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CLINICAL STUDY

Renal Failure
2024, VOL. 46, NO. 1, 2298080

The association between bone density of lumbar spines and different 
daily protein intake in different renal function
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ABSTRACT
Background:  Low protein intake (LPI) has been suggested as a treatment for chronic kidney 
disease (CKD). However, protein intake is essential for bone health.
Methods:  We studied the database of the National Health and Nutrition Examination Survey, 
2005–2010. Basic variables, metabolic diseases, and bone density of different femoral areas were 
stratified into four subgroups according to different protein intake (DPI) (that is, <0.8, 0.8–1.0, 
1.0–1.2, and >1.2 g/kg/day).
Results:  Significant differences were found among all lumbar area bone mineral density (BMD) 
and T-scores (p < 0.0001). There was an apparent trend between a decreasing BMD in the CKD 
groups with increasing DPI in all single lumbar spines (L1, L2, L3, and L4) and all L spines (L1-L4). 
Compared with DPI (0.8–1.0 g/day/kg), higher risks of osteoporosis were noticed in the subgroup 
of >1.2 g/day/kg over L2 (relative risk (RR)=1.326, 95% confidence interval (CI)=1.062–1.656), 
subgroup >1.2 g/day/kg over L3 (RR = 1.31, 95%CI = 1.057–1.622), subgroup <0.8 g/day/kg over L4 
(RR = 1.276, 95%CI = 1.015–1.605), subgroup <0.8 g/day/kg over all L spines (RR = 11.275, 95%CI 
= 1.051–1.548), and subgroup >1.2 g/day/kg over all L spines (RR = 0.333, 95%CI = 1.098–1.618). 
However, a higher risk of osteoporosis was observed only in the non-CKD group. There was an 
apparent trend of higher DPI coexisting with lower BMD and T scores in patients with CKD. For 
osteoporosis (reference:0.8–1.0 g/day/kg), lower (<0.8 g/day/kg) or higher DPI (>1.2 g/day/kg) was 
associated with higher risks in the non-CKD group, but not in the CKD group.
Conclusions:  In the CKD group, LPI for renal protection was safe without threatening L spine 
bone density and without causing a higher risk of osteoporosis.

KEY LEARNING POINTS
A low-protein diet should be encouraged in patients with CKD, but protein is essential for bone 
health. In this study, we showed that a low-protein diet did not affect lumbar bone density. 
Therefore, in the care of CKD, a low-protein diet is beneficial for renal function and without harm 
to lumbar bone health.

Introduction

Osteoporosis is defined by bone mineral density (BMD), 
which is an essential determinant of bone strength and, 
hence, the risk of bone fracture [1]. In osteoporosis, fragility 
fractures occur spontaneously or after minor trauma. Reduced 

bone mineral density (BMD) is a major risk factor for fragility 
fractures. Protein diets affect bone strength as proteins con-
stitute about half of the bone volume and 1/3 of the bone 
mass [2]. The collagen and noncollagen forms of proteins can 
provide a structural matrix. Proper protein diets are essential 
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for maintaining bone mass. A meta-analysis of adults showed 
that protein intake is one of the primary anabolic stimuli for 
the biosynthesis of muscle proteins [3]. Therefore, the current 
Recommended Dietary Allowance (RDA) of protein intake for 
adult is 0.8 g/kg/day [4]. However, there are still some disad-
vantages to using proteins involved in bone formation. For 
example, proteins may be metabolized to acids, which under 
certain conditions can lead to metabolic acidosis. Acidosis 
further worsens the function of osteoblasts and extends the 
life of osteoclasts [5]. Therefore, protein intake that is too 
high is not recommended for bone health. To date, the asso-
ciation between dietary protein intake and bone metabolism 
is still lacking in the general population.

Chronic kidney disease (CKD) is a heterogeneous disorder 
characterized by impaired kidney structure and function with 
a number of presentations and outcomes related to the 
underlying cause and disease severity [6,7]. All patients have 
nephron loss, with the remaining viable glomeruli showing 
hyperfiltration [8]. Glomerular hyperfiltration further impairs 
viable nephrons, leading to a vicious cycle of dysfunction. In 
1996, Barry Brenner proposed a theory called ‘the hyperfiltra-
tion theory: a paradigm shift in nephrology’ [9]. He postu-
lated that, in most CKD, glomerular hyperfiltration exacerbates 
the progression of renal damage [9]. Therefore, treatments 
for controlling glomerular hyperfiltration should include the 
following: aggressive control of blood pressure, low salt diet 
[10], low animal protein diet [10,11], the use of 
renin-angiotensin system inhibitors (RASi) [12–17], 
sodium-glucose cotransporter-2 inhibitors [18], endothelin-1 
antagonist [19], finerenone [20,21] and glucagon-like peptide 
1 receptor agonists [22]. A high animal protein diet increases 
intraglomerular pressure via afferent arteriolar vasodilation, 
leading to CKD [23]. Therefore, low-protein diets (0.6–0.8 g/
kg/day) are routinely recommended for CKD patients to min-
imize glomerular hyperfiltration [24–27]. Three recent studies 
further support the benefit of a low-protein diet in CKD care 
to obtain better renal function [11,28,29]. Low low-protein 
diet is also recommended in the Kidney Disease: Improving 
Global Outcomes (KDIGO) guideline [30] to curtail the pro-
gression of CKD. However, very few studies have investigated 
whether low-protein diet intervention threatens bone health 
in CKD patients. The association between different amounts 
of daily protein intake (DPI) and bone health has not been 
studied in patients with CKD, with the exception of our pre-
vious study in the hip area [31].

CKD has a detrimental impact on bone strength. 
Nonetheless, the osteoporotic manifestations observed in CKD 
patients remain inadequately elucidated. In a prior investiga-
tion employing high-resolution peripheral quantitative com-
puted tomography (HR-pQCT) to assess the three-dimensional 
microarchitecture of bone, it was demonstrated that individu-
als at CKD stage 5 D exhibited notable tibial microstructural 
impairments in comparison to those at CKD stage 4–5 [32]. 
Meanwhile, patients with stage-3 CKD start to develop sec-
ondary hyperparathyroidism (hypocalcemia, hyperphosphate-
mia, and hyperparathyroidism), low serum levels of active 
vitamin D, more calcium-containing medications with meals 

(for phosphate binders), and metabolic acidosis [33]. As renal 
function deteriorated, the condition worsened. All of these 
conditions in CKD can affect bone health. From a cross-sectional 
study in 2020 [34], the results showed that femoral BMD rather 
than lumbar BMD was positively correlated with the eGFR in 
the CKD population. In our previous study, we found that a 
low DPI is safe for bone health in the femoral neck area in 
patients with CKD [31]. The peak adult bone mass, rate of 
bone loss, and artifacts were not the same throughout the 
skeleton. Therefore, in the present study, we analyzed bone 
density over the lumbar (L) spine among different DPI with or 
without CKD.

Subjects and methods

Study population and data collection

National Health and Nutrition Examination survey (NHANES)
The National Health and Nutrition Examination Survey 
(NHANES) is a health-related program conducted periodically 
by the Centers for Disease Control (CDC) and Prevention’s 
National Center for Health Statistics (NCHS), which released 
this dataset. The Research Ethics Review Board at the NCHS 
approved the survey protocol, all participants, or proxies, and 
provided written informed consent. This large ongoing dietary 
survey was conducted to assess the health and nutritional sta-
tus of community-dwelling individuals in the U.S. Nutritional 
status data are very detailed and have been extensively inves-
tigated in many published studies. The examinations included 
laboratory data, questionnaires on health and nutrition, and 
anthropometric measurements. All participants completed 
in-home interviews. We analyzed participants in the NHANES 
from 2005 to 2010. Participants were only included in our 
study under the following criteria: >18 years of age with data 
on renal function (estimated glomerular filtration rate) (eGFR), 
and had complete data with respect to anthropometric mea-
surements, questionnaires, and laboratory examinations.

Definition for protein diet.  The current RDA of protein intake 
is 0.8 g protein/kg BW/day for adults [35]. For an elderly 
subject, higher intakes have been recommended, like 1.0–1.2 
to 1.2–1.5 g/kg/day to maintain muscle functions [36]. For 
CKD patients, restricted daily protein intake is approximately 
0.6–0.8 g/kg/day [37–39]. For CKD patients, most guidelines, 
including KDIGO, recommend a restricted protein diet such 
as a low protein diet (0.6 g/kg/day) or a very low protein diet 
(0.2 g/kg/day) [40]. Thus, we stratified our subject population 
based on their daily protein intake (DPI) into 4 groups: (a) 
<0.8 g/kg/day, (b) 0.8–1.0 g/kg/day, (c) 1.0–1.2 g/kg/day, and 
(d) ≥1.2 g/kg/day. This grouping scheme was also used in our 
previous related study (on the impact of DPI on hip fractures 
in patients with and without CKD from NHANES) [31]. DPI 
information was collected by an interviewer administering 
24-h recalls using the U.S. Department of Agriculture 
Automated Multiple-Pass Method. This is a 5-step procedure 
to quantify 24-h food and beverage intakes [36].

Definition of osteoporosis. The study subjects were evaluated 
using dual-energy X-ray absorptiometry (DXA) for BMD (g/
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cm2). BMDs of the lumbar (Ls) spines, including L1, L2, L3, L4, 
and all L spines, were evaluated using DXA (Hologic Inc., 
Bedford, MA, USA). All measurements were performed 
according to the standard procedures [37,40]. In the field of 
osteoporosis, according to the International Society for 
Clinical Densitometry (ISCD), clinicians use combined L1-L4 
for spine BMD measurement. However, BMD and T score data 
in all lumbar spines should be initially presented as individual 
vertebrae (from L1 to L4). The major reason is that the 
presentation of individual vertebrae to see is there any more 
than a 1.0 T-score difference between the vertebrae in 
question and the adjacent vertebrae. If the T-score difference 
is greater than 1.0, the vertebral data may be excluded from 
the analysis. Therefore, we presented all individual lumbar 
spine BMD and T-score data.

Quality control was routinely conducted using all the DXA 
machines. According to the measured BMD and World Health 
Organization criteria [38], those patients with T scores 
between −1.0 and −2.5 were defined as having osteopenia. 
Moreover, those with T scores < −2.5 were defined as having 
osteoporosis. Both CKD and non-CKD groups were diagnosed 
according to the above criteria [38].

NHANES performed a continuous, nationwide representa-
tive health survey of civilian, non-institutionalized US people 
and collected data on about 5000 persons per year from inter-
views, physical examinations, and medical data including ‘bone 
densitometry’. In 1999, NHANES began performing DXA 
whole-body measurements on survey subjects aged 8 years 
and older in three mobile examination centers [41]. Less than 
10% of participants did not have DXA data because of their 
physiological state (pregnant women or amputations).

Other data collection.  Baseline variables according to the four 
groups of DPI included the following: age, sex, body mass 
index (BMI) (kg/m2), glycated hemoglobin (HbA1c) (%), eGFR 
according to the Modification of Diet in Renal Disease (MDRD) 
(ml/min/1.732 m2), systolic blood pressure (SBP) (mmHg), 
diastolic blood pressure (DBP) (mmHg), total cholesterol (mg/
dl), high-density lipoprotein (mg/dl), triglyceride (mg/dl), and 
fasting plasma glucose (mg/dl). HbA1c levels were measured 
using boronate affinity high-performance liquid 
chromatography (CLC385 TM, Primus, Kansas City, Mo., USA). 
The equation of eGFR (ml/min/1.732 m2) according to MDRD 
was as follows: eGFR = 186 × serum creatinine (mg/dl) −1.154 × 
years −0.203 × (0.742, if female) × (1.210, if African American) 
[42]. The MDRD formula (instead of the Cockcroft and Gault 
formula or Chronic Kidney Disease Epidemiology Collaboration 
(CKD-EPI) formula) was chosen because of its higher accuracy 
for diabetic patients (1555 cases in this study) with impaired 
renal function [43]. CKD-EPI was first used in 2009. Our 
population covered the period mostly before 2009 [44–49]. 
MDRD for diagnosing CKD has also been published in journals 
with high impact factor [50,51]. Therefore, CKD was defined as 
eGFR < 60 mL/min/1.73 m2 according to the MDRD equation. 
Data from the CKD-EPI definition are also presented in the 
supplementary data. This study was approved by the Human 
Research Review Committee of Taichung Veterans General 
Hospital (approval number CE19051B). All methods were 
performed in accordance with the relevant guidelines and 
regulations, including a statement in the Methods section 
regarding this effect.

Methods

We conducted this retrospective study of participants in the 
NHANES from 2005 to 2010. Participants were only included 
in our study if they had sufficient renal function data, DXA 
values (BDM and T score), and completed nutrition question-
naires. Specifically, for the studied subjects, the basic vari-
ables, metabolic diseases, and bone density of different 
femoral areas were stratified into four subgroups according 
to different levels of protein diet of dietary protein intake 
(DPI) (that is, <0.8, 0.8–1.00, 1.0–1.2, and >1.2 g/kg/day). We 
then compared the differential femoral areas among these 
subgroups for both the CKD and non-CKD subjects.

Statistical analyses

For continuous variables (e.g. BMD and T-score), data are pre-
sented as the mean ± SEM. BMD, T score, and osteoporosis 
from all individual L spines were presented according to dif-
ferent DPI with or without CKD. All p values for comparisons 
were two-sided and considered significant at p < 0.05. In 
addition, 95% confidence intervals (CI) were calculated. For 
other continuous variables, we presented them as mean 
(95% CI). Because of the complex survey design of the 
NHANES study (e.g. a complex survey designed with stratifi-
cation, clustering, and/or unequal weighting), the usual esti-
mates were inappropriate. The analyses were weight-adjusted 
to represent the U.S population. The key concept of weight-
ing in the NHNAES is to account for the complex survey 
design (including oversampling), survey non-response, and 
post-stratification. Weighted data were calculated according 
to online analytic guidelines (NHNES: Analytic Guidelines, 
2011–2014 and 2015–2016) [25]. Some examples of papers 
with reweighted NHANES data can be seen [52,53]. Analysis 
of variance (ANOVA) was used to examine significant differ-
ences in baseline demographics and characteristics across 
different levels of protein intake. The sample-weighted 
AVOVA test was performed using the SAS SURVEYREG 
Procedure according to the user’s instructions. Subgroups of 
DPI were: (a) <0.8 g/kg/day, (b) 0.8–1.0 g/kg/day, (c) 1.0–1.2 g/
kg/day, and (d) >1.2 g/kg/day. To overcome possible con-
founding factors, we performed adjusted and weighted tests 
using the SURVEYREG Procedure to compare the BMD and 
T-score levels among different subgroups of protein intake 
after adjusting for age, sex, energy intake, and BW. We also 
related lumbar bone density with the clinical outcome (risk 
of osteoporosis) (data presented as relative risk (RR), 95% CI) 
according to the cutoff criteria in a previous study [54]. 
Subgroup analyses were further performed for elderly 
patients and those without CKD, daily calcium intake, daily 
phosphorus intake, blood calcium concentration, blood phos-
phorus concentration, daily vitamin D intake, and blood vita-
min D concentration. In addition, we used weighted logistic 
regression analyses to compare osteoporosis risk across dif-
ferent levels of protein intake using the SAS SURVEYLOGISTIC 
Procedure. All analyses were conducted using Statistical 
Analysis System survey procedures (SAS version 9.4, 2013, 
Cary, NC, USA).

https://doi.org/10.1080/0886022X.2023.2298080
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Results

Baseline characteristics of population divided by different 
protein intake

Initially, 31,034 participants were included in the study. After 
exclusion (age≦18y/o, no eGFR data, incomplete data from 
total nutrient intake questionnaires, and no data on nutrient 
intake and bone density), 10,753 participants were analyzed 
(Figure 1). Their mean age was relatively young (44.3 y/o) and 
most were healthy (Table 1). However, many of them were 
obese (27.89 kg/m2 of BMI). As for metabolic syndrome, few 
had hypertension (122.35 mmHg of mean SBP, 70.87 mmHg; 
DBP), their total cholesterol was 197.03 mg/dl and only 10.9% 
had DM. Few patients had renal dysfunction (96.69 mL/
min/1.732 m2 of mean eGFR), and only 5.93% of patients had 
CKD. The mean protein intake was 1.1 g/kg per day. People 
who consumed more proteins were more likely to be 
younger, male, with lower BW and lower BMI (all p < 0.0001). 
They also had fewer CKD (based on both the MDRD and 
CKD-EPI formulas), higher eGFR, fewer DM (less fasting glu-
cose and HbA1c), lower SBP, and greater calorie intake (all 
p < 0.0001). Among all four subgroups of protein intake, we 
found no significant inter-subgroup differences in all lumbar 
area BMD and T-scores (p < 0.0001).

Lumbar BMD and T score divided by different protein 
intake

We investigated BMD and T-scores from different protein 
diets after adjusting for age, sex, daily energy intake, BW, and 

CKD (Table 2). After adjustments, the above variables showed 
no significant difference in bone density (both BMD and T 
score) with respect to different protein intake. The above 
findings were further divided into two groups: CKD and 
non-CKD (Table 3, MDRD formula). Again, we found no sig-
nificant differences among all the comparisons. Nevertheless, 
there was an apparent trend showing that in the CKD group, 
BMD decreased with increasing DPI in all single lumbar 
spines (L1, L2, L3, and L4) and all L spines (L1-L4) 
(Supplementary Figure 1B). This trend was not observed in 
the non-CKD group (Supplementary Figure 1A). Similarly, this 
trend was also observed in the CKD group, as with the 
decreasing T score with increasing DPI at all single lumbar 
spines (L1, L2, L3, and L4) and all L spines (L1-L4) 
(Supplementary Figure 1D). This trend was not observed in 
the non-CKD group (Supplementary Figure 1C). The above 
conditions were also similar when CKD was defined using 
the CKD-EPI formula (Supplementary Table 1).

Relative risk of osteoporosis in lumbar spines divided by 
different protein intake

The outcome of osteoporosis in lumbar spines is shown in 
Table 4 (MDRD formula for CKD definition) against different 
levels of DPI (as compared with 0.8–1.0 g per day/kg of DPI). 
After adjustment for age, gender, daily energy intake and 
BW, compared with DPI (0.8–1.0 g/day/kg), higher risks of 
osteoporosis were noticed in subjects with intakes >1.2 g/
day/kg over L2 (RR = 1.326, 95%CI = 1.062–1.656), >1.2 g/
day/kg over L3 (RR = 1.31, 95%CI = 1.057–1.622), <0.8 g/day/

Figure 1. A lgorithm for the selection of participants.

https://doi.org/10.1080/0886022X.2023.2298080
https://doi.org/10.1080/0886022X.2023.2298080
https://doi.org/10.1080/0886022X.2023.2298080
https://doi.org/10.1080/0886022X.2023.2298080
https://doi.org/10.1080/0886022X.2023.2298080
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kg over L4 (RR = 1.276, 95%CI = 1.015–1.605), <0.8 g/day/kg 
over all L spines (RR = 11.275, 95%CI = 1.051–1.548), and 
>1.2 g/day/kg over all L spines (RR = 1.333, 95%CI = 

1.098–1.618). Further segregation into CKD and non-CKD 
groups, higher risks of osteoporosis were only found in 
non-CKD group (supplementary Figure 1E): <0.8 g/day/kg 

Table 2. L umbar BMD and T score according to different level of daily protein intake.

Region of 
interest

Daily protein intake per day, g/kg

p for trend<0.8 0.8–1.0 1.0–1.2 >1.2

L1 BMD 0.955 ± 0.012 0.961 ± 0.011 0.956 ± 0.013 0.957 ± 0.011 0.8465
T SCORE −2.038 ± 0.041 −1.991 ± 0.049 −2.03 ± 0.061 −2.021 ± 0.051 0.8465

L2 BMD 1.046 ± 0.01 1.056 ± 0.009 1.047 ± 0.011 1.049 ± 0.009 0.8098
T SCORE −1.288 ± 0.032 −1.197 ± 0.04 −1.273 ± 0.056 −1.26 ± 0.052 0.8098

L3 BMD 1.071 ± 0.011 1.083 ± 0.01 1.068 ± 0.012 1.073 ± 0.011 0.8411
T SCORE −1.075 ± 0.042 −0.976 ± 0.049 −1.099 ± 0.059 −1.058 ± 0.06 0.8411

L4 BMD 1.069 ± 0.011 1.079 ± 0.009 1.067 ± 0.01 1.07 ± 0.01 0.9114
T SCORE −1.096 ± 0.031 −1.01 ± 0.043 −1.107 ± 0.044 −1.08 ± 0.053 0.9114

All BMD 1.039 ± 0.01 1.049 ± 0.008 1.039 ± 0.01 1.041 ± 0.009 0.9914
T SCORE −1.34 ± 0.035 −1.259 ± 0.044 −1.344 ± 0.053 −1.321 ± 0.052 0.9914

Adjustments for age, sex, daily energy intake, body weight, and CKD.

Table 3. L umbar BMD and T score according to different level of daily protein intake divided by CKD or not (MDRD-eGFR).

Region of 
interest

CKD or not 
(MDRD)

Daily protein intake per day, g/kg

P for trend o for interaction<0.8 0.8–1.0 1.0–1.2 >1.2

BMD
L1 Non CKD 0.952 ± 0.004 0.959 ± 0.004 0.954 ± 0.005 0.955 ± 0.003 0.7808 0.9200

CKD 0.93 ± 0.01 0.914 ± 0.015 0.913 ± 0.021 0.907 ± 0.017 0.3176
L2 Non CKD 1.041 ± 0.004 1.052 ± 0.004 1.043 ± 0.005 1.045 ± 0.004 0.7274 0.5980

CKD 1.022 ± 0.011 1.01 ± 0.014 1.002 ± 0.025 0.997 ± 0.019 0.2708
L3 Non CKD 1.063 ± 0.004 1.077 ± 0.004 1.061 ± 0.005 1.067 ± 0.004 0.9568 0.6264

CKD 1.071 ± 0.012 1.036 ± 0.015 1.042 ± 0.026 1.027 ± 0.017 0.0683
L4 Non CKD 1.063 ± 0.004 1.075 ± 0.004 1.062 ± 0.004 1.066 ± 0.004 0.9531 0.7801

CKD 1.077 ± 0.01 1.056 ± 0.014 1.055 ± 0.028 1.047 ± 0.018 0.2233
All Non CKD 1.034 ± 0.004 1.045 ± 0.004 1.034 ± 0.005 1.037 ± 0.003 0.8619 0.9952

CKD 1.03 ± 0.01 1.009 ± 0.013 1.009 ± 0.025 0.999 ± 0.017 0.1716
T score

L1 Non CKD −2.065 ± 0.036 −2.011 ± 0.032 −2.054 ± 0.038 −2.043 ± 0.022 0.7808 0.9200
CKD −2.25 ± 0.085 −2.384 ± 0.124 −2.391 ± 0.175 −2.439 ± 0.14 0.3176

L2 Non CKD −1.328 ± 0.033 −1.232 ± 0.031 −1.31 ± 0.042 −1.294 ± 0.03 0.7274 0.5980
CKD −1.483 ± 0.091 −1.586 ± 0.118 −1.652 ± 0.21 −1.692 ± 0.155 0.2708

L3 Non CKD −1.14 ± 0.035 −1.025 ± 0.034 −1.156 ± 0.04 −1.107 ± 0.032 0.9568 0.6264
CKD −1.078 ± 0.099 −1.364 ± 0.126 −1.319 ± 0.216 −1.442 ± 0.142 0.0683

L4 Non CKD −1.141 ± 0.035 −1.045 ± 0.036 −1.148 ± 0.037 −1.115 ± 0.034 0.9531 0.7801
CKD −1.028 ± 0.085 −1.2 ± 0.115 −1.211 ± 0.236 −1.271 ± 0.149 0.2233

All Non CKD −1.385 ± 0.033 −1.294 ± 0.031 −1.385 ± 0.038 −1.357 ± 0.028 0.8619 0.9952
CKD −1.42 ± 0.082 −1.591 ± 0.111 −1.589 ± 0.204 −1.673 ± 0.138 0.1716

Adjustments for age, sex, daily energy intake, body weight, and CKD. CKD: chronic kidney disease.

Table 4.  Relative risk of osteoporosis in lumbar spines in different level of daily protein diet (compared to 0.8–1.0 g/day/kg of daily protein intake) divided 
by CKD or not (MDRD-eGFR).

Region of interest

Daily protein intake per day, g/kg

P for trend p for interaction<0.8 0.8–1.0 1.0–1.2 >1.2

L1 0.985(0.849–1.142) REF 0.941(0.767–1.154) 0.957(0.807–1.135) 0.6712
Non-CKDa 0.978(0.838–1.142) REF 0.941(0.764–1.159) 0.95(0.796–1.135) 0.6807 0.5079
CKD 1.008(0.597–1.701) REF 0.996(0.449–2.207) 1.138(0.627–2.068) 0.7789
L2 1.352(1.128–1.621) REF 1.163(0.912–1.484) 1.326(1.062–1.656) 0.9165
Non-CKD 1.352(1.104–1.656) REF 1.154(0.896–1.486) 1.315(1.037–1.668) 0.9624 0.2183
CKD 1.115(0.605–2.055) REF 1.528(0.669–3.49) 1.45(0.828–2.54) 0.3861
L3 1.222(0.96–1.556) REF 1.099(0.877–1.377) 1.31(1.057–1.622) 0.4315
Non-CKD 1.22(0.949–1.569) REF 1.114(0.88–1.409) 1.322(1.058–1.651) 0.4118 0.4010
CKD 1.179(0.608–2.287) REF 0.99(0.303–3.229) 1.138(0.484–2.672) 0.9150
L4 1.276(1.015–1.605) REF 1.13(0.865–1.477) 1.221(0.921–1.619) 0.9241
Non-CKD 1.269(0.994–1.62) REF 1.144(0.86–1.522) 1.23(0.924–1.637) 0.9872 0.4190
CKD 1.283(0.649–2.533) REF 1.019(0.325–3.189) 1.059(0.471–2.381) 0.7295
All 1.275(1.051–1.548) REF 1.169(0.902–1.515) 1.333(1.098–1.618) 0.4951
Non-CKD 1.281(1.038–1.581) REF 1.196(0.919–1.557) 1.357(1.114–1.654) 0.4286 0.1763
CKD 1.068(0.553–2.062) REF 0.941(0.326–2.716) 1.011(0.45–2.271) 0.8858

Adjustment for age, sex, daily energy intake, and body weight.
aCKD: chronic kidney disease (MDRD formula).
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over L2 (RR = 1.352, 95%CI = 1.104–1.656), >1.2 g/day/kg (RR 
= 1.315, 95%CI = 1.037–1.668), >1.2 g/day/kg (RR = 1.322, 
95%CI = 1.058–1.651), <0.8 g/day/kg over all L spine (RR = 
1.281, 95%CI = 1.038–1.581), and >1.2 g/day/kg (RR = 1.357, 
95%CI = 1.114–1.654). In summary, in the non-CKD group, 
DPI levels of too low (<8 g/day/kg) and too high (>1.2 g/day/
kg) were associated with higher risks of osteoporosis over L2 
and all L spines, mimicking a U-shaped function 
(Supplementary Figure 1E). In the CKD group, the risk of 
osteoporosis was not associated with the DPI (Supplementary 
Figure 1F). The above condition can also be observed in the 
CKD-EPI formula-based CKD definition (Supplementary 
Table 2).

Relative risk of osteoporosis divided by different protein 
intake and elderly or not

The relative risk of osteoporosis according to age is shown in 
Supplementary Table 3, and according to CKD is shown in 
Table 2. A higher relative risk of osteoporosis was found in the 
elderly and low protein intake (LPI) (<0.8 g/day/kg) over L2 (RR 
= 1.399, 92% CI = 1.03–1.9), L3 (RR = 1.523, 95% CI = 1.015–
2.286) and all L spines (RR = 1.479, 95% CI = 1.2–2.186) 
(Supplementary Table 3). Further taking CKD or not into con-
sideration (supplementary Table 4), non-CKD and the elderly 
posed higher risks for osteoporosis, including LPI (<0.8 g/day/
kg) for L2 (RR = 1.483, 95%CI = 1.002–2.195), LPI (<0.8 g/day/
kg) for L3 (RR = 1.73, 95%CI = 1.045–2.864), LPI (<0.8 g/day/kg) 
for all L spines (RR = 1.673, 95%CI = 1.02–2.647), and HPI (1.0–
1.2 g/day/kg) for all L spines (RR = 1.579, 95%CI = 1.033–2.414).

Relative risk of osteoporosis divided by different protein 
intake, calcium, phosphate, and vitamin D

The relative risk for L spine osteoporosis among different 
daily calcium and phosphorus intakes and blood calcium and 
phosphorus intakes are summarized in supplementary Tables 
5–10. As shown in supplementary Table 9 (calcium and phos-
phorus intake), low calcium and low phosphorus intake were 
associated higher risks for osteoporosis in LPI (<0.8 g/day/kg) 
over L2 (RR = 1.367, 95%CI = 1.068–1.749) and high DPI 
(>1.2 g/day/kg) over L2 (RR = 1.971, 95%CI = 1.378–2.818), L3 
(RR = 1.641, 95%CI = 1.099–2.451), L4 (RR = 1.645, 95%CI = 
1.111–2.436), and all L spines (RR = 1.883, 95%CI = 1.324–
2.677). High calcium and phosphorus intakes were associated 
with higher risks for osteoporosis LPI (<0.8/day/kg) over L2 
(RR = 1.619, 95%CI = 1.055–2.485) and all L spines (RR = 
1.725, 95%CI = 1.09–2.729). In supplementary Table 10 (blood 
calcium and phosphorus levels), low blood calcium and low 
blood phosphorus levels were associated higher risks for 
osteoporosis in LPI (<0.8 g/day/kg) over L2 (RR = 1.8, 95%CI 
= 1.234–2.627), L3 (RR = 1.724, 95%CI = 1.094–2.716), L4 (RR 
= 2.247, 95%CI = 1.412–3.574) and all L spines (RR = 1.853, 
95%CI = 1.212–2.834); HPI (1.0–1.2 g/day/kg) over L4 (RR = 
2.5, 95%CI = 1.39–4.497) and all L spines (RR + 2.074, 95%CI 
= 1.195–3.598); VHPI (>1.2 g/day/kg) over L2 (RR = 1.726, 
95%CI = 1.102–2.703), L4 (RR = 1.892, 95%CI = 1.097–3.262) 

and all L spines (RR = 1.777, 95%CI = 1.104–2.860). High 
blood calcium and high blood phosphorus levels were asso-
ciated with higher risk for osteoporosis in LPI (<0.8 g/day/kg) 
over L2 (RR = 1.399, 95%CI = 1.028–1.905) and all L spines 
(RR = 1.547, 95%CI = 1.081–2.215) and VHPI (>1.2 g/day/kg) 
over all L spines (RR = 1.485, 95%CI = 1.066–2.069). In sum-
mary, only calcium and phosphorus levels (intake or blood 
value) that were too low or too high were associated with a 
higher risk of osteoporosis.

The associations between daily vitamin D intake and 
blood vitamin D concentrations are shown in Supplementary 
Tables 11 and 12. High vitamin D intake and LPI (<0.8 g/day/
kg) were associated with a higher risk of osteoporosis in L2 
(RR = 1.785, 955CI = 1.289–2.473), L4 (RR = 1.42, 95%CI = 
1.018–1.979) and all L spines (RR = 1.394, 95%CI = 1.026–
1.894). High vitamin D blood concentration and LPI (<0.8 g/
day/kg) were associated with higher risks of osteoporosis in 
L2 (RR = 1.729, 95%CI = 1.312–2.278) and all L spines (RR = 
1.558, 95%CI = 1.164–2.086).

Discussion

In our previous study on femoral BMD in the same cohort 
regarding femoral BMD (supplementary Tables 13–15) [31], 
we found that HPI is associated with higher femoral BMD in 
patients without CKD. CKD patients with HPI do not benefit 
from developing higher femoral BMD, and those with LDI do 
not develop lower femoral BMD. However, in a previously 
published study [55], it was found that a high dietary inflam-
mation index is independently associated with decreased 
bone mineral density (BMD) in the femoral regions. In the 
present study, we found similar results regarding lumbar 
BMD in the NHANES cohort. As shown in Table 1, patients 
with a higher DPI experienced lower BMD and T scores. This 
association disappeared after adjusting for age, sex, daily 
energy intake, BW and CKD (Table 2). Furthermore, the differ-
ent DPI groups were not associated with BMD and T scores 
in either the CKD or non-CKD patient groups (Table 3). When 
viewing such an association in diagrams (Supplementary 
Figure 1), we observed an apparent trend that higher DPI 
was associated with lower BMD, despite having no statistical 
significance (Supplementary Figure 1A) and T score 
(Supplementary Figure 1C), despite having no statistical sig-
nificance. As for osteoporosis (Table 4) (reference:0.8–1.0 g/
day/kg), lower (<0.8 g/day/kg) or higher DPI (>1.2 g/day/kg) 
was associated with higher risks for osteoporosis in non-CKD 
group, but not in the CKD group. In summary, in the CKD 
group (defined by either MDRD or CKD-EPI), our nephrolo-
gists considered that the LPI for renal protection was safe 
without threatening L spine bone density (BMD and T score) 
and without higher risks for osteoporosis. LPI might also 
have potential benefits on L-spine bone health (trend with 
higher BMD and T score).

Currently, in the general adult population (≥18 y/o), the 
RDA for protein intake is 0.8 g/kg/day [4], which has remained 
unchanged over the past 70 years. Adequate protein intake is 
essential for continuous turnover and remodeling because 
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proteins make up 50% of the bone and 1/3 of the bone 
mass. Proteins are detrimental and beneficial to bone health 
[56]. Therefore, the ideal DPI for osteoporosis remains debat-
able. Recently, the International Osteoporosis Foundation, 
National Osteoporosis Foundation, American Bone Health, 
and American Society for Nutrition have understood the role 
of DPI in optimizing bone health throughout the lifespan 
[57]. Four systematic reviews suggested that high DPI has no 
detrimental effect on bone health and may benefit elderly 
populations [58–60], But the studies on the ideal amount of 
DPI for osteoporosis in the CKD population are still limited. 
Our data (Supplementary Tables 3 and 4) showed an associ-
ation between different DPI and age in the non-CKD group, 
but not in the CKD group.

The influence of DPI on bone health may depend on cal-
cium intake. A high DPI may have desirable effects on 
changes in hip BMD in the elderly population when supple-
mented with calcium citrate malate and vitamin D [61]. 
Another study in middle-aged people reported that high DPI 
coupled with calcium intake (800 mg/day or more) could pro-
tect against hip fracture [62]. BMD may be improved by 
increasing the DPI only when meeting the recommended 
intake of calcium and vitamin D. Our data (Supplementary 
Tables 5, 6, 11, and 12) also indicated that a mismatch 
between DPI and daily calcium or vitamin D intake was asso-
ciated with a higher risk of osteoporosis in L spine in the 
non-CKD group. This condition also echoed DPI’s non-apparent 
effect of DPI on bone density in the CKD population when 
daily calcium and vitamin D intakes were not matched. 
According to the KDIGO guideline [30], calcium and vitamin 
D supplements in patients with CKD are not as simple as 
those in the non-CKD population. In the CKD population, 
hyperphosphatemia and secondary hyperparathyroidism arise 
if the eGFR drops below 60 mL/min/1.732 m2 [63]. The initial 
treatment is to deal with hyperphosphatemia by restricting 
phosphate intake and by taking calcium-based phosphate 
binders (calcium carbonate and calcium acetate) in meals to 
lower the excess phosphate [64–66]. This intake of 
calcium-containing phosphate binders does not elevate 
blood calcium levels. Calcium intake before or after meals is 
a contraindication for CKD patients to avoid extraskeletal cal-
cium phosphate deposition [67–69], particularly during 
hyperphosphatemia. Similar to calcium supplementation, 
vitamin D supplementation in CKD patients is indicated to 
control elevated parathyroid levels instead of osteoporosis. 
Therefore, mismatched Ca-vitamin D and DPI levels are com-
mon among patients with CKD. This mismatch may explain 
the minimal association between DPI and bone density in 
the CKD population.

Other issues need to be addressed regarding LPI in 
patients with CKD. First, insufficient protein intake may lead 
to a shortage of materials for bone turnover and metabolism. 
That’s why hypoalbuminemia differently affects the serum 
bone turnover markers in hemodialysis patients and serum 
albumin measurement should be considered according to 
previous study [70]. However, increased acidosis (particularly 
from animal origin with sulfur-containing amino acids) is 

deleterious to the skeleton, leading to osteoporosis and an 
enhanced risk of fragility fracture [5]. A lower DPI leads to 
less acidosis, which is beneficial to bone density. In patients 
with CKD, metabolic acidosis is almost always due to the 
production of sulfuric acid from metabolizing sulfur-containing 
amino acids [71,72]. Chronic metabolic acidosis in chronic 
kidney disease (CKD) can cause bone resorption and osteo-
porosis [73–75]. Therefore, a low DPI is beneficial for bone 
density as far as acidosis is concerned. Third, LPD is the stan-
dard treatment for CKD to gain better renal function, fol-
lowed by fewer CKD-mineral bone diseases. Hence, LPI in 
CKD is associated with less CKD-mineral bone disease owing 
to the improvement of bone metabolism and insulin sensitiv-
ity [75]. In summary, the effect of different DPI levels on 
bone density is a complex process in patients with CKD. 
Here, we present the first study with evidence to conclude 
that the association between different DPI and bone density 
is not found in CKD patients.

This study has some limitations. First, the benefits of phys-
ical activity for the management or prevention of osteoporo-
sis have been published [76]. This association was also 
confirmed in the cohort of NHANES [77]. However, greater 
physical activity has been reported to be associated with 
more protein intake [78]. Therefore, even without data on 
physical activity, the association between bone density and 
protein intake can still be investigated. Second, we did not 
have data on pharmacological anti-osteoporosis therapies in 
this cohort. We only collected data on calcium and vitamin D 
supplements because calcium and vitamin D are both 
non-pharmacological or nutritional interventions. The aim of 
this study was nutritional intervention (different protein 
intakes). We only collected data associated with nutritional 
interventions, including calcium, vitamin D, and protein intake. 
In addition, in our previous study [31], the lack of benefit of 
higher protein intake on bone health of the hip joint may be 
due to insufficient calcium and vitamin D supplementation. 
Therefore, calcium and vitamin D interventions provided 
much more important information in this study. Third, we 
acknowledge that other mineral materials might affect bone 
health. Unfortunately, we lacked data on other serum mineral 
materials within the NHANES database. Fourth, in this cohort, 
renal function remains relatively robust, and the CKD popula-
tion is still in the early stages. Therefore, the relationship 
between various protein diets and bone health in the later 
stages of CKD cannot be assessed within the scope of the 
current study. Finally, this is a retrospective study, and there 
may still be some unidentified confounding factors.

Conclusion

Based on the NHANES data, different amounts of DPI were 
not significantly associated with BMD and T scores in both 
the CKD and non-CKD groups (either MDRD or CKD-EPI for-
mula). However, there was an apparent trend in patients with 
CKD, despite no statistical significance, that higher DPI was 
associated with lower BMD and T scores. As for osteoporosis 
(reference:0.8–1.0 g/day/kg), lower (<0.8 g/day/kg) or higher 
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DPI (>1.2 g/day/kg) was associated with higher risks for oste-
oporosis in non-CKD group, but not in the CKD group. In 
summary, in the CKD group, LPI provided safe renal protec-
tion without threatening L spine bone density (BMD and T 
score) and without increasing the risk of osteoporosis.
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