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ABSTRACT OF THE DISSERTATION

Learning Correspondence from Images, Videos and Texts

by

Taihong Xiao

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2023

Professor Ming-Hsuan Yang, Chair

In computer vision, learning correspondence is a pivotal and fundamental challenge

with far-reaching applications. Correspondence encapsulates a measure of similarity

between disparate entities, spanning images, videos, and texts. As deep neural networks

have demonstrated significant success in computer vision over the past few years, infer-

ring correspondence has been posed as a representation learning task. We learn useful

feature representations and infer correspondence with deep neural networks. In this the-

sis, we undertake the task of learning various types of correspondence and exploring

their applications.

First, we consider acquiring dense low-level correspondence between successive

video frames, where optical flow represents temporal pixel-level correspondences. Within

the landscape of deep optical flow estimation methodologies, the cost volume emerges

as a linchpin, encoding the vital pixel-level correlation information. Our contribution

comes as a learnable cost volume (LCV) layer, leveraging a positive definite kernel ma-

trix and optimizing its learning through Cayley representations. The proposed LCV

is a lightweight module and can be easily plugged into existing models to replace the

conventional cost volume. It reduces flow estimation errors and improves the model’s

robustness against illumination variations, noise, and adversarial input perturbations.

Second, we delve into semantic correspondence across distinct images, a task more

challenging than optical flow estimation. Here, we confront the complexities stemming

from vast variations in appearance, scale, and pose, even among objects in the same cat-

xvi



egory. We introduce an affinity matrix to represent semantic similarity between images.

Our novel approach harnesses multi-level contrastive learning for semantic matching.

It leverages image-level contrastive learning to guide convolutional features in locat-

ing correspondence between similar objects. Further, we enhance performance through

pixel-level cross-instance cycle consistency. This methodology outperforms prevailing

approaches in this domain.

Finally, we explore the correspondence between images and text, crucial in vision-

language foundation models bridging disparate modalities. These models employ visual

and textual encoders, mapping both modalities into a shared embedding space. While

pretrained representations from extensive data yield impressive zero-shot performance

in tasks like image classification, their potential wanes when dealing with few exam-

ples per category. To address this challenge, we propose a category name initializa-

tion method that initializes the visual classification head with text embeddings of cate-

gory names. Extensive experimental results show that the category name initialization

method propels our model to achieve state-of-the-art results in various few-shot image

classification benchmarks.
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Chapter 1

Introduction

Learning a meaningful correspondence between two or more entities is a fundamen-

tal task. The problem can be generally stated as: given two entities, find a meaningful

relation or mapping between their elements. The elements could be images, patches,

pixels, or texts under different contexts. With the emergence of deep neural networks,

numerous problems, including learning correspondence, can be considered from the

perspective of representation learning. In this thesis, we undertake the task of learning

various types of correspondence and exploring their applications.

1.1 Spatial-Temporal Correspondence in Videos

A meaningful video correspondence characterizes the pixel motion between two

consecutive frames. Typically, we use optical flow to represent the video motion, where

a 2-dimensional vector depicts each pixel’s horizontal and vertical movements. As

shown in Figure 1.1, the optical flow visualizes the moving direction of every pixel

in the input image. However, the pixel-level flow annotation is labor-intensive. There

are a large number of unlabeled videos available, yet the pixel-level flow annotation is

labor-intensive. Moreover, directly applying the pretrained supervised models on exist-

ing open datasets might not effectively address real-world problems. Because the dataset

used for research only provides us with a limited number of labeled frames, which is far

more insufficient for complex real-world scenes. Besides, a domain gap exists between

the academic video datasets (including other synthetic labeled videos) and industrial

1



2

Input Image Optical Flow Color Key

Figure 1.1: Optical flow in real life scenes. Given the left input image, the optical flow is

visualized in the middle image, and the right image is the color key map, where different

color denotes different flow magnitudes and directions.

application scenarios. All of these motivate us to find an unsupervised flow estimation

method that can use many unlabeled videos.

Numerous deep optical flow estimation methods are based on a similar neural net-

work design: PWC-Net [112]. As shown in Figure 1.2, we generate L-level pyramids of

feature representations, with the bottom (zeroth) level being the input images, and ob-

tain the upper-level feature with a smaller resolution through a convolutional layer. At

each level, we warp the second image’s features toward the first image using the upsam-

pled flow from the previous level. Next, we construct the cost volume by computing the

correlation between features from the first image and the warped image. A cost volume

stores the data matching cost for associating a pixel in the first image with surrounding

pixels in the second image. Then, the optical flow estimator network is employed to

estimate the flow at each level. Finally, a context network takes the upsampled flow and

the second last layer from the optical flow estimator as inputs and outputs a refined flow.

Of all modules in the PWC-Net structure, the cost volume is the most prominent part

of neural networks in other vision tasks. It plays a role in finding the correlation between

the feature vector in the first frame and the potential feature vectors in the second frame.

Here, we use the upsampled flow to find the possible corresponding feature vector in the

second image. A rectangle around the corresponding feature vector bounds the potential

feature vectors with horizontal and vertical replacements. The cost volume gives much
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Figure 1.2: Network structure of PWC-Net.

correspondence information between two frames so that the following estimators could

predict the optical flow well. However, the cost volume is constructed by computing

the inner product of two feature vectors in the standard Euclidean inner product space,

limiting the representation capacity of flow estimation models. Because the correlation

among different channel dimensions is not considered, and each dimension contributes

equally to the cost volume.

Chapter 2 proposes a method to learn better video correspondence by improving the

cost volume. Specifically, we propose a learnable cost volume (LCV) layer using the

elliptical inner product, which generalizes the standard inner product by introducing a

learnable kernel weight matrix. To preserve the positive-definiteness of the kernel matrix

during the training process, I perform the spectral decomposition on the kernel matrix

and use the Cayley representation for re-parametrization. The learnable cost volume is a

lightweight module and can be easily plugged into existing models to replace the vanilla

cost volume. We show that the LCV module improves the accuracy of state-of-the-art

models on standard benchmarks and the robustness against illumination change, noises,

and adversarial perturbations of the input signals.
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1.2 Semantic Correspondence in Images

In our second scenario, we delve into predicting pixel-level semantic correspondence

between two different objects. For instance, as depicted in Figure 1.3, we recognize the

tail of a fighter and civil aviation aircraft as a valid semantic correspondence despite

originating from distinct objects. This task is notably more challenging than the video

correspondence counterpart, primarily due to its requirement to establish pixel-level

correspondences between two semantically similar objects. The increased complexity

arises from several factors:

1. Broader Scope: Unlike the constrained context of video correspondence, image

correspondence encompasses a more expansive domain. It extends beyond the

confines of two consecutive frames within a single video and contains any two

images housing potentially semantically similar objects.

2. Global Correspondence: In contrast to optical flow estimation, which restricts

its search for matches within a defined displacement range, image correspondence

mandates the identification of corresponding pairs on a global scale.

Input Frame Reference Frame

!!""! ""

Figure 1.3: Illustration of an affinity matrix.

As shown in Figure 1.3, we construct the affinity matrix A by computing the sim-

ilarity between pixel i from the input frame and pixel j from the reference frame as

follows:

Ai j =
exp( f ⊤i f j)∑
k exp( f ⊤i fk)

, (1.1)
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where fi and f j are feature vectors from the input and reference frames. It could be easily

seen that
∑

j Ai j = 1. Thus, each affinity matrix A column could be considered a prob-

ability distribution over all pixels in the reference frame. The affinity matrix contains

the pixel-level correspondence information between input and reference frames, as the

position of the maximum value in the j-th column can be considered as the correspon-

dence for the pixel j in the input frame. Compared with a cost volume in the optical

flow estimation, the advantage of an affinity matrix is that it contains correspondence

information of all possible pairs rather than between a pixel and its neighbors.

The affinity matrix is also deeply interconnected with optical flow. Given two images

I1 and I2 of the same shape H ×W, the affinity matrix of these two frames A ∈ RHW×HW

can be obtained via Eq. (1.1). We can generate a grid matrix M ∈ RH×W×2, where

the (i, j)-th entry is a 2-dimensional vector indicating its position, i.e., (i, j). Then we

reshape M into a flat grid matrix G1 ∈ R
HW×2. By multiplying the flat grid matrix with

the affinity matrix, we can get the corresponding position of every pixel in I2, denoted

as G2,

G2 = AG1. (1.2)

Therefore, the optical flow from I1 to I2 is

F12 = G2 −G1 = (A − I)G1 = −LG1, (1.3)

where L := I − A is the Laplacian matrix. The formulae above suggest that the optical

flow is closely related to the affinity matrix.

As the affinity is directly computed from two image features, the problem of learning

image correspondence is the problem of representation learning. How do we learn good

feature representations in the latent space so that semantically similar object parts from

two images could be better matched in a self-supervised way?

In Chapter 3, we aim to address the problem of self-supervised representation learn-

ing for semantic image correspondence. As far as we know, most existing semantic cor-

respondence methods design complicated matching algorithms based on deep features

from pretrained ImageNet models. Their application in unlabeled data may be limited

because pretrained ImageNet models are obtained by training on labeled images. We

propose a model that combines momentum contrastive learning and image cycle learn-

ing to address this issue. Momentum contrastive learning aims to learn a discriminative
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global feature in a self-supervised way. In our proposed image cycle learning, we re-

gard the correspondence relationship as a path connecting pixels between two images,

and we traverse through all retrieved images cyclically. Our experimentation demon-

strates a noticeable performance enhancement achieved by our method when evaluated

on a standard benchmark dataset.

1.3 Multimodal Correspondence between Images and Texts

Vision-language models represent a significant advancement in the field of artificial

intelligence, bridging the gap between visual and textual data. These models are de-

signed to understand and generate meaningful connections between images and texts,

enabling a wide range of applications, from image captioning and visual question-

answering (VQA) to content recommendation and even aiding the visually impaired.

They serve as the cornerstone for multimodal understanding, where multiple modes of

data are integrated to extract richer, more comprehensive insights.

The core of vision-language models lies in their ability to establish meaningful cor-

respondence between images and texts. The secret of establishing multi-modal corre-

spondence lies in the training objective. Typically, a vision-language model consists of

two encoders, where deep neural networks, especially transformers [121], are used to

extract visual and textual representations. The training objective is to align image rep-

resentations with text representations in the same embedding space by employing the

contrastive loss, which is defined as follows,

Lcon = −
1
N

N∑
i

log
exp(x⊤i yi/σ)∑N

j=1 exp(x⊤i y j/σ)
−

1
N

N∑
i

log
exp(y⊤i xi/σ)∑N

j=1 exp(y⊤i x j/σ)
, (1.4)

where xi and y j are the normalized embedding of the image in the i-th pair and that of

text in the j-th pair respectively, N is the batch size, and σ is the temperature to scale

the logits. In addition to the image encoder, the dual-encoder approach also learns an

aligned text encoder that enables cross-modal alignment applications such as image-text

retrieval and zero-shot image classification.

Such multi-modal correspondence can be used in many applications.

1. Image Captioning: Given an image, the model generates a descriptive caption
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that succinctly conveys the content and context of the image. For example, de-

scribing a photo of a beach scene with ”A sandy beach with palm trees and clear

blue water.”

2. Visual Question-Answering (VQA): In VQA tasks, the model answers questions

based on an image, demonstrating its ability to understand both visual content and

textual input. For instance, when asked “What color is the boat in the picture?”

the model can correctly respond with “blue.”

3. Image Retrieval: Vision-language models can be used to find images based on

textual queries or vice versa. Given a sentence like “A red sports car,” the model

can retrieve images that match this description.

4. Text-to-Image Generation: Conversely, these models can generate images from

textual descriptions. If provided with the text “A cat sitting on a windowsill,” the

model can create an image that corresponds to this description.

5. Content Recommendation: Vision-language models can also be employed to

recommend relevant content based on user preferences and the understanding of

both visual and textual content. For instance, suggesting videos or products based

on a combination of textual reviews and images.

Chapter 4 delves into few-shot learning using large, pretrained vision-language mod-

els. Our focus centers on scenarios where only a limited number of images are available

for downstream image classification tasks. In such cases, conventional performance of-

ten falls short in comparison to the zero-shot capabilities of these models. To address

this, we harness the power of multi-modal correspondence to develop a more robust

few-shot learning approach. Our approach involves computing text embeddings for the

category names of the few-shot image classification datasets. These text embeddings

are normalized and used to initialize the classification head. The effectiveness of this

method is demonstrated across a wide range of datasets, offering a promising solution

to the challenges posed by limited image data in the context of few-shot learning.



Chapter 2

Learnable Cost Volume Using the

Cayley Representation

Cost volume is an essential component of recent deep models for optical flow es-

timation and is usually constructed by calculating the inner product between two fea-

ture vectors. However, the standard inner product in the commonly-used cost volume

may limit the representation capacity of flow models because it neglects the correlation

among different channel dimensions and weighs each dimension equally. To address

this issue, we propose a learnable cost volume (LCV) using an elliptical inner prod-

uct, which generalizes the standard inner product by a positive definite kernel matrix.

To guarantee its positive definiteness, we perform spectral decomposition on the kernel

matrix and re-parameterize it via the Cayley representation. The proposed LCV is a

lightweight module and can be easily plugged into existing models to replace the vanilla

cost volume. Experimental results show that the LCV module not only improves the

accuracy of state-of-the-art models on standard benchmarks but also promotes their ro-

bustness against illumination change, noises, and adversarial perturbations of the input

signals.

2.1 Introduction

Optical flow estimation is a fundamental computer vision task and has broad appli-

cations, such as video interpolation [3], video prediction [73], video segmentation [117,

8
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13], and action recognition [74]. Despite the recent progress made by deep learn-

ing models, it is still challenging to accurately estimate optical flow for image se-

quences with large displacements, textureless regions, motion blur, occlusion, illumi-

nation changes, and non-Lambertian reflection.

x

y y

x

𝑓! 𝑓!
𝑓" 𝑓"

Figure 2.1: Standard inner product space v.s. elliptical inner product space.

Most deep optical flow models [112, 76, 46] adopt the idea of coarse-to-fine process-

ing via feature pyramids and construct cost volumes at different levels of the pyramids.

The cost volume stores the costs of matching pixels in the source image with their po-

tential matching candidates in the target image. It is typically constructed by calculating

the inner product between the convolutional features of one frame and those of the next

frame, and then regressed to the estimated optical flow by an estimation sub-network.

The accuracy of the estimated optical flow heavily relies on the quality of the constructed

cost volume.

While the standard Euclidean inner product is widely used to build the cost volume

(a.k.a., vanilla cost volume) for optical flow, we argue that it limits the representation

capacity of the flow model for two reasons. First, the correlation among different chan-

nel dimensions is not taken into consideration by the standard Euclidean inner product.

As shown in Fig. 2.1, we use a simple 2D example for illustration. Given two feature

vectors f1 and f2 with positive correlation in the standard inner product space, we are

able to find a proper elliptical inner product space to make these two feature vectors

orthogonal to each other, which gives a zero correlation. Therefore, the specific choice

of the inner product space influences the values of the matching costs, and thus should

be further exploited. Second, each feature dimension contributes equally to the vanilla

cost volume, which may give a sub-optimal solution to constructing the cost volume for

flow estimation. Ideally, dimensions corresponding to noises and random perturbations
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should be suppressed, while those containing discriminative signals for flow estimation

should be kept or magnified.

To address these limitations, we propose a learnable cost volume module which ac-

counts for the correlation among different channel dimensions and re-weighs the contri-

bution of each feature channel to the cost volume. The LCV generalizes the Euclidean

inner product space to an elliptical inner product space, which is parameterized by a

symmetric and positive definite kernel matrix. The spectral decomposition of the kernel

matrix gives an orthogonal matrix and a diagonal matrix. The orthogonal matrix lin-

early transforms the features into a new feature space, which accounts for the correlation

among different channel dimensions. The diagonal matrix multiplies each transformed

feature by a positive scalar, which weighs each feature dimension differently. From a

geometric perspective, the orthogonal matrix rotates the axes and the diagonal matrix

stretches the axes so that the feature vectors are represented in a learned elliptical inner

product space, which generates more discriminative matching costs for flow estimation.

However, directly learning a kernel matrix in an end-to-end manner cannot guarantee

the symmetry and positive definiteness of the kernel matrix, which is required by the

definition of inner product. To address this issue, we perform spectral decomposition on

the kernel matrix and represent each component via the Cayley transform. Specifically,

the special orthogonal matrices that exclude −1 as the eigenvalue can be bijectively

mapped into the skew-symmetric matrices, and the diagonal matrices can be similarly

represented by the composition of the Cayley transform and the arctangent function. In

this way, all parameters of the learnable cost volume can be inferred in an end-to-end

fashion without explicitly imposing any constraints.

The proposed learnable cost volume is a general version of the vanilla cost volume,

and thus can replace the vanilla cost volume in the existing networks. We finetune the

existing architectures equipped with LCV by initializing the kernel matrix as the identity

matrix and restoring other parameters from the pre-trained models. Experimental results

on the Sintel and KITTI benchmark datasets show that the proposed LCV significantly

improves the performance of existing methods in both supervised and unsupervised set-

tings. In addition, we demonstrate that LCV is able to promote the robustness of the

existing models against illumination changes, noises, and adversarial attacks.
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To summarize, we make the following contributions:

1. We propose a learnable cost volume to account for correlations among different

feature dimensions and weight each dimension separately.

2. We employ the Cayley representation to re-parameterize the kernel matrix in a

way that all parameters can be learned in an end-to-end manner.

3. The proposed LCV can easily replace the vanilla cost volume and improve the

accuracy and robustness of the state-of-the-art models.

2.2 Related Work

2.2.1 Supervised Learning of Optical Flow

Inspired by the success of convolutional neural networks (CNNs) on per-pixel pre-

dictions such as semantic segmentation and single-image depth estimation, Dosovit-

ski et al. propose FlowNet [22], the first end-to-end deep neural network capable of

learning optical flow. FlowNet predicts a dense optical flow map from two consecutive

image frames with an encoder-decoder architecture. FlowNet2.0 [50] extends FlowNet

by stacking multiple basic FlowNet modules for iterative refinement and its accuracy is

fully on par with those of the state-of-the-art methods at the time. Motivated by the idea

of coarse-to-fine refinement in traditional optical flow methods, SpyNet [99] introduces

a compact spatial pyramid network that warps images at multiple scales to deal with

displacements caused by large motions. PWC-Net [112] extracts features through pyra-

midal processing and builds a cost volume at each level from the warped and the target

features to iteratively refine the estimated flow. VCN [137] improves the cost volume

processing by decoupling the 4D convolution into a 2D spatial filter and a 2D winner-

take-all (WTA) filter, while still retaining a large receptive field. HD3 [139] learns a

probabilistic matching density distribution at each scale and merges the matching den-

sities at different scales to recover the global matching density.
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2.2.2 Unsupervised Learning of Optical Flow

The advantage of unsupervised methods is that it can sidestep the limitations of the

synthetic datasets and exploit the large number of training data in the realistic domain.

In [53] and [102], the flow guidance comes from warping the target image according to

the predicted flow and comparing against the reference image. The photometric loss is

adopted to ensure brightness constancy and spatial smoothness. In some work [130, 82],

occluded regions are excluded from the photometric loss. As pixels occluded in the tar-

get image are also absent in the warped one, enforcing matching of the occluded pixels

would misguide the training. Wang et al. [130] obtain an occlusion mask from the

range map inferred from the backward flow, while UnFlow [82] relies on the forward-

backward consistency to estimate the occlusion mask. Unlike these two methods that

predict the occlusion map in advance with certain heuristic, Back2Future [52] estimates

the occlusion and optical flow jointly by introducing a multi-frame formulation and

reasoning the occlusion in a more advanced manner. DDFlow [76] performs knowl-

edge distillation by cropping patches from the unlabeled images, which provides flow

guidance for the occluded regions. SelFlow [77] hallucinates synthetic occlusions by

perturbing super-pixels where the occluded regions are guided by a model pre-trained

from non-occluded regions.

2.2.3 Correspondence Matching

Typically, stereo matching algorithms [106, 43] involve local correspondence extrac-

tion and smoothness regularization, where the smoothness regularization is enforced by

energy minimization. Recently, hand-crafted features are replaced by deep features and

minimization of the matching cost is substituted by training convolutional neural net-

works [143, 59]. Xu et al. [136] construct a 4D cost volume using an adaptation of

the semi-global matching, and Yang et al. [137] reduce the computation overhead of

processing the 4D matching volume by factorizing into two separable filters.

Different from these approaches where the correspondence is represented by a hand-

crafted matching cost volume, we propose a learnable cost volume that can capture the

correlation among different channels by adapting the features to an elliptical inner prod-
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uct space. Such a correlation is automatically learned by optimizing the kernel matrix

using the Cayley representation, which is more flexible and effective in optical flow es-

timation and can be easily plugged into the existing architectures. To our knowledge,

this chapter is the first one to use the Cayley representation for learning correspondence

in optical flow.

2.3 Learnable Correlation Volume

2.3.1 Vanilla Cost Volume

Let F 1,F 2 ∈ Rc×h×w be the convolutional feature of the first frame and the warped

feature of the second frame, respectively. The vanilla cost volume is defined as the inner

product between the query feature F 1
i, j and the potential match candidate F 2

k′,l′ , i.e.,

C(F 1,F 2)k,l,i, j = F 1⊤
i, j F

2
k′,l′ , (2.1)

which maps from the space Rc×h×w × Rc×h×w to Ru×v×h×w. Here, u and v are usually odd

numbers, indicating the displacement ranges in horizontal and vertical directions, (i, j)

denotes the spatial location of the feature map F 1, and (k′, l′) = (i − (u − 1)/2 + k, j −

(v − 1)/2 + l) denotes that of F 2. For each location (i, j) of the query feature F 1, the

matching is performed against pixels of F 2 within a u × v search window centered by

the location (i, j). Then, the cost volume is either reshaped into uv × h × w and post-

processed by 2D convolutions [112], or kept as a 4D tensor on which the separable 4D

convolutions [137] are applied.

2.3.2 Learnable Cost Volume

We generalize the standard Euclidean inner product to the elliptical inner product,

where the matching cost is computed as follows:

C(F 1,F 2)k,l,i, j = F 1⊤
i, j WF 2

k′,l′ . (2.2)

Here, W ∈ Rc×c is a learnable kernel matrix that determines the elliptical inner product

space, and other notations are the same as those in Eq. (2.1). According to the definition
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of inner product, W should be a symmetric and positive definite matrix. By spectral

decomposition, we obtain

W = P ⊤ΛP , (2.3)

where P is an orthogonal matrix, and Λ is a diagonal matrix with positive entries,

i.e., Λ = diag(λ1, · · · , λc) with λi > 0, ∀i ∈ {1, · · · , c}. The orthogonal matrix P actually

rotates the coordinate axes and the diagonal matrix Λ re-weights different dimensions,

which directly address the two limitations mentioned in Sec. 2.1.

2.3.3 Learning with the Cayley Representation

In the proposed LCV module, the entries of the kernel matrix W are the only learn-

able parameters. However, the constraints of symmetry and positive-definiteness hin-

ders the gradient-based end-to-end learning of W . To address this issue, we propose to

optimize P and Λ instead of W .

One way to optimize P is to employ the Riemann gradient descent on the Stiefel

manifold, which is defined as

Vk(Rn) = {A ∈ Rn×k|A⊤A = Ik}. (2.4)

All orthogonal matrices lie in the Stiefel manifold. Specifically, P ∈ Vc(Rc). Therefore,

we can apply the Riemann gradient descent on the Stiefel matrix manifold, where the

projection and retraction formula [1] are given by

PX(Z) = (I −XX⊤)Z +X · skew(X⊤Z) (2.5)

RX(Z) = (X +Z)(I +Z⊤Z)−
1
2 , (2.6)

where skew(X) := (X −X⊤)/2. However, to perform the Riemann gradient descent,

the projection and retraction operations are required in each training step, and the matrix

multiplication brings considerable computational overhead.

We can address this issue in a more elegant way using the Cayley Representation [8].

First, we define a set of matrices:

SO∗(n) := {A ∈ SO(n) : −1 < σ(A)}, (2.7)
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where σ(A) denotes the spectrum, i.e., all eigenvalues, of A. SO∗(n) is a subset of the

special orthogonal group SO(n) and the spectrum of its elements excludes −1. Then, we

have the following theorems:

Theorem 1 (Cayley Representation). Given any matrix P ∈ SO∗(n), there exists a

unique skew-symmetric matrix S, i.e., S⊤ = −S, such that

P = (I − S)(I + S)−1. (2.8)

Theorem 2. The set of matrices SO∗(n) is connected.

By Theorem 1, we can initialize the matrix P in Eq. (2.3) as an identity matrix I ∈

SO∗(c), and update S so as to update P using gradient-based optimizer. Let P ∗ be the

optimal orthogonal matrix, and we claim that it is possible to reach P ∗ from initializing

as the identity matrix P = I . This because SO∗(c) is a connected set (Theorem 2), so

there exists a continuous path joining I ∈ SO∗(c) and any P ∈ SO∗(c), including P ∗.

Due to the positive definiteness of W , the constraint of the diagonal matrix Λ =

diag(λ1, . . . , λc) is λi > 0, ∀i = 1, . . . , c. Thus, we map R to R+ by applying the compo-

sition of the Cayley transform and the arctangent function, i.e.,

λi =
π + 2 arctan ti

π − 2 arctan ti
, (2.9)

where ti ∈ R is free of constraint.

The above re-parameterization trick enables us to update the kernel matrix W in an

end-to-end manner using the SGD optimizer or its variants, which alleviates the heavy

computation brought by the projection and retraction and makes the training process

much easier.

2.3.4 Interpretation

To better understand the learnable cost volume, we analyze several cases here.

1. W = I .

This degenerates into the vanilla cost volume, in which the standard Euclidean inner

product is adopted.
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2. W = Σ−1.

Let Σ be the covariance matrix of the convolutional feature, then the learnable cost

volume is essentially a whitening transformation. Let Q = Λ1/2P , and then Eq. (2.2)

can be formulated as

C(F 1,F 2)k,l,i, j = F 1⊤
i, j P

⊤Λ1/2Λ1/2PF 2
k′,l′ = (QF 1

i, j)
⊤(QF 2

k′,l′), (2.10)

where QF 1
i, j represents the transformed feature of F 1

i, j after PCA [56] whitening. Simi-

larly, letting R = P ⊤Λ1/2P , we can have

C(F 1,F 2)k,l,i, j = F 1⊤
i, j P

⊤Λ1/2PP ⊤Λ1/2PF 2
k′,l′ = (RF 1

i, j)
⊤(RF 2

k′,l′), (2.11)

where RF 1
i, j is the transformed feature of F 1

i, j after ZCA [6] whitening. It has been

shown that the high-level styles can be removed with the contextual structures remained

by whitening the convolutional features [72].

3. W = P ⊤ΛP .

The learnable cost volume shares a similar formula as the whitening process, but

W is learned over the whole training dataset rather than statistics of two inputs, thus

contains certain holistic information of the entire training dataset. Because it has been

verified that the certain holistic characteristics of the underlying image can be captured

by the Gram matrix along the channel dimension [27, 72]. The learnable cost vol-

ume performs as “whitening” features using the common information learned from all

frames. Specifically, the orthogonal matrix P re-arranges the information across the

channel dimension, while the diagonal matrix Λ filters out insignificant signals, making

the correlation more robust to the illumination changes and noises. (See Sec. 2.4.4.)

It should also be pointed out that the whitening matrix R in Eq. (2.11) could be

viewed as a 1 × 1 conv functioning on the feature, but directly applying a 1 × 1 conv

with learnable parameters on features before computing the standard cost volume cannot

replace the proposed learned cost volume. Because R⊤R only gives a positive semi-

definite matrix even when R is full-rank, which does not meet the positive definiteness

property of an inner product.
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Figure 2.2: Visual results on “Ambush 1” from the Sintel test final pass. The number

under each method denotes the average end-point error (AEPE). Left: estimated flow;

right: error map (increases from black to white).

2.3.5 Relation with the Weighted Sum of Squared Difference

The learnable cost volume can be also formulated by re-thinking the simplest match-

ing criterion for comparing two features, i.e., the weighted sum of squared difference
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Inputs

Fl-all(%)

PWC-Net

7.99

HD3

7.17
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Figure 2.3: Visual results on the KITTI 2015 test set. The number under each method

name denotes the Fl-all score on the given frames. Left: estimated flow; right: error

map (increases from blue to red).

(WSSD): ∑
i

λi

(
Gi(F 2) −Gi(F 1)

)2
, (2.12)

where G : Rc → Rc denotes a transformation function on the features F i ∈ Rc, i = 1, 2,

and Gi(F ) indicates the ith element of G(F ).

By the Taylor series expansion, we have∑
i

λi

(
Gi(F 2) −Gi(F 1)

)2
≈
∑

i

λi

(
∇Gi(F 1)⊤∆F

)2
= ∆F ⊤W∆F , (2.13)

where ∆F=F 2 − F 1 is the feature difference and W =
∑

i λi∇Gi(F 1)∇Gi(F 1)⊤ is the

auto-correlation matrix. Here, W coincides with the kernel matrix of the proposed LCV

module in Eq. (2.2). When λi = 1(i = 1, . . . , c) and G is an identity map, then W = I ,
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Inputs

AEPE

PWC-Net

18.948

HD3

19.542

VCN

14.294

VCN+LCV

14.176

Figure 2.4: More visualization results on “Market 4” from the Sintel test final pass.

The number under each method name denotes the average end-point error (AEPE) on

the given frames. The estimated flow and error maps are presented on the left and right

sides, respectively. In the error map, the error of the estimated flow increases from black

to white.

which corresponds to the vanilla cost volume. If we further expand Eq. (2.13), we can
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Inputs

Fl-all(%)

PWC-Net

13.87

HD3

6.79

VCN

6.09

VCN+LCV

5.70

Figure 2.5: More visualization results on the KITTI 2015 test set. The number under

each method name denotes the Fl-all score on the given frames. The estimated flow and

error maps are presented on the left and right sides, respectively. From blue to red, the

error of the estimated flow increases in the error map.

see the connection with the proposed learnable correlation volume as follows:

∆F ⊤W∆F = (F 2 − F 1)⊤W (F 2 − F 1)

= (F 2⊤WF 2 + F 1⊤WF 1) − 2F 1⊤WF 2,
(2.14)

where the last term shares the same formula with the proposed learnable cost volume.

This implies that the proposed learnable cost volume is inversely correlated with WSSD.

As WSSD measures the discrepancy between two features, the learnable cost volume

characterizes a certain kind of similarity between them.
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Table 2.1: Results of the supervised methods on the MPI Sintel and KITTI 2015 optical

flow benchmarks. All reported numbers indicate the average endpoint error (AEPE)

except for the last two columns, where the percentage of outliers averaged over all

groundtruth pixels (Fl-all) are presented. “-ft” means finetuning on the relative MPI

Sintel or KITTI training set and the numbers in the parenthesis are results that train and

test on the same dataset. Missing entries (-) indicate that the results are not reported for

the respective method. The best result for each metric is printed in bold.

Methods

Sintel KITTI 2015

Clean Final AEPE Fl-all (%)

train test train test train train test

FlowNet2 [50] 2.02 3.96 3.14 6.02 10.06 30.37 -

FlowNet2-ft [50] (1.45) 4.16 (2.01) 5.74 (2.30) (8.61) 10.41

DCFlow [136] - 3.54 - 5.12 - 15.09 14.83

MirrorFlow [48] - - - 6.07 - 9.93 10.29

SpyNet [99] 4.12 6.69 5.57 8.43 - - -

SpyNet-ft [99] (3.17) 6.64 (4.32) 8.36 - - 35.07

LiteFlowNet [46] 2.52 - 4.05 10.39 - - -

LiteFlowNet+ft [46] (1.64) 4.86 (2.23) 6.09 (2.16) - 10.24

PWC-Net [112] 2.55 - 3.93 - 10.35 33.67 -

PWC-Net-ft [112] (2.02) 4.39 (2.08) 5.04 (2.16) (9.80) 9.60

PWC-Net+-ft [113] (1.71) 3.45 (2.34) 4.60 (1.50) (5.30) 7.72

IRR-PWC-ft [49] (1.92) 3.84 (2.51) 4.58 (1.63) (5.30) 7.65

HD3 [139] 3.84 - 8.77 - 13.17 23.99 -

HD3-ft [139] (1.70) 4.79 (1.17) 4.67 (1.31) (4.10) 6.55

VCN [137] 2.21 - 3.62 - 8.36 25.10 8.73

VCN-ft [137] (1.66) 2.81 (2.24) 4.40 (1.16) (4.10) 6.30

RAFT [115] 1.09 2.77 1.53 3.61 (1.07) (3.92) 6.30

RAFT (warm start) [115] 1.10 2.42 1.61 3.39 - - -

VCN+LCV (1.62) 2.83 (2.22) 4.20 (1.13) (3.80) 6.25

RAFT+LCV (0.94) 2.75 (1.31) 3.55 (1.06) (3.77) 6.26

RAFT+LCV (warm start) (0.99) 2.49 (1.47) 3.37 - - -
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2.4 Experiments

In this section, we present the experimental results of optical flow estimation in both

supervised and unsupervised settings to demonstrate the effectiveness of the proposed

learnable cost volume. Also, we carry out ablation studies to show that the LCV module

performs favorably against other counterparts. Moreover, we analyze the behavior of

LCV and find it beneficial to handling three challenging cases. More results can be

found in the supplementary material and the source code and trained models is available

at https://github.com/Prinsphield/LCV.

Training Process. It is well-known that the deep optical flow estimation pipeline con-

sists the following stages in the supervised settings [113]: 1) train the model on the

FlyingChairs [22] dataset; 2) finetune the model on the FlyingThings3D [81] dataset;

and 3) finetune the model on the Sintel [7] and KITTI [84, 83] training sets. Besides,

there are lots of tricks such as data augmentation and learning rate disruption, making

the training process more complicated.

To avoid the tedious training procedure over multiple datasets, we adopt a more

efficient way to train the model equipped with LCV. As mentioned in Sec. 2.3.4, the

vanilla cost volume is a special case of the learnable cost volume when W = I , which

means that the learnable cost volume is more general and backward compatible with

vanilla cost volume. Therefore, we initialize the kernel matrix W as the identity matrix

and other parameters are directly restored from the pre-trained models without using

LCV. After that, we finetune the model with LCV on the Sintel or KITTI datasets using

the same loss function. This training process not only significantly reduces training

time but also plays a crucial role in the success under the unsupervised settings. (See

Sec. 2.4.2.) This approach can also be viewed as fixing the kernal matrix as W = I in

the first three training stages, and let W be learnable in the final stage.

2.4.1 Supervised Optical Flow Estimation

First, we incorporate the learnable cost volume in the VCN [137] and RAFT [115]

framework, and compare them with other existing methods. As shown in Table 2.1, our
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method performs favorably against other state-of-the-art methods on the Sintel Clean/Final

pass and the KITTI 2015 benchmark.

The proposed LCV module improves the performance of VCN and RAFT by trans-

forming the features of video frames to a whitened space to obtain a clean and robust

matching correlation. This could account for the performance improvement on the Sin-

tel Final pass, where the scenarios are much harder. As shown in Fig. 2.2, the flow

estimation error for the snow background at the right side is smaller than other methods.

This is a challenging case because the front person’s arm renders occlusion to part of

the snow background and the background is nearly all white, providing few clues for

matching. However, the LCV module exploits more information from the correlation

among different channels, which assists in obtaining the coherent flow estimation in the

snow background. The LCV module also has an edge over the vanilla cost volume under

the circumstance of light reflection and occlusion. As shown in Fig. 2.3, the prediction

error of our method is smaller around the light reflection region and the rightmost traffic

sign. The flow boundary of the dragon in Fig. 2.4 predicted by VCN+LCV is better

than the other methods and the flow prediction near the tree (in front of the car) and

fence by our method in Fig. 2.5 is more accurate compared with those of the others. The

flow prediction for these pixels are are challenging due to the occlusion. LCV explores

more information among channel dimensions, which could help alleviate the problem

of occlusion to some extent.

Although we do not report the model parameters in the table, the proposed LCV

module only makes a very slight increase in the model size. The additional param-

eters come from the kernel matrices W ∈ Rc×c at different pyramid levels. Taking

VCN+LCV as an example, there are five kernel matrices in total, whose channel di-

mensions are 64, 64, 128, 128, and 128, respectively. The LCV module only takes up

642 × 2 + 1282 × 3 = 57, 344 parameters, which is negligible compared with the entire

VCN model of around 6.23M parameters.

2.4.2 Unsupervised Optical Flow Estimation

We also test the LCV module in unsupervised settings on the KITTI 2015 bench-

mark. We replace the vanilla cost volume with the LCV module in the DDFlow [76]
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model, and compare it with other unsupervised methods. As shown in Table 2.2, our

model outperforms the DDFlow baseline, and even performs favorably against SelF-

low [77], an improved version of DDFlow.

The training process is crucial to the success of the LCV module in the unsuper-

vised methods. Different from the supervised training of optical flow models, there is

no ground truth for direct supervision. Instead, most unsupervised methods use the pho-

tometric loss as a proxy loss. Specifically, the training of DDFlow consists of two stages:

1) pre-train a non-occlusion model with census transform [31], and 2) train an occlusion

model by distillation from the non-occlusion model. If we directly follow the same pro-

cedure, the training of DDFlow+LCV will run into trivial solutions, as the photometric

loss does not give a strong supervision for the correspondence learning, especially when

the LCV module increases the dimension of the solution space. To prevent from trivial

solutions, we fix the kernel matrix as W = I in the pre-train stages, and update W in

the distillation stage.

Table 2.2: Results of the unsupervised methods on the KITTI 2015 optical flow bench-

mark. Missing entries (-) indicate that the results are not reported for the respective

method. The best result for each metric is printed in bold.

Methods

KITTI 2015

train test

AEPE Fl-bg (%) Fl-fg (%) Fl-all (%)

DSTFlow [102] 16.79 - - 39

GeoNet [140] 10.81 - - -

UnFlow [82] 8.88 - - 28.95

DF-Net [156] 7.45 - - 22.82

OccAwareFlow [130] 8.88 - - 31.20

Back2FutureFlow [52] 6.59 22.67 24.27 22.94

SelFlow [77] 4.84 12.68 21.74 14.19

DDFlow [76] 5.72 13.08 20.40 14.29

DDFlow+LCV (Ours) 5.15 12.98 19.83 14.12
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2.4.3 Ablation Study

We evaluate multiple variants of the LCV module based on the VCN baseline:

• VCN: the original VCN baseline.

• VCN (ct): continue training the existing VCN using a small learning rate for more

epochs.

• VCN (W , ct): remove the symmetry and positive definiteness constraint of W ,

i.e., , not using the Cayley representation. We restore the weights from the pre-

trained VCN and continue training the model with free W .

• VCN (Λ, ct): fix P to be an identity matrix and make the diagonal matrix Λ

learnable.

• VCN (P , ct): fix Λ to be an identity matrix and make the orthogonal matrix P

learnable.

• VCN (1x1 conv): replace the positive definite W with R⊤R, where R is a 1 × 1

conv operating on features with input and output dimensions equal. R⊤R is only

a positive semi-definite matrix.

• VCN+LCV: employ the Cayley representation to ensure the symmetry and posi-

tive definiteness of W .

We randomly split the 200 images with ground truth from the KITTI 2015 training

set into the training and validation set by a ratio of 4:1. As shown in Table 2.3, we

report the AEPE/Fl-all scores on the validation set. We observe that continuing train-

ing of the VCN model does not bring any benefit, which indicates that the best VCN

model is not obtained at the very end of the training. Another interesting observation

is that VCN (W , ct) performs better than VCN (ct), showing the benefit of increasing

the model capacity. However, it does not outperform VCN, not even VCN+LCV, con-

firming the importance of using a valid inner product space. Comparing the result of

VCN (1x1 conv), we can further conclude that ensuring the positive definiteness via the

Cayley representation is crucial to the performance. We can also find that VCN (Λ, ct)
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gets a lower AEPE and VCN (P , ct) gets a lower Fl-all compared with vanilla VCN.

VCN+LCV combines the advantages of both axis rotation and re-weighting, aiming to

address two limitations mentioned in the chapter.

Table 2.3: Ablation study of different variants of VCN on the KITTI 2015 dataset.

Methods VCN VCN (ct) VCN (W , ct) VCN (Λ, ct) VCN (P , ct) VCN(1x1 conv) VCN + LCV

AEPE/Fl-all 3.9/1.144 4.2/1.204 4.1/1.193 3.8/1.136 3.9/1.129 3.9/1.163 3.8/1.132

Table 2.4: Results on three challenging cases (numbers: AEPE/Fl-all scores).

(a) Illumination change

γ 0.2 0.3 0.4 0.5 0.7 1.0 2.0 3.0

VCN 16.8/3.240 9.9/1.891 5.9/1.306 3.8/0.995 2.7/0.834 2.5/0.805 2.6/0.819 2.6/0.826

VCN+LCV 17.1/3.232 9.8/1.866 5.9/1.273 3.7/0.967 2.6/0.804 2.4/0.775 2.4/0.790 2.5/0.804

(b) Noise

Standard deviation 0.0001 0.001 0.01 0.1

VCN 2.6/0.816 2.9/0.868 5.0/1.157 19.6/3.213

VCN+LCV 2.4/0.785 2.7/0.838 4.7/1.107 18.9/3.043

(c) Adversarial patch

Patch size 50 100 150 200

VCN 3.5/0.981 5.6/1.419 8.5/2.048 11.9/2.880

VCN+LCV 3.4/0.949 5.5/1.384 8.3/2.004 11.6/2.801

2.4.4 Robustness Analysis

To further understand the effect of the LCV module, we evaluate the flow estimation

performance under three challenging cases, i.e., 1) illumination changes: we adjust the

illumination of the input frames by changing the value of γ, where γ = 1.0 is the original

image, γ < 1.0 is for a darker image, and γ > 1.0 is for a brighter image. 2) adding

noises: we adjust the standard deviation to control the noise magnitude. and 3) inserting

adversarial patches: we borrow the universal adversarial patch [100] that can perform a

black-box attack for all optical flow models, and insert patches of different sizes to the

input frames.

We compare the VCN model and its variant equipped with LCV. Both two models

are trained on the KITTI 2015 training set. For qualitative comparison, we perform the

above three types of processing on 194 images with the flow groundtruth from the KITTI
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(a) Illumination change (γ = 0.5)

(b) Noise (std=0.001)

(c) Adversarial patch (radius=50)

Figure 2.6: Visual results of three challenging cases, i.e., illumination change, noise,

and adversarial patch. Top left: the first input frame; bottom left/right: flow by VCN /

VCN+LCV; top right: flow difference between two methods.

2012 as our test set. As shown in Table 2.4(a), VCN+LCV consistently outperforms the

VCN baseline in all three challenging cases. For better illustration, we visualize the

effect on an image from KITTI 2015 test set as shown in Fig. 2.6. It can be seen that

the LCV module can help stabilize the flow prediction around the background trees at
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the top left corner of the frame under the cases of dark illumination and random noise

injection. In the third example, the outline of the car body near the patch circle is better

preserved by our model. (See the difference map for details.)

2.4.5 Visualization of the Learned Features

We visualize the feature maps for different eigenvalues in Fig. 2.7. We find that

boundaries of (moving) objects are salient in the feature map corresponding to the max

eigenvalue while the min eigenvalue mainly corresponds to background information,

which results in more discriminative cost volume and more accurate flow estimation.

(a) frame

(b) feature (max eigenvalue)

(c) feature (min eigenvalue)

Figure 2.7: The feature maps corresponding to the largest the smallest eigenvalues.
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2.5 Proofs of Theorems

2.5.1 Proof of Theorem 1

The Theorem of Cayley representation was first given by Cayley in his paper [8].

However, the old paper is not available online. For convenience, we give a simple proof

here.

Proof. First, we validate that the P is a orthogonal matrix. The condition that S ∈

SO∗(n) ensures that (I +S) is invertible. Since S is skew-symmetric, so S⊤S = −S2 =

SS⊤. Hence we have

P ⊤P = (I + S)−⊤(I − S)⊤(I − S)(I + S)−1 (2.15)

= (I + S⊤)−1(I − S⊤)(I − S)(I + S)−1 (2.16)

= (I − S)−1(I − S⊤ − S − S⊤S)(I + S)−1 (2.17)

= (I − S)−1(I − S⊤ − S − SS⊤)(I + S)−1 (2.18)

= (I − S)−1(I − S)(I − S⊤)(I + S)−1 (2.19)

= (I − S⊤)(I + S)−1 (2.20)

= (I + S)(I + S)−1 (2.21)

= I . (2.22)

Next, we need to show the uniqueness of the Cayley representation.

P = (I − S)(I + S)−1 (2.23)

⇐⇒ P (I + S) = I − S (2.24)

⇐⇒ P + PS = I − S (2.25)

⇐⇒ S + PS = I − P (2.26)

⇐⇒ (I + P )S = I − P (2.27)

⇐⇒ S = (I + P )−1(I − P ) (2.28)

Therefore, the skew-symmetric matrix S is uniquely represented by P , which concludes

the proof. □
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2.5.2 Proof of Theorem 2

Before giving the proof, we would like to recall the definition of connectedness.

Definition 1 (Connectedness). A set of matrices G is said to be connected if for all A

and B in G, there exists a continuous path A(t), 0 ≤ t ≤ 1, lying with A(0) = A and

A(1) = B.

The above definition of connectedness is actually path connectedness in topology.

Now we begin our proof of Theorem 2.

Proof. Since the identity matrix I ∈ SO∗(n), it suffices to prove that for any X ∈

SO∗(n), there exists a continuous path A(t), 0 ≤ t ≤ 1, such that A(0) = I and A(1) =

X . For any X ∈ SO∗(n), we have its spectral decomposition

X = P ⊤diag(K1, . . . ,Kq, 1, . . . , 1)P , (2.29)

where the P ∈ O(n) and 0 ≤ q ≤ n/2, and

Kλ =

 cos(θλ) − sin(θλ)

sin(θλ) cos(θλ)

 , θλ ∈ [−π, π), λ = 1, . . . , q. (2.30)

If we put

Kλ(t) =

 cos(tθλ) − sin(tθλ)

sin(tθλ) cos(tθλ)

 , (2.31)

then the path required is

A(t) = P ⊤diag(K1(t), . . . ,Kq(t), 1, . . . , 1)P . (2.32)

□

2.6 Conclusion

In this chapter, we introduce a learnable cost volume (LCV) module for optical

flow estimation. The proposed LCV module generalizes the standard Euclidean inner

product into an elliptical inner product with a symmetric and positive definite kernel
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matrix. To keep its symmetry and positive definiteness, we use the Cayley representation

to re-parameterize the kernel matrix for end-to-end training. The proposed LCV is a

lightweight module and can be easily plugged into any existing networks to replace the

vanilla cost volume. Experimental results show that the proposed LCV module improves

both the accuracy and the robustness of state-of-the-art optical flow models.



Chapter 3

Learning Contrastive Representation

for Semantic Correspondence

Dense correspondence across semantically related images has been extensively stud-

ied but still faces two challenges: 1) large variations in appearance, scale, and pose

exist even for objects from the same category, and 2) labeling pixel-level dense corre-

spondences is labor-intensive and infeasible to scale. Most existing methods focus on

designing various matching modules using fully-supervised ImageNet pretrained net-

works. On the other hand, while a variety of self-supervised approaches are proposed

to explicitly measure image-level similarities, correspondence matching the pixel level

remains under-explored. In this work, we propose a multi-level contrastive learning ap-

proach for semantic matching, which does not rely on any ImageNet pretrained model.

We show that image-level contrastive learning is a key component to encourage the

convolutional features to find correspondence between similar objects, while the perfor-

mance can be further enhanced by regularizing cross-instance cycle consistency at in-

termediate feature levels. Experimental results on the PF-PASCAL, PF-WILLOW, and

SPair-71k benchmark datasets demonstrate that our method performs favorably against

the state-of-the-art approaches. The source code and trained models are available at

https://github.com/NVlabs/Contrastive-Correspondence.

32
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Figure 3.1: Visual comparison of existing and our settings in terms of the used supervi-

sion. Most existing works rely on supervised pretrained CNN and/or pairwise supervi-

sion. From weak to strong, the pairwise supervision includes image pair, bounding box,

and keypoints. In contrast, our method only requires that image pairs belong to the same

category for training.

3.1 Introduction

Semantic correspondence is one of the fundamental problems in computer vision

with many applications in object recognition [23, 75], image editing [17], semantic

segmentation [60], and scene parsing [152], to name a few. The goal is to establish

dense correspondences across images containing the objects or scenes of the same cat-

egory. For example, as shown in Fig. 3.1(a), such dense correspondence is established

across two horse images, where the semantically similar keypoints such as eyes or ears

of different horses are matched. However, this task is extremely challenging as differ-

ent objects usually appear with distinctive appearances caused by variations in shapes,

lighting, poses and scales. Classic approaches [5, 47, 60, 75, 114, 138] determine cor-

respondence matching via hand-crafted features such as SIFT [79], DAISY [138] and

HOG [16]. More recently, deep CNN based approaches [14, 34, 54, 57, 62, 93, 103, 104,

107, 151] have achieved significant improvements, by exploiting hierarchical image fea-

tures that provide rich semantic features that are invariant to intra-class variations.

It is challenging to develop fully-supervised approaches for learning pixel-level

matching as a large number of image pairs with detailed pixel correspondence anno-
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Table 3.1: Supervisory signals used by evaluated methods. The last column indicates

that the validation image pairs with keypoint annotations are used for model selection.

Note that knowing keypoint correspondence between two images indicates that they

form an image pair of the same category, and the bounding boxes of these objects can

thus be extracted.

Methods
Supervised Training Validation

Pretrained CNN Image Pair Bounding Box Keypoints Keypoints

DCTM [63] ✓ ✓ ✓

SC-Net [34] ✓ ✓ ✓

Weakalign [104] ✓ ✓ ✓

RTNs [61] ✓ ✓ ✓

NC-Net [105] ✓ ✓ ✓

DCC-Net [44] ✓ ✓ ✓

HPF [86] ✓ ✓

DHPF [87] ✓ ✓ ✓

SF-Net [69] ✓ ✓ ✓

PARN [54] ✓ ✓ ✓

FCSS [62] ✓ ✓ ✓

SCOT [78] ✓ ✓

ours ✓

tations are required. To alleviate this issue, several methods exploit weakly-supervised

information, e.g., object bounding boxes or foreground masks [54, 62, 152, 151, 69],

for this task. Nevertheless, it still entails significant amount of labor to annotate these

labels for a large scale dataset. As a trade-off between model performance and label-

ing effort, several methods [104, 61, 105, 44, 87] leverage image class labels as weak

supervisory signals. For example, we can obtain image pairs from the same object

or scene category, which provides weak supervision for learning the correspondence.

However, existing methods predominantly rely on effective universal feature represen-

tations in the first place, which are often obtained by supervised ImageNet pretraining.

Benefiting from large-scale labeled images, a supervised pretrained network can extract

image-level discriminative features for semantic correspondence.
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Recent advances [42, 9, 37, 29] in self-supervised representation learning exploit

contrastive loss functions to construct image-level discriminative features from unla-

beled image data. Their goal is to push object representations of various views of the

same object closer while pulling those of different objects further apart by learning to

perform an image instance discrimination task. The learned representations by these

contrastive learning methods have achieved significant performance gains for numer-

ous pretext tasks such as video object segmentation [97] and tracking [127]. However,

learning a fine-grained representation at part- or pixel-level has not been well studied, es-

pecially for semantic correspondence without using ImageNet pretrained models. Some

methods [129, 94] have generalized image-level contrastive learning to dense contrastive

learning, but do not establish cross-instance correspondence. As shown in Fig. 3.1 and

summarized in Table 3.1, existing approaches have used different levels of supervisory

signals, while our model is learned based on weak supervision, i.e., image pairs of the

same category, without resorting to fully-supervised pretrained ImageNet networks.

To learn a generalizable representation for semantic correspondence, we develop a

multi-level contrastive representation learning method in this chapter. We show that by

applying the contrastive learning framework [37] merely on the image level, the mid-

level convolutional features can capture local correspondences between similar objects

reasonably well. The results suggest that to learn good representations for high-level

tasks (e.g., object recognition), lower-level features are enforced to learn correct cor-

relations at a fine-grained level as well. We embed a pixel-level contrastive learning

scheme into the same network to further obtain fine-grained feature representation learn-

ing by enforcing cross-instance cycle consistency regularization at intermediate feature

levels. Given a pair of images with semantically similar objects, we track selected pixels

from the source to the target images and then back to the source via an affinity matrix.

We then enforce that those selected pixels map back to their original locations via the

cross-instance cycle consistency constraint. Essentially, cycle consistency is equivalent

to pixel-level contrastive learning, where the path of each pixel can be considered as

either positive or negative depending on whether it forms a cycle [51]. To avoid trivial

solutions, we use a self-attention module to localize the foreground object and apply a

group of augmentations based on the computed attention map. The main contributions
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of this work can be summarized as follows:

• We pose a new weakly-supervised semantic matching problem by relaxing the

strong dependency on supervised ImageNet pretrained models and removing the

validation ground truth used for model selection.

• We develop a multi-level contrastive learning framework where image-level con-

trastive learning generates object-level discriminative representations and pixel-

level contrastive learning further facilitates fine-grained representations at region-

or pixel-level to improve dense semantic correspondence performance.

• We propose a cross-instance cycle consistency regularization to learn a discrim-

inative local feature at the pixel-level without dense ground truth by leveraging

different objects of the same category in different images instead of the same ob-

ject in self-augmented images or video sequences.

• We demonstrate that the proposed model performs favorably against the state-of-

the-art method on three datasets with comprehensive ablation studies on compo-

nents of our framework.

3.2 Related Work

3.2.1 Semantic Correspondence

Numerous methods exploit hierarchical features from deep models pretrained on

the ImageNet dataset to infer semantic correspondence. In these approaches, seman-

tic matching is formulated as a geometric alignment task and addressed via the self-

supervised learning framework where training image pairs and ground truth are syn-

thesized based on in-plane transformations [54, 57, 61, 103, 104, 34, 107]. On the

other hand, weak-supervision signals, such as image-level labels [104, 61, 105, 44, 87],

bounding boxes [54, 62, 152, 151, 69], and keypoints [34] have also been used for

semantic correspondence. In contrast, the proposed method does not require fully su-

pervised ImageNet pretrained networks and only utilizes image-level supervision, i.e.,

image pairs of same category, to determine semantic correspondence from images.
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In addition, numerous approaches freeze the ImageNet pretrained backbone model

and determine the network structure of other modules or hyper-parameters by exploit-

ing ground truth keypoint correspondences of a small validation set as supervisory sig-

nals [86, 78, 44, 12]. Min et al. [86] leverage a small number of relevant features

selected from early to late layers of a convolutional neural network as well as beam

search to construct hyperpixel layers, and use regularized Hough matching (RHM) to

infer semantic correspondence efficiently. Liu et al. [78] pose semantic matching as an

optimal transport problem and solve it using the Sinkhorn’s algorithm [111]. These two

methods require only supervision from keypoints of a small validation set during the

beam search stage to select feature layers from a pretrained deep model (e.g., ResNet-

50 and ResNet-101). We note that keypoint ground truth from a validation set provides

robust guidance for model and hyper-parameter selection, a level of supervision that is

stronger than either pixel-level training supervision or supervised ImageNet pretrained

model weights. In contrast, our method does not require any keypoint correspondence

supervision from a validation dataset as the proposed cross-instance cycle consistency

regularization can be used for self-supervised learning.

3.2.2 Self-Supervised Representation Learning

Self-supervised representation learning methods can be classified into three cate-

gories: generative, inductive (predictive), and contrastive. Generative models, e.g., [122,

119, 120], maximize the likelihood of observed data based on various probabilistic for-

mulations and representation, e.g., auto-encoders and convolutional neural networks. In

contrast, inductive methods predict some known information from the data as there exist

ground truths for comparison, which is typically carried out by applying various aug-

mentation techniques, including image rotations prediction [28], spatial configuration of

cropped patches [19], video colorization [147], video sequence order sorting [89], and

jigsaw puzzle solving [92].

Recently, numerous contrastive learning methods, such as Deep InfoMax [42], Sim-

CLR [9], MoCo [37] and BYOL [29], have shown that effective representation models

can be constructed without supervision, with performance comparable to fully super-

vised ones. However, image-level contrastive learning may not produce optimal features
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for semantic correspondence, where the association is built between pixels. A few meth-

ods [129, 94, 51] propose to learn dense visual representations where the association is

required between pixels, which are direct extensions of image-level instance contrastive

learning methods (e.g., MoCo [37]). They compute contrastive losses between different

views of the same instance, e.g., either via self-augmented images [129, 94], or from

videos of the same instance [51]. However, their learned representations only captures

the instance-level information, and thus cannot be used to establish the pixel-level cross-

instance semantic correspondence. In contrast, we propose a multi-level cross-instance

pixel contrastive learning method by leveraging different instances via a cyclic frame-

work to infer semantic correspondence.

Kang et al. [58] leverage the pixel-level cycle association of source and target pixel

pairs across two different domains for contrastive representation learning. However,

it requires knowing the pixel-level categories in advance to construct positive/negative

samples for contrastive learning. In contrast, the proposed method does not entail any

pixel-level supervisory signals to form positive/negative pixel pairs. On the other hand,

Xie et al. [135] propose a joint pixel-level and instance-level contrastive learning frame-

work. It differs from our approach in constructing positive and negative samples. The

pixel-level contrastive learning in [135] is carried out through pixels within the same

instance, i.e., the corresponding pixels in two views of the same image are considered

as positive pairs. Nevertheless, the proposed model establishes pixel-level contrastive

learning across different instances. Extensive experimental results show that the pro-

posed cross-instance pixel-level contrastively learned representation can better handle

challenges caused by large appearance and pose distinctions across different instances.

3.2.3 Temporal Correspondence

Our work is related to temporal correspondence learning, for which a number of

self-supervised approaches [124, 95, 71, 128, 51] have been explored. Liu et al. [71]

propose to learn temporal correspondence by joining region-level localization and pixel-

level matching through a shared inter-frame affinity matrix. In [51], the correspondence

learning problem is cast as link prediction in a space-time graph constructed from a

video and long-range cycle consistency is exploited to learn temporal correspondence.
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Unlike these methods, we target a more challenging task for establishing correspondence

across semantically similar instances with significant appearance and pose distinctions.

3.2.4 Cycle Consistency

Cycle consistency has been widely used as a constraint in numerous vision tasks.

For example, in the context of image-to-image translation [154], or face attributes edit-

ing [150, 133, 134], exploiting cycle consistency enables learning the mapping between

different image domains from unpaired data. In the context of optical flow estimation,

computing the forward and backward consistency [82, 76] can be used to effectively

infer occluding pixels for learning optical flow.

For learning correspondence, the cycle consistency constraint is formulated in vari-

ous ways. Zhou et al. [151] construct a cross-instance loop between real and synthetic

images and establish cross-instance correspondence through 3D CAD rendering. SC-

Net [34] establishes a differentiable flow field by computing feature similarities while

considering background clutter and proposes flow consistency loss between forward

and backward flow fields. Zhou et al. [153] propose to optimize joint matching of

multiple images via rank minimization by translating cycle consistency into positive

semi-definiteness and low-rankness constraints. On the other hand, Chen et al. [12] ex-

ploit forward-backward consistency and transitivity consistency constraints to enforce

geometrically plausible predictions. In contrast, our cycle consistency regularization is

established via self augmentations to learn finer-grained pixel-level representations.

3.3 Proposed Method

In this section, we introduce the proposed contrastive representation learning model

for semantic correspondence. As shown in Fig. 3.2, the overall framework consists

of image-level and pixel-level contrastive learning modules. We briefly describe the

image-level contrastive learning schemes in Section 3.3.1, introduce the proposed pixel-

level contrastive learning method in Section 3.3.2 and our implementation details in

Section 3.3.3.
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Figure 3.2: Overview of our framework. The dark green trapezoid denotes the backbone

network q shared by (a) image-level and (b) pixel-level contrastive learning. In (a), we

use random images from ImageNet as the inputs, and the feature from its last layer

for image-level contrastive learning, where the image-level contrastive loss is defined

as (3.1). In (b), we use image pairs of the same category (e.g., from PF-PASCAL) as

inputs and extract their mid-level features for pixel-level contrastive learning, where the

pixel-level contrastive loss is defined as (3.5).

3.3.1 Image-level Contrastive Learning

Image-level contrastive learning [37, 9, 29] aims to extract object-level discrimina-

tive features in a self-supervised manner. It learns representations from object-centric

images by minimizing the distance between two different views of an object generated

through different augmentation methods. In addition, numerous methods [37, 9] use

negative samples from different images and maximize the distance between positive and

negative observations. In this work, we exploit negative examples in a way similar to

the MoCo method [37]. Image-level contrastive learning can be considered as a dictio-

nary look-up task. We use a dynamic queue of size K to store a set of encoded keys

{ f1, f2, . . .}, among which a single positive key fk matches with fq. For a query fq, its

positive key fk encodes a different view of the same image, while the negative keys en-

code the views of different images. Thus, the image-level contrastive loss is defined as

follow:

Lq = − log
exp( fq · fk/τ)

exp( fq · fk/τ) +
∑

i,k exp( fq · fi/τ)
, (3.1)

where τ denotes a temperature hyper-parameter. Both the query network q and the

key network k share the same architecture, but q is updated based on the image-level
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contrastive loss using back-propagation while k is updated with a momentum function:

θk ← mθk + (1 − m)θq, (3.2)

where θq and θk are parameters of q and k, and m ∈ [0, 1) denotes the momentum

coefficient.

For image-level contrastive learning, each image is regarded as a unique category.

Therefore the function for image-level contrastive learning approaches (3.1) is essen-

tially equivalent to a (K + 1)-way classification task, where K is the size of the queue. It

facilitates learning image-level discriminative representations without using any image

labels. We show in our experiments (see Table 3.3) that even without additional ob-

jective functions, the learned image-level representation models can perform semantic

correspondence matching well (see Fig. 3.3).

3.3.2 Pixel-level Contrastive Learning

To learn fine-grained representation models, we propose a pixel-level contrastive

learning method explicitly for semantic correspondence. As shown in Fig. 3.2(b), a pair

of images I0 and I1 containing different objects of the same category are provided as the

inputs. We then obtain an attention map highlighting the foreground object region via

the self-attention module. Based on the attention map, we obtain I′0 by applying a series

of spatial data augmentations to I0, including random horizontal flipping, rotation, and

cropping. We use the same encoder network q, shared with the image-level module,

to extract features for I0, I1, and I′0, which are denoted by F0, F1 and F′0, respectively,

as shown in Fig. 3.2(b)). We extract feature maps from the middle layers of ResNet50

instead of the feature vector from the last layer to learn the pixel-level representation.

We introduce each sub-module in the following sections.

Self-attention module. We introduce a self-attention module to avoid including pixels

from background regions. For the given source image I0, we extract the feature f0 ∈ R
C

after the last layer and the feature K0 ∈ R
C×H×W before the global average pooling layer,

where H and W denote the size of the feature map. As the feature map K0 keeps the

spatial location information of pixels in I0, we compute cosine similarity between nor-

malized f0 and all feature vectors in the normalized attention map K0. The self-attention
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module is used to exclude background pixels when applying a series of augmentation

to I0 to obtain I′0. The random image regions are cropped near the pixels using the

largest cosine similarity. As such, the background pixels are less likely to be contained

in the augmented image I′0, thus eliminating the number of pixel paths starting from the

background for more effective cross-instance cycle consistency.

Associating pixels via affinity. Given a pair of images I0 and I1 and their mid-level

features F0 ∈ R
C×H0W0 and F1 ∈ R

C×H1W1 , we use the correlation matrix R01 ∈ R
H0W0×H1W1

to represent the pixel-level similarity as:

R01 = F⊤0 F1. (3.3)

To ensure a one-to-one mapping, the correlation matrix needs to be sparse. However, it

is challenging to model a sparse matrix in a deep neural network. Therefore, we relax

this constraint and encourage the correlation matrix to be sparse by normalizing each

row with the softmax function. As such, the similarity score distribution can be peaky,

and only a few pixels with high similarity in the source image are matched to each point

in the target image. The affinity matrix is defined by:

A01 = softmax(R01/t), (3.4)

where t is the temperature hyperparameter controlling how peaky the normalized distri-

bution is. The affinity matrix enjoys several good properties: 1) The summation over

each row is unity since softmax is applied to the row dimension. 2) The multiplication

of two affinity matrices results in an affinity matrix. 3) The affinity matrix can be used

to trace the corresponding pixel locations of feature map F0 in the target feature map

F1, defined by P01 = A01G1, where G1 ∈ R
H1W1×2 is a vectorized pixel location map (i.e.,

each element denotes its horizontal and vertical positions).

Pixel-level guidance. We carry out the proposed pixel-level contrastive learning by

formulating the correspondence as a graph, where the nodes are image pixels and the

edges are weighted by the similarities between their features in the latent space. Starting

from I′0 to I1 and then back to I0, we track corresponding pixels by computing two

affinity matrices A0′1 and A10 following (3.4) using their mid-layer features. We enforce
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cross-instance cycle consistency by requiring pixels from I′0 to be mapped back to where

they are located in I0, through a different image I1. The affinity matrix along the path

of cycle can be simply obtained through multiplication, Ā0′0 = A0′1A10 ∈ R
H′0W′0×H0W0 ,

where H and W denote the feature size. Each element in the cycle affinity matrix Ā0′0

depicts a pixel path from I′0 to I0 passing through I1. We predict corresponding pixel

locations of the patch image I′0 in the source image I0 by P = Ā0′0G0. As the ground

truth correspondence P̂ between I′0 and I0 is known, the pixel-level contrastive loss is

defined as:

Lp = ||P − P̂||2. (3.5)

We note that (3.5) is a variant of the contrastive objective w.r.t. pixels from a pair

of images. Unlike the image-level loss (3.1) that explicitly pushes and pulls on the

positive and negative pairs, the cycle loss matches a group of “starting” and “ending”

pixels. Specifically, all pixels sampled in the walking path are considered positive, while

the other pairs are negative. The feature representation is learned to be pixel-wisely

discriminative when the affinity matrix is enforced to be “peaky” in each row.

Information entropy regularization. Information entropy loss [87] can also be used

as a regularization term to learn affinity by encouraging more distinctive correspon-

dences. We empirically find that training the network by the pixel-level contrastive

loss with the information entropy loss can further improve the performance of semantic

correspondence. With the correlation matrix R ∈ RH0W0×H1W1 as defined in (3.3), we

compute the correlation entropy as:

H(R) = −
1

H0W0

H0W0∑
i=1

H1W1∑
j=1

ϕ(R)i j log ϕ(R)i j, (3.6)

where ϕ(·) denotes row-wise ℓ1 normalization, and ϕ(R)i j denotes the (i, j)-th elements

of ϕ(R). As lower correlation entropy indicates more distinctive correspondence be-

tween two images, we encourage low entropy for the image pair I0 and I1 by using the

following information entropy loss:

Lr = H(R01) + H(R10), (3.7)

where R01 and R10 are correlation matrices between the source and target images. We

use correlation matrices R instead of affinity matrices A to compute the information
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entropy loss. The reason is that each row in A = softmax(R/t) has been normalized with

summation of each row to 1, and thus all entries would have been normalized twice if

we use ϕ(A).

3.3.3 Implementation Details

Pretraining and training. We use ResNet50 [38] as the backbone network for feature

extraction. For image-level contrastive learning, we use the feature from the last layer of

ResNet50, while the feature from an intermediate layer (e.g., the feature after 13th Res-

block) for pixel-level contrastive learning. Following the same hyperparameter settings

of MoCo [37], we pretrain the backbone network using image-level contrastive learning

on the ImageNet dataset for initialization. Then we train the backbone network with a

combination of image-level and pixel-level contrastive losses along with the information

entropy regularization,

L = λpLp + λqLq + λrLr, (3.8)

where λp, λq, and λr are weight coefficients for the pixel-level contrastive loss (3.5),

image-level contrastive loss (3.1) and the information entropy regularization (3.7), re-

spectively. Note that for image-level contrastive learning, we do not need a 1000-class

labeled dataset, but just random images. Neither do we need that for pixel-level con-

trastive learning. In contrast, only image pairs from the same category are required for

pixel-level contrastive learning. We empirically set λp = 0.0005, λq = 1, λr = 0.001,

and the temperature t = 0.0007 in (3.4).

Validation: beam search without ground truth correspondence. To utilize the learned

representation model for semantic correspondence, we need to choose multi-layer fea-

tures for testing, which is also called hyperpixel construction [86]. Existing meth-

ods [86, 78] use the beam search algorithm to find the optimal subset of deep convo-

lutional layers according to performance on the validation split. However, the existing

beam search method requires accessing the ground truth correspondence of the valida-

tion set. To relax the dependency on validation annotations, we perform beam search

over all convolutional layers of a given deep model by using the proposed pixel-level

contrastive loss as the performance indicator. A lower pixel-level contrastive loss means
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a better layer combination. The validation process is only used for hyperpixel selection

and not for other hyper-parameter selection.

Matching process. Given a pair of images, we extract their features and compute the

affinity matrix based on the selected hyperpixels. Similar to the steps in SCOT [78],

we first perform the optimal transport (OT) to relax the affinity matrix and obtain the

transport matrix between two images. By viewing matching problem as an optimal

transport (OT) problem, we perform image matching at a global perspective compared

to matching pixels independently. The OT problem can be solved using Sinkhorn’s al-

gorithm [111]. Consequently, the many-to-one matching issue can be alleviated. Then

we employ the regularized Hough matching (RHM) [86] as the post-processing step

to obtain the voting matrix and determine final keypoint correspondences. The RHM

method further improves the matching accuracy by enforcing geometric consistency by

reweighting the matching score in the Hough space. We carefully analyse the effec-

tiveness of these post-processing steps and the results can be found in Table 3.4 and

Fig. 3.3.

3.4 Experiments and Analysis

We propose a new benchmark setting specifically for learning semantic correspon-

dence without using any supervised ImageNet pretrained network or validation ground

truth. For all the evaluated methods, we use the ResNet50 model [38] as the back-

bone network for feature extraction, in a way similar to the self-supervised pretraining

scheme of [37]. We also use a unified standard for the validation step by performing

model selection without resorting to using the ground truth keypoint correspondence of

the validation image pairs.

In Section 3.4.1, we first describe the datasets and evaluation metrics. Then, we

present results as per the new benchmark setting by comparing our method with state-of-

the-art methods in Section 3.4.2. In Section 3.4.3, we conduct comprehensive ablation

studies to analyze different components and variations of our model.
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Figure 3.3: Visualization of the baseline and our method on the PF-PASCAL dataset.

The first three columns show the correspondence predictions made based on the affinity

matrix (Raw), transport matrix (after OT) and voting matrix (after OT + RHM). The last

column is the ground truth correspondence. Different colors indicate different keypoint

matches.
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3.4.1 Datasets and Evaluation Metrics

We evaluate the proposed method on three benchmark datasets: PF-PASCAL [33],

PF-WILLOW [32] and SPair-71k [88]. The PF-PASCAL dataset contains 1,351 im-

age pairs from 20 object categories of the PASCAL VOC [24] database, and the PF-

WILLOW dataset contains 900 image pairs of 4 object categories. The SPair-71k dataset

is a more challenging large-scale dataset consisting of keypoint-annotated 70,958 im-

age pairs from 18 categories with diverse view-point and scale variations. We carry out

pixel-level contrastive learning on one of these three datasets and image-level contrastive

learning method on the ImageNet dataset [18].

The PF-PASCAL dataset consists of 1300 image pairs with keypoint annotations

of 20 object classes. Each pair of images in the PF-PASCAL dataset share the same

set of non-occluded keypoints. We divide the dataset into 700 training pairs, 300 val-

idation pairs, and 300 testing pairs following [87, 78]. The image pairs for train-

ing/validation/testing are distributed proportionally to the number of image pairs of each

object class.

For quantitative evaluation, we adopt the widely-used percentage of correct key-

points (PCK) metric, which counts the number of correctly predicted keypoints given a

fixed threshold. Given a predicted keypoint kpr and the ground truth keypoint kgt, the

prediction is considered correct if:

d(kpr, kgt) ≤ ατ ·max(wτ, hτ), (3.9)

where d(·, ·) is the Euclidean distance, wτ and hτ are the width and height of either an

entire image or object bounding box, i.e., τ ∈ {img, bbox}, and α is a fixed threshold.

We compute the final PCK by averaging the results from all testing image pairs.

3.4.2 Evaluation against the State-of-the-art Methods

Due to the full supervision and richer features of deeper neural networks (e.g.,

ResNet101), models that are pretrained with the large-scale labeled ImageNet have

stronger representation strength. For fair comparisons, we re-implement all the evalu-

ated methods by initializing their models with the same MoCo [37] pretrained ResNet50

backbone network. We emphasize that the backbone networks weights of NC-Net [105],
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Table 3.2: Evaluation results on the PF-PASCAL and PF-WILLOW datasets. We com-

pare our method against others with three different thresholds. Based on whether we

add the entropy loss Eq. (3.7) or not, there are two variants of method, denoted by w/o

and w/ entropy in the table. Numbers in bold indicate the best performance.

Methods
PF-PASCAL (αimg) PF-WILLOW (αbbox)

PCK@0.05 PCK@0.10 PCK@0.15 PCK@0.05 PCK@0.10 PCK@0.15

Weakalign [104] 30.83 60.90 76.49 27.98 56.29 72.42

NC-Net [105] 41.34 62.89 72.14 – – –

DCC-Net [44] 45.28 72.26 82.43 37.29 65.01 78.10

DHPF [87] 45.64 73.96 85.69 43.09 69.01 82.14

SCOT [78] 44.30 71.20 83.80 37.20 62.40 75.90

Ours(w/o entropy) 51.00 77.10 88.50 40.10 66.40 80.30

Ours(w/ entropy) 50.70 76.10 85.80 43.10 69.80 82.40

DCC-Net [44] and DHPF [87] are all frozen during training as stated in the experimen-

tal sections in these papers. The SCOT method [78] does not involve any training.

Instead, it adopts a fixed backbone and optimizes on top of the extracted features. Since

all the methods are built on top of a fixed pretrained network, it is fair to evaluate all

methods by replacing their backbones with the same MoCo pretrained ResNet50 model.

Replacing these models with purely randomly initialized weights will degrade the per-

formance. Note that we specifically evaluate the methods that utilized the same level of

weak supervision as ours, i.e., a group of matchable image pairs.

As aforementioned, the ground truth annotations of the validation set are utilized by

numerous approaches, e.g., Weakalign [104], NC-Net [105], DCC-Net [44], DHPF [87],

to determine the optimal hyper-parameters (neighborhood numbers, kernel size, etc.).

For these method, we adopt the hyper-parameters in their original implementation in

our re-implementations, because other randomly selected hyper-parameters would lead

to lower performance. In addition, we utilize the re-implemented SCOT [78] method as

our baseline model, which shares a similar matching procedure, i.e., OT and RHM, but

with features extracted from a fixed backbone network pretrained with the image-level

contrastive loss. For our implementation of SCOT, we remove the use of the validation

set for beam search and replace it with the same strategy as proposed in Section 3.3.3.
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Table 3.2 shows improvements introduced by our proposed multi-level contrastive

learning method. We also visualize the results of the re-implemented SCOT baseline

model and our method in Fig. 3.3. Our method generates more accurate and consistent

matches than the baseline model (see more discussion of the reasons accounting for the

improvement in the ablation study below). The re-implemented SCOT baseline model

shows that the intermediate features of the backbone network pretrained using image-

level contrastive learning can capture the semantic correspondences well. Furthermore,

by embedding pixel-level contrastive learning into the network, the proposed model can

adapt to the variations between different images at the pixel level, thereby generating

more fine-grained matching results.

3.4.3 Ablation Studies

In this section, we analyze numerous components of the proposed method, including

the image-level and pixel-level contrastive losses, beam search, OT and RHM, informa-

tion entropy regularization, self-attention module, and the training layers. As each com-

ponent plays an essential role in the model’s performance, we conduct comprehensive

ablation studies and discuss the contribution of each module.

Variants of image- and pixel-level contrastive learning. We analyze the proposed

pixel-level contrastive learning with comparisons to other possible variants on the PF-

PASCAL dataset, as summarized below and in Table 3.3. For simplicity, we use IC and

PC as the abbreviations of image-level and pixel-level contrastive learning variants:

1. IC: We re-implement SCOT as our baseline model, where the backbone is pre-

trained via image-level contrastive learning, as aforementioned in Section 3.4.2.

2. IC (finetune): To verify whether the performance gain above the baseline model

comes from the image pairs in the PF-PASCAL dataset or not, we finetune the

baseline model via the image-level contrastive loss on both Image-Net and PF-

PASCAL datasets.

3. IC + PC (selfcycle): In addition to image-level contrastive learning, we conduct

pixel-level contrastive learning on self-augmented image pairs from ImageNet.
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4. IC + PC (align): We apply image- and pixel-level contrastive learning on both

ImageNet and PF-PASCAL datasets, where the pixel-level contrastive loss of Im-

ageNet is calculated on the self-augmented image pairs.

5. IC (fix) + PC: To verify the effectiveness of multi-level contrastive learning, we fix

the backbone pretrained model via image-level contrastive learning while training

a side convolutional net branch combining features from multiple layers as input

via the pixel-level contrastive loss. The integrated feature following these addi-

tional layers is directly used for inference without applying beam search to the

trained model.

6. IC + PC (ours): We jointly conduct image-level contrastive learning (on Ima-

geNet) and pixel-level contrastive learning (on PF-PASCAL).

Table 3.3: Ablation study of the image- and pixel-level contrastive losses. All the num-

bers are evaluated at PCK@0.05 on the PF-PASCAL dataset. IC and PC are abbrevia-

tions of image-level contrastive learning and pixel-level contrastive learning. IN and PF

stand for the ImageNet and PF-PASCAL datasets. Please refer to the ablation studies

described in Section 3.4.3 for details.

Models
IC PC PCK

@0.05IN PF IN PF

IC ✓ 44.3

IC (finetune) ✓ ✓ 43.7

IC + PC (selfcycle) ✓ ✓ 38.1

IC + PC (align) ✓ ✓ ✓ ✓ 34.6

IC (fix) + PC ✓ 39.5

IC + PC (Ours) ✓ ✓ 51.0

As shown in Table 3.3, the proposed IC + PC model outperforms the IC baseline

method by a large margin (51.0% v.s. 44.3%). Either the effectiveness of pixel-level

contrastive learning or using image pairs from the same category accounts for the perfor-

mance gain. To better understand these effects, we conduct the IC (finetune) experiment.
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As it performs almost as well as the IC variant (43.7% v.s. 44.3%), the performance gain

of the IC + PC model does not result from the weak supervision provided by the PF-

PASCAL dataset. In other words, the proposed pixel-level contrastive learning method

helps achieve the performance gain.

Results of IC + PC (selfcycle) and IC + PC (align) show that using augmented image

pairs from Image-Net for pixel-level contrastive learning negatively affects performance

(38.1% and 34.6% v.s. 44.3%). The underlying reason is that different views of the same

object may lead to trivial solutions as such augmented image pairs cannot provide views

of different objects with a large variation. The result of IC (fix) + PC model is worse than

that of the IC variant (39.5% v.s. 44.3%), which shows that model performance degrades

without leveraging the image-level contrastive loss for updating the model weights. It

also reflects that the image-level contrastive learning scheme is the cornerstone of the

pixel-level contrastive learning scheme. The representations learned via the image-level

contrastive learning scheme lead to coarse correspondences, and they can be refined via

the pixel-level contrastive learning scheme, leading to more accurate correspondences.

Beam search, OT, and RHM. To validate the effectiveness of adopting the pixel-

level contrastive loss as the objective in beam search (Section 3.3.3), we compare the

results by performing beam search with and without using the ground truth annotations

in the validation set. As shown in Table 3.4, beam search using only the pixel-level con-

trastive loss performs effectively in our method, as it gives nearly the same hyperpixel

selection as the standard beam search algorithm (51.0% vs. 53.4%). This also reveals

that the proposed pixel-level contrastive loss, as an unsupervised surrogate loss, facili-

tates learning effective fine-grained feature representations for cross-instance matching.

In addition, we also study the effectiveness of OT and RHM. The results in Table 3.4

show that both OT and RHM effectively facilitate the matching process. More interest-

ingly, even without using these two post-processing steps, our method achieves signif-

icant performance gain compared to the baseline approach (41.0% vs. 18.8% w/o GT).

Fig. 3.3 shows some semantic correspondences by the evaluated methods. We note

that OT and RHM regularize the correspondence by avoiding many-to-one mapping and

by making all keypoints’ correspondences geometrically consistent. Even without the
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Table 3.4: Ablation study of beam search, optimal transport (OT), and regularized

Hough matching (RHM). The w/o GT in the second column denotes the proposed beam

search by using the pixel-level contrastive loss as the indicator. The numbers in the third

column indicate the res-block IDs used for hyperpixel construction. The columns of OT

and RHM denote whether they were used in the testing phase. The numbers in the last

column are evaluated at PCK@0.05 on the PF-PASCAL dataset.

Beam

Search
Hyperpixel OT RHM

PCK

@0.05

Baseline

w/o GT (1,2,4,13,14) ✓ ✓ 44.3

w/o GT (1,2,4,13,14) ✓ 20.9

w/o GT (1,2,4,13,14) 18.8

w/ GT (3,11,12,13,15) ✓ ✓ 52.4

w/ GT (3,11,12,13,15) ✓ 39.1

w/ GT (3,11,12,13,15) 34.3

Ours

w/o GT (2,12,13,15) ✓ ✓ 51.0

w/o GT (2,12,13,15) ✓ 45.0

w/o GT (2,12,13,15) 41.0

w/ GT (2,11,12,15) ✓ ✓ 53.4

w/ GT (2,11,12,15) ✓ 46.7

w/ GT (2,11,12,15) 41.3
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post-processing steps (Fig. 3.3, Raw), our method can determine more geometrically

consistent alignments than those by SCOT. These results demonstrate that the proposed

pixel-level contrastive loss is effective in finding geometrically consistent matching by

regularizing the learned representation.

Information entropy regularization. We validate the effectiveness of the informa-

tion entropy loss (3.7). As shown in Table 3.2, the information entropy regularization

effectively improves the performance on the PF-WILLOW dataset. However, it does not

have the same effect on the PF-PASCAL dataset. We note that our method also signifi-

cantly outperforms Weakalign [104] (Table 3.2), which solely utilizes the soft-inlier loss

(a variant of entropy formulation).

Self-attention module. We evaluate the effectiveness of the self-attention module

used for augmentation in the pixel-level contrastive learning method. As shown in Ta-

ble 3.5, the self-attention module improves the matching performance of our model.

Without employing the self-attention module, background pixels may be included in the

cropped patch image I′0. However, there is no semantic correspondence for those back-

ground pixels in the target image I1. Taking the images in Fig. 3.2(b) as an example,

the pixels in the grass regions of I0 should not be matched to those in the wall regions

of I1 since they do not belong to the same category. The self-attention module can help

remove the false positive samples in the background to achieve better results. More

visualization of the attention map can be found in Fig. 3.4.

Table 3.5: Ablation study of the self-attention module on PF-PASCAL. We evaluate the

performance at PCK@0.05.

Self-Attention PCK@0.05

Ours ✓ 51.0

Ours (w/o attention) 49.9

Different layers of feature for training. We explore the effectiveness of features from

different layers for pixel-level contrastive learning. For example, the ResNet50 model
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contains 16 res-blocks. We classify features before the 7th block as low-level features,

those after the 13th block as high-level features, and the rest as middle-level features.

Since features from shallow layers usually entail low-level vision clues, e.g., color and

texture, and high-level layer features are invariant to different local regions (i.e., via

image-contrastive loss), we only evaluate the mid-level features. Table 3.6 shows that

the features from layer 7 to 13 help achieve similar performance while the 10th layer

yields the best features. Even so, we utilize the features following 13th layer for pixel-

level contrastive learning in the other experiments to fairly compare with other state-of-

the-art methods.

Table 3.6: Evaluation results of using features from different layers on PF-PASCAL. The

first column denotes the residual block ID where the feature for pixel-level contrastive

learning is extracted. The second column represents the hyperpixel used for testing our

beam search algorithm.

Block ID Hyperpixel PCK@0.05

13 (2,12,13,15) 51.0

12 (2,6,13,15) 49.1

10 (2,6,13,15) 52.0

9 (2,6,13,15) 51.3

7 (2,6,13,15) 49.1

Differentiable OT, RHM, and concentration loss [71]. We observe that both OT and

RHM effectively improve the model performance when used as post-processing steps

in the testing pipeline. Motivated by this, we analyze whether they can improve the

performance in our model when including them in the training phase. We implement

both OT and RHM as differentiable layers without trainable parameters. The function

of the differentiable OT layer is equivalent to the Hungarian algorithm [90], classically

used for bipartite matching. We apply one iteration of the Sinkhorn’s algorithm to the

affinity matrix and obtain the transport matrix. Differentiable RHM aims to achieve

geometrically consistent matching by re-weighting the matching scores and outputs the

voting matrix. Here we insert the differentiable OT and RHM layers into the training
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pipeline and compute the pixel-level contrastive loss on either transport matrix (after

OT) or voting matrix (after OT and RHM) instead of the affinity matrix. In addition, we

adopt the concentration loss [71] to encourage more concentrated keypoints predictions

for the patch image.

By adopting differentiable OT and/or RHM layers, we observe an unstable training

process. The results also reveal that the differentiable OT and RHM layers negatively

affect the representation learning performance (Table 3.7). This is potentially caused by

the distorted feature space. The gradients become unstable because the differentiable

OT is carried out by iterative matrix inversion. We also observe that the matched pixels

are already concentrated (see Fig. 3.3), and thus adding the concentration regularization

does not make significant differences.

Table 3.7: Ablation study of differentiable OT, RHM, and concentration loss on PF-

PASCAL. OT and RHM are used in training as differentiable layers. The concentration

loss is employed as a regularization during training. The results below are evaluated at

PCK0.05, and the bold number indicates the best performance.

OT RHM Concentration PCK@0.05

51.0

✓ ✓ 32.4

✓ 41.5

✓ 48.1

3.4.4 Discussion and Limitation

To better understand how the pixel-level contrastive loss function regularizes the fea-

ture representation, we visualize the correspondences given by the affinity matrices on

the training dataset. For example, let I0 and I1 denote source and target images, and I′0
the patch image randomly cropped from I0. Fig. 3.4 shows that the cycle constraint can

help the cross-instance correspondence prediction of I′0 onto I1 by enforcing the corre-

spondence predictions of I′0 on I0 to be the same as the ground truth. For example, the

patch image I′0 in the fourth row is cropped from the right part of a juice bottle. Interest-
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I′0 I1 I′0 I0 (cycle) I0 (direct) I0 (GT) Attention

Figure 3.4: Visualization of pixel-level contrastive learning. The first two columns show

correspondence predictions across different images (i.e., the blue dots in the second col-

umn denote the correspondence of each pixel in I′0). The remaining five columns show

correspondence predictions from the augmented patch images I′0 to their source images

I0, where the red dots denote the correspondence ground truth (where I′0 is cropped from

I0), blue or green dots indicate the correspondence prediction based on the cycle affinity

matrix Ā0′0 = A0′1A10 or affinity matrix A0′0. The last column shows the self-attention

map on which the randomly cropped augmented image I′0 is based. Note that the colored

dots are computed based on the feature map. Thus the number of colored dots is less

than the number of pixels.
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Prediction Ground Truth

Figure 3.5: Visualization of the correspondence predictions on SPair-71k. The left and

right columns are the predictions of our method and the ground truth, respectively. Dif-

ferent keypoints matches are indicated by different colors. The predictions are based on

the voting matrix by going through the process of OT and RHM. See Section 3.4.4 for a

detailed discussion.
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Table 3.8: Evaluation results on the SPair-71k dataset. Numbers in bold indicate the

best performance.

Methods
SPair-71k (αbbox)

PCK@0.05 PCK@0.10 PCK@0.15

HPF [86] 5.50 14.20 22.70

DHPF [87] 5.03 13.71 22.58

SCOT [78] 6.20 15.60 24.60

Ours 6.30 15.80 25.20

ingly, the correspondence prediction on I1 (the second column) is also on the right side

of a different bottle. We observe a similar phenomenon in the other rows. These results

demonstrate that multi-level contrastive learning helps focus on the contextual semantic

information and learn spatially aware pixel-level feature representations.

Numerous image-level contrastive learning methods have been proposed for object

recognition and related tasks in recent years. However, it has not been exploited for

learning correspondences especially on the semantic level. We show that image-level

contrastive learning facilitates object-centric attention, which in turn helps finding se-

mantic correspondence. Our approach is in direct contrast to existing semantic corre-

spondence methods that mainly use ImageNet pretrained models for feature extraction.

Moreover, the proposed cross-instance pixel-level contrastive learning is specifi-

cally designed for semantic correspondence. Existing pixel-level contrastive learning

approaches [129, 94, 51] are direct extensions of image-level instance contrastive learn-

ing (e.g., MoCo [37]). As such, they compute contrastive losses between different views

of the same instance, e.g., either via self-augmented images [129, 94] or from sequences

of the same instance [51, 135]. Different from existing contrastive learning approaches,

the proposed cross-instance pixel contrastive learning method leverages different images

of the same category via cycle consistence. This is not a straightforward extension of the

aforementioned approaches, especially when we do not leverage any pixel-level ground

truth for constructing positive/negative sample as opposed to the scheme in [58]. The

proposed method aims to learn category-level mid-level representations, which is more

challenging than the goals of existing approaches.
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Table 3.9: Evaluation results on the SPair-71k dataset by using different percentages

of pixel correspondence ground truth. For example, 5% GT means that 5% of training

image pairs are provided with their pixel correspondence ground truth.

Methods
SPair-71k (αbbox)

PCK@0.05 PCK@0.10 PCK@0.15

Ours (0% GT) 6.30 15.80 25.20

Ours (5% GT) 6.58 16.03 25.41

Ours (10% GT) 8.51 19.91 30.20

Ours (15% GT) 9.75 22.49 33.56

Ours (100% GT) 11.57 25.83 37.60

We further compare our method with other baselines on the SPair-71k dataset [88],

which is a more challenging large-scale dataset. We use the self-supervised pretrained

network from MoCo [37] as initialization for all methods. As shown in Table 3.8,

our method performs favorably against the HPF [86], DHPF [87] and SCOT [78] ap-

proaches.

However, the results from the proposed self-supervised models are slightly worse

than those by the supervised methods. To better understand the algorithmic perfor-

mance, we use the self-supervised pretrained model as initialization and utilize some

labeled image pairs with pixel correspondence ground truth for training. As shown

in Table 3.9, leveraging pixel correspondence ground truth can improve model perfor-

mance.

We note that the SPair-71 dataset is significantly more challenging than the PF-

PASCAL and PF-WILLOW databases, as there exist large pose variations, viewpoint

changes, scale differences, and occlusions in it. Fig. 3.5 presents some of those chal-

lenging cases where our method fails to obtain a good result. There are three directions

to improve our proposed method. First, a self-supervised pretrained feature extractor

needs to be improved to provide more robust feature representations by employing aug-

mentations that can synthesize images with larger scale and viewpoint changes. Second,

we may need to combine the cross cycle consistency regularization with a keypoint de-

tector to learn more fine-grained correspondences. Third, image-level contrastive learn-
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ing could be improved by including more similar instances from different images to

construct positive samples. Our future work will focus on addressing these issues.

3.5 Conclusion

We pose a new task to learn semantic correspondence without relying on supervised

ImageNet pretrained models or ground truth annotations from the validation set. In the

proposed method, we develop a multi-level contrastive learning framework where the

image-level contrastive learning module generates object-level discriminative represen-

tations, and the pixel-level contrastive learning method constructs fine-grained repre-

sentations to infer dense semantic correspondence. The pixel-level contrastive learning

module is realized through the proposed cross-instance cycle consistency regularization,

where we leverage different objects of the same category in different images without

knowing their dense correspondence labels. This is different from existing approaches

where correspondences are constructed by augmenting the same object in images or

video sequences. Experimental results on the PF-PASCAL, PF-WILLOW, and SPair-

71k datasets demonstrate the effectiveness of the proposed method over the state-of-the-

art schemes for semantic correspondence.



Chapter 4

Exploiting Category Names for

Few-Shot Classification with

Vision-Language Models

Vision-language foundation models pretrained on large-scale data influence many

visual understanding tasks. Notably, many vision-language models build two encoders

(visual and textual) that can map two modalities into the same embedding space. As a re-

sult, the learned representations achieve good zero-shot performance on tasks like image

classification. However, when there are only a few examples per category, the potential

of large vision-language models is not fully realized, mainly due to the disparity between

the vast number of parameters and the relatively limited amount of training data. This

chapter shows that we can significantly improve the performance of few-shot classifica-

tion by using the category names to initialize the classification head. More interestingly,

we can borrow the non-perfect category names, or even names from a foreign language,

to improve the few-shot classification performance compared with random initialization.

With the proposed category name initialization method, our model obtains state-of-the-

art performance on several few-shot image classification benchmarks (e.g., 87.37% on

ImageNet and 96.08% on Stanford Cars, both using five-shot learning). Additionally,

we conduct an in-depth analysis of category name initialization, explore the point at

which the benefits of category names decrease, examine how distillation techniques can

enhance the performance of smaller models, and investigate other pivotal factors and

61



62

intriguing phenomena in the realm of few-shot learning. Our findings offer valuable

insights and guidance for future research endeavors.

4.1 Introduction

In recent years, large vision-language models have opened doors to many new ap-

plications and provided new thoughts to existing problems. The advantages of large

vision-language models are blessed by learning from largely available images with sur-

rounding texts, as well as exploring the capacity of transformer network [21] to model

web-scale image-text data. Radford et al. [98] first proposed CLIP for vision-language

modeling, which was followed by numerous works, including ALIGN [55], LiT [145],

Flamingo [2], Florence [142], CoCa [141], etc. The development of vision-language

models provides novel perspectives of few-example learning.

This chapter considers the problem of few-shot classification in the new light of large

vision-language models. Researchers have found that models pretrained from ImageNet

can be easily transferred by finetuning on a new classification task [45]. Similarly, we

can take the vision encoder from the pretrained vision-language model and finetune it

with a few examples. Since state-of-the-art vision-language models were pretrained on

billions of web images and texts, such finetuning often outperforms the models trained

on ImageNet with better robustness and generalization capabilities. Moreover, large

vision-language models can be adapted to more downstream tasks with fewer labeled

data.

Despite the capability of the text branch in pretrained vision-language models, it is

not optimally utilized when directly fine-tuning the vision component for downstream

image classification tasks. Furthermore, the substantial size of these models may re-

sult in overfitting when trained with limited data. In addition to the above approach,

we exploit another source of information in vision-language models that traditional

models have overlooked. Such new information comes from the category names in

downstream image classification tasks. Because vision-language models can generate

powerful representations for images and texts, we will show that by utilizing semantic

category names for initialization, vision-language models can be transferred better with
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Figure 4.1: Comparing one-shot classification accuracy on ImageNet using different

category information. The typical way of finetuning using images with their category

IDs does not work well for one-shot learning with big models. With the information

on the category names of training images, we develop a new initialization approach that

significantly boosts the performance of vision-language models in few-shot learning.

Interestingly, using non-English names can still help even though the model was pre-

trained using images and English text data pairs.

few examples in downstream tasks.

As summarized in Figure 4.1, this chapter explores several scenarios: (1) randomly

initializing a classification head; (2) initializing a classification head with category names;

(3) initializing a classification head with other heuristics such as class digits or even non-

English category names. Note that (1) corresponds to the scenario when we only know

the category ID (e.g., class 0, class 1, ..., class N) without knowing the meaning of each

category. However, (2) implicitly parses the information from category names such as

“tench” and “goldfish”. The pretrained language model could process these label names

to provide a better initialization for the model adaption. Compared to (2), (3) provides

different types of category name information. The main difference between scenario (1)

and the others is that (1) does not utilize text/language information from the categories.

In scenario (1), the backbone network is initialized from the pretrained model weights,

and the classification head is randomly initialized. We set (1) to be our baseline as it

is the most common model adaptation method. We leverage the pretrained language

model for the other scenarios to parse the text information in the provided categories.

Specifically, we pair all category names with prompts and extract the average text em-

bedding as the weight to initialize the classification head. The second scenario is called
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category name initialization (CNI), and it has achieved the best performance among all

these scenarios when finetuning using one-shot ImageNet data, as shown in Figure 4.1.

In this chapter, we conduct extensive experiments exploring few-shot performance

on ImageNet [18], Cifar100 [66], Oxford Flowers [91], Stanford cars [65], etc. Us-

ing the powerful pretrained models, we sweep hyper-parameters such as learning rates,

training layers, weight regularization, etc., and find a stable recipe for few-shot learning

that can significantly outperform the state-of-the-art in many classification tasks. No-

tably, we achieve a one-shot top-1 accuracy of 86.15% and a five-shot 87.90% top-1

accuracy on ImageNet, which outperforms many other approaches using the same or

more training examples. More interestingly, in this chapter, we demonstrate that:

• Category name initialization can significantly boost the finetuning performance

in few-shot settings, outperforming many other initialization or fine-tuning meth-

ods. However, the contribution of category names diminishes when there is a

sufficiently large number of training images.

• Leveraging the proposed category name initialization can speed up convergence

compared to random initialization.

• In scenarios where a user does not speak English, we find that the non-English

category name still helps with few-shot learning. For example, we can use Spanish

category names to initialize the network, which is more effective than random

initialization.

• A larger pretrained model could further boost the few-shot performance of a small

model by carrying out model distillation. We have achieved a 1.01% performance

boost using 1% labeled images from ImageNet.

• The selection of finetuning layers is crucial to the performance. Empirically, fine-

tuning the last few layers is much better than full model finetuning in a few-shot

setting. On the other hand, finetuning the entire network works better when the

training data is sufficient.

• We explore additional factors that impact few-shot learning, specifically the learn-

ing rate and weight regularization. We provide a comprehensive guide on deter-
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mining the optimal learning rate and analyze the interesting effects of incorporat-

ing L2 weight regularization into few-shot learning.

4.2 Related Work

The human vision system can surprisingly learn from only a few examples. More

amazingly, one may learn more effectively by knowing the new species’ names. For

example, people who have seen “fish” and “cat” before can quickly understand what

“catfish” means with or without the help of additional images. Motivated by this phe-

nomenon, few-shot learning has been extensively studied in computer vision [25, 35].

Since deep CNN became popular, a common practice is to train a deep CNN on Im-

ageNet and then transfer the model to downstream tasks [45]. However, transferring

a pretrained ImageNet model requires hundreds or thousands of images. When there

are only a few examples per category, the few-shot learning using pretrained ImageNet

models is inferior to those trained with enough in-domain data.

Recently, there has been increasing interest in utilizing the vision-language model

for visual zero-shot learning, a related problem of few-shot learning. CLIP [98] is a pio-

neering work in large-scale vision-language modeling. Unlike previous works in vision-

language representation [20, 123], CLIP collects image-text pairs from the Web, which

contains diversified semantics in a weakly supervised fashion. In addition, CLIP is built

on large-scale contrastive learning, which maps images and text into the same subspace.

Through this, the model can map textual class names with images hence performing

image classification in a zero-shot manner. The approach of CLIP was followed by

ALIGN [55], Flamingo [2], LiT [145], Florence [142], FLAVA [110], SimVLM [131]

and CoCa [141]. Among these works, ALIGN, Florence, FLAVA, and LIT are based

on contrastive learning. Flamingo chooses to optimize a generative loss with gated

cross-attention layers. At last, CoCa integrates contrastive and generative loss into one

framework. Although training CoCa seems the most challenging among all these vision-

language works, it obtains consistently better results in many tasks.

In the literature, CLIP, LiT, ALIGN, Florence, FLAVA, and CoCa have demon-

strated promising results with zero-shot learning. However, the potential of these mod-
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els for few-shot learning is not well exploited. [70] construct a benchmark and toolkit

named Elevater for evaluating the transferability of vision-language models using differ-

ent training samples. [98] point out that using few training examples could improve the

effectiveness robustness while undermining the relative robustness. Few-shot learning

algorithms are trained exclusively on image data, ignoring the valuable text information

that can be used to enhance the learning process. However, Flamingo has emerged as

a promising approach for addressing this issue. Flamingo utilizes few-shot interleaved

prompts that incorporate gated cross-attention layers to improve few-shot learning.

Zhou et al. [149] propose context optimization (CoOp) to model text in prompts

through continuous representations. CoCoOp [148] extends CoOp by further learning

a lightweight neural network to generate an input-conditional token (vector) for each

image. In addition, a series of prior-based methods utilize CLIP priors with a cache

model. CLIP-Adapter [26] combines zero-shot visual or language embeddings with cor-

responding finetuning features to improve performance. TIP-Adapter [146] constructs

adapters using a key-value cache model from few-shot training sets and updates their

prior knowledge through feature retrieval. TIP-X [118] further constructs an affinity

matrix by measuring the KL divergence between test and few-shot samples, which re-

moves direct reliance on the uncalibrated image-image similarities. APE [155] explores

the trilateral affinities between the test image, prior cache model, and textual represen-

tations and only enables a lightweight category-residual module to be trained. Among

these approaches, TIP-Adapter, TIP-X, and APE are training-free, while CoOp, Co-

CoOp, CLIP-Adapter, and APE-T [155] require training.

Klein et al. [64] suggest that using a fisher vector derived from other distributions

can improve accuracy in central computer vision tasks. Category names have also been

exploited in image-text tasks, such as visual grounding [126] and visual question an-

swering [30]. In these methods, the text embedding of the category names and the

image embedding are extracted separately by two branches. Then their inner product is

calculated as the similarity score between an image region and an object category. This

chapter demonstrates that leveraging category names for initialization can significantly

enhance the few-shot performance of the CoCa model without bells and whistles. Our

approach outperforms Flamingo and CLIP’s performance and establishes a new state-
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of-the-art for both ImageNet and several other datasets with fewer training examples.

4.3 Approach

In this section, we first briefly review CoCa [141], one of the state-of-the-art vision-

language models, and then discuss two initialization strategies: the standard random

initialization and new category name initialization (CNI) for finetuning tasks.
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(a) Pretraining (b) Finetuning with Random Initialization (c) Finetuning with Category Name Initialization
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Figure 4.2: An overview of the CoCa pretraining and finetuning. (a) The pretraining of

CoCa relies on mapping image and text pairs into the same space for embedding align-

ment, where the image and text embeddings are extracted through an image encoder

and a unimodal text decoder, respectively. The image pooler is used to customize the

image embedding for different tasks. (b) We append a randomly initialized linear pro-

jector to the image pooler and initialize the image encoder from pretrained weights. (c)

We construct text sequences by pairing all C category names with N different prompts.

Via the pretrained unimodal decoder, we can compute the text embeddings for all text

sequences (with a total number of N ×C), each of which is a D-dimensional vector. The

normalized average embeddings can be used to initialize the linear projector’s weight.

4.3.1 Revisiting CoCa pretraining

Unlike other recent vision-language models, CoCa adopts an encoder-decoder model

architecture to learn the generic vision and multi-modal representations. As shown in

Figure 4.2 (a), CoCa encodes images to latent representation via an encoder network

(e.g., vision transformer (ViT) [21]) and encodes text representations via a unimodal
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decoder. We append an image pooler after the image encoder to customize the image

representations. Practically, CoCa adopts a cascade design by using two image pool-

ers, i.e., a generative image pooler and a contrastive image pooler. The motivation for

this design comes from the preliminary experimental results that single pooled image

embedding helps vision recognition tasks while more visual tokens benefit multi-modal

understanding tasks. Following [68], both generative and contrastive image poolers are

single multi-head attention layers with different numbers of learnable queries, enabling

the model to pool embedding with different lengths. They can also customize visual

representations for different tasks and training objectives. For simplicity and clarity,

we depict them in one box named Image Pooler. On the other hand, CoCa uses a uni-

modal decoder to extract text-only embeddings. It cascades multi-modal decoder layers

cross-attending to image embeddings to learn multi-modal image-text representations.

CoCa is pretrained on image-text pairs using two objective functions. The first is

contrastive loss, where the image representations are contrasted against the paired text

representations. The contrastive loss enables cross-modal representation alignment. The

other is image-captioning loss, which requires the model to auto-regressively predict the

tokenized texts by maximizing the conditional likelihood. The resulting CoCa can thus

generate both unimodal visual/textual embeddings and multi-modal joint embeddings.

The unimodal visual output generated by the encoder and the unimodal textual output

generated by the unimodal decoder are aligned in the same vector space and thus can

be used to map images with their class names in a zero-shot manner. Here, we focus on

reusing these two components to initialize for few-shot learning.

4.3.2 Finetuning CoCa

Random initialization. One straightforward model adaption approach is to add a ran-

domly initialized linear projector upon the pretrained model and selectively finetune the

model (all or part of the layers), as depicted in Figure 4.2 (b). Following the approach

used by CLIP [98] and CoCa [141], we first use an image pooler to obtain the aggre-

gated image embedding H ∈ RD and then apply a linear projector to get the prediction
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Y ∈ RC,

Y = softmax(WH + b), (4.1)

where W ∈ RC×D and b ∈ RC are learnable weight and bias of the linear projector.

Here W and b are randomly initialized, while the image encoder and generative image

pooler are initialized from the pretrained weights. Table 4.7 summarizes the number

parameters of different modules of CoCa.

Category name initialization. We argue that the above random initialization ignores

the potential of the language model for model adaptation. In contrast, we propose the

category name initialization to maximize the capacity of the pretrained unimodal de-

coder. First, we pair all category names (whose total number is C) with N different

prompts as the text inputs. For example, pairing the category name “tench” with a

prompt “A bad photo of {}” gives us a text sequence “A bad photo of tench”. Next,

we compute the text embeddings for all these N × C text sequences via the unimodal

decoder. As the text embedding for each text input is a D-dimensional vector, we can

obtain a text embedding tensor with a shape of N ×C ×D. Following the previous work

CLIP [98], we compute the average over different prompts and perform the L2 normal-

ization to obtain the average embeddings of shape C × D. Unlike random initialization,

we initialize the weight W by the average embeddings and bias b by a zero vector in

the linear projector. We initialize the image encoder and the image pooler from the

pretrained model weights to enable zero-shot inference of the category name initialized

model.

Discussion. Category name initialization is model-agnostic, making it applicable to

other foundation models that utilize contrastive loss. Vision-language models trained

with contrastive learning inherently yield a two-tower representation, where the text

tower’s output is embedded into the image tower’s embedding space. This shared em-

bedding space allows for cosine distance computation through the inner product of nor-

malized embedding vectors. Consequently, the text embeddings of category names can

effectively initialize the visual classifier.
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With category name initialization, the model can maintain its zero-shot performance

even before fine-tuning, avoiding starting from scratch and undergoing a lengthy fine-

tuning process. In contrast to CoOp [149], where prompts are learnable variables, the

prompts for each downstream image classification task are fixed. In Section 4.4.3, we

will demonstrate that context optimization is less effective than category name initial-

ization. TIP-Adapter [146] calculates predicted logits by measuring the affinity between

embeddings of the test image and cached training images, as well as textual embed-

dings. In Section 4.4.4, we will show that using cached image embeddings for initial-

ization leads to poorer performance. CLIP-Adapter [26] introduces and fine-tunes two

learnable adapters, each consisting of two layers of linear transformations, to transform

classifier weights and image features. However, we found that using text embeddings of

category names to initialize the classifier and finetuning the final few layers is the most

effective method for few-shot learning without the need for overly complex designs.

Layer selection will be discussed in Section 4.4.7.

In practice, we may not always have the names of all categories. For example, when

the finetuning service is provided to users from another country with different languages,

the user may use category names in a foreign language or even digital labels for each

category. Interestingly, although trained only with English texts, CoCa uses a word piece

model and sentence piece model as the tokenizer and thus can compute the embedding

for any text sequence without reporting the out-of-vocabulary error. In Section 4.4.4,

we will compare the impact of different variants of category name initialization.

4.4 Experiments

In this section, we first describe the details of our experimental setups, and then

present our experimental results as well as key findings with comprehensive analysis.

4.4.1 Experimental Setup

Data. We conducted finetuning experiments on several widely-used image classifica-

tion datasets, including ImageNet [18], ImageNet-V2 [101], ImageNet-R [40], ImageNet-

A [41], ImageNet-Sketch [125], Cifar100 [66], Oxford Flowers [91], Stanford Cars [65],
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Country-211 [98], Food-101 [4], FGVC Aircraft [80], EuroSAT [39], and Oxford-IIIT

Pets [96]. To account for different few-shot settings, we randomly sampled a specific

portion of data from each dataset. For instance, in one-shot ImageNet, we only chose

one image from the ImageNet training data for each category. Despite this sampling, we

evaluated all models on the entire testing set. Following the existing benchmark [70],

we employed the same text prompts1 for evaluating all methods for a fair comparison.

CoCa [141] is pretrained using JFT-3B [144] and Align datasets [55]. During the pre-

training stage, all near-domain examples (3.6M images) are removed following the strict

de-duplication procedures [144, 55].

Optimization. We use the Adafactor optimizer [108] with β1 = 0.9, β2 = 0.999, and

a weight decay ratio of 0.01. All input images are first rescaled to 580 × 580 and then

randomly cropped to the size of 540 × 540. We further apply RandAugment [15] and

label smoothing in our data preprocessing pipeline. Our model is implemented in the

Lingvo framework using Tensorflow [109].

Hyper-parameters. The choice of batch size depends on the dataset and its number

of categories. When the total number of training examples is relatively small, using a

large batch size may not be feasible. However, using the largest possible batch size for

efficient training is generally desirable. For instance, in the case of ImageNet, which

consists of 1000 categories, we opt for a batch size of 512. This decision is based on

the consideration that we have a substantial number of images per category, either 1000

images (for one-shot tasks) or 5000 images (for five-shot tasks). Therefore, using a

batch size of 512, we can efficiently utilize the available computational resources during

training. However, it is important to note that the batch size is adjusted accordingly for

datasets with a smaller number of categories. For instance, in the case of Cifar-100,

where there are 100 categories, we choose a batch size of 256 for the five-shot setting

and 64 for the one-shot setting.

1https://github.com/Computer-Vision-in-the-Wild/Elevater_Toolkit_IC/blob/

main/vision_benchmark/datasets/prompts.py
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Model cost. The computational cost of training a model depends on the model size

and the chosen training batch size. To provide specific examples, when fine-tuning

CoCa-base on ImageNet (five-shot), we utilized a 4x4 Jellyfish TPU with a batch size of

512, and the training process took approximately 6 hours. Similarly, when fine-tuning

CoCa-2B on Cifar-100 (five-shot), we employed a 4x4 Dragonfish TPU with a batch

size 256, and the training duration was around 9 hours.

4.4.2 Improving CoCa in few-shot classification

State-of-the-art on ImageNet and its variants. We use the pretrained CoCa model

and apply category name initialization. We then compare our method against the pre-

vious works on ImageNet and its variants, including ImageNet-V2 [101], ImageNet-

R [40], ImageNet-A [41] and ImageNet-Sketch [125]. As shown in Table 4.1, CoCa-

2B+CNI has achieved state-of-the-art few-shot classification results on all these bench-

marks. Surprisingly, the one-shot and five-shot performance of CoCa-base is even better

than the performance of some other recent methods finetuned on the whole dataset.

State-of-the-art on other benchmarks. In addition to ImageNet and variants, we

show that our method can achieve state-of-the-art few-shot performance on other image

classification benchmarks, including Cifar100 [66], Oxford Flowers [91] and Stanford

Cars [65], Country-211 [98], Food-101 [4], FGVC Aircraft [80], EuroSAT [39], and

Oxford-IIIT Pets [96]. By examining Table 4.2, it becomes apparent that our CoCa-2B

model outperforms many other approaches, even when trained with fewer data. The

performance gain results from the category name initialization, which serves as a strong

foundation that enables the model to achieve better results with only a few examples. To

gain a deeper understanding of this phenomenon, we provide an analysis of the category

name initialization in the following section.
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Table 4.1: Few-shot results on ImageNet and its variants. We use IN as the abbreviation

for ImageNet, and CNI for category name initialization. The second column means how

much training data per class is used for finetuning. 0 shot means the pretrained vision-

language model is directly evaluated without finetuning. Full means the entire training

set has been used. All the numbers under the last five columns denote the top-1 test

accuracy.

Model Shot IN IN-V2 IN-R IN-A IN-Sketch

MAE [36] full - - 66.50 76.70 50.90

CLIP (ViT-B/16) [98]
0 68.40 62.60 77.60 50.00 48.20

full 79.90 69.80 70.80 46.40 46.90

CLIP (ViT-L/14) [98]
0 76.20 70.10 88.90 77.2 60.20

full 85.20 75.80 85.30 76.10 58.70

CLIP+Adapter (ResNet-50) [26]

0 55.50 - - - -

1 58.10 - - - -

4 59.50 - - - -

CLIP+CoOp (ViT-B/16) [149]
0 58.18 - - - -

1 58.00 - - - -

4 60.01 - - - -

Tip-Adapter-F (ResNet-50) [146]

0 60.33 - - - -

1 61.32 - - - -

4 62.52 - - - -

WiSE-FT (ViT-L/14) [132] full 85.30 76.90 89.80 79.70 63.00

Flamingo-3B [2]
1 70.90 - - - -

5 72.70 - - - -

Flamingo-80B [2]
1 71.90 - - - -

5 77.30 - - - -

CoCa-base [141] 0 82.26 76.22 93.16 76.17 71.12

CoCa-base+CNI (Ours)
1 82.35 76.47 93.37 77.00 71.61

5 83.58 77.23 93.22 77.23 71.35

CoCa-2B [141] 0 86.09 80.39 96.19 89.39 77.12

CoCa-2B+CNI (Ours)
1 86.15 80.57 96.62 90.12 77.49

5 87.37 81.66 96.41 89.68 77.39
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Table 4.2: Comparing with the state-of-the-art on multiple classification benchmarks.

CNI stands for category name initialization, and RI means random initialization. Our

model obtains the state-of-the-art few-shot learning performance with less training data

than others.

Model Shot Cifar100
Oxford

Flowers

Stanford

Cars
Country-211 Food-101

FGVC

Aircraft
EuroSAT

Oxford-IIIT

Pets

MAE [36]

5 21.20 50.90 6.30 2.80 7.70 7.00 64.60 17.20

20 43.50 71.90 25.50 4.40 30.40 29.90 74.10 60.00

full 68.30 72.00 37.20 10.10 65.10 39.10 94.80 81.60

CAE [10]

5 38.30 70.30 8.70 3.50 18.60 14.30 76.70 37.30

20 55.10 81.20 27.50 5.50 35.70 32.60 89.00 63.30

full 78.90 81.20 40.40 11.40 67.40 40.80 96.70 79.80

MoCo-v3 [11]

5 60.50 79.50 13.40 4.80 36.60 11.80 77.10 76.20

20 75.50 89.50 49.50 7.60 59.30 38.20 84.80 86.40

full 85.30 89.50 63.00 13.70 78.00 48.00 95.90 91.40

DeiT [116]

5 61.50 82.70 27.60 4.40 41.90 24.10 62.50 87.80

20 73.70 92.70 68.80 6.20 61.50 34.10 90.70 91.90

full 89.60 92.40 83.00 14.10 84.50 59.30 98.20 93.90

ViT [21]

5 75.40 99.20 27.60 6.80 59.00 22.70 70.00 89.60

20 84.00 99.20 53.90 11.50 81.70 40.50 86.50 92.60

full 89.80 99.20 67.50 16.60 89.60 47.80 96.00 94.80

CLIP [98]
5 71.10 94.20 73.60 21.70 89.70 36.00 76.70 90.50

20 75.40 96.8 73.60 25.20 90.60 48.10 86.60 92.30

CoCa-2B [141] 0 77.19 92.04 94.37 42.15 94.79 44.83 49.74 97.88

CoCa-2B+RI
1 5.69 40.78 14.29 1.71 1.26 12.24 56.84 61.95

5 7.49 84.71 86.31 19.06 62.45 27.21 82.38 78.61

CoCa-2B+CNI
1 77.89 98.45 95.29 42.44 94.91 58.33 75.06 97.93

5 78.62 99.25 96.08 44.52 95.50 69.29 85.78 98.12

4.4.3 Analysis of category name initialization

This section delves deeper into how the proposed category name initialization helps

with large vision-language models in few-shot learning. Vision-language models are

adept at zero-shot inference without knowing any class names from downstream tasks.

However, the zero-shot performance heavily depends on the domain gap and data dis-

tribution, thus varying on different downstream tasks. By leveraging a few training
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examples from the target domain, the pretrained vision-language models can adapt to

the target domain.

Improvement upon zero-shot performance. We first examine how category name

initialization improves zero-shot performance. As illustrated in Table 4.1 and Table 4.2,

category name initialization enhances performance across all datasets. The improve-

ment in performance from zero-shot to five-shot varies depending on the dataset. For

instance, CoCa-2B on ImageNet sees a 1.32% increase in performance, whereas Eu-

roSAT sees 36.04% growth. CoCa’s zero-shot performance on ImageNet leaves less

room for few-shot learning. Nonetheless, the performance gain achieved through our

category name initialization is noteworthy, as some other methods may not achieve

comparable improvements, which will be discussed below. We also contend that our

few-shot performance is not solely attributable to the strong pretrained CoCa model

but also our proposed category name initialization. For example, CoCa-2B’s zero-shot

performance on EuroSAT is 49.74%, which is lower than that of most other approaches.

However, with our category name initialization, it achieves 85.78%, outperforming other

approaches in the five-shot setting.

Comparing with other fine-tuning methods. To further validate the efficacy of cat-

egory name initialization, we compare it with several other finetuning methods. We

choose CoCa-base as the pretrained vision-language model and carry out experiments

on ImageNet with different finetuning methods, such as linear probing, full finetuning,

CoOp [149], and category name initialization. As demonstrated in Table 4.3, all finetun-

ing methods, except category name initialization, fail to improve over zero-shot CoCa

when one or five training examples per class are used. Furthermore, full finetuning

underperforms linear probing because the number of training examples is inconsistent

with the number of trainable parameters in few-shot learning. Although showing better

performance than linear probing and full finetuning, the one- or five-shot performance

of CoOp is slightly inferior to zero-shot CoCa. This suggests that learning contex-

tual prompts does not significantly improve CoCa’s few-shot performance. On the other

hand, category name initialization effectively improves the few-shot performance, which

is challenging when the zero-shot performance of CoCa is significantly higher than that
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Table 4.3: Comparing other fine-tuning methods on ImageNet and its variants. We use

IN as the abbreviation for ImageNet, and CNI for category name initialization. The

second column means how much training data per class is used for finetuning. 0 shot

means the pretrained vision-language model is directly evaluated without finetuning.

All the numbers under the last five columns denote the top-1 test accuracy.

Model Shot IN IN-V2 IN-R IN-A IN-Sketch

CoCa-base 0 82.26 76.32 93.16 76.17 71.43

CoCa-base+Linear Probing
1 57.49 54.20 69.19 53.38 47.94

5 79.33 73.18 90.02 73.18 68.03

CoCa-base+Full Fintuning
1 43.77 41.64 55.98 40.31 33.29

5 60.90 54.32 71.20 54.34 49.25

Coca-base+CoOp
1 79.85 73.21 89.88 76.42 65.81

5 81.01 75.81 92.58 76.55 71.27

CoCa-base+CNI
1 82.35 76.47 93.37 77.00 71.61

5 83.47 77.23 93.22 77.23 71.35

of other counterparts such as CLIP [98] and FLAVA [110].

Category name initialization vs. random initialization. To gain a deeper under-

standing of the advantages of category name initialization, we compared it with ran-

dom initialization. Comparing the last three rows in Table 4.2, we can observe that the

few-shot classification results using random initialization are worse than the zero-shot

classification with pretrained CoCa. However, employing category name initialization

would effectively use those few training examples and boost performance. Figure 4.3

provides a more detailed comparison of the optimization process using the two initial-

ization methods. By meticulously tuning the parameters, we set the initial learning rate

to 1e-5 for category name initialization and 5e-5 for random initialization. Employing

category name initialization results in a better starting model with higher test accuracy

than random initialization. Furthermore, the model utilizing category name initialization

converges faster than random initialization. This can be attributed to the fact that the test
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Figure 4.3: Comparison of test accuracy over the training epoch. We finetune the CoCa-

base model with category name initialization or random initialization. Category name

initialization provides better initial test accuracy and helps the model converge better

and faster than random initialization.

accuracy while using random initialization continues to increase even after 250 epochs,

whereas the accuracy achieved with category name initialization plateaus around 200

epochs when fine-tuning on ImageNet. Similarly, the one-shot test accuracy on Cifar-

100 converges within 100 epochs by employing category name initialization, while the

counterpart using random initialization converges after 300 epochs.

4.4.4 Exploring different initialization approaches

In real-world scenarios, we cannot always guarantee the availability of perfect cat-

egory names for every classification task. Sometimes we may only have digital labels

such as class “1”, “2”, and so on, while in other cases, users may not be fluent in En-

glish. In such scenarios, it is crucial to evaluate how the model performs with different

versions of category names.

Table 4.4 compares the performance of using no category names (i.e., random initial-
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Table 4.4: Comparison of category name initialization using digits or different lan-

guages. We use the same pretrained CoCa-base model for all category name initial-

ization. The numbers below are top-1 test accuracy on ImageNet.

Category Name Initialization Zero-shot One-shot Five-shot

No N/A 59.17 79.33

Digits 0.10 53.60 78.75

Korean 22.89 53.71 79.53

Russian 43.59 53.43 79.55

Germany 29.24 63.15 79.90

Spanish 34.38 79.87 80.05

English 82.26 82.35 83.58

ization) with various variants of category names. The most straightforward approach is

to use digits (class 1, 2, and so on) as category names. However, this approach provides

little semantic information and does not improve few-shot performance. Conversely,

category names in English and other languages significantly enhance few-shot recog-

nition. This is surprising because CoCa was trained on English-only text with limited

knowledge of other languages. Nevertheless, due to the sentence piece tokenizer [67]

and token sharing, our method can still benefit from foreign language transfer, resulting

in better performance than random initialization, even though the performance of these

foreign language names is not as good as that of English names.

Inspired by the aforementioned observation, we hypothesize that initialization with

only partial category information can still yield benefits. To test this hypothesis, we

randomly selected 50% of the category names for initialization while using random ini-

tialization for the remaining names. The results are shown in Table 4.5, where it can be

seen that using 50% of the names still improves the one-shot accuracy from random ini-

tialization from 59.17% to 66.82%, and the five-shot accuracy from 79.33% to 80.67%.

This indicates that our method has the potential as a valuable tool in situations where

within-domain labels are incomplete or expressed in different languages.
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Table 4.5: Comparing the performance of using all category names or 50% of names

(the other half will be initialized with random vectors) for initialization. The numbers

below are top-1 test accuracy on ImageNet.

Initialization Zero-shot One-shot Five-shot

No category name N/A 59.17 79.33

50% category names 44.36 66.82 80.67

100% category names 82.26 82.35 83.58

Another question that arises is whether we can apply a similar initialization approach

using image embeddings instead of text. To test this hypothesis, we select one represen-

tative image per class from ImageNet, resulting in 1000 images for 1000 categories, and

used the pretrained CoCa-base model to extract 1000 embedding vectors. We then ini-

tialize the linear projector of our few-shot model with these image embeddings, which

we call image embedding initialization (IEI). We compare the performance of IEI (using

one example image per category) with CNI (using category names but no images) and

present the accuracy of initialized models (without finetuning) in Table 4.6. The results

indicate that IEI performs worse than CNI, suggesting that embedding category names

are more robust than embedding a single image. Moreover, we compute the average of

the IEI and CNI weights to create a new initialization vector and find that the average

weight’s performance lies in the middle of IEI and CNI.

Table 4.6: Comparing top-1 accuracy of image embedding initialization (IEI) and cate-

gory name initialization (CNI) on ImageNet.

Initialization Accuracy (%)

IEI 47.16

0.5 × IEI + 0.5 × CNI 61.84

CNI 82.26
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4.4.5 Limitations

After comparing different initialization approaches, one question that arises is whether

category name initialization continues to be helpful with more training data. We inves-

tigate this by fine-tuning pretrained vision-language models using varying numbers of

training images. To demonstrate the effectiveness, we establish a baseline for compar-

ison by using random initialization. We utilize two different pretrained CoCa models,

CoCa-base and CoCa-2B, and fine-tune them on ImageNet and Cifar100 using different

training data. As shown in Figure 4.4, category name initialization outperforms random

initialization across different datasets, model architectures, and numbers of training data.

However, the contribution of category name initialization diminishes as more training

data is provided.
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Figure 4.4: Comparison of test accuracy over different percentages of training images.

Category name initialization outperforms random initialization over different datasets,

model architectures, and numbers of training data.

Another limitation of the proposed category name initialization is that it relies on

category names to initialize the classification head. While it can significantly improve

few-shot image classification accuracy, it may not be applicable in all scenarios. For

example, in domains where category names are not available or are not reliable, the

proposed method may not be effective.
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4.4.6 Model distillation

We first show that category name initialization can be used for different scales of

models by carrying out few-shot experiments using two different pretrained CoCa ar-

chitectures: CoCa-base and CoCa-2B, under different numbers of training data. Aban-

doning the uni-modal and multi-modal text decoders, CoCa-base and CoCa-2B contain

96M and 1B parameters for downstream image classification tasks (see Table 4.7). As

shown in Table 4.8, we can observe the trend that bigger models do better and more

shots help.

Table 4.7: Number of parameters of different modules.

Module CoCa-base CoCa-2B

Image encoder 85,999,872 1,011,740,288

Image pooler 19,095,296 63,843,648

Linear projector 769,000 1,409,000

Table 4.8: Few-shot results of different CoCa-models on ImageNet.

Model Zero-shot One-shot Five-shot 1%

CoCa-2B 86.19 86.15 87.37 87.90

CoCa-base 82.26 82.35 83.58 83.80

+ distillation - - - 84.81

As larger models tend to perform better, it is natural to consider knowledge distil-

lation, which involves using the predictions of a teacher model to guide the training of

a student model. In this work, we use the finetuned CoCa-2B model with 1% of the

ImageNet images as the teacher model and CoCa-base as our student model. In addition

to the 1% labeled ImageNet images, we use other unlabeled images for knowledge dis-

tillation. During the finetuning process, we freeze the teacher model weights and update

the student model weights using two loss objectives. The first objective is the supervised

loss, where we compute the cross entropy between the student model predictions and the

labels for the 1% labeled ImageNet images. The second objective is the distillation loss,
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computed over all unlabeled data. Unlike few-shot finetuning, where only the last few

layers are finetuned, we finetune the entire student model here since the distillation loss

is computed over many unlabeled images. For example, table 4.8 shows that by distill-

ing from the larger finetuned teacher model, CoCa-base achieves a 1.01% improvement

in accuracy (from 83.80% to 84.81%).

4.4.7 Ablation studies

In this section, we analyze several important factors that influence the few-shot per-

formance. We conduct our ablation study using CoCa-base as the model.

Finetuning layers. We evaluate the performance of the CoCa-base model on Ima-

geNet [18] in various few-shot learning scenarios, with different finetuning layers se-

lected. We compare the results to a baseline using random initialization. In our notation,

P denotes the image pooler and L denotes the linear projector. For both category name

initialization and random initialization, we experiment with three different optimization

strategies: 1) optimizing only the linear projector (L); 2) optimizing both the image

pooler (P) and the linear projector (L); and 3) optimizing all layers. Note that we have

extensively tried various hyper-parameters (such as initial learning rate) and presented

the optimal values for each setting.

The results presented in Table 4.9 indicate that the best performance is achieved by

finetuning both the image pooler and linear projector under all settings when compared

to the other two optimization strategies for random initialization.

To enhance the few-shot learning performance, we experiment with category name

initialization discussed in Section 4.3.2. In contrast to random initialization, we initial-

ize the linear projector using the average text embeddings of the category names. As

shown in Table 4.10, this initialization method significantly improves few-shot recog-

nition performance. Moreover, we observe that finetuning P + L is the most effective

optimization strategy for few-shot settings while finetuning all layers performs better

with more training data.
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Table 4.9: Comparison of different finetuning layers for random initialization. P: image

pooler; L: linear projector; All: all layers. The best performance of each column is in

bold.

Finetuning

Layers
One-shot Five-shot 1% 100%

L 49.38 69.64 76.53 85.62

P + L 57.49 79.33 81.48 88.22

All 43.77 60.90 79.75 86.03

Table 4.10: Comparison of different finetuning layers for category name initialization.

P: image pooler; L: linear projector; All: all layers. The best performance of each

column is in bold.

Finetuning

Layers
One-shot Five-shot 1% 100%

L 82.35 81.03 81.67 86.16

P + L 82.35 83.58 83.91 88.25

All 82.28 82.63 83.63 88.35

Learning rates. We analyze the influence of the initial learning rate on few-shot learn-

ing. We set a batch size of 512, froze the image encoder, and adopted a cosine learning

rate schedule for the final three layers. Figure 4.5 presents the top-1 test accuracy on Im-

ageNet using different initial learning rates. A small initial learning rate (5e-6) results

in a slow convergence rate, while a larger learning rate (5e-5) achieves faster conver-

gence. However, despite reaching the highest test accuracy within 1000 training steps,

the finetuning becomes unstable as the test accuracy declines right after the peak value.

Conversely, using an even larger learning rate (5e-4) could prevent the surging phase,

resulting in a downward trend of test accuracy. By contrast, selecting an appropriate

learning rate (1e-5) is the key to stable and rapid few-shot finetuning. Unfortunately,

there is no mathematical formula for determining the optimal initial learning rate since

it varies across different datasets and depends on the batch size. We can adjust the initial
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Figure 4.5: The top-1 test accuracy of finetuning CoCa-base on 1% ImageNet using

different initial learning rates.

learning rate by trial and observation, and these four test accuracy curves could indicate

whether to enlarge or reduce the initial learning rate.

L2 weight regularization. Out of all the few-shot settings, one-shot learning is the

most unique and intriguing. As illustrated in Figure 4.6, the one-shot test accuracy

(in red) on ImageNet decreases even with category name initialization during finetun-

ing, unlike the five-shot accuracy (in blue). Using only one training image per class

can easily distort the decision boundary, as illustrated in Figure 4.7. We plot the deci-

sion boundary in Figure 4.7 for an illustration. Without L2 regularization, the decision

boundary of the finetuned model is easily distorted by the limited training examples,

resulting in a degradation from zero-shot performance. However, by applying L2 weight

regularization for one-shot learning, the decision boundary does not deviate much from

the decision boundary of the pretrained model. This is reflected in the steady increase

of test accuracy from 82.26% to 82.35%, as depicted by the yellow curve in Figure 4.6.

Although the performance gain is small, it is still noteworthy since the information pro-

vided by one-shot data is limited in helping a pretrained model. On the other hand,

applying L2 weight regularization in five-shot learning could adversely affect the model

adaptation, as shown by the green curve. The reason is that L2 weight regularization,

acting as an additional constraint, restricts the model from learning new knowledge from
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Figure 4.6: The effect of L2 weight regularization for one-shot and five-shot learning.

We plot the top-1 test accuracy of CoCa-base on ImageNet vs. the training step. The L2

weight regularization is beneficial to one-shot learning but harmful to five-shot learning.

the training data when sufficient information is available to refine the decision boundary

of the pretrained model. It should be noted that all of the aforementioned phenomena

are dependent on utilizing category name initialization. The decision boundary will lack

discriminative power if category name initialization is not used. Therefore, adding L2

weight regularization would have no meaningful effect.

4.5 Conclusion

This chapter has studied the few-shot classification problem using large vision-

language models. Since it is hard to optimize large vision-language models with a few

training examples, we propose exploring category names to initialize the classification

head, significantly improving performance. In addition, we have also investigated the

condition when the category names help. We demonstrate that borrowing other non-

perfect category names or even names from a foreign language could also help the few-

shot classification of vision-language models, which is better than randomly initializing

the classification head. However, the contribution of category names diminishes when
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(a) Pretrained model (b) No L2 regularization (c) L2 regularization

Figure 4.7: Visualization of decision boundary in one-shot learning. From left to right,

The first subfigure displays the decision boundary of the pretrained model. In contrast,

the second and third subfigures show the finetuned model without and with L2 weight

regularization, respectively. Each model was trained using only one training example

per class, with three classes retained for simplicity. The decision boundary does not

shift significantly when finetuning on the one-shot dataset with L2 regularization. This

indicates that the model’s generalization ability is improved, as it is less likely to overfit

the training examples.

the number of training samples becomes large. This chapter obtains state-of-the-art

few-shot performance on numerous benchmarks, including ImageNet, ImageNet-V2,

ImageNet-R, ImageNet-A, ImageNet-Sketch, Cifar100, Oxford Flowers, Stanford Cars,

Country-211, Food-101, FGVC Aircraft, EuroSAT, and Oxford-IIIT Pets. Our few-shot

classification result is even better than many previous works that have employed the

whole training set.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we propose different learning methods for learning three different types

of correspondence. Specifically, we have made several key contributions:

Spatial-temporal correspondence in videos. In Chapter 2, we propose a learn-

able cost volume module for accurate and robust optical flow estimation. This module

generalizes the standard inner product by a positive definite kernel matrix. We perform

spectral decomposition on the kernel matrix and re-parameterize it via the Cayley repre-

sentation for efficient optimization. Our module is designed to seamlessly integrate into

existing models, effortlessly replacing the standard cost volume. This integration ele-

vates the accuracy of optical flow estimation, bolstering the model’s overall robustness

and opening up new possibilities for enhanced optical flow applications.

Semantic Correspondence in Images. In Chapter 3, we have established a multi-

level contrastive learning framework to learn semantic correspondence without relying

on supervised ImageNet pretrained models or ground truth annotations from the valida-

tion set. In our framework, image-level contrastive learning generates object-level dis-

criminative representations, and pixel-level contrastive learning further facilitates fine-

grained representations at region- or pixel-level to improve dense semantic correspon-

dence performance. We propose a cross-instance cycle consistency regularization to

learn a discriminative local feature at the pixel level without dense ground truth.

87
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Multimodal Correspondence between Images and Texts. In Chapter 4, we have

proposed category name initialization for addressing the few-shot image classification

problem using pretrained vision-language models. Specifically, we compute the text

embeddings of category names and initialize the classification head. This method sub-

stantially improves the few-shot performance and accelerates the convergence process

across diverse datasets. Furthermore, we investigate various influential factors in the

context of few-shot learning, such as selecting fine-tuning layers, learning rate choices,

and applying weight regularization. This comprehensive analysis sheds light on the nu-

ances of the few-shot learning process, offering valuable insights into the efficacy of our

approach and its adaptability to different settings.

5.2 Future Work

We have explored three different types of correspondence in this thesis. Along the

way, we have a myriad of interesting future directions.

5.2.1 Recurrent Distillation for Spatial-Temporal Correspondence

The recent RAFT [115] method has dramatically improved the performance by a

large margin compared with existing state-of-the-art techniques. This notable improve-

ment has ignited interest in iteratively refining flow estimation. RAFT operates by ex-

tracting per-pixel features, constructing multi-scale 4D correlation volumes for pixel

pairs, and updating the flow field iteratively through a recurrent unit that performs

lookups on these correlation volumes. This iterative refinement strategy deviates from

the conventional pyramid design, such as the widely-used one by Sun et al. [112], re-

sulting in a more compact and efficient model. However, it’s important to note that the

efficacy of RAFT in unsupervised settings, where flow estimation is substantially more

challenging than in supervised scenarios, remains unverified.

In contrast, DDFlow [76] and SelFlow [77] have shown promising results in un-

supervised scenarios. Both approaches leverage model distillation, utilizing the flow

estimated by a teacher model to guide a student model. The teacher model is trained us-

ing raw video frames, and synthetic occlusions are introduced when training the student
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model. The critical insight here is that the student model can benefit from the teacher

model’s estimated flow in guiding it through newly generated occluded regions.

Could we employ a similar recurrent distillation approach for flow estimation, akin

to the RAFT model’s iterative refinement? Without ground truth data, recurrent refine-

ment could be achieved through a teacher-student model distillation process. In each

refinement step, the student model is guided by the predictions of the teacher model,

gradually improving the accuracy of the estimated flow over multiple iterations.

5.2.2 Leveraging NeRF for Occlusion-Aware Optical Flow Estima-

tion

To address the challenge of occlusion in optical flow estimation, one promising av-

enue is the utilization of NeRF (Neural Radiance Fields) [85]. NeRF is a cutting-edge

technique that leverages neural networks to model the 3D geometry and radiance of a

scene from a collection of 2D images. By employing NeRF, we can overcome occlu-

sion issues by reconstructing the 3D structure of the scene and discerning the occluded

regions more accurately. This 3D scene understanding enables us to refine optical flow

estimation, particularly in complex scenarios where objects interact, occlude one an-

other, or move within the scene. The integration of NeRF with correspondence models

offers the potential to greatly improve optical flow accuracy and reliability, making it an

exciting avenue for further exploration in the realm of correspondence learning.

5.2.3 Fine-Grained Correspondence and Specialized Tasks

One exciting direction is to explore the fine-grained level of correspondence. Fine-

grained correspondence entails precisely aligning and recognizing subtle differences

within objects or scenes, often involving similar categories with subtle distinctions.

Such fine-grained correspondence can also refer to the images and texts, which requires

vision-language models to better understand images based on the texts.

Fine-grained correspondence is pivotal in many applications, such as fine-grained

object recognition, biomedical image analysis, and visual grounding. Fine-grained ob-

ject recognition discriminates objects within the same general category but with subtle
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differences. In the biomedical field, fine-grained correspondence is indispensable for

analyzing medical images. Radiologists and researchers rely on precise correspondence

techniques to identify subtle anomalies or differences in medical scans. Based on a nat-

ural language query, visual grounding aims to locate the most relevant object or region

in an image. A model needs to establish context-level semantic correspondences across

the two modalities since the target object is distinguished from other objects based on its

visual context (i.e., attributes and relationship with other objects) and correspondences

with the semantic concepts of the textual description.

5.2.4 Correspondence in More Modalities

Expanding correspondence to more modalities is a significant and evolving area.

One considerable extension of correspondence learning involves the integration of au-

dio modalities. This integration is particularly relevant in video analysis and content

understanding applications. Models capable of learning correspondences between vi-

sual and auditory information can enable tasks such as sound source localization in

videos, audio-visual event detection, and automatic video captioning with audio descrip-

tions. Incorporating haptic and tactile modalities into correspondence learning extends

the understanding of the sense of touch in computer vision. Correspondence models

that recognize the physical interaction between objects and surfaces can be applied in

robotics for object manipulation, grasping, and material recognition. This interdisci-

plinary approach enhances robots’ interaction and understanding of the physical world.

In the automotive industry, integrating vision, language, and sensor modalities is key for

developing safe and efficient autonomous vehicles. These vehicles use visual data from

cameras, textual information for navigation, and sensor modalities like LiDAR and radar

to navigate and make real-time decisions. Advanced correspondence models are crucial

in understanding the complex driving environment, identifying obstacles, and ensuring

passenger safety.
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