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Abstract
Objective: This study evaluates the utility of word embeddings, generated by large language models (LLMs), for medical diagnosis by compar-
ing the semantic proximity of symptoms to their eponymic disease embedding (“eponymic condition”) and the mean of all symptom embed-
dings associated with a disease (“ensemble mean”).
Materials and Methods: Symptom data for 5 diagnostically challenging pediatric diseases—CHARGE syndrome, Cowden disease, POEMS 
syndrome, Rheumatic fever, and Tuberous sclerosis—were collected from PubMed. Using the Ada-002 embedding model, disease names and 
symptoms were translated into vector representations in a high-dimensional space. Euclidean and Chebyshev distance metrics were used to 
classify symptoms based on their proximity to both the eponymic condition and the ensemble mean of the condition's symptoms.
Results: The ensemble mean approach showed significantly higher classification accuracy, correctly classifying between 80% (Cowden dis-
ease) to 100% (Tuberous sclerosis) of the sample disease symptoms using the Euclidean distance metric. In contrast, the eponymic condition 
approach using Euclidian distance metric and Chebyshev distances, in general, showed poor symptom classification performance, with erratic 
results (0%-100% accuracy), largely ranging between 0% and 3% accuracy.
Discussion: The ensemble mean captures a disease's collective symptom profile, providing a more nuanced representation than the disease 
name alone. However, some misclassifications were due to superficial semantic similarities, highlighting the need for LLM models trained on 
medical corpora.
Conclusion: The ensemble mean of symptom embeddings improves classification accuracy over the eponymic condition approach. Future 
efforts should focus on medical-specific training of LLMs to enhance their diagnostic accuracy and clinical utility.
Key words: natural language processing; machine learning; pediatric diagnosis; word embeddings; clinical decision support. 

Background and significance 
Meticulous attention to medical terminology in both clinical 
practice and medical education, along with the development of 
standardized lexicons for describing anatomy, pathology, and 
symptoms, underscores the deep-rooted role of semantics in 
medicine. This precise use of language is a key reason for the 
growing interest in applying advanced natural language process-
ing (NLP) techniques, particularly word embeddings, to clinical 
practice.1 Word embeddings, a deep learning technique, encap-
sulate words as vectors within a high-dimensional space, creat-
ing a machine-interpretable semantic representation of words. 
This method allows for the quantification of contextual proxim-
ity between terms, offering novel opportunities for enhancing 
clinical diagnosis and practice.2–4

Since word embeddings are generated by deep learning mod-
els through extensive analysis of text data to discern patterns 
and relationships between words, each word’s numerical vector 
representation in the multidimensional space is highly depend-
ent on the context in which it was trained and the spatial 

arrangement of the closely related words and their concepts. 
Techniques such as Word2Vec, GloVe (Global Vectors for 
word representation), and FastText, each with distinct advan-
tages, illustrate the diversity and depth of embedding methodol-
ogies.5–7 Furthermore, they highlight the importance of 
choosing the right environment in creating conceptually relevant 
embeddings, especially for words that are nuanced to particular 
applications.8–11 Beyond theoretical applications, word embed-
dings have tangible implications across different aspects of med-
ical practice, such as enhancing patient phenotyping accuracy, 
accelerating drug discovery, and improving the efficiency of 
medical literature retrieval.12–15

In this study, we define the “eponymic condition” as the 
semantic embedding of a disease's name, and the “ensemble 
mean” as the mean of the embeddings of all symptoms associ-
ated with that disease. We evaluate the utility of these embed-
dings for clinical diagnosis by testing the hypothesis that 
symptoms will have a closer semantic proximity to their asso-
ciated disease (condition) than to other diseases (targets). 
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By comparing the distance between symptom embeddings 
and both the eponymic condition and the ensemble mean, we 
aim to determine which approach provides a more precise 
method for symptom-based disease classification.

To test this hypothesis, we selected 5 pediatric diseases— 
CHARGE syndrome, Cowden disease, POEMS syndrome, 
Rheumatic fever, and Tuberous sclerosis—due to their com-
plex nature, broad spectrum of symptoms, and intricate diag-
nostic criteria involving both major and minor clinical signs. 
These sample diseases were chosen as highly challenging edge 
cases to rigorously evaluate the performance of embedding- 
based methods and stress-test the proposed approach without 
bias from less diagnostically complex common diseases. 
Symptoms were classified based on their semantic distance 
from both the eponymic condition (the disease name embed-
ding) and the ensemble mean of the condition (the mean 
embedding of its symptoms), using Euclidean and Chebyshev 
distance metrics to evaluate classification accuracy.

To the best of our knowledge this approach has not been con-
ducted in the pediatric disease space. This novel application 
may further advance our understanding of the potential use of 
embedding vectors in medical diagnosis, as well as any unno-
ticed pathologic or symptom clustering amongst diseases.

Methodology
Data collection and embedding generation
Symptom data for the selected diseases—CHARGE syn-
drome, Cowden disease, POEMS syndrome, Rheumatic 
fever, and Tuberous sclerosis—were collected from the 
widely accepted diagnostic criteria by the established sources 
published in PubMed.16–20 The symptom list for Rheumatic 
fever was specifically analyzed for “low prevalence pop-
ulation” due to the simplicity of the diagnostic criteria as 
compared to the “high prevalence population.”

To explore the semantic proximity between diseases and 
their symptoms, we employed the Ada-002 embedding model 
developed by OpenAI, which generates vector representations 
with a length of 1536 dimensions.21 This model generates 
vector representations that encapsulate the semantic nuances 
of words, thereby translating textual descriptions of symp-
toms and diseases into a quantifiable, multidimensional vec-
tor space. To the best of our knowledge, Ada-002 was not 
specifically trained for medical applications, nor was its train-
ing limited to the medical domain. Our focus was particularly 
on embeddings of the pediatric diseases mentioned above, 
alongside their relevant symptoms.

Analysis of embeddings
Geometry of embeddings
The symptom embeddings in this study are represented as unit 
vectors in an n-dimensional space, where n in this case is 1536.  
Figure 1 shows the eponymic embedding vector for “CHARGE 
syndrome” along with the ensemble mean of all 63 symptoms 
for this condition. Notably, characteristic peaks at dimensions 
195, 955, and 1121 are consistently observed across all epo-
nymic conditions and their associated symptoms. The symp-
toms of each disease are thus mapped into a group of points on 
a unit (n−1)-sphere with the center at the mean of the symptom 
embeddings, as defined in eqn (4) in the Supplemental Material.

Given the spherical geometry of the embeddings, the meth-
ods of directional statistics could be employed by expressing 
the embeddings as (n−1)-dimensioinal spherical coodinates 

and calculating directional statistics using directional distri-
butions such as the von Mises distribution.22 However, as 
seen in the methodology sections below, this work requires 
only the directional or circular mean, which is derived from 
the mean of the Cartesian coordinates normalized to unit 
length, and therefore, spherical coordinates are not required 
in this work. For example, the directional mean of the 
embeddings of all 63 symptoms of CHARGE syndrome is 
demonstrated in Figure 1. In this study, all references to the 
“mean” of embeddings pertain to this directional mean. Dis-
tances calculated between the embeddings are chordal, rather 
than spherical. For instance, the Euclidean distance between 
the embeddings in Figure 1 is 0.527, with an angular distance 
of 0.533 radians (30.5"); given that these embeddings lie on a 
unit sphere, the spherical distance is also 0.533.These distan-
ces are calculated as follows, along with other distance 
metrics.

Distance metrics
The semantic proximity between the generated embeddings 
of diseases and symptoms was quantified using various dis-
tance measurement techniques, each chosen for its relevance 
to the nature of the data and specific analytical goals. These 
distance metrics were applied to the symptom embeddings 
generated by the Ada-002 model to evaluate the semantic 
proximity of diseases and symptoms. For our symptom- 
disease distance measurement, the methodology was based 
on the following approach:

Let B1 and B2 be embedding unit vectors, where B1 repre-
sents the first vector and B2 the second. These vectors are 
rows of numerical values that encode semantic relationships 
in the multidimensional space. The term BT

2 refers to the 
transpose of B2, which is used in calculations to determine 
the alignment or similarity between the 2 vectors. The angle 
between these vectors, denoted as θ, reflects their directional 
relationship. A smaller angle indicates higher similarity.

The Euclidean distance, a widely used metric in vector 
space analysis, measures the straight-line distance (dE) 
between 2 points in the multidimensional space. This metric 
was chosen for its simplicity and effectiveness in providing an 
overall assessment of similarity by considering all dimensions 
of the embedding vectors: 

dE #
!!!!!!!!!!!!!!!!!!!!!!!!!!
2$1% B1BT

2 &
q

(1) 

The Chebyshev distance, in contrast, focuses on the largest 
single-dimensional difference between 2 points. This metric 
highlights the maximum variation (dv) across dimensions: 

dV # max$ B1 % B2j j& (2) 

In addition to these primary metrics, other metrics such as 
cosine similarity, taxicab (Manhattan) distance, and spherical 
distance were also considered. Cosine similarity evaluates the 
alignment of the 2 vectors by measuring the cosine of the 
angle θ, focusing on the directional relationship regardless of 
vector magnitude. Taxicab distance calculates the sum of the 
absolute differences across all dimensions, effectively measur-
ing the cumulative “path” between 2 points. Spherical dis-
tance measures the angle θ directly between 2 vectors on the 
surface of a unit sphere, providing a geometric interpretation 
of their proximity (Supplemental Material).
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The additional metrics, such as cosine, taxicab, and spheri-
cal distances, are simple monotomic functions of the Eucli-
dian distance and often exhibit similar behaviors. Therefore, 
since Chebyshev distance is the only one of the aforemen-
tioned metrics that is not closely related to the Euclidean dis-
tance, Chebyshev and Euclidean distances were chosen to 
analyze our dataset.

Directional mean
To represent the collective profile of a disease, we calculated the 
directional mean of its associated symptom embeddings.22 This 
involves averaging the embeddings of all symptoms, represented 
as individual vectors like B1, and normalizing the result. The 
directional mean serves as a central point representing the 
“average” semantic position of the disease's symptom profile in 
the embedding space (Supplemental Material).

Kernel density distribution
To better understand the spatial arrangement of symptom 
embeddings, we used kernel density estimation to quantify 
the distribution of distances between individual symptom 
embeddings and the disease's directional mean. Kernel den-
sity functions smooth these distances to create a continuous 
curve, which helps visualize the clustering of symptom 
embeddings around their disease centroid.23

For this analysis, we used a Gaussian kernel, a common 
choice for smoothing, which ensures that the density function 
integrates to 1. The kernel density estimation was performed 
using MATLAB, with parameters optimized for positive sup-
port (ensuring no negative values in the computed distances). 
This allowed us to identify patterns in the proximity of symp-
toms to their associated diseases and evaluate the effective-
ness of the embeddings.

Results
Classification of symptoms by semantic distance
Classification of symptoms by distance from eponymic and 
ensemble mean vectors
Our hypothesis is that the classification by semantic distance 
from the diseases’ eponymic embedding vectors mirrors the 
clinical classification of symptoms by disease. This is tested 

by letting Bk; k#1; ’ ’ ’;5 be the 5 eponymic embedding vec-
tors for each of the conditions. For each symptom, 5 distan-
ces are calculated from the Bk and the symptom is classified 
with the condition with the minimum semantic distance. 
Alternatively, we define Mk; k#1; ’ ’ ’; 5 as the ensemble 
means of the symptoms of each of the 5 conditions, as given 
in eqn (6). Similarly, we classify each symptom by the condi-
tion with the minimum distance to the corresponding Mk:

Table 1 presents the results of symptom classification using 
the Euclidean and Chebyshev distance metrics. The classifica-
tion is considered correct when the semantic classification 
matches the clinical classification.

Calculating distances from the eponymic embeddings using 
Euclidian technique results in significant classification accu-
racy only for symptoms of Rheumatic fever and Tuberous 
sclerosis, while using the Chebyshev distance metric results in 
generally erratic and poor results (Table 1). However, using 
the ensemble means to compute distances significantly 
improves the classification accuracy, reducing the number of 
misclassified symptoms to 10 out of 152. Table 2 provides a 
detailed breakdown of the 10 symptoms misclassified when 
using the Euclidean distance to the ensemble mean of their 
target condition’s symptom embedding vectors.

Major and minor symptoms
Categorizing symptoms into major and minor criteria enables a 
more granular examination of the potential correlation between 
semantic proximity and clinical relevance as diagnostic criteria. 
Major symptoms, considered to have higher diagnostic impor-
tance, are expected to be closer to the embedding point of their 
respective condition name. As shown in Table 3, this pattern 
holds true for all conditions except Cowden disease when 
applying the Chebyshev distance. Median values were chosen 
for this table to mitigate the effects of skewness or multimodal-
ity in distributions with low sample counts.

Distribution of semantic distances
Distribution of symptom distances from eponymic vectors
We calculated the distances from the eponymic embedding 
vector of each disease to its corresponding ensemble of asso-
ciated symptoms. For example, Figure 2 shows the histogram 

Figure 1. The Euclidean distance between the embeddings is 0.527, and the angle between them is 0.533 radians (30.5"). Since the embeddings lie on a 
unit sphere, the spherical distance is also 0.533.
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of the 63 Euclidean distances between the embeddings of 
CHARGE syndrome symptoms and the eponymic embedding 
vector for “CHARGE syndrome.” The unusually small dis-
tance observed corresponds to the symptom “Distinctive 
CHARGE facies,” which shares a term directly with the 
name of the condition, explaining its close proximity.

The solid blue line in Figure 2 represents the calculated ker-
nel density function of the Euclidean distances between the 
ensemble of CHARGE syndrome symptom embeddings and 
the eponymic embedding vector of “CHARGE syndrome” as 
computed using eqns (7) and (8). Figure 3 illustrates the dis-
tribution of distances between the ensemble of CHARGE 
syndrome symptoms and all eponymic embedding vectors.

Similarly, we calculated the kernel density function for the 
ensemble of symptoms of all 5 conditions and the 5 eponymic 
embeddings vectors. If the hypothesis that semantic distances 
correspond to clinical findings holds true, then the distances 
of the symptoms of a target condition should be closest to its 
own eponymic vector and further from the vectors of other 
diseases. In Figure 4, the solid green line representing the dis-
tribution of distances between the eponymic vector of Tuber-
ous sclerosis and its symptoms indicates that most symptoms 

are indeed closer to Tuberous sclerosis than to any other epo-
nymic condition. However, this pattern does not hold for 
CHARGE syndrome, as shown in Figure 2. The remaining 
figures for Cowden disease, POEMS syndrome, and Rheu-
matic fever can be found in the Supplemental Material. These 
figures show that Cowden disease and POEMS syndrome 
resemble the CHARGE syndrome plot, while the plot for 
Rheumatic fever is similar to the Tuberous sclerosis plot.

Symptom distances to ensemble means of condition 
symptoms
We reasoned that the average of the symptom embeddings 
would offer a more accurate representation than the epo-
nymic embedding. To test this hypostheis, we replaced the 
eponymic embedding vector with directional mean of all the 
conditions’ ensemble of symptom embeddings. In this 
approach, a condition is defined not by its name but by its 
constellation of symptoms. The resulting kernel distribution 
plots for CHARGE syndrome and Tuberous sclerosis are 
seen in Figures 5 and 6, respectively. Similarly, plots for Cow-
den disease, POEMS syndrome, and Rheumatic fever are 
found in the Supplemental Material.

Table 1. Symptoms correctly classified by Euclidean and Chebyshev distance from the eponymic embedding vector and ensemble mean of the condition 
symptom embedding vectors.

Condition
Number of  
symptoms

Correctly diagnosed by  
eponymic embedding  

vector (Euclidean)

Correctly diagnosed by  
ensemble mean embedding  

vector (Euclidean)

Correctly diagnosed by  
eponymic embedding  
vector (Chebyshev)

Correctly diagnosed by  
ensemble mean embedding  

vector (Chebyshev)

CHARGE syndrome 63 2 (3%) 59 (94%) 9 (14%) 2 (3%)
Cowden disease 20 0 (0%) 16 (80%) 0 (0%) 20 (100%)
POEMS syndrome 38 1 (3%) 37 (97%) 3 (8%) 1 (3%)
Rheumatic fever 13 12 (92%) 12 (92%) 7 (54%) 0 (0%)
Tuberous sclerosis 18 18 (100%) 18 (100%) 12 (67%) 0 (0%)

Table 2. Symptoms misclassified by Euclidean distance from the ensemble mean of the condition symptom embedding vectors.

Putative condition Incorrectly classified as Symptom

CHARGE syndrome POEMS syndrome “Borderline growth hormone (GH) stimulation tests”
CHARGE syndrome POEMS syndrome “Growth deficiency”
CHARGE syndrome POEMS syndrome “Osteoporosis”
CHARGE syndrome Rheumatic fever “Chronic serous otitis”
Cowden disease Tuberous sclerosis “Fibromas”
Cowden disease Tuberous sclerosis “Lipomas”
Cowden disease CHARGE syndrome “Macrocephaly”
Cowden disease CHARGE syndrome “Mental retardation”
POEMS syndrome Tuberous sclerosis “Glomeruloid hemangiomata”
Rheumatic fever Tuberous sclerosis “ Subcutaneous nodules”

Table 3. Distance between the eponymic embedding vectors of each condition and the ensemble of its major and minor diagnostic criteria.

Condition Class Group count Median Euclidean Median Chebyshev

CHARGE syndrome Major 31 0.683 0.0625
CHARGE syndrome Minor 32 0.694 0.0627
Cowden disease Major 4 0.646 0.0646
Cowden disease Minor 16 0.682 0.0643
POEMS syndrome Major 6 0.661 0.0562
POEMS syndrome Minor 25 0.706 0.0670
Rheumatic fever Major 8 0.585 0.0525
Rheumatic fever Minor 5 0.646 0.0672
Tuberous sclerosis Major 11 0.585 0.0533
Tuberous sclerosis Minor 8 0.632 0.0583
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Discussion
This study demonstrates the potential of large language 
model (LLM) embeddings for clinical diagnosis by quantify-
ing the semantic proximity between medical terms. We 

explored the utility of 2 approaches: classifying symptoms by 
their distance from the eponymic embedding of a disease 
name (“eponymic condition”) versus the mean embedding of 
all symptoms associated with a disease (“ensemble mean”). 

Figure 2. Distribution of distances from the ensemble of symptoms for CHARGE syndrome to the eponymic embedding vector of CHARGE syndrome. 
The smoothing parameter for the kernel density is h# 0.0164.

Figure 3. Distribution of distances for the ensemble of CHARGE syndrome symptoms from eponymic embedding vectors.
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Our findings highlight both the strengths and limitations of 
these methods and suggest future directions for improving 
their clinical applicability.

The result of this study suggests that the ensemble mean of 
symptom embeddings provides a more accurate basis for symp-
tom classification than the eponymic embeddings of disease 
names. Using the Euclidean distance metric, the ensemble mean 
approach significantly outperformed the eponymic approach, 
achieving a range of 80%-100% accuracy. This suggests that 
aggregating the semantic representations of symptoms into a 
composite vector of its symptoms better embodies the unique 

characteristics of a disease than relying solely on the disease 
name embedding. Moreover, the relatively closer proximity of 
the median Euclidean distance of major symptoms' aggregates 
to their target condition’s eponymic embedding, compared to 
the distances of minor symptoms' embeddings, demonstrates 
the potential of semantic embeddings to align with real-life clini-
cal concepts. In contrast, the Chebyshev distance metric, which 
focuses on maximum deviation along any dimension, per-
formed poorly and inconsistently throughout most measure-
ments. Chebyshev’s sensitivity to outliers likely reduces its 
utility for capturing complex, multidimensional relationships in 

Figure 4. Distribution of distances for the ensemble of tuberous sclerosis symptoms from eponymic embedding vectors.

Figure 5. Distribution of distances from all symptoms of CHARGE syndrome to ensemble mean embedding vectors.
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medical data, where symptoms often vary widely in presenta-
tion and severity.

The superior performance of the ensemble mean approach 
highlights the importance of context-rich representations in 
clinical settings. By capturing the collective profile of symp-
toms, this method provides a nuanced view of disease presen-
tation that is highly relevant for differential diagnosis, 
particularly where overlapping clinical features create chal-
lenges. However, the misclassifications observed in Table 2 
provide further evidence of the complexities involved in using 
embeddings for diagnosis. These errors suggest that embed-
dings may capture secondary tangential associations arising 
from clinical overlap or semantic similarity rather than direct 
clinical relevance. For instance, certain symptoms associated 
with CHARGE syndrome, such as “Borderline growth hor-
mone (GH) stimulation tests,” “Growth deficiency,” and 
“Osteoporosis,” were misclassified under POEMS syndrome 
due to the semantic similarities with endocrine and growth- 
related abnormalities seen in both diseases.24

Similarly, “Chronic serous otitis” was misclassified as 
“Rheumatic fever,” likely due to the shared involvement of 
streptococcal infections, which can cause “otitis media” (Strep-
tococcus pneumoniae), and if left untreated as pharyngeal infec-
tion, it may lead to Rheumatic fever (Streptococcus pyogenes).

These examples underscore the need for more specialized 
training of LLMs using medical data to better differentiate 
between diseases with superficially similar, but clinically distinct 
features. Embeddings that are more attuned to the specific lan-
guage and complexities of medical discourse could enhance 
accuracy by recognizing subtle differences in symptomatology, 
comorbidities, and disease progression, which are critical for 
precise diagnosis and choosing the most effective treatment.

This study highlights the importance of further exploring 
the diagnostic specificity and contextual relevance of embed-
dings by applying this approach across a broader spectrum of 
diseases, including those with overlapping symptoms and 
varying levels of diagnostic complexity, to evaluate its 

generalizability and limitations. To improve the specificity 
and clinical relevance of word embeddings for medical diag-
nosis, future models may benefit from being predominantly 
trained on comprehensive and diverse medical texts, such as 
electronic health records (EHRs), clinical guidelines, and case 
studies, to better capture the subtle nuances and specificities 
of medical terminology. This may minimize nonspecific asso-
ciations and improve the ability of models to identify true 
diagnostic clues. Furthermore, combining LLM-based 
embeddings with other data sources, such as genetic, imag-
ing, and laboratory data, could enhance the utility and diag-
nostic accuracy of the models by providing a more holistic 
view of disease presentation.

Additionally, developing new distance metrics that incor-
porate clinical context, such as weighted distances that priori-
tize diagnostically relevant symptoms over less specific ones, 
could further refine embedding-based classification methods. 
For example, metrics could be designed to give greater impor-
tance to major diagnostic criteria while minimizing the influ-
ence of common, nonspecific symptoms.

Regardless of the methodology used, validation of these 
models across a wide range of common and rare diseases, 
clinical scenarios, and populations is essential to avoid biases 
that may disseminate from overfitting for a sub-group of dis-
eases, or regional and socioeconomical nuances of the train-
ing datasets. Real-world testing in clinical environments, 
such as hospitals or outpatient clinics, will be crucial for 
understanding the practical utility and limitations of these 
models. Moreover, since retraining an entire LLM with con-
tinuing medical advancement and changing literature is both 
energy intense and laborious, the use of techniques such as 
the ensemble mean can make diagnostic models more easily 
adaptable to any new updates or refinements.

Limitations
This study's findings must be interpreted within the context 
of several limitations. The analysis initially focused on a 

Figure 6. Distribution of distances from all symptoms of tuberous sclerosis to ensemble mean embedding vectors.  
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limited number of pediatric diseases with rarely overlapping 
symptoms, which may not accurately represent the broader 
range of conditions encountered in clinical practice or the 
complexity involved in differentiating between 2 distinct dis-
eases with many overlapping symptoms. Pediatric conditions 
often have distinct symptom profiles and diagnostic criteria 
that may not directly translate to adult or geriatric popula-
tions, thus limiting the generalizability of our results.

Furthermore, the study primarily utilized Euclidean and 
Chebyshev distance metrics, which may not encompass the 
full spectrum of distance metrics that could offer greater spe-
cificity and accuracy. Future research should explore a 
broader range of distance models and embedding techniques 
to enhance the diagnostic utility of semantic proximity.

Another critical limitation is the reliance on embeddings 
from LLMs not specifically trained in a medical context. The 
use of alternate models may offer a varying result.

Conclusion
Word embeddings from LLMs offer promising avenues for 
enhancing medical diagnosis, but their clinical utility requires 
further refinement to achieve optimal performance. While the 
ensemble mean approach shows improved classification accu-
racy over eponymic embeddings, significant challenges 
remain, particularly regarding specificity and contextual rele-
vance. Addressing these challenges will require targeted 
model training on medical data, development of hybrid 
approaches, and creation of context-aware metrics that 
reflect the complexity of clinical decision-making.

Future research efforts should focus on refining these mod-
els to enhance their diagnostic accuracy and clinical applic-
ability. By leveraging specialized training, integrating diverse 
data sources, and employing dynamic learning techniques, 
LLM-based embeddings can evolve to meet the unique 
demands of clinical practice. As these tools mature, they have 
the potential to transform diagnostics, personalized medicine, 
and other areas of healthcare by providing a robust computa-
tional framework for interpreting complex medical data. 
This evolution could ultimately lead to more precise, effi-
cient, and individualized patient care.
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