous time horizons. May and Milne (2000) demonstrated the impor-
tance of considering rerouting effects in congestion pricing design by utilizing a static traffic
assignment and simulation framework [54]. De Palma, et al. (2005) used the METROPOLIS
simulator, which incorporated departure time, mode, and route choice models with uniform
VoTs [55]. A combination of heuristics and response surfaces were utilized to iteratively up-
date and simulate the tolling schemes until converging to optimal solutions for six variations
of link-tolling schemes. Some studies have used surrogate-based techniques to optimize tolls
using dynamic traffic assignment [63, 64]. These techniques approach the optimization as a
black-box problem, in which the outcomes of the simulation are considered stochastic and
a-priori unknown.

2.5 Equity analysis

Many studies have assessed the equity of outcomes from optimal congestion pricing schemes,
both in theory and in practice. Distributional analyses of the travel times and/or tolls paid
by heterogeneous road users under an optimized scheme find that lower income road users
are generally worse off than higher income users as a result of lower and higher values of
time, respectively [37, 45, 48, 56]. Verhoef and Small (2004) assess the distributions of social
welfare effects of various optimal tolling schemes across a population with a continuous
distribution of VOT, finding that the average loss in consumer surplus (measured as the
change in generalized travel cost compared to a no toll scenario) is smallest for drivers with
the highest VOT and greatest for those with the lowest VOT [37].

Santos and Rojey (2004) examine the role of geographic differences in the spatial dis-
tribution of heterogeneous demand with respect to the placement of a cordon toll, finding
that the toll can be progressive even without revenue distribution, particularly if higher
income groups are the most likely to be subject to the toll [56]. Maruyama and Sumalee
(2007) find that the Gini coefficient of consumer surplus grouped by trip chains and ODs
increases (worsens) slightly with respect to the total consumer surplus produced by optimal
tolls (which was found to be positively correlated with the coverage and toll level of the
cordon) [45].

Yang and Zhang (2002) propose spatial and social equity constraints on an optimal
second-best tolling scheme that bound the changes in generalized travel costs by those of the
no-toll and first-best tolling equilibria with respect to OD pairs and user classes [48]. The
result is to constrain the relative percentage changes in generalized OD travel costs across
OD pairs and income groups according to the specified level of inequity determined by the
constraints. However, across all examples shown, the optimal tolls still produce the most
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negative effects on the lowest income groups while high income groups are impacted the
least, and in some cases, receive benefits [48].

2.6 Gap analysis

The vast majority of the congestion pricing optimization literature employs the objective
of social welfare maximization, typically defined as the total toll revenue minus the sum of
total user costs and social costs. While many studies have examined the distributional equity
implications of this efficiency-focused approach, few have incorporated notions of equity into
the congestion pricing optimization problem or redefined the primary objective of the prob-
lem in these terms. Moreover, the inclusion of multiple competing objectives in congestion
pricing optimization is limited to congestion, emissions, and toll revenue objectives, with no
studies incorporating more than two trade-offs in the optimization objective at a time.

In addition, there is a lack of consideration for induced travel demand nor competition
across multiple modes of transportation, with most studies focusing solely on private auto
users, some incorporating mode choices between auto and public transit, and very few con-
sidering the role of carpooling in pricing optimization. Although on-demand ride services
have now been in the market for almost a decade, congestion pricing optimization studies
have not yet begun to reflect the impact of these dynamic ride services or app-based pooling
options on congestion pricing optimization from a public perspective.
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Chapter 3

Mechanism Design for Optimal
Transportation Pricing Policies

3.1 Introduction

Road pricing policies, including congestion pricing and mileage-based road user fees, are
gaining momentum as potential strategies to mitigate growing congestion and the need for
more sustainable sources of transportation revenue. However, when optimized purely for
efficiency in terms of travel times, costs, and/or toll revenues, road pricing can produce re-
gressive impacts, with the lowest income road users taking on the greatest cost burden of the
strategy. In order to address these inequities and their ensuing negative impact on the public
perception and acceptance of road pricing policies, the redistribution of revenue generated by
pricing schemes as financial incentives or subsidies for targeted groups is increasingly being
considered.

As the equity implications of congestion pricing gain priority in the policy-making process,
mechanisms for optimal congestion pricing that include a strategy for the distribution of
revenue are needed. Moreover, mechanisms that optimize pricing schemes with respect
to equity-focused objectives are needed, particularly in light of the primarily utilitarian
approach that has been applied in the transportation literature. Utilitarianism emphasizes
that the maximization of social welfare, as measured by the total individual ”utility” of a
particular action or policy, achieves justice regardless of the differences in the preferences
or circumstances across the population. This approach, as applied in the optimization of
congestion pricing, leads to inequities in the distribution of impacts of the pricing scheme.

This chapter formulates a bi-level optimization problem for socially optimal toll and
incentive schemes in multimodal multi-commodity networks with heterogeneous users. This
work extends that of [65] with the inclusion of mode- and individual-specific incentives and
a budget-balancing condition in the optimal tolling scheme and establishes the existence of
tolls that enforce a socially optimal multimodal traffic assignment with mode- and individual-
specific incentives. In addition, I formulate four different social choice functions for which
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such a scheme may be optimized, each representing different theories of justice: utilitarian,
egalitarian, equality of opportunity, and Rawlsian.

3.2 Related Literature

Congestion pricing optimization

The study of optimal congestion pricing stems from public economic theory regarding marginal
cost pricing of public goods, whereby consumers are charged according to the marginal social
cost of their individual consumption of a resources (i.e., a road) [23, 22]. The optimization
of congestion pricing in network systems spans various disciplines. It has been studied in
the context of internet, electricity, and transportation systems, among others. In these
settings, users of capacity-constrained networks seek to find an optimal path between a par-
ticular origin-destination (OD) pair with respect to their individual preferences or objectives.
The resulting user-optimal routing scheme is considered a Nash or Wardrop equilibrium if
no individual has any incentive to deviate from their chosen path. Numerous works have
demonstrated the efficiency losses resulting from such selfish routing, as measured by the
differences in aggregate system-level objectives (i.e., various measures of social welfare) pro-
duced by user-optimal versus system-optimal routing. Optimal tolling schemes generally
seek to elicit system-optimal routing at equilibrium by increasing the individual perceived
costs of network usage [65, 66, 67].

In congestion pricing optimization, a non-decreasing function of the latency (e.g., travel
time) and cost of each link represents individual trade offs between money and time, typically
using a parameter called the value of time (VoT) that converts latency from units of time
to money. The importance of representing the heterogeneity in user preferences in the
optimization and analysis of congestion pricing schemes has been underscored by numerous
works [36, 37, 67, 68, 69]. The existence of link-based tolls for heterogeneous users in a
congested network was proven by [65] and [66]; the latter paper also establishes existence in
networks with multiple commodities (i.e., multiple OD pairs). Both of these works assert
the existence of optimal tolls with respect to a secondary objective, such as minimizing total
tolls paid by network users or the weighted sum of latencies. In the context of mechanism
design, this secondary objective is referred to as the social objective.

The most prominent social objectives for optimal tolling schemes include the total travel
time and total generalized travel cost - the sum over all users of the product of the VoT and
travel time for each user plus the travel cost [36, 37, 48, 68, 69]. Depending on assumptions
on the redistribution of toll revenues, the total tolls paid may also be included in the social
objective as a social benefit [36, 37, 70]. Other social objectives have included measures of
the environmental impacts of road traffic (e.g., greenhouse gas (GHG) emissions [59, 71],
energy consumption [72], and measures of fairness and equity (e.g., pareto optimality, Gini
coefficient, minimax individual costs) [73, 74].
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Transportation equity and congestion pricing

Many studies have assessed the equity of outcomes from optimal congestion pricing schemes,
both in theory and in practice. Distributional analyses of the travel times and/or tolls
paid by heterogeneous road users under an optimized tolling scheme find that lower income
road users are generally worse off than higher income users as a result of lower and higher
VoTs, respectively [37, 45, 48, 56]. In a simulation-based study of several cities in the
United Kingdom, [56] demonstrates that the regressivity of congestion pricing may vary
by geography, depending on the spatial and temporal distributions of travel demand with
varying socio-economic characteristics. When low-income road users are reliant on driving
within a charging zone or negatively impacted by the financial pressure to shift their travel
behavior, congestion pricing is likely to be regressive [56].

Congestion pricing can also have secondary short-run effects on the distribution of de-
mand across time and alternative modes of transportation, which add complexity to the
assessment of the corresponding equity implications. Long-run effects, such as the impact of
congestion pricing on vehicle ownership rates and activity generation, may also be significant,
yet are generally considered outside the scope of tolling optimization problems. Models of
multi-modal transportation networks that include alternatives to driving (e.g., public transit
modes, carpooling, on-demand ride services) enable the investigation of modal shifts as a
result of tolling, which can have significant impacts on secondary objectives such as total ve-
hicle miles traveled (VMT), environmental emissions, public transit ridership and revenues.
Small (2004) examines the impacts of increased travel speeds and pubic transit ridership on
public transit service levels (i.e., number of routes and service frequency), operator costs,
and user costs optimized from the perspective of the public transit operator, demonstrating
that congestion pricing can induce a ”virtuous cycle” of mode shifts, service level improve-
ments, and cost reductions for both users and operators that can result in considerably
greater improvements to consumer surplus than is projected by models of the impacts to
private vehicles alone [43]. Although the model developed by [43] incorporates changes in
speed and public transit ridership as exogenously determined variables, several other studies
that explicitly model the choices between multiple modes support these findings [35, 38, 40,
44]. Glazer and Niskanen (2021) find that a policy involving a toll on car travel only will
unambiguously hurt the users of the public transport system when both modes are subject
to congestion and there is no redistribution of toll revenues [41].

Various revenue redistribution schemes have been investigated with the aim of addressing
the disparate impacts of tolling across road users [35, 40, 41, 44, 74, 75, 76]. Jalota, et al.
(2021) prove the existence of congestion pricing and revenue refunding (CPRR) schemes that
reduce total system efficiency (measured as the sum of VoT-weighted travel times), while not
increasing wealth inequality [74]. Glazer and Niskanen (2021) and Liu, et al. (2009) study
a revenue-neutral pricing scheme in which revenue from a toll applied to cars in a network
with public transit alternatives is entirely redistributed as incentives for public transit (i.e.,
fare subsidies) [35, 41]. They concluded that any revenue-neutral pricing scheme of this
type is Pareto-improving as long as it minimizes total system travel time. Similarly, Ferrari
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(2005) analyzed consumer surplus using an equilibrium model with road tolls, transit fares,
and transit scheduling all optimized by a central agency, concluding that gains in consumer
surplus are highly dependent on the portion of travel demand that is dependent on public
transit as well as the potential of the congestion pricing scheme to significantly reduce public
transit costs through reduced congestion [40].

Bi-level optimization

This study presents a bi-level program to optimize link- and mode-specific tolls with mode-
and individual-specific incentives in a multi-modal transportation network with heteroge-
neous road users. In general, bi-level programming problems have the following form:

min
x ∈ X, y

F (x, y) (3.2.1a)

s.t. y ∈ {argmin
y∈Y

f(x, y) : g(x, y) ≤ 0} (3.2.1b)

G(x, y) ≤ 0 (3.2.1c)

where F : Rn × Rm → R is the upper level objective, f : Rn × Rm → R is the lower level
objective, G : X × Y → R are the upper level constraints and g : X × Y → R, j = 1, . . . , J
are the lower level constraints [77]. The program presented in this paper is an extension to
the bi-level program developed by [65], in which a single-level reduction method is suggested
to optimize link-based tolls in a multi-commodity network with heterogeneous users with
respect to any arbitrary social objective function (that is a nondecreasing in each of its
arguments). In this method, the lower-level problem is replaced by it’s Karush-Kuhn-Tucker
(KKT) conditions, producing a single-level optimization problem [77].

3.3 Problem formulation

Preliminaries

Consider a network G(V ,L) with OD pairs w = (wo, wd) ∈ W ⊆ V × V . The set P =
{Pw}w∈W contains the sets of paths (i.e., ordered sets of directed links) connecting each OD
pair. The set M = {Mp}p∈P denotes the travel modes available on each path.

The users of the network are distinguished by membership to various discrete groups Θ,
which may represent demographic or other individual characteristics that factor into their
travel preferences. For example, Θ ∈ I×A where I and A represent income and age groups,
respectively. A demand profile D ∈ R|W|×|Θ|

+ encodes the number of network users of each
group θ ∈ Θ that will travel each OD pair w ∈ W where ∀w, θ : dwθ ≥ 0.

Each network user chooses a strategy S ∈ Swθ = {(p,m)}p∈Pw,m∈Mp , consisting of a travel
mode and path, from among the set of available strategies for the corresponding group and
OD pair, Swθ. The available strategy set may vary by user group, enabling the representation
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of user groups that may not have access to certain modes of transportation (e.g., non-vehicle
owners, persons with physical conditions that restrict travel). The resulting strategy profiles

Xwθ ∈ R|Pw|×|M|
+ are the quantities of each user group and OD pair that choose each strategy.

A feasible strategy profile is one that fulfills the total demand of each group as follows:

X := {Xwθ ∈ R|Pw|×|M|
+ :

∑
S∈Swθ

xwθS = dwθ}w∈W,θ∈Θ.

where xwθS is one element of the vector Xwθ representing the flow of user group θ traveling
OD pair w using strategy S. The individual cost of each strategy is determined by a non-
decreasing continuous function of link and mode flows FwθS(g) : R|L||M|

+ → R, where glm =∑
w

∑
θ

∑
S∈Swθ|(l,m)∈S xwθS is the total user flow on each link and mode in the network. The

cost of each strategy is the weighted sum of the total operational cost and travel time along
each link using the corresponding path and mode, as follows:

FwθS(g, ψθm) = βθm + αθm
∑
l∈p

ttlm(g) + tcpm

where S = (p,m), βθm is a constant representing the relative preference of user group θ for
each mode m, and αθm ∈ R+ is the VoT multiplier specific to group θ and mode m which
converts travel time to monetary units. The non-decreasing continuous function ttlm(g) :

R|L||M|
+ → R+ estimates the travel time for mode m on link l and the constant tcpm ∈ R+

estimates the travel cost of using mode m on path p.
The model assumes that network users behave selfishly, seeking to minimize the total

individual costs of traveling. This selfish behavior leads to a user equilibrium in G, E(G),
with the familiar Nash equilibrium condition:

E(G) := {xwθ ∈ Xwθ : xwθS > 0 ⇐⇒ FwθS(g) ≤ FwθS′(g) ∀S ′ ∈ Swθ}w∈W,θ∈Θ

The existence and uniqueness of a Nash equilibrium strategy profile is well established
[66].

Socially optimal traffic assignment and incentive schemes

In the absence of tolls, the Nash equilibrium in G leads to inefficiencies with respect to the
aggregate costs of all network users [78]. Consider that a central authority is charged with
the task of setting tolls τlm ∈ R+ for each mode and link in the network as well as monetary
incentives ψθm ∈ R− for each user group and mode in order to minimize a social objective

function, f(g, τ, ψ) : R|L||M|
+ × R|L||M|

+ × R|Θ||M|
− → R. Note that the social cost function is

a function of g, the aggregate link-level flows by mode, and not of the individual strategy
profiles. As in reality (in most transportation systems), the central planner does not have
access to information on the distribution of traffic flow at an individual level. The task of
the central planner is to optimize the aggregate link- and mode-level flows, hereby referred
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to as the socially optimal traffic assignment (SOTA), with respect to the social objective
function.

A SOTA g is feasible if there exists a feasible strategy profile x such that the total flow
of users on each link and mode is less than or equal to the corresponding SOTA flow:

∀l ∈ L,m ∈ M :
∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p

xwθS ≤ glm.

Furthermore, a SOTA and incentive scheme (g, ψ) is enforceable if there is a set of non-
negative tolls τ such that the strategy profile induced by the Nash equilibrium of G with
respect to τ and ψ, Gτψ, produces link-level flows equal to g. More specifically, the Nash
equilibrium E(Gτψ) is:

E(Gτψ) := {xwθ ∈ Xwθ : xwθS > 0 ⇐⇒ FwθS(g) + ψθm +
∑
l∈p

τlm ≤

FwθS′(g) + ψθm′ +
∑
l′∈p′

τl′m′ ∀S ′ = (p′,m′) ∈ Swθ}w∈W,θ∈Θ

Furthermore, x = E(Gτψ) =⇒
∑

w

∑
θ

∑
S=(p,m)∈Swθ|l∈p xwθS = glm ∀l ∈ L,m ∈ M.

Fleischer, et al. (2004) proved the existence of tolls that enforce a SOTA that minimizes
any arbitrary function from RV → R that is non-decreasing in each of its arguments [65].
This chapter establishes the existence of tolls that enforce a SOTA and incentive scheme.

3.4 Existence of an optimal pricing strategy

This section proves that tolls exist to enforce a socially optimal traffic assignment and incen-
tive (SOTAI) scheme. The proof extends the theorems and corollaries presented in [65] for
the inclusion of individual- and mode-specific incentives in optimal road pricing mechanisms.

Given a SOTAI scheme (g, ψ) to enforce, the following linear program Pgψ characterizes
the Nash equilibrium strategy profiles:

min
x

∑
w

∑
θ

∑
S∈Swθ

(FwθS(g) + ψθm)xwθS (3.4.1a)

s.t. ∀w, θ :
∑
S∈Swθ

xwθS = dwθ (3.4.1b)

∀l,m :
∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p

xwθS ≤ glm (3.4.1c)

∀w, θ, S ∈ Swθ : xwθS ≥ 0 (3.4.1d)

where equation 3.4.1a minimizes the total individual costs, equation 3.4.1b ensures the traf-
fic assignment in the SOTAI is feasible, equation 3.4.1c ensures that the total demand is
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fulfilled by the strategy profile, and equation 3.4.1d constrains the strategy profiles to be
non-negative.

The dual of this problem, Dgψ, is as follows:

max
z, τ

∑
w

∑
θ

dwθzwθ −
∑
l

∑
m

glmτlm (3.4.2a)

s.t. ∀w, θ, S = (p,m) ∈ Swθ : zwθ ≤ FwθS(g) + ψθm +
∑
l∈p

τlm (3.4.2b)

∀l,m : τlm ≥ 0 (3.4.2c)

where the non-negative dual variable corresponding to the SOTAI feasibility constraint in the
primal problem (equation 3.4.1b) is the toll vector, τ , and the dual variable corresponding
to the demand-fulfilling constraint (equation 3.4.1c) is the vector of total travel costs in
the Nash equilibrium, z. The complementary slackness condition is equivalent to the Nash
equilibrium condition for E(Gτψ). In particular, if x∗ and (z∗, τ ∗) are the optimal solutions
to Pgψ and Dgψ, respectively, then:

∀w, θ, S = (p,m) ∈ Swθ : x∗wθS > 0 =⇒ z∗wθ = FwθS(g) + ψθm +
∑
l∈p

τ ∗lm.

Next, I prove the existence of optimal tolls to enforce a SOTAI. The following proof is
analogous to the corresponding proof in [65] of the enforceability of a traffic assignment since
the inclusion of incentives in the SOTAI scheme results in a simple affine transformation of
the objective of Pgψ (with respect to Pg).

Theorem 3.4.1 (Enforceable traffic assignment and incentive schemes). A feasible traffic
assignment and incentive scheme (g, ψ) is enforceable if and only if the linear program Pgψ

has an optimal solution in which, for every link l ∈ L and mode m ∈ M, the inequality 3.4.1b
is tight.

Proof. First, we prove that the enforceability of a SOTAI scheme (g, ψ) implies that an
optimal solution to Pgψ exists in which equation 3.4.1b is tight. Let (g, ψ) be an enforceable
SOTAI scheme. Then there is a set of nonnegative tolls τ such that equation 3.4.1b is
tight given the Nash equilibrium strategy profile x = E(Gτ,ψ). By definition of E(Gτ,ψ), for
every OD pair w and group θ, the total latency FwθS(g) + ψθm +

∑
l∈p τlm of any available

strategy S = (p,m) ∈ Swθ with nonzero flow (i.e., xwθS > 0) must be equal; let that value
be zwθ. The total latency of any strategy not being used must be greater than zwθ such that
zwθ ≤ FwθS(g) +ψθm+

∑
l∈p τlm for all strategy profiles S = (p,m) available to any OD pair

and group. Thus, x and (τ, z) are feasible solutions to Pgψ and Dgψ, respectively, and they
satisfy the complementary slackness conditions. Thus, x is an optimal solution for Pgψ.

Next, we prove that if there exists an optimal solution to Pgψ in which equation 3.4.1b
is tight, (g, ψ) is an enforceable SOTAI scheme. Let x∗ be an optimal solution for Pgψ such
that, for every modem and link l, the sum of flows for strategies using l andm is equal to glm
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(inequality 3.4.1b is tight). Furthermore, let (τ ∗, z∗) be the corresponding optimal solution
for Dgψ. By the complementary slackness condition of Pgψ, for every OD pair w and group
θ, the inequality 3.4.2b corresponding to any strategy S = (p,m) ∈ Swθ with nonzero flow
(i.e., x∗wθS > 0) must be tight: z∗wθ = FwθS(g) + ψθm +

∑
l∈p τ

∗
lm. For any strategy that is

not being used (i.e., x∗wθS = 0), z∗wθ ≤ FwθS(g) + ψθm +
∑

l∈p τ
∗
lm. Thus, x

∗ = E(Gτψ), which
means that g is enforceable.

The following proofs show the existence of tolls to enforce an optimal SOTAI scheme
that minimizes a social objective function with arguments in the dimension of either the: 1)
network facilities (i.e., the links and modes) or, 2) demand characteristics (i.e., the OD pairs
and user groups).

Theorem 3.4.2 (Existence of tolls to enforce a flow-based socially optimal traffic assign-
ment and incentive schemes). For every multi-modal multicommodity network in the discrete
setting, there are tolls that enforce a feasible traffic assignment and incentive scheme that
optimizes a function f : RL × RM → R that is non-decreasing in each of its arguments.

Proof. Let (g∗, ψ∗) ∈ argming,ψ f(g) be the optimal solution to the function f : RL×RM →
R that is non-decreasing in each of its arguments. Suppose that x is the optimal solution
to Pg∗,ψ∗ and there is some link l and mode m such that

∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p xwθS <

g∗lm. Thus, there exists a feasible g′ such that g′lm < g∗lm. However, f(g′) < f(g∗), which
contradicts the optimality of g∗.

A similar argument can be made to prove the existence of tolls to optimize a function of
tolls. For the next proof, I establish the notion of a minimal network : a network G = (V ,L)
in which there is no link or mode for which the Nash Equilibrium strategy given a feasible
SOTAI is zero:

G = (V ,L) : ∀l ∈ L,m ∈ M : ∃x = E(Gτ,ψ),
∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p

xwθS > 0

Theorem 3.4.3 (Existence of tolls to enforce a user-based socially optimal traffic assign-
ment and incentive schemes). For every minimal multi-modal multicommodity network in
the discrete setting, there are tolls that enforce a feasible traffic assignment and incentive
scheme that optimizes a function f : RW × RΘ → R that is non-decreasing in each of its
arguments.

Proof. Let (g∗, ψ∗, z∗) ∈ argming,ψ,z f(z) be the optimal solution to the function f : RW ×
RΘ → R that is non-decreasing in each of its arguments. Furthermore, suppose that x and
(z∗, τ) are the optimal solutions to Pg∗,ψ∗ andDg∗,ψ∗ , respectively, and there is some link l and
mode m such that

∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p xwθS < g∗lm. Thus, there exists a feasible g′ such

that g′lm < g∗lm. There are two cases to consider: g′lm > 0 and g′lm = 0. In the case that g′lm is
nonzero, then there is at least one user group (w, θ) using a strategy S = (p,m) ∈ Swθ that
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uses modem and link l. By the complementary slackness condition for the optimality of x and
(z∗, τ), the total latency of that strategy must be equal to z∗wθ = FwθS(g

∗) +ψ∗
θm+

∑
l∈p τlm.

However, since FwθS(g
′) < FwθS(g

∗), z∗wθ > FwθS(g
′)+ψ∗

θm+
∑

l∈p τlm, a contradiction. In the
second case,

∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p xwθS = g′lm = 0. This contradicts the condition that

the network is minimal.

3.5 Bi-level problem formulation

The SOTAI design problem is thus composed of a social planner’s decision problem, Cgψ,
in which the optimal policy (g, ψ, τ), is determined according to a real-valued social choice
function f . While g is constrained by the condition of enforceability that there must exist
an optimal solution to the linear program Pgψ for which the total user flow on each link and
mode is exactly equal to the corresponding value of g, it is necessary to design a constraint
on the value of ψ. One option is to enforce the condition of budget balancing on the SOTAI
optimization problem by constraining the sum of the total tolls paid and incentives used to
be greater than or equal to zero. The following problem is one such instantiation:

min
g, ψ

f (3.5.1a)

s.t.
∑
w

∑
θ

∑
S∈Sw|m∈S

ψθmxwθS(g, ψ) +
∑
l

∑
m

glmτlm(g, ψ) ≥ 0 (3.5.1b)

∀l,m :
∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p

xwθS(g, ψ) = glm (3.5.1c)

∀l,m : 0 < glm ≤ κlm (3.5.1d)

∀θ,m : ψθm ≤ 0 (3.5.1e)

x(g, ψ) = argminPgψ (3.5.1f)

(z(g, ψ), τ(g, ψ)) = argmaxDgψ (3.5.1g)

where constraint 3.5.1b balances the total subsidies distributed with the total toll revenue
generated and 3.5.1d ensures that any capacity constraints of the network are met and that
the network is minimal. In addition, x(g, ψ), z(g, ψ), and τ(g, ψ) are the optimal values of
the primal and dual problems, Pgψ (equations 3.4.1a - 3.4.1d) and Dgψ (equations 3.4.2a -
3.4.2c), respectively.

To solve this problem via the single-level reduction method, the stationarity constraint
(equation 3.4.2b) and complementary slackness conditions are added, as follows:
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min
g, ψ, z, τ, x

f (3.5.2a)

s.t.
∑
w

∑
θ

∑
S∈Sw|m∈S

ψθmxwθS +
∑
l

∑
m

glmτlm ≥ 0 (3.5.2b)

∀l,m :
∑
w

∑
θ

∑
S=(p,m)∈Swθ|l∈p

xwθS = glm (3.5.2c)

∀w, θ, S = (p,m) ∈ Swθ : zwθ ≤ FwθS(g) + ψθm +
∑
l∈p

τlm (3.5.2d)

∀w, θ, S = (p,m) ∈ Swθ : xwθS(zwθ − FwθS(g) + ψθm +
∑
l∈p

τlm) = 0 (3.5.2e)

∀l,m : 0 < glm ≤ κlm (3.5.2f)

∀θ,m : ψθm ≤ 0 (3.5.2g)

∀w, θ, S ∈ Swθ : xwθS ≥ 0 (3.5.2h)

∀l,m : τlm ≥ 0 (3.5.2i)

Social choice functions

Theorems 3.4.2 and 3.4.3 establish that any social choice function from the space of the
network links and modes or of the user groups and ODs that is nondecreasing in each of its
arguments can be optimized to produce an enforceable SOTAI. The following subsections
present several potential specifications of social choice functions that implement different
theories of justice.

Utilitarian

The most prominent philosophy applied in the valuation of transportation system interven-
tions is utilitarianism, which is based on the view that the maximization of social welfare,
as measured by the total individual ”utility” of a particular action or policy, achieves justice
regardless of the differences in the preferences or circumstances across the population [79].
The utilitarian approach is directly applied in cost-benefit analyses, in which alternatives
are evaluated by estimating the total costs and benefits - including the total dollar-valued
utility - of each alternative. A utilitarian social choice function in the context of the SOTAI
optimization problem is what is typically referred to in the traffic assignment and road pric-
ing optimization literature as the social optimum: the sum of the total cost across all user
groups and OD pairs, as follows:

f(z) =
∑
w

∑
θ

dwθzwθ (3.5.3)



Chapter 3. Mechanism Design for Optimal Transportation Pricing Policies 24

The existence of optimal tolls to enforce a utilitarian SOTAI mechanism follows directly
from theorem 3.4.3. By employing the individual payoffs of network users, a utilitarian social
choice function implicitly weighs the impacts of the SOTAI scheme by the relative VoT of
each user group. As a result, the travel time reductions experienced by the individuals with
the highest VoT will weigh more heavily than those experienced by individuals with lower
VoT.

Egalitarian

Egalitarianism prioritizes equality of treatment, suggesting that the outcomes of a set of
alternative actions or policies should be evaluated with equal weight across all individuals.
In the context of the SOTAI optimization problem, I define an egalitarian social choice
function as the sum of the total average cost across all users in the network, as follows:

f(z̄) =
∑
w

∑
θ

dwθz̄wθ (3.5.4)

where z̄w depends on a modified individual cost function, F̄ (x) that estimates the cost of a
particular strategy to the average network user. Specifically, in the modified individual cost
function F̄wθS, the parameters βθ and αθ of FwθS are replaced by estimators of the population
averages, β̄ and ᾱ, respectively, as follows: F̄wS(g, ψθm) = β̄m+ ᾱm

∑
l∈p ttlm(g)+ tcp,m. The

Nash equilibrium conditions that define the value of z are also applicable to z̄ and must be
included in the constraints of the egalitarian SOTAI problem, as follows:

∀w, θ, S = (p,m) ∈ Swθ : z̄w ≤ F̄wS(g) + ψθm +
∑
l∈p

τlm (3.5.5)

∀w, θ, S = (p,m) ∈ Swθ : xwθS(z̄w − F̄wS(g) + ψθm +
∑
l∈p

τlm) = 0 (3.5.6)

Equality of Opportunity

The equality opportunity view of justice emphasizes that all individuals have equal access to
the same opportunities regardless of their position in society [80]. Transportation plays an
integral role in providing access to opportunities by connecting individuals to destinations
and activities that contribute to their quality of life and social mobility. However, access to
transportation itself varies widely across spatial, temporal, economic, and physiological di-
mensions of the population [81]. While the equilibrium cost of any particular strategy under
a SOTAI scheme may be individually optimal given an individual’s preferences and the costs
of the alternatives, the burden of that cost with respect to the individual’s circumstances
(e.g., income, age, physical condition, health or safety concerns, etc.) may be disproportion-
ate to the burden of the same strategy for an individual of different circumstances. Thus, I
interpret the theory of equality of opportunity as justifying the application of OD- and/or
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group-specific weights in proportion to factors impacting individual equality of opportunity
as follows:

fω(z̄) =
∑
w

∑
θ

ωwθdwθz̄wθ (3.5.7)

where ω is a vector of weights that scales up with the relative level of disadvantage of
each user group θ and/or OD pair w, as determined by the social planner. Again, z̄ and F̄
are used in order to avoid implicitly weighing the costs of each user group differently, thus
allowing the vector ω to be the sole weighting factor in this social choice function.

Rawlsian

Rawls’ theory of justice is comprised of two main principles: 1) rules that define individuals’
basic rights and liberties should apply equally across individuals and enable the maximum
amount of freedom as long as no individual’s freedom infringes on that of another, and 2)
inequalities in the social and/or economic impacts of a particular action or policy can only be
considered fair if they both a) provide equality of opportunity, and b) work to the benefit of
the least well off [79]. The latter part of the second principle is called the difference principle;
it prioritizes mitigation of existing inequities by placing higher value on outcomes that ’raise
the floor’ of the distribution of outcomes. The maximin criterion has been proposed to
implement the difference principle: maximize the welfare of the individual with the minimum
welfare across the population [79]. The following social choice function implements the
Rawlsian theory of justice in the SOTAI problem by minimizing the maximum cost across
OD pairs and user groups:

f̂(z̄) = max
wθ

z̄wθ (3.5.8)

where we again take an agnostic approach to the estimation of cost across user groups using
z̄ as opposed to z.

3.6 Conclusions

This chapter formulates a bi-level optimization problem for socially optimal toll and incentive
schemes in multimodal multi-commodity networks with heterogeneous users. Whereas prior
studies on optimal tolling schemes that have included monetary transfers (also called subsi-
dies) have defined the transfers either in the same dimension as the tolls (typically link- or
path-based) or simply by the dimension of the user heterogeneity, I develop a SOTAI scheme
that defines incentives by mode and the dimensions of user heterogeneity. Thus, while the
tolls are agnostic of the network user paying them, the incentives can target specific user
groups.

This chapter proves the existence of tolls to enforce an optimal SOTAI scheme with
respect to functions of the network links and modes or of the user groups and OD pairs.
The latter enables the optimization of tolling and incentive schemes with respect to social
choice functions that prioritize the mitigation of transportation equity issues that arise from
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the disparate impacts of road pricing policies on certain user groups. This chapter presents
four social choice function alternatives, the latter three of which deiate from the commonly
assumed utilitarian view on road pricing. Analysis of the impact of these alternative so-
cial choice functions on the optimal traffic assignment, tolls, and incentives is in progress,
including application of the bi-level optimization model for empirical experiments.
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Chapter 4

The Berkeley Integrated System for
Transportation Optimization

4.1 Introduction

In this chapter, I present the Berkeley Integrated System for TRansportation Optimization
(BISTRO), an open-source simulation-based optimization framework and software toolkit de-
signed to aid transportation researchers, policy-makers, and other stakeholders in developing
multi-objective transportation system intervention strategies. This chapter was written in
collaboration with Sidney Feygin, Edward Forscher, Valentine Golfier-Vetterli, Jonny Lee,
Abhishek Gupta, Rashid Waraich, Colin Sheppard, and Alexandre Bayen. It was published
in ACM Transactions on Intelligent Systems and Technology in July, 2020. I led the devel-
opment of the objective function design for BISTRO by translating municipal and regional
transportation goals into quantitative optimization objectives with consideration for social,
environmental, and economic sustainability implications and testing the efficacy with which
these key performance indicators (KPIs) functioned when applied in simulation-based multi-
objective optimization. In addition, I led the design of the output analysis and visualization
platform for BISTRO. My individual contributions are presented in the Scoring function
design, Inputs, and Output analysis and visualization sections of this chapter in addition to
the corresponding sections of Appendix A.

As modern transportation systems undergo a period of intense technological change, re-
searchers, practitioners, and policymakers are seeking to understand how long-term trends
towards vehicle digitalization, automation, electrification, as well as the emerging sharing
economy will shape the future day-to-day dynamics of human mobility in cities world-
wide.Likewise, rapid advances in computing as well as the advent of metropolitan scale
data mining and pattern recognition (i.e., machine learning) have, for the first time, made it
possible to characterize urban traffic flows based on movement traces from millions of indi-
vidual travelers. These methods fuse passively collected spatiotemporal trajectories derived
from smartphone data with static census data in order to map travel patterns to sociodemo-



Chapter 4. The Berkeley Integrated System for Transportation Optimization 28

graphic characteristics. Specialized traffic models can thereby be trained using feature-rich
representations of human mobility.

While such predictive models have proven effective in nearcasting congestion events [82],
purely data-driven methods often fail to generalize when applied to the task of forecasting
the effect of transportation policy strategies on future demand–particularly when anticipated
changes in urban sociodemographics, regulatory policy, and mobility technologies as well
as interactions between these layers cannot themselves be predicted with a high degree of
certainty [83]. In other words, the covariates of statistical models may not capture the
numerous interacting physical and behavioral components (i.e., network effects) influencing
transportation supply and demand.

Agent-based modeling and simulation (ABMS) techniques and software, on the other
hand, are beginning to be used as flexible decision-support tools by planning groups, technol-
ogists, and regulatory agencies to facilitate forecasting the short- and long-term implications
of transportation system interventions. That is, by simulating models of traveler decision-
making in the context of a landscape of future plausible “states of the world”, stakeholders
can better resolve uncertainty over how transportation system interventions may fare. For
example, ABMS enables the investigation of the extent to which citizens may adopt on-
demand autonomous vehicles, as well as how to achieve sustainable fleet operation [84, 85].

Even with these advances, selecting interventions that balance competing transportation
system policy objectives remains a difficult and contentious process. Current methods to
identify the best alternative under a given scenario often involves the use of Monte Carlo
methods to evaluate different policy options. Such approaches can be extremely compu-
tationally expensive for large ABMS implementations and are unlikely to yield an optimal
solution. Moreover, transportation researchers and practitioners often develop scenario-
specific and/or geography-specific simulation models with limited integration of the efficient
and highly generalizable methods developed in the artificial intelligence (AI) and machine
learning (ML) communities.

BISTRO is an open-source framework and software toolkit designed to address the in-
creasingly complex problems arising in transportation systems worldwide. BISTRO does this
through an innovative human-machine collaboration approach, using state-of-the-art opti-
mization algorithms to efficiently automate the search for policy interventions that achieve
good performance over diverse transportation system scenarios and stakeholder objectives.
BISTRO includes an ABMS system and scenario development pipeline to build empirically-
calibrated simulations of travel demand in metropolitan transportation systems. After a
calibrated scenario has been developed, BISTRO enables use of state-of-the-art optimiza-
tion algorithms to identify system interventions that best align with policy and planning
objectives. Users can deploy BISTRO to enable distributed development of algorithms that
rapidly optimize a feasible set of policy and investment decisions. Once one or more desirable
solutions are found, BISTRO provides a suite of analysis and visualization tools to empower
citizens, transportation system planners and engineers, private entities, and governments to
better understand and collaborate on developing strategies that achieve equitable access to
and sustainable use of current and emerging mobility services.
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The rest of this chapter is organized as follows: Section 4.2 provides a brief overview of the
current state of transportation planning, ABMS tools, and transportation optimization tools,
respectively; Section 4.3 presents BISTRO, covering the system architecture, scoring function
design, inputs, outputs, analysis capabilities, and performance characteristics; Section 4.4
details an initial pilot study, updates to BISTRO based upon the pilot, and a few algorithmic
solution approaches; and Section 4.5 offers a short conclusion.

4.2 Background

Transportation Planning and Policy Decision Support Systems

In the United States, the primary outcome of efforts to design, model, and communicate
the impacts of proposed policy interventions and infrastructure investments on transporta-
tion systems are Metropolitan Regional Transportation Plans (RTPs) and State Long-Range
Transportation Plans (LRTPs). These plans are forward-looking, long-term (20+ year time
horizons) and have been a federally mandated task since the Federal-Aid Highway Act of
1962. Recently, state departments of transportation and Metropolitan Planning Organiza-
tions (MPOs)—the entities tasked with producing RTPs every four-to-five years—have been
shifting towards performance-based planning and programming (PBPP) frameworks [86].

As part of RTP development using PBPP guidelines, an MPO or related agency will
typically conduct a community engagement process to identify one or more visions or goals
shared by stakeholders and the public describing a desired future state of the regional trans-
portation system (e.g., safe roadways, accessible transit, environmental stewardship) [87, 88,
86]. Measurable objectives are defined together with quantitative performance indicators
in order to evaluate the extent to which alternative strategies consisting of policy interven-
tions or infrastructure investments could make progress towards achievement of a goal [87,
86]. Typically, the impact of these projects on key performance indicators (KPIs) of trans-
portation system performance will be forecast using an analytic, data-driven model of travel
demand1.

The domain expertise necessary to understand the functionality of models of transporta-
tion demand may result in recommendations that are frustratingly opaque to public inter-
pretation [88]. Explanations of the inner workings of the modeling process are not presented
during public collaboration meetings and questions regarding the validity of models have led
to lawsuits over the lack of publicly available information on model specifics [89]. Often,
contractual obligations or proprietary data formats used by the consulting firms tasked with
developing planning software further restrict public access. The inability or unwillingness on

1Traditionally, the travel demand modeling process consists of four main steps: 1) trip generation to
and from all analysis zones, 2) trip distribution (or matching origins and destinations, often using a gravity
model), 3) assigning traveler mode choice based upon individual preferences and alternative characteristics,
and 4) route assignment, of trips onto physical network links; this is referred to as the four-step model.
Many MPOs and other agencies are moving towards disaggregate, activity-based, or person-centric models
of daily activity, rather than aggregate approaches operating on the zonal level [87].
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the part of MPOs to promote flexible open-source software licensing strategies discourages
independent investigations (by, for example, academic or public interest groups) to verify
that the theory, equations, algorithms, and data comprising a model match its software im-
plementation. This lack of operational transparency not only subverts accountability, but
also impedes the rapid transfer of innovative modeling methods and technologies across and
even within agencies [90, 91].

To address criticism concerning model transparency and explainability, recent trans-
portation and land-use planning organizations have begun to pilot software that visualizes
the impacts of alternatives and provide fora for public input via collaborative simulation plat-
forms [87, 92, 93, 94, 95]. An interesting example is the UrbanAPI project, which includes
a web-based 3-dimensional virtual reality visualization of the impacts of urban growth sce-
narios at the scale of individual neighborhoods [94]. While initial efforts have focused on the
usability requirements of these tools, their broader impact has been limited due to narrowly
defined geographic contexts or specialization for regional system objectives [96].

One project that does have broad support across several MPOs is ActivitySim, which
currently being developed by the Association of Metropolitan Planning Organizations as
an open source activity-based travel modeling platform [97]. ActivitySim may be used in
concert with synthetic households, synthetic persons, employment data, land use data, and
network performance data (e.g., travel times by mode and time of day, costs, and transfers)
to generate a full-scale model for a city’s travel demand. ActivitySim may be seen as a
complementary project to our own in that ActivitySim model outputs can be used as input
data for a BISTRO scenario.

ABMS of Transportation Systems

Developing models that replicate how urban systems operate and evolve has been a major
focus of transportation engineers, urban planners, and geographers. Trip-based methods,
such as the traditional four-step model used by MPOs, are specified at aggregate geographic
or categorical levels rather than at the level of individual decision-makers. This level of ag-
gregation can limit the ability of such models to explain complex individual decisions. Some
MPOs have begun to adopt a more behaviorally-descriptive activity-based approach [98]. In
contrast to trip-based models, activity-based methods represent more comprehensive links
between activity scheduling, mode choice, social interaction, and spatiotemporal constraints
[98]. Agent-based models and simulations (ABMS) of transportation demand are capable
of replicating observed macroscopic traffic patterns by simulating the microscopic decision-
making behavior of a synthetic population of software agents as they execute their daily
travel plans on a virtual model of the transportation system. When calibrated to ground-
truth data by modifying only global parameters characterizing the embedded choice model,
agent-based frameworks represent parsimonious descriptions of regional travel demand. Con-
sequently, ABMS are capable of accurately capturing shifts in macro patterns when forecast
changes in transportation infrastructure, policies, demographics, and vehicle ownership are
introduced to the virtual travel environment [83].
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Figure 4.1: Conceptual process of MATSim. It iteratively evaluates and mutates a proportion
of agent plans until the utility of plans no longer improves. At this point, the system is said
to have reached a stochastic user equilibrium. For further details, see [84].

In the past three decades, several multi-agent frameworks such as TRANSIMS [99], MAT-
Sim [84], SUMO [100], and POLARIS [92] have been developed and widely adapted for
numerous applications in transportation and land use planning and research [101, 102, 83,
96]. MPOs often couple urban development simulation models2 with microscopic agent-
based transport models to better understand how predicted changes in population growth,
land-use, real-estate development, and resource markets will co-evolve with changes in the
transportation system [105, 106]. ABMS of transportation systems can take different pop-
ulation configuration files as inputs, giving planners and modelers the ability to simulate
how long-term urbanization processes can be shaped by the daily transportation decisions
of individuals (possibly in the presence of alternative policy interventions and new mobility
technologies) [107, 106]. Increasingly, these open-source platforms are enabling use of pub-
licly available data to create transparent and replicable input preparation pipelines, reducing
the cost and effort of a variety of urban planning tasks [108]. Since BISTRO primarily relies
on BEAM and BEAM itself incorporates many aspects of MATSim, the remainder of this
section takes a closer look at these two software frameworks’ purpose, functionality, and
computational characteristics.

MATSim MATSim is an ABMS framework developed by teams at ETH Zürich and TU
Berlin [84]. MATSim enables simulating the travel behavior of millions of individual agents,
representing a synthetic population of urban travelers. At the heart of MATSim is a co-
evolutionary algorithm that iteratively executes, evaluates, and mutates (i.e., replans) the
daily activity schedules of agents (see Figure 4.1). The end result of this process is an equi-
librium between network supply and travel demand–resulting in realistic congestion patterns
as agents compete for limited space on a virtual road network.

Besides road network and transit data, the key input to MATSim is the agent popula-
tion. This file encodes a set of unrealized plans (one for each agent) consisting of the start
times, types (e.g., “Home”, “Work”, “Shopping”, “School”, etc.) and locations of various
significant activities3. A mobility simulation (MobSim) executes these plans on a virtual road
network. While, at first, agents only drive and/or walk to activities, additional modes may

2Examples of these include the Integrated Transportation, Land Use, and Environment model (ILUTE,
[103]) and UrbanSim [104].

3The population file is often generated from the output of an activity-based travel demand model.
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be introduced during plan mutation (explained below). Each agent’s plan is then scored4.
Copies of evaluated plans are stored in a limited-size array, representing the agent’s memory.
At the start of the subsequent iteration, a portion of agents in the population are chosen
to have a randomly selected mutation strategy applied to a plan drawn from each of their
memories. Examples of plan mutations include changing activity start time, mode of travel
for a tour (or subtour), and selecting a different route based on previously experienced link
travel times. Optional extensions to MATSim model further behavioral dimensions such as
parking choice, group travel, and vehicle sharing.

The algorithm converges once agents are no longer able to improve the score of plans in
their memory, at which point MATSim produces a series of statistics and outputs describing
the aggregate performance of system components as well as a snapshot of all events that
occurred over the course of the simulation. Events can be processed to derive the actual
paths and travel times realized by each agent and each vehicle, as well as other data reflecting
simulation performance.

BEAM The Behavior Energy Autonomy and Mobility (BEAM) framework is a multi-agent
travel demand simulation framework developed at Lawrence Berkeley National Laboratory
(LBNL) [109]. While the overall learning and traffic assignment mechanism is similar to
MATSim’s co-evolutionary algorithm, added functionality in BEAM is specifically focused
on helping users understand the impacts of new and emerging travel modes on limited
capacity resource markets. This subsection describes essential features of BEAM that led to
its selection as the core simulation engine of BISTRO.

BEAM is closely integrated with the transit service capabilities of the R5 routing engine,
which include General Transit Feed Specification (GTFS) file processing and routing based
on multiobjective variations of the RAPTOR algorithm [110]. Transit may be combined
with other modes modeled in BEAM such as autonomous vehicles, on-demand rides, e-bikes,
and scooters, enabling agents to make realistic, multimodal mobility decisions. In order
to provide agents with information about the time and monetary costs of different travel
options, R5 computes the lowest generalized cost path (based on travel time estimates from
the mobility simulation) for the corresponding mode(s) available to the agent for the trip.5

Unlike the replanning mechanism in MATSim, which only mutates plans between con-
secutive iterations, agents in BEAM are designed to adapt to changing conditions during
an iteration according to what is known as a within-day or online model6. Thus agents can
make unplanned and time-sensitive choices about how to maximize the score of their travel
plans while competing for limited resources that vary in availability over time. For example,
an agent that chooses a transit mode may be denied access to an overfull bus, requiring the
agent to make a mid-trip change to their itinerary. The agent could then choose to wait

4This score can be interpreted as econometric utility. It is measured by a linear model that assigns
negative value to time spent traveling and positive value to time spent at activities.

5For detailed information about the R5 router, see [111].
6While MATSim has a within-day mode, much of the functionality enabled by extension modules repre-

senting emerging mobility technologies assumes that replanning happens between iterations.
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for the next bus or hail a ride from the point of departure (if a driver is available nearby).
The BEAM software architecture addresses the performance and complexity challenges of
integrating new models of within-day dynamics by implementing agents as actors, as defined
within the actor-based model of concurrency7.

Like MATSim, BEAM enables users to model realistic variations in travel preferences
predicated on agent characteristics (which are themselves derived from sociodemographic
statistics computed on census data and travel surveys). However, the mechanism for selec-
tion of travel alternatives differs significantly from MATSim’s in order to model within-day
decision-making. Specifically, the probability of selecting an alternative (route, mode, park-
ing choice, and refueling decision) is represented in BEAM according to a multinomial logit
model [113, 114]. That is, among several distinct travel schedules, agents are exponentially
more likely to select the option that maximizes their enjoyment of important activities while
reducing time and money spent traveling between activity locations. The choices made by
BEAM agents and their corresponding scores comprise a BEAM plan, which is stored in
memory following its execution. Thus, in the transit choice scenario described above, an
agent’s response to a full bus could incorporate multiple downstream choices within one
iteration rather than wait for a score penalty to propagate an optimal response through
the selected plan (i.e., using plan mutations that take place over the course of multiple
iterations)8.

Simulation-based Optimization of Transportation Systems

Optimization-based formulation of the planning problem

The problem class solved by the BISTRO framework can be characterized as simulation-based
optimization of large urban transportation systems. It can be symbolically formulated as an
optimization problem:

minimize
d⃗∈D

f(d⃗, x⃗; z⃗) ≡ E[F (d⃗, x⃗; z⃗)] (4.2.1)

7Like objects in the object-oriented programming paradigm, actors encapsulate state and behavior.
However, unlike the object model, actors do not share computer memory. Instead, each actor encapsulates
its own thread of execution and interacts with one other actors using messages. An actor may send message to
other actors without blocking. Each actor processes messages synchronously in the order received; however,
computation is scheduled asynchronously over multiple actors. Thus, the actor-based model of computation
obviates the need for locking mechanisms commonly used to synchronize state among interdependent objects.
Consequently, reasoning about agent behavior using actors can allow researcher developers to focus on
implementing novel models and applications rather than debugging threads and locks [112]

8As in MATSim, the highest scoring BEAM plans are more likely to be re-evaluated and possibly selected
for mutation. However, in contrast to MATSim, plans selected for mutation are cleared of all choices and
re-evaluated within the context of the current iteration’s transient state. Empirically, we find that this
approach reduces the number of iterations needed to reach equilibrium.



Chapter 4. The Berkeley Integrated System for Transportation Optimization 34

constrained by simulation outcomes and design constraints, i.e.,{
x⃗ = B(d⃗; z⃗),

g(d⃗; z⃗) = 0,
(4.2.2)

respectively, where the objective, f , is defined as the expected value of a stochastic per-
formance measurement function, F . The deterministic decision vector, d⃗, is chosen from a
search space D, which may be continuous, categorical, combinatorial, or conditional. In the
BISTRO context, the decision variables, d⃗, are the user-defined inputs that control policy
levers within the transportation system. For example, d⃗ may specify the fare or vehicle types
for specific public transit routes. The exogenous variables, z⃗, are the configuration inputs
that determine the parameters of the population synthesis, the parameters of the trans-
portation network, and the parameters governing supply of transportation services. The
endogenous variables, x⃗, are the outcomes of the simulation run using d⃗ and z⃗ as input.
The vector x⃗ contains the details of agent and vehicle movements throughout the simulation
run, such as mode choices, travel times, travel costs, and vehicle path traversals, that were
realized during the simulation run, i.e., x⃗ = B(d⃗; z⃗), where B represents the BEAM simula-
tor. It is assumed that the iterative simulation process described in Section 4.2 has achieved
stationarity.9

An important goal of BISTRO is to define objective functions that guide algorithms to-
wards a range of solutions that represent interpretable and implementable policy decisions.
A critical safeguard against unrealistic outcomes is implemented in BISTRO by translating
business rules about inputs into mathematical constraint functions, g, parameterized by the
decision vector, d̂. Finally, F , is computed as a convex combination of the score compo-
nents that guide solutions towards the system objective (as defined in Section 4.2).10 The
score components are evaluated from key performance indicators (KPIs) of the system per-
formance, which are calculated using the simulation outputs, and relevant inputs. Following
[115], we approximate the objective as the sample average of r independent realizations of
F :

f̂(d⃗, x⃗; ẑ) =
1

r

r∑
i=1

Fi(d⃗, x⃗; ẑ) (4.2.3)

The state space dynamics that govern the simulation-based optimization of an urban
transportation system are highly complex and nonlinear, potentially containing several local

9Individual optimization algorithms may relax this constraint in order to reduce compute time while
potentially trading off reduced accuracy or increased stochasticity of simulation output statistics.

10Due to variable amounts of nondeterminism and stochasticity inherent in ABMS, given fixed d⃗ and z⃗,

the distribution of f can be approximated using n realizations of F as f̂
(
d⃗, x⃗; z⃗

)
= 1

n

∑n
i=1 Fi

(
d⃗i, x⃗i; z⃗

)
.

In practice, optimization usually proceeds with n = 1 in order to identify promising (i.e., close to optimal)
subsets of D; however, when reporting final scores, one must carefully select n such that variability in output
values is adequately captured.
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minima. The lack of closed-form solutions to this class of optimization problem together
with the computational expense associated with evaluating a single decision point make this
class of problems particularly difficult to solve. In the next subsection, we describe several
possible approaches to address this complexity.

Optimizing complex simulated systems: challenges and approaches

As described in Section 4.2, agent-based micro- or meso-scale simulations of transportation
systems model the interdependent choices of rational individuals as they navigate virtual rep-
resentations of physical and human geographies. Calibrating such models to high-resolution
GPS traces and other sensor data embedded in infrastructure makes them highly suitable for
evaluating the outcomes of location-specific policy alternatives. The trade-offs in accounting
for the heterogeneous preferences of millions of agents, are that 1) the simulation model is

expensive to evaluate for different settings of d⃗, and 2) the complex relationship between
network dynamics and agent behavior lead to stochastic, non-convex specifications of per-
formance measure, F . Consequently, the efficient gradient-based methods used to optimize
closed-form relaxations of mobility dynamics as well as data-driven models derived from
historical movement patterns do not apply [115]. Instead, generalized stochastic optimiza-
tion (SO) algorithms treat the simulator as a black box. Commonly used derivative-free SO
approaches include grid search, random search, ranking and selection, metaheuristic, and
metamodeling techniques [116, 117].

Metamodeling algorithms encompass a broad class of simulation-based optimization ap-
proaches. These approximate F using a surrogate model, Q that is less costly to evaluate.
Flexible and computationally tractable representations such as polynomial splines are able
to approximate any objective function; however, many simulation runs are still required to
accurately fit the response surface of the underlying system [116, 117].

Sequential model-based optimization (SMBO) is a general metamodeling formalism that,

given a history of previous evaluations, H =
{(
d⃗1, y1

)
, . . . ,

(
d⃗i, yi

)}
, of observations yi =

F
(
d⃗i, x⃗i; z⃗

)
at sample points in D, selects the optimal next point d⃗i+1 based on an approx-

imation of F . To initialize SMBO, a small set of samples,
{
d⃗1, . . . , d⃗i

}
from D are selected

using various experimental design techniques (e.g., random or Latin hypercube sampling).

For each d⃗i, evaluations of the expensive objective function, F form an observation, which,
together with d⃗i are appended to a historical dataset H. Once H is initialized, SMBO then
proceeds iteratively: First, a regression model, Q, is fitted to the current dataset, H, yielding
a surrogate model for F at the current iteration, which may be denoted Qi. Based on Qi,
the next input, d⃗i+1 to F is selected by optimizing an acquisition function, α : D 7→ R over
D, which measures the utility gained from evaluating F at d⃗i+1. Following evaluation of

F
(
d⃗i+1, x⃗i; z⃗

)
, H, is updated as H = H ∪

(
d⃗i, yi

)
. The SMBO process continues until a

predetermined time or computation budget is exhausted.
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SMBO techniques are typically distinguished by the forms of the surrogate model, Q,
and the acquisition function, α. In Bayesian optimization (BayesOpt), a Gaussian Process
(GP, [118]) is typically used to model a prior over Q, which, at each iteration, is updated

using previously observed data H to give a posterior predictive distribution p
(
y | d⃗,H

)
[119,

120]. Several methods using GPs as surrogate models may be distinguished according to the
form of the covariance kernel parameterizing the GP [119, 121]. In lieu of GPs, BayesOpt
algorithms have also used random forests [122] and tree-based Parzen estimators (TPE)
[123, 124] as priors over Q. Acquisition functions are chosen to balance exploration and
exploitation in the sample domain. The most common acquisition function used by these
methods is based on an expected improvement criterion [125]; however, newer methods use
variations on knowledge gradients [126, 127].

Many SMBO algorithms can run trials in parallel, which may yield reduced wall clock
time (although the total number of trials required may be identical to that used by se-
quential implementations) [128]. One method to further reduce the running time of SMBO
trials when model evaluations require an inner iterative loop to achieve stationarity (as in
BISTRO) is to incorporate an early stopping rule for simulation evaluations that are likely
to eventually be extremely suboptimal. An example of such an approach is “freeze-thaw
Bayesian Optimization” [129].

Recent efforts in transportation science and operations research have also sought to de-
velop tractable simplifications of scenario-based optimization of simulated urban transporta-
tion systems. One vein of research concentrates on deriving deterministic analytic equations
describing system dynamics at equilibrium from static information, z⃗ (e.g., network topology
and bus schedules) to inform purely functional metamodels [130, 131, 132]. For example,
[115] combine a computationally tractable model of congested traffic based on queuing the-
ory with a detailed local approximation using a linear combination of basis functions from a
parametric family. Alternatively–and analogously to the “freeze-thaw” Bayesian optimiza-
tion setting highlighted above–some approaches use information about the process by which
the stochastic simulation achieves stationarity to develop techniques that rapidly evaluate
different settings of the decision variable vector, d⃗, while avoiding the need to reach conver-
gence [133, 134].

The present work refrains from prescribing a single best approach to solve optimization
program Equations (4.2.1) and (4.2.2). Instead, the intent of BISTRO is to enable replicable
future research in this area by providing a platform and problem setting that is generalizable
across different planning contexts as well as approachable and of research interest to the
ML/AI community. Problem characteristics such as the propensity for competing metrics to
be present in system objectives, preemptive stopping of inner optimization loops, the high
dimensionality of the search space, and the potential for hybridization of functional and
physical metamodels are expected to provide challenging, scalable, and, critically, explainable
solution approaches. Algorithms combining data-driven dimensionality reduction techniques
as well as efficient experiment design can result in repeatable protocols to effectively constrain
more general local and global search techniques. Following a presentation of the framework
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Figure 4.2: BISTRO software architecture, illustrating how the optimization process mod-
ulates the flow of information between the BEAM simulation as well the two primary user
types. The distinction between the planner and the analyst is critical in that we do not
expect the analyst (an expert in applied ML/AI-based optimization methods) to have trans-
portation or planning background, yet still they should be able to develop generalizable
algorithms that can be used to optimize transportation system objectives set by the plan-
ning organization.

architecture, in Section 4.4, we empirically explore the effectiveness of some of these solution
strategies as well as the interpretability of their outputs.

4.3 Berkeley Integrated System for TRansportation

Optimization (BISTRO)

BISTRO is a new analysis and evaluation platform that works in concert with an ABMS
(BEAM) to enable the open-sourced development and evaluation of transportation optimiza-
tion methods in response to given policy priorities. This section gives an in-depth description
of the BISTRO framework and all of its major components, providing an overview of their
purpose, use, and functionality as well as calling attention to the most novel aspects of its
design.

System Architecture

As indicated in Section 4.2, BISTRO implements elements of the travel demand planning
process coupled with components of an automated simulation-based optimization system.
This section describes the high-level overall architecture of BISTRO (depicted in Figure 4.2),
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focusing on the conceptual distinction between features relevant to scenario developers and
those more appropriate to algorithm designers.

A BISTRO run environment is configured using a set of fixed input data defining the
required transportation system supply elements (e.g., road network, transit schedule, on-
demand ride fleet) and demand elements (e.g., synthetic population, activity plans, and
mode choice function parameters). Precisely which aspects of the virtual transportation
system should be represented in the simulation model depends on the strategic goals and
system objectives defined as part of the planning and analysis process motivating a particular
BISTRO use case. An example of the set of raw inputs and pre-processing steps is illustrated
in Figure 4.3.

A boundary separates external, exogenously defined inputs from the BISTRO simulation
optimization pipeline. Outside of the boundary, the user-defined inputs (UDIs) represent the
investment, incentive, and policy levers applicable to and available for the study at hand.
Concretely, algorithm developers encode solutions as numeric values that represent vector-
valued variables controlling aspects of the initialization and evolution of the simulation. For
example, a UDI that alters the frequency of buses on a route must specify a target transit
agency, a route, a start time, an end time, and the desired headway.

While BISTRO maintains a library of available interventions compatible with BEAM,
scenario designers, policy makers, and other stakeholders will often want assurance that
infeasible, regressive, or otherwise undesirable input combinations are prevented from being
selected as “optimal.” Together with syntactic and schematic validation of inputs, flexibly-
defined business rules can effectively act as constraints on the search space—enhancing the
interpretability and, thereby, the rhetorical and communicative value of BISTRO-derived
solutions.

Just as UDIs from previously conducted BISTRO-based studies are actively maintained
and made available to scenario designers, the BISTRO community contributes to a grow-
ing library of recommended optimization algorithms that, when evaluated across multiple
BISTRO benchmark scenarios, demonstrate desirable performance characteristics. Thus,
users lacking resources or expertise to develop optimization routines in-house can still ben-
efit from what, we anticipate, will be cutting-edge research on algorithms and strategies to
optimize the simulation of demand-responsive cyberphysical infrastructure.

Project owners of BISTRO deployments may work with stakeholders to develop rep-
resentative models that will be used to benchmark optimization algorithms. Enabling a
well-defined benchmark mechanism permits data on the performance of user-supplied algo-
rithms to be compared. These comparisons can be used to assist in identification of design
patterns and computational strategies that advance the state of the art in simulation-based
optimization of urban transportation systems.

Scoring Function Design

Transportation system intervention alternatives are scored in BISTRO based on a function of
score components evaluated using key performance indicators (KPIs) of the simulation. KPIs
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Figure 4.3: Generation of fixed inputs. Italicized entities represent the necessary data to
generate fixed inputs (in bold).

for a given simulation should be selected in accordance with the operational, environmental,
and social goals, or, system objectives developed as part of the participatory planning process
described in Section 4.2. BISTRO project planners may select KPIs to include in the scoring
function from an existing library of options, or may choose to develop additional KPIs, as
appropriate, for the goals and system objectives of the project. Additionally, the form of the
scoring function may be designed by the analyst in consultation with the project planner.

Key Performance Indicators

KPI overview There are two general types of KPIs developed in BISTRO: 1) KPIs that
measure the operational efficiency of the transportation system (e.g., vehicle miles traveled
[VMT], vehicle delay, operational costs, revenues) and 2) KPIs that evaluate the experience of
transportation system users (e.g., generalized travel expenditure, bus crowding experienced,
accessibility). KPIs can be aggregated or disaggregated into score components to support
particular policy objectives. For example, the accessibility KPI (detailed below) may be
disaggregated by activity type, time period, mode used, and/or sociodemographics in order
to evaluate the distributional equity of access provided across different opportunities at
varying times of day and/or across population segments of concern.

In practice, any KPI that may be evaluated from the set of output variables (see Sec-
tion 4.3) produced by a BISTRO simulation run may be included as a score component
in the scoring function. However, careful consideration of candidate KPIs must include an
evaluation of the sensitivity of the metric to the UDIs of interest as well as the efficiency of
the KPI in providing the desired feedback regarding the optimality of outcomes of alterna-
tive UDI values. For example, person miles traveled (PMT) is a commonly used metric in
transportation system performance measurement to gauge the amount of mobility delivered
by the system. Yet, PMT is highly invariant within a scenario in BISTRO due to the fact
that agent plans are fixed. Thus agents will make the same trips regardless of the UDI values
and the miles traveled by each agent will only vary in so much as the networks available for
each mode offer more or less direct paths to travel from the origin to destination of each
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trip.11

Implemented KPIs The following items represent categories of KPIs that have been
developed and implemented in BISTRO at the time of publication of this dissertation:

1. Accessibility. In an urban transportation planning setting, accessibility has often been
defined as a measure of the ease and feasibility with which opportunities or points
of interest can be reached via available modes of travel. It is quantified in BISTRO
as the sum of the average number of points of interest (of a specific type of activity)
reachable within a given duration of time, with functionality also provided to measure
mode-specific accessibility.

2. Trip Expenditure and Generalized Transportation Cost Burden. The socio-demographic
and spatial heterogeneity of travel behavior within BISTRO enables a variety of equity-
focused impact analyses. Two such metrics have been implemented in BISTRO: av-
erage trip expenditure and average generalized transportation cost burden. While the
former is the average monetary cost incurred by agents per trip, the latter is computed
as the sum of the travel expenditures of the trip (costs of fuel and fares minus incen-
tives, as applicable) and the monetary value of the duration of the trip (the product
of the total trip duration and the population average value of time (VOT)), divided
by the household income of the agent completing the trip. the monetary value of the
trip duration is calculated by multiplying total duration by the population average
VOT. Both KPIs may be disaggregated to emphasize particular equity goals (e.g., by
socio-demographic groups, trip purpose, mode, etc.).

3. Bus Crowding. The level of service (LoS) experienced by public transit passengers
has a direct influence on short- and long-term demand for public transit service. In
addition to cost and travel time factors, the available capacity on a transit vehicle
affects whether or not a passenger can board a public transit vehicle at their desired
time as well as the level of comfort they experience during the trip. Though the LoS
of public transit may be measured in BISTRO by any one of the factors mentioned,
BISTRO includes a ready-made example of an LoS KPI related to passenger comfort:
average bus crowding experienced. This metric is computed as the average over all
transit legs of the total passenger-hours weighted by VOT multipliers corresponding to
the load factor (the ratio of total passengers to the seating capacity) of the bus during
the leg.

4. Vehicle Miles Traveled (VMT) and Delay. The BISTRO KPI library includes three
examples of congestion score components that provide insight into the destination-
or opportunity-independent level of mobility on a network, the overall network per-
formance, and efficiency: total VMT by all motorized vehicles in the transportation

11For example, a transit mode choice for a particular trip may result in more PMT than a walk mode
choice for the same trip, as the sidewalk network may enable a more direct path.
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system, total vehicle delay, and average vehicle delay experienced per passenger trip.
Total vehicle delay is calculated as the sum over all path traversals of the difference
between the realized duration and the free flow travel time of the traversal. Vehicle
delay experienced per passenger trip is calculated as the total difference between the
realized duration and free flow travel time of all legs of a trip completed by modes
subject to congestion.

5. Financial sustainability. Most system interventions will have some impact on the
flow of funds in or out of the transportation system. Including a KPI that helps
stakeholders understand the general financial impacts of such interventions is necessary.
The financial sustainability metric provided in the BISTRO KPI library is the sum
of all public transit fares collected minus all incentives distributed (if any) and all
operational costs of the public transit system 12. In the event that a BISTRO project
does not alter public transit service, the operational costs may be omitted from the
KPI, if desired.

6. Environmental sustainability. The environmental sustainability of a transportation
system intervention may be measured as the local and/or global impacts to the sys-
tem. In addition to VMT- and fuel efficiency-based estimates, BEAM enables estima-
tion of emissions directly from the simulated fuel consumption, based on the realized
speeds traveled by each vehicle throughout a simulation run13. The VMT-based fine
particulate emissions (PM2.5) KPI captures local environmental sustainability via a
mileage-based measure of air quality impacts based upon vehicle type. Additional lo-
cal emissions KPIs may easily be included using the appropriate emissions factors14.
A greenhouse gas (GHG) emissions KPI allows the optimization to explicitly account
for fuel-consumption-based global environmental sustainability 15.

Scoring Function

The BISTRO scoring function serves as the objective function by which the UDIs are op-
timized. The selection and/or definition of the objective function in accordance with the

12The operational costs include the total costs of fuel consumed, and hourly variable costs of bus oper-
ations (see Table 4.3 for an example of operational costs). Hourly variable costs include estimated labor,
maintenance and operational costs. The rates for each of these factors is specified in the vehicle fleet config-
uration variables.

13For more information on the methodology followed to estimate fuel consumption, please refer to the
BEAM documentation https://beam.readthedocs.io/en/latest/index.html.

14For more information on the methodology followed to develop this metric, please refer to the California
Air Resources Board documentation, https://www.arb.ca.gov/cc/capandtrade/auctionproceeds/cci_
emissionfactordatabase_documentation.pdf.

15It is important to note that the GHG emissions KPI will be correlated with VMT and fine particulate
emissions. Thus, inclusion of all three KPIs creates a suite of environmental sustainability metrics that may
apply disproportionate weight on environmentally-related objectives, which may or may not be desirable for
certain policy agendas. Project planners may choose to apply scaling factors (as described in Section 4.3) to
balance the influence of the environmental sustainability score components.
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Figure 4.4: A visual representation of the normalization procedure for a hypothetical score
component, i. The ratio of the submission score and BAU score (depicted in the upper plot)
is normalized by taking its z-score (depicted in the lower plot) relative to a random input
sample.

project directives is considered to be the responsibility of the project planner. Herein, a
general structure is defined to facilitate the creation of custom objective functions. Multiple
project objectives (referred to here as score components) may be included in the scoring
function–either as individual elements within a vector of scalar-valued score components to
be minimized, or as parameters to a function that aggregates the objectives into a one-
dimensional scalar score. The score components are computed as the normalized ratio of the
value of the corresponding KPI in the given simulation run to the value of the same KPI
in the business-as-usual (BAU) run16. The improvement ratios are normalized using KPI
values produced by a randomized sample of the UDI space, the size of which can be defined
by the BISTRO project owner. This normalization (depicted graphically in Figure 4.4) ac-
counts for differences in variance across KPIs, thus allowing the score components to provide
meaningful feedback on the improvement achieved for each KPI relative to the distribution
of the ratios of KPI to BAU produced by the random search. The composite score is thus a
function of the normalized relative improvements of the candidate input to the BAU in each
metric, as follows:

F
(
C⃗s, K⃗, σ⃗, µ⃗, α⃗

)
= f (z⃗, α⃗) , (4.3.1)

where K⃗ is the vector of all KPIs evaluated for a given set of inputs, C⃗s; µ⃗ and σ⃗ are the
vectors of normalization parameters; and z⃗ is a vector of each KPI’s z-scores, i.e.,

zi =

Ki(Cs)
Ki(CBAU )

− µi

σi
, (4.3.2)

for the i-th KPI. The value of the i-th score component in the BAU case is simply Ki(CBAU).

16In the BAU of a given scenario, the simulation is run without alteration from the initial configuration
of that scenario.
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The default objective is to minimize the composite score function, since an increase in
many of the score components actually represents a scenario that is worse than the status quo
(e.g., decreasing VMT over BAU results in a lower unscaled score than increasing VMT). To
maintain consistency in this regard, the scoring function may include an additional parameter
α⃗ to allow for transformation of score components that are positively related to desirable
outcomes (e.g., improvements in accessibility). For example, if the scoring function takes the
form of a sum over all score components, the parameter α⃗ may be used as a coefficient of each
score component that determines whether the component will be summed or subtracted, as
follows:

αi =

{
−1 if it is desirable for score component i to increase

1 otherwise
(4.3.3)

This approach is distinct from the one typically used for Cost-Benefit Analysis (CBA)
tasks in urban planning practice, in that it seeks to optimize an aggregate function of the
relative improvements in each KPI rather than optimizing the net improvement from all
KPIs. While CBA often draws skepticism due to the discretion inherent in the process of
converting all KPIs into a common unit such as time or money so that the net value of costs
and benefits can be computed, the approach taken in the BISTRO scoring function does
not require any such assumptions to be made. Rather, each score component represents the
relative improvement over the BAU that is achieved by a simulation run using a particular
set of UDIs. Objective function designers may choose to apply additional scaling factors to
the score components using the α⃗ parameter vector.

Inputs

Preparation of fixed inputs For each BISTRO study, a set of fixed inputs must be
provided to BEAM. For a given study area, these typically include the road network, the
transit schedule, and the demand profile. Depending on the system objectives, additional
data may be necessary to fully configure the simulation. Figure 4.3 illustrates a schematic
of the inputs for a typical simulation.

The road network, including the physical properties of its links and nodes, may be gener-
ated using Open Street Maps (OSM) data for the geography of interest. The transit network
configuration follows the easily accessible General Transit Feed Specification (GTFS) format.
On-demand ride services (Transportation Network Companies [TNCs] such as Uber, Lyft,
and Via), are modeled as a fleet of vehicles driven by agents that are exogenous to the popu-
lation, or may be driven autonomously. The initial locations of the vehicles may be sampled
randomly or from a specified distribution in accordance with appropriate data. The price
of on-demand rides is fixed, consisting of a distance-based and a duration-based component.
The size of the on-demand ride service fleet is a proportion of the total number of agents
in the simulation, as determined by a configuration parameter. Driver repositioning behav-
ior when not currently driving to or serving a passenger can be configured to follow one of
several repositioning algorithms defined within BEAM.



Chapter 4. The Berkeley Integrated System for Transportation Optimization 44

Table 4.1: Example of bus frequency adjustment input file.

route id start time end time headway secs exact times

1,340 21,600 79,200 900 1
1,341 21,600 36,000 300 1
1,341 61,200 72,000 300 1

At the start of the simulation, a synthetic population of virtual agents and households
is generated such that the sociodemographic attributes of these virtual entities are spatially
distributed in accordance with real-world census and/or location-based data from the city of
interest. Each agent follows a daily plan consisting of several activities throughout the day.
As illustrated in Figure 4.3, these daily activity schedules are generated based on origin-
destination (OD) skims (matrices that provides the number of trips between zones), travel
surveys, and zonal boundary spatial data.

Calibration Prior to use in optimization runs, BEAM needs to be calibrated to empirical
data by iteratively adjusting model parameters until a simulation outputs representing traffic
patterns match their real-world counterparts with minimal error17. Calibration of BEAM
for usage in BISTRO should be limited to adjustments of behavioral parameters controlling
microscopic decision-making (e.g., mode choice intercepts, prices, regulation-driven incen-
tives/tariffs)18. While it is possible to adjust many additional BEAM parameters to reduce
calibration error, this practice should be discouraged, as it may result in models that are
overfitted to a state of the world represented by a particular ground-truth dataset, thereby
limiting the calibrated simulation model’s use in predictive contexts. In addition to the
representativeness of ground truth data, the quality and quantity of input data (e.g., net-
work data resolution or population spatial resolution), may influence the extent to which the
model is able to achieve calibration end points.

Configuration of UDIs BISTRO provides a library of possible inputs for scenario design-
ers to adapt to specific use cases. The selection of UDIs is intended to be compatible with the
system objective. UDIs may represent, for example, the investment (e.g., transit fleet mix
modification, bus route modifications, parking supply, electric vehicle charge station loca-
tions, dynamic redistribution of e-bikes or on-demand vehicles), incentive (e.g., incentives to
specific socio-demographic groups for selected transportation modes, road pricing/toll roads,

17BEAM calibration is typically targeted at mode split, volumetric traffic counts, and travel distance
distributions. The choice of which target(s) to use may depend on regulatory requirements, literature
recommendations, or precedent [83, 135].

18Often, due to computational constraints, a sub-sample of a full population is simulated. The capacity of
physical resources (e.g., road network link carrying capacity, maximum transit occupancy, number of electric
vehicle charging plugs per station) may need to be adjusted based on the size of the population sample. For
evaluation purposes, the outputs of a sub-sampled simulation are often scaled back up to the full population.
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fuel tax), or policy/operational (e.g., transit schedule adjustment, transit fare modification,
parking pricing) levers applicable to the study at hand. The project owner may constrain
the range of possible values upon which each UDI is valid by setting the corresponding input
validation parameters and business rules. The example input file for bus scheduling shown
in Table 4.1 defines alteration of the headway of a particular bus route during a particular
service period (defined by its start and end times).

Output Analysis and Visualization

The raw outputs of a BEAM simulation include millions of events that reflect the micro-
scopic actions of each agent as they make their way through the day. While this is a detailed
history of what transpired during the day for each agent, it does not provide planners with
explanatory insight into how perturbations of input variables influence model behavior lead-
ing to changes in output responses. To simplify exploration of alternatives to purely black
box optimization methods, the BISTRO platform provides a suite of tools that process and
organize event data from BEAM simulation runs into a relational format, permitting rela-
tionships between each person’s activities, trips, path traversals to be queried at different
levels of detail19. A Jupyter notebook then incorporates the post-processed outputs into a
standard suite of multivariate analyses and visualizations, thereby facilitating interpretation
and communication of the effect that policies have on system objectives.

Implementation Details and Performance Characteristics

Both BISTRO and BEAM are primarily implemented in Scala. Input files are read from a
single directory and injected into the BEAM initialization routine. The system is container-
ized using Docker, which helps to facilitate OS-agnostic local and remote execution.

The runtime of BEAM depends on various inputs including population size, network
resolution, transit network, ridehail fleet size as well as available compute resources such as
number of processors, memory, etc. On a machine with 32 (2.5GHz Intel®Xeon®Platinum
8175) CPUs and 128GB RAM, the runtime for a 315,000 agent simulation of a San Francisco
Bay Area scenario (representing a 25% sample of the approximate 2018 population) takes
around 14 hours to complete 15 iterations. On a machine with identical compute resources, a
15,000 agent simulation for the the Sioux Faux scenario (see Section 4.4) takes approximately
30 minutes to complete 15 iterations.

Currently, the primary performance bottleneck in BEAM is routing. The routing engine
generates millions of routes (reflecting multimodal options for agents to choose between) for
a single simulation run. Some additional overhead considerations such as data availability,
level of model resolution required, as well as the impact of augmented BEAM functionality
must be balanced in light of available computational resources.

19Further details on the output of the parser including an entity relationship diagram are available at
http://bistro.its.berkeley.edu/assets/download/pdfs/General_System_Specification.pdf
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4.4 Initial Pilot Study and Launch

Figure 4.5: Demographics of Sioux Faux. (a) Overall distribution of the population per
census tract. (b) Distribution of the median population income per census tract. (c) Dis-
tribution of the median population age per census tract. (d) Overall population income
distribution. (e) Overall population age distribution.

Sioux Faux

An agent-based model of transport supply and demand inspired by the real city of Sioux Falls,
South Dakota20 was adapted for the purpose of developing and testing example scenarios
within BISTRO. To underscore that for these purposes, such scenarios were not developed
to be true replicas of the city of Sioux Falls, this benchmark BISTRO scenario is referred
to as Sioux Faux. The scenario configuration, input specification, and scoring function were
designed to support strategic objectives of financial and environmental sustainability, reduced
congestion, and improved equity, accessibility, and transportation system level of service.

20The “Sioux Falls” scenario is a commonly used benchmark in ABMS research, see https://github.

com/bstabler/TransportationNetworks/tree/master/SiouxFalls
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Figure 4.6: Sioux Faux bus and road networks.

Scenario Configuration

Population and plan synthesis The synthetic population of Sioux Faux was generated
using publicly-available census data for the city of Sioux Falls, South Dakota as inputs
to the Doppelganger library21, a state-of-the-art population synthesis framework developed
in Python. Specific inputs to Doppelganger used to generate the Sioux Faux population
included household and individual Public Use Microdata Sample (PUMS) data for South
Dakota from the 2012-2016 (5-year) American Community Survey (ACS), which is con-
ducted annually by the US Census22. The Public Use Microdata Area (PUMA) for Sioux
Falls constrains the state-wide survey data to our general area of interest. Population de-
mographics derived from the synthetic population for Sioux Falls are shown in Figure 4.5.

An existing set of agent plans for Sioux Falls previously developed for MATSim simula-
tions was used as the basis for the plans of our expanded Sioux Faux population23. After
initial pilot testing to determine trade-offs between population size, behavioral realism, and
computational complexity, we took a 15% sub-sample of the full synthetic population (ap-
proximately 15,000 agents). We used a spatially-constrained sampling mechanism in order to
allocate plans to agents in accordance with household locations and census tract household
and individual attribute distributions. The subsampling mechanism also enforces realistic
constraints on agent plans and behavior using predicates such as “agents under the age of

21Doppelganger uses a novel Bayesian optimization approach combined with the hierarchical list-balancing
algorithm developed as part of the PopSyn library [136]. For more information about the Doppelganger
library, see https://github.com/sidewalklabs/doppelganger

22The 5-year PUMS comprises a 5% sample of the US population. It is computed as an aggregate of
1-year samples, which themselves aim to survey 1% of the US population

23More specifically, we modified the Sioux Falls 2016 scenario developed by Hörl ([85]), which is
an update of a scenario prepared in 2014 by Chakirov and Fourie [137]. For more information on
the Sioux Falls scenario, see https://www.ethz.ch/content/dam/ethz/special-interest/baug/ivt/

ivt-dam/vpl/reports/901-1000/ab978.pdf
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18 should not have a work activity” and “agents under the age of 16 should not be allowed
to drive”.

Transportation Network The Sioux Faux transportation network includes a road net-
work accessible to walking agents, personal vehicles, on-demand ride services (TNCs such
as Uber and Lyft), and public buses providing fixed-route service24. The on-demand ride
services implemented in this scenario include only single-passenger rides (e.g., UberX, Lyft
Classic) from a fleet of on-demand ride vehicles that was distributed randomly across the
road network at the start of each simulation run. Driving alone is the most frequently used
mode, comprising approximately 75% of the miles traveled for the BAU scenario.

User-Defined Input Specification

For this initial pilot study, a set of four UDIs were investigated: 1) bus fleet vehicle com-
position, 2) bus service frequency, 3) bus fare, and 4) multimodal incentive program for
on-demand rides and public bus trips. In the bus fleet for the BAU scenario, all vehicles
were set to a default bus type. Optimization of the bus fleet vehicle composition and service
frequency offers the opportunity to improve the level of bus service by better matching the
bus type with specific demand characteristics of each route. Four types of buses (including
the default) were considered (see Table 4.3), each with different technical properties (seating
and standing capacity) and cost characteristics (cost per hour, cost per mile, fuel type and
fuel consumption rate).

A UDI was implemented to vary the bus schedule on each route, including the hours of
service and the headway, or service frequency as shown in Table 4.1. Multiple service periods
with varying headways on the same route were thus possible. The bus fare UDI allowed for
the optimization of the fare on each route, segmented by passenger age groups. Finally, a
multimodal incentive UDI was implemented to enable reimbursement for on-demand rides,
walk to/from transit, or drive to/from transit trips to qualifying individuals based on age,
income, or both.

Business Rules

In order to ensure that optimal solutions would be compliant with common policy and
planning practices, four business rules were implemented: 1) there may be no more than five
distinct bus service periods (this mimics a typical delineation of transit service provision:
am peak, midday, pm peak, evening, late night/early morning), 2) bus route headways may
be no more than 120 minutes and no fewer than 3 minutes, 3) bus fares and mode incentives
may not isolate a single age, and 4) ages for both fares and incentives may be specified in
segments no smaller than five years in range and income for incentives may be assigned in
segments no smaller than $5,000 in range.

24The initial bus route scheduling is directly generated from the publicly available GTFS for Sioux Falls,
which includes erratic headways across routes.
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Table 4.2: Values used for αi in each of the subsequent results sections. For score components
that are positively related to desirable outcomes, negative αi is provided to transform it
consistent with a minimization problem.

KPI KPI type C
o
n
te
st

P
o
st
-C

on
te
st

N
ew

K
P
Is

accessible work locations Accessibility -1 -1 –
accessible secondary locations Accessibility -1 -1 –
accessible work locations by car Accessibility – – -1
accessible secondary locations by car Accessibility – – -1
accessible work locations by transit Accessibility – – -1
accessible secondary locations by transit Accessibility – – -1
average trip expenditure-work LoS 1 1 –
average trip expenditure-secondary LoS 1 1 –
average travel cost burden-work Equity – – 1
average travel cost burden-secondary Equity – – 1
average bus crowding experienced LoS 1 1 1
total vehicle miles traveled Congestion 1 1 1
average vehicle delay per passenger trip Congestion 1 1 1
costs and benefits Financial Sustainability -1 -1∗ -1∗

total grams PM2.5 emitted Environmental Sustainability 1 1 1
total grams GHGe emitted Environmental Sustainability – – 1
∗fixed KPI post-contest

Table 4.3: Transit vehicle types available for Sioux Faux bus fleet: (a) Fuel type, (b) Fuel
consumption rate (J/m), (c) Operational cost (USD/hr), (d) Seating capacity, (e) Standing
capacity.

Vehicle type, c ∈ C a b c d e

BUS-DEFAULT diesel 20048 89.88 37 20
BUS-SMALL-HD diesel 18043.2 90.18 27 10
BUS-STD-HD diesel 20048 90.18 35 20
BUS-STD-ART diesel 26663.84 97.26 54 25
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Scoring Function Design

The set of Sioux Faux UDIs have varying interconnected impacts on the operation of and
access to public transit and on-demand ride service by agents. Thus, the scoring function
upon which the inputs were optimized was designed to include a variety of metrics that relay
feedback on the user experience and operational efficiency of the transportation system as
a whole. Table 4.2 presents all of the KPIs used in Sioux Faux scenarios referenced in this
text25.

Five KPIs were developed to represent three main aspects of user experience: accessibility,
travel expenditure, and transit passenger comfort. The accessibility and travel expenditure
were both disaggregated by trip purpose such that score components for accessibility and
travel expenditure to work and secondary activities were each included separately in the
scoring function. Transit passenger comfort was measured as the average bus crowding
experienced by bus passengers26.

Four KPIs of operational efficiency were included to account for the congestion, envi-
ronmental sustainability, and financial sustainability resulting from optimized inputs. Total
VMT was included as a KPI for overall congestion while average vehicle delay per passenger
trip served as a KPI of the average impact of congestion. The total amount of PM2.5 emitted
served as a KPI of the environmental impact resulting from each simulation run. Finally, the
financial sustainability KPI was included to incentivize outcomes with minimal impact to
the bottom line of the transit agency by taking into account the operational costs, incentives
distributed, and revenues collected from any combination of transit fleet mix, scheduling,
fare structure and incentive program.

All metrics are aggregated according to the following function:

F
(
C⃗a, F⃗ , σ⃗, µ⃗, α⃗

)
=
∑
i∈K

(
Ki(Cs)

Ki(CBAU )

)αi

− µi

σi
(4.4.1)

where all variables are defined as described in Section 4.3, with the set of KPIs and corre-
sponding αi values as specified in Table 4.2. We executed 800 runs using randomly generated
values of d̂ to produce the normalizing statistics (i.e., µis and σis in Equation (4.3.2)) for
each metric.

Pilot study results

Contest participation and results Over the course of 17 days, 487 people in teams of one
to four (mostly consisting of engineers and data scientists with little to no domain expertise
in transportation planning) effectively created nearly 1,000 different “city transportation

25Note that several of the KPIs in this table refer to two post-contest follow-on studies, see Section 4.4
26Average bus crowding in the Sioux Faux scenario was calculated as the average number of agent hours

spent per transit trip in buses occupied above their seating capacity. This KPI has since been updated, see
Section 4.3
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Figure 4.7: Participation history. (a) Number of solutions submitted over time (per day and
cumulative). (b) Evolution of scores over time (see equation Equation (4.4.1)).

plans” for the Sioux Faux scenario consisting of the UDIs described in section Section 4.4
27. To be able to compare their results and scores with other participants, each team could
submit up to five solutions per day and thus be ranked in a web-accessible leaderboard.
While contestants trained algorithms online, final evaluation, leaderboard, and discussion
boards were hosted by AICrowd.com28. Inputs from top teams were evaluated 5 times for
100 iterations each in order to achieve a consistent final score.

Figure 4.7 illustrates the evolution of submissions over time during the competition. Par-
ticipation developed in two phases. During the first week, contestants became familiar with
the BISTRO framework and the Sioux Faux transportation optimization problem. Dur-
ing the second phase, contestants continued to optimize their solutions. According to code
submissions and a post-contest survey, the solutions that achieved the highest value of the
objective function (averaged over 5 replications) followed similar strategies. Typically, they
used domain-specific analysis to prune the large input space. For example, by sampling the

27Uber does not endorse any of the solutions presented.
28http://www.aicrowd.com
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Table 4.4: Proportion of algorithmic approaches used, according to a survey conducted with
contestant teams.

Approach Proportion

Bayesian optimization 34%
Evolutionary algorithms 28%
Gradient based 14%
Meta-heuristics 7%
Plackett-Burman design 3%
Hill climbing 3%
Other 10%

age distribution within walking distance from a bus route’s stops, a reasonable bound on the
components of the fare UDI could be assigned. Following these informed factor screening
steps, contestants used a variety of algorithmic approaches to more efficiently search the
lower dimensional design space. As shown in Table 4.4, the black-box global optimization
techniques used during the Contest primarily incorporated variants of Bayesian optimization,
genetic/evolutionary algorithms, gradient-based techniques, and meta-heuristics methods.

Most teams managed to improve their scores by three standard deviations better than
a random search benchmark (i.e., with scores of approximately -3). Due to an insidious
modeling deficiency, the financial sustainability score component could be optimized towards
negative infinity. As such, any contributions from other score components would be relatively
inconsequential. Two teams discovered input settings that took advantage of the lack of a
lower bound on the financial sustainability score component and were thus able to reach
extremely low scores of -30 or -40. This experience underlines the importance of developing
careful theory supplemented by judicious testing when designing objective functions.

Post-Contest and New KPIs follow-on studies and results After the contest, two
follow-on studies were conducted to interpret the solutions from the top algorithms in the
context of improvements to the objective function. An initial set of improvements, hereby
referred to in this text as the “Post-Contest” objective function study, simply addressed
the unbounded financial sustainability score component as well as other minor problems
discovered during the competition. The “New KPIs” objective refers to an expanded set of
KPIs, summarized in Table 4.2. Two of the best-performing algorithms from the Contest—
namely, Bayesian Optimization using tree-based Parzen estimators (TPE) [123] and Genetic
Algorithms (GA) [138]—were adapted and re-implemented to run BISTRO on the Sioux Faux
scenario with both of the updated objective functions. As a baseline algorithmic benchmark,
random search (RS) was performed for 800 trials using both objective functions. The GA
assessment on both the “Post-Contest” and “New KPIs” objectives utilized five parallel
evolutionary trajectories, each drawing a random sample of seeds from a larger gene pool.
Both TPE and GA were run over identical design spaces for 1,400 trials on the “Post-Contest”
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Figure 4.8: Optimization of the Sioux Faux 15k scenario with TPE (left) and GA (right)
using “Post-Contest” (top) and “New KPIs” (bottom) objective function settings. The
dashed line(s) across the bottom of each denotes the best (lowest) score achieved by an
algorithm within the first N trials. Individual trial scores (at 40 iterations) are shown for
TPE plots, whereas one standard deviation ranges of current gene pools are displayed in the
GA plots. For the “Post-Contest” objective, the TPE and GA algorithms surpass the best
score from 800 RS trials of 40 iterations (-1.24) within 200 and 10 trials, respectively. For
the “New KPIs” objective, both algorithms significantly outperform the best result (-2.84)
of an 800 trial, 40 iteration RS almost immediately.

and “New KPIs” studies29.

29Partial convergence criteria of 40 iterations were used during initial search, as this was determined to
be sufficient for establishing a trajectory consistent with a fully relaxed state.
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Figure 4.9: Example of output analysis for the “Post-Contest” case study. The upper plot
shows the various activity start times of agents by activity type. The lower plot shows non-
empty bus VMT for two competing algorithms.

Inputs corresponding to the trial yielding the top score for each algorithm were then
simulated for 100 iterations with five replicates per trial. Figure 4.8 demonstrates that both
GA and TPE produce input configurations that are superior to RS. We found that both GA
and TPE achieve optimal solutions that reflect sensible yet distinct transportation system
management strategies. For example, Figure 4.9 illustrates the relationship between activity
start times (top subfigure) and bus utilization (bottom subfigure) as computed using outputs
for the highest scoring solution for GA and TPE algorithms when using the “Post-Contest”
objective function. This figure suggests that differences in optimal TPE and GA solutions for
the “Post-Contest” objective arise from distinct transit usage patterns. Note that “Work”
activity start times occur in the early morning (between 7:00 and 10:00 AM) and correspond
to the highest period of utilization for buses under the optimal solution found for the TPE
algorithm. In contrast, the GA solution ensures that buses are available during the evening
peak commute time; that is, when agents travel back home from work and/or engage in
secondary activities.

In the case of TPE, we found that the algorithm produced solutions that corresponded to
sensible real-world policies. Figure 4.10 presents visualizations of input distributions for the
top fifth percentile of TPE trials (corresponding to the top 70 of 1400 evaluated solutions by
score, as plotted on Figure 4.8). This figure illustrates that the values of components of d̂ for
the best performing (lowest scoring) solutions using TPE occupy a narrow band in the design
space. For example, in Figure 4.10(a), the highest scoring TPE input value sets evaluated
in BISTRO under the “Post-Contest” objective suggest charging more expensive bus fares
($8 − $10) for adult citizens (16-60) than for youth (1-15) ($4 − $6) and elderly (60-120)
($5−$7). The low variance of the components of d̂ for these trial points is indicative of both
objective function sensitivity to UDI definitions as well as robust algorithm convergence to



Chapter 4. The Berkeley Integrated System for Transportation Optimization 55

Figure 4.10: Distributions of bus fare by age (top) and vehicle fleet mix by route (bottom)
for inputs representing the best fifth percentile scores among trials run for Sioux Faux 15k
scenario using the TPE algorithm, shown for “Post-Contest” (left) and “New KPIs” (right)
objective functions.

a (locally) minimal score value. The corresponding bus types on a given route suggested by
these solutions are well-resolved and tend towards smaller vehicle models. In contrast, for
near-optimal inputs evaluated using the “New KPIs” objective function, fares assigned to
youth ($4− $10) are, on average, higher than those assigned to adults ($0− $4) and seniors
($5 − $10). The corresponding bus types by route are also more diverse among optimal
solutions, indicating that the objective is less sensitive to the VehicleFleetMix input when
evaluated using the “New KPI” objective function. Using the “New KPIs” objective, GA
(not shown) also finds a tight distribution of fares for top-performing solutions but contrarily
finds diversity in its VehicleFleetMix solutions.

4.5 Conclusion

This chapter has presented the design, software architecture, and preliminary evaluation of
BISTRO: a general-purpose transportation policy decision support tool and scenario-based
optimization framework supported by empirically-driven agent-based models. When com-
bined with sensible guidance from experienced planning professionals, BISTRO can be used
to identify more holistic, empirically-driven approaches to urban transportation planning
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and management. In addition to overall system purpose, design, and software architecture,
this work provides a concrete example of the process that BISTRO supports as implemented
in the context of a scenario-based policy optimization “contest.” While many participants
had little or no prior expertise in the transportation science and policy analysis methods
typically used in urban planning practice, over a dozen teams developed algorithms that
found inputs, which, when evaluated in the simulator, achieved scores that surpassed both
random search as well as human judgment. The mixed results of the competition led us to
conclude that the optimization-based search techniques enabled by BISTRO should support
an iterative approach that involves applying optimization algorithms to refinements of KPI
specifications in order to better align objective functions with system goals.

Research conducted using BISTRO strives to meet the highest standard of reproducibility
in computational experiments [139, 140, 141] as well as fact-based policymaking [142] by
making all data, models, and algorithms freely available and open source30. One finding
of post-contest reproducibility efforts was that different classes of algorithms appeared to
converge to solutions that emphasized distinct policy strategies.

Our experience from this pilot study demonstrates that we have implemented a com-
pelling platform to study human-in-the-loop design of expensive simulation-based optimiza-
tion algorithms. This conclusion suggests that, in addition to its utility as a decision sup-
port system, BISTRO could serve as an exemplary testbed for multiple emerging streams
of research (e.g., freeze-thaw, multi-objective, multi-task, and multi-fidelity optimization) in
SMBO and associated meta-model-based optimization methods. Should BISTRO be widely
adopted as part of the urban planning toolkit, innovative algorithms and new theory devel-
oped as part of inquiry in these sub-domains will have the added benefit of directly serving
a humanitarian purpose.

30All code and data used and referred in the chapter is available at http://bistro.its.berkeley.edu
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Chapter 5

Congestion Pricing Optimization Case
Study I: Sioux Faux

5.1 Introduction

In this chapter, I use the Berkeley Integrated System for TRansportation System Optimiza-
tion (BISTRO) to develop a simulation-based methodology for multi-objective optimization
of congestion pricing. The methodology is applied to a benchmark scenario to investigate the
impacts of pricing structure and objective function design on congestion pricing optimiza-
tion outcomes. This chapter was written in collaboration with Makena Schwinn, Léo Toulet,
Zangnan Yu, Anyi Chen, Xinyi Tang, Timothé Kasriel and Alexandre Bayen. It is under
review for publication in the IEEE Transactions on Intelligent Transportation Systems. I led
the study design, including the development of the methodological and analytic approach,
oversaw the implementation and execution of the study, and conducted all of the analysis
presented in this chapter.

Congestion pricing has been garnering increasing attention as a promising transportation
demand management (TDM) strategy to aid in addressing key issues on the transportation
policy agenda, including transportation finance, congestion mitigation, energy consumption,
and pollution. Congestion pricing schemes across the globe have proven effective in reducing
congestion by charging vehicles for travel within a designated area that typically corresponds
to the city center. In 2019, New York City became the first city in the U.S. to approve a
congestion pricing plan, which was projected to lead to a 6.7% reduction in vehicle miles
traveled (VMT) in the charging zone.

Several challenges arise in the pursuit of an optimal pricing policy that achieves opera-
tional and environmental objectives while improving mobility and accessibility in an equi-
table manner. While a utilitarian approach may suggest that pricing road access with respect
to the marginal cost of an additional vehicle is optimal, the equity implications of doing so
are highly dependent on the level of service provided by alternative transportation modes
such as public transit, walking and biking [143, 144]. Although targeted reinvestment of
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congestion pricing revenue has been deemed an important strategy for alleviating the poten-
tial inequities of ”pricing out” lower income drivers from what is often the fastest and most
convenient mode of transportation, the design of a pricing policy that directly optimizes for
multiple competing social and operational objectives has not yet been proposed.

This chapter presents a case study of multi-objective congestion pricing optimization
using the Berkeley Integrated System for Transportation Optimization (BISTRO), an open-
sourced transportation planning and decision support system that uses an agent-based simu-
lation and optimization framework to develop and evaluate multi-dimensional transportation
system interventions. The aim of this study is to demonstrate the key opportunities and
challenges in using agent-based simulation with activity-based travel models to optimize
transportation policies across multiple conflicting objectives. This chapter demonstrates
how BISTRO enhances the interpretability of multi-objective transportation policy opti-
mization by enabling researchers and policy-makers to investigate the implications of both
the objective function and policy lever design.

The case study implements a Bayesian Optimization algorithm on a four-dimensional
pricing policy and a weighted multi-objective function consisting of six key performance
indicators (KPIs). Two variants of cordon-based congestion pricing are optimized: 1) a
flat cordon toll charged upon entry to a circular cordon, and 2) a cordoned mileage fee
charged for all travel within a circular cordon. The location and size of the cordon as well
as the rate charged in either policy variant are encoded as model inputs. The KPIs include
total VMT, average vehicle hours of delay (VHD) per passenger trip, total greenhouse gas
(GHG) emissions, average generalized travel cost burden (CB) by trip purpose, and total
toll revenue. The aggregate behavioral response to variants of the pricing policies across
trip lengths and geographies are analyzed in order to demonstrate the inherent trade-offs in
transportation policy optimization. Although the results of this case study are not intended
to be implemented in practice, the demonstrated methodology exemplifies the importance
of ‘digging under the hood’ of black-box optimization in order to produce explainable data-
driven policies.

5.2 Background

Transportation systems are highly complex civil systems, with interrelated dynamics con-
strained by the physics of the transportation network and the resources that make up the
supply of both private and public transportation. Travel demand, which determines the
spatio-temporal distribution of people and vehicles in the transportation network, is sensi-
tive to the geographic distribution of the population, the spatio-temporal distribution of their
travel needs, and the time and cost needed to travel using available transportation modes
(e.g., personal vehicle, public bus, walk, etc.). The design of pricing strategies for TDM
necessitate modeling techniques that represent the physical, operational, and behavioral dy-
namics of the transportation system in order to determine the optimal policy with respect to
both system-level objectives and individual-level impacts. The following subsections provide
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an overview of congestion pricing optimization and simulation-based optimization as well as
an introduction to agent-based simulation and the BISTRO optimization framework used in
this study.

Road Pricing Optimization

Road pricing charges road users for access to a particular road or area within a road network.
Road pricing schemes that are devised to elicit a reduction in the volume of vehicles in specific
congested areas and/or time periods, known as congestion pricing, can take various forms.
When applied to express lanes, congestion pricing is typically dynamic, with a distance-
based rate that is optimized to maintain a desired level of service on the tolled lane. Zonal
congestion pricing, including cordon and area-based policies, charge vehicles for entry into
or movement within a designated area, respectively. Area-based pricing includes flat-rate
(e.g., the London Congestion Charge), dynamic, and distance-based pricing (e.g., Singapore’s
Electronic Road Pricing 2.0).

The optimization of congestion pricing schemes has been widely studied in the transporta-
tion literature. Historically, the optimization of road tolls has been studied using analytical
models of vehicle dynamics on a single road or in a simplified road network, with an emphasis
on the examination of the theory of marginal-cost pricing [22, 23]. This literature has since
expanded, with an emphasis on the examination of the optimal location, price structure,
and/or price level for congestion pricing schemes, with congestion minimization as the most
common objective. When optimizing for congestion minimization, measures of total through-
put [145], average travel times [63, 145, 146], critical network density [62, 64, 147], and the
spatial spread of congestion [64] have been used. Few congestion pricing optimization studies
consider the impact of the pricing scheme to congestion outside of the charging zone [62,
64, 147], and fewer actually incorporate network-wide indicators in the objective function
for optimization [63, 146, 148]. Some studies have explored multi-objective optimization of
congestion pricing, by incorporating minimization of user costs [39], maximization of toll
revenue [145, 146], and minimization of emissions [58] as additional objectives to congestion
minimization using scalarization techniques [58, 146, 149], constrained optimization [64, 145],
or pareto-based acquisition functions [145].

Simulation-Based Optimization of Transportation Systems

Simulation enables the evaluation of hypothetical scenarios in which one or more aspects
of the transportation system are optimized using models that represent the interaction of
important variables of interest. Simulation-based optimization problems can be formulated
as follows:
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min
d∈D

f(d,x; z) (5.2.1)

s.t. x = B(d; z) (5.2.2)

g(d; z) = 0 (5.2.3)

where the decision vector d from the input space D is chosen such that it minimizes an
objective f , a function of the decision vector, endogenous variables x, and exogenous variables
z. The endogenous variables are measurable outcomes of the simulation, which may include
agents’ choices and their outcomes (e.g., travel times, travel costs, vehicle paths). Exogenous
variables include configuration parameters that define the supply, demand, and dynamics of
the system. The function B represents the simulation of outcomes given a decision vector
and a set of exogenous variables, the latter of which includes parameters that determine
the characteristics and activity of the population and/or parameters that define the physical
and operational makeup of the transportation network. The function g represents design
constraints, which can be implemented to enforce realism and/or interpretability in the
simulation configuration and outcomes.

In problems where the simulation produces stochastic outcomes, as is the case in agent-
based models using random utility models to reflect the stochasticity in human behavior (see
section 5.2), f can be defined as the expected outcome of stochastic performance measures,
F :

f ≡ E[F (d,x; z)] (5.2.4)

A variety of different simulation-based optimization approaches have been applied to
optimize congestion pricing strategies. Some studies have used surrogate-based techniques
to optimize toll zones and prices to minimize network congestion [63, 64]. A metamodel can
also be used to approximate the simulation-based objective. Metamodels can be much more
computationally efficient to solve, and thus a suitable approach for large-scale transportation
problems [150]. Zheng, et al. (2012) used a macroscopic fundamental diagram to control
toll rates in a cordoned scheme, in conjunction with an agent-based simulator [62]. However,
the simulator’s demand elasticity was limited to departure time and route choice, excluding
mode choice. BISTRO, the optimization framework used in this study, uses an agent-based
simulation (ABS) with an activity-based travel model that includes models for departure
time, mode, and routing choices.

Agent-Based Simulation

ABS with activity-based travel models provides both increased interpretability and flexibility
for transportation planning and policy decision-making. In activity-based travel models, a
regional population of citizens is modeled as a set of individual agents, with discrete choice
models representing the decisions they face as they carry out their daily travel plans. ABS
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models simulate the decisions and resulting actions at an individual level. The physical
dynamics of vehicles within the transportation network are typically modeled using directed
graph representations of road networks that determine the physics of vehicle movement.
Traffic assignment methods are used to determine the path taken by each vehicle given
a specified origin and destination (OD), and departure time and any additional relevant
information for each vehicle, producing estimates of the volumes of vehicles on all links in
the network at any given time as well as the speed, fuel consumption, and trip-level travel
times and costs for each vehicle throughout the simulation.

The integration of individual-level behavioral models with physical models of vehicle
dynamics within a representative transportation network in an activity-based ABS enables
policy-makers to gain insight into the spatio-temporal distribution of important social, eco-
nomic, and environmental impacts at the individual, household, zonal, and regional levels
[29]. More simplified methods used for travel models, such as the traditional four-step
trip-based model and traffic assignment models with fixed demand generally suffer from
aggregation biases due to the representation of demand sensitivity at much lower spatial
resolution, if at all, making it more challenging for stakeholders to interpret the outputs
from these models and robustly incorporate them into policies [151, 152].

BISTRO

BISTRO is an open source transportation planning decision support system that leverages
the power of ABS, activity-based travel models, and machine learning to assist stakeholders
in addressing the increasingly complex problems arising in transportation systems worldwide.
BISTRO facilitates the algorithmic optimization of user-defined transportation system in-
tervention strategies using an empirically-validated ABS of multimodal metropolitan trans-
portation systems, called the Behavior Energy Autonomy and Mobility (BEAM) framework,
as its core simulation engine. BISTRO’s multi-objective optimization framework enables
experimentation with mechanism design by parameterizing system interventions and devel-
oping appropriate KPIs that best align with policy and planning objectives. The following
subsections describe the pertinent sub-components of BISTRO, including the scenario de-
velopment pipeline, BEAM simulation engine, and the optimization framework consisting of
user-defined inputs, KPIs, and objective function design. For more detail about the design
and operation of BISTRO, the reader is referred to chapter 4.

BISTRO Scenario Development

A BISTRO scenario is defined by the configuration of the transportation network, land-use,
synthetic population of agents, and the operation of transportation services in a particular
geography of interest. The transportation network includes the road network, represented as
a directed graph of nodes and links, each of which is characterized by its’ length, capacity,
speed limit, and mode access restrictions, if any. In addition, multiple public transit net-
works may be configured, defined by one or more transit agencies, routes, stations, and the
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vehicle type that serves each route. The population configuration includes the distribution
of population density, vehicle ownership, and socio-demographic attributes of the population
at a zonal level (e.g., traffic analysis zone (TAZ) or census tract), which is used to produce
a synthetic population of households of one or more agents with a specified home loca-
tion. The agents’ activity plans, consisting of two or more activity types (e.g., home, work,
school), locations, and desired start and/or end times, are also determined by the scenario
configuration and kept fixed throughout the study. This approach excludes the possibility
of induced demand within a scenario since agent trips are exogenous to the optimization of
interventions. Scenario analyses may be conducted by generating multiple sets of activity
plans and/or altering the coefficients of the mode choice model to optimize interventions
across variations in the quantity of travel demand and the sensitivity of modal demand with
respect to travel time components, travel cost, other attributes of modes, and/or individ-
ual characteristics. Lastly, operational parameters of transportation services such as public
transit, on-demand mobility services, and other forms of shared mobility may be configured,
including fare structures, hours of service, vehicle fleet mixes, and vehicle repositioning al-
gorithms.

BEAM

The core simulation engine in BISTRO is BEAM, the Modeling Framework for Behavior
Energy Autonomy and Mobility. BEAM is an activity-based ABS developed at the Lawrence
Berkeley National Laboratory (LBNL). It extends the Multi-Agent Transportation Simula-
tion Framework (MATSim) to enable analysis of urban transportation systems using discrete
choice models of within-day travel decisions. Within the BISTRO framework, scenario con-
figuration parameters discussed in section 5.2 serve as fixed inputs to BEAM, which executes
the second-by-second movement and decision-making of all agents (including travelers and
drivers) throughout a day of travel.

At the start of the simulation, all travelers are endowed with a plan of activities (including
location and start/end times) and are located at their first activity of the day (e.g., at home
or work) and all transit and TNC drivers are positioned with their corresponding vehicles at a
starting location for the day. As travelers end an activity, their choice of transportation mode
with which to travel to their next activity (e.g., work) is determined using a multinomial
logit model (MNL) given the estimated travel time and cost of all available modes at that
time in the simulation. The agent may choose to walk, bike, drive alone in a personal vehicle,
ride alone in a TNC, or take pubic transit in combination with any of the other modes that
facilitate access/egress to/from public transit stations. All private and TNC vehicles are
routed via the shortest path to their destination with respect to driving time. However,
mode choices consider only the maximum utility path for each mode which, in the presence
of road pricing, may not always coincide with the shortest-time path.
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BISTRO Optimization Framework

The BISTRO optimization framework consists of three key components: 1) user-defined
inputs (UDIs) representing the transportation system intervention of interest, 2) KPIs en-
coding the objectives of the intervention strategy, and 3) the scoring function that formulates
how the KPIs will be translated for use in the optimization algorithm. The optimization
algorithm must define a set of UDI files to submit to BISTRO and receive the score values
evaluated by BISTRO following a simulation run in which the UDIs are applied.

BISTRO provides a library of UDIs, including investment (e.g., vehicle fleet mix, public
transit routing, parking supply, vehicle charging infrastructure), incentive (e.g., monetary
incentives differentiated by socio-demographic groups for the use of a specific mode or com-
bination of modes), and operational (e.g., public transit scheduling, public transit fares,
road pricing/tolls, parking pricing) strategies [30]. The UDIs may be constrained using the
business rules feature of BISTRO, which defines validation parameters for the UDIs (e.g.,
range of possible values).

KPIs are the sub-components that make up the objective function that is to be opti-
mized. KPIs may represent operational, environmental, or social goals that are pertinent
to evaluating the optimality of the strategy of interest. Two general types of KPIs have
been developed in BISTRO, including KPIs that measure: 1) the operational efficiency of
the transportation system (e.g., VMT, VHD, operational costs) and 2) the experience of
transportation users (e.g., bus crowding experienced, generalized travel cost, accessibility).

Finally, a scoring function must be designed in order to define the output to be used in
the optimization. In this chapter and in previous work by the authors, a scoring function
that aggregates multiple score components into a one-dimensional scalar score has been
used. Each score component corresponds to one KPI. In order to normalize the relative
improvement achieved by a particular UDI across all KPIs, each score component is computed
as the normalized ratio of the value of the corresponding KPI in the given simulation run to
the value of the same KPI in the business-as-usual (BAU) run, in which all UDIs are null.
The improvement ratios are normalized using KPI values produced by a randomized sample
of the UDI space, accounting for differences in variance across KPIs. The composite score
is thus a function of the normalized improvements from the BAU to the candidate input in
each metric, as follows:

F (d,x,x0,K,σ,µ,β) =
∑
i∈K

βi

Ki(d,x)
Ki(∅,x0)

− µi

σi
(5.2.5)

where K is the vector of all KPIs evaluated for a given set of inputs, d, and the resulting
outputs, x, produced by the simulation. The simulation outputs from the BAU run in which
no inputs are provided is the vector x0. The vectors µ and σ are normalization parameters
for each KPI, and β is a vector of coefficients that may be applied as appropriate. When
dealing with a set of objectives that vary with respect to the direction of desired improvement
(e.g., maximize revenue and minimize VMT), the β parameters may be used to change the
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sign of a score component. The β parameters may also be used to apply a weighting scheme
to the score components, as is demonstrated in this chapter.

5.3 Methods

The present case study investigates congestion pricing optimization using a benchmark
BISTRO model called Sioux Faux, which is based on the city of Sioux Falls, South Dakota1.
In particular, this case study uses BISTRO to optimize two potential zonal congestion pric-
ing policies: 1) a cordon fee, and 2) a cordoned mileage fee. This study examines the utility
of BISTRO for facilitating interpretable machine learning for the congestion pricing opti-
mization problem using a Bayesian optimization algorithm with a scalarized multi-objective
function. The following subsections present the scenario configuration, problem formulation
and optimization approach taken.

Figure 5.1: Sioux Faux road network and activity locations (activities are sized by quantity).

1Detailed information about the Sioux Faux benchmark scenario can found in Appendix A
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Table 5.1: Sioux Faux mode choice model parameters

Variable Description Value
adrive Drive alone ASC 10.56
awalk Walk ASC -11.0
aTNC TNC ASC -0.124
adrive−transit Drive to/from transit ASC 0.0
awalk−transit Walk to/from transit ASC -10.0
v VoT 18 [$/hr]
r Transfer coefficient -0.6

Sioux Faux Scenario

The Sioux Faux scenario includes a road network of 2,350 nodes and 5,812 links with a
synthetic population of 15,000 agents. Each agent is endowed with age, income, and gender
attributes as well as a household and corresponding home location, some number of household
vehicles, and the location of one primary activity they complete during the day, which is
either work or a secondary activity (e.g., groceries, health care, etc.). The distribution of
agent activities is shown overlaid on the road network of Sioux Faux in Figure 5.1. Agents
may choose from the following available modes: drive alone, walk, ride alone in a TNC,
and drive, walk, or ride alone in a TNC to/from a public bus. Agents’ mode choices are
determined by an MNL discrete choice model, in which the probability that an agent chooses
a particular mode m for a particular trip i departing at time t is defined in equation 5.3.1
below:

P (ximode[t] = m) =
eam+xicost,m[t]−v·xidur,m[t]+r·xitransfer,m[t]∑

m′∈modes e
am′+xi

cost,m′ [t]−v·xidur,m′ [t]+r·xitransfer,m′ [t]
(5.3.1)

where ximode[t] is the mode chosen by agent i at time t and the variables xicost,m[t] and x
i
dur,m[t]

are the total estimated trip cost and duration of mode m for trip i at time t. The variable
xitransfer,m[t] denotes the number of transfers (i.e., between bus lines) involved in using mode
m for the trip. The values of the alternative-specific constants (ASCs) am, value of time
(VoT) v, and transfer coefficient are reported in Table 5.1.

For the purposes of this case study, the Sioux Faux scenario is configured with unlimited
free parking in order to control for the potential confounding effects of parking supply on
the optimization results. In addition, the location of each vehicle in the TNC fleet, the size
of which is equal to 15% of the synthesized population, is randomly initialized within the
road network. To control for additional VMT from TNC repositioning, the TNC vehicles
simply wait at the location of their last drop off to be reassigned to the next ride request.

In the BAU simulation run in which no congestion pricing scheme is applied, the majority
of agents drive, resulting in about 73% of all trips being completed by driving alone in
personal cars. TNC trips account for 3% of all trips, while about 13% of trips use the bus
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and about 12% of trips are completed by foot. Cars are used for the majority of commute
trips, while the modal split for secondary trip purposes is more evenly split between car
and public bus accessed by foot. The combination of personal car, TNC, and public bus
use produces a total of 65,800 VMT, 30,000 kg of CO2 equivalents, and an average vehicle
hours of delay (VHD) of 0.225 hours (13.5 minutes) per passenger trip (see Table 5.2). The
majority of congestion is produced by driving alone during peak commute hours. TNC trips,
which tend to be between 0.5 and 3 miles long, are distributed throughout the day, with
the greatest amount of TNC VMT generated from 9 AM to 4 PM. Finally, the average
generalized cost burden is lower for work trips than for secondary trips in the BAU. This
reflects the relative speed and low cost of predominantly car-based commutes.

Optimization Approach

An optimization problem of the form described in section 2.1.1 is formulated for each of two
cordon-based congestion pricing policies: cordon tolls, and cordoned mileage fees. BISTRO
is used to implement a Bayesian optimization of the two pricing policies in the Sioux Faux
scenario with a scalarized objective function of six KPIs.

Problem Formulation

The congestion pricing policy is represented by a four-dimensional input vector, d ∈ R4,
consisting of the center (latitude and longitude) and radius (in meters) of a circular cordon,
or charging zone, as well as a toll rate. In the cordon toll policy, the toll rate is the dollar
amount charged upon crossing the boundary of the cordon (i.e., vehicles are charged upon
entry and exit). In the cordoned mileage fee policy, the toll rate is the amount of dollars
charged per mile driven on any road segment within the cordon. In both policies, all private
passenger vehicle trips (drive alone and TNC) are charged the corresponding rate based
on the route taken for the trip. The objective function is composed of six KPIs including
total VMT, average VHD per passenger trip, total greenhouse gas (GHG) emissions, average
generalized travel cost burden (CB) of work trips, average CB of secondary trips, and total
toll revenue. The following constraints are applied: 1) the center of the cordon must be
within the city limits (equations 5.3.4 - 5.3.5), 2) the diameter of the zone must be within a
defined range (equation 5.3.6), and 3) the toll rate must be non-negative and less than $10
(equation 5.3.7). The resulting optimization problem is specified as follows:

min
d∈R4

f(d,x; z) (5.3.2)

s.t. x = B(d; z) (5.3.3)

d1 ∈ [43.5007◦N, 43.6195◦N ] (5.3.4)

d2 ∈ [−96.8112◦W,−96.6498◦W ] (5.3.5)

d3 ∈ [0, 8.5] (5.3.6)

d4 ∈ [0, 10] (5.3.7)
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Table 5.2: BAU values and normalization parameters for each score component

BAU Cordon toll Cordoned
mileage fee

i Name Ki(∅,x0) µci σci µmi σmi
1 VMT 83, 000 35, 000 1, 700 52, 000 21, 600
2 VHD 0.22 0.19 0.032 0.16 0.074
3 GHG 4.9E9 4.3E9 1.7E8 3.5E9 9.8E8
4 CBwork 0.00098 0.00065 0.000075 0.00089 0.00030
5 CB2ndary 0.00081 0.0011 0.00020 0.0016 0.00011
6 TR 0 $12, 000 $14, 000 $45, 000 $38, 000

where the first two dimensions of the input vector d correspond to the latitude and longitude
of the center of the charging zone while the remaining dimensions correspond to the radius
of the zone and the toll rate, respectively.

Recall that the objective function f(d,x; z) is the expected value of the stochastic
performance of the simulation, defined by F (d,x; z) in equation 5.2.5. The set of KPIs,
K := {Ki}6i=1 (see Table 5.2), are each a function of the fixed input vector z (i.e., person,
vehicle, and network attributes) and the vector x that contains the intermediary output
values that are used to calculate the KPI2. These include the VMT and GHG emissions of
each vehicle movement during the simulation; the total travel time and passenger costs of
all trips; the delay experienced during each passenger trip (i.e., the difference between the
free-flow and the actual travel times of a trip). The generalized transportation CB for a trip
is calculated as the ratio of the generalized transportation cost of the trip and the household
income of the trip maker, where the generalized transportation cost is the sum of the costs
incurred during the trip and the product of the population-average VoT ($18/hour) and the
duration of the trip.

Scalarization

The examination of the role of scalarization in multi-objective transportation policy opti-
mization is a key component of the analysis presented in this study. This process is initialized
with a random search, for which 500 samples were drawn from a uniform distribution of the
input space for each pricing policy. The normalization parameters µ and σ for each KPI are
calculated from these random samples (see Table 5.2). The distributions of the KPIs with
respect to the policy parameters were examined to identify correlations between KPIs that
informed the development of the scalarization scheme. The results of the random search and
analysis of weighting schemes are presented in section 5.4.

2The formulation of each of the KPIs used in this case study can be found in the Sioux Faux general
system specification in Appendix A
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Bayesian Optimization

Bayesian optimization uses a probabilistic surrogate model to approximate an unknown
objective using information from the prior distribution, along with an acquisition function
that uses information from the posterior distribution to dictate how to explore the input
space [153]. This study uses the tree-structured Parzen estimator (TPE) acquisition function
[154]. Unlike Gaussian processes that model the posterior distribution p(y|x) directly, the
TPE models p(x|y) and p(y) separately. The algorithm iteratively optimizes d given some
set of m observations H = {(di, yi)}i=1,...,m, where y

m is the score evaluated from the mth

simulation run using dm as input: ym = F (dm,xm; z). After each sample evaluation (i.e., a
BEAM simulation run), the TPE algorithm estimates p(d|y,H) by producing two densities
as follows:

p(d|y,H) =

{
l(d) if y < y∗

g(d) if y ≥ y∗
(5.3.8)

where y∗ is the γ-quantile of the objective function value among the observations such that
γ = p(y < y ∗ |H). Given a set of observations, H, the next value of the UDI to be sampled,
d∗, is chosen using the maximum expected improvement, as follows:

d∗ = argmaxd∈D

∫ y∗

−∞
(y∗ − y)p(y|d)dy

= argmaxd∈D

∫ y∗

−∞
(y∗ − y)

p(d|y,H)p(y)

p(d)
dy (5.3.9)

where, by construction, p(d) =
∫
R p(d|y)p(y)dy = γl(d) + (1 − γ)g(d). γ is set equal to

0.25 [154]; further investigation into the effect of tuning this hyper-parameter are under
consideration in future work.

5.4 Results

This section presents the results of the random search and scalarization analysis, followed
by an in-depth analysis of the optimization results for both pricing policies.

Scalarization

The random search results revealed strong correlations between two distinct groups of KPIs:
1) Congestion KPIs (i = 1,2,3), and 2) Social KPIs (i = 4,5). To demonstrate this, Figure
5.2 displays the distributions of each of the six KPIs with respect to the average toll paid per
driving trip using all samples collected during the random search and optimization processes
for the cordoned mileage fee, displayed as blue and red x’s, respectively. The average toll
is estimated as the product of the mileage fee and the average VMT within the cordon per
driving trip. All of the congestion KPIs generally decrease with respect to the average toll,
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Figure 5.2: Distribution of KPIs with respect to average toll per driving trip (samples from
the random search (RS) and optimization (OPTIM) are shown in blue and red, respectively).
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as displayed in figures 5.2a-5.2c. Conversely, the average CB increases with respect to the
average toll, across both work and secondary trip types, as seen in figures 5.2d and 5.2e,
respectively. Finally, in figure 5.2f we observe that the relationship between the total toll
revenue and the average toll is approximately concave. Points that appear in the epigraph
of figure 5.2f correspond to policies with relatively high mileage fees at a given average toll
rate. The decreased total toll revenue of such policies compared to those with comparable
average tolls reflect the behavioral response to higher fees which significantly reduces the
number of driving trips within the cordon.

Due to the correlation across KPIs, we chose to constrain the scalarization parameters
to three values as follows:

F (d,x,x0,K,σ,µ,β) =
βc
3

4∑
i=1

Ki(d,x)
Ki(∅,x0)

− µi

σi

+
βs
2

5∑
j=4

Kj(d,x)

Kj(∅,x0)
− µi

σi
− βt

K6(d,x)− µ6

σ6
(5.4.1)

where βc, βs, and βt are the weights for the congestion, social, and toll revenue score compo-
nents, respectively, such that βc+βs+βt = 1. Note that the toll revenue KPI is not divided
by the BAU value since there were no tolls in the BAU.

Eight different weighting schemes were tested. The distributions of equation 5.4.1 across
all cordoned mileage fee samples using each weighting scheme are displayed in figure 5.3.
The optimal samples corresponding to each weighting scheme are displayed in both figures
5.2 and 5.3. In the first five weighting schemes, the congestion and social score components
were equally weighted, with successively decreasing weight applied to the toll revenue score
component. The optimal policies for these weighting schemes (shown in light green, black,
and dark green in figure 5.3). The remaining three weighting schemes, vary the weight
distribution between the social and toll revenue score components while applying the least
weight to the congestion score component.

The optimal results for the various weighting schemes demonstrate the dominating effects
of both the congestion and toll revenue score components. While the optimal policy under
the last three weighting schemes (f-h) is close to the revenue-maximizing policy (see figure
5.2f), equal weighting between the congestion and social score components in the first four
schemes (a-d) result in a slightly higher average toll rate that reduces congestion further while
producing less total revenue. The optimal sample for the first three weighting schemes (a-c)
was a $3.50 mileage fee in a cordon that covered the entire city. In this sample, about 42%
of trips shift from driving and TNCs to public transit and walking, resulting in reductions
of about 50% in VMT and GHG, 40% in average VHD per passenger trip, and increases of
about 17% and 111% in CBwork and CB2dary, respectively. When the toll revenue weight is
decreased to 0.2 in the fourth scheme (d), the optimal policy shifts to a higher average toll
rate that further improves the congestion KPIs while worsening the social and toll revenue
KPIs.
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(a) (.25, .25, .5) (b) (.33, .33, .33)

(c) (.375, .375, .25) (d) (.4, .4, .2)

(e) (.415, .415, .17) (f) (.2, .4, .4)

(g) (.2, .5, .3) (h) (.2, .3, .5)

Figure 5.3: Distribution of the aggregate score with respect to average toll per driving
trip under each weighting scheme (weights for the congestion, social, and toll revenue score
components shown in parenthesis; RS samples are shown in blue; OPTIM samples are shown
in red).
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The outcomes of the optimal policy under the fifth weighting scheme (e) are highly unre-
alistic yet informative for future refinement of the problem constraints. Further reduction of
the toll revenue weight results in much lower average toll rate, total toll revenue, congestion,
and CB scores. The policy consists of a large mileage fee of $7.60 per mile within a 5.5-mile
cordon centered in the south-western edge of the city that applies to most trips in the city,
shifting all but about 15% of travelers to non-driving modes.

The optimal policy under the last three weighting schemes places the cordon around the
entire city. However, the increased importance of the social score component relative to the
congestion score component results in a mileage fee of just $3.20 per mile. We chose the
sixth weighting scheme to use in the optimization in order to: 1) avoid over-emphasizing
congestion reduction, which results in shifting an unnecessarily large portion of car-based
trips to public transit and walking, and 2) remain agnostic in the valuation of CB versus
toll revenue, since the latter has many potentially beneficial uses that can also be applied
to reduce the social costs of a congestion pricing scheme (e.g., expansion or improvement of
public transit, modal incentives, rebates).

Optimization

This section presents the results of the optimization of the cordon toll and cordoned mileage
fee policies in the Sioux Faux scenario using the sixth weighting scheme (see figure 5.3f). The
convergence of the TPE optimization algorithm for the cordon toll and cordoned mileage
fee are displayed in figures 5.4a and 5.4b, respectively. The mean and median scores of
the samples in each optimization generally follow a downward trajectory, although a near
optimal policy is sampled sooner in the optimization process for the mileage fee than for the
cordon toll.

The optimal cordon toll is a charge of $6.90 for all car trips that cross a cordon with a
radius of about 2.7 miles centered near the middle of the city (see Figure 5.5a). The toll,
which applies to approximately 50% of all trips, including 52% of work trips and 47% of
secondary trips, generates about $67,000 in total toll revenue. Only about 40% of all drive
alone, TNC, or drive to/from public transit trips were tolled under the optimal cordon toll.
In comparison, the optimal cordoned mileage fee is a charge of $3.20 per mile driven in a
cordon with a radius of 7.9 miles that covers the entire city. Thus the mileage fee applies to
all trips within the city and generates about $132,000 in total toll revenue.

The KPI values resulting from the optimal policies are presented in Table 5.3. The opti-
mal cordon toll reduced the congestion-related KPI’s by about 35 to 60%, while decreasing
the average CB by 16% for work trips and increasing the CB for secondary trips by 21%.
In comparison, the optimal cordoned mileage fee achieved greater reductions in total VMT
and GHG emissions with a slightly smaller reduction in average VHD. It also increased the
average CB for both work and secondary trips.

Both optimized congestion pricing policies resulted in a significant reduction in driving
alone, as reflected by the improvements in the congestion-related KPIs. The optimal cordon
toll and cordoned mileage fee resulted in 9% and 16% fewer drive alone trips, respectively.
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(a) Cordon toll (b) Cordoned mileage fee

Figure 5.4: Evolution of the objective score during optimization.

Table 5.3: Sioux Faux congestion pricing optimization results

Cordon Toll Cordoned Mileage Fee
i K∗

i (d
∗,x∗) % change K∗

i (d
∗,x∗) % change

VMT 54, 000 −35% 39, 000 −53%
VHD 0.092 −58% 0.11 −50%
GHG 2.7E9 −45% 2.0E9 −59%
CBwork 0.00082 −16% 0.0011 +12%
CB2ndary 0.00098 +21% 0.0017 +110%
TR $67, 000, - $132, 000 -

The optimal cordoned mileage fee had a greater impact on TNC use (-2.8%) than the optimal
cordon toll, which only slightly reduced TNC mode share (-0.7%). Under both policies, the
majority of trips that shifted from private auto modes resulted in walking trips, while the
increases in public transit use were modest: +1% and +2% under the optimal cordon toll
and cordoned mileage fee, respectively. It is important to note that about 66% and 70%
of attempted transit trips were replanned in the optimal cordon toll and cordoned mileage
fee scenarios, respectively. In BEAM, an attempted mode choice may be replanned in the
event that the necessary resource (e.g., capacity on a public transit vehicle or a TNC vehicle
with a reasonable wait time) is unavailable. Almost all replanned public transit trips were
affected by buses operating at full capacity.

The two optimized pricing policies produced similar reductions in private auto use among
trips less than two miles long (about 36% of trips), reducing the mode share of driving alone
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(a) Cordon toll (b) Cordoned mileage fee

Figure 5.5: Average cost per AM peak driving trip by origin TAZ in each of the optimal
policies.

and TNCs for trips of this length from about 85% in the BAU to about 76% and 75%
under the optimal cordon toll and cordoned mileage fee, respectively. Greater differences
across the two pricing policies are observed in the mode shifts among longer trips, with
the optimal cordoned mileage fee resulting in much greater reductions in private auto use
than the optimal cordon toll. Among trips two to five miles long (about 53% of trips), the
optimal cordoned mileage fee reduced private car mode share from 72% in the BAU to 49%
(compared to 64% in the optimal cordon toll). Finally, among the tenth of trips that were
longer than 5 miles, the cordoned mileage fee reduced private auto mode share from 61% to
14% (compared to 57% in the optimal cordon toll).

Both pricing policies increase the monetary cost of driving, as shown in Figure 5.5. Since
trips near the center of Sioux Faux tend to be shorter, the average cost of driving trips
originating in this area were lower than in other parts of the city. Under the optimal cordon
toll, trips close to the center of the city generally did not cross the cordon and thus were not
tolled. Across both policies, the average cost per driving trip generally increased for trips
originating further from the center of the city, as these trips tended to be longer in distance
and thus incurred greater tolls.

The increased costs were partially offset with reduced travel times resulting from the
overall reductions in VMT and average VHD under each policy. The average driving speed
increased by about 35% and 25% under the optimal cordon toll and cordoned mileage fee, re-
spectively. In addition, the optimal cordoned mileage fee produced mode shifts that reduced
the average distances of drive alone and TNC trips by about 20% and 30%, respectively,
while the optimal cordon toll reduced drive alone and TNC trip distances by only about
5% and 10%, respectively. Ultimately, the average generalized cost of driving alone (the
sum of the monetary cost and the monetary value of the trip duration) only increased by
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1% from the BAU under the optimal cordon toll, compared to a 40% increase under the
optimal cordoned mileage fee. Furthermore, the average generalized travel costs of TNC
trips decreased by about 20% under the optimal cordon toll (due to the increased speed and
a slight reduction in distances) while under the optimal cordoned mileage fee it decreased
only slightly (-3%).

Nonetheless, the average generalized cost burden, which depends on the distribution of
generalized travel costs by household incomes, is heavily affected by the mode shifts from
driving and TNCs to comparatively slower modes, namely walking and public transit. The
overcrowding of public transit vehicles resulted in large increases in walking mode shares
across both optimal pricing policies. On average, walking trips across all scenarios incurred
about double the generalized travel cost burden of driving alone.

5.5 Discussion

This study of congestion pricing optimization demonstrates the complexity of policy-driven
multi-objective optimization problems, particularly those with interdependent physical and
behavioral dynamics and conflicting optimization objectives. The optimization of trans-
portation systems with respect to both congestion and social equity objectives necessitates an
iterative process to evaluate and refine the problem formulation, including the specification
of input parameters, constraints, KPIs, and an overall objective function. While the Sioux
Faux policy optimization scenario presented here is not intended to produce directly imple-
mentable policy recommendations, the study demonstrates the power of simulation-based
optimization to generate granular insights about the individual- and system-level impacts of
a multi-objective congestion pricing policy.

The use of ABS with an activity-based travel model for congestion pricing optimization
enables the evaluation of the trade-offs between social and congestion KPIs. BISTRO facil-
itates the exploration of the policy input space and its relationship to KPIs as well as the
relationship of objective function parameters with optimization results. The concavity of
the relationship of total toll revenue with the average toll per driving trip was imperative
for a feasible optimization within the context of this case study. Moreover, the investigation
of scalarization parameters demonstrated the potential risk of overemphasizing congestion
reduction in the optimization, which results in policies that produce unnecessarily large and
potentially inequitable mode shifts away from driving.

Figure 5.6 displays the distributions of scores across all random search and optimization
runs for each of the pricing policies with respect to pairs of score components3. The Pareto
frontiers of each pair of score components are drawn and the Pareto points are highlighted.
Across all three Pareto frontiers visualized, a comparison of the two pricing schemes reveals
that the cordon toll constrains the range of the optimization problem to a subset of the

3The score components are standardized using the mean and standard deviation across all samples from
both policies.
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(a) Congestion-TR: Cordon toll (b) Congestion-TR: Mileage fee

(c) Social-TR: Cordon toll (d) Social-TR: Mileage fee

(e) Congestion-Social: Cordon toll (f) Congestion-Social: Mileage fee

Figure 5.6: Pareto fronts of pairs of score components. Samples from the random search and
optimization are shown in blue and green, respectively.
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(a) Cordon toll (b) cordoned mileage fee

Figure 5.7: Total toll revenue with respect to toll rate and cordon coverage.

range of the cordoned mileage fee optimization. This is consistent with the congestion pric-
ing optimization literature, which has found that distance-based and time-varying schemes
outperform simple cordon tolls with respect to social welfare [39, 54, 55].

This study also investigates behavioral responses to congestion pricing design. The cor-
doned mileage fee is found to be more effective in eliciting mode shifts among longer distance
auto trips compared to the cordon toll, for which the majority of mode shifts are among trips
less than 2 miles in distance. This results in greater VMT reductions under the cordoned
mileage fee than the cordon toll, although the shift to slower modes (i.e., walking, public
transit) results in greater average CB, across both work and secondary trips. Figure 5.7 dis-
plays the distributions of the total toll revenue from both random search and optimization
samples for each pricing policy with respect to the toll rate and the geographic coverage of
the cordons, calculated as the percent of all trips in Sioux Faux for which the toll applies.
The color of the samples corresponds to the private car mode share (including driving alone
and TNCs). Both plots reflect the behavioral response to pricing policies with higher tolls
and greater coverage: the private car mode share decreases with respect to the toll rate
and likelihood of being tolled. Both of the optimal pricing policies produced by the chosen
weighting scheme in this case study actually produce less than the maximum toll revenue for
each policy type. The maximum point shown in Figure 5.7a produces about $9, 000 more toll
revenue than the optimum discussed previously, with a smaller cordon that charges about
$0.5 more per crossing and results in 60% private car mode share (compared to 65% in the
optimum). The difference is smaller for the mileage fee, where the maximum toll revenue is
just 2, 800 greater with a rate that is just $0.1 greater per mile and just 0.5% less private
car mode share compared to the optimum discussed previously.

Further refinement of the KPI formulation and scenario configuration are recommended
for future studies. In particular, the prevalence of replanned public transit trips should
be addressed for more realistic applications of BISTRO. Careful calibration of the capacity
of the public transit fleet is recommended to ensure more accurate representation of pubic
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transit capacity. Furthermore, the KPIs may be altered to better reflect the inconvenience
of over-crowded public transit resulting in unrealistic replanned trips. The BISTRO opti-
mization library includes a public transit crowding KPI, which measures the average time
spent by public transit passengers on vehicles filled over seating capacity. Such a KPI can
serve to disincentivize policies that result in overly crowded transit vehicles. In addition,
the average generalized cost burden KPIs may be adjusted to provide a stronger negative
signal in response to lengthy public transit and walking trips by increasing the VoT multi-
plier applied to walking and waiting time. Such an adjustment is supported by the travel
behavior literature, which has found that travelers are significantly more averse to waiting
time than they are to walking time, which in turn is more undesirable than in-vehicle time
[19]. Nascent literature on automated vehicles also suggests that an adjustment of the VoT
for in-vehicle time in a TNC would be appropriate, as the ability to be productive and/or
access entertainment while riding in a vehicle as a passenger may provide more value than
in-vehicle time spent from driving.

In addition, there are several improvements to the travel demand models used in this
study that should be considered for future work. The exogenous nature of agents’ travel
plans precludes BISTRO’s ability to optimize system interventions with respect to the impact
that they may have on the quantity, time, and location of travel demand. Research on the
impacts of roadway expansion have found that congestion reductions from increased road
capacity induce additional travel demand by individuals able and willing to take advantage
of the faster travel speeds to make trips they may not have made previously [155, 156].
Further research is needed to understand the extent to which congestion pricing may also
induce travel demand. Since congestion pricing both reduces travel times and increases the
cost of driving, the magnitude and distribution of demand that may be induced is not clear.
Additional car trips may be induced among drivers or TNC users with high willingness
to pay the congestion charges to access reduced car travel times (either due to income or
circumstance). Congestion pricing may also induce additional public transit and active
transportation trips due to the reduced volume of cars making public transit faster and
active transportation safer.

Thus, by keeping travel demand fixed, the optimization results produced by BISTRO may
a) overestimate the long-term reductions in congestion and emissions and b) underestimate
the social welfare benefits from increased mobility. The simple travel model used in this study
may be improved by including secondary trips in all agents’ travel plans, with a ’no-travel’
option included in the mode choice model. This would enable employed travelers to choose
to work from home, chain together a secondary trip with their commute tour by making a
stop on their way to/from work or during the workday (e.g., going out for lunch or running
an errand), or even take another trip before or after the work day (e.g., going out for dinner,
running errands, etc.). It would also enable non-employed travelers to travel at various other
times of the day for various reasons. The resulting congestion pricing optimization would be
more robust to short-run sensitivities in travel demand. More complex model development
is necessary to integrate a feedback loop between the simulation outputs and the travel plan
generation model to reflect long-run sensitivities, including geographic and temporal changes
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in home, work, and other activities.

5.6 Conclusion

As congestion pricing policies are increasingly considered for adoption across the globe,
the optimal design of congestion charging zones and pricing structures will play a crucial
role in determining the success and acceptability of these congestion mitigation strategies.
The use of ABS and activity-based travel models to evaluate a broad spectrum of design
parameters offers many advantages over traditional theoretical and scenario-based analyses.
The methodology presented in this study demonstrates the capability to explore a variety
of policy design parameters and discrete outcomes, including the distribution of behavioral
responses, congestion effects, and revenue generation. The presented framework can aid in
the process of designing and evaluating precise objectives and weights to be applied to the
optimization of public policies in partnership with various stakeholders.
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Chapter 6

Congestion Pricing Optimization Case
Study II: San Francisco Bay Area

6.1 Introduction

This chapter builds upon the previous chapter with a refined methodological approach for
the multi-objective optimization of a cordoned mileage fee and multi-modal incentive scheme
in a calibrated model of the San Francisco Bay Area. It was written in collaboration with
Jarvis Yuan, Susan Shaheen, and Alexandre Bayen and is in preparation for submission for
publication. I led the study design, including the development of the methodological and
analytic approaches, oversaw the implementation and execution of the study, and conducted
all analysis presented in this chapter.

Of the three pillars of sustainability, the social implications of congestion pricing have
historically taken a backseat while the economic and, more recently, environmental impli-
cations have driven technological, operational, and political developments in the field. The
London Congestion Charge was introduced in 2003 to reduce traffic congestion, which was
’seen as directly contributing to increasing economic prosperity, making London liveable,
increasing London’s accessibility and reducing environmental degradation’ [157]. Similarly,
the Stockholm congestion charging trial was launched in 2006 to ’test whether the efficiency
of the traffic system could be enhanced by congestion charges’ [158].

In recent years, the stated objectives of congestion pricing strategies have gradually ex-
panded to include considerations for transportation equity, which focus on the distribution
of costs and benefits realized by the transportation system across various dimensions of
the population. For example, the Los Angeles Traffic Reduction Study, which is assessing
potential options for a congestion charging zone in the Los Angeles area, aims to ’develop
an Equity Strategy that considers reinvesting congestion pricing revenue as a key source of
funds to minimize economic impacts to low-income drivers’ [159]. The Downtown Conges-
tion Pricing Study being conducted by the San Francisco County Transportation Authority
(SFCTA) also explicitly states that ’advancing equity by improving health and transporta-
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tion for historically underinvested communities’ is among its key goals [160]. SFCTA also
asserts that discounts and incentives are essential to implementing a fair congestion pricing
system.

The emergence of on-demand ride services, including transportation network company
(TNC, also known as ridesourcing and ridehailing)1 (e.g., Lyft, Uber) and microtransit ser-
vices2 (e.g., Via, Chariot, Bridj), have also driven recent interest in pricing strategies to
mitigate for the congestion produced by these services [19]. Although on-demand ride ser-
vices have the potential to reduce the negative impacts of road transportation while improv-
ing accessibility for underserved communities by offering flexible, affordable, and convenient
alternatives to auto ownership, TNC services have been found to contribute to increasing
vehicle mileage, traffic congestion and greenhouse gas (GHG) emissions, in part due to the
relative portion of miles driven without passengers, known as deadheading [6, 8, 9, 10, 11,
19, 161].

In addition to compelling travelers to internalize the costs of the externalities of driving,
congestion pricing is expected to encourage the use of pooling, in which multiple travelers
making similar journeys share a ride in the same vehicle. With the growth of app-based
carpooling, microtransit, and on-demand pooled ride services, there are more service options
than ever to facilitate dynamic pooling in addition to traditional forms of pooling such as
public transit (PT), casual carpooling (also known as slugging), and vanpooling [19, 162].
However, even prior to the suspension of many existing pooled ride services during the
COVID-19 pandemic, the rates of pooled ride requests among on-demand ride service users
were relatively low, with pooled ride requests making up less than 40% of TNC rides in 2017
[17].

While flat fee congestion pricing (e.g., cordon pricing) can increase the financial incentive
to pool, mileage-based pricing can create an even larger incentive for microtransit, which
reduces the vehicle miles travelled (VMT) of any particular trip by requiring riders to walk
some distance to/from a pickup/dropoff location in addition to distributing the cost across a
larger number of riders. Moreover, by reducing the number of vehicles on the road, congestion
pricing is expected to improve the level of PT service and generate revenue that can support
the expansion of service and/or further subsidization of PT services [163].

There are several potential negative equity implications of congestion pricing strategies
to be considered. While many of the positive environmental and economic benefits of fleet-
based ride services depend on the rate of pooling, the social benefits depend on the continued
accessibility and affordability of the services for otherwise underserved communities. The
congestion pricing optimization literature has found that pricing policies are only progressive
(i.e., the costs of the policy scale up with individuals’ ability to pay) in so far as the revenue
generated is redistributed in a manner that disproportionately benefits travelers most likely
to be dissuaded from driving. In the context of on-demand ride services, research has found

1TNC services provide travelers with pre-arranged and/or on-demand access to a ride using a digitally-
enabled application or platform (e.g., smartphone apps) to match riders to drivers for a fee.

2Microtransit refers to technology-enabled transit services that typically use shuttles or vans to provide
pooled on-demand transportation with dynamic routing.
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that lower-income people of color (POC) without access to personal vehicles are among the
most frequent users of TNC services [19]. While frequent users of TNC services are more
likely than other travelers to have multimodal travel profiles wherein they use a number of
transportation modes, including PT, they are not necessarily using TNCs to access PT [19,
161]. In other words, TNCs are often used as an alternative to PT, suggesting that there are
times, places, and trip contexts for which the relative speed, convenience, and other factors
of TNC service outweighs the higher cost in comparison to PT services. This is particularly
the case for historically underserved communities who are using TNCs to travel to essential
activities such as work, groceries, and other errands [19].

This chapter explores the potential to design congestion pricing strategies that achieve the
intended objectives of reducing congestion and pollution while maintaining or even improving
equitable access to mobility in a metropolitan region with both ride alone and pooled on-
demand ride services available. A simulation-based optimization approach is applied to a
case study of the San Francisco Bay Area, where a congestion pricing scheme for the City
of San Francisco is currently under development. The study is inspired by the SFCTA’s
Downtown Congestion Pricing Study, which has been assessing the potential features and
feasibility of a congestion pricing scheme in downtown San Francisco since as early as 2008
and has most recently outlined two potential pricing zones (see Figure 6.1) along with an
income-based cordon tolling structure (where drivers are charged upon entry to the zone
during weekday rush hours3) that applies to all private vehicles, including personal vehicles
and TNCs [160]. The pricing scheme is expected to reduce travel times, increase safety for all
road users, reduce pollution, and advance equity by ”improving health and transportation
for historically underinvested communities” [160]. In addition to income-based discounts
and free access for very low-income drivers, a 50% discount is proposed for drivers with
disabilities and discounts are under consideration for residents living within the charging
zone, drivers already paying a bridge toll to enter the city, and low income PT users.

The Berkeley Integrated System for TRansportation Optimization (BISTRO) is used to
conduct the simulation-based optimization of a multi-cordoned congestion pricing scheme
with income-specific subsidies using a calibrated activity-based travel model of commuter
behavior in the San Francisco Bay Area. BISTRO facilitates the algorithmic optimiza-
tion of transportation system intervention strategies (e.g., PT scheduling, changing vehicle
fleet mixes, and altering rate structures for various modes) using the Behavior Energy Au-
tomation Mobility (BEAM) agent-based simulation framework to simulate and measure key
performance indicators (KPIs) of alternative scenarios and intervention strategies. BISTRO
enables the exploration of a larger domain of multi-dimensional transportation system in-
terventions than is possible under traditional scenario-based travel demand forecasting ap-
proaches, which this study leverages to generate a more complete understanding of the range
of potential economic, environmental, and social outcomes of congestion pricing at both the
individual and regional levels. I implemented a Pareto-based Bayesian optimization algo-
rithm to determine the optimal locations and charging rates of a circular charging zone in

3The proposed charging periods are from 6 am to 9 am and from 3:30 pm to 6:30 pm.
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Figure 6.1: SFCTA draft congestion pricing zone(s) [160]

the City of San Francisco as well as income-specific subsidies for pooled modes (including
pooled on-demand rides and PT). The Pareto-based algorithm seeks to maximize the Pareto
frontier - the set of optimal trade-offs - between KPIs of the operational (total VMT, average
vehicle delay (VD)), environmental (total GHG emissions, total PM2.5 emissions), economic
(net public revenue(NPR)), and social (average travel cost burden (CB), average PT vehicle
crowding (TC) experienced) outcomes estimated via simulation. Analysis of the key rela-
tionships between the design parameters of the congestion pricing and incentive scheme with
the KPIs reveals the significant impact that each parameter has on the congestion reduc-
tion, equity, and financial sustainability of the strategy. Incentives are found to contribute
positively to all objectives except for NPR and the examination of Pareto-optimal strategies
demonstrates the challenge of optimizing the design of a multi-faceted TDM strategy with
respect to multiple competing objectives, generating key insights for future research.

The following section provides background on the congestion pricing optimization liter-
ature. Next, section 6.3 details the methodology of the case study, including an overview
of BISTRO, the travel model development and calibration, and the optimization approach
applied. Results are presented next, followed by discussions of study limitations, policy
implications, and future research directions.

6.2 Background

Congestion pricing is a road pricing strategy devised to elicit a reduction in the volume of
vehicles in congested areas and/or time periods in order to improve travel time reliability
and reduce environmental pollution. The secondary goals of congestion pricing include the
generation of public revenue, the improvement of PT service, and increased safety within
the charging zone [157, 160, 163]. Zonal congestion pricing, including cordon- and area-
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based pricing schemes, charges vehicles for entry into or movement within a designated area,
respectively. Area-based pricing includes both flat rate (e.g., the London Congestion Charge)
and distance-based pricing schemes (e.g., Singapore’s Electronic Road Pricing 2.0). The
following subsections provide an overview of the academic literature on congestion pricing
optimization, including considerations for and lessons learned regarding demand sensitivity,
pricing structure and cordon design, optimization objectives, optimization approaches, and
equity analysis.

Congestion Pricing Optimization

The optimization of congestion pricing schemes focuses on determining the optimal rate to
charge under various assumptions regarding the behavioral and physical dynamics of the
transportation system. Congestion pricing optimization studies have gained complexity over
the years, from purely analytical models of vehicle dynamics on a single road or in a simplified
road network to regional network-scale studies optimizing dynamic link-based tolls using
simulation-based approaches. The following subsections provide an overview of the various
aspects of the congestion pricing optimization problem as studied in the literature, including
the specification and analysis of various dimensions of demand sensitivity, pricing structure
and cordon design, optimization objectives, optimization approaches, and equity analysis.

Demand sensitivity

The sensitivity of travel demand to pricing is essential to the analysis and optimization
of congestion pricing schemes. The congestion pricing literature primarily focuses on the
sensitivity of facility demand (i.e., the flow of vehicles on individual road links) and, less
prominently, the sensitivity of modal demand (i.e., the flow of individuals using each travel
mode). The travel demand profile defining the quantity of individuals traveling between each
origin-destination (OD) pair in a road network at any given time is often considered a fixed
input. Together with a model of traffic dynamics in the network, road users’ route and mode
choices are typically determined according to assumptions of utility-maximizing (i.e., cost-
minimizing) decision-making based on the estimated costs of each alternative. In the simplest
cases, travel time and cost are traded off using a value of time (VoT) parameter which is
assumed to be uniform across the population. However, several studies have demonstrated
that ignoring heterogeneity in VoT can result in drastic underestimation of the of the welfare
benefits of optimal tolling policies [34, 35, 36, 37]. In addition to being a key determinant
in an equilibrium distribution of routing choices, heterogeneity is central in determining the
elasticity of demand with respect to travel time (e.g., departure time, arrival time), mode
(e.g., PT, walking, biking, choosing not to travel), and even longer-term decisions such as
home or work location choices that may also be sensitive to the distribution of costs in a
transportation network [35, 38, 39, 40, 41, 42, 43].

The inclusion of multiple travel modes and mode choice behavior in congestion pricing
optimization research has demonstrated that road pricing can induce a ”virtuous cycle” of
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mode shifts, PT service level improvements, and operating cost reductions for both users
and PT operators that can result in considerably greater improvements to consumer surplus
than is projected by models of the impacts to private vehicles alone [35, 38, 40, 43, 44].
However, the distribution of benefits relies heavily on the portion of travel demand that is
dependent on PT as well as the potential of the congestion pricing scheme to significantly
reduce PT costs through reduced congestion [40].

Traditional carpooling, as incentivized by high occupancy vehicle (HOV) and high occu-
pancy toll (HOT) lanes has been examined in the congestion pricing optimization literature,
typically in comparison to first-best pricing which tolls all lanes on a highway. In a highway
setting, price differentiation between single-occupant vehicles (SOV) and HOVs (e.g., by
allowing HOVs to accessed a tolled lane for free) can achieve most of the gains of first-best
pricing while lessening some of the undesirable distributional effects of ubiquitous tolling
[46, 164]. However, the magnitude of potential benefits from carpool exemptions depend
heavily on the initial share of carpooling in the study area and in practice. HOV to HOT
lane conversions have had negligible and even slight negative effects on carpooling and the
share of HOVs on a facility is generally insensitive to travel time savings [46, 50, 51].

More recently, the adoption of TNCs and the development of automated vehicle (AV)
technology has spurred a renewed interest in the potential impacts of pooling rates on overall
transportation system efficiency. Ostrovsky and Schwarz (2019) postulates that the provision
of pooled on-demand ride services by shared AV (SAV) fleets in the presence of ubiquitous
tolling will produce the optimal conditions to achieve the economies of scale in pooling de-
mand necessary to support high match rates [18]. However, it remains to be seen whether
pricing mechanisms and automation alone will engender sufficient demand for pooling, par-
ticularly given several key socio-economic issues including the willingness to share a ride,
curb management, social equity, personal safety, and labor considerations [52].

Finally, consideration for the sensitivities of departure time and the frequency of travel
across trip purposes and destinations are also important in congestion pricing optimiza-
tion in order to reflect the relative impacts of pricing schemes on shifts in preferred travel
times, modes, and/or purposes in response to the changes in the travel times and costs of
each alternative over time [38, 165]. In a post-hoc analysis of the model forecasts for the
Stockholm congestion charge, [165] found that the actual impacts on off-peak travel were
underestimated by five to ten percentage points due to the larger than predicted effect of the
charge on leisure trips. Even though the travel model used for the design and forecasting
of the Stocckholm congestion charge included a nested mode and destination choice model
providing a feedback loop between the simulated travel times and costs of the congestion
charge and the travel demand profile, the omission of trip-chaining behavior in the travel
model may have contributed to the underestimation of leisure trips that were foregone due
to the shift away from driving for work trips (i.e., leisure trips that used to be easier to make
by car on the way to/from work that were no longer desirable). In addition, about 80% of
the affected leisure trips were shifted to different destinations outside of the cordon, which
also contributed to a greater than expected reduction in congestion during off-peak hours.
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Pricing structure and cordon design

The optimization of congestion pricing schemes may also entail the design of the charging
zone itself. Network-scale studies predominantly formulate link-based tolling schemes (i.e.,
an optimal toll level is determined for each link in the network). While it is possible that the
optimization of link-based tolls may result in schemes with discernible tolled and untolled
areas, it is unlikely that such a result would be produced without the application of explicit
constraints on the optimization problem. Examination of spatially and/or geometrically
constrained tolling schemes is valuable for understanding the trade-offs in infrastructure
investment decisions for pricing schemes that are more technically and practically feasible
than unconstrained link-based schemes [42, 44, 53].

In comparison to traditional cordon tolls in which drivers are charged upon entry to
a charging zone, area-based, multi-cordon, and distance-based schemes have been found to
produce greater social welfare gains by increasing the coverage of the tolling zone and achiev-
ing a greater correlation with the marginal congestion contributed by each tolled vehicle [39,
42, 45, 54]. Generally, higher toll levels produce greater reductions in driving which lead
to greater social benefits in terms of reduced travel time [42], as does greater coverage of
the charging zone [37, 42, 45]. Distance-based and time-varying schemes also outperform
simple cordon tolls with respect to social welfare [39, 54, 55]. However, greater complexity
and higher toll rates generally lead to lower public acceptance rates [42]. Qualitative design
objectives for politically feasible pricing schemes should emphasize simplicity and ease of
understanding in addition to aiming for a charge level that is acceptable and perceived as
fair to the public [42].

Equity analysis of congestion pricing

Many studies have assessed the equity of outcomes from congestion pricing schemes, both
in theory and in practice. Distributional analyses of the travel times and/or tolls paid by
heterogeneous road users under optimized congestion pricing schemes find that lower income
road users are generally worse off than higher income users as a result of lower and higher
values of time, respectively [37, 45, 48, 56]. The location of priced roads relative to the
spatial distribution of travelers also plays a significant role in the equity outcomes of road
pricing, particularly in geographies with significant levels of spatial segregation [45, 56, 48].
Yang and Zhang (2002) propose constraints to bound the relative percentage changes in
generalized travel costs across OD pairs and income groups according to a specified level
of inequity. However, across all examples shown, the optimal tolls still produce the most
negative effects on the lowest income groups while high income groups are impacted the
least, and in some cases, receive benefits [48]. The simulation-based optimization of cordon
tolls and cordoned mileage fees in chapter 5 finds that the average generalized travel cost
burden in a benchmark travel model generally increases with respect to congestion reduction,
particularly in the case of a cordoned mileage fee which levies a greater average toll rate on
driving trips than does a simple cordon toll.
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Optimization objectives

The design of optimal tolls is inherently dependent on the definition of objectives used in
the optimization. A vast majority of the literature defines optimality with respect to social
welfare, typically defined as the total user benefit (e.g., the total generalized travel cost)
minus the total social cost (e.g., the total travel time plus the total toll revenue) [34, 36,
45, 46, 56]. Few studies consider other objectives for toll optimization. Pricing optimiza-
tion studies of managed lanes tend to consider throughput and/or revenue maximization
as primary objectives, which follow from assumptions of the purpose of such facilities [37,
57]. The correlation of efficiency objectives with environmental objectives depend strongly
on the modeling assumptions made. Some studies find that minimizing congestion results
in emissions reductions due to the reduction in VMT achieved by mode shifts [42, 58]. The
congestion pricing optimization study presented in chapter 5, finds that GHG emissions
and total VMT are directly correlated. Yet other studies conclude that the two objectives
are at odds, although optimal tolling schemes with respect to specified trade-offs between
congestion and emissions are feasible [166].

Few congestion pricing optimization studies have considered transportation equity ob-
jectives. Jalota et al. (2021) establish the existence of optimal tolls and revenue refunding
schemes with respect to a wealth inequality measure that satisfy a user favorability condition
[167]. Yin and Yang (2004) formulate two equity objective functions for congestion pricing
optimization including the minimax of individual utilities for the lowest VoT road user and
minimization of a Box-cox transformation of utilities that minimizes the gaps in utilities
across road users. However, neither of these two options are explored empirically. Lastly,
the congestion pricing optimization study in chapter 5 includes an average cost burden KPI
as a measure of social equity in a weighted multi-objective function, finding that this metric
is directly at odds with congestion-related KPIs.

Optimization approaches

Low-dimensional models of pricing optimization are often employed for the purposes of
simplicity and interpretability. Such models can be solved numerically using mathematical
approaches. However, in higher dimensional networks, computing the optimal toll and traffic
assignments using numerical methods becomes infeasible. A multitude of methods are used to
overcome the challenge of simultaneously optimizing road user choices and toll optimization
in order to compute an equilibrium, including heuristic algorithms [37, 47, 53], genetic
algorithms [61, 168], and macroscopic fundamental diagram (MFD) models [39, 62, 169].

A few studies have employed agent-based simulation (ABS) engines for this purpose,
which explicitly model the decisions and movements of individual road users throughout
discrete and/or continuous time horizons. May and Milne (2000) demonstrated the impor-
tance of considering rerouting effects in congestion pricing design by utilizing a static traffic
assignment and simulation framework [54]. De Palma, et al. (2005) used the METROPOLIS
simulator, which incorporated departure time, mode, and route choice models with uniform
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VoTs [55]. A combination of heuristics and response surfaces were utilized to iteratively up-
date and simulate the tolling schemes until converging to optimal solutions for six variations
of link-tolling schemes. Chapter 5 uses BISTRO to conduct a simulation-based optimization
with the Behavior Energy Automation Mobility (BEAM) ABS framework, which incorpo-
rates within-day decision-making including departure time, mode, and routing choices as
well centrally managed on-demand ride services. The Tree-Structured Parzen Estimator
(TPE) algorithm, a Bayesian optimization algorithm, was used to optimize the location and
size of circular cordons as well as the charging rate. This type of approach is considered a
surrogate-based technique, in which the optimization is approached as a black-box problem
with stochastic input-to-output relationships estimated via simulation. Other surrogate-
based optimization approaches have been applied to optimize tolls using dynamic traffic
assignment focusing on highway tolls [63, 64].

6.3 Methods

BISTRO

The Berkeley Integrated System for TRansportation Optimization (BISTRO) is an open-
source transportation planning decision support system that leverages the power of ABS,
activity-based travel models, and machine learning to assist stakeholders in addressing the
increasingly complex problems arising in transportation systems worldwide [30]. Given a
set of discrete policy inputs, BISTRO alters the ”business as usual” (BAU) configuration
of a BEAM scenario and post-processes the resulting simulation outputs into KPIs used in
a user-defined objective function for optimization. BISTRO also includes a dashboard of
visual analytic tools to analyze and compare the outcomes of discrete strategy alternatives.

BEAM is a multi-modal activity-based travel demand and ABS framework developed at
the Lawrence Berkeley National Laboratory (LBNL) [170]. BEAM simulates the mobility
of hundreds of thousands of individual agents representing a synthetic population of urban
travelers. Each individual traveler is endowed with socio-demographic characteristics (e.g.,
gender, age, income, vehicle ownership, etc.) and a daily travel plan denoting the locations
and desired start times of various activities (e.g., ”Home”, ”Work”, ”School”, etc.). Agents
select a travel mode (e.g., drive, walk, bus, etc.) with which to complete their desired trips
that are then executed in a discrete-event mobility simulation. At the end of the simulation
period, travelers’ executed plans are scored based on the duration and cost of travel. In
an iterative process, a subset of agents are randomly selected to undergo replanning, or
mutation, of their travel plans that may alter the activity start times, mode choices, and/or
route choices based on the realized travel times from the prior iteration. The altered plans
are then applied in another iteration of the day-long simulation. The process of replanning,
simulation, and scoring is executed until the simulation converges to a stochastic equilibrium
in which agents are no longer able to improve their scores through replanning.

BEAM also includes within-day replanning dynamics by including an online discrete
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choice model of agents’ mode choice decisions that depends on the travel times and costs
of each available mode estimated during the simulation. This enables agents to make un-
planned time-sensitive utility-maximizing decisions that can be affected by both the network
and market resource dynamics of the transportation system. Mode and route choices are
thus responsive to network and resource market dynamics which are central to determining
the level of service of on-demand fleet-based transportation services such as TNCs. On-
demand ride services are rebalanced, reserved, and routed in real-time by a centralized fleet
management algorithm throughout the simulation.

In addition, BEAM includes multi-modal trip planning in which agents explicitly choose
whether to walk, drive, or use an on-demand ride service to access PT. Moreover, the within-
day re-planning dynamics enable responsiveness to the real-time resource capacity constraints
of fleet-based services. In the case that an agent encounters an overfull PT vehicle or a longer
than expected wait time for the PT or on-demand ride service they planned to use, the agent
undergoes another mode choice event to re-plan how to complete the trip already in progress.
For example, if an agent misses the bus or is unable to board a full vehicle, it may decide
to reserve an on-demand ride to their destination rather than simply wait for the next bus
to arrive, depending on the estimated wait time, in-vehicle time, and costs of each option at
that time in the simulation.

San Francisco Bay Area scenario

For the purposes of this case study, I adapted an existing activity-based travel model repre-
senting a single day of commute trips in the nine-county San Francisco Bay Area - including
San Francisco, San Mateo, Santa Clara, Alameda, Contra Costa, Solano, Napa, Sonoma, and
Marin Counties. The model includes a simplified road network of about 70,000 nodes and
180,000 links wherein local roads are aggregated in order to reduce the computational burden
of the simulation. PT services across the region are simulated using open-sourced General
Transit Feed Specification (GTFS) data from each PT agency in the region. TNC service is
simulated using a single fleet management operator with a demand-following repositioning
algorithm. Furthermore, the model consists of a synthesized population of 3,157,000 com-
muters. The population synthesis, including the generation of individuals, households, home
and work locations, and preferred activity start times, was conducted using UrbanSim, a
regional land use and transportation model that simulates housing and employment choices
[104]. The distribution of employment density per census tract as reported in the 2019
American Community Survey (ACS) [171] and modeled in BEAM are displayed in figures
B.1a and B.1b, respectively. As shown, the distribution of the synthesized population in the
BEAM model is generally similar to that of the actual population, with the greatest density
in the City of San Francisco and in the urban centers of the East and South Bay Area.

Each household in the synthesized population was endowed with two cars and two bicy-
cles. While this approach overestimates personal car and bicycle access in the San Francisco
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Bay Area4, it enables, in a simple manner, flexibility in mode choices that may reflect the
potential impacts of pricing strategies on vehicle purchasing decisions. In order to enable
analysis of the impacts of congestion pricing strategies on fuel consumption and emissions
from vehicle use, data from the 2017 National Household Travel Survey (NHTS) and the Cal-
ifornia Air Resources Board (CARB) were used to configure the personal and TNC vehicle
fleet mixes, respectively [9, 172]. The fuel type of each household car was randomly gen-
erated from the distribution of fuel types corresponding to the household’s annual income,
which was estimated from the NHTS (see Figure 6.2). The TNC vehicle fleet mix was con-
figured more simply, by generating the fuel types of the TNC vehicles from the distribution
of vehicle fuel types estimated from a 2018 CARB TNC driver survey in the state of CA:
67% gas-powered, 26% hybrid, and 7% plug-in hybrid (PHEV) vehicles. This distribution
is similar to that found by another survey of TNC drivers in the San Francisco Bay Area
that was conducted in 2016, which estimated a higher portion of conventional gas-powered
vehicles and lower portion of PHEVs [161]. The fuel type and consumption rates of each
vehicle type in the model are documented in table B.1 in the appendix. In addition, all
vehicles in the TNC fleet were programmed to have a seating capacity of 7 passengers in
order to enable analysis of the potential for generating demand for higher-occupancy pooled
on-demand rides than are currently offered by TNCs, such as microtransit services.

Figure 6.2: Personal vehicle fleet mix in the San Francisco Bay Area by income group [172].
Note, BEV stands for plug-in battery electric vehicles and PHEV stands for plug-in hybrid
electric vehicles.

The simulation of the full SF Bay Area model takes about 8 hours to run on a virtual
machine using 128GB of memory. In order to achieve a tractable run time for optimization,
which requires running the simulation hundreds of times with varying inputs, we constrained

4As per the 2017 National Household Travel Survey (NHTS), there are 1.90 cars per household in the
San Francisco Bay Area; comparable data on bicycle ownership is not available [172].
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the focus of this study to the most congested area of the region: the City and County of
San Francisco. To do this, we randomly generated a sub-sample of 50,000 agents that
commute to, from, or within San Francisco5. In this way, we also restricted the provision of
incentives to travelers that live and/or work in San Francisco. While this limits the accuracy
and granularity with which the simulation can predict the secondary effects of the congestion
pricing scheme on commuters that do not travel within San Francisco, the aggregate changes
in in- or out-bound vehicle flows to the City may still be analyzed for this purpose. The sub-
sampled model of 50,000 commuters takes about 3.5 hours to run using a high performance
computer with 64GB of memory.

The default mode choice model in BEAM was augmented for the purposes of this study
to include various individual- and alternative-specific parameters, including: income-based
VoT coefficients and individual-specific coefficients corresponding to age, income, trip origin,
and destination. In BEAM, mode choices are simulated using a multinomial logit (MNL)
model, defined by equations 6.3.1 and 6.3.2 below, where Ui,t,m[n] is the utility of mode m
for trip t by traveler i at time step n, including both systematic and random components,
Vi,t,m[n] and ϵi,t,m, respectively, and Pi,t(m|x[n])[n] is the probability that traveler i chooses
one of the available travel modes m ∈ Ci,t[n] for a particular trip t at time step n.

Ui,t,m[n] = Vi,t,m[n] + ϵi,t,m (6.3.1)

Prob(Ui,t,m[n] ≥ Ui,t,m′ [n] ∀m′ ∈ Ci,t[n]) =
expVi,t,m[n]∑

m′∈Ci,t[n]
expVi,t,m′ [n]

(6.3.2)

The systematic component of the utility is a weighted linear combination of the state
of the simulation at that time step x[n], the attributes of the trip yi,t and the individual
characteristics of the traveler zi. The random component is assumed to be independently,
identically distributed extreme value. The systematic utility equation used in this study is
specified in equation 6.3.3 and the parameters are defined in table 6.1 below.

Vi,t,m[n] = βascm + xcosti,t,m[n] + βvot(βmulti,m xin−vehi,t,m [n] + βwaitxwaitt,m [n]) + βtransferxtransferm,t [n]+

βdesti,m ydesti,t + βagei,mz
age
i + βinci,mz

inc
i + βvehi,m z

veh
i

(6.3.3)

The coefficients for the model were estimated using stated preference (SP) data from a
general population survey of four metropolitan regions in CA (including the San Francisco
Bay Area) that was distributed in fall 2018 [19, 173]. For detailed descriptions of the survey
methodology and estimation of the mode choice model used in this study, the reader is
referred to [19] and [173], respectively.

5This sub-sample is approximately 6.3% of the corresponding synthesized population of the full San
Francisco Bay Area.
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Description Coefficient Parameter Type

Alternative-Specific Constant (ASC) βascm 1 Constant
Value of time (VoT) βvot Multiplier

Estimated in-vehicle time (minutes) βmulti,m xin−vehi,t,m [n] Continuous

Estimated wait time (minutes) βwait xwaitt,m [n] Continuous

Estimated net trip cost ($) 1 xcosti,t,m[n] Continuous

Transfers βtransfer xtransferm,t [n] Scalar

Trip destination (home, work, transit station) βdesti,m ydesti,t Categorical

Age (Under 30, 30-50, 50-70, over 70) βagei,m zagei Categorical

Income (under $100k, $100k and above) βinci,m zinci Categorical

Car ownership (none, 1 or more) βvehi,m zvehi Categorical

Table 6.1: Mode choice model parameters for the San Francisco Bay Area scenario

The resulting activity-based model including 50,000 commuters living and/or working
in San Francisco traveling on a PT network and simplified road network spanning the full
San Francisco Bay Area is hereby referred to as SFSim. The following subsection details the
methodology for calibrating the SFSim model. Following the calibration, which altered the
parameters of the mode choice model, network, and TNC fleet configuration, all aspects of
the scenario configuration were kept fixed throughout the remainder of the study.

Calibration

The calibration of the SFSim model included four phases, each of which focused on a partic-
ular set of configuration parameters and target metrics, as outlined in table 6.2 below. To
the extent possible, all reference data is representative of travel conditions in 2018. In the
first phase of calibration, the overall mode splits were calibrated by adjusting the intercepts
(commonly referred to as alternative-specific constants (ASCs)) of the mode choice model.
Mode split refers to the percent of trips that use each mode (i.e., the mode split of drive
alone (DA) is the percent of all trips that are made by DA); overall mode split is the mode
split across all trips while income-specific mode split is the mode split across travelers from
a particular income group. In the overall mode split calibration, the intercepts βintm , of the
utility equations for each mode were adjusted until the mean absolute error (MAE) with re-
spect to mode splits estimated from the 2019 SFMTA Travel Decision Survey (TDS) was less
than 3% (see Appendix B.1 for a description of the corresponding data and the estimation
procedure) [174].

The next phase of calibration focused on adjusting the TNC supply so that the baseline
ratio of deadheading miles (i.e., miles driven without a passenger in the vehicle) to total
TNC VMT was close to the level that CARB estimated for the state of California in 2018:
about 38.5% [9]. To do this, the TNC vehicle fleet size was adjusted until the deadheading
ratio was within 15% of the target value.
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Calibration Performance Threshold Business as
Phase parameters metrics [Data usual (BAU)

source] mean (sd)

1 Mode choice model MAE of overall mode splits ≤ 3% [174] 0.63% (0.06%)
intercepts

2 TNC fleet size AE of TNC deadheading ratio ≤ 15% [9] 17% (0.0076%)

3 Link flow-capacity Mean Z-score of peak average ≤ 1.96 [175] 1.72 (0.12)
factor travel times by OD

4 Mode choice model MAE of overall mode splits ≤ 1% [174] 0.63% (0.06%)
intercepts and MAE of income-specific mode ≤ 3% [174] 1.54% (0.17%)
multipliers splits

Table 6.2: Overview of calibration methodology: Four-phase approach

Next, the travel speeds on the road network were calibrated by adjusting the flow-capacity
factor zflow−capacity in the link travel time function, as shown in equation 6.3.4, which serves
to scale the capacity of the network. The network speeds were calibrated with respect to
average weekday peak period (7 to 10 AM and 4 to 7 PM) travel times for each OD pair
of traffic analysis zones (TAZ) in the San Francisco Bay Area during Q3 2018, which was
queried from Uber Movement [175]6. In order to measure the performance of this calibration
phase, we estimated the average z-score of the difference in mean OD travel times, with a
target of 1.96 signifying that, on average, the simulated peak OD travel times were within
the 95% confidence interval of the reference data.

xin−vehl [n] = zfree−flowl

(
1 + zαl

( xvehl [n]

zflow−capacityzcapacityl

)zβl ) (6.3.4)

In the final stage of calibration, the overall and income-specific mode splits were calibrated
by adjusting the mode choice model intercepts βascm , income-specific VoT multipliers βmulti,m ,
and the mode-specific income coefficients βinci,m in the utility equation. The target mode splits
of each of three income groups (less than $35, 000, $35, 000 to $100, 000, and $100, 000 or
more) were estimated from the 2019 SFMTA TDS [174].

The simulation outputs of the calibrated model are hereby referred to as the business
as usual (BAU) results; this serves as a baseline of comparison for the study. In order to
account for the stochasticity of the model in the characterization of the BAU, we ran the
calibrated model 10 times and estimated the mean and standard deviation of each metric
that is used in the study, including the calibration metrics. The remainder of this subsection
provides an overview of the BAU results and the key discrepancies in comparison to the
calibration targets.

The distributions of the mean overall and income-specific mode splits across the ten runs
of the final calibrated model are presented in figure 6.3 alongside the target distributions.

6The SFSim model includes a total of 1,332 TAZs.
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Figure 6.3: Comparison of target mode splits to BAU mode splits.

The mean MAE of the overall mode splits is 0.63% with a standard deviation (sd) of 0.06%.
The biggest discrepancy is in the mode split of PT accessed/egressed via TNC, which is
about 2.34% lower than the calibration target. The calibration process revealed that the
mode choices in the SFSim model were relatively insensitive to the adjustment of the ASC
corresponding to using PT with TNCs. This suggests that, in the BAU, the option to use
TNCs to access/egress PT was significantly more undesirable than other alternatives, likely
due to comparatively long travel times and high travel costs. Moreover, since all households
have access to personal vehicles, it’s likely that the option to drive to/from PT dominated
that of using TNCs to access/egress PT in a majority of cases.

The mean MAE’s of the income-specific mode splits were about 1.52% (sd of 0.10%),
1.39% (sd of 0.12%), and 1.73% (sd of 0.06%) for the low-, middle-, and high-income groups,
respectively, amounting to a total MAE of 1.54% (sd of 0.17%) across all modes for all three
groups. The biggest discrepancies between the BAU and the target mode splits for the lowest
income group (about 11% of the population) were excesses of about 2.8% and 1.6% of trips
using pooled TNCs (PTNC) and DA, respectively, and deficits of about 3.0% and 2.2% of
trips using TNCs and DA to/from PT, respectively. For the middle income group (about
35% of the population), there was also a deficit in trips using TNCs to/from PT, though
only by about 2.2% of trips. The mode splits of DA and biking were also short of the targets
by about 2.7% and 1.6%, respectively, while those of driving and walking to/from PT were
over the targets by about 1.8% and 1.7%, respectively. Finally, the biggest discrepancies in
the mode splits of the highest income group (about 54% of the population) with respect to
the targets were an excess of about 2.9% of trips walking to/from PT, and deficits of about
2.2% and 1.4% of trips using TNCs to/from PT and DA, respectively.

On average, about 4.0% (sd of 0.07%) of trips in the BAU were made by TNC (about
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1.9% ride alone, 1.5% pooled, and 0.6% to/from PT). The calibrated TNC vehicle fleet
size was about 10% of the population size and produced an average of about 20 VMT
per vehicle. Extrapolating the total VMT by TNCs, the BAU produces about 865,000
TNC VMT. For comparison, the SFCTA estimated that TNC VMT within the city of San
Francisco during November to December 2016 was about 570,000 miles, with an average of
about 100 VMT per vehicle operating within the city [176]. The average ratio of deadheading
VMT to total TNC VMT in the BAU results was about 0.56 (sd of 0.0076), which is about
.17 above the target. The SFSim model likely overestimates TNC deadheading due to the
exclusion of non-commute travel. Non-commute travel in the region likely contributes to
better economies of scale of TNC service than in the SFSim model by enabling shorter
distances between successive TNC ride requests serviced by any given vehicle, particularly
outside of the City of San Francisco. The match rate for PTNC ride requests across the
BAU runs was higher than estimated in the literature (about 22-23%), with about half of
pooled ride requests resulting in a successful match between requests for similar ODs. The
overall average number of passengers per TNC trip was about 1.13, which is lower than the
estimate of 1.55 passengers per vehicle reported by CARB for the state of California in 2018
[9]. This is likely due to a few reasons: 1) the SFSim model focuses on commute trips, which
have been estimated to make up 16.5% of TNC trips to, from, or within San Francisco [177],
and 2) other trip purposes are more likely to involve travel by companions (e.g., two people
requesting a private or PTNC ride together) or be in areas or during periods with a higher
density of TNC activity (i.e., to/from commercial areas to go to a restaurant, bar, or other
recreational activity).

Congestion pricing optimization problem specification

Next, we present the methodological approach for congestion pricing optimization using
BISTRO and the calibrated SFSim model. We’ll begin by defining the problem, including
the policy input parameters and KPIs, followed by an explanation of the multi-objective
evolutionary optimization algorithm implemented in BISTRO for this study.

Policy parameters

The congestion pricing scheme considered in this study includes a circular cordon with a
mileage fee for driving or using TNCs within the cordon as well as a two-tiered incentive
scheme for PTNCs and PT. The optimization algorithm is designed to determine the location
and size of the cordon, the amount to be charged, and the income thresholds for eligibility
for each of two levels of incentives for each of two mode categories: 1) PTNCs and 2) PT
accessed/egressed by any mode. The two incentive levels for each of the two mode categories
are also determined by the optimization.

Several constraints were applied to the input space to ensure that the pricing scheme was
within the scope of the study and generally complied with realistic design principles:
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1. The search space for the cordon center was constrained to a circular area including
the most congested links in San Francisco, as estimated from the BAU results. The
congestion level per link in the BAU was estimated by dividing the simulated vehicle
flow by the capacity of each link within the San Francisco city boundaries in order to run
a k-means clustering analysis on the top 5% of most congested links. Five clusters were
classified using the coordinates of the link nodes; the three clusters with the greatest
average congestion, displayed in Figure 6.4, were considered for the optimization search
space. An algorithm was applied to fit a circle around the convex hulls of all links in
each cluster, and iteratively adjust the circle radii to achieve non-overlapping search
spaces for each cluster (see Appendix B.1 for a detailed explanation). We constrained
the search space for the cordon center of this study to the most congested of these
clusters (shown with a blue dot at its center in Figure 6.4), which was located near the
cardinal center of the city, spanning from the Civic Center to the western edge of the
Golden Gate Park and from Noe Valley to Japantown. This area includes the heavily
trafficked Market Street, which carries traffic to and from the central business district
(CBD) of the city, as well as the portion of the US 101 Highway that flows North/South
through the Eastern part of the city. The second-most congested cluster (shown with
an orange dot at its center in Figure 6.4) circumscribed the CBD of the city. While this
is the area that has been the focus of SFCTA’s congestion pricing exploration studies,
the search space defined by the most congested cluster enables the consideration of
cordons that would cover the CBD and/or other congested areas of the city. A cordon
placed at the edges of this search space with a maximum allowable radius (see the
next constraint) would almost cover the entirety of San Francisco. Constraining the
cordon center to this area thus serves to reduce the size of the search space without
compromising the ability to explore extreme solutions in which a mileage fee is applied
to all or most of the city. In future work, we plan to utilize the other search spaces
identified by the clustering analysis to optimize multiple cordons simultaneously.

2. The radius of the cordon was constrained between 500 m and 6 km.

3. The toll rate was constrained between $0.25/mile to $5/mile 7.

4. The first income threshold was constrained to annual household incomes between
$35,000 to $100,000 and the second was constrained between $50,000 to $200,000.
In addition, the second income threshold was constrained to be greater than or equal
to the first.

5. The PTNC incentives were constrained between $0 and $20 per trip and the PT in-
centives were constrained between $0 and $10 per trip8. Finally, the second level of

7The search range for the toll rate was determined based on the findings of chapter 5.
8We note that, in the BAU, the average trip costs of PT and PTNCs across the whole study area were

$5 and $19, respectively. Within San Francisco, the average costs of PT and PTNCs in the BAU were $3
and $11, respectively, while the average costs of trips to/from the City were $6 and $36 for PT and PTNCs,
respectively.
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the incentives for each mode were constrained to be lower than the first, ensuring a
progressive incentive scheme (i.e., travelers earning below the lowest income threshold
are eligible for greater incentives than those eligible foor the second level of incentives).

Figure 6.4: Three most congested clusters of links in the BAU simulation run.

Optimization objectives

Seven KPIs were considered for the optimization objective, representing various operational,
environmental, social, and financial objectives of congestion pricing strategies, including
average vehicle minutes of delay (VD) per passenger trip, total VMT, total GHG emissions
(tank to wheel emissions), total particulate matter (PM2.5) emissions, average minutes of
PT crowding (TC) experienced per PT passenger, average generalized travel cost burden
(CB) of travel, and the net public revenue (NPR) from PT fares, tolls paid, and incentives
used. The specifications for each of these KPIs can be found in detail in Appendix A; a brief
overview is provided here for general comprehension.

The average vehicle minutes of delay per passenger trip, a metric of congestion expe-
rienced by the average road user, is calculated as the average difference in the simulated
travel times of passenger trips (i.e., DA and TNC trips) with the free-flow travel times (i.e.,
the estimated travel time on an empty road network) for those trips. The total VMT, GHG
emissions, and PM2.5 emissions are calculated using the total miles driven by each vehicle fuel
type and the corresponding fuel consumption and emission rates (see Appendix B.1). The
average TC experienced per PT passenger is a PT user-focused congestion metric designed
to reflect the potential negative impacts of overcrowding the PT system. It is calculated as
the average perceived VoT per trip on-board PT vehicles using VoT multipliers that scale
with the degree to which a PT vehicle is filled over seating capacity. Since adjustments to
PT supply are not in the scope of this study, the average TC KPI enables analysis of the
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trade-offs between the immediate benefits that may be achieved by levying a pricing strategy
and the need to expand PT service in order to maintain a desirable quality of service. Next,
the average generalized CB of travel is a transportation equity metric, which is calculated as
the weighted average of the generalized travel cost (i.e., the sum of the net cost of travel and
the product of the population-average VoT and the duration of travel) for each trip, with
the weights being the inverse of the annual household income of the trip-maker. Thus, the
generalized travel costs of lower-income travelers weigh more heavily in this metric than do
those of higher-income travelers and strategies. Finally, NPR of the pricing strategy is com-
puted as the sum of total PT fare revenue and toll revenue subtracted by the total amount
of incentives used.

Problem formulation

To summarize, the optimization of the congestion pricing and incentive scheme described in
the previous two subsections is formulated in the following stochastic optimization problem:

min
d∈R10

f(d,x; z) = E[F(d,x; z)] (6.3.5)

such that
x = B(d; z) (6.3.6)

(37.76477◦N − d1)
2 + (−122.43350◦W − d2)

2 ≤ (2400)2 (6.3.7)

d5 ≤ d6 (6.3.8)

d8 ≤ d7 (6.3.9)

d10 ≤ d9 (6.3.10)

d3 ∈ [500, 6000] (6.3.11)

d4 ∈ [0.25, 5.25] (6.3.12)

d5 ∈ [30000, 100000] (6.3.13)

d6 ∈ [50000, 200000] (6.3.14)

d7, d8 ∈ [0, 20] (6.3.15)

d9, d10 ∈ [0, 15] (6.3.16)

where the objective f(d,x; z) : R10 → Rk maps the decision vector d, simulation output
variables x (e.g., trip characteristics, vehicle movements, etc.), and fixed configuration data z
(e.g., fuel consumption rates, network characteristics, PT schedules, etc.) to a k-dimensional
vector of the scores corresponding to each KPI. In equation 6.3.6, the function B represents
the simulation given a particular decision vector d and configuration inputs z, which results
in the output data, x. The various constraints on the input space that were discussed
previously are encoded in constraints 6.3.7 through 6.3.16.
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Table 6.3: Score component parameters: mean and standard deviation of BAU and random
search KPI values and score component multipliers

KPI BAU Random search
i Name Units Ki(∅,x0) σ0

i µi σi βi
1 VD minutes 5.92 0.16 0.94 0.076 1
2 VMT 1M miles 21.58 0.24 0.96 0.04 1
3 GHG 1k tons 24.06 0.077 0.99 0.01 1
4 PM2.5 kg 54.37 0.58 0.97 0.02 1
5 TC minutes 14.32 0.18 0.99 0.02 1
6 CB $ per $1,000 0.89 0.015 0.99 0.09 1
7 NPR $100,000 17.68 0.65 1.06 0.62 −1

Following the BISTRO scoring methodology, the scores for each of the KPI’s are calcu-
lated as follows:

Fi (d,x; z,x0,σ,µ,β) = βi

Ki(d,x;z)
Ki(∅,x0;z)

− µi

σi
∀i = 1, . . . , k (6.3.17)

where x0 is the BAU simulation output (i.e., the calibrated simulation run with a null

decision vector) and Ki(d,x;z)
Ki(∅,x0;z)

is the score component for the ith KPI, and µi and σi are

the mean and standard deviation of the ith score component from a random search of the
input space. The random search included 95 samples that were randomly generated from
uniform distributions of each input dimension and 70 samples that were generated with only
the cordon parameters and the toll rate randomized while the incentive parameters were
set to 0. The latter sample was generated in order to provide a basis of comparison for an
exploratory analysis of the effects of incentives on the KPIs. Finally, βi is a multiplier used
to ensure that all score components decrease with respect to the direction of improvement.
In particular, it is equal to negative one for the NPR score component and equal to one for
all other score components. The values of Ki(∅,x0; z), µi, σi, and βi are presented in Table
6.3, as well as the sd of each KPI value in the BAU results, σ0

i . As seen in the table, the
random search of the input space produces slight improvements in all of the KPIs (from 1
to 6%), on average. Furthermore, we note the large sd for the NPR KPI, which reflects the
significant effect of incentives on this particular KPI, as discussed further in section 6.4.

The random search results confirmed strong colinearity between the the VMT, GHG emis-
sions, and PM2.5 emissions. Thus, only the VMT was included in the final objective function.
However, the two emissions metrics were evaluated for all solution samples throughout the
study and are included in the analysis of optimization results.
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Objective function

This study employs a vector-valued objective function of the form f : y ∈ D → f(y) =
(f1(y), . . . , fk(y)) ∈ Rk that maps an input vector (i.e., the decision variables) from the
search space D ⊂ R10 defined by the problem constraints (equations 6.3.7 to 6.3.16) to
the k-dimensional objective space. The optimization of this function is formulated with
respect to a set of solutions that represent the optimal set of tradeoffs between each of the
k objectives. This set is called the Pareto set, and is defined using the concept of Pareto
dominance wherein a solution d ∈ D weakly Pareto dominates another solution d′ ∈ D
(written d ⪯ d′) if and only if fi(d) ≤ fi(d

′) for all i ∈ {1, . . . , k}. If fi(d) < fi(d
′) for

all i ∈ {1, . . . , k}, then d ∈ D Pareto dominates d′ ∈ D (written d ≺ d′). The set of
non-dominated solutions is the Pareto set and its image under f is called the Pareto front.

The hypervolume of a set of solutions H with respect to a reference point r ∈ Rk is the
Lebesgue measure of the Pareto front of H. It is defined as HVr(H) = λk({z ∈ Rk : ∃d ∈
H, f(d) ≺ z ≺ r}) where λk is the Lebesgue measure. The hypervolume is a strictly monotone
indicator of the quality of a set of solutions to a multi-objective optimization problem that
essentially measures the size of the subset of the search space that is Pareto dominated
by a given set of solutions. Maximizing the hypervolume of a set of solutions for a multi-
objective optimization problem produces a set of solutions that maximize the optimality
of the trade-offs between the conflicting objectives of the problem. In the context of this
study, this translates to finding multiple possible congestion pricing and incentive schemes
to recommend for consideration by policy-makers and other stakeholders. The particular
strategy chosen depends on the priorities of decision-makers. The following hypervolume
maximization approach entails that the objective of the optimization problem (equation
6.3.5) is replaced by the following set-valued objective:

max
D⊆D,|D|≤p

HVr(D) (6.3.18)

where the set D is the p-distribution, a set of p or fewer solutions to problem 6.3.5 - 6.3.16.

Optimization algorithm

Several approaches exist to optimize the hypervolume of a multi-objective optimization prob-
lem. This study applies an evolutionary algorithm called the Comma-Selection Multiob-
jective Covariance Matrix Adaptation Evolutionary Strategy (COMO-CMA-ES)[178]. The
COMO-CMA-ES is a multi-objective evolutionary optimization algorithm that uses several
instantiations of the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) to
iteratively optimize the p-distribution of a given problem. As with other evolutionary al-
gorithms, CMA-ES samples generations of solutions for an optimization problem from a
multivariate normal search distribution with parameters (i.e., the mean and covariance of
the distribution) that are iteratively updated based on the best-performing candidate solu-
tions from one or more prior generations [179]. The basic equation for sampling the λ ≥ 2
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solutions of generation n+ 1 is as follows:

d
(n+1)
i ∼ N

(
m(n), (σ(n))2C(n)

)
∀i = 1, . . . , λ

where m(n) is the weighted mean of µ ≤ λ selected solutions from the previous generation
of samples (d

(n)
1 , . . . ,d

(n)
λ ), C(n) is the covariance matrix at generation n, and σ(n) is the

’overall’ sd (also called the step size) at generation n. All three of these parameters are
updated after each iteration. For the specification of the corresponding update rules and the
CMA-ES algorithm, the interested reader is referred to [179].

The COMO-CMA-ES algorithm used in this study involves p instantiations of CMA-ES
algorithms each optimizing the uncrowded hypervolume indicator (UHVI) of the solutions
they sample [178]. The uncrowded hypervolume indicator, UHVI(d,H) is a measure of the
distance of the sample d to the empirical Pareto Front of the history of samples H. In
particular, the UHVI ensures that the search direction of the optimization algorithm points
from non-dominated samples toward the non-dominated search space and from dominated
points toward the uncrowded space between non-dominated samples, with the following
definition:

UHVIr(d,H) =

{
HVr(H ∪ {d})− HVr(H) if EPFH,r ⊀ f(d)

−dr(d,H) if EPFH,r ≺ f(d)

where EPFH,r = {z ≺ r : ∀d ∈ H, f(d) ⊀ z} is the empirical Pareto front, the boundary
of the objective space that dominates the reference vector r and is not dominated by the
samples in the search history H [178]. For further specification of the COMO-CMA-ES
algorithm, the interested reader is referred to [178].

The COMO-CMA-ES was implemented using the pycomocma python package. The
hyper-parameter settings for the algorithm were determined using the random search results
and the guidelines provided by the package developer. In particular, the algorithm was
instantiated with 6 CMA-ES solvers, an initial generation size of 11 samples per solver,
and five of the seven dimensions of the objective. KPIs 3 and 4, corresponding to GHG and
PM2.5 emissions were excluded from the algorithm due to their strong colinearity with VMT.
The number of solvers was chosen with the expectation of 6 interesting two-way trade-offs
between the KPIs: VMT (and VD, GHG, PM2.5) - TC, VMT - CB, VMT - NPR, TC -
CB, TC - NPR, and CB - NPR. The reference point was set to double the maximum of
each score component produced by the random search results (r = (3, 3, ∅, ∅, 3, 3, 4)). In
addition, the input space was normalized to a range of [0, 10] and the initial sigma of the
problem was set to

√
10. All 165 samples from the random search were sorted in descending

order of Euclidian distance from the reference point and the top 66 samples were used to
instantiate the pycomocma solver (hereby referred to as iteration 0). Ten iterations of the
algorithm were run, producing a total of 714 samples in addition to the initial 165 random
search samples. 54 of these samples comprised the Pareto Front of the full sample history.
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6.4 Results

This section begins with a brief analysis of the random search results followed by the presen-
tation of the optimization results, including the performance of the evolution of the sample
history across iterations of the optimization algorithm, and analyses of the key trends ob-
served in the relationships between the input parameters and the KPIs. Finally, we present
an in-depth analysis of a selection of Pareto-optimal congestion pricing and incentive strate-
gies.

Random search

The random search results provide insight regarding a) the general relationships between the
congestion pricing and incentive scheme design parameters and the KPIs and b) the relative
impact of incentives on each of the KPIs. The distributions of the extrapolated KPI values
with respect to cordon size (i.e., the radius in meters) evaluated from the random search
samples both without (left) and with (right) incentives are displayed in Figure 6.5. The BAU
KPI values are shown with an orange line across each plot and the color scale represents the
toll rate (in dollars per mile) of each sample. Finally, the points are displayed with different
shapes representing the quadrant of the search space in which the cordon is placed. Across all
of the congestion-related KPIs, including VMT, VD, GHG, and PM2.5, improvements (i.e.,
decreases) in the KPI values generally correlate with the size and toll rate of the cordons,
particularly for cordons with radii greater than 2 km (see figures 6.5b-6.5d). Moreover, the
inclusion of incentives results in significant improvements across all four of these KPIs. The
NPR also clearly increases with respect to the size of the cordons and the toll rate (see figure
6.5g), with a majority of samples without incentives producing greater NPR than the BAU
across all cordon sizes, locations, and toll rates. The inclusion of incentives generally worsens
the NPR, particular for samples with cordon radii smaller than 4.5 km. The relationships
of the incentive parameters with each KPI are investigated further using the results across
all samples from both the random search and optimization processes.

The average CB generally worsens (i.e., increases) with respect to the size and toll rate
of the cordons, with most of the random search samples without incentives resulting in
worse average CB than in the BAU. This suggests that the increases in the travel cost
across the population outweigh the travel time reductions induced by the congestion pricing
strategies without incentives, particularly for lower income travelers. Moreover, congestion
pricing without incentives is likely to increase the travel times of lower income individuals
who choose not to pay the tolls and shift to slower travel mode alternatives (e.g., PT).
Incentives serve to significantly reduce the average CB, with most of the samples including
incentives resulting in better average CB than in the BAU. Lastly, the average TC does not
vary significantly with respect to the cordon parameters either with or without incentives.
However, the samples that include incentives generally produce lower average TC than those
without incentives. The cause for this trend is explored further in the following subsections
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(a) VD (b) VMT

(c) GHG (d) PM2.5

(e) TC (f) CB

(g) NPR

Figure 6.5: Distributions of KPIs in the random search sample with (right) and without
(left) incentives by cordon radius (x-axis), toll rate (color), and location (shape). The mean
BAU KPI value is shown as an orange line across all graphs.
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Figure 6.6: Evolution of the overall (red) and pairwise hypervolumes of the objective space
across iterations of the COMO-CMA-ES optimization algorithm.

using the full history of samples generated from both the random search and optimization
algorithm.

Optimization

The COMO-CMA-ES algorithm was run for ten iterations, with 11 samples per optimizer
in the first iteration and 12 samples per optimizer in the subsequent iterations. A total of
714 samples were evaluated during the optimization process, amounting to a total of 879
samples across both the optimization and random search processes. Over the course of the
COMO-CMA-ES algorithm, the Pareto front of the sample history grew from 15 samples
from the random search to 54 samples after the tenth iteration. The resulting evolution
of the hypervolume of the dominated objective space across the ten iterations is displayed
in Figure 6.6, with the random search shown as iteration 0. The red solid line shows the
increase in the overall hypervolume of the dominated objective space of the sample history
at each iteration while the remaining lines show the increases in the area of dominated
objective spaces for each pair of KPIs. In the first two iterations, the hypervolume of the
dominated objective space was expanded by a total of four samples, with small improvements
corresponding to the average CB and TC. In the subsequent iterations, improvements were
made across all dimensions of the objective space, with the greatest increases achieved by
samples with successively larger improvements in the average VD and total VMT KPIs.

Figure 6.7 illustrates the evolution of the Pareto front across the sample history by
displaying the pairwise distributions of the KPI values for samples on the Pareto front at
each iteration of the optimization algorithm. The points shown in the lightest color (iteration
0) are the samples on the Pareto front of the random search while those shown in the darkest
color are the samples that were added to the Pareto front following the tenth iteration. The
samples highlighted with a green circle comprise the Pareto front of the full sample history.
The last column of plots in Figure 6.7 shows how the distribution of each of the KPI values on
the Pareto front evolved across the random search and the ten iterations of the optimization
process. Across all KPIs except for TC, there is a trend of improving KPI values among the
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Figure 6.7: Evolution of the Pareto front for each pair of KPIs by iteration of the optimization
algorithm. The Pareto front of the entire sample history is highlighted in green. Note, the
KPI values are shown as the ratio of the sample KPI value to the mean BAU KPI value;
iteration 0 refers to the random search samples.

Pareto front samples across iterations, with a slight increase in variance in the last two to
three iterations. There is also a slight downward (i.e., improving) trend in the TC values
across iterations, though with greater variance than in the other KPIs.

The visualization of the pairwise distributions in figure 6.7 helps to understand the re-
lationships between KPIs and the significance of the tradeoffs between two KPIs at a time.
Although higher-dimensional relationships are difficult to visualize, one can glean insight
regarding these relationships by observing the trends in the corresponding pairwise Pareto
fronts. The Pareto front with respect to VD and VMT is composed of just three samples
due to a strong correlation between these two KPIs. This suggests that the objectives of
VD and VMT reduction are complementary; GHG and PM2.5 emissions reduction are also
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complementary to these objectives. This strong complementary relationship is likely to have
biased the search history of the optimization, particularly since neither VD nor VMT were
constrained, thus rewarding the optimization algorithm for exploring strategies with greater
impacts on congestion. In contrast, the Pareto fronts of NPR with the other KPIs appear
almost linear and downward sloping, suggesting direct substitution between the objective
of raising NPR and the objectives of reducing congestion, CB, and TC. Finally, the Pareto
fronts of CB and TC with each other and with each of VD and VMT are approximately
convex, suggesting more nuanced trade-offs between these KPIs.

Effects of congestion pricing parameters on policy outcomes

Next, we analyze the relationships between the optimization input parameters and the KPIs.
A correlation matrix of all input parameters and KPIs as well as other output metrics is
presented in Table B.3. Figure 6.8 displays the distributions of the KPI values with respect
to the toll rate by quadrant of the cordon search space. In addition, a linear regression was
fit to each of six subsets of the data binned by cordon radii, as shown by the solid lines
and shaded 95% confidence intervals on each of the plots. Many of the trends that were
observed from the random search samples with incentives are reflected in figure 6.8, with
some additional insights gleaned from the full history of 879 samples. In particular, the
cordon size and toll rate are negatively correlated with the reduction of congestion-related
KPIs, including average VD, total VMT, and total GHG and PM2.5 emissions. The Pearson
correlation coefficients (hereby referred to as the r value) of the cordon size and the VD,
VMT, GHG, and PM2.5 KPIs are -0.60, -0.73, -0.73, and -0.71, respectively, while those of
the toll rate with each KPI are -0.47, -0.51, -0.51, and -0.49, respectively. The total GHG
and PM2.5 emissions are perfectly correlated with the total VMT and exhibit the same trends
as are seen in figure 6.8b. In addition, placement of the cordon in the Northeast quadrant
of the cordon search space resulted in the greatest reductions in the VMT, VD, GHG, and
PM2.5 KPIs, across cordon sizes and toll rates. Cordons with radii of 5 km or greater placed
in the Southeast quadrant also performed slightly better in comparison to the two Western
quadrants, across all four congestion-related KPIs.

The relationships between the cordon parameters and the TC, CB, and NPR KPIs are less
strong, likely due to confounding effects produced by the incentives. As observed in figures
6.5e - 6.5g and confirmed by the correlation coefficients of the incentive parameters (see
Table B.3), incentives reduce the TC, CB, and NPR. Average TC decreases slightly with
increasing toll rates across all quadrants except in the Northwest, where there is a slight
upward trend in TC as the toll rate increases, particularly for cordon radii of 4km or greater.
The average CB also decreases slightly with increasing toll rates in the Eastern quadrants
but appears to increase slightly as the toll rate increases for the largest interval of cordon
radii in the Western quadrants. This may reflect a disparate distribution of impacts on travel
times and cost from cordons placed in the Western half of the search space. Further analysis
is needed to discern the effects of the cordon placement on the distribution of travel time and
cost changes across the population and the resulting impact on cost burden. Lastly, figure
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(a) VD

(b) VMT

(c) TC

(d) CB

(e) NPR

Figure 6.8: Distributions of KPIs across all samples by cordon radius (x-axis), toll rate
(color), and location (from left to right: NE, NW, SE, and SW). The mean BAU KPI value
is shown as an orange line across all graphs.
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6.8e reflects an increasing trend in NPR with respect to increasing toll rates, particularly for
cordons with 5km or greater radii9.

Next, we investigate the effects of the incentives on the KPIs. To this end, we estimated
the average incentives received per PT and PTNC trip for each sample. This metric sum-
marizes the four input parameters that determine the incentive structure for each mode: the
two income thresholds and corresponding incentive levels10. Figure 6.9 displays the distri-
butions of the KPI values with respect to the average incentives received per PT and PTNC
trips. The best fit and 95% confidence interval of a linear regression for each of six bins of
cordon radii and roll rates overlay each of the plots.

The average VD is negatively correlated with all six of the incentive parameters, as re-
flected by the negative trends displayed across figures 6.9a and 6.9b, with a stronger negative
correlation to the PT incentives than the PTNC incentives. The average PT incentives are
similarly correlated with VMT as they are with VD (r values of -0.57 and -0.59, respectively)
while the correlation between average PTNC incentives and VMT is weaker than with VD (r
values of -0.45 and -0.51, respectively). This may be due to the positive correlation between
PTNC incentives and TNC VMT (r value of 0.65) which, despite the almost equally strong
negative correlation with the TNC deadheading ratio (r value of -0.59), may counterbalance
the reduction in VMT from reduced driving alone. Thus, while increased PTNC adoption
increases the overall efficiency of TNC service and reduces VD, the increased TNC VMT
necessary to fulfill the increase in demand may dampen the ultimate effect on overall VMT
in the region. An exception to these trends is seen in figures 6.9b and 6.9d where the average
VD and total VMT for cordons with radii of five km or greater and toll rates of $3/mile or
greater placed in either the NE or SE quadrants of the search space do not appear to be
affected by the average incentive for PTNC. This is likely do to the relatively high impact
of this level of toll rates with such a large cordon on TNC trips to the most densely visited
areas of the city.

In figure 6.9e, we observe that the average TC decreases as the average incentive per
PT trip increases. This trend contradicts the logic guiding the design of the TC KPI,
which was intended to reflect the potential degradation of the quality of PT service from
the overcrowding of vehicles. The correlation matrix in Appendix B confirms that the PT
mode split increases with respect to increases in the PT incentive parameters as well as with
respect to the average incentive per PT trip. Due to the geographic diversity of the SF Bay
Area, the rate of increase of PT passenger-time on un-crowded routes may surpasses that
of passenger-time on crowded routes. Thus, the overall increase in PT use merely dilutes
the effect of crowded passenger-time in the average TC metric and results in a decreasing
relationship between the average TC and the quantity of PT users.

9The r values of the cordon radius and toll rates and the NPR are -0.48 and -0.34, respectively.
10The intuition behind the use of the average incentive received per trip is as follows: as either of the

thresholds are increased, the number of users of the corresponding mode generally increases thus increasing
the portion of users receiving incentives and the resulting average incentive received per trip by that mode.
Moreover, as the incentive levels increase, so do the number of users of the corresponding mode as well as
the amount of incentive received by those users thus increasing the average incentive received per trip.
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(a) VD - PT (b) VD - PTNC

(c) VMT - PT (d) VMT - PTNC

(e) TC - PT (f) TC - PTNC

(g) CB - PT (h) CB - PTNC

(i) NPR - PT (j) NPR - PTNC

Figure 6.9: Distributions of KPIs across all samples by the average PT and PTNC incentives
received per trip (x-axis), cordon radius and toll rate (color), and location (from left to right:
East, West). The mean BAU KPI value is shown as an orange line across all graphs.
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Figures 6.9g and 6.9h show that the average CB decreases with respect to increasing
incentives due to the reduced trip costs for eligible travelers. However, as observed in the
relationships between VD and VMT with the average PTNC incentive, the CB for cordons
in the East half of the search space with radii greater than 5km and toll rates greater than
$3/mile is relatively insensitive to the average incentive for pooled trips.

Lastly, we observe that, across both incentive types and all cordon parameters, the NPR
decreases with respect to both incentives. Although total PT revenue is weakly correlated
with the toll rate (r value of 0.20) and location of the cordon (r values of 0.17 and -0.22
between PT revenue and placement in the NE and SW quadrants, respectively), it is not
correlated with the PT incentives (r value of 0.05). This suggests that the subsidization
of PT fares via the incentives merely increases PT ridership without generating additional
PT revenue. Thus, the balance of the congestion pricing scheme’s impact on NPR depends
primarily on the relative amount of toll revenues and incentives distributed.

Analysis of Pareto-optimal congestion pricing strategies

Next, we present an in-depth analysis of six samples on the Pareto front of the sample
history with respect to the VD, VMT, CB, and NPR KPIs as well as an alternative TC
metric measuring the percent of passenger hours on PT that were on a crowded vehicle. In
addition, the minimum and maximum as well as the BAU values of each metric are displayed.
The samples were selected based on their locations on the Pareto fronts of each of the pairs
and triples of these five KPIs in order to examine the similarities and differences in the
strategies that equally balanced different sets of KPIs. This was done by first normalizing
the KPIs so that the ratios of the KPI to BAU scores all ranged from 0 to 1. Next, the
Pareto fronts of each pair and triple of KPIs were identified and the sample closest to the
unit vector (e.g., x = y for the pairs and x = y = z for the triples) were chosen for further
investigation. In this way, nine samples were selected from the ten pairwise Pareto fronts,
one of which corresponded to two different pairs of KPIs (sample number 626 corresponded
to both the VHD-VMT and VMT-CB Pareto Fronts). In addition, 12 samples corresponded
to the three-dimensional Pareto fronts. The remainder of this subsection focuses on five of
these samples. Table 6.4 presents the policy input parameters, KPIs, aggregate mode splits,
and other key metrics for these samples, which are referred to by the number corresponding
to the order in which they were sampled. The corresponding Pareto fronts for each sample
are noted in the table as well.

First, we compare samples 626 and 702. Sample 626 is the sample on the Pareto fronts
of VD and VMT and of VMT and CB that balances each of these pairs of KPIs as well their
triple. Sample 702 is on the Pareto fronts of VD, CB and NPR as well as of VD, VMT, and
TC, balancing each of these triples. The cordons of the two samples are relatively similar,
with that of 626 placed about 1 mile northwest of that of sample 702 with a 500m longer
radius and 20 cent per mile greater toll rate. Moreover, the incentive thresholds for the two
strategies are almost identical, including about 25% and 50% of commuters at the first and
second threshold, respectively. However, strategy 626 provides significantly greater PT and
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Samples
Metric Units BAU #251 #389 #470 #626 #702

Cordon parameters Quadrant - SW SE NE NE NE
Latitude degrees - 37.7613 37.7510 37.7684 37.7744 37.7745
Longitude degrees - -122.4393 -122.4160 -122.4123 -122.4251 -122.4123
Radius km - 5.59 5.96 4.85 6.87 6.35
Toll rate $/mile - 5.1 0.27 4.3 4.86 4.66

Income thresholds 1st level, 2nd level $1,000 - 65.6, 138.8 71.3, 147.5 89.0, 148.7 64.1, 196.1 61.4, 197.8
% Eligible 1st level, 2nd level % of pop. - 28, 33 32,33 41,24 27,53 25,55
PT incentives 1st level, 2nd level $ - 8.7, 8.7 5.47, 5.47 7.54, 7.54 14.64, 8.57 9.84, 9.84
PTNC incentives 1st level, 2nd level $ - 19.59, 3.57 19.86, 17.14 12.65, 12.65 17.49, 8.09 5.15, 5.15
KPIs VD minutes 5.92 4.26 4.55 3.54 2.82 2.84

VMT 1M miles 21.58 16.99 19.87 17.23 14.33 14.39
GHG 1000 tons CO2 24.06 22.57 23.49 22.63 21.72 21.73
PM2.5 kg 54.37 47.49 51.44 47.7 43.37 43.38
TC minutes 14.32 13.87 14.04 13.46 13.86 13.56
TC ratio % of pax-hours 9.4 12.9 7.9 13.2 18.5 16.7
CB $ / $1,000 0.89 0.82 0.69 0.72 0.70 0.70
NPR $100,000 18 26 -3 32 50 44
Pareto fronts - VMT-TC CB-TC VD-TC VD-VMT VD-CB-NPR

- CB-TC-NPR VMT-CB VD-VMT-TC
- VD-VMT-CB

Mode splits DA % of all trips 50 27 40 26 17 19
PT 25 43 28 46 55 55
RA TNC 1.9 0.5 0.9 0.5 0.4 0.4
PTNC 1.5 3.2 7.9 3.6 3.1 1.4
Active 21 26 24 24 25 24

Revenue Total toll revenue $100,000 0.0 23.6 6.9 28.3 49.6 39.6
breakdown Total PT revenue 17.7 31.2 20.4 33.6 40.4 40.4

Total PT incentives 0.0 21.4 13.6 24.0 33.9 35.0
Total PTNC incentives 0.0 7.6 17.0 6.2 6.6 1.2

TNC TNC VMT/total VMT % 7 10 12 10 12 10
operations TNC deadheading ratio 56 51 40 55 58 64

PTNC match rate 52 60 66 63 63 47
% TNC rides ≥4 pax 7 15.8 27.6 17.8 14.4 4.4

Other statistics Mean VMT/auto trip miles/trip 24 28 23 28 30 30
Mean VMT/DA trip 26 32 29 32 36 33
Mean VMT/TNC trip 25 24 16 23 25 32

Table 6.4: Summary of five Pareto-optimal congestion pricing strategies

PTNC incentives at the first level that are $4.80 and $12.34 greater than those of strategy
702, respectively. In addition, the second level PT incentive in strategy 626 is $1.27 lower
than in strategy 702 and the second level PTNC incentive is $2.94 higher. All of the resulting
KPI values are almost identical with the average VD and total VMT being slightly lower in
strategy 626, the TC ratio being greater by about 1.8% and the NPR being greater by $600k.
The key differences in the mode splits reflect both the higher toll rate and higher PTNC
incentives in strategy 626, with 2.0% fewer driving trips and 1.7% greater PTNC trips in
strategy 626 compared to 702.Despite the lower DA mode split, strategy 626 produces $1M
more in toll revenue (likely due to the larger cordon and higher toll rate) and by offering
lower second level PT incentives, it spends $110k less on PT incentives. On the other hand,
the greater PTNC incentives result in spending $540k more on PTNC incentives. Although
the insignificant differences across the congestion-related and CB KPIs begs the question
of whether that increased spending is effective, we see that the increased number of PTNC
trips increases the PTNC match rate by a third and reduces the TNC deadheading ratio
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and average VMT per TNC trip by about 9 and 22%, respectively. Moreover, about 14% of
PTNC trips included four or more passengers.

Next, we examine samples 251 and 470, the samples on the Pareto fronts of VMT and
TC and of VD an TC, respectively. In strategy 251, the cordon is placed in the Castro
neighborhood with almost 6 km in radius and a toll rate of $5.1 per mile. The incentive
scheme provides $8.7 per PT trip for 61% of commuters eligible at either threshold, and
$19.59 and $3.57 per PTNC trip for the 28% and 33% of commuters eligible at each threshold.
In comparison, strategy 470 has a cordon almost 1 km smaller placed in the northern portion
of the Mission district with a toll rate of $4.3 per mile. The incentive structure includes 13%
more commuters at the lower level but provides a similar PT incentive that is equal across
the two levels and PTNC incentives of $12.56 for both levels. Interestingly, the mode splits
of the two samples are almost identical, with strategy 251 producing slightly greater DA
and active mode splits and strategy 470 producing slightly greater PT, and TNC mode
splits. While this results in similar reductions in VMT, GHG, and PM2.5 compared to the
BAU (about 20%, 6%, and 12%, respectively), the average VD in strategy 251 is about 20%
higher than in strategy 470. Moreover, the NPR in strategy 470 is about $6M greater than in
strategy 251, due to greater toll and PT revenues amounting to $7M greater revenue despite
greater expense of on PT incentives (about $2.5M greater than in strategy 251). Lastly, the
CB in both of these strategies are worse than in the other strategies examined, with that of
strategy 251 being about 15% worse than that of strategy 470.

In contrast to the four strategies examined thus far, sample 389 - the strategy balancing
the average CB and TC ratio as well as the CB, TC ratio, and NPR - produces only slight
improvements to the BAU across all of the KPIs except for the NPR, which is worsened by
about $2.1M from the BAU. In this strategy, a cordon of almost 6km in radius is placed
on the southern edge of the Mission District with a $0.27/mile toll rate. The cordon covers
almost all of the City of San Francisco with the exception of a small portion of the northern
edge of the city and the area to the West of the CA 1 highway. The income thresholds
for the incentives in this strategy include 32 and 33% of commuters; the PT incentives are
both $5.47 while the PTNC incentives are at the high end of the search space, at $19.86 and
$17.14, successively. This strategy results in a reduction of the DA and ride alone TNC mode
splits of 10% and 1%, respectively, while increasing the PT, PTNC, and walk mode splits
by 3%, 6.4%, and 3%, respectively. Strategy 389 raises total PT revenue by about $2.74M.
However, the total incentives distributed for both PT and PTNC and a meager $600k toll
revenue result in the net loss of $300k in public revenue. As a result, the VMT, GHG,
and PM2.5 are each reduced by less than 10% from the BAU and average VD is reduced by
almost a quarter, from about 5.9 to 4.6 minutes per passenger vehicle trip. In addition, the
efficiency of TNC operations increases dramatically, with reduction of the TNC deadheading
ratio to 40% of TNC VMT, an increase in the PTNC match rate to 66%, and about 28% of
PTNC rides resulting in pools of four passengers or more.

To better understand the policy implications of the high PTNC incentives in strategy
389, we analyzed the mode splits and trip characteristics at the regional level. Figure 6.10
displays the average travel times per trip taken during the AM peak period (i.e., between 7
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Figure 6.10: Comparison of average AM peak travel times per trip by trip origin and des-
tination regions and travel mode. The 95th% confidence intervals (brackets) and the mode
split of each mode in each origin-destination pair (white labels) are overlaid on each bar.

and 10 am) by travel mode segmented by the regions of the trip origins and destinations. It
is important to note that the following analysis is based on the average travel times of the
trips that were taken and is not representative of the overall average travel time available in
any of the region ODs. The data are skewed by the revealed preferences of the agents in the
model given the congestion pricing and tolling scheme applied in strategy 389. For example,
we note that while the average travel time of PT combined with TNC should be similar to
that of PT combined with driving, the average travel time of the trips that used this mode
is likely skewed due to the relatively high cost of this option resulting in a greater preference
for other access/egress modes to PT whenever they are viable.

On average, PTNC users making the ’reverse commute’ from San Francisco to other
parts of the Bay Area during the AM peak experienced significant travel time savings over
PT service due to the relatively low levels of congestion on routes flowing out of the city
during this time. The average occupancy of these PTNC trips were about 2.4, 1.7, and
1.4 passengers per trip going from San Francisco to the East, North, and South Bay Area,
respectively. For trips within San Francisco, the average PTNC user had a similar travel time
as commuters that drove to/from PT, with an average vehicle occupancy of 2.9 passengers
per PTNC trip. PTNC users traveling into the city from the East and South Bay Area,
had a similar travel time as driving to/from PT, while for those traveling from the North
Bay Area into the city, PTNC was significantly faster, on average. This is likely due to the
availability of heavy and light rail services connecting both the East and South Bay Area
to the City of San Francisco which, when combined with a driving access trip, results in
a comparable travel time to PTNC service. In contrast, PT service from the North Bay
Area is more sparse, consisting of relatively few fixed route bus and ferry services. PTNC
trips from the East and South Bay Area into San Francisco had average occupancies of
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2.5 and 2.3 passengers per trip while those from the North Bay Area into the city had an
average occupancy of 1.6 passengers per trip. Across all OD pairs of regions, the average
PTNC occupancies likely reflect the density of trip requests, with SF-SF trips having the
highest density and thus the greatest average occupancy, SF-East and East-SF having the
next highest density, and so on.

6.5 Discussion and Conclusions

This case study demonstrated the application of simulation-based multi-objective optimiza-
tion using BISTRO for the study of congestion pricing and incentive schemes in the San
Francisco Bay Area. The methodological approach of this study offers insights to further
the development of algorithmic policy decision support systems for the design and analysis
of multi-faceted TDM strategies. This section first discusses the limitations of the study
and potential improvements for the design and calibration of the SFSim model, specifica-
tion of the congestion pricing and incentive optimization problem, and the application of
multi-objective simulation-based optimization methods for transportation policy optimiza-
tion. Next, this section reviews the key findings of the study and discusses relevant policy
implications and future research directions for the study of congestion pricing optimization.

Study limitations

Several limitations of the SFSim model and the problem specification should be taken into
consideration when interpreting the results of this study. The SFSim model was calibrated
using data from 2018 to ensure that the commute mode splits, region-wide road network
travel speeds, and TNC fleet operations in the BAU were representative of the mobility
patterns in the San Francisco Bay Area during that time. Nonetheless, this model merely
reflects the commute travel patterns of the region at a snapshot in time - much has and will
continue to evolve in the travel behavior of the region. In addition to ever-changing land-
use patterns throughout the San Francisco Bay Area and the introduction of new shared
micromobility services such as dockless shared electric bicycles and scooters that launched
in San Francisco in 2018 [180], the COVID-19 pandemic has had a significant impact on the
quantity and distribution of travel demand throughout the region. From 2019 to 2021, the
estimated number of daily trips in the City of San Francisco decreased from 4.5 million to
4.4 million and the PT mode split fell by 11% [181]. The share of inter- and intra-city trips
that were made for commute purposes also fell by nine and 11 percentage points, respectively
[181]. While the model used in this study does not reflect these major developments, the
comparison of the impacts of the various congestion pricing strategies evaluated throughout
the study to the BAU nonetheless provides insight into the direction and relative magnitude
of the impacts of the policy parameters on the KPIs and other metrics explored. The
SFSim model also excludes non-work travel activity and trips that do not interact with the
City of San Francisco, thus underestimating the impacts of congestion pricing and incentive
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schemes on non-work travel and travel in other parts of the Bay Area. Conversely, the
study does not account for the impact that the excluded travel has on commuters under
the various congestion pricing strategies. Future iterations of this research should include
a more complete representation of travel across trip purposes and geographies in the study
region.

In addition, since the travel plans of all agents were kept fixed across all simulation runs,
this case study did not account for the potential effects of induced demand from congestion
pricing and incentive strategies. The reduction of congestion achieved by congestion pricing
and incentives are likely to induce additional travel demand by individuals able and willing to
take advantage of the faster travel speeds to make trips they may not have made previously.
The induced travel demand may include latent demand by higher income individuals willing
to pay the congestion charges to make trips that were previously too slow to be worthwhile,
which could further exacerbate the inequities of congestion pricing. On the other hand,
incentives for PTNC and PT may also serve latent demand by eligible travelers who are
induced to make additional trips that were previously too slow or too costly to be worthwhile.
Congestion pricing and incentive schemes may also affect the residential, workplace, and
other activity location choices of the population, resulting in induced demand across the
region. By keeping travel demand fixed, the optimization results may a) overestimate the
long-term reductions in congestion and emissions and b) underestimate the social welfare
benefits from improved accessibility.

In addition to including a more representative set of trip purposes in the travel models
used by future BISTRO studies, the realism of the travel demand modeled in BISTRO can
be improved by including a no-travel option in the mode choice model to represent latent
demand for travel. This may reflect the choice to work from home, substitute an errand
trip with an online purchase, or simply to not travel for a particular purpose. However, this
approach is still limited by an exogenous travel plan generation model which determines the
OD pairs and travel times of each potential trip in an agent’s travel plan. More complex
model development is needed to integrate a multi-step trip generation and mode choice model
framework to represent the sensitivity of travel demand more fully. This could be done by
running a trip generation model between iterations of BEAM that mutates the initial set of
exogenously determined travel plans for each agent based on an aggregate representation of
the state of the previous iteration (i.e., the hourly average travel time and cost of travel for
each OD TAZ pair and travel mode).

Refinements to the vehicle ownership and vehicle fleet mix configuration would also pro-
vide meaningful improvements to the SFSim model and its use for congestion pricing opti-
mization. Although the distributions of vehicle types across the private and TNC vehicle
fleets were representative of the region with respect to income groups and on aggregate, re-
spectively, they did not reflect heterogeneity in vehicle ownership and vehicle type preferences
with respect to other individual characteristics. Moreover, the SFSim model was configured
with ubiquitous ownership of two cars and bikes per household, enabling all commuters to
use either option. In reality, socio-demographics and travel patterns are significant predictors
of the number and type of vehicles an individual or household owns and thus influence the



Chapter 6. Congestion Pricing Optimization Case Study II: San Francisco Bay Area 116

distributions of fuel consumption and emissions across vehicle trips in a region. Congestion
pricing and incentive strategies have varied impacts on the travel behavior of residents of a
region that depend on their willingness to pay and the spatio-temporal characteristics of their
trips, including the length and time of the trip as well as access to alternatives to driving
of comparable quality. Therefore, a more realistic configuration of the private vehicle fleet
mix would more accurately reflect the impact that TDM strategies may have on emissions
from fuel consumption across the region. Furthermore, the inclusion of a vehicle ownership
model to determine the number and type of vehicles owned by each household as a function
of factors in the simulation state (i.e., the travel time and cost of travel by each mode in
the previous iteration) would further improve the ability of the model to reflect emergent
behavior in response to the policies simulated, such as vehicle purchasing or shedding.

In addition, refinement to the distributions of fuel consumption rates and emissions fac-
tors would greatly improve the value of the ABS-based optimization approach for assessing
the environmental and energy consumption impacts of congestion pricing applied in this
study. While the GHG and PM2.5 emissions KPIs were perfectly correlated with the VMT
KPI across the sample history, the average GHG and PM2.5 emissions per mile driven varied
slightly across the samples. I plan to explore these variations and their influencing factors
further in future work using a greater variation of vehicle types with varying fuel consumption
and emissions rates. In addition, the value of the PM2.5 emissions KPI may be improved
by refining the specification to measure the impacts of localized emissions instead of the
global total emissions that were calculated in this study. Localized estimates of air quality
impacts of transportation, which account for the flow of emissions from the point of release
to the point of exposure to residents in the surrounding area, are important for addressing
environmental justice concerns that arise due to the prevalence of high-capacity roadways in
areas where the lowest income and otherwise most disadvantaged populations reside [182].
Since the BEAM ABS model simulates the movements of vehicles at the link-level, estimates
of PM2.5 emitted by each vehicle on each link in the network are available for any time in
the simulation. This data can serve as input to vehicle emissions-intake models that esti-
mate the intake of emissions (i.e., in grams per time period) at a zonal level, which can be
aggregated into one or more KPIs. For example, the average PM2.5 intake per resident of a
neighborhood or demographic group deemed vulnerable to the impacts of air quality would
serve as a KPI of the environmental justice impacts of congestion pricing.

Several aspects of the TNC fleet operations in the SFSim model warrant consideration.
The fleet management was configured to reposition vehicles using a demand-following algo-
rithm that sought to minimize deadheading between passenger trips. While this is among
the most realistic algorithms available for TNC fleet management in the BEAM framework
at the time of this study, the fact that the vehicle fleet size remained fixed across all samples
may have resulted in excess TNC VMT, particularly in samples where there was an excess
of TNC vehicle supply in comparison with the TNC demand. In reality, TNC fleet size
would vary in response to demand and other labor market forces. While the TNC fleet size
configuration is merely a calibration issue when using ABS for discrete scenario analyses,
it becomes a more critical issue when using a fixed travel model and ABS-based optimiza-
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tion where optimization of the fleet size is not relevant to the problem at hand. Since the
congestion pricing optimization problem in this study is posed as a design problem for a
public decision-maker, the same optimization objectives cannot be used to simultaneously
optimize the TNC fleet size or other aspects of its operations. The TNC vehicle fleet size
adjustment should be incorporated into the vehicle fleet manager in order to appropriately
scale the TNC fleet operations according to the revenue-maximizing and other objectives of
the service.

On a related note, the PT operations were also kept fixed throughout this study. The
inclusion of PT parameters such as fares, route design and scheduling, and the number
and type of vehicles serving various routes in the congestion pricing optimization problem
studied here would enable an investigation of the potential benefits of reinvestment of toll
revenues into PT. The simultaneous optimization of tolls, incentives, and PT service would
also provide a better understanding of the tradeoffs in the costs of adjusting PT service versus
merely providing incentives. In addition, the inclusion of indirect PTNC service models such
as microtransit would enable a more rich exploration of the differences in outcomes from
investment in different types of pooled services.

Policy implications and future research directions

The extensive sample history of 879 congestion pricing strategies, 809 of which included a
bi-level incentive scheme for PT and PTNC, produced rich insights regarding the influence
of the design parameters of this multi-faceted pricing strategy on key policy objectives. In
addition to the cordon size and toll rate, the placement of the cordon was shown to have
a significant impact on the KPIs. Future work will incorporate the infrastructural and
operational costs of each cordon sampled to better reflect the impacts that the location and
size of the cordon have on the financial and political feasibility of the congestion charging
scheme. When controlling for the cordon design parameters, congestion-related objectives
were found to be negatively correlated with PT and PTNC incentives, though less so with
the latter. Both incentives also correlated negatively with average CB, demonstrating their
potential to alleviate the inequitable impacts of congestion pricing by reducing the cost
burden of driving alternatives for those who are the most likely to be significantly affected
by the increased cost of driving.

This is the first study to employ a Pareto-based multi-objective optimization algorithm
using ABS to study the optimization of congestion pricing. Rather than impose a weight-
ing scheme to translate the objective space into a single dimension, the COMO-CMA-ES
algorithm was used to optimize the hypervolume of the Pareto front of a five-dimensional ob-
jective function. The COMO-CMA-ES algorithm implemented using BISTRO successfully
generated policy designs that iteratively improved the hypervolume of the sample history,
thus enriching the exploration of trade offs in the policy objectives. However, it is unlikely
that the algorithm was near convergence after the ten iterations that were run. With 879
samples each taking four to five hours to run on a high-performance computer, the efficiency
of the algorithm in exploiting the sample history to hone in on a fruitful search direction
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left much to be desired. In addition to resource and time constraints that prevented run-
ning more iterations, refinements to the problem specification and algorithm hyperparameter
settings are needed to improve the performance of the algorithm before initializing another
optimization routine for this case study.

Nevertheless, the results of the Pareto-based optimization approach enabled a character-
ization of the competition and complementarity between policy objectives, confirming that,
in the valuation of congestion pricing schemes, congestion-related KPIs are almost perfect
complements with one another. On the other hand, the congestion-related KPIs were found
to be in direct competition with NPR. The relationship of average CB with other KPIs was
more nuanced, demonstrating the difficulty of designing congestion pricing strategies that
balance congestion-related objectives with equity considerations while maintaining financial
sustainability.

Five Pareto-optimal congestion pricing and incentive strategies were examined in depth.
The analysis elucidated how competing objectives can influence the outcomes of the opti-
mization of a multi-faceted pricing policy. In particular, the magnitude of impacts on certain
KPIs fluctuated dramatically when comparing strategies that were Pareto optimal for dif-
ferent subsets of KPIs. There is more work to be done investigating the implications of the
trade offs between the various outcomes explored in this study. The samples analyzed rep-
resented the strategies balancing various pairs and triples of KPIs. Further investigation is
needed to understand the influence of constraining the range of outputs investigated and/or
tipping the scale toward certain objectives on the design and outcomes of congestion pricing
strategies. While the congestion pricing strategies designed by the Pareto-based optimization
approach taken in this study produced reductions in VD and VMT of up to 55% compared
to the baseline, such extreme mitigations are likely unnecessary and politically infeasible.
Future iterations of this study will refine the KPI specifications, input parameter, and out-
put constraints in order to ensure that each KPI is accurately reflecting the network effects
on the intended objective and that the range of KPI values explored is within a reasonable
and realistic range (e.g., by imposing a lower bound on the congestion-related KPIs). This
would help to limit the exploration of design options to those that produce politically feasible
outcomes and improve the value of the insights gleaned from analyzing the Pareto-optimal
results.

This study found that incentives encourage greater adoption of pooled modes, with both
PT and PTNC adoption being strongly positively correlated with average PT and PTNC
incentives per trip, respectively. This results in additional reductions in VD, which benefit
all road users. In addition to reduced travel time, the reduced costs of travel for the incentive
recipients lowers the average CB of travel. PT incentives offer improvements across all KPIs
barring NPR, which decreases with respect to the average PT and PTNC incentives per
trip. Further research is needed to better understand the trade offs in the use of congestion
pricing revenues for incentivization versus investment in the expansion or improvement of PT
services. The latter is likely to provide more sustainable mode shifts by tangibly improving
the level of service of PT rather than simply reducing the cost. In regions where the quality
of PT service relative to driving is variable, as in the San Francisco Bay Area, the targeted
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incentivization of PTNC services can facilitate greater adoption of pooled modes of travel
by individuals who have a particularly high need or willingness to pay for faster and more
reliable service.

Continued research is needed to monitor trends in the willingness of travelers to pool
across all types of pooled service options and trip purposes. The results of this study are
dependent on estimates of the sensitivity of demand for pooling from a representative survey
of Californians in 2018. The lasting effects of the COVID-19 pandemic on pooling are yet
to be seen, with PT ridership still lagging behind pre-pandemic levels in many urban areas
across the United States [183]. Moreover, newer pooled ride services such as microtransit
and shared automated vehicle (SAVs) pilot projects are only recently being deployed, thus
the understanding of users’ preferences regarding these services is still nascent. This study
supports prior research in finding that greater PTNC adoption across a region can produce
the economies of scale necessary to achieve higher match rates and higher occupancy trips
[173]. As seen in the analysis of the Pareto-optimal strategies, when the PTNC mode split
increased to three or even seven percent, about 15 to 28% of those trips pooled four or more
passengers per vehicle. Further analysis is needed to understand the characteristics of these
high occupancy PTNC trips and their implications for the potential success of investment
in microtransit or express bus services to support the roll out of congestion pricing by
supplementing existing PT services.

The levels of incentives that accomplished such high PTNC adoption were rather large,
on the scale of 15 to 20$ per trip. While only about a third of the population was eligible to
receive such incentives, this level of subsidization is likely too high to be feasible in reality.
In addition to being economically inefficient, such high incentives run the risk of inducing
demand for PTNCs, which would be counterproductive to the goals of the congestion pricing
scheme. The model used in this study restricted PTNC service to full-length trips (i.e.,
PTNC could not be combined with PT). There are a variety of alternative pooling options
to consider that were not modeled in this case study that may prove more cost efficient.
The SFSim model was limited to door-to-door PTNC service, which picks up and drops
off passengers directly from their desired trip start and end locations and did not include
the option of taking a PTNC to/from PT. Indirect pooled on-demand ride services that
require users to walk some distance to or from pickup/dropoff locations may provide greater
economies of scale for pooled rides by reducing both the excess in-vehicle time and VMT
from deviating from the shortest common route between passengers. Indirect pooled ride
options may serve both medium distance intra-city trips that fill in gaps in the connectivity
of fixed-route PT services, or longer distance inter-city trips that provide ’express’ service
without stops along the way. In addition, targeted incentives for either door-to-door or
indirect pooled ride services that connect to PT would help to increase adoption of PT while
reducing overall travel time and costs.

The examination of the PTNC trip characteristics in strategy 389 demonstrated the vi-
ability of each of these use cases. Since the PTNC trips within San Francisco were, on
average, about the same duration as driving to/from PT and only about five to ten minutes
faster than PT paired with an active mode, the unrestricted subsidization of door-to-door
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PTNC services is not likely to be worth the cost. Instead, incentives for the use of PTNC
as a first/last mile connection to PT services combined with strategic investment in express
bus services is likely to provide more value. In particular, examination of the distribution
of the quality of PT services accessible across the City is recommended to prioritize invest-
ment in service improvements and supplementary PTNC incentives that target communities
that may be disparately affected by the confluence of poor PT service quality and increased
driving costs produced by congestion pricing. Furthermore, the inter-city PTNC trip char-
acteristics in strategy 389 demonstrate the comparative speed of driving versus PT service
connecting the City of San Francisco to the rest of the Bay Area. For commutes into the City
from the East and South Bay Area, where rail services offer relatively fast travel times but
access/egress by active transportation is not widely accessible, investment in PTNC service
to/from PT is recommended. Although not modeled in this study, shared micromobility
services (e.g., bikesharing, scootersharing) can also expand the catchment area for non-auto
access and egress to PT in these regions. A limitation of the BEAM model version used in
this study is the inability to combine anything other than walking with another access/egress
mode to PT (e.g., a PT-Drive trip that starts with a DA access leg can only be completed
by a walking egress leg; the agent does not have the option to request a TNC for the egress
leg). Thus, it is likely that PT demand was suppressed for trips that may have been made
by using different access and egress modes. Nevertheless, the results suggest that a holistic
regional congestion pricing and incentive scheme would benefit from the consideration of
investment in or incentivization of services outside of the congestion pricing zone. In the
context of the San Francisco Bay Area, the City of San Francisco may achieve additional
congestion reduction and equity benefits by making toll revenues available to bolster the use
of shared micromobility and pooled ride services to access/egress PT in other cities of the
region.

There are numerous directions for refining and expanding the scope of the policy opti-
mization considered in this study. Variations to the pricing scheme, including vehicle-specific
(e.g., discount for EV), income-specific, and temporally variable or dynamic pricing struc-
tures are all of relevance for further research. Many other dimensions could be considered
for price differentiation, including age, race/ethnicity, medical condition, neighborhood clas-
sifications, etc. In addition, there are many other secondary effects of the policy that could
be considered, including the impacts on reductions in fuel consumption and the resulting
revenues, decreased health risks from local emissions, induced demand, and increased traffic
safety, to name a few.

The impacts of the congestion pricing and incentive scheme on non-work travel and
other travel activity in the region not connected to San Francisco are also of great interest
for future work on this case study. In 2019, about 78% and 70% of all intra- and inter-city
trips in San Francisco were made for non-work purposes [174]. Since the VoT for non-work
travel tends to be lower than for commute trips, travelers are likely to be more sensitive
to both the congestion charges and incentives when making other trips not modeled in this
study. The implications of the resulting impacts on travel demand, modal demand, and
economic activity are of great importance for the evaluation of congestion pricing schemes.
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In addition to incorporating a more complete set of trip purposes for trips to/from and in San
Francisco, future iterations of this work should include representation of the other travel in
the region, at least in an abstracted form. The simulation of all trips across the full Bay Area
would drastically increase the resource intensity of an optimization-based study of congestion
pricing and thus is not recommended. A potential approach to incorporating other trips in
the region may involve estimating the aggregate flow of vehicles on main arterial roads and
highways resulting from a prediction of the travel demand and modal split for aggregate
pairs of ODs (e.g., the aggregate flow of drivers from City A to City B). This would enable
the optimization to account for the feedback loop of impacts between the fluctuations in
travel demand to and from San Francisco and those of travel demand outside of the city. A
more complete analysis of the aggregate impacts of congestion pricing and incentive schemes
at the city level would also be facilitated by this approach.

This study contributes to the development of machine learning-based approaches for
the design, optimization, and analysis of data-driven transportation policies. It is the first
congestion pricing optimization study to apply a Pareto-based optimization algorithm to the
task of congestion pricing optimization in addition to being the first to include incentives
in the multi-objective optimization of a congestion pricing scheme. In reality, the policy
development process includes so much more than data-driven decision-making. Truly fair
and equitable policy making relies on the participation of stakeholders, including outreach to
and input from community members. Ideal processes for thoroughly translating community
values and needs into policy objectives are not addressed here, but are acknowledged as
fundamental to developing equitable transportation policies. This work lays a foundation
for further development of algorithmic decision support systems to support policy makers
and stakeholders in the complex transition toward truly smart, sustainable, and equitable
civil infrastructure.



122

Chapter 7

Conclusions and Research Directions

Amid the rapid evolution of transportation systems worldwide, there is a pressing need for
dynamic data-driven decision-making tools to design and analyze multi-faceted transporta-
tion demand management (TDM) strategies. Numerous competing objectives, including the
environmental, economic, and social sustainability of the transportation system, pose signif-
icant challenges for purely algorithmic strategies - exemplifying the need for human-in-the
loop tools that aim to enhance understanding of the inherent trade-offs in policy design while
enabling stakeholders to hone in on ’optimal’ strategies that use as many levers as feasible.
To this end, this dissertation develops a methodological framework for the multi-objective
optimization of systemic transportation policies using agent-based simulation and demon-
strates the feasibility of optimizing both operational and pricing-based strategies with respect
to a handful of policy objectives while producing rich insights on both the individual- and
system-level impacts of policy design. A review of the main contributions and key findings
of this dissertation including its limitations and directions for future research are provided
in this chapter.

7.1 Mechanism Design for Optimal Transportation

Pricing Policies

Chapter 3 of this dissertation contributes to the theory of transportation pricing optimiza-
tion by proving the existence of optimal multi-modal pricing schemes including both tolls
and monetary incentives that are optimized with respect to social objectives defined on the
basis of the individual characteristics of groups of travelers. Whereas much of the trans-
portation pricing optimization literature adheres to a Utilitarian philosophy, with a focus
on minimizing system-wide costs of travel, the model formulated in this chapter seeks to
incorporate a broader range of social objectives. By incorporating monetary incentives that
can be targeted to specific modes and groups of travelers in a transportation pricing scheme
and proving that such schemes can optimize functions of their group-level outcomes, I build a
foundation on which to explore the implications of various equity-based objectives on trans-
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portation pricing strategy design. The dimensions by which the incentives are specified may
include socio-demographic characteristics (e.g., age, income, and physical impairments), oc-
cupational characteristics (e.g., essential workers), or spatial attributes of a trip (e.g., origin
or destination).

Continuation of this work includes the sensitivity analysis and application of the alter-
native social choice functions presented in this chapter. Further work is also under way
to develop a solution approach to solve the optimal social traffic assignment and incentive
problem on road networks at scale. In addition, the accuracy with which the model es-
timates and therefore optimizes travel times can be improved by incorporating a dynamic
traffic assignment approach into the model formulation. This would also enable the study
of dynamic tolls using this model. Ultimately, I aim to develop a methodology to apply
the model developed in this chapter as a tool to ’warm-start’ simulation-based optimization
studies by generating an initial set of sample solutions that provide a coarse representation of
the input-to-output relationships between pricing policy design parameters and objectives.

7.2 BISTRO

The fourth chapter of this dissertation presents BISTRO, an open-source transportation
planning and policy decision support tool that uses ABS to conduct multiobjective simulation-
based optimization of transportation systems. I designed the system specification, including
the specification of input parameters and KPIs. BISTRO was piloted in a machine learning
competition at Uber, Inc, which proved the feasibility of using BISTRO to conduct multiob-
jective simulation-based optimization of multi-dimensional transportation system interven-
tions. The pilot also produced important lessons regarding objective function design and
the challenge of producing explainable and interpretable results from simulation-based opti-
mization of transportation policies, particularly when optimizing a diverse set of inputs over
a large number of competing objectives.

7.3 Congestion pricing optimization case studies

Chapters five and six of this dissertation build upon the lessons learned from the initial pilot
study of BISTRO to develop a methodological approach for multiobjective simulation-based
optimization of congestion pricing policies. I develop this methodology across two case stud-
ies using two different types of black-box optimization algorithms (Bayesian and evolutionary
algorithms) and two different approaches to multi-objective optimization (scalarization and
pareto-based). In the first case study, using the benchmark Sioux Faux travel model, I
investigated the optimization of both cordon tolls and cordoned mileage fees with respect
to a scalarized objective function with various weighting schemes. This study contributes
to the field of congestion pricing optimization by showing that mileage-based fees Pareto-
dominate simple cordon tolls and by characterizing a three-dimensional Laffer curve of toll
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revenue with respect to codon coverage and toll rates. Finally, this study demonstrates the
importance of objective function design and elucidates a key challenge in the optimization
of congestion pricing schemes in multimodal travel models: congestion-related KPIs are of-
ten overpowering and may lead the optimization to produce unrealistic policy designs with
unnecessarily large reductions in driving.

The second case study focuses on a more realistic model of the San Francisco Bay Area
and includes a multi-level incentive scheme for pooled TNCs and public transit as input
parameters to the congestion pricing optimization problem. The addition of incentives and
inclusion of public transit revenue in the net public revenue (NPR) KPI enabled a more nu-
anced analysis of the financial sustainability of congestion pricing schemes with and without
incentives included. In contrast to the conclusions of the multi-objective optimization of
cordon tolls and cordoned mileage-based fees in chapter 5 that found that the toll revenue
and congestion objectives have a concave relationship, the case study in chapter 6 found
that, in the optimization of cordoned mileage fees with incentives, NPR is at odds with con-
gestion reduction. This is due to the added congestion mitigation effects of distributing the
toll revenue as PT and PTNC incentives for low-income travelers. This study demonstrates
the potential of incentives to reduce the inequities of congestion pricing schemes while con-
tributing to the further reduction of congestion and emissions. The use of a Pareto-based
optimization algorithm enabled an exploration of the set of Pareto-optimal congestion pric-
ing and incentive strategies that optimally trade off various KPIs. While the analysis of five
Pareto-optimal policies demonstrated the key differences across policies and the complex-
ity of the relationships between various KPIs with behavioral and operation factors of the
transportation system, more work is needed to cull out additional insights from this study.

7.4 Future work

This dissertation demonstrates that a robust policy optimization framework relies heavily
on the design of the objective function. While the case studies in my dissertation applied
just one of the three alternative social choice functions presented in chapter 3, I plan to
continue developing a principled and equitable approach for defining and operationalizing
the notion of social optimality with respect to both equity and sustainability. The level of
service KPIs implemented in BISTRO, including measures of public transit vehicle crowding,
transportation cost burden, and accessibility are a first step in this regard, and the research
I have conducted thus far on the impacts of weighted and Pareto-based optimization have
illuminated the challenges in automating public policy decision-making.

Additional technical challenges for the deployment of data-driven TDM strategies in-
clude stochasticity, resource constraints, and data privacy. BISTRO offers functionality
for scenario-based optimization wherein the optimization may be conducted across multi-
ple baselines (as opposed to a single BAU), each representing a potential variation in the
distribution of land use, mobility preferences, or other factors that may affect the distri-
bution of supply of or demand for transportation. Further model development is needed
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to incorporate the sensitivity of travel demand in the BISTRO framework to enable the
representation of induced demand in future studies. This is important to ensure that the
optimization results produced by BISTRO are robust to potential changes in the quantity
and characteristics of the travel demand in a region that may occur in response to system
interventions. In addition, BISTRO may be used to develop algorithms for transfer learning
of policies across varying scenarios and geographies. Such methodologies would characterize
hyper-parameters representing factors in the transportation network, services, and demand
profile that are significant across scenarios or geographies thereby increasing the efficiency
and robustness of the optimization. In addition, BISTRO can be used to study competition
in multi-agent systems such that may arise when the control of a mobility marketplace is
decentralized across public and private operators. These issues are of immediate concern,
as we have already seen the negative effects of independently operating on-demand mobility
services (e.g., Uber and Lyft, competing micromobility services), which will likely amplify
as additional operators and services enter the market. Another potential arena for disrup-
tion within the transportation system is that of energy management, with the impending
rapid electrification of vehicle fleets across the globe likely to bring forth new challenges in
managing the distribution of and access to energy for electric vehicle charging.

Furthermore, it is imperative that automated control of civil systems be capable of oper-
ating independently of personally identifiable or otherwise compromising data. While many
of the KPIs that I have used in my research thus far have benefited from full access to
individual-level data, I plan to improve the robustness of my approach by designing mecha-
nisms that rely only on minimally sufficient data from the transportation system. I intend to
explore the extent to which such a system can benefit society by preserving both privacy and
resources. In particular, I am interested in quantifying the tradeoffs between the efficiency
and efficacy of TDM mechanisms that seek to optimize transportation equity with limited
data access. In the short to medium term, this work will aid in the transition from a heavy
reliance on infrequent and expensive travel surveys to the use of passive data streams for
transportation planning and policy.



126

Bibliography

[1] International Energy Agency (IEA). Transport. 2022. url: https://www.iea.org/
reports/transport.

[2] Public Road Mileage, Lane-Miles, and VMT 1900 - 2019. Tech. rep. Office of Highway
Policy Information, Policy and Governmental Affairs, Federal Highway Administra-
tion, U.S. Department of Transportation, 2019. url: https://www.fhwa.dot.gov/
policyinformation/statistics/2019/vmt421c.cfm.

[3] Michael Burrows Charlynn Burd and Brian McKenzie. Travel Tim ork in the United
States: 2019. Tech. rep. United States Census Bureau, 2021. url: https://www.
census.gov/content/dam/Census/library/publications/2021/acs/acs-47.

pdf.

[4] INRIX: Congestion Costs Each American Nearly 100 hours, $1,400 a Year. Tech. rep.
INRIX, INC., 2020. url: https://inrix.com/press-releases/2019-traffic-
scorecard-us/.

[5] Mi Diao, Hui Kong, and Jinhua Zhao. “Impacts of transportation network companies
on urban mobility”. In: Nature Sustainability 4.6 (Feb. 2021), pp. 494–500. doi: 10.
1038/s41893-020-00678-z.

[6] Sneha Roy et al. “Why is traffic congestion getting worse? A decomposition of the
contributors to growing congestion in San Francisco-Determining the Role of TNCs”.
In: Case Studies on Transport Policy 8.4 (2020), pp. 1371–1382. issn: 2213-624X.
doi: https://doi.org/10.1016/j.cstp.2020.09.008.

[7] Bruce Schaller. The New Automobility: Lyft, Uber and the Future of American Cities.
Report. Schaller Consulting, 2018. url: http : / / www . schallerconsult . com /

rideservices/automobility.pdf.

[8] Bruce Schaller. Unsustainable? The Growth of App-Based Ride Services and Traffic,
Travel and the Future of New York City. Report. Schaller Consulting, 2017. url:
http://www.schallerconsult.com/rideservices/unsustainable.pdf.

[9] California Air Resources Board (CARB). 2018 Base-year Emissions Inventory Report.
data retrieved from CARB, https://ww2.arb.ca.gov/resources/documents/
2018-base-year-emissions-inventory-report, 2019.



Chapter 7. Conclusions and Research Directions 127

[10] Judd Cramer and Alan B. Krueger. “Disruptive Change in the Taxi Business: The
Case of Uber”. In: American Economic Review 106.5 (May 2016), pp. 177–182. doi:
10.1257/aer.p20161002.

[11] Alejandro Henao and Wesley E. Marshall. “The impact of ride-hailing on vehicle
miles traveled”. In: Transportation 46.6 (Sept. 2018), pp. 2173–2194. doi: 10.1007/
s11116-018-9923-2.

[12] Luis Martinez Jose Viegas. Shared Mobility: Innovation for Liveable Cities. Tech. rep.
2016. url: https://www.itf-oecd.org/sites/default/files/docs/shared-
mobility-liveable-cities.pdf.

[13] Boston Consulting Group (BCG) World Economic Forum (WEF). Reshaping Urban
Mobility with Autonomous Vehicles Lessons from the City of Boston. Tech. rep. June
2018. url: https://www3.weforum.org/docs/WEF_Reshaping_Urban_Mobility_
with_Autonomous_Vehicles_2018.pdf.

[14] Gordon S. Bauer, Jeffery B. Greenblatt, and Brian F. Gerke. “Cost, Energy, and
Environmental Impact of Automated Electric Taxi Fleets in Manhattan”. In: Envi-
ronmental Science & Technology 52.8 (2018). PMID: 29589439, pp. 4920–4928. doi:
10.1021/acs.est.7b04732.

[15] Jeffery B. Greenblatt and Samveg Saxena. “Autonomous taxis could greatly reduce
greenhouse-gas emissions of US light-duty vehicles”. In: Nature Climate Change 5.9
(July 2015), pp. 860–863. doi: 10.1038/nclimate2685.

[16] Colin J. R. Sheppard et al. “Private Versus Shared, Automated Electric Vehicles for
U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration and
Cost Impacts”. In: SSRN Electronic Journal (2020). doi: 10.2139/ssrn.3575130.

[17] Susan Shaheen and Adam Cohen. “Shared ride services in North America: definitions,
impacts, and the future of pooling”. In: Transport Reviews 39.4 (2019), pp. 427–442.
issn: 0144-1647. doi: https://doi.org/10.1080/01441647.2018.1497728.

[18] Michael Ostrovsky and Michael Schwarz. “Carpooling and the Economics of Self-
Driving Cars”. In: Proceedings of the 2019 ACM Conference on Economics and Com-
putation. EC ’19: ACM Conference on Economics and Computation. Phoenix AZ
USA: ACM, June 17, 2019, pp. 581–582. isbn: 978-1-4503-6792-9. doi: 10.1145/
3328526.3329625.

[19] Jessica R. Lazarus et al. “To Pool or Not to Pool? Understanding opportunities, chal-
lenges, and equity considerations to expanding the market for pooling”. In: Trans-
portation Research Part A: Policy and Practice 148 (June 2021), pp. 199–222. issn:
09658564. doi: 10.1016/j.tra.2020.10.007.

[20] Scheff J Liu L Miller HJ. “The impacts of COVID-19 pandemic on public transit
demand in the United States”. In: PLoS ONE 15.11 (2020). doi: https://doi.org/
10.1371/journal.pone.0242476.



Chapter 7. Conclusions and Research Directions 128

[21] Yi Qi et al. “Impacts of COVID-19 on public transit ridership”. In: International Jour-
nal of Transportation Science and Technology (2021). issn: 2046-0430. doi: https:
//doi.org/10.1016/j.ijtst.2021.11.003.

[22] William S. Vickrey. “Pricing in Urban and Suburban Transport”. In: The American
Economic Review 53.2 (1963), pp. 452–465. issn: 00028282. url: http://www.jstor.
org/stable/1823886.

[23] Arthur Cecil Pigou. The economics of welfare. Palgrave Macmillan, 2013.

[24] Jonas Eliasson. “A cost–benefit analysis of the Stockholm congestion charging sys-
tem”. In: Transportation Research Part A: Policy and Practice 43.4 (2009), pp. 468–
480. issn: 0965-8564. doi: https://doi.org/10.1016/j.tra.2008.11.014.

[25] Anders Karlström and Joel P. Franklin. “Behavioral adjustments and equity effects
of congestion pricing: Analysis of morning commutes during the Stockholm Trial”. In:
Transportation Research Part A: Policy and Practice 43.3 (2009). Stockholm Conges-
tion Charging Trial, pp. 283–296. issn: 0965-8564. doi: https://doi.org/10.1016/
j.tra.2008.09.008.

[26] Georgina Santos, Kenneth Button, and Roger G. Noll. “London Congestion Charg-
ing”. In: Brookings-Wharton Papers on Urban Affairs (2008), pp. 177–234. issn:
15287084. url: http://www.jstor.org/stable/25609551.

[27] National Inventory of Specialty Lanes and Highways: Technical Report. Tech. rep.
FHWA-HOP-20-043. Office of Operations, Federal Highway Administration, U.S. De-
partment of Transportation, 2021. url: https://ops.fhwa.dot.gov/publications/
fhwahop20043/ch3.htm.

[28] Daniel G. Chatman and Michael Manville. “Equity in Congestion-priced Parking:
A Study of SFpark, 2011 to 2013”. In: Journal of Transport Economics and Policy
(JTEP) 52.3 (2018), pp. 239–266. issn: 0022-5258.

[29] Joe Castiglione, Mark Bradley, and John Gliebe. Activity-Based Travel Demand Mod-
els: A Primer. 2016, pp. 7–8. isbn: 9780309273992. doi: 10.17226/22357.

[30] Sidney A. Feygin et al. “BISTRO: Berkeley Integrated System for Transportation
Optimization”. In: ACM Trans. Intell. Syst. Technol. 11.4 (June 2020). issn: 2157-
6904. doi: 10.1145/3384344.

[31] Jan Rouwendal and Erik T. Verhoef. “Basic economic principles of road pricing:
From theory to applications”. In: Transport Policy 13.2 (Mar. 2006), pp. 106–114.
issn: 0967070X. doi: 10.1016/j.tranpol.2005.11.007.

[32] Theodore Tsekeris and Stefan Voß. “Design and evaluation of road pricing: state-
of-the-art and methodological advances”. In: NETNOMICS: Economic Research and
Electronic Networking 10.1 (Apr. 2009), pp. 5–52. issn: 1385-9587, 1573-7071. doi:
10.1007/s11066-008-9024-z.



Chapter 7. Conclusions and Research Directions 129

[33] Erik T. Verhoef. “The implementation of marginal external cost pricing in road trans-
port”. In: Papers in Regional Science 79.3 (July 1, 2000), pp. 307–332. issn: 1056-
8190. doi: 10.1007/PL00013611.

[34] Kenneth A. Small and Jia Yan. “The Value of “Value Pricing” of Roads: Second-Best
Pricing and Product Differentiation”. In: Journal of Urban Economics 49.2 (Mar.
2001), pp. 310–336. issn: 00941190. doi: 10.1006/juec.2000.2195.

[35] Yang Liu, Xiaolei Guo, and Hai Yang. “Pareto-improving and revenue-neutral con-
gestion pricing schemes in two-mode traffic networks”. In: NETNOMICS: Economic
Research and Electronic Networking 10.1 (Apr. 2009), pp. 123–140. issn: 1385-9587,
1573-7071. doi: 10.1007/s11066-008-9018-x.

[36] Jerome Mayet and Mark Hansen. “Congestion Pricing with Continuously Distributed
Values of Time”. In: Journal of Transport Economics and Policy 34 (2021), p. 12.

[37] Erik T. Verhoef, Kenneth A. Small, and Ken A. Small. “Product Differentiation on
Roads: Constrained Congestion Pricing with Heterogeneous Users”. In: Journal of
Transport Economics and Policy 38.1 (2004), pp. 127–156. issn: 00225258.

[38] Hanna Armelius. “An Integrated Approach to Urban Road Pricing”. In: Journal of
Transport Economics and Policy 39 (2005), p. 19.

[39] Carlos F. Daganzo and Lewis J. Lehe. “Distance-dependent congestion pricing for
downtown zones”. In: Transportation Research Part B: Methodological 75 (2015),
pp. 89–99. issn: 0191-2615. doi: https://doi.org/10.1016/j.trb.2015.02.010.

[40] Paolo Ferrari. “Road pricing and users’ surplus”. In: Transport Policy 12.6 (Nov.
2005), pp. 477–487.

[41] Amihai Glazer and Esko Niskanen. “Which Consumers Benefit from Congestion
Tolls?” In: Journal of Transport Economics and Policy 34 (2021), p. 12.

[42] A.D May et al. “The impact of cordon design on the performance of road pricing
schemes”. In: Transport Policy 9.3 (July 2002), pp. 209–220. issn: 0967070X. doi:
10.1016/S0967-070X(02)00031-8.

[43] Kenneth A. Small. “Road Pricing and Public Transport”. In: Research in Trans-
portation Economics 9 (2004), pp. 133–158. issn: 07398859. doi: 10.1016/S0739-
8859(04)09006-7.

[44] Younes Hamdouch et al. “Congestion pricing for multi-modal transportation sys-
tems”. In: Transportation Research Part B: Methodological 41.3 (Mar. 2007), pp. 275–
291. issn: 01912615. doi: 10.1016/j.trb.2006.04.003.

[45] Takuya Maruyama and Agachai Sumalee. “Efficiency and equity comparison of cordon-
and area-based road pricing schemes using a trip-chain equilibrium model”. In: Trans-
portation Research Part A: Policy and Practice 41.7 (Aug. 2007), pp. 655–671. issn:
09658564. doi: 10.1016/j.tra.2006.06.002.



Chapter 7. Conclusions and Research Directions 130

[46] Kenneth A. Small et al. “Differentiated Road Pricing, Express Lanes, and Car-
pools: Exploiting Heterogeneous Preferences in Policy Design [with Comments]”. In:
Brookings-Wharton Papers on Urban Affairs (2006), pp. 53–96. issn: 15287084. url:
http://www.jstor.org/stable/25067428.

[47] A. Sumalee. “Optimal Toll Ring Design with Spatial Equity Constraint: An Evolu-
tionary Approach”. In: 2003.

[48] Hai Yang and Xiaoning Zhang. “Multiclass Network Toll Design Problem with Social
and Spatial Equity Constraints”. In: Journal of Transportation Engineering 128.5
(2002), pp. 420–428. issn: 0733-947X, 1943-5436. doi: 10 . 1061 / (ASCE ) 0733 -

947X(2002)128:5(420).

[49] Hai Yang and Hai-Jun Huang. “Carpooling and congestion pricing in a multilane
highway with high-occupancy-vehicle lanes”. In: Transportation Research Part A:
Policy and Practice 33.2 (Feb. 1999), pp. 139–155.

[50] Mark Burris et al. “The impact of HOT lanes on carpools”. In: Research in Trans-
portation Economics 44 (June 2014), pp. 43–51. issn: 07398859. doi: 10.1016/j.
retrec.2014.04.004.

[51] Jaimyoung Kwon and Pravin Varaiya. “Effectiveness of California’s High Occupancy
Vehicle (HOV) system”. In: Transportation Research Part C: Emerging Technologies
16.1 (Feb. 2008), pp. 98–115. issn: 0968090X. doi: 10.1016/j.trc.2007.06.008.

[52] Susan Shaheen and Ata Kahn. Shared Mobility and Automated Vehicles: Responding
to Socio-Technical Changes and Pandemics. London, England: The Institution of
Engineering and Technology (IET), 2021, pp. 1–12. isbn: ISBN-13: 978-1-78561-862-
8.

[53] Joakim Ekström, Leonid Engelson, and Clas Rydergren. “Heuristic algorithms for a
second-best congestion pricing problem”. In: NETNOMICS: Economic Research and
Electronic Networking 10.1 (Apr. 2009), pp. 85–102. issn: 1385-9587, 1573-7071. doi:
10.1007/s11066-008-9019-9.

[54] A.D May and D.S Milne. “Effects of alternative road pricing systems on network
performance”. In: Transportation Research Part A: Policy and Practice 34.6 (2000),
pp. 407–436. issn: 0965-8564. doi: https://doi.org/10.1016/S0965-8564(99)
00015-4.
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Appendix A

BISTRO - General System
Specifications

A.1 Introduction

The Berkeley Integrated System for Transportation Optimization (BISTRO) framework har-
nesses advances in the machine learning and data science fields to enable data-driven trans-
portation demand modeling and policy analysis at a resolution and scale that can empower
and engage city officials, transportation system managers, the private sector, academics, and
citizens to understand, analyze, and collaboratively plan for the rapidly evolving transporta-
tion realities shaping urban areas worldwide.

The BISTRO platform gives users an opportunity to envision a set of changes to existing
transportation systems that bring about the greatest improvements across important indi-
cators of transportation system performance in terms of system-wide level of service (LoS),
congestion, and sustainability.

This document details the system specifications of BISTRO. First, Section A.2 provides
a brief overview of the current state of transportation planning, agent-based simulations and
BISTRO. Then, Sections A.4 and A.5 gives a detailed mathematical description and analysis
of the model behind BISTRO.

A.2 Background

Related work

As widely available transportation modes are proliferating and changing on a monthly ba-
sis or faster (e.g., micromobility, shared mobility, automated mobility, etc.), understanding
the behavioral responses of users and the subsequent transportation outcomes merit in-
vestigation. Forward-looking studies have begun to look at the possible transportation and
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environmental benefits offered by future and emerging shared modes, such as work conducted
by the International Transport Forum1 and the Lawrence Berkeley National Laboratory.2

In the U.S. context, many metropolitan planning organizations (MPOs) are equipped to
analyze the long-range transportation effects of new modes in their regions, but just as many
are not. The purpose of BISTRO is to provide a platform on which users can envision near-
term implementable operational changes to a region’s transportation system. These changes
are intended to complement existing operational and infrastructure expenditure processes.
Additionally, the outputs of the platform can provide a basis for discussions across many
sets of stakeholders.

Agent-Based Simulation

Agent-based simulation (ABS) of travel demand, is a method by which to evaluate the
network-wide effects of modifications to a transportation system. Agent-based travel de-
mand microsimulation realizes the daily activity schedules and transportation choices of a
socio-demographically heterogeneous population of citizens on a virtual representation of
physical road networks.3 This methodology enables an informative resolution of feedback
loops and spatio-temporal constraints operating between travel purposes, road network con-
gestion, household vehicle availability, and the levels of service provided by infrastructure
and available transportation modes.

Person agents represent simulated individuals who make decisions about what trans-
portation mode(s) to use to travel to and from their daily activities. During the simulation,
person agents make one or more tours of travel to sequential activities, starting and ending
each tour at home. Each trip in a tour represents travel from one activity to the next. Trips
may consist of one or more legs of travel, each using a particular mode of transportation. A
mode choice model characterizes the transportation mode preferences of agents by account-
ing for the sensitivity of the agent to the attributes of each alternative, such as wait time,
in-vehicle travel time, and trip cost.4 The simulator uses a realistic representation of the
transportation network and a routing algorithm to determine the generalized cost of routing
vehicles on the network as a function of the expected travel-time on links taking into account
congestion (i.e., movement slower than the maximum allowable speed due to the number of
vehicles on a link exceeding capacity).

The inputs to one instance of the simulation include a representative population of syn-
thetic agents together with their typical daily activity plans. A virtual road network, transit
schedule, and parking infrastructure define the transportation supply. The simulation pro-

1For more information, see: https://www.itf-oecd.org/sites/default/files/docs/shared-mobility-liveable-
cities.pdf

2For more information, see https://www.nature.com/articles/nclimate2685
3While the population and its plans are synthetic, econometric modeling techniques using census data

and travel surveys together with calibration against observed mode splits and network volumes ensure that
the simulation represents typical daily traffic conditions.

4For more information about mode choice models, see: https://eml.berkeley.edu/books/choice2.html
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ceeds iteratively: evaluating the plans on the physical network and then permitting agents
to replan components of their schedule in response to the generalized costs of travel. Once
agents have settled on a set of plans that collectively maximize the average utility of their
set of evaluated plans, the simulation engine reaches a fixed point or equilibrium condition.

Each simulation run produces outputs of the actual paths and travel times realized by
each person agent and each vehicle, as well as a host of other data, further detailed in Section
A.4. In practice, outputs of agent-based simulations may be used to communicate policy
alternatives to stakeholders. For example, visualizations of congested roadways with millions
of agents behaving independently can provide a concise method to communicate the effects
of infrastructure interventions.

Agent-based simulation allows for the evaluation of counterfactual scenarios. A scenario
is a simulation that implements a unique set of circumstances that differs in some way from a
base case. The base case is calibrated using data representing the current state of the trans-
portation system being simulated. Examples of scenarios include alteration of the population
configuration representing population or employment growth, alteration of the transporta-
tion network such as unexpected road network restrictions due to sporting events, inclement
weather or traffic accidents, as well as the introduction of new modes of transportation such
as autonomous vehicles. Well-calibrated simulations of transportation systems, such as those
just described, allow stakeholders to better understand the implications of policy proposals
in hypothetical travel environments.

BISTRO

The Berkeley Integrated System for TRansportation Optimization (BISTRO) is an open-
source Collaborative Planning Support System (CPSS) designed to assist stakeholders in
addressing the increasingly complex problems arising in transportation systems worldwide.
BISTRO includes an agent-based modeling and simulation (ABMS) framework—namely the
Behavior Energy Autonomy and Mobility (BEAM) framework5 developed at Lawrence Berke-
ley National Lab (LBNL)—and scenario development pipeline to build empirically-validated
simulations of multimodal metropolitan transportation systems and algorithmically opti-
mize system interventions that best align with policy and planning objectives. BISTRO was
developed with the intent to leverage the distinct backgrounds of planners and computer
scientists to facilitate a process to draw upon the strengths of two complementary areas of
expertise to inform rather than direct public conversations about proposed transportation
policy, investments, and regulations. In other words, it is the intent of the BISTRO devel-
opers to offer it as a tool to add complementary value to already existing transportation
planning processes.

For an in-depth description of the BISTRO framework and all of its major components
illustrated in Figure A.1, refer to Chapter 4.

5For more information about BEAM, see: http://beam.lbl.gov/
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Figure A.1: BISTRO framework flow diagram, outlining processes, user defined inputs,
outputs and optimization.

A.3 Study Configuration

BISTRO enables the study of optimal interventions to a given transportation system that
is modeled within the BISTRO run environment. A BISTRO run environment is configured
using a set of fixed input data that define the required transportation system supply elements
(e.g., road network, transit schedule, on-demand ride fleet) and demand elements (e.g.,
synthetic population, activity plans, and mode choice function parameters). Precisely which
aspects of the virtual transportation system should be represented in the simulation model
depends on the strategic goals and system objectives defined as part of the planning and
analysis process motivating a particular BISTRO use case.

Each simulation run takes as input a set of configuration and user-defined input vari-
ables. The configuration variables (also called fixed scenario data in Figure A.1) define the
geographic and physical constraints of the transportation network, the characteristics of ve-
hicles in the transit, private, and on-demand ride fleets, and the instantiation of each agent
in the population, including their socio-demographic characteristics and activity plans. The
configuration variables are not intended to be altered in any way during optimization, but
may be altered through the scenario development pipeline to produce different scenarios
across which the system interventions may be optimized.
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The user-defined inputs (UDIs) represent the investment(e.g., transit fleet mix modi-
fication, bus route modifications, parking supply, electric vehicle charge station locations,
dynamic redistribution of e-bikes or on-demand vehicles), incentive (e.g., incentives to spe-
cific socio-demographic groups for selected transportation modes, road pricing/toll roads,
fuel tax), or policy/operational (e.g., transit schedule adjustment, transit fare modification,
parking pricing levers applicable to and available for the study at hand). The project owner
may constrain the range of possible values upon which each UDI is valid by setting the
corresponding input validation parameters and business rules.

In the following section, the specific scenario of Sioux Faux,

Scenario Configuration Inputs

System interventions may be optimized using one or more distinct representations of the
supply and demand within the transportation system, each of which is called a scenario.
The BISTRO scenario development pipeline enables project owners to generate multiple
scenarios, each of which is defined by a unique set of configuration inputs that determine
the physical transportation network and the dynamics of vehicles and person agents as well
as the spatio-temporal and socio-demographic distribution and sensitivity of demand across
the network.

Thus, the scenario configuration inputs include the following variables:

1. Transportation Network Configuration: inputs that specify the geography and
physics of the transportation system as well as the operation of each transportation
mode in the system.

a) Transportation network(s): one or more directed graph composed of nodes
and road links that define the access to and physics of vehicles that move through-
out the transportation system. For example there may be separate networks for
each of the following modes: pedestrians, cyclists, road transport, and rail.

b) Facilities: the locations of facilities in the network, each of which is located at a
network node. Facilities include residences, places of work, transit stations, and
additional locations at which agent activities may occur.

c) Transportation modes: each transportation mode is configured by inputs that
define the number and type of vehicles in the fleet (if applicable), the method of
distributing those vehicles at the start of a simulation run, the operational costs
associated with the operation of the mode, and the fare, if any, charged for use of
the mode. Transit mode configuration inputs also define the facilities and paths
used for each transit route.

2. Population Configuration: inputs that specify the distribution and characteristics
of the population, their activity plans, and modal preferences.
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a) Population synthesis: the spatial distribution of households and the person
agents that are in them, including the spatial distribution of socio-demographic
variables. Concretely, the population synthesis inputs define the number and
size of households to be randomly assigned to homes as well as the distribution
of household- and individual-level socio-demographics in within each geographic
zone.

b) Daily activity schedules: the spatio-temporal distribution of activity plans.
For example, a scenario thta investigates a special event may be implemented
in the scenario configuration by altering the activity plans of a portion of the
population. Other examples include altering the scenario configuration to mimic
changes in the employment rate or the telecommute mode share.

c) Mode choice: the mode choices of person gents are determined by a multinomial
logit model, the coefficients of which can be altered by scenario configuration
inputs. Doing so would allow for a sensitivity analysis across scenarios of varying
demand sensitivities.

User-Defined Inputs

A boundary separates external, exogenously defined inputs from the BISTRO simulation
optimization pipeline. Outside of the boundary, the user-defined inputs (UDIs) represent the
investment, incentive, and policy levers applicable to and available for the study at hand.
Concretely, algorithm developers encode solutions as numeric values that represent vector-
valued variables controlling aspects of the initialization and evolution of the simulation. For
example, a UDI that alters frequency of buses on a route must specify a target transit agency,
a route, a start time, an end time, and the desired headway.

BISTRO provides a library of possible inputs for scenario designers to adapt to specific
use cases. The selection of UDIs is intended to be compatible with the system objective.
UDIs may represent, for example, the investment (e.g., transit fleet mix modification, bus
route modifications, parking supply, electric vehicle charge station locations, dynamic re-
distribution of e-bikes or on-demand vehicles), incentive (e.g., incentives to specific socio-
demographic groups for selected transportation modes, road pricing/toll roads, fuel tax),
or policy/operational (e.g., transit schedule adjustment, transit fare modification, parking
pricing) levers applicable to the study at hand. The project owner may constrain the range
of possible values upon which each UDI is valid by setting the corresponding input validation
parameters and business rules. The example input file for bus scheduling shown in Table
A.1 defines alteration of the headway of a particular bus route during a particular service
period (defined by its start and end times). For discussion of the initially released BISTRO
UDIs, refer to the BISTRO paper. An inventory and up-to-date descriptions of the UDIs
may be found on the BISTRO website6.

6https://sfwatergit.github.io/BISTRO-Website/
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Table A.1: Example of bus frequency adjustment input file.

route id start time end time headway secs exact times

1340 21600 79200 900 1
1341 21600 36000 300 1
1341 61200 72000 300 1

Input Validation and Business Rules

While BISTRO maintains a library of available interventions compatible with BEAM, sce-
nario designers, policy makers, and other stakeholders will often want assurance that in-
feasible, regressive, or otherwise undesirable input combinations are prevented from being
selected as “optimal.” Together with syntactic and schematic validation of inputs, flexibly-
defined business rules can effectively act as constraints on the search space—enhancing the
interpretability and, thereby, the rhetorical and communicative value of BISTRO-derived
solutions.

A.4 Evaluation and Scoring

The quality of a policy tested with BISTRO is judged based on a weighted combination
of measurable outcomes from the simulation that emulate common operational and social
goals considered by cities when evaluating the broader impacts of transportation policy and
investment. The scoring components are derived from a discrete set of output variables
produced for each simulation run.

The outputs of the simulation produced by users’ solutions will determine the values of key
performance metrics of the impact of the solutions on the accessibility, LoS, and congestion
of the transportation network in the city of interest, as well as the resource constraints and
environmental sustainability of the resulting network-wide travel equilibrium.

The following subsections detail the relevant person agent and vehicle movement outputs
in the simulation as well as the scoring criteria used for evaluation.

Person output

For each trip taken by a person agent in the simulation, the following data is produced as
output:

1. Transportation mode(s): for each trip, a person agent chooses one of the modes
available to them. Person agents may use one or more modes to travel from their origin
to their desired destination, as they may transfer between modes along the way.
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a) Mode(s) available: the mode(s) available to person agents to use for each trip,
including: walk, personal bicycle, personal car, on-demand ride, bus, rail, shared
bicycle, shared scooter.

b) Mode choice: the mode chosen for each trip. Mode choices are made at the
trip level, as the agent considers all available combinations of modes that may be
used to travel from one activity to another. The use of a transit mode (bus or
rail) involves the combination of that mode with one or more other modes used to
access and egress the transit station. For example, a person agent may choose to
drive to transit, which will result in a walking egress leg from the transit station
to the agent’s destination.

2. Travel time: the time spent by the person agent in the act of traveling during each
leg of a trip. Travel time has several components, including:

a) In-vehicle travel time: the time spent in a vehicle by an agent while traveling
to an activity.

b) Wait time: the time spent by an agent waiting for the arrival of a vehicle. Wait
time may include time spent at a bus stop or time spent waiting for the arrival
of an on-demand ride vehicle after the ride has been reserved.

c) Transfer time: time spent walking from one transportation mode to another
while completing a trip. Transfer time may include walking from the bus stop of
one bus route to a bus stop of another bus route.

3. Travel expenditure: the cost incurred by a person agent during a trip. The net
cost of travel incurred may include:

a) Transit fares

b) On-demand ride fares

c) Gas consumption by a personal vehicle

d) Tolls paid (if applicable)

e) Applicable incentives

4. Incentives: the amount of monetary incentive available (based on the modes available)
for a trip and the amount of incentive consumed by an agent during a trip. The amount
of incentive consumed for a particular trip may not be more than the travel expenditure
incurred for the trip.

5. Trip purpose: the nature of the primary activity to which a person agent is traveling
during a trip. Trip purpose is segmented into two or more mutually exclusive categories.
In the most simple case, there are two trip purpose categories: work trips and secondary
trips. Additional trip purpose categories may be included in accordance with the
availability of such categories in the activity plans used for the study at hand.
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Vehicle output

Every vehicle movement during the simulation produces the following outputs:

1. Origin-Destination-Time (ODT) record: the origin location, destination location,
time of departure, and time of arrival of a vehicle movement.

2. Path: an ordered list of the links traversed on the path from the origin to the desti-
nation of a vehicle movement.

3. Fuel consumption: the amount of fuel consumed by a vehicle during a movement.

4. Vehicle occupancy: the number of passengers in a vehicle during a movement.

Scoring criteria

Transportation system intervention alternatives are scored in BISTRO based on a function of
score components evaluated using key performance indicators (KPIs) of the simulation. KPIs
emulate common operational, environmental, and social goals considered by transportation
planners and policymakers when evaluating the broader impacts of transportation policy and
investment. BISTRO project planners may select KPIs to include in the scoring function
from an existing library of options, or may choose to develop additional KPIs, as appropriate,
for the goals and system objectives of the project. Additionally, the form of the scoring
function may be designed by the analyst in consultation with the project planner.

These KPIs are all affected by the user-defined input variables, and care must be taken
when optimizing to understand the interactions between metrics. There are two types of
KPIs:

1. Those that measure the operational efficiency of the transportation system (e.g., vehicle
miles traveled [VMT], vehicle delay, operational costs, revenues)

2. Those that evaluate the experience of transportation system users (e.g., generalized
travel expenditure, bus crowding experienced, accessibility)

Both types of metrics are scored simultaneously by comparing the user-produced results to
the business-as-usual (BAU) scenario.

This section describes the six categories of KPIs that have been developed and imple-
mented in BISTRO at the time of publication of this document.

Accessibility

In an urban transportation planning setting, accessibility has often been defined as a measure
of the ease and feasibility with which opportunities or points of interest can be reached via
available modes of travel. Although there are many ways to measure accessibility, it is
quantified herein as the average number of points of interest (of a specific type of activity)
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reachable within a given duration of time. More specifically, accessibility is measured as the
sum of the average number of points of interest reachable from network nodes by car or using
public transit, within a specified amount of time during specific time periods. Examples of
the how the accessibility metric may be disaggregated by trip purpose, mode, and time
periods are shown include:

1. Accessibility to work-based trips by car: The sum of the average number of work
locations accessible from each node by car within 15 minutes during the AM peak (e.g.,
7–10AM).

2. Accessibility to work-based trips by public transit: The sum of the average
number of work locations accessible from each node using public transit within 15
minutes during the AM peak (e.g., 7–10AM).

3. Accessibility to secondary trips by car: The sum of the average number of sec-
ondary locations accessible from each node by car within 15 minutes during the AM
peak (e.g., 7–10AM) and midday period (e.g., 10AM–5PM) periods.

4. Accessibility to secondary trips by public transit: The sum of the average
number of secondary locations accessible from each node using public transit within
15 minutes during the AM peak (e.g., 7–10AM) and midday period (e.g., 10AM–5PM)
periods.

Figure A.2 displays the accessibility for work-based and other trips, by car and by public
transit, in a benchmark BISTRO scenario.

Equity

The socio-demographic and spatial heterogeneity of travel behavior within BISTRO enables
a variety of equity-focused impact analyses. One such metric, which is applicable in sce-
narios for which there is limited intuition about both the composition of the population
demographics and the spatial distribution of resources (e.g., transit access, car ownership,
etc.), is presented as such:

• Average generalized transportation cost burden: the generalized transportation
cost for a particular trip is computed as the sum of the travel expenditures of the trip
(costs of fuel, fares minus incentives, as applicable) and the duration of the trip multi-
plied by the average value of time of the population. The cost burden is computed by
dividing the generalized cost burden by the household income of the agent completing
the trip. The average generalized transportation cost burden is thus computed for all
work trips and all secondary trips, separately.

Although this is an aggregate measure and does not examine the changes in outcomes
for specific population groups, the means to pay of each household is accounted for.
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(a)

(b)

(c)

(d)

Figure A.2: Points of interest accessible within 15 minutes in the Business as Usual (BAU)
of a BISTRO benchmark scenario: (a) accessibility to work locations by car, (b) accessibil-
ity to secondary locations by car, (c) accessibility to work locations by public transit, (d)
accessibility to secondary locations by public transit.
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Level of Service

The level of service (LoS) experienced by public transit passengers has a direct influence on
short- and long-term demand for public transit service. In the short-term, passenger demand
for a particular transit line is dependent on the time and cost of alternative travel options.
Thus, the frequency and service period of transit service determines the availability, wait
times, transfer times, and in-vehicle times of a prospective transit trip and thus the utility of
that trip in comparison to the same trip completed with alternative transportation modes.
In addition, the available capacity on a transit vehicle affects whether or not the passenger
can board transit at the desired time. Furthermore, the comfort afforded by the available
space on a transit vehicle has long-term effects on transit demand, as passengers internalize
their experience during many transit trips over time and develop an additional aversion or
affinity to transit based on their expectation of the LoS. Upon experiencing the discomfort of
an overcrowded transit vehicle for the same ‘trip’ (e.g., a traveler’s 8AM home–work morning
commute trip), a traveler will come to expect that LoS when considering whether to take
transit for that trip in the future. Though the LoS may be measured in BISTRO by any one
of the factors mentioned, here is an example of LoS in terms of passenger comfort:

1. Average bus crowding experienced: computed as the average over all transit legs
of the total passenger-hours weighted by the value of time multipliers corresponding to
the load factor (the ratio of total passengers to the seating capacity) of the bus during
the leg.

Congestion

Congestion is measured in two primary ways: the total sum of miles traveled by all modes on
the network, and by the delay incurred. Delay—calculated as the difference between actual
and free flow time—is presented both as a sum across all vehicle movements in the simulation
and as an average delay per agent trip. Using these three measures of congestion provides
insight into the destination- or opportunity-independent level of mobility on a network, the
overall network performance, and efficiency.

1. Total Vehicle Miles Traveled (VMT): total miles traveled by all motorized vehicles
of the system during the simulation.

2. Average Vehicle Delay per Person Agent Trip: the average across agent trips
of vehicle hours of delay experienced by all vehicles while occupied by one or more
passengers during the simulation.

Financial Sustainability

Financial Sustainability is considered on aggregate, as the sum of the operational costs of
bus service and the total incentives used subtracted by the total bus revenue collected.
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Table A.2: Default Vehicle Types currently used in simulations. Note: other vehicle types
can be chosen by users when configuring a new scenario.

Vehicle type, c ∈ C
Fuel
type

Fuel
consumption
rate
(Joule/meter)

Opera-
tional
cost
($/hour)

Seating
capac-
ity

Stand-
ing
capac-
ity

CAR
gaso-
line

3655.98 n/a 4 0

BUS-DEFAULT diesel 20048 89.88 37 20
BUS-SMALL-HD diesel 18043.2 90.18 27 10
BUS-STD-HD diesel 20048 90.18 35 20
BUS-STD-ART diesel 26663.84 97.26 54 25

1. Operational Costs: total costs incurred by the public transit agency operations
including the cost of fuel consumed, and hourly variable costs. Hourly variable costs
include estimated labor, maintenance and operational costs. An example of the rates
for each of these factors is specified in the vehicle fleet configuration variables (see
Table A.2).

Table A.3: Fuel Types currently used in simulations. Note: other fuel types can be chosen
by users when configuring a new scenario.

Fuel type
Fuel cost
($/MJoule)

Gasoline 0.03
Diesel 0.02

Electricity 0.01
Biodiesel 0.01

2. Incentives Used: total incentives used by agents.

3. Revenue: sum of total bus fares collected.

Environmental Sustainability

Sustainability metrics provide a sense of the local externalities resulting from any trans-
portation interventions.

1. Total Particulate (PM2.5) Emissions: total PM2.5 emissions produced by all motor-
ized vehicles during the simulation. Using criteria pollutants, specifically particulate
matter running exhaust emission factors, presents a mileage-based measure of local
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air quality impacts based upon vehicle type. This metric provides a complementary
addition to fuel/energy consumption-based metrics, which are captured elsewhere7.

2. Total Greenhouse Gas (GHG) Emissions: total well-to-wheels8 emissions pro-
duced by all vehicles. The well-to-wheels emissions are calculated using estimates of
fuel consumed calculated as a function of vehicle speeds. For more information on
the methodology followed to estimate fuel consumption, please refer to the BEAM
documentation https://beam.readthedocs.io/en/latest/index.html.

A.5 Variable and Scoring Function Specification

The scoring criteria are defined explicitly as functions of the input and output variables
of a simulation run. For ease of understanding, the variable notation reflects the meaning
of each category of variable in the following manner: all network and vehicle configuration
input variables are denoted with a Z, all population configuration input variables are denoted
with a N , all user-defined input variables are denoted with a D, all person agent-level output
variables are denoted with an X, and all vehicle movement output variables are denoted with
a Y . The indices identifying the meaning of each variable will be defined in the following
sections in addition to the corresponding units of measurement.

Input Variable Specification

Transportation network and fleet configuration

Network and fleet characteristic variables are defined during the configuration of a simulation,
and remain static for each scenario. Tables A.4 and A.5 provide a summary of the network
and fleet configuration input variables, respectively.

The road network is a directed graph, G(L,W ), comprised of W nodes connected by L
links. Road network configuration variables are indexed by the link identifier l ∈ L. A link
instance is defined by the Boolean variable, Z l

i,j, which indicates the origin and destination
nodes connected by link l.

Z l
i,j =

{
1 if link l connects node i to node j

0 otherwise

7For more information on the methodology followed to develop this metric, please refer to the California
Air Resources Board documentation: https://www.arb.ca.gov/cc/capandtrade/auctionproceeds/cci_
emissionfactordatabase_documentation.pdf?_ga=2.94247453.1690201828.1547860553-1364631033.

1545190476
8Well-to-wheels analyses account for total life-cycle emissions, accounting for fuel or energy production,

transport, and eventual consumption/burning in vehicles, among other aspects. More information can be
found here: https://ec.europa.eu/jrc/en/jec/activities/wtw.
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Table A.4: Transportation Network Configuration Input Notation

Transportation Network
Notation Description Specification
L All links in the network l ∈ L
W All nodes in the network w ∈ W
F All facilities in the network f ∈ F ⊂ W
M All transport modes in the network m ∈M
Z l
i,j Link instance between nodes i, j ∈ W Z l

i,j ∈ {0, 1}
Z l
length Length of link l ∈ L (m) Z l

length ∈ R+

Z l
capacity Capacity of link l ∈ L (vehicles/hour) Z l

capacity ∈ R+

Z l
free−flow Free-flow speed of link l ∈ L (m/sec) Z l

free−flow ∈ R+

ZK
w Facility instance at node w ∈ W ZK

w ∈ {0, 1}
Public Transit Network

Notation Description Specification
T All transit agencies in the network t ∈ T
Rt
routes All routes operated by agency t ∈ T r ∈ Rt

routes

Ktransit All transit stations in the network f ∈ Ktransit ⊂ F
nt,rstops Number of stops on route r ∈ Rt

routes of agency
t ∈ T

nt,rstops ∈ R, nt,rstops > 0

Zt,r
stops Ordered list of stops on route r ∈ Rt

routes of
agency t ∈ T

Zt,r
stops ⊂ Ktransit

nt,rpath Number of links in the path for route r ∈
Rt
routes of agency t ∈ T

nt,rpath ∈ R, nt,rpath > 0

Zt,r
path Ordered list of links on route r ∈ Rt

routes of
agency t ∈ T

Zt,r
path ⊂ Ktransit

Zt
fare The set of fares per ride with agency t charged

to riders of each age
Zt
fare ∈ RA

+, Z
t
fare,a ∈ R+

Zt,r
headway The headway on route t ∈ Rt

routes (secs) Zt,r
headway ∈ R+

nt,rtrips Number of trips on route r ∈ Rt
routes of agency

t ∈ T
nt,rtrips ∈ R, nt,rtrips ≥ 0

Zt,r
trips Set of all trips made on route r ∈ Rt

routes Zt,r
trips ∈ Rnt,r

trips

Zv
start Service start time of vehicle v ∈ Ztransit Zv

start ∈ R, Zv
start ≥ 0

Zv
end End time of vehicle v ∈ Ztransit Zv

end ∈ R, Zv
end ≥ 0

On-Demand Ride Services
Notation Description Specification
S All types of on-demand ride services s ∈ S := {ride alone, pooled}
Zs
fare,base Base fare for service s ∈ S ($ / ride) Zs

fare,base ∈ R, Zs
fare,base ≥ 0

Zs
fare,dist Distance-based fare for service s ∈ S ($ / m) Zs

fare,dist ∈ R, Zs
fare,dist ≥ 0

Zs
fare,dur Duration-based fare for service s ∈ S ($ / min) Zs

fare,dur ∈ R, Zs
fare,dur ≥ 0
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Each link is given a length (in miles), Z l
length, capacity (in vehicles per hour), Z l

capacity,

and free-flow speed (in miles per hour), Z l
speed−limit. These variables are input to the rout-

ing operator during the simulation to determine the travel time of vehicle movements as a
function of the number of vehicles on a link at a particular time.

Every point of interest in a BISTRO simulation (e.g., residences, work locations, transit
stations, etc.) is located at one and only one node in the network such that the set of all
facilities, F is a subset of the set of nodes, W . The Boolean variable ZK

w denotes that facility
f ∈ F is located at node w ∈ W . The sets of all points of interest of a particular type,
such as the set of all transit stations Ktransit or the set of all residences Kresidence, are each
a subset of the set of all facilities, F .

Zf
w =

{
1 if facility f is located at node w

0 otherwise

The transit network configuration follows a General Transit Feed Specification (GTFS)
format. Each transit agency, t ∈ T in a BISTRO simulation environment has one or more
transit routes. Thus, the transit network is a subgraph of the road network comprised of t
set of all transit facilities Ktransit ⊂ W and a set of routes, Rt

routes, operated by each agency,
t ∈ T . Each transit route is defined by an ordered list of nt,rstops transit stations at which

the route stops, Zt,r
stops = {Kt,r,i}i=1,...,nt,r

stops
, and an ordered list of nt,rpath links along which the

route travels, Zt,r
path = {li}i=1,...nt,r

path
.

In the default BISTRO transit network configuration, the fare structure for transit is
age-based and identical across all routes in an agency. The fares for each transit agency t
are defined by the set Zt

fare = {Zt
fare,a}a=0,1,...,max age such that Zt

fare,a denotes the fare for
passengers of age a ∈ {0, 1, . . . ,max age}.

There are two available types of on-demand ride services, S. The ride alone service
type allows passengers to reserve a ride on-demand directly from their origin to destination
for themselves (and companion(s)). The pool service type allows passengers to reserve a
ride on-demand from their origin to destination for themselves and up to one companion
in which the ride may be shared with other passengers traveling along a similar route. A
pooled on-demand ride may deviate from the shortest path for any particular passenger in
order to pick up or drop off another passenger. Each service type s ∈ S is instantiated with
fare parameters, including the base fare Zon−demand,s

fare,base , a distance-based fare Zon−demand,s
fare,distance , and

a duration-based fare Zon−demand,s
fare,duration. The total fare for on-demand rides is the sum of the base

fare, the product of the total ride distance and the distance based fare, and the product of
the total ride duration and the duration-based fare (see section A.5).

The set of all vehicles, V , is comprised of the union of the set of personally owned vehicles,
Vpersonal, the set of buses, Vbus, and the set of on-demand vehicles, Von−demand. The number
and type of vehicles in the private and on-demand fleets is defined during the configuration
of the simulation and remains independent of user-defined input. However, the number of
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Table A.5: Vehicle Fleet Configuration Input Notation

Vehicle Fleet Configuration
Notation Description Specification
V All vehicles in the transportation

system
v ∈ V := Vtransit∪Von−demand∪Vprivate

Vtransit All transit vehicles v ∈ Vtransit ⊂ V
V t,r
fleet All transit vehicles in the fleet ser-

vicing route r ∈ Rt
routes of transit

agency t ∈ T

v ∈ V t,r
fleet ⊂ Vtransit

Vprivate All privately owned vehicles v ∈ Vprivate ⊂ V
Zv
hhd,h Vehicle ownership instance of vehi-

cle v ∈ Vprivate owned by household
h ∈ H

Zv
hhd,h ∈ {0, 1}

C All possible vehicle types in the
transportation system

c ∈ C

Cm All possible vehicle types in the ve-
hicle fleet for mode m ∈M

c ∈ Cm ⊂ C

Zc
seating The passenger seating capacity of

vehicle type c ∈ C
Zc
seating ∈ R, Zc

seating > 0

Zc
standing The passenger standing capacity of

vehicle type c ∈ C
Zc
standing ∈ R, Zc

standing ≥ 0

Zc
fuel−type Fuel type used by vehicle type c ∈ C Zc

fuel−type ∈ {gas, diesel, electricity}
Zc
fuel−cons The average fuel consumption rate

of vehicle type c ∈ C (mJ/m)
Zc
fuel−cons ∈ R, Zc

fuel−type > 0

Zc
var−op−cost The variable operational cost of ve-

hicle type c ∈ C ($/hour)
Zc
var−op−cost ∈ R, Zc

var−op−cost ≥ 0

Zf
fuel−cost The fuel cost of fuel type f ∈

{gas, diesel, electricity} ($ /mJ)
Zf
fuel−cost ∈ R, Zc

fuel−cost ≥ 0

Zv
veh−type,c Vehicle type assignment of vehicle

v ∈ V
Zv
veh−type,c ∈ {0, 1}



Appendix A. BISTRO - General System Specifications 159

vehicles in the bus fleet is dependent on the service periods and headways (i.e., frequency)
for each route, which can be altered by user-defined inputs (UDIs).

The schedules for each transit route are typically defined by GTFS input, which provides

the headway, Zt,r
headway, and the set of all trips, Zt,r

trips ∈ Rnt,r
trips , to be completed for each route.

Each trip on a particular transit route is assigned to a unique vehicle id. Thus, the set of all

buses to be used on route r ∈ Rt
routes is denoted as V t,r

fleet ∈ Rnt,r
trips , and the set of all transit

vehicles in the base case as Vtransit = ∪t∈T ∪r∈Rt
routes

V t,r
fleet. Each transit vehicle, v ∈ Vtransit,

is given a start and end time (in seconds from the start of the simulation) for servicing the
corresponding route, r, Zv

start and Zv
end, respectively. Thus, the configured service period

for each route, t, is the tuple (Zt
start, Z

t
end) where Z

t
start corresponds to the start time of the

vehicle making the first trip on the route and Zt
end corresponds to the end time of the vehicle

making the last trip on the route.
The type of vehicles in certain fleets may also be altered by UDIs. Across all vehicles, the

set of possible vehicle types is the set C. In a BISTRO study that includes a user-defined
input (UDI) that alters the fleet mix of one or modes, it is necessary to define the subset of
vehicle types that are eligible to be included in the fleet mix for each mode. Some vehicle
fleets may include only a subset of all vehicle types in a particular simulation run. For
example, the vehicle types available for the transit fleet, Ctransit will typically be mutually
exclusive from the set of vehicle types available for the private fleet, Cprivate.

Each vehicle type, c ∈ C, is defined by a seating and standing capacity (in number of
person agents), Zc

seating and Zc
standing, a fuel type, Zc

fuel−type, average fuel consumption rate
(in units of fuel consumed per meter), Zc

fuel−consumption, and a variable operational cost (in
dollars per hour traveled), Zc

var−op−cost. For each fuel type, ZK
fuel−cost defines the cost of fuel

consumption (in dollars per mJ of fuel consumed).
The default set of fuel types available in BISTRO includes gasoline, diesel, and electricity.

While the average fuel consumption rate for each vehicle type is provided, the actual fuel
consumed by each vehicle movement is calculated in BEAM based on the speed profile on
each link traversed. Therefore, the actual fuel consumed by a vehicle in a simulation run
may not be equal to the product of the average fuel consumption rate and the total miles
driven by that vehicle.

At the start of a simulation run, each vehicle is instantiated with an identifier, v ∈ V ,
and a Boolean identifier, Zv

veh−type,c, that denotes the vehicle type of the vehicle such that

Zv
veh−type,c =

{
1 if vehicle v is of vehicle type c

0 otherwise

Additionally, all vehicles in the private vehicle fleet are identified by the household to which
they belong using the Boolean identifier Zv

hhd,h, defined in the following subsection.



Appendix A. BISTRO - General System Specifications 160

Table A.6: Population Configuration Input Notation

Population Configuration
Notation Description Specification
H All households in a simulation scenario h ∈ H
N All person agents in a simulation scenario n ∈ N
A Maximum age for person agents in a simulation

scenario
A ∈ [0, 120]

I Maximum income for person agents in a simula-
tion scenario

I ∈ R, I <∞

P Maximum number of activities completed by
each agent in a simulation scenario

P > 0

Kresidence All residences in the network f ∈ Kresidence ⊂ F
Nh
residence Residence location of household h ∈ H at facil-

ity f ∈ Kresidence

Nh
residence ∈ Kresidence

Nh
hhd−income The household income of household h ∈ H ($) Nh

hhd−income
Nn
hhd Household membership of person n ∈ N in

household h ∈ H
Nn
hhd,h ∈ R, Nn

hhd,h ≥ 0

Nh
vehicles The number of vehicles owned by household h ∈

H
Nh
vehicles ≥ 0

Nn
age The age of person agent n ∈ N Nn

age ∈ [0, A]
Nn
income The income of person agent n ∈ N ($) Nn

income ∈ [0, I]
Nn
gender The gender of person agent n ∈ N Nn

gender ∈ {female, male}
Nn
V OT The value of time (VOT) of person agent n ∈ N

($/hour)
Nn
V OT ∈ R, Nn

V OT > 0

Navg−V OT The average VOT of the population ($/hour) Navg−V OT ∈
R, Navg−V OT > 0

Nn
plan An ordered list of facilities at which agent n ∈

N complete planned activities Nn
activity,1 through

Nn
activity,P

Nn
activity,i ∈ F, i ∈

{1, . . . , P}

Nn,p
start The desired start time of activity p ∈ Nn

plan Nn,p
start ∈ R, Nn,p

start ≥ 0
Nn,p
end The end time of activity p ∈ Nn

plan Nn,p
end ∈ R, Nn,p

end ≥ 0
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Population configuration

Prior to the simulation, a synthetic population is generated. The population consists of a
set of households, H. Each household h ∈ H owns a number of vehicles, Nh

vehicles ≥ 0. The
Boolean identifier, Zv

hhd,h denotes whether vehicle v ∈ Vprivate is owned by household h such
that

Zv
hhd,h =

{
1 if vehicle v is owned by household h ∈ H

0 otherwise

Each person agent in the population, n ∈ N , is a member of one household, denoted by the
variable Nn

hhd ∈ H, with home location denoted by Nh
residence ∈ Kresidence.

Additionally, each person agent is assigned fixed socio-demographic attributes. These
include variables identifying age, Nn

age, gender, N
n
gender, and income, Nn

income. The maximum
age and income, A and I, respectively, are configurable input variables. Additionally, the
input Nh

hhd−income denotes the household income of household h.
Finally, each person is instantiated with an activity plan, Nn

plan = {Nn
plan,i}i=1,...,P , which

is an ordered list of facilities at which agents will complete their planned activities, starting
and ending at home. The maximum number of activities in each plan is a configurable input
variable, P . For simplified plans with just one activity outside of the home (P = 3), agents
have plans of the form

Nn
plan = {NNn

hhd
residence, N

n
activity,2, N

Nn
hhd

residence}

where Nn
activity,2 may be a work facility or other, secondary activity, or point of interest. Each

activity in a person’s plan, p ∈ Nn
plan, has a desired start and end time, denoted (in seconds

from the start of the simulation) by Nn,p
start and N

n,p
end, respectively.

User-defined input

As mentioned in Section A.4, users may alter aspects of the transportation system by, for
example, redefining the transit vehicle fleet composition, bus service schedules, and fares,
and/or incentive amounts for particular demographic groups to use bus and/or on-demand
ride services. Example specifications for these four UDIs mentioned are provided below. In
a base case scenario, the transit fleet may be homogeneous, with all vehicles in the fleet
configured with the same vehicle type:

Zv
veh−type,c = Zv′

veh−type,c ∀v, v′ ∈ Vtransit, c ∈ C

Users may choose to alter the vehicle type servicing each transit route, t ∈ {1, 2, . . . , T},
by changing the value of the variable Dt

veh−type,c, which denotes the vehicle type for route
r ∈ Rt

routes. Thus

Dt,r
veh−type,c = Dv

veh−type,c = Dv′

veh−type,c ∀v, v′ ∈ V r,t
fleet, c ∈ Ctransit
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Table A.7: Example User-Defined Input Notation

Example User-Defined Input: Transit Vehicle Fleet Configuration
Notation Description Specification

Dt,r
veh−type Vehicle type assignment for route r ∈

Rt
routes of transit agency t ∈ T

Dt,r
veh−type,c ∈ Ctransit

Example User-Defined Input: Transit Route Rescheduling
Notation Description Specification
nmax−periods The maximum number of allowable

user-defined service periods
nmax−periods ∈ Z, nmax−periods ≥ 0

nt,rperiods The number of user-defined service pe-
riods for route r ∈ Rt

routes of transit
agency t ∈ T

nt,rperiods ∈ Z, nt,rperiods ∈
[0, nmax−periods]

Dt,r
start,i The start time of user-defined service

period i for route r ∈ Rt
routes of transit

agency t ∈ T

Dt,r
start,i ∈ Z, Dt,r

start,i ≥ 0

Dt,r
end,i The end time of user-defined service

period i for route r ∈ Rt
routes of transit

agency t ∈ T

Dt,r
end,i ∈ Z, Dt,r

start,i < Dt,r
end,i ≤

Dt,r
start,i+1

Dt,r
schedule A vector of nt,rperiods service period tu-

ples for transit route r ∈ Rt
routes of

transit agency t ∈ T

Dt,r
schedule ∈ Zn

t,r
periods,2

nmin−headway Minimum allowable user-defined
headway (seconds)

nmin−headway ∈ Z, nmin−headway ≥ 0

nmax−headway Maximum allowable user-defined
headway (seconds)

nmax−headway ∈ Z, nmax−headway ≥ 0

Dt,r
headway User-defined headway for route r ∈

Rt
routes of transit agency t ∈ T

Dt,r
headway ∈ Zn

t,r
periods , Dt,r

headway ∈
[nmin−headway, nmax−headway]

Example User-Defined Input: Transit Pricing
Notation Description Specification
Dt
fare A vector of user-defined fares charged

to transit riders of each age for using
transit agency t ∈ T

Dt
fare ∈ RA, Dt

fare,a ∈ R, Dt
fare,a ≥

0

Example User-Defined Input: Multi-modal Incentives
Notation Description Specification
Dm
incentive A matrix of user-defined incentive

amount for agents of age a and income
group i to use mode m ∈M

Dm
incentive ∈ RA,I , Dm

incentive,a,i ∈
R, Dm

incentive,a,i ≥ 0
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Users may redefine the service period of a transit route by appending one or more tuples
to the mutable, ordered array of tuples, Dt,r

schedule, corresponding to the bus route t. Thus, a
bus route with nt,rperiods user-defined service periods has the form:

Dt,r
schedule = {(Dt,r

start,1, D
t,r
end,1), (D

t,r
start,2, D

t,r
end,2), . . . (D

t,r

start,nt,r
periods

, Dt,r

end,nt,r
periods

)}

where
Dr,t
start,i < Dr,t

end,i ∀i ∈ {1, 2, . . . nt,rperiods}

and
Dr,t
end,i ≤ Dr,t

start,i+1 ∀i ∈ {1, 2, . . . nt,rperiods − 1}

A business rule that constrains the maximum number of service periods that can be
defined during optimization, nmax−periods is recommended.

Users may redefine the headway of a route using the ordered array of nt,rperiods variables,

Dt,r
headway = {Dt,r

headway,i}i=1,...,nt,r
periods

, corresponding to each service period. An additional set

of business rules that constrain the range of possible user-defined headway values, nmin−headway
and nmax−headway, are recommended.

The fare for riding with transit agency t ∈ T can be redefined by the set of user-defined
variables, Dt

fare = {Dt
fare,a}a=0,1,...,A. All fares must be nonnegative.

Finally, the last example UDI demonstrate how users may choose to allocate multi-
modal incentives. An incentive for mode m ∈ M may be defined based on any number of
parameters. Here, an age- and income-based incentive is shown:

Dm
incentive = {Dm

incentive,a,i}a=0,1,...,A;i∈I

where the indices a, i correspond to the age and income group of riders, respectively. All
incentive values must be nonnegative.

Output Variable Specification

Each BEAM simulation run outputs records of all person and vehicle agent events that occur
during the run. In this subsection, specification is provided only for output variables that
are directly used in the default KPIs provided in the BISTRO KPI library.

Person output

The person agent output reports the choices, movements, and expenditures of each person
agent in the population during a simulation run. Each person agent, n ∈ N takes Rn

trips =
Xn
activities − 1 trips during the simulation, where Xn

activities is the number of activities in the
agent plans for a given scenario.

The mode(s) available to person agent n for trip r ∈ {1, . . . , Rn
trips} are output as a set

of modes, Xn,r
available.
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Table A.8: Person Output Notation

Person Output
Notation Description Specification
N All person agents in a simulation scenario n ∈ N
P Maximum number of activities completed by each

agent in a scenario
P > 0

Xn
activities Number of activities in the plan of agent n ∈ N mn

activities ∈ Z+

Rn
trips Number of trips made by agent n ∈ N Rn

trips = Xn
activities − 1

Gn,r Number of legs in trip r ∈ {1, . . . , Rn
trips} of agent

n ∈ N
Gn,r ≥ 1

Xn,r
available Set of mode(s) available to person agent n ∈ N for

trip r ∈ {1, . . . , Rn
trips}

Xn,r
available,i ∈M

Xn,r
choice The mode chosen by person agent n ∈ N for trip

r ∈ {1, . . . , Rn
trips}

Xn,r
choice ∈ Xn,r

available

Xn,r,g
choice The mode chosen by person agent n ∈ N for leg

g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips}

Xn,r,g
choice ∈M

Xn,r,g
vehicle The vehicle in which person agent n ∈ N com-

pleted leg g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips}

Xn,r,g
vehicle ∈ V

Xn,r,g
route The agency and route chosen by agent n ∈ N for

leg g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips}

Xn,r,g
route,1 ∈ T ∪

∅, Xn,r,g
route,2 ∈ R

Xn,r,g
route,1

routes ∪∅
pn,r,g The number of links traversed by person agent n ∈

N for leg g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips}

pn,r,g ∈ Z, pn,r,g > 0

Xn,r,g
path List of links traversed by agent n ∈ N for leg g ∈

Gn,r of trip r ∈ {1, . . . , Rn
trips}

Xn,r,g
path := {Xn,r,g

path,i ∈
L}i=1,...,pn,r,g

Xn,r,g
distance Total distance traveled by agent n ∈ N for leg

g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips} (m)

Xn,r,g
distance ∈ R+

Xn,r,g
duration Total duration traveled by agent n ∈ N for leg

g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips} (sec)

Xn,r,g
duration ∈ Z+

Xn,r,g
fare,m Fare paid by agent n ∈ N for mode m = Xn,r,g

choice

during leg g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips}

Xn,r,g
fare,m ∈ R+

Xn,r,g
fuel−cons Total fuel consumed by person agent n ∈ N by

driving a personal vehicle during leg g ∈ Gn,r of
trip r ∈ {1, . . . , Rn

trips} (mJ)

Xn,r,g
fuel−cons ∈ R+

Xn,r,g
fuel−cost Total fuel cost to agent n ∈ N of driving during

leg g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips} ($)

Xn,r,g
fuel−cost ∈ R+

Xn,r
incentive Total incentive amount available to agent n ∈ N

for trip r ∈ {1, . . . , Rn
trips} ($)

Xn,r
incentive ∈ R+

Xn,r
exp Total (net) expenditure incurred by agent n ∈ N

for trip r ∈ {1, . . . , Rn
trips} ($)

Xn,r
exp ∈ R+
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The mode ultimately chosen by a person agent for trip r ∈ {1, . . . , Rn
trips} is output as

the variable, Xn,r
choice ∈ Xn,r

available. where

Xn,r
choice,m =

{
1 if mode m is chosen by person n for trip r ∈ {1, . . . , Rn

trips}
0 otherwise

Trips may include multiple legs. Thus, the number of legs, Gn,r, included in trip r ∈
{1, . . . , Rn

trips} of agent n ∈ N , is

Gn,r

{
= 1 if Xn,r

choice,walk = 1 or Xn,r
choice,on−demand = 1 or Xn,r

choice,bicycle = 1, etc.

>= 2 otherwise

Transit trips include an access and egress leg as well as one or more transit legs, depending
on the use of one or more transit routes during the trip. The mode used during each leg is
denoted by the variable Xn,r,g

mode.

Xn,r,g
mode =

{
1 if mode m is used by person n for leg g of trip r

0 otherwise

Each trip leg is made using a vehicle, recorded by the output variable, Xn,r,g
vehicle ∈ V . The

output variable Xn,r,g
route = {Xn,r,g

route,1, X
n,r,g
route,2} records the transit agency, Xn,r,g

route,1, and route,
Xn,r,g
route,2 used by agent n during leg g of trip r such that Xn,r,g

route = {∅, ∅} if the agent did not
use transit during leg g.

Each leg of a trip traverses a path, recorded as an ordered list of pn,r,g links traversed,

Xn,r,g
path = {Xn,r,g

path,i}l∈{1,...,pn,r,g}

where Xn,r,g
path,i ∈ L is a link in the transportation network.

The distance traveled (in miles) by agent n during leg g of trip r is

Xn,r,g
distance =

∑
l∈Xn,r,g,

path

Z
Xn,r,g

path,l

length

The duration (in seconds) of each leg is a result of the traffic dynamics of the simulation and
is recorded by the ouput variable Xn,r,g

duration ≥ 0. The expenditure (in dollars $) incurred by
a person agent during a trip is the sum of all fare(s) paid for the legs of the trip, if any, plus
additional expenditures from driving a personal vehicle, if applicable.

The applicable fare for person agent n ∈ N to use mode m ∈ M for leg g ∈ Gn,r

of trip r ∈ {1, . . . , Rn
trips} is given by the mode-specific fare output, Xn,r,g

fare,m. The default
mode-specific fares for transit and on-demand rides are defined below. If additional fare-
charging modes are included in the simulation, such as bikesharing, carsharing, or other
shared mobility, additional mode-specific fares may be defined.
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By default, the transit fare incurred by agent n during a trip leg is defined either by the
corresponding configuration input variable, or by the user-defined transit fare input variable,
in the case that the transit fare UDI is used for a particular simulation run:

Xn,r,g
fare,transit =

Z
Xn,r,g

route,1

fare,Nn
age,a

if Dt
fare = ∅

D
Xn,r,g

route,1

fare,Nn
age,a

otherwise

The on-demand ride fare for service type s ∈ S incurred by agent n during any trip leg
is

Xn,r,g
fare,on−demand,s = Zon−demand,s

fare,base +Xn,r,g
distanceZ

on−demand,s
fare,distance +

1

60
Xn,r,g
durationZ

on−demand,s
fare,duration

The cost of fuel consumed by agent n during any trip leg is the product of the total
amount of fuel consumed by driving during that leg, Xn,r,g

fuel−consumed, and the corresponding
fuel cost of the vehicle used during the leg, as follows:

Xn,r,g
fuel−cost = Xn,r,g

choice,driveX
n,r,g
fuel−consumed

∑
c∈Cpersonal

Z
Xn,r,g

vehicle
veh−type,cZ

Zc
fuel−type

fuel−cost

Where Zv
veh−type,c is a Boolean indicator denoting which vehicle type c ∈ Cprivate corre-

sponds to the vehicle Xn,r,g
vehicle ∈ Vpersonal that was used during the trip leg, Zc

fuel−type denotes
the fuel type used by that vehicle type, and ZK

fuel−cost is the cost per mJ consumed of that
fuel type.

The incentive available to agent n during trip r is given by the output variable:

Xn,r
incentive = D

Xn,r
choice

incentive,Nn
age,N

n
income

Where Dm
incentive,a,i denotes the user-defined incentive amount available for a person agent

of age a and income i, Nn
age and N

n
income are the age and income, respectively, of agent n.

The total expenditure incurred per person agent trip is captured by the output variable,

Xn,r
exp =

(
Gr,n∑
g=1

(
Xn,r,g
fare,Xn,r,g

choice
+Xn,r,g

fuel−cost
)
−Xn,r

incentive

)
+

where

(x)+ =

{
x if x ≥ 0

0 otherwise

In the event that the incentive amount available to an agent for a particular trip exceeds the
total fare and/or fuel cost of the trip, the agent receives an incentive amount equal to the
total fare and fuel cost incurred during the trip.
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Table A.9: Vehicle Output Notation

Vehicle Output
Notation Description Specification
V All vehicles in the transportation sys-

tem
v ∈ V := Vtransit ∪ Von−demand ∪
Vprivate

Qv The total number of movements made
by vehicle v ∈ V

Qv ∈ Z, Qv ≥ 0

pv,q The number of links traversed by vehi-
cle v ∈ V during movement q ∈ [1, Qv]

pv,q ∈ Z, pv,q > 0

Y v,q
path The ordered set of links traversed by

vehicle v ∈ V during movement q ∈
[1, Qv]

Y v,q
path :=

{Y v,q
path,i}i=1,...,pv,q , Y

v,q
path,l ∈ L

Y v,q
distance The total distance traveled by vehicle

v ∈ V during movement q ∈ [1, Qv]
(meters)

Y v,q
distance ∈ R, Y v,q

distance > 0

Y v,q
duration The total duration of movement q ∈

[1, Qv] of vehicle v ∈ V (seconds)
Y v,q
duration ∈ Z, Y v,q

duration > 0

Y v,q
fuel−consumed The total fuel consumed by vehicle v ∈

V during movement q ∈ [1, Qv] (mJ)
Y v,q
fuel−consumed ∈

R, Y v,q
fuel−consumed > 0

Y v,q
fuel−cost The total cost of fuel consumed by vehi-

cle v ∈ V during movement q ∈ [1, Qv]
($)

Y v,q
fuel−cost ∈ R, Y v,q

fuel−cost ≥ 0

Y v,q
op−cost The total operational cost of movement

q ∈ [1, Qv] by vehicle v ∈ V ($)
Y v,q
op−cost ∈ R, Y v,q

op−cost ≥ 0

Y v,q
pax The number of passengers on board ve-

hicle v ∈ V during movement q ∈
[1, Qv] ($)

Y v,q
pax ∈ Z, Y v,q

pax ≥ 0

Vehicle output

The vehicle output reports the movements of all vehicles during a simulation run. Each
vehicle, v ∈ V , makes Qv ≥ 0 movements. For buses, a movement consists of travel between
two bus stops. For personal vehicles, a movement consists of travel between two parking
facilities. Finally, for on-demand ride vehicles, a movement consists of the travel from origin
to destination during any one of the three phases of service: empty, fetch, and fare.

The path, fuel consumption, and occupancy of each vehicle v is recorded upon every
vehicle movement. Similar to paths for person agent legs, the path traversed by vehicle v
during a movement, q = {1, 2, ..., Qv}, is recorded as an ordered list of pv,q links traversed,

Y v,q
path = {Y v,q

path,l}l∈{1,...,pv,q}
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where Y v,q
path,l ∈ L is a link in the network.

Thus, the distance traveled by vehicle v ∈ V during movement q ∈ Qv is given by:

Y v,q
distance =

∑
l∈Y v,q

path

Z l
length

Where Z l
length is the length of link l ∈ L in the transportation network. The duration

of the movement (in seconds) is recorded by the output variable Y v,q
duration > 0, and the fuel

consumed by the variable, Y v,q
fuel−consumed.

Thus the cost of fuel consumed by vehicle v during movement q is the product of the fuel
consumed during the movement and the fuel cost of the corresponding vehicle type:

Y v,q
fuel−cost = Y v,q

fuel−consumed

∑
c∈C

Zv
veh−type,cZ

Zc
fuel−type

fuel−cost

The total operational cost, if applicable, for vehicle v during movement q is the product
of the duration of the movement and the variable operational cost for the corresponding
vehicle type, as follows:

Y v,q
op−cost =

1

3600
Y v,q
duration

∑
c∈C

Zv
veh−type,cZ

c
var−op−cost

The number of passengers in vehicle v during movement q is recorded by the output
variable Y v,q

pax ≥ 0.

KPI Specification

All score components are assessed as the ratio of the value of the corresponding KPI in
a simulation run to the corresponding KPI value in the business as usual simulation run;
that is, the scenario run without any inputs. The following sections detail each of the KPI
functions included in the composite score, which is explained in Section A.5.

Accessibility

Accessibility measurements utilize the network characteristics resulting for any given submis-
sion (i.e., links l ∈ L are weighted with average travel-times, and average bus headways are
assigned to routes during nperiods periods of interest). Accessibility is then calculated as the
sum of the average number of points of interest (work or secondary) reachable from all nodes
w ∈ W by a specified road network mode (car or transit) within a specified amount of time.
Separate calculations are made for car (incorporating drive alone and a lower-bound estimate
for on-demand rides) and transit trips to compare the changes in accessibility across network
users. For the purposes of calculating the accessibility KPI, the output variable Y m,e,u,w

shortest re-
ports the set of links that correspond to the shortest path directed network distance (in
units of time) for mode m ∈ M to travel from node u ∈ W to node w ∈ W during time
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Table A.10: Accessibility KPI Notation

KPI: Accessibility
Notation Description Specification
nperiods The number of time periods of interest

for the accessibility KPI
nperiods ∈ Z, nperiods > 0

Kwork All work facilities in the network f ∈ Kwork ⊂ F
Ksecondary All secondary facilities in the network f ∈ Ksecondary ⊂ F
ZK
w Facility instance at node w ∈ W ZK

w ∈ {0, 1}
Y m,e,u,w
shortest The set of links in the shortest path

from node u ∈ W to node w ∈ W us-
ing mode m ∈ M during time period
e = 1 . . . nperiods

Y m,e,u,w
shortest :=

{Y m,e,u,w
shortest,i}i=1,...,nperiods

, Y m,e,u,w
shortest,i ∈

L

Y m,l,e
avg−tt The average travel time for mode m ∈

M on link l ∈ L during time period e
Y m,l,e
avg−tt ∈ R, Y m,l,e

avg−tt ≥ 0

τ The travel time within which points of
interest must be accessible in order to
be counted for the the accessibility KPI
(minutes)

τ ∈ R, τ > 0

period e ∈ {1, . . . , nperiods. Thus, Y m,e,u,w
shortest = {Y m,e,u,w

s−p,i }i=1...nm,e,u,w
sp

, where each element, of
Y m,e,u,w
s−p,i ∈ Y m,e,u,w

shortest is a link in the network (Y m,e,u,w
shortest ∈ L). The average travel time for mode

m ∈M on link l ∈ L during time period e is recorded by the output variable Y m,l,e
avg−tt. Thus,

the accessibility KPI for trip purpose purpose (identified by the facility type of the point of
interest) and mode m is calculated as follows:

Kaccessibility,purpose,m =
1

nperiods
∑

w∈W 1

nperiods∑
e=1

∑
u∈W

∑
w∈W

∑
f∈Kpurpose

Zf
wIτ≥∑

l∈Y
m,e,u,w
shortest

Ym,l,e
avg−tt

where ZK
w is a Boolean indicator of whether facility f ∈ Kpurpose of type purpose is

located at node w ∈ W and the term Iτ≥
∑

l∈Y
m,e,u,w
shortest

Ym,l,e
avg−tt

indicates whether the total average

travel time on the shortest path for mode m from node u to node w is less than or equal to
the threshold travel time of τ as follows:

Iτ≥
∑

l∈Y
m,e,u,w
shortest

Ym,l,e
avg−tt

=

{
1 if τ ≥

∑
l∈Ym,e,u,w

shortest
Y m,l,e
avg−tt

0 otherwise
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1. Work-based trips:

Kaccessibility,work,m =
1

nperiods
∑

w∈W 1

nperiods∑
e=1

∑
u∈W

∑
w∈W

∑
f∈Kwork

Zf
wIτ≥

∑
l∈Y

m,e,u,w
shortest

Ym,l,e
avg−tt

2. Secondary trips:

Kaccessibility,secondary,m =
1

nperiods
∑

w∈W 1

nperiods∑
e=1

∑
u∈W

∑
w∈W

∑
f∈Ksecondary

Zf
wIτ≥

∑
l∈Y

m,e,u,w
shortest

Ym,l,e
avg−tt

Measures of Level of Service

The LoS of the transportation system are evaluated on average, across person trips. Each
person, n ∈ N completes Rn

trips trips from one activity to another throughout a simulation
run. Each trip, r ∈ {1, . . . , Rn

trips} includes Gn,r legs, each using a single mode of transporta-
tion.

1. Average Generalized Transportation Cost Burden: As detailed in Section A.4:3,
the total travel expenditure, Xn,r

exp, for a person agent, n ∈ N , during any trip, r ∈
{1, . . . , Rn

trips}, may include bus and/or on-demand ride fares, and the cost of fuel
consumed less any applicable incentives.

The average transportation cost burden is considered by trip purpose: for example, by
work trips and secondary activity trips. Thus the average transportation cost burden
for work trips is

Kcost−burden,work =

1∑
n∈N

∑Rn
trips

r=1 INn
plan,r+1∈Kwork

∑
n∈N

Rn
trips∑
r=1

INn
plan,r+1∈Kwork

Xn,r
exp +Xn,r

duration ·Navg−V OT

N̂
Nn

hhd
hhd−income

N̂h
hhd−income = max(1, Nh

hhd−income)

INn
plan,r+1∈Kwork

=

{
1 if Nn

plan,r+1 ∈ Kwork

0 otherwise

where N
Nn

hhd
hhd−income is the income of household Nn

hhd ∈ H of which individual n ∈ N is
a member, and Navg−V OT is the population-wide average value of time (VOT).
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Table A.11: Level of Service (LoS) KPI Notation

KPI: LoS- Average Transportation Cost Burden
Notation Description Specification
N All person agents in a simulation scenario n ∈ N
Rn
trips The number of trips made by agent n ∈ N

during a simulation run
0 < Rn

trips ≤ P − 1

Gn,r The number of legs in trip r ∈ {1, . . . , Rn
trips}

of person agent n ∈ N
Gn,r ≥ 1

Xn,r
exp The total (net) expenditure incurred by person

agent n ∈ N for trip r ∈ {1, . . . , Rn
trips} ($)

Xn,r
exp ∈ R, Xn,r

exp ≥ 0

Xn,r
duration The total duration traveled by person agent

n ∈ N during trip r ∈ {1, . . . , Rn
trips} (seconds)

Xn,r
duration ∈ R, Xn,r

duration > 0

Nh
hhd−income The household income of household h ∈ H ($) Nh

hhd−income
Navg−V OT The average VOT of the population ($/hour) Navg−V OT ∈

R, Navg−V OT > 0
KPI: LoS- Average Bus Crowding Experienced

Notation Description Specification
Xn,r,g
choice The mode chosen by person agent n ∈ N for

leg g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips}

Xn,r,g
choice ∈M

Gbus The total number of bus trip legs made by all
person agents

Gbus ∈ Z, Gbus ≥ 0

Vbus The set of all vehicles in the bus fleet v ∈ Vbus ⊂ V
Y v,q
duration The total duration of movement q ∈ [1, Qv] of

vehicle v ∈ V (seconds)
Y v,q
duration ∈ Z, Y v,q

duration > 0

Zv
veh−type,c Vehicle type assignment of vehicle v ∈ V Zv

veh−type,c ∈ {0, 1}
Zc
seating The passenger seating capacity of vehicle type

c ∈ C
Zc
seating ∈ Z, Zc

seating > 0

Zc
standing The passenger standing capacity of vehicle type

c ∈ C
Zc
standing ∈ Z, Zc

standing ≥ 0

Y v,q
pax The number of passengers on board vehicle v ∈

V during movement q ∈ [1, Qv]
Y v,q
pax ∈ R, Y v,q

pax ≥ 0

Tmv,q
seated The value of time multiplier for seated passen-

gers on board vehicle v ∈ V during movement
q ∈ [1, Qv]

Tmv,q
seated ∈ R, Tmv,q

seated ≥ 0

Tmv,q
standing The value of time multiplier for standing pas-

sengers on board vehicle v ∈ V during move-
ment q ∈ [1, Qv]

Tmv,q
standing ∈

R, Tmv,q
standing ≥ 0
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Similarly, the average transportation cost burden for secondary trips is

Kcost−burden,secondary =

1∑
n∈N

∑Rn
trips

r=1 INn
plan,r+1∈Ksecondary

∑
n∈N

Rn
trips∑
r=1

INn
plan,r+1∈Ksecondary

Xn,r
exp +Xn,r

duration ·Navg−V OT

N
′Nn

hhd
hhd−income

2. Average Transit Crowding Experienced: The average transit crowding KPI is
by default calibrated with time multipliers corresponding to the perceived value of
time (VOT) in buses. However, a similar KPI may be implemented for crowding on
other types of transit services, such as rail, using mode-specific functions for the VOT
multipliers. The average transit crowding KPI is computed from simulation output as
follows (using the fleet configuration UDI):

Ktransit−crowding =

1

Gtransit

∑
v∈Vtransit

Qv∑
q=1

(
Y v,q
duration

C∑
c=1

Dv
veh−type,c(Tm

v,q
seatedmin(Z

c
seating, Y

v,q
pax)+Tm

v,q
standing(Y

v,q
pax−Zc

seating))

)
where Gbus is the total number of trip legs in which public transit was used such that

Gtransit =
∑
n∈N

Rn
trips∑
r=1

Gn,r∑
g=1

IXn,r,g
choice=transit

Tmv,q
seated and Tm

v,q
standing are the time multipliers for seated and standing passengers to

account for the relative disutility of time spent in public transit vehicles that are filled
over seating capacity, respectively such that

Tmv,q
seated =

{
1.1 + log(

Y v,q
pax

Zc
seating

) if Y v,q
pax ≥ Zc

seating

0 otherwise

Tmv,q
standing =

{
1.1 + 2.5log(

Y v,q
pax

Zc
seating

) if Y v,q
pax > Zc

seating

0 otherwise

Measures of congestion

The first two measures of congestion, total vehicle miles traveled (VMT) and total vehicle
hours of delay, are assessed on aggregate across all vehicle movements in a simulation run.
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Table A.12: Measures of Congestion KPI Notation

KPI: Congestion- Total Vehicle Miles Traveled (VMT)
Notation Description Specification
V All vehicles in the transportation sys-

tem
v ∈ V := Vtransit ∪ Von−demand ∪
Vprivate

Qv The total number of movements made
by vehicle v ∈ V

Qv ∈ Z, Qv ≥ 0

Y v,q
distance The total distance traveled by vehicle

v ∈ V during movement q ∈ [1, Qv]
(meters)

Y v,q
distance ∈ R, Y v,q

distance > 0

KPI: Congestion- Average Vehicle Delay per Passenger Trip
Notation Description Specification
Rn
trips,motorized The number of trips taken by agent

n ∈ N using a motorized mode
m ∈ {drive, on − demand, walk −
transit, drive− transit}

Rn
trips,motorized ∈

Z, Rn
trips,motorized ≥ 0

Xn,r
choice The mode chosen by person agent n ∈

N for trip r ∈ {1, . . . , Rn
trips}

Xn,r
choice ∈M

Xn,r,g
duration The total duration traveled by person

agent n ∈ N for leg g ∈ Gn,r of trip
r ∈ {1, . . . , Rn

trips} (seconds)

Xn,r,g
duration ∈ Z, Xn,r,g

duration > 0

Xn,r,g
path The ordered set of links traversed by

person agent n ∈ N for leg g ∈ Gn,r of
trip r ∈ {1, . . . , Rn

trips}

Xn,r,g
path ∈ Rpn,r,g , Xn,r,g

path,l ∈ L

Z l
length Length of link l ∈ L (meters) Z l

length ∈ R, Z l
length > 0

Z l
speed−limit Free-flow speed of link l ∈ L (me-

ters/second)
Z l
speed−limit ∈ R, Z l

speed−limit > 0

1. Total VMT:

Kvmt =
∑
v∈V

Qv∑
q=1

Y v,q
distance

where Y v,q
distance is the total distance (in miles) traveled by vehicle v during movement

q.

2. Average Vehicle Delay per Passenger Trip:

Kpax−trip−delay =
1∑

n∈N R
n
trips,motorized

∑
n∈N

∑
r∈{1,...,Rn

trips}

( Gn,r∑
g=1

Xn,r,g
duration−

∑
l∈Xn,r,g,

path

Z l
length

Z l
speed−limit

)
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where Rn
trips,motorized is the number of trips taken by agent n using a motorized mode

during the simulation run:

Rn
trips,motorized =

Rn
trips∑
r=1

IXn,r
choice∈{drive,on−demand,walk−transit,drive−transit}

Financial Sustainability

Any intervention on the transportation system is likely to result in costs and benefits for the
operation of mass transit in the city of interest. The financial sustainability component is
computed as the difference between the total revenue collected through transit fares Krevenue

and the net cost of transit operations Kop−cost and multi-modal incentives used to manage
demand Kincentives−used:

Kfinancial−sust = Krevenue − (Kop−cost +Kincentives−used)

1. Operational costs: Operational costs include fixed costs, variable hourly costs, and
fuel costs for transit operations.

Kop−cost =
∑

v∈Vtransit

∑
q∈Qv

Y v,q
fuel−cost + Y v,q

op−cost

where Y v,q
fuel−cost and Y

v,q
op−cost are the total fuel and operational costs produced during

movement q of vehicle v in the transit fleet during the simulation run.

2. Incentives used

Kincentives−used =
∑
n∈N

Rn
trips∑
r=1

Xn,r
incentive −Xn,r

exp

where Xn,r
exp and Xn,r

incentive are the expenditure and incentives used, respectively, by
agent n during trip r. Both the trip expenditure and incentives must be nonnegative,
as defined in section A.5. Incentives may only be used by qualifying agents, as defined
by user-defined inputs.

3. Revenue:

Krevenue =
∑
n∈N

Rn
trips∑
r=1

( ∑
g∈Gn,r

IXn,r,g
choice=transit

Xn,r,g
fare,transit

)
−Xn,r

incentive

where Xn,r,g
choice indicates the mode that agent n chose to use for leg g of trip r. The variable

Xn,r,g
fare,transit is the transit fare paid, and Xn,r

incentive is the incentive amount received by agent
n for trip r.
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Table A.13: Financial and Environmental Sustainability KPI Notation

KPI: Financial Sustainability
Notation Description Specification
Vtransit All transit vehicles v ∈ Vtransit ⊂ V
Qv Number of movements made by vehicle v ∈ V Qv ∈ Z+

Y v,q
op−cost Total operational cost of movement q ∈ [1, Qv] by

vehicle v ∈ V ($)
Y v,q
op−cost ∈ R+

Y v,q
fuel−cost Total cost of fuel consumed by vehicle v ∈ V during

movement q ∈ [1, Qv] ($)
Y v,q
fuel−cost ∈ R+

N All person agents in a scenario n ∈ N
Xn
activities The number of activities in the activity plan of per-

son agent n ∈ N
mn
activities ∈ Z+

Rn
trips The number of trips made by agent n ∈ N during

a simulation run
Rn
trips = Xn

activities − 1

Gn,r The number of legs in trip r ∈ {1, . . . , Rn
trips} of

person agent n ∈ N
Gn,r ≥ 1

Xn,r
incentive Total incentive amount available to agent n ∈ N for

trip r ∈ {1, . . . , Rn
trips} ($)

Xn,r
incentive ∈ R+

Xn,r
exp Total (net) expenditure incurred by agent n ∈ N

for trip r ∈ {1, . . . , Rn
trips} ($)

Xn,r
exp ∈ R+

Xn,r,g
choice The mode chosen by person agent n ∈ N for leg

g ∈ Gn,r of trip r ∈ {1, . . . , Rn
trips}

Xn,r,g
choice ∈M

Xn,r,g
fare,m The fare paid by person agent n ∈ N for the use

of mode m = Xn,r,g
choice during leg g ∈ Gn,r of trip

r ∈ {1, . . . , Rn
trips}

Xn,r,g
fare,m ∈ R+

KPI: Environmental Sustainability
Notation Description Specification
Y v,q
distance The total distance traveled by vehicle v ∈ V during

movement q ∈ [1, Qv] (meters)
Y v,q
distance ∈ R+

Zc
fuel−type The fuel type used by vehicle type c ∈ C Zc

fuel−type ∈
{gas, diesel, electricity}

Zv
veh−type,c Vehicle type assignment of vehicle v ∈ V Zv

veh−type,c ∈ {0, 1}
PM c,f

2.5 PM2.5 emission factor for vehicle type c ∈ C using
fuel type f ∈ {gas, diesel, electricity}

PM c,f
2.5 ∈ R+
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Measures of environmental sustainability

Environmental sustainability will be assessed as the total particulate matter emitted from
PM2.5 running exhaust (RUNEX) and the GHG emissions from all vehicle movements in a
simulation run. PM2.5 emissions vary by mode and by fuel type; for Sioux Faux, there are
only two possible vehicle-fuel type combinations: gasoline auto and diesel bus, simplifying
the summation to:

1. Total PM2.5 Emissions:

KPM2.5 =
∑
v∈V

Qv∑
q=1

Y v,q
distance

∑
c∈C

Zv
veh−type,c

∑
f∈F

PM
c,Zc

fuel−type

2.5

where Y v,q
distance is the total distance (in miles) traveled by vehicle v during movement q,

Zv
veh−type,c is a Boolean indicator that vehicle v is of type c, Zc

fuel−type is the fuel type

used by vehicle type c, and PM c,f
2.5 is defined as follows:

PM c,diesel
2.5 =


0.259366648 grams/mile if the vehicle is a bus

0.018403666 grams/mile if the vehicle is a car

0 otherwise

PM c,gasoline
2.5 =


0.002517723 grams/mile if the vehicle is a bus

0.001716086 grams/mile if the vehicle is a car

0 otherwise

2. Total GHG Emissions: BEAM uses a high resolution data-driven vehicle energy
consumption model based on a similar model9. Consequently, similarly detailed vehicle
emissions statistics can be backed out of BEAM energy usage outputs.

Composite Score

The BISTRO scoring function serves as the objective function by which the UDIs are op-
timized. The selection and/or definition of the objective function is left to the decision of
the project owner, according to project directives; herein, a general structure is defined to
facilitate users in the creation of custom objective functions. Multiple project objectives
(referred here specifically as score components) may be included in the scoring function,
either as individual elements within a vector of scalar-valued score components to be mini-
mized or as parameters to a function that aggregates the objectives into a one-dimensional
scalar score. The score components are computed as the normalized ratio of the value of
the corresponding KPI in the given simulation run to the value of the same KPI in the

9To find the description of this model, read: https://www.nrel.gov/docs/fy17osti/69121.pdf
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Table A.14: Composite Score Function Notation

Composite Score Parameters
Notation Description Specification

C⃗s A vector of all simulation inputs for
alternative solution, s

See specifications in
SectionA.5

K⃗ A vector of all KPIs evaluated for so-
lution s, Ki(Cs)

Ki(Cs) ∈ R,∀i

σ⃗ A vector of standard deviations of
each KPI produced by random search

σi ∈ R,∀i

µ⃗ A vector of means of each KPI pro-
duced by random search

µi ∈ R,∀i

α⃗ A vector of user-defined parameters
for each score component

n/a

z⃗ A vector of normalized KPIs z⃗i ∈ R,∀i

business-as-usual (BAU) run.10 The improvement ratios are normalized using KPI values
produced by a randomized sample of the UDI space, the size of which can be defined by the
BISTRO project owner. This normalization accounts for differences in variance across KPIs,
thus allowing the score components to provide meaningful feedback on the improvement
achieved for each KPI relative to the distribution of the ratios of KPI to BAU produced
by the random search. The composite score is thus a function of the normalized relative
improvements of the candidate input to the BAU in each metric, as follows:

F
(
C⃗a, K⃗, σ⃗, µ⃗, α⃗

)
= f (z⃗, α⃗) , (A.5.1)

where K⃗ is the vector of all KPIs evaluated for a given set of inputs (see Table A.15 for

example specified in Section A.5), C⃗s; µ⃗ and σ⃗ are the vectors of normalization parameters;
and z⃗ is a vector of each KPI’s z-scores, i.e.,

zi =

Ki(Cs)
Ki(CBAU )

− µi

σi
, (A.5.2)

for the i-th KPI. The value of the i-th score component in the BAU case is simply Ki(CBAU).
The default objective is to minimize the composite score function, since an increase in

many of the score components actually represents a scenario that is worse than the status quo
(e.g., decreasing VMT over BAU results in a lower unscaled score than increasing VMT). To
maintain consistency in this regard, the scoring function may include an additional parameter

10In the BAU of a given scenario, the simulation is run without alteration from the initial configuration
of that scenario.
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Table A.15: Example KPI Notation

Example KPIs
Notation Description Specification
Ki The scoring function for KPI i Ki ∈ R
Kaccessibility,purpose,m Accessibility by mode m ∈M to POIs

for purpose ∈ {work, secondary}
(number of POIs)

Kaccessibility,purpose,m ≥ 0

Kcost−burden,purpose The average generalized transporta-
tion cost burden for trips of purpose ∈
{work, secondary} ($)

Kgeneralized cost−burden,purpose ≥
0

Kbus−crowding The average bus crowding experienced
(seconds)

Kbus−crowding ≥ 0

Kvmt The total vehicle miles traveled
(VMT) across all vehicle in a simula-
tion run (miles)

Kvmt > 0

Kpax−trip−delay The average vehicle delay per passen-
ger trip (seconds)

Kpax−trip−delay ≥ 0

Kfinancial−sust The net revenue of total transit op-
erational costs, transit revenue and
multi-modal incentives distributed ($)

KPM2.5 The total PM2.5 emissions from all
vehicle movements in the simulation
run (g)

KPM2.5 ≥ 0

α⃗ to allow for transformation of score components that are positively related to desirable
outcomes (e.g., improvements in accessibility). For example, if the scoring function takes the
form of a sum over all score components, the parameter α⃗ may be used as a coefficient of each
score component that determines whether the component will be summed or subtracted, as
follows:

αi =

{
−1 if it is desirable for score component i to increase

1 otherwise
(A.5.3)
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Appendix B

Congestion Pricing Optimization Case
Study II: San Francisco Bay Area:
Supplementary Material

B.1 Methods

SFSim Model Specification

Figure B.1 displays the employment density per Traffic Analysis Zone (TAZ) of the San
Francisco Bay Area as estimated by the 2015 American Community Survey (ACS) in B.1a,
and as modeled in the BEAM travel model of the San Francisco Bay Area in B.1b. As seen in
the figure, the San Francisco Bay Area BEAM model achieves a similar spatial distribution
of commuters per square mile across the TAZ in the region.

The GHG and PM2.5 emissions KPIs are calculated using the VMT and fuel consumption
and emissions rates corresponding to each vehicle and fuel type specified in the SFSim model.
Table B.1 documents the fuel consumption rate and capacity for each private vehicle type in
the SFSim model and table B.2 documents the emissions rates of GHG and PM2.5 for each
fuel type.

Fuel consumption (Joule/meter) Fuel capacity (Joules)
Vehicle type Gasoline Electricity Gasoline Electricity
ICEV 3656 (21 mpg) 3655980000
Hybrid 2153 (35 mpg)
PHEV 3656 (21 mpg) 671 3655980000 269999983
BEV 671 53999997

Table B.1: Vehicle type specification for SFSim model
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(a) American Community Survey (2015) (b) BEAM San Francisco Bay Area Model

Figure B.1: Employment Density per Traffic Analysis Zone in the San Francisco Bay Area

Emission rates
Fuel type GHG (g CO2e /gal) PM2.5 (g PM2.5/ mile)
Gasoline 11405.84 0.001716086
Diesel 13718.04 0.002593665
Electricity 378.54 0

Table B.2: Vehicle emissions rate specification for SFSim model

Estimation of mode split targets

The mode split targets used for calibration of the SFSim model were estimated using the
San Francisco Metropolitan Transportation Agency’s (SFMTA) 2019 Travel Decision Survey
(TDS). The survey (n=841) was conducted via random telephone sampling of residents of
the San Francisco Bay Area from May to August 2019. Respondents reported the details of
their most recent two days of travel to/from/within the City of San Francisco, including the
purpose and mode of transportation used for each trip. The publicly available survey data
includes individual weights that were calculated based on age and location.

The sample of commute trips consisted of 137 responses, resulting in a margin of error
of about 9%. In order to estimate target mode splits for commute trips by income group
for the SFSim model, we computed the weighted estimates of the number of commute trips
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made by each of four mode groups within San Francisco and between San Francisco and
other counties. The mode groups included:

• drive: drive alone, drive with others, drive a carpool;

• public transit: any public transit service, such as Muni, BART, Caltrain, ferry or
public bus;

• TNC: any TNC or regular taxi service; and

• other: walk, bike, motorcycle, scooter, or self-reported ”other” mode.

Finally, household income data for each individual in the sample of commute trips was
used to estimate the mode splits for each income group.

Cordon search space specification

The search space for the latitude, longitude, and radius of the congestion pricing cordon
(d1, d2, and d3, respectively) were determined using a heuristic algorithm, summarized in
algorithm 1 below. The algorithm was designed to identify multiple search spaces for the
optimization of more than one cordon at a time. The goal of the algorithm is to optimize the
coverage of the cordons to target areas with the highest volume of cars across all simulated
time periods. Car volume is determined by the congestion level (gl) on each link l ∈ L where
gl is calculated as the ratio of the total car volume voll on the link to the capacity capl of the
link. In step 2 we clustered the congested links into several groups, where group number was
the number of cordons. In step 3 we constructed a polygon for each cluster with the convex
hull of all the links. In step 4 we formed the cordon search spaces using the circumscribed
circles of the convex hulls and adjust the radius of cordons if they were overlapping.

Algorithm 1: Cordon parameters initialization

Result: Initial cordon parameters di01 ,d
i0
2 ,d

i0
3

1. Calculate the congestion level gl = voll/capl of every road link l using the output
from BEAM;
*Pick the α most congested links;
2. Cluster the picked links into N clusters using K-Means algorithm;
3. Find the convex hull Hi of each cluster ;

4. Find the circumscribed circle Ci of each Hi, where d
i0
1 ,d

i0
2 is the center of Ci and

ri0 = Cradius. If there is overlap between Ci and Cj then we adjust the
di03 = dj03 = max(di03 , d

j0
3 )β where beta is a factor less than 1.

The parameters α and β are hyper-parameters that determine the number and degree
of overlap of the cordons, respectively. Specifically, the hyper-parameter α is the percentile
of links that will be regarded as congested as follows: let L be the set of all links, then the
set of congested links is defined as L′ = {l ∈ L : gl ≥ gi, ∀i ∈ L \ L′} where |L′| = α|L|.
The lower α is, the sparser the distribution of cordons will be. The sparsity will make the



Appendix B. Congestion Pricing Optimization Case Study II: San Francisco Bay Area:
Supplementary Material 182

Cordon Longitude
param- Latitude 0.19 Latitude
eters Radius 0.26 0.15 Radius

Toll rate 0.20 0.17 0.25 Toll rate
Quadrant NW -0.36 0.42 -0.03 0.04 NW

NE 0.49 0.59 0.14 0.12 -0.26 NE
SE 0.47 -0.39 0.12 0.07 -0.28 -0.34 SE
SW -0.61 -0.51 -0.22 -0.21 -0.31 -0.39 -0.41 SW

Incentive 1st threshold 0.15 0.05 0.25 0.11 -0.07 0.06 0.09 -0.08 1st threshold
param- 2nd threshold 0.21 0.07 0.24 0.12 -0.11 0.12 0.10 -0.12 0.52 2nd threshold
eters PT - 1st level 0.21 0.12 0.27 0.14 -0.11 0.15 0.11 -0.16 0.38 0.42 PT - 1st level

PT - 2nd level 0.21 0.15 0.31 0.18 -0.07 0.16 0.09 -0.18 0.34 0.36 0.74 PT - 2nd level
PTNC - 1st level 0.08 0.05 0.14 0.11 0.01 0.03 0.06 -0.09 0.28 0.27 0.20 0.17 PTNC - 1st level
PTNC - 2nd level 0.14 0.05 0.26 0.14 -0.02 0.03 0.11 -0.12 0.30 0.28 0.25 0.25 0.70 PTNC - 2nd level

KPIs VD -0.48 -0.31 -0.60 -0.47 0.14 -0.37 -0.12 0.34 -0.33 -0.49 -0.46 -0.51 -0.26 -0.36 VD
VMT -0.40 -0.31 -0.73 -0.51 0.09 -0.34 -0.09 0.33 -0.34 -0.46 -0.46 -0.53 -0.19 -0.31 0.93 VMT
GHG -0.40 -0.31 -0.73 -0.51 0.09 -0.34 -0.09 0.33 -0.35 -0.46 -0.46 -0.53 -0.20 -0.31 0.93 1.00 GHG
PM -0.40 -0.32 -0.71 -0.49 0.10 -0.34 -0.09 0.33 -0.36 -0.49 -0.48 -0.55 -0.21 -0.32 0.94 1.00 1.00 PM
CB -0.30 -0.11 -0.07 -0.07 0.21 -0.23 -0.07 0.11 -0.34 -0.58 -0.50 -0.44 -0.40 -0.35 0.65 0.47 0.47 0.51 CB
TC -0.39 0.22 -0.18 -0.15 0.38 -0.08 -0.31 0.06 -0.29 -0.47 -0.42 -0.47 0.03 0.00 0.43 0.38 0.38 0.40 0.45 TC
NPR -0.27 -0.29 -0.48 -0.34 -0.05 -0.25 -0.02 0.29 0.10 0.19 0.05 0.08 0.09 0.07 0.35 0.43 0.43 0.40 -0.16 -0.05 NPR

Revenue Toll revenue 0.40 0.34 0.86 0.44 -0.04 0.33 0.09 -0.36 0.24 0.25 0.29 0.34 0.16 0.28 -0.80 -0.88 -0.88 -0.87 -0.24 -0.21 -0.62 Total toll revenue
break- PT revenue 0.20 0.19 0.09 0.20 0.05 0.17 0.03 -0.22 -0.06 0.05 0.09 0.02 0.00 -0.04 -0.19 -0.20 -0.20 -0.20 -0.02 -0.07 -0.72 0.17 Total PT revenue
down Incentives 0.31 0.18 0.47 0.24 -0.10 0.20 0.14 -0.24 0.46 0.77 0.61 0.66 0.40 0.49 -0.74 -0.72 -0.73 -0.76 -0.66 -0.49 0.10 0.51 0.07 Total incentives
Mode Drive alone -0.40 -0.30 -0.77 -0.57 0.06 -0.30 -0.12 0.34 -0.35 -0.45 -0.43 -0.49 -0.25 -0.37 0.91 0.97 0.97 0.96 0.40 0.36 0.46 -0.92 -0.19 -0.72 Drive alone
splits Public transit 0.40 0.29 0.77 0.54 -0.08 0.31 0.12 -0.33 0.32 0.42 0.41 0.49 0.10 0.21 -0.88 -0.97 -0.97 -0.96 -0.36 -0.43 -0.51 0.92 0.21 0.65 -0.97 Public transit

Ride alone TNC -0.37 -0.25 -0.83 -0.44 0.04 -0.24 -0.15 0.33 -0.42 -0.54 -0.45 -0.47 -0.34 -0.47 0.74 0.82 0.82 0.81 0.28 0.31 0.33 -0.82 -0.15 -0.75 0.89 -0.82 Ride alone TNC
Pooled TNC 0.04 -0.02 -0.03 -0.12 -0.03 -0.02 0.06 -0.02 0.24 0.45 0.17 0.11 0.60 0.67 -0.15 -0.02 -0.03 -0.06 -0.41 0.04 0.41 -0.06 -0.12 0.53 -0.08 -0.13 -0.25 Pooled TNC
Active 0.26 0.28 0.66 0.65 0.05 0.21 0.07 -0.30 0.20 0.08 0.23 0.26 0.33 0.42 -0.65 -0.71 -0.71 -0.68 -0.06 0.02 -0.51 0.77 0.16 0.37 -0.80 0.69 -0.75 0.09 Active (walk, bike)

TNC Deadheading 0.13 0.11 0.35 0.20 -0.02 0.12 0.01 -0.10 -0.06 -0.14 0.06 0.14 -0.56 -0.51 -0.18 -0.33 -0.32 -0.29 0.22 -0.27 -0.50 0.38 0.17 -0.16 -0.27 0.47 -0.12 -0.88 0.09 Deadheading
ops PTNC 4+ pax 0.07 0.01 0.12 -0.04 -0.02 -0.01 0.08 -0.05 0.27 0.48 0.15 0.11 0.60 0.68 -0.23 -0.12 -0.13 -0.16 -0.39 0.03 0.30 0.10 -0.09 0.57 -0.20 0.01 -0.38 0.95 0.19 -0.79

Table B.3: Correlation matrix of the Pearson correlation coefficients for all pairs of input
parameters, KPIs, mode splits, and other relevant metrics across all samples (n = 879)

cordons different from each other and thus have more opportunity to make more informed
decisions on the parameters in the optimization process. At the same time, the lower α is,
the fewer links are considered as congested. If the α is too low, we will have falsely neglected
some congestion links.

The hyper-parameter β reduces the initial overlap of the cordons. When the clusters are
located close to each other, β should be smaller to avoid overlap. For a pair of overlapping
cordons, the maximum radius between the two is chosen to avoid having very small cordons
which are not practical. Given a fixed number of cordons, overlapping cordons reduce the
dimensions of the search space for optimization. Thus, we sought to force each cordon to
be different as a way to preserve complexity and consequently increase exploration of the
search space for a fixed value of N .

After the initial parameter vector (di01 , d
i0
2 , d

i0
3 ) is calculated, the search space for di1, d

i
2, d

i
3

are specified as follows: di1 ∈ [di01 −0.5∗di02 , di01 +0.5∗di03 ], d2 ∈ [di02 −0.5∗di03 , di02 +0.5∗di03 ], d3 ∈
[0, di03 ].

B.2 Results

Table B.3 presents the Pearson’s correlation coefficients for the input parameters, KPIs, and
other metrics across all 879 samples in the sample history of the case study.




