
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Enabling Technologies and Applications for Networked Airborne Computing

Permalink
https://escholarship.org/uc/item/31m217hs

Author
Wang, Baoqian

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/31m217hs
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

SAN DIEGO STATE UNIVERSITY

Enabling Technologies and Applications for Networked Airborne Computing

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Engineering Science (Electrical and Computer Engineering)

by

Baoqian Wang

Committee in charge:

University of California San Diego
Professor Nikolay Atanasov, Co-Chair
Professor Jorge Cortes
Professor Yan Wan
Professor Michael Yip

San Diego State University
Professor Junfei Xie, Co-Chair
Professor Jun Chen

2023

Copyright

Baoqian Wang, 2023

All rights reserved.

The dissertation of Baoqian Wang is approved, and it is acceptable in quality
and form for publication on microfilm:

Co-Chair

Co-Chair

University of California San Diego

San Diego State University

2023

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . viii

List of Tables . xiii

Acknowledgements . xiv

Vita . xvi

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Background . 1
1.2 Contributions of the Dissertation . 3

Chapter 2 Airborne Computing Platform Design . 6
2.1 Introduction . 6
2.2 Hardware Design for the Airborne Computing Platform . 7

2.2.1 Desired Features . 8
2.2.2 Single-Board Computer Selection . 8
2.2.3 A Prototype . 10

2.3 Software Design for the Airborne Computing Platform . 13
2.3.1 Background and Related Work . 13
2.3.2 Computing Performance . 15
2.3.3 Networking Performance . 17
2.3.4 Isolation Performance . 19
2.3.5 Power Consumption . 21
2.3.6 Discussions . 22

2.4 Performance of the Airborne Computing Platform . 24
2.4.1 OpenDroneMap . 24
2.4.2 Real-Time Object Detection . 26

2.5 Conclusion . 28
2.6 Acknowledgement . 28

Chapter 3 Batch-Processing Based Coded Comput-ing for Static Networked Airborne
Computing Systems . 29

3.1 Introduction . 29
3.2 Related Work . 33
3.3 System Models . 35

3.3.1 Computing System . 35

iv

3.3.2 Computing Schemes . 35
3.3.3 Problem Formulation . 37

3.4 Main Results . 39
3.4.1 Notations for Asymptotic Analysis . 39
3.4.2 A Simplified Formulation . 39
3.4.3 A Two-Step Alternative Formulation . 40
3.4.4 Solution to the Two-Step Alternative Problem . 41
3.4.5 Optimality Analysis . 44
3.4.6 Analysis of the Impact of Parameter p . 45
3.4.7 Comparison with HCMM . 46

3.5 Simulation Studies . 47
3.5.1 Simulation Settings . 47
3.5.2 Parameter Impact Analysis . 48
3.5.3 Comparative Performance Studies . 53

3.6 Experiments on the Amazon EC2 Computing Cluster . 54
3.6.1 Experiment Settings . 54
3.6.2 Parameter Estimation . 55
3.6.3 Experimental Results . 56

3.7 Conclusion . 61
3.8 Acknowledgement . 62

Chapter 4 Learning and Batch-Processing Based Coded Computation for Mobile
Networked Airborne Computing Systems . 63

4.1 Introduction . 63
4.2 Related Work . 65

4.2.1 Networked Airborne Computing . 65
4.2.2 UAV-assisted Mobile Edge Computing . 66
4.2.3 DRL-based UAV-Assisted Networks . 66
4.2.4 Coded Distributed Computing . 67

4.3 NAC System . 68
4.4 Dynamic Batch-Processing Based Coded Computation Framework 69

4.4.1 D-BPCC Framework . 69
4.4.2 Problem Formulation . 71

4.5 DRL-based Solution to P1 . 75
4.5.1 RL based Formulation for P1 . 75
4.5.2 Deterministic Policy Gradient Method . 77
4.5.3 Deep Neural Network based Function Representation 78
4.5.4 Training DRL Agent . 79
4.5.5 Convergence and Complexity Analysis . 82

4.6 DRL-based Solution to P2 . 82
4.6.1 RL based Formulation for P2 . 82
4.6.2 Solution to P2 . 84

4.7 Simulation Studies . 85
4.7.1 Simulator Design . 85

v

4.7.2 Benchmarks . 88
4.7.3 Evaluation of Solution to P1 . 90
4.7.4 Evaluation of Solution to P2 . 94

4.8 Conclusion . 97
4.9 Acknowledgement . 98

Chapter 5 Coded Distributed Multi-Agent Reinforcement Learning with One-hop
Neighbors . 99

5.1 Introduction . 99
5.2 Related Work . 102

5.2.1 Multi-Agent Reinforcement Learning . 102
5.2.2 Distributed and Parallel Architectures for RL and MARL 103
5.2.3 Coded Distributed Computing . 104

5.3 Background . 104
5.4 Problem Statement . 105
5.5 Distributed multi-Agent Reinforcement Learning with One-hop Neighbors 107
5.6 Coded Distributed Learning Architecture . 110

5.6.1 Coded Distributed Learning Architecture . 111
5.6.2 Assessment of Gradient Estimator . 113

5.7 Assignment Matrix Construction . 114
5.7.1 Uncoded Assignment Scheme . 114
5.7.2 Coded Assignment Schemes . 116

5.8 Experiments . 119
5.8.1 Performance of DARL1N . 119
5.8.2 Performance of Coded Distributed Learning Architecture 127

5.9 Conclusion . 135
5.10 Acknowledgement . 136

Chapter 6 Simulator and Testbed Design and Implementation . 137
6.1 Introduction . 137
6.2 Computing Model . 139
6.3 Simulator Design . 140

6.3.1 UAV Hardware Module . 140
6.3.2 Controller Module . 141
6.3.3 Visualization Module . 142
6.3.4 Wireless Communication Module . 142
6.3.5 Computing Module . 143
6.3.6 ROS Topics . 144

6.4 Hardware Testbed Design . 145
6.4.1 Computing . 145
6.4.2 Communication . 145
6.4.3 Flight Control . 146
6.4.4 Power Management . 146

6.5 Simulation Studies . 147

vi

6.5.1 Simulation Configurations . 148
6.5.2 Simulation Results . 148

6.6 Real Flight Tests . 150
6.6.1 Experiment Configurations . 151
6.6.2 Experiment Results . 152

6.7 Discussions and Conclusions . 154
6.8 Acknowledgement . 155

Chapter 7 Conclusion and Future Work . 156
7.1 Conclusion . 156
7.2 Future Work . 159

Appendix A Proofs of Chapter 3 . 160
A.1 Proof of Lemma 1 . 160
A.2 Proof of Lemma 2 . 162
A.3 Proof of Theorem 4 . 170
A.4 Proof of Theorem 6 . 173
A.5 Proof of Corollary 6.1 . 175
A.6 Proof of Theorem 7 . 175

Appendix B Proofs of Chapter 5 . 176
B.1 Proof of Lemma 9 . 176
B.2 Proof of Proposition 1 . 177
B.3 Proof of Proposition 3 . 178

Bibliography . 179

vii

LIST OF FIGURES

Figure 1.1. Illustration of Networked Airborne Computing (NAC) paradigm. 2

Figure 2.1. a) A new Jetson TX2 carrier board and b) Jetson TX2 carrier board with
the processor. 11

Figure 2.2. A prototype of the airborne computing platform. 12

Figure 2.3. Execution time of the SC application implemented on CPU using increasing
number of threads. The number of input points in the SC application is set
to a) 10000 and b) 900000. 16

Figure 2.4. Execution time of the SC application implemented on GPU and CPU of
six threads. The number of input points in the SC application is set to a)
10000 and b) 900000. 16

Figure 2.5. Bandwidth of the communication link a) between airborne computing plat-
form and ThinkPad laptop, b) between two airborne computing platforms,
and c) between two airborne computing platforms. 18

Figure 2.6. Power consumption of the airborne computing platform before and after
running the SC application. 22

Figure 2.7. Response of the host OS when the a) VM or b) container is attacked. 24

Figure 2.8. Execution time of the a) image resizing and b) 3-D model reconstruc-
tion functions in OpenDroneMap to process a UAV image in different
virtualization environments. 25

Figure 2.9. The 3-D geographical model generated from 41 UAV images using the 3-D
model reconstruction function in OpenDroneMap. 26

Figure 2.10. Execution time of two applications a) when running separately and when
running simultaneously in Jetson TX2 without virtualization, b) when
running simultaneously in Jetson TX2 of three different virtualization
setups. 27

Figure 2.11. A UAV image a) before and b) after applying the DNN based object
detection. 27

Figure 3.1. Illustration of the a) uncoded and b) coded computation to perform matrix
multiplication with n = 2. The numbers marked in green describe the
computation procedures. 31

viii

Figure 3.2. The approximated execution time τ∗ of BPCC at different values of a) p1,
when p j = 1,∀ j ∈ [N]\{1}, and b) p, when pi = p,∀i ∈ [N], in different
scenarios. 49

Figure 3.3. The value of a) load ℓ∗1 and b) total load q = ∑
N
i=1 ℓ

∗
i at different values of

p, when pi = p,∀i ∈ [N], in different scenarios. 49

Figure 3.4. The mean execution time of BPCC at different values of a) p1, when p j = 1,
∀ j ∈ [N]\1, and b) p, when pi = p,∀i ∈ [N], in different scenarios. 51

Figure 3.5. The approximation error of τ∗ at different values of N with r = 100N +
10000. 52

Figure 3.6. Relative change of the mean execution time when a) the straggling pa-
rameters µi and b) the shift parameters αi suffer from different degrees of
deviation from their true values in different scenarios. 53

Figure 3.7. a) Comparison of the mean execution time of different schemes in different
scenarios. b) The average total number of rows of inner product results
received by the master node over time for different schemes in Scenario 2. 53

Figure 3.8. The CDF of the processing time of an Amazon EC2 t2.xlarge instance for
computing a task with r = 500. 56

Figure 3.9. a) The mean execution time of different schemes in different scenarios at
the presence of unexpected stragglers with finite delay. The b) success rate
and c) mean execution time of different schemes in different scenarios at
the presence of unexpected stragglers with infinite delay. 58

Figure 3.10. The average total number of rows of inner product results received by the
master node over time for different schemes in Scenario 4 at the presence
of unexpected stragglers with a) finite and b) infinite delay. 59

Figure 3.11. a) The mean execution time of different schemes in Scenario 4 when
different percentages of unexpected stragglers with finite delay are present.
b) The success rate of different schemes in Scenario 4 when different
percentages of unexpected stragglers with infinite delay are present. 60

Figure 3.12. The a) mean execution time of different schemes in Scenario 4 when differ-
ent percentages of unexpected stragglers with infinite delay are present. b)
The mean execution time of BPCC at different values of p in Scenario 4. . 61

Figure 4.1. Cooperative airborne computing of matrix-vector multiplication tasks under
the D-BPCC framework. 70

ix

Figure 4.2. DNN representation of the policy functions for computation load optimiza-
tion. 79

Figure 4.3. The training process of the DRL-based method for NAC with uncontrol-
lable UAVs. 81

Figure 4.4. DNN representation of policy function µ for joint computation load and
UAV mobility optimization. 84

Figure 4.5. a) Minimum task completion time αl +ξ versus task size l. b) CDF of the
task completion time of an Amazon EC2 t2.xlarge instance for computing
Ax with l = 500. 88

Figure 4.6. Training reward of our method for P1. 91

Figure 4.7. Average task completion times of different methods in different scenarios
when a) ξ = 0 and b) ξ = 0.04. 92

Figure 4.8. Average task completion times of different methods in different scenarios
when ξ = 0 and computation times have a large variance. 93

Figure 4.9. Average task completion times of different methods in different scenarios
when there are a) one and b) two worker nodes leaving the NAC network. 93

Figure 4.10. Success rates of different methods in Scenario 2 (N = 6) when an increasing
number of worker nodes leave the NAC network. 94

Figure 4.11. Training reward of our method for P2. 95

Figure 4.12. a) Total cost, b) average task completion times and c) total flight time of
different methods in different scenarios. 96

Figure 4.13. Sample trajectories of the UAVs in Scenario 1 by using a) our method with
joint optimization; and b) benchmark methods. 97

Figure 4.14. Sample trajectories of the UAVs in Scenario 1 a) when computation tasks
are completed; and b) when the whole mission is completed. 97

Figure 5.1. (a) One-hop neighbor transitions from one time step to the next in a d-disk
proximity graph; (b) Coded distributed learning architecture. 111

Figure 5.2. Average training time of different methods to run (a) 10 iterations in the
Ising Model, (b) 30 iterations in the Food Collection, (c) 30 iterations in
the Grassland, and (d) 30 iterations in the Adversarial Battle environments. 121

x

Figure 5.3. Average total training reward of different methods in the Food Collection
environment when there are (a) M = 12, (b) M = 24 agents. 124

Figure 5.4. Mean and standard deviation of normalized total reward of competing
agents trained by different methods in the Adversarial Battle environment
with M = 48. 125

Figure 5.5. States of a subset of agents during an episode in Adversarial Battle with
agents trained by different methods when there are M = 48 agents. 127

Figure 5.6. Average total training reward of DARL1N and SAC in the Multi-Access
Wireless Communication environment when (a) z = 2 (b) z = 10. 128

Figure 5.7. Overhead introduced by different agent assignment schemes when there
are M = 12 agents and N = 24 learners. 129

Figure 5.8. Overhead introduced by (a) Random Sparse and (b) LDGM schemes when
their parameters take different values. 130

Figure 5.9. Resilience of different agent assignment schemes to stragglers when the
straggler probability η increases. 131

Figure 5.10. Resilience of (a) Random Sparse and (b) LDGM schemes when their
parameters take different values. 132

Figure 5.11. Average V of different agent assignment schemes calculated using results
from different number of learners. 133

Figure 5.12. Average training time of different DARL1N implementations with straggler
effect a) ∆ = 1 and b) ∆ = 4. 134

Figure 6.1. NAC simulator design. 141

Figure 6.2. NAC hardware testbed design. 144

Figure 6.3. Visualization of the simulation environment with Gazebo. 147

Figure 6.4. Visualization of the UAVs’ pre-planned waypoints and paths with Rviz. . . 147

Figure 6.5. a) Trajectories of the four UAVs and b) distances between the master UAV
and worker UAVs in the simulation. 148

Figure 6.6. a) Throughput between the master and worker UAVs and b) completion
time for a single iteration of matrix multiplication in the moving scenario. 149

xi

Figure 6.7. a) Throughput between the master and workers and b) completion time for
a single iteration of matrix multiplication in the static scenario. 150

Figure 6.8. Throughput between two UAVs at various distances in simulations. 150

Figure 6.9. Flight test of NAC hardware testbed with three UAVs at the San Diego
State University (SDSU) sport field. 151

Figure 6.10. Trajectories of the three UAVs. 151

Figure 6.11. a) Distance and b) throughput between the master UAV and worker UAVs
in the moving scenario. 153

Figure 6.12. Throughput between two UAVs at various distances in flight tests. 153

Figure 6.13. a) Time for completing 10 training iterations and b) the associated training
cost in the moving scenario. 154

Figure 6.14. a) Throughput between the master UAV and worker UAVs in the static
scenario; b) Time for completing 10 training iterations and c) the associated
training cost in the static scenario. 154

xii

LIST OF TABLES

Table 2.1. Comparison of different single-board computers . 9

Table 2.2. Performance degradation of the well-behaved guest in different stress tests . 20

Table 2.3. Resource usage of a bare VM or container . 22

Table 3.1. Execution time of uncoded and coded matrix multiplication with n = 2 . . . 32

Table 3.2. Estimated computing parameters of different types of Amazon EC2 instances 57

Table 5.1. Configurations of Amazon EC2 instances . 122

Table 5.2. Convergence time and convergence reward of different methods in the Ising
Model environment. 123

Table 5.3. Convergence time and convergence reward of different methods in the Food
Collection environment. 124

Table 5.4. Convergence time and convergence reward of different methods in the
Grassland environment. 126

Table 5.5. Convergence time and convergence reward of different methods in the
Adversarial Battle environment. 126

Table 5.6. Convergence time and convergence reward of different DARL1N implemen-
tations. 135

Table 5.7. Average V of different DARL1N implementations. 135

xiii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Junfei Xie, for

her support and guidance throughout my Ph.D. journey. I appreciate the opportunity Professor

Junfei Xie offered me to pursue a Ph.D. degree and conduct research in the Unmanned Aerial

Systems area, which I am passionate about. Professor Xie is nice and patient. She guided me on

how to do research and help me to make improvements. She not only cares about my academic

performance but also my personality development. She always encourages me to overcome

difficulties and always keep positive and be confident in myself. I am very lucky to have her as

my Ph.D. advisor!

I also would like to give many thanks to Professor Nikolay Atanasov for being my co-

advisor. Professor Nikolay Atanasov is an expert in the robotics area. His guidance is valuable

in shaping my research ideas and improving the quality of my work. He made the commitment

to ensuring that our research meets the highest standards of quality and rigor. He is willing to

challenge me and push me beyond my comfort zone, which has helped me to develop my critical

thinking skills and to become a more confident and capable researcher.

I am also grateful to other professors, including Professors Jorge Cortes, Michael Yip, Jun

Chen, Yan Wan, Shengli Fu, and Kejie Lu for their constructive feedback, stimulating discussions

and encouragement. I also appreciate the help and support from my internship mentor Denis

Osipychev and manager Chad McFarland from Boeing. They provide valuable feedback and

discussion on my research work from the perspective of the industry.

Last but not least, I would like to express my sincere appreciation to my parents and

other family members, for their unconditional love and support throughout my academic journey.

Their unwavering belief in me has been a constant source of strength and inspiration.

This dissertation is mainly composed of content from following published/submitted

papers:

Chapter 2, in part, is a reprint of the published journal: B. Wang, J. Xie, S. Li, Y. Wan,

Y. Gu, S. Fu, K. Lu, “Computing in the Air: An Open Airborne Computing Platform”, IET

xiv

Communications, Vol.14, pp. 2410-2419, 2020.

Chapter 3 is a reprint of the published journal: B. Wang, J. Xie, K. Lu, Y. Wan, S. Fu, “On

Batch-Processing Based Coded Computing for Heterogeneous Distributed Computing Systems”,

IEEE Transactions on Network Science and Engineering, Vol.8, pp:2438-2454, 2021.

Chapter 4 is a reprint of the published journal paper: B. Wang, J. Xie, K. Lu, Y. Wan, S.

Fu, “Learning and Batch-Processing Based Coded Computation with Mobility Awareness for

Networked Airborne Computing”, IEEE Transactions on Vehicular Technology, Nov. 2022.

Chapter 5 is based on the published conference proceedings: B. Wang, J. Xie, N.

Atanasov, “DARL1N: Distributed multi-Agent Reinforcement Learning with One-hop Neigh-

bors”, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); B.

Wang, J. Xie, N. Atanasov, “Coding for Distributed Multi-Agent Reinforcement Learning”, 2021

International Conference on Robotics and Automation (ICRA), and on the submitted journal pa-

per: B. Wang, J. Xie, N. Atanasov, “Coding for Distributed multi-Agent Reinforcement Learning

with One-hop Neighbors”, IEEE Transactions on Neural Networks and Learning Systems, Nov.

2022.

Chapter 6, in full, has been submitted for publication of the material as it may appear in:

B. Wang, J. Xie, K. Ma, Y. Wan “UAV-based Networked Airborne Computing Simulator and

Testbed Design and Implementation”, 2023 International Conference on Unmanned Aircraft

Systems (ICUAS).

xv

VITA

2013-2017 Bachelor of Engineering., Yangtze University, Wuhan

2017–2019 Master of Science, Texas A&M University, Corpus Christi

2019–2023 Doctor of Philosophy, University of California San Diego/San Diego State Univer-
sity

PUBLICATIONS

Journal Publications

B. Wang, J. Xie, N. Atanasov, “Coding for Distributed multi-Agent Reinforcement Learning”,
IEEE Transactions on Neural Networks and Learning Systems, Nov. 2022 (under review).

B. Wang, J. Xie, K. Lu, Y. Wan, S. Fu, “Learning and Batch-Processing Based Coded Compu-
tation with Mobility Awareness for Networked Airborne Computing”, IEEE Transactions on
Vehicular Technology, Nov. 2022.

B. Wang, J. Xie, K. Lu, Y. Wan, S. Fu, “On Batch-Processing Based Coded Computing for
Heterogeneous Distributed Computing Systems”, IEEE Transactions on Network Science and
Engineering, Vol.8, pp:2438-2454, 2021.

B. Wang, J. Xie, S. Li, Y. Wan, Y. Gu, S. Fu, K. Lu, “Computing in the Air: An Open Airborne
Computing Platform”, IET Communications, Vol.14, pp. 2410-2419, 2020.

J. Xie, Y. Wan, B. Wang, S. Fu, K. Lu, J. Kim, “A Comprehensive 3-Dimensional Random
Mobility Modeling Framework for Airborne Networks”, IEEE Access, Vol.6, pp. 22849-22862,
2018.

Conference Publications

B. Wang, J. Xie, N. Atanasov, D. Osipychev “Learn and Allocate: Learning-Based Scalable
Multi-Robot Task Allocation”, 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (under review).

B. Wang, J. Xie, K. Ma, Y. Wan “UAV-based Networked Airborne Computing Simulator and
Testbed Design and Implementation”, 2023 International Conference on Unmanned Aircraft
Systems (ICUAS) (under review).

B. Wang, J. Xie, N. Atanasov, “DARL1N: Distributed multi-Agent Reinforcement Learning
with One-hop Neighbors”, 2022 IEEE/RSJ International Conference on Intelligent Robots and

xvi

Systems (IROS).

B. Wang, J. Xie, N. Atanasov, “Coding for Distributed Multi-Agent Reinforcement Learning”,
2021 International Conference on Robotics and Automation (ICRA).

D. Wang, B. Wang, J. Zhang, K. Lu, J. Xie, Y. Wan, S. Fu, “CFL-HC: A Coded Federated Learn-
ing Framework for Heterogeneous Computing Scenarios”, 2021 IEEE Global Communications
Conference (Globecom).

B. Zhou, J. Xie, B. Wang, “Dynamic Coded Convolution with Privacy Awareness for Mobile Ad
Hoc Computing”, International Conference on Communications (ICC), Dec. 2021.

B. Wang, J. Xie, K. Lu, Y. Wan, S. Fu “Multi-Agent Reinforcement Learning Based Coded Com-
putation for Mobile Ad Hoc Computing”, 2021 International Conference on Communications
(ICC).

C. Douma, J. Xie, B. Wang, “Coded Distributed Path Planning for Unmanned Aerial Vehicles”,
2021 AIAA Aviation Forum.

B. Wang, J. Xie, J. Chen, “Data-Driven Multi-UAV Navigation in Large-ScaleDynamic Environ-
ment Under Wind Disturbances”, 2021 AIAA Scitech Forum.

B. Wang, J. Xie, Y. Wan, G. A. G. Reyes, L. R. G. Carrilo,“3-D Trajectory Modeling for Un-
manned Aerial Vehicles”, 2019 AIAA Scitech Forum.

B. Wang, J. Xie, K. Lu, Y. Wan, “Coding for Heterogeneous UAV-based Networked Airborne
Computing”, 2021 IEEE Global Communications Conference (Globecom) Workshop.

B. Wang, J. Xie, S. Li, Y. Wan, S. Fu, K. Lu,“Enabling High-Performance Onboard Computing
with Virtualization for Unmanned Aerial Systems”, 2018 International Conference on Unmanned
Aircraft Systems (ICUAS).

xvii

ABSTRACT OF THE DISSERTATION

Enabling Technologies and Applications for Networked Airborne Computing

by

Baoqian Wang

Doctor of Philosophy in Engineering Science (Electrical and Computer Engineering)

University of California San Diego, 2023
San Diego State University, 2023

Professor Junfei Xie, Co-Chair
Professor Nikolay Atanasov, Co-Chair

Unmanned Aerial Vehicles (UAVs) are widely used in many civilian and military applica-

tions such as package delivery, precision agriculture, mobile edge computing, and reconnaissance.

In these applications, UAVs often need to perform computationally expensive tasks such as path

planning, object detection, or mobile computing services. However, due to the small payload,

the amount of computing resources individual UAVs can carry is limited. Although significant

advances have been made in improving UAV technologies from aspects such as mechanics,

control, communication, and networking, enhancing the onboard computing capacity of UAVs

hasn’t gained much attention as above mentioned aspects. This dissertation aims to fill this

xviii

research gap by exploring Networked Airborne Computing (NAC), a new computing paradigm

that aims to achieve high-performance airborne computing via inter-vehicle resource sharing

using direct flight-to-flight communication links.

We first investigate how to enhance the onboard computing capacity of individual UAVs

in Chapter 2 by designing the onboard hardware and software. As the computing capability of

individual UAVs is still limited due to small payload, Chapters 3 and 4 further explore how to

leverage resources from neighboring UAVs to enhance a UAV’s airborne computing capacity by

using distributed computing techniques. Particularly, Chapter 3 investigates the static scenario

where UAVs hover in the air while conducting computations. To optimize airborne computing

performance, a coded distributed computing framework is introduced. Chapter 4 extends the

analysis to dynamic scenarios where UAVs are in motion during computation, and a mobility-

aware coded distributed computing framework is proposed to address these scenarios. The

computation problem considered in both chapters is fundamental matrix multiplication problem,

which serves as building blocks for many other advanced computation problems. In Chapter

5, we shift our attention to a more complicated problem, multi-agent reinforcement learning

(MARL), and investigate how to reliably and efficiently train MARL over NAC systems. Finally,

Chapter 6 designs and implements a realistic simulator and hardware testbed, and conducts

experiments to evaluate the performance of NAC in two computation applications including

distributed matrix multiplication and distributed gradient descent. Our experiments offer valuable

insights into NAC and provide guidance for future advancements.

xix

Chapter 1

Introduction

This chapter overviews background of Networked Airborne Computing (NAC), discusses

related work and motivates our studies. The contributions of this dissertation are then highlighted

at then end of this chapter.

1.1 Background

Over the past few years, unmanned aerial vehicles (UAVs) have become increasingly

important. On the one hand, a single UAV or a group of them can support many commercial

and civilian applications, such as forest-fire detection [1], reconnaissance [2], search and rescue

[3], and 3-D mapping [4]. On the other hand, UAV can be connected with many ground-based

devices to facilitate more applications, such as providing wireless services to cellular users,

increasing connectivity in vehicular networks, delivering medical supplies to disaster areas, and

offering computing services to ground users [5, 6, 7]. Among these applications, using UAVs

to assist computing has recently drawn a growing interest. The implementation of advanced

UAV functions (e.g., path planning, positioning, video processing, flight control) also requires

a significant amount of computing resources. However, due to small payload, the computing

capability of most existing UAV platforms is very limited. To execute computation-intensive

tasks, the existing solutions are to offload these tasks to ground servers or remote clouds, which

can, however, incur significant delays or even failures [8].

1

Figure 1.1. Illustration of Networked Airborne Computing (NAC) paradigm.

To address the aforementioned issues, a promising technique is the NAC [9] that can

offer advanced onboard airborne computing capabilities. NAC is a new computing paradigm

formed by aerial vehicles connected with direct flight-to-flight communication links (see Fig. 1.1).

The advantages of UAV-based NAC include low latency, transportability, infrastructure-free,

unmanned maneuvering, fast deployment, wide-coverage, and low cost. It can not only enhance

UAVs’ system performance by allowing advanced algorithms to be implemented onboard of

UAVs and hence benefit a wide range of existing UAV applications, but also give rise to a variety

of new applications. For example, it can facilitate data collection, processing, and distribution

for Internet of Things (IoT) devices, and can function as Mobile Edge Computing (MEC) servers

[10] to provide computing services for ground users, etc.

Despite the exciting advantages and broad applications, enabling a UAV-based NAC

requires overcoming many technical challenges. For example, when UAVs operate in the complex

and uncertain airspace with high mobility, the fast node movement, line-of-sight effect, and node

leaving and joining can cause frequent topology changes, link failures, data losses, and task

interruptions. Moreover, the various uncertainties (e.g., winds and other vehicles) present in the

airspace can disturb the communication among the UAVs, bringing additional challenges for

robust computing.

Currently, the research on UAV-based NAC is still in its early stage, and most existing

2

studies have been focused on the UAV-assisted MEC [11, 12, 13, 14, 15, 16, 17, 18] with a

single UAV, which is just one of many possible applications of NAC. Specifically, these studies

investigate how to provide the best computing services to ground users, via properly allocating

resources and planning UAV trajectories. Moreover, in these studies, the UAVs act alone without

collaboration and follow trajectories that are pre-planned. The locations of ground users are

assumed to be known and fixed.

Moreover, in existing studies on UAV-based computing [19, 20, 21, 22, 23], performance

evaluation was typically conducted through simulations with UAV movement, communication,

and computing behaviors described using mathematical models. While mathematical model-

based simulations offer the advantage of being inexpensive and easy to deploy, their underlying

models, due to simplicity, may not accurately reflect the intricate behavior of real UAV systems.

Realistic simulator and hardware testbed for NAC are lacking.

1.2 Contributions of the Dissertation

This dissertation aims to enable Networked Airborne Computing, a new computing

paradigm based on UAVs that can enhance computing capabilities of UAVs for advanced

applications and provide computing services to users. The main contributions of dissertation are

summarized as follows:

Chapter 2 develops a networked airborne computing platform with powerful computing

capability to allow computationally expensive applications directly completed onboard. We

aim to enhance computing capability of individual UAVs by selecting powerful micro-computer

Jetson TX2 as the computing unit and investigating virtualization techniques KVM and Docker

for computing resources management, platform security and programmability.

Chapter 3 further improves the computing capability of individual UAVs through leverag-

ing resources from neighboring UAVs by using distributed computing techniques. Particularly,

we introduce a novel coded distributed computing (CDC) framework for static and heterogeneous

3

NAC systems. This framework leverages coding theory to improve computation robustness to

uncertain stragglers, which are computing nodes that can fail or delay computing assigned task

due to communication bottleneck, system uncertainties and so on. An optimal computation load

allocation method called Batch Processing-based Coded Computation (BPCC) is proposed to

optimize the load allocation among UAVs. Theoretical analysis reveals the asymptotic optimality

of BPCC and the impact of its important parameters. We also prove that it outperforms a

state-of-the-art CDC scheme for heterogeneous systems, called Heterogeneous Coded Matrix

Multiplication (HCMM)[24, 25].

In Chapter 3, the focus is on static networks with hovering UAVs. In Chapter 4, this

work is extended to include mobility of UAVs and explore optimal computation load allocation

in mobile networks. Particularly, we examine two realistic scenarios for the formation of NAC

networks. The first scenario involves the formation of the NAC system by UAVs operated

by different owners in an opportunistic manner, e.g., when cargo drones owned by different

companies are serving the same area. In this case, the mobility of the UAVs is uncontrollable,

unknown, and can be considered random. The second scenario involves the formation of the NAC

system by UAVs operated by the same owner, e.g., in multi-UAV applications like multi-UAV

surveillance, search and rescue. In this case, the mobility of the UAVs can be controlled and

proactively planned by the owner to facilitate computing. Considering these two formation

scenarios, we develop innovative computation schemes to enable efficient, robust, and adaptable

cooperative airborne computing in an uncertain, heterogeneous, and dynamic airspace.

The computation problem considered in both Chapter 3 and Chapter 4 is matrix multi-

plication, which is a building block for many estimation and control algorithms. In Chapter 5,

we investigate a more complex problem, i.e., multi-agent reinforcement learning (MARL). We

investigate how to train MARL over NAC efficiently and reliably. In particular, we propose a

scalable MARL algorithm called Distributed multi-Agent Reinforcement Learning with One-hop

Neighbors (DARL1N) that can be trained over a distributed computing architecture. DARL1N

reduces the representation complexity of the value and policy functions of each agent in a MARL

4

problem by disregarding the influence of other agents that are not within one hop of a proximity

graph. This model enables highly efficient distributed training, in which a compute node only

needs data from an agent it is training and its potential one-hop neighbors. As stragglers in NAC

can exist due to communication bottleneck, or software and hardware problems, the training pro-

cess can be delayed or even fail. To improve the resilience of DARL1N to stragglers common in

distributed computing systems, we developed coding schemes that assign each agent to multiple

learners. The properties of Maximum Distance Separable (MDS), Random Sparse, Repetition,

Low Density Parity Check (LDPC), and Low Density Generator Matrix (LDGM) codes were

evaluated.

Chapter 6 addresses the research gap regarding the scarcity of realistic testbeds for NAC

research by introducing a realistic simulator and hardware testbed. The simulator was developed

using ROS (Robot Operating System) [26] and Gazebo [27]. The hardware testbed comprises

multiple UAVs with computing and inter-vehicle resource sharing capabilities. Through simula-

tions and real flight tests, we examine the impact of UAV mobility on NAC by evaluating two

computation applications. Our findings provide valuable insights into the challenges of achieving

high-performance NAC and provide guidance for future enhancements of the proposed NAC

testbed.

5

Chapter 2

Airborne Computing Platform Design

2.1 Introduction

This chapter aims to design a UAV platform with powerful airborne computing capa-

bility to enable NAC. In the literature, many researchers have been working on the design of

UAV platforms focusing on control [28], communications [29, 30, 31], networking [32], etc.

Nevertheless, we notice that the computation aspect of the UAV platforms has been largely

neglected. For instance, most existing UAV platforms have limited computing capability and can

perform only essential functionality, such as flight control, image/video capturing, and sensor

data collection [33, 34, 35, 36]. Consequently, computation-intensive tasks are often offloaded

to the ground stations or to the cloud, which may lead to many issues. For instance, such a

computing model may lead to significant transmission delays or failures, and thus cannot support

many delay-sensitive applications. Moreover, for many high-bandwidth applications, such as

real-time object detection and tracking, such a model requires large communication bandwidths,

which may not be feasible in certain scenarios. These issues can be addressed by directly carrying

out computation-intensive tasks onboard the UAVs.

Motivated by the aforementioned need, this chapter aims to develop an airborne com-

puting platform with powerful computing capability, broadband communication, flexibility,

programmability, and security. To achieve it, we design the platform from both hardware and

software aspects described as follows:

6

1. Hardware Design. We first investigate how to design and implement the hardware of the

UAV-based airborne computing platform. Specifically, we discuss the desired features

for the airborne computing platform, especially according to the unique UAV structure

and applications. We then conduct a comprehensive analysis and systematic study on ten

state-of-the-art single-board computers regarding the computation performance, power

consumption, size, and weight. Based on the thorough comparison, we choose NVIDIA

Jetson TX2 [37] as the computing unit for the platform. A prototype is then designed and

implemented, which integrates Jetson TX2 for onboard computations, UAV, broadband

communication system and networked control system.

2. Software Design. With respect to the software of the platform, we aim to design an airborne

computing platform with sufficient flexibility and programmability. A key technology

to achieve this goal is virtualization, because it can efficiently manage resources, can

enable concurrent applications, and can enhance the security of the computing platform.

In this chapter, we investigate two key virtualization techniques: (1) virtual machine

(VM) using KVM [38] and (2) container using Docker [39]. To understand the impact

of virtualization on UAV applications, we conduct extensive experiments to measure

the performance of the two virtualization techniques from the aspects crucial for UAV

applications, including computing, networking, isolation, power consumption, etc. The

performance trade-offs are also discussed. These experiments verify the feasibility of

virtualizing UAV and demonstrate the potentials of virtualization in enhancing UAV’

onboard computing capability. The insights obtained from the comparison results between

KVM and Docker also provide guidelines for the selection of appropriate virtualization

techniques for UAV applications.

2.2 Hardware Design for the Airborne Computing Platform

In this section, we investigate the hardware design for UAV high-performance onboard

computing. In particular, we first discuss the desired features for the onboard computing hardware.

7

We then analyze ten state-of-the-art single-board computers and provide guidelines for choosing

a suitable single-board computer as the computing unit. A prototype designed based on a selected

single-board computer is then described.

2.2.1 Desired Features

Since the onboard computing hardware is carried by a UAV, there are some unique

considerations for the selection of a single-board computer. First, the computing hardware should

be of light weight and compact size, due to the limited payload and space provided by the UAV.

Second, because of the limited power capacity of the UAV-carried batteries, it is preferable to

have an efficient power management system to reduce the power consumption. Third, in terms of

computing, the hardware should have a powerful CPU, sufficient memory and storage to support

most computing needs. Moreover, a powerful GPU is also necessary to enable real-time image

processing and deep learning capabilities onboard of UAV. Last but not the least, the single-board

computer should have extensive community support, such that developers and users can share

experience and seek online support during their system development. In addition, it is also very

important to have sufficient open access design documentation and configuration toolboxes.

2.2.2 Single-Board Computer Selection

In the literature, several single-board computers are commonly used for UAV operations,

including Raspberry PI [40], Odroid XU [41], Arduino Board [42], Cubieboard [43] and Arndale

Board [44], etc. In our study, we do not consider them because they are not powerful enough to

fulfill computation-intensive tasks.

Unlike the aforementioned computing devices, more powerful single-board computers

have not been fully investigated for UAV. Recently, Shang and Shen [45] investigated the

computing power of NVIDIA Jetson TX1 [46] with 4 CPU cores, 256 Maxwell CUDA GPU

cores and 4GB memory. Their studies show that NVIDIA Jetson TX1 is still not sufficient

enough to achieve real-time 3D reconstruction and mapping using the simultaneous localization

8

Table 2.1. Comparison of different single-board computers

CPU GPU Memory Connectivity Dimension (mm) Power
consumption OS Weight Virtualization

support Storage Price

Jetson
TX2

Denver 2 (2 cores)
2MB Cache, 2GHz

+ ARM® A57 (4 cores)
2MB Cache, 2GHz

256-core
NVIDIA

Pascal GPU

8
GB

1 Gigabit Ethernet,
802.11ac WLAN,

Bluetooth
50×87 7.5W Linux 85g Yes 32GB $400

Jetson
AGX Xavier

8-core NVIDIA Carmel
Armv8.2 64-bit CPU

512 NVIDIA
CUDA cores

and 64 Tensor cores

64
GB

10/100/1000 BASE-T
Ethernet 100×87 10-30W Linux 274g Yes 32GB $1861

Jetson
TX1

ARM Cortex-A57
(4 cores)
2MB L2

256-core NVIDIA
Maxwell GPU

4
GB

1 Gigabit Ethernet,
802.11ac WLAN,

Bluetooth
50×87 10W Linux 88g Yes 16GB $299

Raspberry
Pi 4

Broadcom BCM2711,
Quad core Cortex-A72

(ARM v8), 1.8GHz

Broadcom
VideoCore VI

8
GB

Gigabit Ethernet,
802.11 b/g/n/ac WLAN,

Bluetooth
88×58 4-6W Linux 46g Yes microSD $75

UDOO X86
ULTRA

Intel® Pentium
N3710 (4 cores)

2MB Cache, 2.56GHz

Intel® HD
Graphics 16 units,

405-700 MHz

8
GB

1 Gigabit Ethernet,
M.2 Key E slot for optional
Wireless (WiFi+Bluetooth)

120×85 6W
Windows,

Linux,
Android

117g Yes 32GB $267

Intel Aero
Compute

Board

Intel® AtomT M

x7-Z8750 (4 cores)
2MB Cache, 2.56GHz

Intel® HD
Graphics 16 units,

405-600 MHz

4
GB

Intel® Dual Band
Wireless-AC 8260

88×63×20 7.5W Linux 30g Yes 32GB $399

Lattepanda
Alpha

Intel® 7th Gen
M3-7Y30 (2 cores)

4 MB Cache,
2.60GHz

Intel® HD
Graphics 615
300-900MHz

8
GB

1 Gigabit Ethernet,
802.11ac WLAN,

Bluetooth
113×80×13.5 NA Windows

Linux 104g Yes 64GB $398

UP
Squared

Intel® Apollo
Lake

(2-4 cores)

Intel® Gen
9 HD with

12 (Celeron)
or 18 (Pentium)
Execution Units

8
GB

1 Gigabit Ethernet,
802.11ac WLAN,

Bluetooth
85.6×90 NA

Windows,
Linux,

Android
NA Yes 128GB $399

DJI
Manifold

ARM Cortex-A15
(4 cores)

192-core NVIDIA
CUDA GPU

2
GB

10/100/1000BASE-T
Ethernet 110×110×26 5-15W Linux 197g Yes 16GB $499

HiKey
960

ARM Cortex-A73
(4 cores)

+Cortex A53
(4 cores)

ARM Mali
G71 MP8

4
GB

WiFi,
Bluetooth 4.1 85×55×9 NA Linux

AOSP 60g Yes 32GB $249

Rock
960

ARM Cortex-A72
(2 cores)

Cortex A53
(4 cores)

ARM Mali
T860 MP4

4
GB

WLAN 802.11 ac/a/b/g/n,
Bluetooth 4.2 85×54×11 NA Linux

AOSP 120g Yes 32GB $139

and mapping algorithm.

To select a suitable single-board computer to enable UAV high-performance onboard

computing, we consider those with computing capability comparable to Jetson TX1. In partic-

ular, 11 state-of-the-art single-board computers, including NVIDIA Jetson TX2 [37], UDOO

X86 ULTRA [47], Intel Aero Compute Board [48], LattePanda Alpha [49], Up Squared [50],

Raspberry Pi 4 [51], NVIDIA Jetson AGX Xavier [52], DJI Manifold [53], HiKey960 [54],

Rock960 [55] and Jetson TX1 [46], are found and compared in detail from various aspects (see

Table 2.1 for the comparison results).

As shown in Table 2.1, Jetson AGX Xavier has the highest computing power and excels

in memory capacity. However, it is the most power-consuming and costly, and it does not natively

support Wi-Fi communications. Jetson TX2 with 6 CPU cores, 256-core NVIDIA Pascal GPU,

and 8GB memory is the second powerful single-board computer. It provides an out-of-the-box

high-throughput wireless local area network (WLAN) interface, and is also the smallest in size.

9

UDOO X86 ULTRA outperforms others in power consumption and operating system (OS)

support; Intel Aero Compute Board is the lightest among those with known weight information;

Raspberry Pi 4 is of the lowest cost; and Up Squared has the largest storage. All these single-

board computers support virtualization.

The above analysis provides us with guidelines to select proper single-board computers

for UAV high-performance onboard computing. A trade-off should be achieved among different

performance aspects based on the needs of specific applications. For instance, if flight time

is more critical than real-time processing, UDOO X86 ULTRA that consumes less power or

the lightweight Intel Aero Compute Board may be selected. If cost is of the major concern,

Raspberry Pi 4 can be a good choice.

In this study, we select the NVIDIA Jetson TX2 as the computing hardware for the

airborne computing platform. As shown in Table 2.1, its overall computing capability is above the

average, especially considering the availability of a powerful GPU. Both the power consumption

(7.5w) and weight (85g) are around the average. Another attractive factor is that there is an

open-access online support community including FAQ and forum [56], which is very helpful for

project developers.

While Jetson TX2 has a small size of 50mm×87mm, the development board provided by

NVIDIA is very large (17cm × 17cm). To address this issue, we design a new carrier board, as

shown in Figure 2.1(a), based on the following technical specifications. The carrier board has a

dimension of 88mm×65mm with weight of 53g. The interfaces provided by the board include

1 HDMI, 3 UART, 1 CAN bus, 1 micro USB, 1 USB 2.0/3.0, 1 Ethernet port, 4 GPIO, and 2

camera ports. The carrier board with Jetson TX2 is shown in Figure 2.1(b).

2.2.3 A Prototype

With Jetson TX2 chosen as the computing unit, we then develop a prototype of the

airborne computing platform [57, 9] that also incorporates a quadcopter unit for lifting and

mobility, a communication unit for UAV-to-UAV (U2U), UAV-to-ground (U2G) and ground-to-

10

(a) (b)

Figure 2.1. a) A new Jetson TX2 carrier board and b) Jetson TX2 carrier board with the
processor.

UAV (G2U) communications, and a control unit for addressing communications, networking,

UAV navigation and application needs (see Figure 2.2).

Quadcopter Unit

The quadcopter unit serves as a platform carrier to carry other units. Compared with

fixed-wing UAV, quadcopters are easier to operate, allow vertical taking off and landing, and

can hover in the air. Here we select DJI Matrice 100 [58] as the quadcopter unit, due to its

nice properties in terms of payload, expandability, stability and operability. For instance, the

maximum weight allowed for the DJI Matrice 100 while taking off is 3.6kg, which exceeds the

total weight of the whole system of 3.13kg. With a LiPo 6s battery, our prototype can fly for

around 18 minutes.

Communication Unit

The communication unit supports the U2U and U2G/G2U communications. For U2U

communication, we choose Ubiquiti Nanostation Loco M5 [59], a directional antenna, to enable

long-range and broadband communication between two UAV. The transmission rate achieves

up to 150 Mbps, allowing real-time video transmission. The maximum transmission distance is

11

10 km. For U2G/G2U communication, Huawei WS323 [60] is selected as the Wi-Fi router to

enable communication between ground devices and the UAV, where ground devices connect to

the router through the wireless local area network (WLAN). Through this link, sensor data such

as videos captured by the UAV can be transmitted to the ground for visualization and analysis.

Control Unit

The control unit consists of two sub-units: UAV flight control and directional antenna

control. In particular, the UAV flight control sub-unit makes the UAV follow desired trajectories,

while maintaining stability. It translates high-level control commands received from the remote

pilot to motor pulse width modulation (PWM) signals, based on UAV state measurements

captured by sensors such as GPS and inertial measurement unit (IMU). The directional antenna

control sub-unit controls the heading direction of the directional antenna to maximize the

performance of directional communication. This sub-unit is composed of a rotating motor, a

tunable plate, a motor driver and a compass. The tunable plate carries the directional antenna

and the compass. To rotate the plate to a specified angle, the motor driver takes the control signal

NVIDIA
Jetson TX2 &
carrier board

Figure 2.2. A prototype of the airborne computing platform.

12

generated by the computing unit and translates it to PWM signals. The motor then drives the

plate to rotate based on the PWM signals. Here we select MTI-3-8A7G6T Xsens and Adafruit

TB6612 as the compass and the motor driver, respectively.

2.3 Software Design for the Airborne Computing Platform

In this section, we investigate two key virtualization techniques, VM [61] using KVM

and container using Docker [39], to improve the flexibility and programmability of the airborne

computing platform. In particular, we first provide a brief overview of the current research

status in the field of virtualization. To understand the impact of virtualization, we then conduct a

series of experiments to study their performances from multiple aspects, including computing,

networking, isolation, power consumption, etc., as well as the trade-offs among them.

2.3.1 Background and Related Work

To support diverse computing tasks on the same UAV platform, one of the key technolo-

gies is virtualization. First, virtualization provides powerful resource management capabilities,

so that it can efficiently enable an application with specific computing requirements, such as CPU,

memory, storage, networking, etc. Second, virtualization can facilitate concurrent execution of

multiple applications on the same UAV. Third, in terms of security, virtualization can isolate

unreliable and untrustworthy functionality, and improve the resilience of UAV to malicious

attacks [62]. In addition to these advantages on a single UAV, virtualization can help to exploit

the distributed computing capabilities on multiple connected UAV, which can evolve towards

future generation of the networked airborne computing.

Virtualization has been studied extensively in the literature. The server-based virtual-

ization has been mature and widely implemented in computing systems, especially the cloud

[63, 64, 65]. Virtualization for mobile devices is more relevant to this study, which has aroused

increasing attention with the wide use of mobile devices and the fast evolution of ARM proces-

sors, but is still under development [66]. In the last few years, several studies have investigated

13

the performance of virtualization on different mobile devices, such as Raspberry PI 2 [67],

Cubieboard2 [68], ARM Chromebook [69], Banana Pi [70], and Insignal Arndale board [71],

etc. However, since these studies were not directed to UAV, their performance analysis was

limited to CPU, memory and disk in a single device. The unique features of UAV such as small

payload, power constraint and real-time computing need, as well as the special characteristics of

multi-UAV applications such as U2U communications and network connectivity were also not

considered in these studies.

Virtualization has also played a critical role in emerging computing paradigms including

IoT, fog computing and MEC. For instance, container-based virtualization is applied in [72, 73] to

enable data processing at IoT devices. A Docker-based fog computing framework over Raspberry

PI is described in [74]. In [75], the integration of IoT and fog computing with virtualization

deployed in fog nodes is studied.

Despite the abundant works on virtualization, virtualization for UAV has been rarely

studied. Among the limited studies we can find, paper [62] utilizes virtualization to enhance

the resilience of UAV to malicious attacks, where Raspberry PI 2 is adopted as the onboard

computing unit. Nutanix recently released a commercial UAV cloud platform, called Acropolis

[76], which can hold multiple virtual machines (VMs). In [77], virtualization is implemented

on fog servers to provide computing services for UAV fire detection. Overall, a comprehensive

investigation of virtualization for UAV to enable high-performance onboard computing and

advanced UAV applications is still lacking.

Virtualization can extend the computing capabilities of UAV, at a cost of performance

overheads, due to resource partition, isolation and emulation. To understand the impact of

virtualization, we next investigate the performances of two key virtualization techniques, KVM

[38] and Docker [39], which are representatives of the hypervisor-based and container-based

virtualization techniques, respectively. Please refer to [78] for a brief introduction of the two

virtualization techniques, and the instructions to implement these techniques on Jetson TX2. In

this study, both guest (VM or container) and host systems in Jetson TX2 implement Ubuntu

14

16.04 LTS with Linux kernel version 4.4 as the OS.

2.3.2 Computing Performance

In this subsection, we investigate the impact of KVM and Docker on the CPU and GPU

computing performances of the proposed airborne computing platform, which is crucial for the

success of many time-critical UAV applications.

Experimental Setup

To measure the computing performance of the airborne computing platform with vir-

tualization capability, we create a VM that virtualizes CPU or GPU resources using KVM (or

container using Docker) on the platform, and install the Rodinia Benchmark Suite [79] in the

VM (or container). We then run the Stream Cluster (SC) application in the benchmark, which

performs clustering for data streams. The execution time of the SC application indicates the

computing performance. To reduce experimental uncertainty, each experiment is repeated for 10

times and the average execution time of the SC application is presented. This procedure is also

applied to each experiment conducted in following studies.

In the experiment on the CPU performance, as the benchmark supports CPU multi-

threading, which allows applications to be executed by multiple CPU cores in parallel, we vary

the number of threads to test the parallel CPU computing performance. Note that each thread

uses one CPU core. As only 4 ARM A57 CPU cores can be virtualized using KVM, up to 4

threads are evaluated for KVM. Docker successfully virtualizes all 6 CPU cores in Jetson TX2,

and thus up to 6 threads are evaluated for Docker.

In the experiment on the GPU performance, as KVM does not support CUDA based

GPU [80], we only evaluate the impact of Docker on the GPU performance, which adopts the

PCI pass-through technique [81] to achieve GPU virtualization. We also compare the GPU

performance of the airborne computing platform with its best CPU performance, i.e., using 6

threads. In both experiments, we vary the size of the input data stream in the SC application to

15

1 2 3 4 5 6

Number of threads

0

10

20

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

No virtualization

Docker

KVM

(a)

1 2 3 4 5 6

Number of threads

0

1000

2000

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

No virtualization

Docker

KVM

(b)

Figure 2.3. Execution time of the SC application implemented on CPU using increasing number
of threads. The number of input points in the SC application is set to a) 10000 and b) 900000.

CPU GPU
0

5

10

15

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
) No virtualization

Docker

(a)

CPU GPU
0

200

400

600

800
E

x
e
c
u
ti
o
n
 t
im

e
 (

s
) No virtualization

Docker

(b)

Figure 2.4. Execution time of the SC application implemented on GPU and CPU of six threads.
The number of input points in the SC application is set to a) 10000 and b) 900000.

test the scalability of the computing platform.

Experimental Results

Figure 2.3 shows the CPU performance of the airborne computing platform before and

after implementing KVM or Docker. As shown in the figure, both KVM and Docker introduce

performance overheads, and KVM degrades the computing performance more. This is because

KVM adopts more complicated procedures to allocate memory resources, in particular using

second level address translation [38], while Docker achieves this by directly utilizing the Linux

16

system utility, i.e., control groups (cgroups) [39]. Our experiments also show that running 5 or 6

threads on Denver CPU cores does not improve the efficiency when the size of the data stream is

small (see Figure 2.3(a)). This is due to the overheads for coordinating different CPU processors.

Figure 2.4 compares the performance of GPU and that of the CPU in two scenarios,

i.e., before and after implementing Docker. As we can see from the figure, the computing

performance of GPU is slightly worse than that of the hex-core CPU when the problem size is

small, but GPU significantly outperforms the CPU when the problem size is large.

2.3.3 Networking Performance

In this subsection, we investigate the impact of KVM and Docker on the networking per-

formance of the airborne computing platform, which is crucial for reliable and timely information

sharing between UAV and ground mobile devices as well as among UAVs.

Experimental Setup

In this study, we conduct experiments to evaluate the networking performance for both

the G2U/U2G and U2U communication links. To test the G2U/U2G communication link, we

connect the airborne computing platform to a ThinkPad E540 laptop with the bandwidth of the

Wi-Fi route set to 40 Mbps. To test the U2U communication link, we consider two scenarios: (1)

the omni-directional antenna based short-distance communications and (2) directional antenna

based long-distance communications. These two scenarios are tested by linking two computing

platforms using the Wi-Fi router and the Ubiquiti Nanostation Loco M5, respectively.

To measure the networking performance, we install the Iperf benchmark [82] on airborne

computing platforms and the Thinkpad laptop. This benchmark measures the throughput between

two connected devices by sending data streams from one device (called client) to the other (called

server). To obtain a comprehensive understanding of the networking performance, we vary the

role of the airborne computing platform (client or server) and also vary the transmission protocol

(TCP or UDP).

17

Client Server
0

10

20

30

40

B
a

n
d

w
id

th
 (

M
b

it
s
/s

)

(a)

Client Server
0

10

20

30

40

B
a

n
d

w
id

th
 (

M
b

it
s
/s

)

(b)

Client Server
60

70

80

90

100

B
a

n
d

w
id

th
 (

M
b

it
s
/s

)

(c)

Figure 2.5. Bandwidth of the communication link a) between airborne computing platform and
ThinkPad laptop, b) between two airborne computing platforms, and c) between two airborne
computing platforms.

Experimental Results

The networking performance of the airborne computing platform before and after im-

plementing KVM or Docker under different networking configurations is shown in Figure 2.5.

In all these experiments, Docker shows less impact on the networking performance than KVM.

This is due to the simplicity of Docker in network virtualization. In particular, unlike KVM that

requires emulation of network devices in VMs to enable communications, Docker containers can

directly build network connections by using the Linux system utilities, e.g., network namespace

[39]. Another phenomenon observed in all experiments is that higher bandwidths are achieved

when the UDP transmission protocol is adopted, as UDP sends packets continuously without

acknowledgements.

18

Now let us analyze each subfigure. Figure 2.5(a) shows that the bandwidth of the

G2U/U2G communications increases when the airborne computing platform acts as a server.

This is mainly caused by the use of different network devices in Jetson TX2 and ThinkPad laptop.

In cases when two identical airborne computing platforms are connected to simulate the U2U

communications, the bandwidth measured at the server side is smaller than that measured at the

client side (see Figures 2.5(b) & 2.5(c)). This is because VM or container requires port forwarding

to receive packets, which introduces some overheads [83, 84]. The comparison between Figure

2.5(c) and the other two subfigures suggests that the high bandwidth is achieved by directional

antennas, demonstrating their advantage over omni-directional antennas. Of interest, in Figure

2.5(c), when the TCP transmission protocol is adopted, the bandwidth measured at the client side

increases after virtualization. This may be caused by the bridge network in KVM and Docker,

which buffers packets sent from the guest to the host network interface and in turn helps alleviate

traffic congestion and increases the packet transmission rate.

2.3.4 Isolation Performance

Virtualization can enhance the security of UAV applications, by isolating unreliable

functionality. It can also enable concurrent execution of programs with different system require-

ments on the same airborne computing platform, by running these programs in different VMs

(or containers). The success of these applications relies on how well VMs (or containers) are

isolated, which is investigated in this subsection.

Experimental Setup

To test the isolation performance of KVM and Docker, we follow similar experimental

setups in [85]. In particular, we create two guests (VMs or containers) in the airborne computing

platform, and assign each guest with two ARM A57 CPU cores exclusively. We then install the

Isolation Benchmark Suite (IBS) [86] to evaluate the isolation performance, which works by

measuring the impact of a misbehaved guest (runs a stress test) on a well-behaved one (runs a

19

Table 2.2. Performance degradation of the well-behaved guest in different
stress tests

Docker KVM
CPU 0.36% 0.41%

Memory 5.03% 6.0%
Disk I/O 2.56% 2.9%

Fork bomb 6.24% 1.28%
Network receiver 2.25% 4.68%
Network sender 1.73% 2.53%

baseline application). The smaller the impact is, the better the two guests are isolated. In this

study, we run the Lower-Upper Gauss-Seidel solver (LU) application in the well-behaved guest,

which performs a synthetic computational fluid dynamics calculation for a cubic region [87]. We

here set the cubic size to 64×64×64. In the misbehaved guest, we run different stress tests

available in IBS to test the performance of KVM and Docker in isolating different hardware

resources.

To evaluate the impact of the misbehaved guest on the well-behaved one, we measure the

performance degradation of the well-behaved guest using the following equation:

Ts−Tn

Tn
×100% (2.1)

where Tn and Ts represent the execution time of the LU application before and after running the

stress test in the misbehaved guest, respectively.

Experimental Results

Table 2.2 shows the isolation performance of KVM and Docker in different stress tests.

In particular, Docker demonstrates less performance degradation than KVM in the CPU, memory,

disk I/O and network intensive stress tests, indicating relatively better performance in isolating

these hardware resources. This is because Docker directly uses Linux namespaces to achieve

20

isolation, but KVM utilizes the hypervisor’s trap-and-emulate mechanism that hangs the rest of

the VMs when one traps to the hypervisor [38]. In the fork bomb test that generates large amount

of processes to overwhelm the OS, the performance of Docker degrades significantly compared

to KVM, as containers share the same OS kernel with the host system. Overall, both KVM and

Docker perform well in isolating CPU resources, as different VMs or containers occupy different

CPU cores. However, both are relatively weak in isolating the other hardware resources.

2.3.5 Power Consumption

In this section, we study the impact of KVM and Docker on power consumption, which

directly influences the flight endurance of the proposed airborne computing platform.

Experimental Setup

To measure the power consumption of the airborne computing platform, we use the

built-in 3-channel INA 3221 monitors in Jetson TX2 [88]. Two experiments are then conducted

to evaluate the impact of KVM and Docker on the power consumption of the airborne computing

platform at different operating conditions. Particularly, in the first experiment, the airborne

computing platform does not run any applications, and its power consumption is measured before

and after implementing KVM or Docker. In the second experiment, the power consumption of

the platform when running the SC application is measured.

Experimental Results

The power consumption of the airborne computing platform before and after implement-

ing KVM or Docker in the two experiments is shown in Figure 2.6. As we can see, both KVM

and Docker increase the power consumption slightly in the two experiments. KVM consumes

more power than Docker, as it introduces more overhead. Also note that compared with the power

consumed by running the SC application, the power consumed by virtualization is negligible.

21

No Apps Running SC Running
0

2000

4000

6000

8000

10000

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

m
W

)

No virtualization

Docker

KVM

Figure 2.6. Power consumption of the airborne computing platform before and after running the
SC application.

2.3.6 Discussions

In the above comparative studies, we evaluate the performances of KVM and Docker

from the aspects of computing, networking, isolation and power consumption that are of major

concern to UAV applications. In this subsection, we briefly discuss other performance aspects

that are also of interest.

Resource Usage

Compared with VMs, containers consume fewer resources and thus can be quickly

deployed. To demonstrate this feature, we conduct a simple experiment to measure the resource

usage of a bare VM (or container) created by KVM (or Docker). No applications run in the

VM or container. Table 2.3 summarizes the CPU, memory and storage usage of a bare VM or

container measured using the sysstat and f ree Linux commands [89].

Table 2.3. Resource usage of a bare VM or container

VM Container
CPU 2.7% 0%

Memory 476 MB 0.3 MB
Storage 1.3 GB 103 MB

22

Live Migration

The live migration allows a running VM (or container) to be migrated from one computing

platform to another, without interruptions during the migration process. Both Docker and KVM

support live migration on server-based devices [90, 61]. However, live migration on mobile

devices has been rarely studied and KVM currently does not support live migration on ARM-

based devices. In addition, no solution is currently available for the Docker container-based

live migration on Jetson TX2. We expect that this can be realized using checkpoints and restore

utility [91], which we will leave to the future work.

OS Support

On ARM-based Linux single-board computers, KVM supports unmodified guest OSs

[38], such as Ubuntu and openSUSE. However, Docker only supports ARM-based images [92],

such as arm64v8/ubuntu, windows/nanoserver, and windows/iotcore.

Security

KVM is more resilient to malicious attacks than Docker. As VMs have their own OSs

and kernels, the collapse of one VM does not influence others. However, containers share the

kernel with the host OS. Therefore, once one container is attacked, other containers or even the

whole system may collapse. For verification, we conduct a simple test. Specifically, we run the

fork bomb, a denial-of-service attack, in the VM and container, respectively. As shown in Figure

2.7, the host OS works properly when the VM is under attack, but collapses when the container

is attacked.

In summary, Docker achieves better performance than KVM in most aspects relevant to

UAV applications, including computing, networking, isolation of CPU, memory, disk I/O and

network resources, power consumption, and resource usage. Docker successfully virtualizes all

CPU cores and GPU in Jetson TX2, but KVM can only virtualize the four ARM A57 CPU cores.

On the other hand, KVM provides higher security. To enable more advanced UAV applications,

23

(a) (b)

Figure 2.7. Response of the host OS when the a) VM or b) container is attacked.

the strengths of KVM and Docker need to be integrated. Live migration on ARM-based devices

also needs to be realized for both KVM and Docker.

2.4 Performance of the Airborne Computing Platform

In this section, we investigate the performance of the proposed airborne computing

platform in supporting real UAV applications. In particular, we first use OpenDroneMap for

UAV image processing to illustrate the benefits of virtualization. We then further investigate

the performance of two advanced UAV onboard computing tasks, real-time object detection and

coded distributed computing.

2.4.1 OpenDroneMap

OpenDroneMap is an open-source UAV image processing software [93]. In this study,

we first use the image resizing and 3-D model reconstruction functions in OpenDroneMap that

require different amount of computing resources to investigate the impact of virtualization on the

computing performance. Figure 2.8 shows the average execution time of the two functions to

process a UAV image with size of 3.9MB in different virtualization environments1. The results

demonstrate the advantage of Docker over KVM, especially in computing complicated UAV

onboard computing tasks. The 3-D geographical model reconstructed from 41 2-D UAV images

is shown in Figure 2.9.

1UAV images are downloaded through this link: https://github.com/OpenDroneMap/odm data copr.git.

24

https://github.com/OpenDroneMap/odm_data_copr.git

(a) (b)

Figure 2.8. Execution time of the a) image resizing and b) 3-D model reconstruction functions
in OpenDroneMap to process a UAV image in different virtualization environments.

We next use OpenDroneMap to demonstrate the benefits of virtualization in facilitating

resource management for UAV. Generally, virtualization provides developers with the conve-

nience to run multiple applications simultaneously without considering resource sharing and

context switches among processes, which will increase the execution time of the applications.

To illustrate this fact, we first conduct experiments to show the consequence of running two ap-

plications simultaneously when virtualization is not applied. Figure 2.10(a) shows the execution

time of the LU application (cubic size is set to 36×36×36) and the image resizing function in

OpenDroneMap (processes 41 UAV images) when they run separately on the airborne computing

platform compared to the case when they run simultaneously. As we can see from this figure,

when the two applications run simultaneously, the execution time of both applications increases

significantly, and the LU application even takes more time than the OpenDroneMap application.

We then implement virtualization on the airborne computing platform, and run the two

applications simultaneously but in different guests. For better overall performance, the guest that

runs the LU application is allocated with 1 CPU core and the one that runs the more computation-

intensive OpenDroneMap application is allocated with 3 CPU cores. As shown in Figure 2.10(b),

virtualization helps improve the overall computing performance significantly through resource

25

Figure 2.9. The 3-D geographical model generated from 41 UAV images using the 3-D model
reconstruction function in OpenDroneMap.

allocation and isolation, despite the associated overhead.

2.4.2 Real-Time Object Detection

Real-time object detection is crucial for many UAV applications including search and

rescue, traffic monitoring, infrastructure inspection, and reconnaissance. As this type of task is

computationally demanding, it is typically executed at ground stations or the cloud. In this study,

we show that real-time object detection can be achieved onboard of UAV even with virtualization.

Consider the scenario where UAV is dispatched to detect and track humans in a search

and rescue mission. To achieve this, we implement a deep neural network (DNN) model [94]

on the airborne computing platform, which is built on GPU and uses NVIDIA TensorRT and

cuDNN. This model has been pre-trained for human detection. We use 10 images captured from

a UAV action video [95] to evaluate the average execution time of this model to process a UAV

image. In particular, the average recognition times of the airborne computing platform without

virtualization and with Docker container-based virtualization are around 0.129s and 0.148s per

image of size 850KB, respectively. This demonstrates the feasibility of performing real-time

object detection onboard of UAV even with virtualization. Note that it takes around 0.253s and

0.267s to transmit a single image of size 850KB from the airborne computing platform without

26

(a) (b)

Figure 2.10. Execution time of two applications a) when running separately and when running
simultaneously in Jetson TX2 without virtualization, b) when running simultaneously in Jetson
TX2 of three different virtualization setups.

virtualization and with Docker-based virtualization, respectively, to the ground (Thinkpad laptop)

through omni-directional antenna- and UDP-based communication, according to the results

shown in Figure 2.5(a). Figure 2.11 illustrates the accuracy of the DNN model in recognizing

humans on a UAV image.

(a) (b)

Figure 2.11. A UAV image a) before and b) after applying the DNN based object detection.

27

2.5 Conclusion

In this chapter, we developed a new UAV-based airborne computing platform to address

the onboard computing limitations of existing UAV platforms so as to support UAV-enabled

MEC and to enable more advanced UAV applications. This airborne computing platform was

designed from three aspects: hardware, software and applications. To design the hardware, we

first investigated the desired features for the onboard computing hardware, and then conducted

a comprehensive comparison study among state-of-the-art single-board computers to select a

suitable one as the computing unit. A prototype was then designed and implemented, which

not only contains the computing unit, but also hardware for UAV mobility, communications and

control. To design the software, we investigated two representative virtualization techniques, VM

using KVM and container using Docker, and evaluated their performances from various aspects.

Through comprehensive experimental studies, we find that Docker outperforms KVM in most

performance aspects, including computing, networking, isolation of most hardware resources,

power consumption, and resource usage. Docker also successfully virtualizes all CPU cores and

GPU in Jetson TX2. On the other hand, KVM is more secure. Finally, we studied three real UAV

applications, including UAV image processing, real-time object detection, and coded distributed

computing, to demonstrate the performance, applicability and potentials of the proposed airborne

computing platform.

2.6 Acknowledgement

This Chapter, in part, is a reprint of the published journal: B. Wang, J. Xie, S. Li, Y.

Wan, Y. Gu, S. Fu, K. Lu, “Computing in the Air: An Open Airborne Computing Platform”, IET

Communications, Vol.14, pp. 2410-2419, 2020.

28

Chapter 3

Batch-Processing Based Coded Comput-
ing for Static Networked Airborne Com-
puting Systems

3.1 Introduction

As the airborne computing capacity of individual UAVs is still limited due to the small

payload, this chapter aims to further enhance their computing capacity by leveraging the comput-

ing resources of neighboring UAVs through networking and computing resource sharing. This

can be achieved by using distributed computing techniques.

Distributed computing has been widely adopted to perform various computation tasks in

different computing systems [96, 97, 98]. For instance, to perform big data analytics in cloud

computing systems, MapReduce [99] and Apache Spark [100] are the two prevalent modern

distributed computing frameworks that process data in the order of petabytes. Despite the

importance of distributed computing, many design challenges remain. One major challenge is

that many computing frameworks are vulnerable to uncertain disturbances, such as node/link

failures, communication congestion, and slow-downs [101]. Such disturbances, which can be

modeled as stragglers that are slow or even fail in returning results, have been observed in many

large-scale computing systems such as cloud computing[102], mobile edge computing[103], and

fog computing[104].

29

A variety of solutions have been developed in the literature to address stragglers. For

example, the authors of [105] proposed to identify and blacklist nodes that are in bad health

and to run tasks only on well-performed nodes. However, empirical studies show that stragglers

can occur in non-blacklisted nodes as well [106, 107]. As another type of solution, delayed

computation tasks can be re-executed in a speculative manner [99, 108, 105, 109]. Nevertheless,

such speculative execution techniques have to wait to collect the performance statistics of the

tasks before generating speculative copies and thus have limitations in dealing with small jobs

[107]. To avoid waiting and predicting stragglers, the authors of [110, 107] suggested to execute

multiple clones of each task and use results generated by the fastest clones. Although their results

show the promising performance of this approach in reducing the average completion time of

small jobs, the extra resources required for launching clones can be considerably large, because

multiple clones are executed for each task.

Instead of directly replicating the whole task, the coding techniques can be adopted to

introduce arbitrary redundancy into the computation in a systematic way. However, until a few

years ago, the coding techniques have been mostly known for their capability in improving the

resilience of communication, storage and cache systems to uncertain disturbances [111, 112, 113].

Lee et al. [114, 115] presented the first coded distributed computing (CDC) scheme to speed up

matrix multiplication and data shuffling. Since then, CDC has attracted significant attention in

the distributed computing community. To understand the key idea of CDC, consider the matrix

multiplication problem that aims to multiply a large input matrix X with another pre-stored

matrix A. To reduce the computation time, the traditional approach (see Figure 3.1(a) for an

illustration) distributes the task by storing sub-matrices Ai of A at different computing nodes

called worker nodes, where A = [A1;A2; · · · ;An] and n is the total number of sub-matrices. To

compute AX , a master node first sends X to all worker nodes. Each worker node then computes

AiX and sends the result back to the master node. As the master node cannot recover AX until all

results are received, the efficacy of this approach is bounded by the slowest worker node, i.e., the

straggler. The coded computation (see Figure 3.1(b) for an illustration) addresses this issue by

30

(a) (b)

Figure 3.1. Illustration of the a) uncoded and b) coded computation to perform matrix multipli-
cation with n = 2. The numbers marked in green describe the computation procedures.

introducing redundancy into the computation through erasure codes. For instance, consider the

matrix multiplication problem with n = 2, the coded approach introduces an additional worker

node that stores A1 +A2. Therefore, the master node can recover AX upon receiving the results

from any two worker nodes. For instance, if A1X and (A1 +A2)X arrive at the master node first,

AX can be recovered by AX = [A1X ;(A1 +A2)X−A1X].

To evaluate the performances of the uncoded and coded computations, we implement

each approach on the airborne computing platform introduced in Chapter 2 to solve the matrix

multiplication problem with n = 2. In particular, we create three containers as the worker nodes

in one airborne computing platform, and one container as the master node in another platform.

Each container is assigned with one CPU core. Containers on different airborne computing

platforms are linked through the Loco M5 to simulate the directional-antenna based long-distance

UAV-to-UAV communications. We then create two 800×800 random matrices, A and X . Matrix

A is divided equally into two sub-matrices A1 and A2 of size 400×800. The execution time of

the two approaches to compute AX is provided in Table 3.1, where two scenarios are evaluated.

In the first scenario, only matrix multiplication is performed within each container and thus no

straggler exists. In the second scenario, a CPU stress test [86] is executed concurrently in one

of the worker nodes to consume its computing resources. This worker node thus becomes a

straggler. The results shown in Table 3.1 illustrate the robustness of the coded computation to

31

Table 3.1. Execution time of uncoded and coded matrix multiplication with n = 2

No straggler exists Straggler exists
Uncoded Computation 13.09s 24.58s

Coded Computation 13.69s 13.91s

system noises such as stragglers.

Although a variety of CDC schemes have been developed to solve different computation

problems, most of these schemes assume homogeneous computing nodes, which is not a common

case in realistic scenarios. Moreover, they require each worker node to first complete the

computation task and then send back the whole result to the master node, which introduces

significant delays [24, 25, 115, 114].

In this chapter, we focus on the matrix-vector multiplication problem and propose a

novel coding scheme, called batch-processing based coded computing (BPCC), to speed up

the computational efficiency of general distributed computing systems with heterogeneous

computing nodes and improve their robustness to uncertain disturbances. Unlike most existing

CDC schemes, our BPCC allows each node to return partial computing results to the master node

in batches before the whole computation task is completed. Therefore, BPCC achieves lower

latency. Also worthy of note is that the partial results can be used to generate approximated

solutions, e.g., by applying the singular value decomposition (SVD) approach in [116], which is

very useful for applications that require timely but unnecessarily optimized decisions such as

emergency response. To the best of our knowledge, such a BPCC framework has not been fully

investigated in the literature.

The contributions of this chapter are summarized as follows:

1. An optimal load allocation strategy. For systems with heterogeneous computing nodes,

equally distributing the computation load may lead to bad performance. To optimize the

computational efficiency, we formulate an optimization problem for general BPCC with the

assumption that the processing time of each computing node follows a shifted exponential

32

distribution. To solve the optimization problem, we formulate alternative optimization

problems, based on which we design an optimal load allocation scheme that assigns proper

amount of load to each node to achieve the minimal expected task completion time.

2. Comprehensive theoretical analyses. We conduct formal theoretical analyses to prove

the asymptotic optimality of BPCC and the impact of its important parameter. We also

prove that it outperforms a state-of-the-art CDC scheme for heterogeneous systems, called

Heterogeneous Coded Matrix Multiplication (HCMM)[24, 25].

3. Extensive simulation and real experimental studies. To further demonstrate the perfor-

mance of BPCC, we compare it with three benchmark schemes, including the Uniform

Uncoded, Load-Balanced Uncoded, and HCMM. The simulation results show the impact

of BPCC parameters including number of batches and number of worker nodes. Specif-

ically, the efficiency of BPCC improves with the increase of the number of batches and

the solution of BPCC is optimal when the number of worker nodes approaches infinity.

A sensitivity study shows the performance of BPCC when parameters in the computing

model take erroneous values. Moreover, the simulation results also demonstrate that BPCC

can improve computing performance by reducing the latency up to 73%, 56%, and 34%

over the aforementioned three benchmark schemes, respectively. In the real experiments,

we test all distributed computing schemes in the Amazon EC2 computing clusters. In

particular, we deploy a heterogeneous computing cluster that consists of different machine

instances in Amazon EC2. The results show that our BPCC scheme is more efficient and

robust to uncertain disturbances than the benchmark schemes.

3.2 Related Work

Following the seminal work in [112, 114, 115], many different computation problems

have been explored using codes, such as the gradients [117], large matrix-matrix multiplication

[118], linear inverse problems [119], and nonlinear operations [120]. Other relevant coded

33

computation solutions include the “Short-Dot” coding scheme [121] that offers computation

speed-up by introducing additional sparsity to the coded matrices and the unified coded frame-

work [122, 123] that achieves the trade-off between communication load and computation

latency.

While most CDC schemes consider homogeneous computing nodes, there have been a

few recent studies that investigated CDC over heterogeneous computing clusters. In particular,

Kim et al. [124, 125] considered the matrix-vector multiplication problem and presented an

optimal load allocation method that achieves a lower bound of the expected latency. Reisizadeh

et al. [24] introduced a different approach, namely Heterogeneous Coded Matrix Multiplication

(HCMM), that can maximize the expected computing results aggregated at the master node. In

[24, 25], the authors proved that the HCMM is asymptotically optimal under the assumption that

the processing time of each computing node follows a shifted exponential or Weibull distribution.

Also of interest, Keshtkarjahromi et al. [126] considered the scenario when computing nodes

have time-varying computing powers, and introduced a coded cooperative computation protocol

that allocates tasks in a dynamic and adaptive manner. Narra et al. [127] also developed an

adaptive load allocation scheme and utilized a LSTM-based model to predict the computation

capability of the worker nodes.

To reduce the output delay, there have been some attempts to enable early return of partial

results [116, 128, 129]. In particular, an anytime coding technique was introduced in [116],

which adopts the SVD to allow early output of approximated result. Also of interest is the study

presented in [128], which introduced a hierarchical approach to address the limitations of above

coding techniques in terms of wastefully ignoring the work completed by slow worker nodes.

In particular, to better utilize the work completed by each worker node, it partitions the total

computation at each worker node into layers of sub-computations, with each layer encoding part

of the job. It then processes each layer sequentially. The final result can be obtained after the

master node recovers all layers. The simulation results demonstrate the effectiveness of this

approach in reducing the computation latency. However, as the worker nodes have to process the

34

layers in the same order, the results obtained by slow worker nodes for layers that have already

been recovered are useless. Furthermore, this approach, as well as aforementioned approaches,

assumes homogeneous computing nodes. Another relevant study is presented in [129], which

introduced a rateless fountain coding scheme that can utilize partial results returned by worker

nodes.

3.3 System Models

In this section, we first introduce the computing system for distributed matrix-vector

multiplication. We then illustrate three computing schemes, including the proposed batch

processing-based coded computing (BPCC). Finally, we formulate an optimization problem for

BPCC.

3.3.1 Computing System

We consider a distributed computing system that consists of one master node and N

(N ∈ Z+) computing nodes, a.k.a., worker nodes. Using this system, we investigate how to

quickly solve a matrix-vector multiplication problem, which is one of the most basic building

blocks of many computation tasks. Specifically, we consider a matrix-vector multiplication

problem y = Ax, where y ∈ Rr is the output vector to be calculated, x ∈ Rm is the input vector to

be distributed from a master node to multiple workers, and A ∈ Rr×m is an r×m dimensional

matrix pre-stored in the system. Both r and m can be very large, which implies that calculating

Ax at a single computing node is not feasible. Finally, we define [n] = {1,2, . . . ,n}, where n is

an arbitrary positive integer, i.e., n ∈ Z+.

3.3.2 Computing Schemes

Uncoded Distributed Computing

To solve the above problem, a traditional distributed computing scheme divides matrix A

into a set of sub-matrices A1,A2, · · · ,AN , and pre-stores each sub-matrix Ai ∈Rℓi×m in computing

35

node i, where ∀i ∈ [N], ℓi ∈ Z+ and ∑
N
i=1 ℓi = r. Upon receiving the input vector x, the master

node sends vector x to all worker nodes. Each worker node i then computes yi = Aix and returns

the result to the master node. After all results are received, the master node aggregates the results

and outputs y = [yT
1 ,y

T
2 , · · · ,yT

N]
T , where T stands for transpose.

Due to the existence of uncertain system disturbances, the uncoded computing scheme

may defer or even fail the computation, because the delay or loss of any yi, i ∈ [N], will affect

the calculation of the final result y = Ax. To address this issue, more computing nodes can be

used to perform distributed computing. For instance, the master node can have two or more

computing nodes to compute yi. This approach, however, is not efficient because the cost can be

unnecessarily large.

Coded Distributed Computing (CDC)

In recent years, a more efficient computing paradigm, CDC, has been introduced to tackle

the issue of uncertain disturbances. There are many CDC schemes in the literature, and we

consider a generic CDC scheme as follows.

In this CDC scheme, A will first be used to calculate a larger matrix Â ∈Rq×m with more

rows, i.e., q > r, by using Â = HA, where H ∈ Rq×r is the encoding matrix with the property

that any r row vectors are linearly independent from each other [120]. In other words, we can

use any r rows of H to create an r× r full-rank matrix. Note that this encoding procedure is

performed offline and Â can be considered to be pre-stored in the system. Similar to the uncoded

computing scheme, matrix Â can then be divided into N sub-matrices Â1, Â2, · · · , ÂN , where

Âi ∈ Rℓi×m,∀i ∈ [N], ∑
N
i=1 ℓi = q, and each worker node i calculates ŷi = Âix.

Different from the uncoded computing scheme, the master node does not need to wait for

all worker nodes to complete their calculations, because it can recover Ax once the total number

of rows of the received results is equal to or larger than r. In particular, suppose the master node

36

receives ŷb ∈ Rr at a certain time t, it can first infer that ŷb must satisfy

ŷb = ĤbAx,

where Ĥb ∈Rr×r is a sub-matrix of the encoding matrix H corresponding to ŷb. The master node

can then calculate

y = Ax = Ĥ−1
b ŷb. (3.1)

BPCC

In the literature, most existing CDC schemes assume that each worker node i sends the

complete ŷi to the master node when it is ready, which may incur large delays. To further speed

up the computation, we propose a novel BPCC scheme and the main idea is to allow each worker

node to return partial results to the master node.

Specifically, we consider that each worker node i equally divides the pre-stored encoded

matrix Âi row-wise into pi sub-matrices, named as batches, where pi ∈ Z+ is the number of

batches and pi ≤ ℓi. Except the last batch, each batch has ⌈ ℓi
pi
⌉= bi rows. After receiving the

input vector x from the master node, the worker node multiplies each batch with x and will

send back the partial results once available. Suppose that the master node receives si(t) batches

from the worker node i by time t, where 0≤ si(t)≤ pi, it can then recover the final result when

∑
N
i=1 min(ℓi,si(t)bi)≥ r, by using Eq. (3.1).

3.3.3 Problem Formulation

In the previous sub-section, we introduced the key idea of the BPCC scheme. In the

following study, we focus on optimizing the performance of BPCC. Specifically, we consider

minimizing the task completion time. This is achieved by allocating proper computation load

(i.e., ℓi) to each worker node.

We first consider the behavior of waiting time, which is defined as the duration from the

time that the master node distributes x to the time that it receives a certain result. For BPCC, we

37

let Tk,i be the waiting time for the master node to receive k batches from worker node i, k ∈ Z+.

Clearly, Tk,i can be modeled as a random variable following a certain probability distribution.

Following the modeling technique used in recent studies [25, 114, 115, 128], we consider that

Tk,i follows a shifted exponential distribution defined below:

Pr(Tk,i ≤ t) =


1− e−µi(

t
kbi
−αi) if t ≥ kbiαi

0 otherwise,
(3.2)

where µi and αi are straggling and shift parameters, respectively, and µi and αi are positive

constants for all i ∈ [N]. Furthermore, we assume that Tk,i is independent from Tk′, j, ∀ j ∈ [N],

j ̸= i, k′ ∈ Z+.

To facilitate further analysis, we assume that the computation task scales with N, i.e.,

r = Θ(N). Next, we assume that the computing nodes are fixed with time-invariant computation

capabilities, and the network maintains a stable communication delay during the computing

process.

We now define T as the amount of time to complete a computation task. Based on

the above definitions and assumptions, we see that T must satisfy ∑
N
i=1 si(T)bi ≥ r. Given the

number of batches for each worker node p = (p1, p2, . . . , pN), where pi ∈ Z+, ∀i ∈ [N], the

optimization can be formulated as follows:

Pmain : minimize
ℓ

E [T]

subject to ℓi ∈ Z+,∀i ∈ [N]

ℓi ≥ pi,∀i ∈ [N]

(3.3)

where ℓ= (ℓ1, ℓ2, . . . , ℓN).

In the following sections, we will first discuss how to solve the optimization problem, in

which we will conduct theoretical analysis to show the optimality and advantages of BPCC. We

38

will then conduct extensive simulation and real experimental studies to validate the assumptions

and to evaluate performance of the optimization algorithm.

3.4 Main Results

In this section, we aim to solve the optimization problem Pmain. In particular, we will

first provide a simplified formulation, for which we then apply a two-step alternative formulation.

Next, we show how to solve the alternative problems and prove the optimality of the solution.

We then analyze the impact of parameter pi,∀i ∈ [N] on the solution, and finally prove that this

solution outperforms a recent CDC scheme without batch processing.

3.4.1 Notations for Asymptotic Analysis

For any two given functions f (n) and g(n), f (n) = Θ(g(n)) if and only if there exist

positive constants c1, c2, and n0 such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0; f (n) =

O(g(n)) if and only if there exist constants n0 and c such that f (n)≤ cg(n) for all n≥ n0; and

f (n) = o(g(n)), if and only if limn→∞
f (n)
g(n) = 0.

3.4.2 A Simplified Formulation

We relax the constraint from ℓi ∈ Z+ to ℓi ≥ 0, ∀i ∈ [N] to simplify the analysis. We

also remove the constraint ℓi ≥ pi, ∀i ∈ [N], by assuming that pi ∈ Z+ is properly selected such

that the optimal solution satisfies this constraint. Consequently, the problem in Eq. (3.3) can be

formulated as follows:
P ′

main : minimize
ℓ

E [T]

subject to ℓi ≥ 0,∀i ∈ [N],

Once the above problem is solved, we can round each optimal load number ℓi up to its nearest

integer using the ceiling function (denoted as ⌈ ⌉). Note that the effect of this rounding step is

negligible in practical applications with large load numbers, such as those considered in our

simulation and experimental studies[25]. In cases when the derived load number ℓi is smaller

39

than pi, we reduce the value of pi until this assumption holds. Note that we can always find such

pi that satisfies the constraint, as the derived load number ℓi is always larger than or equal to 1.

3.4.3 A Two-Step Alternative Formulation

To solve the above problem, which is NP-Hard, we provide a two-step alternative

formulation, inspired by [25]. We will show later that this alternative formulation provides an

asymptotically optimal solution to problem P ′
main.

The key idea of the two-step alternative formulation is to first maximize the amount

of results accumulated at the master node by a feasible time t, i.e., t ≥ maxi{αiℓi}, and then

minimize time t such that sufficient amount of results are available to recover the final result.

In particular, we let S(t) = ∑
N
i=1 si(t)bi be the amount of results received by the master node by

time t, where bi =
ℓi
pi

is the batch size. For a feasible time t, we first maximize the expected

amount of results received by the master node, through solving the following problem:

P
(1)
alt : maximize

ℓ
E [S(t)]

subject to ℓi ≥ 0,∀i ∈ [N]

After obtaining the solution to P
(1)
alt , denoted as ℓ∗(t) = (ℓ∗1(t), · · · , ℓ∗N(t)), we then minimize the

time t such that there is a high probability that the results received by the master node by time t

are sufficient to recover the final result, by solving

P
(2)
alt : minimize t

subject to Pr [S∗(t)< r] = o
(

1
N

)

where S∗(t) is the amount of results received by the master node by time t for load allocation

ℓ∗(t).

40

3.4.4 Solution to the Two-Step Alternative Problem

To solve the two-step alternative problem, we first consider P
(1)
alt . Note that, the expected

amount of results received by the master node by time t is:

E[S(t)] =
N

∑
i=1

E[si(t)bi]

=
N

∑
i=1

bi

[
pi

∑
k=1

k Pr[si(t) = k]

]
(3.4)

where si(t) is an integer in range 0≤ si(t)≤ pi, and Pr[si(t) = k] is the probability that the master

node receives exactly k batches from worker node i,

Pr[si(t) = k]

=


1−Pr(T1,i ≤ t), k = 0

Pr(Tk,i ≤ t)−Pr(Tk+1,i ≤ t), 0 < k < pi

Pr(Tpi,i ≤ t). k = pi

E[S(t)] in Eq. (3.4) can then be computed by:

E[S(t)] =
N

∑
i=1

bi

[
pi−1

∑
k=1

k Pr[si(t) = k]+ pi Pr[si(t) = pi]

]

=
N

∑
i=1

pi

∑
k=1

bi Pr(Tk,i ≤ t)

=
N

∑
i=1

pi

∑
k=1

bi

(
1− e−µi(

t
kbi
−αi)

)
=

N

∑
i=1

(
ℓi−bi

pi

∑
k=1

e−µi(
t

kbi
−αi)

)

=
N

∑
i=1

(
ℓi−

ℓi

pi

pi

∑
k=1

e−µi(
t pi
kℓi
−αi)

)
(3.5)

41

The solution to P
(1)
alt can then be obtained by solving the following equation for each

i ∈ [N]:
∂

∂ℓi
E [S(t)] = 1−

[
pi

∑
k=1

(
1
pi
+

µit
ℓik

)
e−µi(

t pi
kℓi
−αi)

]
= 0,

which yields:

ℓ∗i (t) =
t
λi

(3.6)

λi is the positive solution to the following equation:

pi

∑
k=1

(
1
pi
+

µiλi

k

)
e−µi(

λi pi
k −αi) = 1, (3.7)

which is a constant independent of t. To show that Eq. (3.7) has a single positive solution, we

can define an auxiliary function fi for each i:

fi(x) =
pi

∑
k=1

(
1
pi
+

µix
k

)
e−µi(

xpi
k −αi).

We can see that fi(x) decreases monotonically with the increase of x when x > 0. We can also

find that fi(0) = eµiαi > 1 and fi(∞) = 0. Based on these statements, we know that a unique λi

exists and can be efficiently solved using a numerical approach. Next, we show in Lemma 1 that

λi has closed-form infimum and supremum.

Lemma 1. Let λi, i ∈ [N], be the positive solution to Eq. (3.7). Its infimum is given by

infλi = lim
pi→∞

λi = αi, (3.8)

In addition, its supremum is given by

supλi =
W (−e−αiµi−1)+1

−µi
, (3.9)

which is attained when pi = 1 and W (·) is the Lambert W function[130].

42

For better readability, we move the proofs of all lemmas, theorems and corollaries to the

Appendix.

From Lemma 1, we can derive that the condition t ≥maxi{αiℓi(t)} holds, as t = ℓ∗i (t)λi≥

ℓ∗i (t)αi for each work node i.

Next, we solve P
(2)
alt . Since this problem is also NP-hard, we here provide an approxi-

mated solution. In particular, we approximate its optimal solution, denoted as t∗, with value τ∗,

such that the expected amount of results accumulated at the master node by time τ∗ equals to the

amount of results required for recovering the final result, i.e., E[S∗(τ∗)] = r. To find the value of

τ∗, we let

E[S∗(t)] = r. (3.10)

Then, using the load allocation ℓ∗i (t) in Eq. (3.6), the expected amount of results received by the

master node is:

E[S∗(t)] =
N

∑
i=1

(
ℓ∗i (t)−

ℓ∗i (t)
pi

pi

∑
k=1

e
−µi(

t pi
kℓ∗i (t)

−αi)

)

=
N

∑
i=1

t
λi

(
1− 1

pi

pi

∑
k=1

e−µi(
λi pi

k −αi)

)
.

(3.11)

We can then find the solution to Eq. (3.10) as follows:

τ
∗ =

r
β

(3.12)

where

β =
N

∑
i=1

1
λi

(
1− 1

pi

pi

∑
k=1

e−µi(
λi pi

k −αi)

)
, (3.13)

which is also a constant.

Combining the solutions to P
(1)
alt and P

(2)
alt , we can then derive the load allocation:

ℓ∗i (τ
∗) =

r
βλi

(3.14)

43

Algorithm 1: BPCC
Input: r,N, p = {p1, . . . , pN},µ = {µ1, . . . ,µN},α = {α1, . . . ,αN}
Output: ℓ

1 for i = 1 : N do
2 Calculate λi by solving Eq. (3.7)

3 Calculate β by using Eq. (3.13)
4 for i = 1 : N do
5 Calculate ℓ∗i by using Eq. (3.14)

6 Return ℓ= {⌊ℓ∗1⌉,⌊ℓ∗2⌉, · · · ,⌊ℓ∗N⌉}

The procedures of BPCC are summarized in Algorithm 1.

3.4.5 Optimality Analysis

In this sub-section, we conduct theoretical analysis to investigate the performance of

BPCC. Specifically, we first show in Lemma 2 the optimality of the approximated solution τ∗ to

P
(2)
alt . We then show in Theorem 3 that the solution provided by BPCC is asymptotically optimal.

Finally, we show in Theorem 4 the accuracy of τ∗ in approximating the expected execution time

of BPCC.

Lemma 2. Let t∗ be the optimal solution to P
(2)
alt , and τ∗ be the approximated solution given by

Eq. (3.12). If the batch processing time follows the shifted exponential distribution in Eq. (3.2)

and r = Θ(N), then

τ
∗−o(1)< t∗ ≤ τ

∗+o(1). (3.15)

Based on Lemma 2, we next show the asymptotic optimality of BPCC in Theorem 3.

Theorem 3. Consider problem P ′
main with the batch processing time following the shifted

exponential distribution in Eq. (3.2) and r = Θ(N). Let E[TBPCC] and E[TOPT] be the expected ex-

ecution time of BPCC and the optimal value of P ′
main, respectively. The BPCC is asymptotically

optimal, i.e.,

lim
N→∞

E [TBPCC] = lim
N→∞

E [TOPT] (3.16)

44

Theorem 3 and Lemma 2 further lead to the following theorem.

Theorem 4. Let τ∗ be the approximated solution given by Eq. (3.12) and E[TBPCC] be the

expected execution time of BPCC. If the batch processing time follows the shifted exponential

distribution in Eq. (3.2) and r = Θ(N), then

τ
∗ = lim

N→∞
E [TBPCC] (3.17)

3.4.6 Analysis of the Impact of Parameter p

In the BPCC scheme shown in Algorithm 1, we note that p is the only parameter that

can be tuned, while the other parameters, including r, N, u and α , are determined by the specific

computation task and properties of the distributed computing system. In this sub-section, we

analyze the impact of this important parameter p on the performance of BPCC in Theorem 5.

We then show in Theorem 6 that the approximated execution time of BPCC, i.e., τ∗ given by

Eq. (3.12), has closed-form infimum and supremum.

Theorem 5. Consider problem P ′
main with the batch processing time following the shifted

exponential distribution in Eq. (3.2) and r = Θ(N). Let τ∗ be the approximated execution time

of BPCC given by Eq. (3.12). Then the increase of any pi, i ∈ [N], will cause τ∗ to decrease.

Theorem 6. Consider problem P ′
main with the batch processing time following the shifted

exponential distribution in Eq. (3.2) and r = Θ(N). Let τ∗ be the approximated execution time

of BPCC given by Eq. (3.12). Then

infτ
∗ = lim

pi→∞,∀i∈[N]
τ
∗

=
r

∑
N
i=1

1
αi
(1− eµiαi

∫ 1
0 e−

µiαi
x dx)

, (3.18)

45

and

supτ
∗ =maxτ

∗

=
N

∑
i=1

1
supλi

(
1− e−µi(supλi−αi)

)
, (3.19)

which is attained when pi = 1, ∀i ∈ [N]. Here supλi is given by Eq. (3.9).

From Theorem 6 and Eq. (3.14), we can derive the following corollary.

Corollary 6.1. Consider problem P ′
main with the batch processing time following the shifted

exponential distribution in Eq. (3.2) and r = Θ(N). Let ℓ∗i be the solution of BPCC given

by Eq. (3.14). Then when the approximated execution time τ∗ of BPCC given by Eq. (3.12)

converges to its infimum, ℓ∗i converges to ℓ̂i, where

ℓ̂i =
r

αi ∑
N
j=1

1
α j
(1− eµ jα j

∫ 1
0 e−

µ jα j
x dx)

. (3.20)

3.4.7 Comparison with HCMM

In this sub-section, we compare the performance of BPCC with HCMM [25], a state-of-

the-art CDC scheme for heterogeneous worker nodes, and show that BPCC outperforms HCMM

in computational efficiency.

HCMM can be considered as a special case of BPCC with pi = 1, ∀i ∈ [N]. It assigns

each worker node i with load ℓH,i =
r

βHλH,i
, where λH,i is the positive solution to eµiλH,i =

eαiµi(µiλH,i + 1) and βH = ∑
N
i=1

µi
1+µiλH,i

. Theorem 7 shows that BPCC is more efficient than

HCMM.

Theorem 7. Consider problem P ′
main, with the batch processing time following a shifted

exponential distribution in Eq. (3.2) and r = Θ(N). Let TBPCC and THCMM be the execution times

46

of BPCC and HCMM, respectively. Then,

lim
N→∞

E [TBPCC]≤ lim
N→∞

E [THCMM]

3.5 Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed

BPCC scheme. Specifically, we first explain the simulation settings, including the distributed

computing schemes and scenarios. We then elaborate on the impact of important parameters,

including pi, N, µi and αi, on the performance of the BPCC scheme. Finally, we compare the

proposed BPCC scheme with benchmark schemes, including the state-of-the-art HCMM scheme

[25].

3.5.1 Simulation Settings

Distributed Computing Schemes

In this study, we consider four distributed computing schemes:

• Uniform Uncoded: This method divides the computation loads equally, i.e., ℓi =
r
N ,

∀i ∈ [N].

• Load-Balanced Uncoded [25]: This method divides the computation loads according

to the computing capabilities of the worker nodes. In particular, the computation load

assigned to each worker node i is inversely proportional to the expected time for this node

to compute an inner product, i.e., ℓi ∝ (µi
µiαi+1) and ∑

N
i=1 ℓi = r.

• HCMM [25]: In this method, the load assignment method in [25] is used. Note that this is

a special case of Algorithm 1, in which pi = 1,∀i ∈ [N]. The HCMM and BPCC have the

exactly same load allocation for each worker.

• BPCC: In this scheme, Algorithm 1 is used, where p are the parameters to configure.

47

Computation Scenarios

To evaluate the performance of different distributed computing schemes, we consider the

following four computation scenarios:

• Scenario 1: r = 1×104 and N = 10.

• Scenario 2: r = 2×104 and N = 10.

• Scenario 3: r = 1×104 and N = 20.

• Scenario 4: r = 2×104 and N = 20.

Simulation Method

In our simulation, we implement all the aforementioned distributed computing schemes

in MATLAB. We assume that the processing time of each node follows the shifted exponential

distribution in Eq. (3.2). Specifically, for each experiment of a scenario, we choose the straggling

parameters µi,∀i ∈ [N] randomly in [1,50], and calculate each shift parameter αi =
1
µi

. In each

experiment, we simulate every distributed computing scheme for 100 times, in each of which the

computing time of a node is simulated by using its straggling and shift parameters.

3.5.2 Parameter Impact Analysis

In this sub-section, we investigate the impacts of parameters in BPCC, including number

of batches, number of worker nodes, and the straggling and shift parameters in the computing

model.

Number of batches

The number of batches pi is an important parameter to configure. In Section 3.4.6, we

have theoretically analyzed its impact on the performance of BPCC. Here we conduct simulation

studies to demonstrate its impact described in Theorem 5, Theorem 6 and Corollary 6.1. In

particular, two experiments are designed.

48

In the first experiment, we show that the approximated execution time τ∗ of BPCC

given by Eq. (3.12) decreases with the increase of any pi, i ∈ [N], as presented in Theorem 5.

In particular, we vary the number of batches for one of the worker nodes and fix the number

of batches for the others. Specially, we vary p1 and let p j = 1,∀ j ∈ [N] \ {1}. As shown in

Fig. 3.2(a), τ∗ indeed decreases as p1 increases.

20 40 60 80 100

0

50

100

150

200

250

(a)

20 40 60 80 100

0

50

100

150

200

250

66.32

132.65

31.49

62.97

(b)

Figure 3.2. The approximated execution time τ∗ of BPCC at different values of a) p1, when
p j = 1,∀ j ∈ [N]\{1}, and b) p, when pi = p,∀i ∈ [N], in different scenarios.

20 40 60 80 100

0

1000

2000

3000

1657.13

3314.25

786.68

1573.36

(a)

20 40 60 80 100

1

1.5

2

2.5

3

3.5
10

4

(b)

Figure 3.3. The value of a) load ℓ∗1 and b) total load q = ∑
N
i=1 ℓ

∗
i at different values of p, when

pi = p,∀i ∈ [N], in different scenarios.

In the second experiment, we show that the approximated execution time τ∗ and the load

ℓ∗i tend to converge as pi increases for all i ∈ [N], as presented in Theorem 6 and Corollary 6.1.

49

In this experiment, we vary pi simultaneously for all i ∈ [N]. In other words, we let pi = p ∈ Z+,

∀i ∈ [N] and vary the value of p. As shown in Fig. 3.2(b), τ∗ decreases with the increase of

p and finally converges. Note that when p = 100, τ∗ equals to 66.32, 132.65, 31.49, 62.97

for the four scenarios, respectively, which are already very close to its theoretical infimum

65.77, 131.54, 31.22, 62.45, computed by Eq. (3.18). Fig. 3.3(a) shows the trajectory of the

load allocated to one of the worker nodes, i.e., ℓ∗1, which decreases and finally converges as p

increases. Note that when p = 100, ℓ∗1 equals to 1657.13, 3314.25, 786.68, 1573.36 for the four

scenarios, respectively, which are very close to the values of ℓ̂1 given by Eq. (3.20), i.e., 1659.79,

3319.59, 787.95, 1575.90. Of interest, if we set pi = ⌊ℓ̂i⌋ given by Eq. (3.20), ∀i ∈ [N], τ∗ equals

to 65.81, 131.58, 31.26, 62.47 and ℓ∗1 equals to 1659.62, 3319.42, 787.73, 1575.68 for the four

scenarios, respectively, which are almost the same as the associated infτ∗ and ℓ̂1, respectively.

Fig. 3.3(a) shows the impact of parameter pi on the load ℓ∗i for one of the work nodes.

In Fig. 3.3(b), we also show its impact on the total load q = ∑
N
i=1 ℓ

∗
i . As we can see, the total

load q also increases with the increase of p, where pi = p, ∀i ∈ [N]. This indicates that a larger

pi will require more storage space at the worker nodes. Note that the worker nodes will stop

execution once the master node receives sufficient amount of results for recovering the final result.

Therefore, a larger total load q does not increase the computation load for the worker nodes.

This study tells us that the configuration of parameter pi should trade off between computational

efficiency and storage consumption.

As τ∗ is an approximation of BPCC’s execution time, we also show in Fig. 3.4 the impact

of pi on the expected execution time E[TBPCC] of BPCC, which is estimated using the Monte

Carlo simulation method, specifically, by repeating each experiment for 100 times and averaging

the times to execute the BPCC scheme. Comparing Fig. 3.2 and Fig. 3.4, we can see that τ∗

approximates E[TBPCC] generally well. The fluctuations are caused by the uncertainty of the

computation times and the relatively weak estimation capability of the Monte Carlo method,

which requires large number of simulations to obtain an accurate mean estimate. As we will

show in the next study, the approximation accuracy of τ∗ is impacted by the number of worker

50

20 40 60 80 100
0

50

100

150

200

250

M
e

a
n

 E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

(a)

20 40 60 80 100
0

50

100

150

200

250

M
e

a
n

 E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

(b)

Figure 3.4. The mean execution time of BPCC at different values of a) p1, when p j = 1,
∀ j ∈ [N]\1, and b) p, when pi = p,∀i ∈ [N], in different scenarios.

nodes N.

Number of worker nodes

As we have theoretically proved in Theorem 4, the approximated execution time τ∗

converges to the true expected execution time E[TBPCC] of BPCC, when the number of worker

nodes N approaches infinity. To demonstrate this theorem, we vary N and set r = 100N +10000,

and record the approximation error of τ∗, given by |τ∗−E[TBPCC]|, for each value of N. The

results are shown in Fig. 3.5. Note that, instead of the four scenarios described in Section 3.5.1,

we design four new scenarios for this study, where the configuration of each scenario is specified

in the figure. As we can see, the approximation error of τ∗ decreases with the increase of the

number of worker nodes, and finally converges to zero.

From the above studies, we can see that, as the number of batches pi for any worker node

i ∈ [N] increases, the efficiency of BPCC improves, but the demand for storage also increases.

Because storage consumption is not our main concern in this study, in the following experiments,

we set pi to its maximum value possible, i.e., pi = ⌊ℓ̂i⌋, ∀i ∈ [N], considering that a valid pi

should be a positive integer smaller than or equal to ℓ∗i and ℓ∗i converges to ℓ̂i as pi, ∀i ∈ [N],

increases.

51

0 100 200 300

0

5

10

15

Figure 3.5. The approximation error of τ∗ at different values of N with r = 100N +10000.

Straggling and shift parameters

In BPCC, to determine the load numbers ℓi, we need to know the values of the straggling

and shift parameters, µi and αi, which are estimated by measuring the actual execution behaviors

in real experiments. To understand the impact of parameter estimation errors to the performance

of BPCC, we conduct a sensitivity study. In particular, to study how sensitive BPCC is to the

estimation errors associated with the straggling parameters µi, we fix the shift parameters αi and

deviate each µi from its true value by randomly picking a value from the interval (µmin
i ,µmax

i),

where µmin
i = µ∗i (1−∆), µmax

i = µ∗i (1+∆), µ∗i is the true value and ∆ > 0 represents the degree

of deviation. As µi should be positive, we let µmin
i = 0, if ∆ > 1. Fig. 3.6(a) shows the relative

change of the mean execution time, measured by Ê′[T]−Ê[T]
Ê[T] , at different values of ∆ in different

scenarios, where Ê[T] and Ê′[T] are the mean execution time obtained by using the true and

erroneous parameter values, respectively. Similarly, we plot in Fig. 3.6(b) the relative change of

the mean execution time when the shift parameters αi suffer from estimation errors. As we can

see, the deviation of straggling parameters µi has less impact on the performance of BPCC than

that of shift parameters αi, and BPCC is robust to small errors in general.

52

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

(a)

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 3.6. Relative change of the mean execution time when a) the straggling parameters µi
and b) the shift parameters αi suffer from different degrees of deviation from their true values in
different scenarios.

3.5.3 Comparative Performance Studies

In this sub-section, we compare the performance of the proposed BPCC scheme with

three benchmark schemes, including Uniform Uncoded, Load-Balanced Uncoded and HCMM.

The parameter pi in BPCC is set to pi = ⌊ℓ̂i⌋, ∀i ∈ [N].

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0

100

200

300

400

500

M
e
a
n
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(a)

0 200 400 600 800 1000

Time (s)

0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

ro
w

s

10
4

Receive enough results

(b)

Figure 3.7. a) Comparison of the mean execution time of different schemes in different scenarios.
b) The average total number of rows of inner product results received by the master node over
time for different schemes in Scenario 2.

53

Fig. 3.7(a) shows the mean execution times for all schemes, grouped by the computation

scenario. We can clearly observe that the proposed BPCC scheme outperforms other benchmark

schemes in all scenarios. For instance, BPCC achieves performance improvement of up to 73%

over the Uniform Uncoded scheme, up to 56% over Load-Balanced Uncoded scheme, and up to

34% over HCMM. Note that the execution times are directly derived by using the computing

model in Eq. (3.2) and the decoding times are not considered here.

In Fig. 3.7(a), the performance is expressed in terms of the mean execution time, which

corresponds to E[TBPCC] for different schemes. In Fig. 3.7(b), we show the average amount of

received results over time for Scenario 2, which corresponds to E[S(t)] in the theoretical analysis.

Remarkably, we can observe from the figure that the master node can quickly receive results

from the worker nodes from the very beginning. On the other hand, under the three benchmark

schemes, there is a certain duration at the beginning when the master node does not receive any

result. This phenomenon occurs because our BPCC scheme allows partial results to be returned,

which is very useful for certain applications that can utilize partial results. In Fig. 3.7(b), we also

indicate the time when the master node receives the required amount of results, i.e., r. Such a

time corresponds to τ∗ (i.e., E[S(τ∗)] = r).

3.6 Experiments on the Amazon EC2 Computing Cluster

In this section, we evaluate the performance of the proposed BPCC scheme in the real

distributed computing system. Specifically, we implement three benchmark schemes and the

proposed BPCC scheme in the Amazon EC2 computing platform [131], which is a classical

cloud computing system.

3.6.1 Experiment Settings

To implement the proposed BPCC and the three benchmark schemes over Amazon EC2

clusters 1, we apply a standard distributed computing interface, Message Passing Interface (MPI)

1The source code can be found at https://github.com/BaoqianWang/Batch-Processing-Coded-Computation.

54

https://github.com/BaoqianWang/Batch-Processing-Coded-Computation

[132], by using an open-source package: mpi4py [133], which provides interfaces in Python.

Moreover, to encode and decode matrices in BPCC, we use the Luby Transform (LT) codes with

peeling decoder [129] that are adopted by HCMM [25]. The utilization of LT code relaxes the

constraint of recovering the final computation result from any r rows to any r(1+ε) rows, where

ε > 0 is desired to be as small as possible. In this study, we adopt the configuration in [25] and

set ε = 0.13. The parameter pi in BPCC is set to pi = ⌊ℓ̂i⌋, ∀i ∈ [N].

To evaluate the performance of the four computation schemes, we consider the following

four scenarios:

• Scenario 1: r = 0.5× 104 and N = 5, where one r4.2xlarge instance, two r4.xlarge

instances and two t2.large instances are used as the worker nodes.

• Scenario 2: r = 1× 104 and N = 10, where two r4.2xlarge instances instances, four

r4.xlarge instances, and four t2.large instances are used as the worker nodes.

• Scenario 3: r = 1.5×104 and N = 10, where four r4.2xlarge instance and six r4.xlarge

instances are used as the worker nodes.

• Scenario 4: r = 2×104 and N = 15, where seven r4.2xlarge instance and eight r4.xlarge

instances are used as the worker nodes.

In all above scenarios, the master node runs in a m4.xlarge instance, and the size of the input

vector x ∈ Rm is set to m = 5×105.

3.6.2 Parameter Estimation

In our previous design and analysis, we have assumed that the task completion time T on

each node follows a shifted exponential distribution in a general form:

Pr[T ≤ t] = 1− e−µ(t
r−α) = 1− e−

µ

r (t−αr), (3.21)

55

when t ≥ αr. Therefore, E[T] = r
µ
+αr.

Based on the assumption above, we conduct extensive experiments and measure the

actual execution behaviors to estimate the values of the straggling and shift parameters, µ and

α , for different types of instances. Particularly, let tc(r) = r
µ

and t0(r) = αr, we run tasks of

different sizes. For each task size r, we execute the task repeatedly for M = 1000 times and

obtain the execution times {T1,T2, . . . ,TM}. The maximum likelihood estimates of t0(r) and tc(r)

are then given by t̂0(r) = minl∈[M]Tl and t̂c(r) = 1
M ∑

M
l=1 Tl− t̂0(r), respectively [134, 135]. With

t̂0(r) and t̂c(r) for different task sizes r, we can then estimate the values of µ and α by using the

least squares estimation. Fig. 3.8 shows the estimated cumulative distribution function (CDF)

of the processing time of a t2.xlarge instance when task size r = 500. The estimated α and µ

for different types of Amazon EC2 instances are summarized in Table 3.2. These estimated

parameters will be used to allocate computation loads for all computing schemes, except the

uniform uncoded scheme.

0.32 0.34 0.36 0.38

Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

Real data

Exponential fitting

Figure 3.8. The CDF of the processing time of an Amazon EC2 t2.xlarge instance for computing
a task with r = 500.

3.6.3 Experimental Results

To evaluate the performance of the proposed BPCC scheme running on the heterogeneous

Amazon clusters, we design three experiments.

56

Table 3.2. Estimated computing parameters of different types of Amazon EC2 instances

Instances µ α

r4.xlarge 9.42× 104 1.75× 10−4

r4.2xlarge 9.25× 104 1.60× 10−4

t2.medium 2.15× 104 5.18× 10−4

t2.large 3.90× 104 2.25× 10−4

Experiment 1

In this experiment, we compare the performance of BPCC with the three benchmark

schemes in different scenarios. For each scenario, we run each scheme 100 times and record

the mean execution time (E[T]). To evaluate the robustness of these schemes to uncertain

disturbances, we introduce unexpected stragglers that are randomly chosen in each run. In

particular, we randomly select 20% of the worker nodes to be stragglers in each run. As

stragglers can be slow in computing or returning results (e.g, when communication congestion

happens), such stragglers are emulated by delaying the return of computing results such that

the computing time observed by the master node is three times of the actual computing time.

Fig. 3.9(a) illustrates the mean execution time of different distributed computing schemes in

different scenarios, which also highlights the decoding time required by the coded schemes

including BPCC and HCMM. We can see from the figure that the proposed BPCC scheme

outperforms all benchmark schemes in all scenarios. Specifically, the performance improves up

to 79% compared with Uncoded scheme, up to 78% compared with Load-Balanced scheme, and

up to 62% compared with HCMM.

As stragglers can also fail in returning any results (e.g., when nodes/links fail), we also

consider such stragglers and emulate them by setting the delay time to infinity. Since no results

will be returned by such stragglers, the computation task can fail. Fig. 3.9(b) shows the success

rate (measured by the ratio of successful runs) of each scheme in different scenarios. The mean

execution time of successful runs is shown in Fig. 3.9(c). As we can see, the Uncoded and

Load-Balanced schemes fail to complete the task in all runs, as no redundancy is introduced in

57

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0

2

4

6

8

M
e
a
n
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(a)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0

0.2

0.4

0.6

0.8

1

1.2

S
u
c
c
e
s
s
 R

a
te

(b)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0

2

4

6

8

M
e
a
n
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(c)

Figure 3.9. a) The mean execution time of different schemes in different scenarios at the presence
of unexpected stragglers with finite delay. The b) success rate and c) mean execution time of
different schemes in different scenarios at the presence of unexpected stragglers with infinite
delay.

these schemes. Both HCMM and BPCC can successfully complete the task in most runs, but

HCMM has a lower success rate and is less efficient than BPCC.

In Fig. 3.10, we selectively show the average amount of received results over time

(E[S(t)]) in Scenario 4. As expected, in our BPCC scheme, the master node continuously

receives results from the very beginning. However, in other schemes, the master node needs to

wait a long time before receiving any result.

58

0 1 2 3

Time (s)

0

0.5

1

1.5

2

2.5
N

u
m

b
e

r
o

f
ro

w
s

10
4

BPCC

HCMM

Load balanced uncoded

Uniform uncoded

(a)

0 1 2 3

Time (s)

0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

ro
w

s

10
4

BPCC

HCMM

Load balanced uncoded

Uniform uncoded

(b)

Figure 3.10. The average total number of rows of inner product results received by the master
node over time for different schemes in Scenario 4 at the presence of unexpected stragglers with
a) finite and b) infinite delay.

Experiment 2

In the second experiment, we study the impact of the number of unexpected stragglers on

the performance of the four computation schemes, by varying the percentage of stragglers from

0% to 60%. Similar as Experiment 1, stragglers can delay in returning results for finite or infinite

amount of time.The mean execution time of each scheme at the presence of different numbers of

stragglers with finite delay for Scenario 4 is shown in Fig. 3.11(a). As we can see, when there is

no straggler, the Uniform Uncoded scheme and the Load-Balanced Uncoded scheme achieve the

best performance, as they do not involve any computation redundancy, compared with the coded

schemes. However, when stragglers exist, our BPCC scheme achieves the best performance,

indicating its high robustness to uncertain stragglers. We can also observe from Fig. 3.11(a)

that the performances of all schemes degrade with the increase of the number of stragglers. Of

interest, the performance degradation of the three benchmark schemes slows down when the

number of stragglers reaches to a certain value. This is because worker nodes in these schemes

won’t return any result to the master node until the whole assigned task is completed and all

stragglers would delay returning the result for a period that is three times of the task computation

time. We also note that the performance of HCMM is even worse than the two uncoded schemes

59

when the percentage of stragglers exceeds 20%. This is because each worker node in HCMM is

assigned with more computation load, compared with the uncoded schemes, which causes the

stragglers in HCMM to wait for a longer time before returning any result.

In case when stragglers delay in returning results for infinite amount of time, the success

rate and the mean execution time of each scheme are shown in Fig. 3.11(b) and Fig. 3.12(a),

respectively. As expected, both the Uncoded and Load-Balanced schemes fail to complete the

task. Additionally, the performances of BPCC and HCMM degrade with the increase of the

number of stragglers, and BPCC outperforms HCMM.

0% 20% 40% 60%
0

2

4

6

8

M
e
a
n
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(a)

0% 20% 40% 60%

0

0.2

0.4

0.6

0.8

1

1.2

S
u
c
c
e
s
s
 R

a
te

(b)

Figure 3.11. a) The mean execution time of different schemes in Scenario 4 when different
percentages of unexpected stragglers with finite delay are present. b) The success rate of different
schemes in Scenario 4 when different percentages of unexpected stragglers with infinite delay
are present.

Experiment 3

In the third experiment, we evaluate the impact of the number of batches pi on the

performance of BPCC running on the Amazon clusters. Similar as the simulation study, we let

pi = p, ∀i ∈ [N], and vary the value of p from 5 to 100. Fig. 3.12(b) shows the mean execution

time of BPCC at different values of p under the settings described in Scenario 4 and Experiment

1 when unexpected stragglers with finite delay are present. As expected, the efficiency of BPCC

60

0% 20% 40% 60%
0

2

4

6

8

M
e
a
n
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

(a)

20 40 60 80 100
1.7

1.75

1.8

1.85

M
e

a
n

 E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

(b)

Figure 3.12. The a) mean execution time of different schemes in Scenario 4 when different
percentages of unexpected stragglers with infinite delay are present. b) The mean execution time
of BPCC at different values of p in Scenario 4.

improves with the increase of p.

3.7 Conclusion

In this chapter, we systematically investigated the design and evaluation of a novel coded

distributed computing (CDC) framework, namely, batch-processing based coded computing

(BPCC), for heterogeneous computing systems. The key idea of BPCC is to optimally exploit

partial coded results calculated by all distributed computing nodes. Under this BPCC framework,

we then investigated a classical CDC problem, matrix-vector multiplication, and formulated an

optimization problem for BPCC to minimize the expected task completion time, by configuring

the computation load. The BPCC was proved to provide an asymptotically optimal solution and

outperform a state-of-the-art CDC scheme for heterogeneous clusters, namely, heterogeneous

coded matrix multiplication (HCMM). Theoretical analysis reveals the impact of BPCC’s key

parameter, i.e., number of batches, on its performance, the results of which infer the worst

and best performance that BPCC can achieve. To evaluate the performance of the proposed

BPCC scheme and better understand the impacts of its parameters, we conducted extensive

61

simulation studies and real experiments on the Amazon EC2 computing clusters. The simulation

and experimental results verify theoretical results and also demonstrate that the proposed BPCC

scheme outperforms all benchmark schemes in computing systems with uncertain stragglers, in

terms of the task completion time and robustness to stragglers. In the future, we will further

enhance BPCC by jointly optimizing load allocation and the number of batches to achieve

a tradeoff between computational efficiency and storage consumption, and explore its other

properties, such as the convergence rate.

3.8 Acknowledgement

This Chapter is a reprint of the published journal: B. Wang, J. Xie, K. Lu, Y. Wan, S.

Fu, “On Batch-Processing Based Coded Computing for Heterogeneous Distributed Computing

Systems”, IEEE Transactions on Network Science and Engineering, Vol.8, pp:2438-2454, 2021.

62

Chapter 4

Learning and Batch-Processing Based
Coded Computation for Mobile Networked
Airborne Computing Systems

4.1 Introduction

In the previous chapter, we developed a Batch-Processing Based Coded Computation

distributed computing framework for static and heterogeneous distributed computing systems,

which is applicable to NAC formed by hovering. This chapter extends the work of Chapter 2 to

consider the movements of UAVs.

When UAVs operate in complex and uncertain airspace with high mobility, the fast

node movement, line-of-sight effect, and node leaving and joining can cause frequent topology

changes, link failures, data losses, and task interruptions. Moreover, the various uncertainties

(e.g., winds and other vehicles) present in the airspace can disturb the communication among the

UAVs, bringing additional challenges for robust computing. This chapter aims to tackle these

key technical challenges of NAC to achieve robust cooperative airborne computing onboard

of multiple networked UAVs. In our study, we consider that a NAC system can be formed in

different ways, and there are two realistic formation scenarios. First, the NAC system is formed

by UAVs operated by different owners in an opportunistic manner, e.g., when cargo drones

owned by different companies are serving the same area. Here, the mobility of the UAVs is

63

uncontrollable, unknown, and can be considered random. Second, the NAC system is formed by

UAVs operated by the same owner, e.g., in multi-UAV applications like multi-UAV surveillance,

search and rescue. In this scenario, the mobility of the UAVs can be controlled and proactively

planned by the owner to facilitate computing. In this study, we consider both formation scenarios

and develop innovative computation schemes for the two scenarios to enable efficient, robust,

and adaptable cooperative airborne computing in an uncertain, heterogeneous, and dynamic

airspace. The main contributions are summarized as follows:

1. Dynamic batch-processing based coded computation (D-BPCC) framework: This frame-

work features a dynamic batch-processing based procedure and applies the coding theory

to address the uncertainties phenomenal in a dynamic NAC system and to improve the

efficiency, robustness, and adaptability of the computing system.

2. Deep reinforcement learning (DRL) based optimization and control: DRL-based on-

line decision-making strategies are designed to optimize the system performance and

control UAV mobility. Compared to the conventional numerical optimization methods

[11, 12, 13, 14, 15, 16, 17, 18], DRL-based strategies do not require any knowledge of the

communication, computation, or UAV mobility models, can be quickly deployed in any

NAC systems, and generate solutions in real time.

3. Two typical NAC formation scenarios: We address two typical NAC formation scenarios

by applying the DRL-based and D-BPCC-based schemes. To the best of our knowledge,

these two scenarios have not been investigated in the literature.

4. Comprehensive simulation studies: We conduct comprehensive simulation studies to

evaluate the performance of the proposed methods for the two NAC formation scenarios

from several aspects. We also implement four state-of-the-art distributed computing

schemes as the benchmarks for comparison studies.

64

4.2 Related Work

In this section, we review related work in four areas: networked airborne computing

(NAC), UAV-assisted mobile edge computing (MEC), DRL-based UAV-assisted networks, and

coded distributed computing.

4.2.1 Networked Airborne Computing

Most existing works on UAV-assisted computing focus on MEC [11, 12, 13, 14, 15,

16, 17, 18], where UAVs function as servers to provide computing services to ground users.

Studies that explore resource sharing among UAVs in uncertain airspace via direct flight-to-flight

links are very limited. In [9], the concept of NAC, its advantages and design guidelines were

introduced. In [78, 136], we investigated the hardware and software design for a prototype of the

NAC platform. In [137], we considered a NAC system formed by static UAVs hovering in the air

and developed a coded distributed computing scheme to achieve robust computation of matrix

multiplication tasks.

A more general concept, called mobile ad hoc computing or mobile ad hoc cloud

[138, 139, 140], was coined recently in [138], which refers to any computing systems formed by

mobile devices with resources shared among each other. Existing studies have mostly considered

smartphones [141, 142, 143] or ground vehicles [144] as the main computing resource providers.

Nevertheless, substantial differences exist between NAC and ground-based mobile ad hoc

computing due to the unique features of UAVs such as high 3-D mobility, highly uncertain

operating environment with significant impacts on aerial dynamics, stringent safety requirements,

mechanical and aerospace constraints. Existing solutions cannot address these new technical

challenges of NAC.

65

4.2.2 UAV-assisted Mobile Edge Computing

MEC can address the high transmission latency of remote cloud-based computing

paradigms by deploying cloud resources at the network edge close to users [10]. In UAV-assisted

MEC [145], UAV with computing power functions as an edge server to provide computing

services for ground users. To improve the quality of service (QoS), joint computation offloading

and UAV trajectory designs were investigated in [11, 12, 13, 14, 15, 16, 17, 18], where the UAV

follows an optimized trajectory for serving multiple static ground users. Recently, a few studies

extended the problem to multiple UAVs [146, 147, 148]. In particular, [146, 147] made UAVs

hover statically over ground users and investigated the optimal placement of UAVs and task

assignment. In [148], the trajectories of UAVs were optimally designed, while jointly considering

the optimal bit allocation and task assignment. In [19], the authors considered an MEC system

formed by stationary and UAV-based quasi-stationary MEC servers, and investigated how to

form coalitions with shared resources for MEC servers to better serve their users.

To solve the aforementioned optimization problems, most studies [11, 12, 13, 14, 15,

16, 17, 18, 146, 147, 148] assumed known and time-invariant communication and computation

models and attempted to derive exact solutions. However, this assumption often does not hold in

reality.

4.2.3 DRL-based UAV-Assisted Networks

To manage unknown and complex UAV-assisted networks, DRL has been explored in

many recent studies [149, 23, 150, 151, 152, 153, 154]. For example, multi-agent reinforcement

learning (MARL) was used in [154] to optimize the wireless energy transfer between UAVs and

flying energy resources. Deep Q Network (DQN) was employed in [153] to achieve efficient

dispatch of UAVs as relays in vehicular networks. In [149], DQN was used for UAV path

planning in UAV-assisted MEC to minimize energy consumption and maximize task completion

efficiency. In [23], MARL was applied to plan UAV trajectories, based on which an optimization

66

approach was developed for computation offloading. DRL has also been explored to generate

offloading decisions in UAV-assisted MEC [151, 152], but it hasn’t been applied to NAC.

4.2.4 Coded Distributed Computing

The resilience of distributed computing systems to uncertain system disturbances can

be enhanced using the coded computation techniques. The key idea is to apply the coding

theory to generate redundant computations for reducing the impact of disturbances. This

idea has been explored for different computation problems, such as matrix multiplications

[114, 115, 126, 155, 156, 157], linear inverse problems [158], convolution [159], deep neural

networks [160], map-reduce [161], and MARL [162].

Nevertheless, most of these approaches were developed based on multiple assumptions

(e.g., homogeneous and static computing nodes, known and time-invariant data transfer behavior

and computing power) and thus, cannot be directly applied for NAC.

Recently, coded distributed computing (CDC) has also been explored to facilitate MEC.

For example, an error-correcting-code-inspired strategy was proposed in [103] to execute com-

putation tasks in edge servers. Paper [163] introduced a coding scheme that combines a rateless

code for improving system resiliency and an irregular-repetition code for reducing the communi-

cation latency. However, both approaches assume homogeneous and static computing nodes. In

[164], a Lagrange coded computing-based framework was developed to enable fast and secure

computation in MEC with heterogeneous but static edge servers. Papers [126, 155] are closely

related to this work, which consider a MEC system with heterogeneous and mobile computing

nodes. To reduce task completion delay, a coded computation framework called the coded

cooperative computation protocol (C3P) was developed. Although this framework can address

the first NAC formation scenario with uncontrollable UAVs, it cannot address the second scenario

that requires UAV mobility control. Moreover, as we will show in the Simulation Studies section

(Sec. 6.5), C3P is vulnerable to frequent network changes caused by node movement.

67

4.3 NAC System

In this chapter, we consider a NAC system that consists of multiple UAVs flying at

the same altitude. The system can be either formed by UAVs with random mobility, i.e.,

uncontrollable and unpredictable, or UAVs that can be proactively maneuvered. The onboard

computation tasks to be executed by the UAVs cooperatively are assumed to be matrix-vector

multiplications Ax, where A ∈ Rp×m is a pre-stored matrix. Matrix-vector multiplication is

considered here as it is the building block for many computation tasks, especially machine

learning based applications such as collaborative filtering recommender systems [165] and object

detection [166]. The proposed computation framework can be easily extended for other problems,

such as convolution [167] and distributed path planning [168].

The UAV that receives a sequence of input vectors, {x1,x2, . . . ,xK}, to process is referred

to as the master node, where x j ∈Rm×1, j ∈ [K] := {1,2, . . . ,K} and K is the total number of

input vectors. Due to limited computing power, executing each task in a single UAV can be

time consuming when the task size is large. To speed up the computation, the master node

cooperates with its neighboring N UAVs within the communication range by sharing with them

the computation loads. These neighboring UAVs, referred to as the worker nodes, execute tasks

assigned by the master node and send back the obtained results. The master node then aggregates

the results to output the final values.

This chapter seeks the fastest way for the aforementioned NAC system to complete all

tasks. The desired features of the approach include: 1) Resilience to the various uncertain system

disturbances prominent in the UAV network, such as communication bottlenecks in the network

traffic, link/node failures, package losses, and slow-downs of computing nodes; 2) Adaptivity for

unpredictable network changes such as random node movement, topology and resource (e.g.,

communication, computing, and energy) changes; and 3) quick deployment without requiring

any knowledge of the system models.

68

4.4 Dynamic Batch-Processing Based Coded Computation
Framework

In this section, we first introduce a dynamic batch-processing based coded computation

(D-BPCC) framework to enable robust cooperative airborne computing in an uncertain airspace.

Under this framework, we then formulate the system optimization problems mathematically for

the two different NAC formation scenarios.

4.4.1 D-BPCC Framework

The D-BPCC framework (see Fig. 4.1) exploits the coding theory to enhance system

resilience to uncertain system disturbances and uses a dynamic batch-processing based procedure

(extended from our previous design for static networks [157]) to make the NAC system adaptable

to unpredictable network changes. In particular, in each worker node i ∈ [N] := {1,2, . . . ,N},

we encode matrix A into a new matrix Âi ∈ Rp×m using the following equation

Âi = GiA,

where Gi ∈ Rp×p is an encoding matrix satisfying the condition that any p rows of the concate-

nated encoding matrix G = [G1;G2; . . . ;GN] ∈ RN p×p are linearly independent. This step is

computed offline, and Âi and G are pre-stored in each worker node i, assuming the storage space

of each worker node is sufficiently large.

Once receiving an input vector x j, the master node sends x j to each worker node i.

At the same time, it also notifies each node i the number of rows hi, j of Âi to be processed

at a time. In another word, each worker node i will evenly divide Âi row-wise into ⌈ p
hi, j
⌉

submatrices as [Âi,1, . . . , Âi,⌈ p
hi, j
⌉], where each submatrix has hi, j rows except the last one Âi,⌈ p

hi, j
⌉

that has p− (⌈ p
hi, j
⌉−1)hi, j rows. Each submatrix will then be multiplied with x j one by one, i.e.,

Âi,kx j,∀k ∈ [⌈ p
hi, j
⌉]. For ease of reference, we hereinafter call each submatrix of Âi as a batch,

and hi, j as the batch size. Once a batch is processed, the worker node will send the result back to

69

Figure 4.1. Cooperative airborne computing of matrix-vector multiplication tasks under the
D-BPCC framework.

the master node immediately and move on to process the next batch.

The worker nodes will stop processing after receiving the notification from the master

node, who will send such notification after it receives sufficient results for generating the output.

In particular, let ŷ j denote the results received at the master node by a certain time, which can be

represented by

ŷ j = ĜAx j,

where Ĝ is a submatrix of [G1;G2; . . . ;GN]. Then, the master node can generate the output using

the following equation

Ax j = (ĜT Ĝ)−1ĜT ŷ j,

as long as the length of ŷ j is larger than or equal to p, i.e., |ŷ j| ≥ p.

The following lemma shows the resilience of D-BPCC to uncertain stragglers.

Lemma 8. For a distributed computing system with a master node and N worker nodes, D-BPCC

can tolerate up to N−1 worker nodes failures when processing matrix-vector multiplication

tasks.

Proof. As each worker node i pre-stores the encoded matrix Âi = GiA with Âi ∈ Rp×m, given

an input x ∈ Rm×1, the aggregated results computed by the node are sufficient for obtaining the

70

value of Ax by Ax = G−1
i Âix. Therefore, when there are N−1 or fewer worker nodes failing to

return results, the master node can utilize the results from other nodes to recover the final value.

Remark 1. According to Lemma 8, with D-BPCC, the master node can complete each compu-

tation task Ax j as long as there is a functioning worker node. If the master node also shares

certain workload (i.e., also being one of the worker nodes), any network changes or uncertain

system disturbances won’t cause tasks to fail as long as the master node is functional.

Remark 2. In the special case that N−1 worker nodes fail, the remaining functional worker

node i will compute the whole task Âix. Although this may lead to more computation time

compared with directly performing the task at the master node without distributed computing,

the probability of this happening is usually small especially when N is large.

The high resilience makes D-BPCC suitable for NAC in an uncertain and dynamic

airspace. Processing tasks as small batches also naturally handles node heterogeneity as nodes

with more computing or communication resources will process more batches. Moreover, with

batch processing, the master node will continuously receive partial results from the worker nodes,

which can be utilized to generate approximated outputs. This feature is crucial for safe UAV

operations that require quick responses to environmental changes such as wind, birds, obstacles,

and other UAVs.

4.4.2 Problem Formulation

In D-BPCC, the batch size hi, j is a key control variable to be determined, which will

impact the system performance. In particular, when hi, j is large (e.g., equal to p), very few worker

nodes will essentially contribute to the computation and their resources are hence underutilized.

On the contrary, when hi, j is small (e.g., equal to 1), the frequent data transmissions by the

worker nodes may generate large overhead and communication traffic. Another key factor

that will impact the computing performance is the relative distance between two UAVs, which

71

affects the data transmission time. In the NAC formation scenario where UAVs move randomly

with uncontrollable mobility, we exploit the optimization of the batch size hi, j to minimize the

impact of random UAV mobility and other uncertain system disturbances, and make the system

adaptable to uncertain network changes. In the scenario where UAVs are controllable, we exploit

the benefit of UAV mobility control to computing and jointly optimize the batch size and UAV

mobility.

To formulate the system optimization problems mathematically, we first introduce the

evaluation metrics for the system performance. Denote the time required by each worker node

i to process bi, j batches for the j-th task as Ti, j. Then Ti, j can be captured by the following

equation.

Ti, j = T comm
i, j +T comp

i, j , (4.1)

which includes the communication time T comm
i, j and the computation time T comp

i, j . The communi-

cation time T comm
i, j can be captured by

T comm
i, j = T comm

i, j (x j)+T comm
i, j (Âi,bi, jx j)

where T comm
i (x j) is the time spent to send the input vector x j from the master node to the worker

node i and T comm
i, j (Âi,bi, jx j) is the time spent to send the last batch computation result from the

worker node i back to the master node. Note that there is no break between two batches. Once a

worker node completes a batch, it will immediately move on to process the next batch and at the

same time transmit the computation result of the previous batch to the master node.

The computation time T comp
i, j in (4.1) can be captured by

T comp
i, j =

bi, j

∑
k=1

T comp
i, j (Âi,k,x j)

72

where T comp
i, j (Âi,k,x j) is the time spent by the worker node i to compute one batch Âi,kx j. Note

that the communication and computation times are affected by various factors and finding perfect

models for them is very challenging considering the uncertain and dynamic airspace. In contrast

with most existing studies that assume the existence of perfect communication and computation

models, we do not make such assumptions in this study.

With Ti, j, the completion time of each task j ∈ [K] can then be represented by:

Tj = min
t
{t|R j(t)≥ p}

where R j(t) = ∑
N
i=1 bi, jhi, j1Ti, j≤t is the total number of rows of inner product results for task j

that the master node has received by time t. 1 is the indicator function [169].

The mathematical formulations of the optimization problems for the two NAC formation

scenarios are described as follows.

Problem 1

Consider the scenario where the mobility of UAVs is random and cannot be controlled.

Assuming that the positions and velocities of the UAVs can be observed through sensing and

estimation, we aim to minimize the total task completion time by optimizing the batch size hi, j,

which is formulated as

P1 : min
hi, j

∀i∈[N],∀ j∈[K]

J1 =
K

∑
j=1

Tj

s.t. C1 : hi, j ∈ Z+,∀i ∈ [N],∀ j ∈ [K]

C2 : hi, j ≤ p,∀i ∈ [N],∀ j ∈ [K]

C3 : pi,t+∆T = fi(pi,t ,vi,t ,∆T),∀i ∈ [N +1]

C4 : Tj = min
t
{t|R j(t)≥ p},∀ j ∈ [K]

C5 : R j(t) =
N

∑
i=1

bi, jhi, j1Ti, j≤t ,∀ j ∈ [K]

(4.2)

73

In constraint C3, pi,t ,vi,t denote the position and velocity of UAV i at time t, respectively, where

i ∈ [N +1] with the master node indexed by N +1. fi(·) describes the movement behavior of

each worker node i, whose specific formula is unknown, but the velocity of each UAV is assumed

to be fixed over a small time period ∆T .

Problem 2

Consider the scenario where the mobility of UAVs is controllable, and each UAV has

a target location to reach while performing cooperative airborne computing. The goal is to

simultaneously minimize the total task completion time and the total UAV flight time. To

achieve this goal, we formulate the following optimization problem that jointly optimizes UAVs’

velocities and batch sizes.

P2 : min
hi, j,vi, j

∀i∈[N],∀ j∈[K]

J2 = ω

K

∑
j=1

Tj +
N+1

∑
i=1

T f light
i

s.t. C1,C2,C3,C4,C5

C6 : vi,t = vi, j, t j ≤ t < t j+1,∀i ∈ [N +1]

C7 : pi,T f light
i

= gi,∀i ∈ [N +1]

C8 : |pi,t−p j,t | ≤ ε,∀i, j ∈ [N +1], i ̸= j

C9 : vmin ≤ vi, j ≤ vmax,∀i ∈ [N +1], j ∈ [K]

(4.3)

where T f light
i is the flight time of UAV i and ω is a weight that trades off between total task

completion time and total flight time. When executing each task j, we let each UAV i fly at a

velocity of vi, j, which remains unchanged during the task execution period [t j, t j+1), where t j is

the start time of task j and t j+1 = t j +Tj. Constraint C7 ensures that each UAV will reach its

target location specified by gi. Constraint C8 prevents collisions among the UAVs, where ε is the

minimum safety distance between two UAVs.

74

4.5 DRL-based Solution to P1

In this section, we solve problem P1 in (4.2) by exploiting DRL, specifically, the Deep

Deterministic Policy Gradient (DDPG) method [170], which does not need any knowledge of the

communication, computation or UAV mobility models, and can be quickly deployed in any NAC

systems to make decisions online in real time. We first convert the optimization problem into a

reinforcement learning (RL) problem, and then describe the solution to the resulting problem.

4.5.1 RL based Formulation for P1

To convert P1 into a RL problem, we first model this problem as a Markov Decision

Process (MDP) characterized by a quintuple (st ,at ,ζ ,r,µ) with each component described as

follows.

State st

The system state at time t includes distances di,t between each worker node and the

master node, and velocities vi,t of all nodes. Specifically,

st = [d1,t ,d2,t , . . . ,dN,t ,v1,t ,v2,t , . . . ,vN+1,t]
⊤ ∈S ,

where S denotes the state space.

Action at

In P1, the batch size hi, j for each worker node i and task j is the control variable to be

determined when executing the task j, hence the action to take. The action taken at time t j (start

time of task j) is then defined as follows

at j = [h1, j,h2, j,h3, j, . . . ,hN, j]
⊤ ∈A

75

where A is the action space. Note that each hi, j in at j should satisfy constraints C1 and C2 in

P1, i.e., hi, j ∈ Z+ and hi, j ≤ p.

Transition function ζ

The transition function describes the transition from the current state to the next state

given the current action, and outputs the probability distribution over the next state, i.e., ζ :

S ×A ×S → [0,1]. In P1, given the state st j and action at j at time t j, the next state of interest

is the state st j+1 at the start time t j+1 of the next task j+1, as t j+1 is the time to make the next

decision. To obtain st j+1 , the computing nodes take action at j and execute task j. The next

state st j+1 can then be obtained by observing the positions and velocities of all nodes at time

t j+1 = t j +Tj. Note that in our settings, the explicit form of the transition function ζ is unknown.

Reward function r

As the goal of P1 is to minimize the total task completion time, we define the reward

function as follows:

r(st j ,at j) =−ω1Tj

which can be obtained based on the state st j and action at j . A larger reward indicates less time

taken for computing a task j.

Policy function µ

The policy function determines the action to take given the current state, which can be

deterministic or stochastic. We here consider a deterministic policy function that maps the state

space to the action space, i.e., µ : S →A and a = µ(s). In P1, the policy function is called

only at the start time t j of each task j.

With the above MDP setting, we can then convert P1 into a RL problem that determines

the optimal policy µ∗(s) such that the following expected cumulative discounted reward is

76

maximized,

Qµ(s,a) :=E st j∼ζ

at j=µ(st j)

[K

∑
j=1

γ
j−1r(st j ,at j)|st1 = s,at1 = a

]

where s ∈S , a ∈A , and γ ∈ (0,1] is a discount factor. Qµ(s,a) is also known as the action

value function or Q function. The optimal policy can be obtained by

µ
∗(s) ∈ argmax

a
Q∗(s,a)

where Q∗(s,a) is the optimal Q function obtained by Q∗(s,a) := maxµ Qµ(s,a).

4.5.2 Deterministic Policy Gradient Method

To solve the above RL problem, the key is to derive the optimal Q function Q∗(s,a),

which can be obtained by using the Bellman equation [171] as follows

Q∗(s,a) =Es′∼ζ

[
r(s,a)+ γ max

a′
Q∗(s′,a′)

]
(4.4)

where s′ ∼ ζ (s,a) denotes the next state. As the state space is continuous, Q∗(s,a) cannot be

directly computed. Instead, we approximate Q∗(s,a) using a parameterized non-linear function,

denoted as Q(s,a;θ), where θ is the parameter. We delay the design of the non-linear function

to the next subsection.

It is noted that in (4.4), the transition function ζ is needed for computing the optimal Q

function, whose explicit form is, however, unknown. To address this challenge, we introduce a

learning agent to interact with the NAC system, which is the environment, and collect transition

data to approximate the transition function ζ . The transition data to be collected includes the

state, action, reward, and the next state, i.e., (s,a,r,s′), and are stored in a replay buffer denoted

77

by D . Equation (4.4) can then be rewritten as

Q(s,a;θ)≈ E(s,a,r,s′)∼D

[
r(s,a)+ γ max

a′
Q(s′,a′;θ)

]
,

with Q∗(s,a) approximated by Q(s,a;θ). This equation can be solved to obtain the optimal Q

function by minimizing the following error,

J(θ) = E
(s,a,r,s′)∼D

[(
Q(s,a;θ)−

(
r+ γ max

a′
Q
(
s′,a′;θ

)))2
]
.

However, we note that directly computing maxa′Q(s′,a′;θ) in the above error function is

difficult considering the large state and action spaces. To address this issue, we introduce a

policy approximator denoted by µ(s;φ) with parameter φ to output the action using a = µ(s;φ).

We then learn the parameters of the policy and Q functions to minimize the error function.

Moreover, to stabilize the training procedure, we introduce a target policy function µ ′ and a

target Q function Q′ with the same function representations and initial weights as the original

policy and Q functions. The error function finally used for finding the optimal Q function is then

given as

J(θ) = E
(s,a,r,s′)∼D

[(
Q(s,a;θ)−

(
r+ γQ′

(
s′,µ ′(s′;φ);θ

)))2
]

where the parameters φ of the policy function is updated using the policy gradient theorem by

∇φ J(φ) = E
(s,a,r,s′)∼D

[
∇φ µ(s;φ)∇aQ(s,a;θ)

]
4.5.3 Deep Neural Network based Function Representation

To approximate the policy functions, µ(s) and µ ′(s), and the Q functions, Q(s,a) and

Q′(s,a), we adopt deep neural networks (DNNs) considering their powerful approximation

78

Figure 4.2. DNN representation of the policy functions for computation load optimization.

capability. For the policy functions, we design a DNN with four fully connected layers. The

input layer consists of 3N +2 units representing the system state at time t j (start time of task

j ∈ [K]), denoted by st j . The output layer consists of N +1 sigmoid units [172], denoted by yt j ,

which output normalized batch sizes ranged between 0 and 1. The batch size hi, j for each worker

i and task j is computed by

hi, j = ⌈pyi,t j⌉

where ⌈⌉ is the ceiling function. This ensures that the load constraints C1,C2 are satisfied. Each

hidden layer consists of 64 units with ReLU activation function [173]. An illustration of the

designed DNN is shown in Fig. 4.2.

To approximate the Q functions, we design a DNN also with four fully connected layers.

It takes both state st j and action at j as the input and has a single linear unit in the output layer to

generate the Q value. The hidden layers consist of 64 ReLU units.

4.5.4 Training DRL Agent

To estimate the parameters in the DNN-based policy and Q functions, we adopt the

offline training procedure in [170], which involves the following three stages.

Initialization

In the initialization stage (Lines 1-6 in Alg. 2), the weights of the DNNs are randomly

initialized. The learning agent then executes the policy constructed using the initial weights for

initial episode number episodes to initialize the replay buffer D . After that, the exploration and

79

parameter update stages described below are performed for max training iteration iterations,

where max training iteration is a constant large enough for ensuring convergence.

Training Data Collection

In the training data collection stage (Lines 8-12 in Alg. 2), the learning agent inter-

acts with the environment to collect the transition data (st j ,at j ,r,st j+1) by running the policy

constructed with the current weights for max episode number episodes. In particular, in time

step t j for each task j, given the current state st j , the action is generated by applying the policy

at j = µ(st j). The next state st j+1 is obtained by observing the positions pi,t j+1 and velocities

vi,t j+1 of all UAVs at time t j+1. The movement of each UAV is described by the mobility model

pi,t j+∆T = fi(pi,t ,vi,t ,∆T) with vi,t j being the mobility control input. It is noted that our method

does not require knowledge of the mobility model and fi can take any form. With pi,t j+1 , the

distances di,t j+1 in the next state st j+1 can then be computed. The rewards r are obtained by

applying the reward function described in Sec. 4.5.1.

The collected transition data is stored in the replay buffer D . After that, a mini-batch B

is randomly sampled from the replay buffer D , which will be used in the next stage to update the

parameters of the policy and Q functions.

Parameter Update

The parameters θ of the Q function are updated by minimizing the following temporal-

difference error:
J(θ)≈ 1

|B| ∑
(s,a,s′,r)∈B

[
L(s′,r)−Q(s,a;θ)

]2
L(s′,r) = r+ γQ′(s′,µ ′(s′;φ);θ)

(4.5)

The policy parameters φ are updated using gradient ascent based on the policy gradient theorem,

with the gradient given as follows[171]:

∇φ J(φ)≈ 1
|B| ∑

(s,a,s′,r)∈B
∇φ µ(s;φ)∇aQ(s,a;θ) (4.6)

80

Figure 4.3. The training process of the DRL-based method for NAC with uncontrollable UAVs.

To update the parameters, φ ′ and θ ′, in the target policy and Q functions, Polyak averaging

given below is applied:

φ
′← τφ

′+(1− τ)φ

θ
′← τθ

′+(1− τ)θ

(4.7)

where τ ∈ (0,1) is a hyperparameter. The complete training procedure is summarized in Alg. 2

and illustrated in Fig. 4.3.

Algorithm 2: DRL Training Procedure
// Initialization

1 Initialize φ ,θ ,θ ′,φ ′,D
2 for k = 1 : initial episode number do
3 for j = 1 : K do
4 Select at j =µ(st j ;φ).
5 Execute action at j and receive new state st j+1 and reward r.
6 Store (st j ,at j ,r,st j+1) in replay bufferD .

7 for iteration = 1 : max training iteration do
// Training Data Collection

8 for k = 1 : max episode number do
9 for j = 1 : K do

10 Select at j =µ(st j ;φ).
11 Execute action at j and receive new state st j+1 and reward r.
12 Store (st j ,at j ,r,st j+1) in replay bufferD .

13 Sample a random mini-batch B.
// Parameter Update

14 Update θ by minimizing the temporal-difference error in (4.5).
15 Update φ using gradient ascent, with the gradient provided in (4.6).
16 Update θ and φ using (4.7).

81

4.5.5 Convergence and Complexity Analysis

Our DRL-based algorithm follows the standard DDPG training procedure, which is not

theoretically guaranteed to converge in its general form [174]. In this study, we evaluate the

convergence of the proposed algorithm empirically through simulation studies in Section 6.5.

The time complexity of the proposed DRL-based algorithm is dominated by the training of

actor and critic neural networks [175, 176], which is captured by O(∑J−1
j=1 χ jχ j+1+∑

Z−1
z=1 χ̂zχ̂z+1).

Here J and Z are the number of layers in the actor and critic neural networks, respectively. χ j,

and χ̂z represent the number of units in j-th and z-th layer, respectively.

The space complexity of our algorithm is determined by the amount of memory required

to store the actor and critic neural networks as well as the replay buffer [175], which is captured

by O(∑J−1
j=1 χ jχ j+1 +∑

Z−1
z=1 χ̂zχ̂z+1 + |D |).

In our design, J = 4,Z = 4, χ1 = dim(s),χ2 = χ3 = 64,χ4 = dim(a), χ̂1 = dim(s) +

dim(a), χ̂2 = χ̂3 = 64, χ̂4 = 1, and |D |= 105, where dim(·) finds the dimension of a vector.

4.6 DRL-based Solution to P2

In this section, we solve problem P2 in (4.3) by extending the DRL method described in

the previous section.

4.6.1 RL based Formulation for P2

Similarly, we first model problem P2 as a MDP characterized by the following quintuple

(st ,at ,ζ ,r,µ).

State st

As UAVs’ velocities are control variables in P2, we define the state at time t to only

include distances di,t between each worker node i and the master node. The state st is then

represented by

st = [d1,t ,d2,t , . . . ,dN,t]
⊤ ∈S

82

where S is the state space.

Action at

In this setting, in addition to the batch size hi, j for each worker node i and task j, the

action at j taken at time t j (start time of task j) also includes the velocities of each node vi, j, i.e.,

at j = [h1, j, . . . ,hN, j,v1, j, . . . ,vN+1, j]
⊤ ∈A

Transition function ζ

The explicit form of the transition function ζ is still unknown in P2. Different from

P1, in order to obtain the next state st j+1 , we should let the NAC system execute task j and

UAVs move at the same time based on the action at j . st j+1 can then be obtained by observing the

positions of the UAVs at time t j+1 = t j +Tj.

Reward function r

P2 aims to minimize the weighted sum of the total task completion time ∑
K
j=1 Tj and

the total flight time ∑
N+1
i=1 T f light

i . To achieve this goal, given current state st j and action at j , we

define the reward function as follows

r(st j ,at j) =−ω1Tj−
N+1

∑
i=1
||pi,t j −gi||

where the first term penalizes long task completion time, and the second term drives each UAV to

move closer to its target location and hence arrive there sooner. Moreover, as UAVs should keep

a safe distance between each other (constraint C8 in P2), we add a third term into the reward

function to achieve collision avoidance. The revised reward function is then given by

r(st j ,at j) =−ω1Tj−
N+1

∑
i=1
||pi,t j −gi||−ωc1|pi,t−pk,t |≤ε,∀i,k∈[N+1],i̸=k (4.8)

83

Figure 4.4. DNN representation of policy function µ for joint computation load and UAV
mobility optimization.

where ωc > 0 is the weight.

Policy function µ

Similar as P1, a deterministic policy function µ : S → A is considered and used to

generate the action at the start time t j of each task j ∈ [K].

With the above MDP setting, we can then follow the similar procedure described in Sec.

4.5.1 to formulate the RL problem.

4.6.2 Solution to P2

The derived RL problem can be solved by using the deterministic policy gradient method

described in Sec. 4.5.2. For function approximation, we adopt the same DNN structure to

approximate the Q functions. To approximate the policy functions, we design a DNN shown

in Fig. 4.4. It differs from the one shown in Fig. 4.2 in that the output layer contains additional

2N +2 linear units for generating UAV mobility control signals, i.e., vi, j ∈ R2,∀i ∈ [N +1]. To

meet constraint C9 in P2, the values generated by these linear units are clipped if falling out of

the range [vmin,vmax].

To ensure each UAV will reach its target location (constraint C6 in P2), which can

happen before or after it completes all computation tasks, we introduce the following mechanism.

In case when the UAV has completed all assigned tasks but hasn’t reached its target location yet,

the UAV switches to another policy that generates mobility control commands only based on its

84

current state. This policy is trained using a similar DRL method with the reward function defined

as

r(st j ,at j) =−
N+1

∑
i=1
||pi,t j −gi||−ωc1|pi′,t−p j′,t |≤ε,∀i′, j′∈[N+1],i′ ̸= j′.

The DNN used for approximating the policy function is similar to the one shown in Fig. 4.2 but

with only 2N + 2 linear units for generating UAV velocities. Moreover, the UAV changes its

velocity after every ∆T . In other cases when the UAV has reached its target location but still has

computation tasks remain to complete, the UAV switches to the policy trained using the method

presented in Sec. 4.5 for generating the task allocation decisions.

4.7 Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed

DRL and D-BPCC based methods for NAC under two different formation scenarios. We first

design a simulator for the NAC system, and then describe the benchmark schemes used in the

comparative studies. The experiment results are presented at the end. All experiments were run

on an Alienware Desktop with 32GB memory, 16-cores CPU with 3.6GHz.

4.7.1 Simulator Design

To simulate the NAC system, we adopt the following communication, computation and

mobility models. It is worth noting that our methods are general and can be applied to NAC

systems described by other system models, as no knowledge of the models are required to

implement our methods.

Communication Model

Suppose all UAVs in the NAC system are equipped with the same directional antennas

for long-range and broadband UAV-to-UAV communications, and implement advanced antenna

85

control algorithms to keep the antennas aligned for robust communication [177]. The time to

transmit a matrix X with a rows and b columns between any two UAVs via the UAV-to-UAV link

can then be modeled as

T comm(X) =
a×b×u

C

where u (bits) is the average size of the elements in X and is set as 32 in all experiments. C

(bits/sec) is the data rate that can be derived using the Shannon’s theory as follows

C =Wlog2(1+
S

N0
)

S = 10
(Sd−30)

10

Sd = Pt +20log10(λ)−20log10(4π)−20log10(d)+G+κ

where W (Hz) is the communication bandwidth between two UAVs. N0 (Watts) is the noise

power. S (Watts) is the signal power determined by the transmitting power of the transmitter Pt

(dBm), wave length λ (m), sum of the transmitting and receiving gains G (dBi), and distance

between the two UAVs d (m). κ denotes the Gaussian noise with zero mean and variance σ

[177]. In our simulations, these parameters are configured as W = 104,N0 = 1.1×10−12,Pt =

27,G = 32,λ = 0.12 and σ = 1.

Computation Model

To simulate the computing power of a UAV, we extend the modeling technique used in

many studies [114, 24]. Particularly, we assume the time T comp
i (A,x) taken by each UAV i to

multiply A ∈Rℓ×m by x ∈Rm×1 follows a shifted exponential distribution:

P
[
T comp

i (A,x)≤ t
]
= 1− e−

βi
ℓ (t−αiℓ−ξi) (4.9)

where t ≥ αiℓ+ξi specifies the minimum time required to compute the task.

βi > 0 and αi > 0 are straggling and shift parameters, respectively, characterizing the

86

computing capability of the UAV. The bias term ξi captures the time required for task initialization

and function calls. Of note, this term is not included in existing computation models. However,

our experiments show that the shifted exponential model with a bias term better captures the

characteristics of real computing systems. For illustration purpose, we plot in Fig. 4.5 the

computation model constructed for the Amazon EC2 t2.xlarge instance by using real experiment

data and following the parameter estimation procedure described in [157]. The estimated

parameters are α = 6×10−4,β = 1265 and ξ = 0.04.

In the following simulation studies, we let ξi = ξ = 0.04, ∀i ∈ [N]. The straggling

parameter βi is randomly generated from the range [100,500] and the shift parameter is set to

αi =
1
βi

[156].

Mobility Model

We assume the UAVs are equipped with an advanced controller robust to wind pertur-

bations and no strong winds are present. The point-mass kinematic model can then be used to

simulate the movements of UAVs. In particular, the position of UAV i at time t +∆T is computed

by the following equation,

pi,t+∆T = f (pi,t ,vi,t ,∆T) = pi,t +vi,t∆T

In scenarios where the NAC system is formed by uncontrollable UAVs, we let each UAV i change

its velocity after each computation task j is completed, with the velocity randomly picked from

the range [−10m/s,10m/s]× [−10m/s,10m/s].

With the NAC simulator, we train the proposed DRL methods offline by following the

procedure described in Algorithm 2. During the mission, the trained policies generate desired

actions online in real time.

87

(a) (b)

Figure 4.5. a) Minimum task completion time αl + ξ versus task size l. b) CDF of the task
completion time of an Amazon EC2 t2.xlarge instance for computing Ax with l = 500.

4.7.2 Benchmarks

We implement the following four representative distributed computing schemes as bench-

marks.

Uniform Uncoded (UU)

In the traditional uncoded distributed computing systems, to perform a matrix-vector

multiplication task Ax, the master node decomposes A ∈Rp×m row-wise into N non-overlapping

submatrices {A1,A2, . . . ,AN}, where Ai ∈ Rℓi×m, and assigns subtask Aix to work node i ∈ [N].

After receiving results from all worker nodes, the master node can recover Ax by concatenating

the results, i.e., Ax = [A1x;A2x; . . . ;ANx]. To allocate the workload, the UU scheme [114]

simply divides the load equally, i.e.,

ℓi =
p
N
,∀i ∈ [N],

disregarding the computing power of the worker nodes.

88

Load-Balanced Uncoded (LBU)

This scheme [156] divides the computation load according to the computing power of

the worker nodes. In particular, the load assigned to each worker node i is inversely proportional

to the expected time for this node to compute an inner product, i.e.,

ℓi ∝
βi

αiβi +1
,∀i ∈ [N]

with ∑
N
i=1 ℓi = p. Note that this scheme requires the knowledge of the computation model.

Heterogeneous Coded Matrix Multiplication (HCMM)

This is a state-of-the-art CDC scheme for heterogeneous static computing systems [156].

It first encodes matrix A into a larger matrix Â with more rows, and then follows the same

procedure as the uncoded schemes to partition and allocate the computation load. The only

difference is that the submatrices of the encoded matrix Â are multiplied with the input vector

at the worker nodes. When the master node receives sufficient results, i.e., the number of rows

of aggregated results is no less than p, it can compute the final value. In this scheme, the load

assigned to each worker node i is computed by

ℓi =
p

λiη
,

where λi is the positive solution to eβiλi = eαiβi(βiλi + 1), and η = ∑
N
i=1

βi
1+βiλi

. Like LBU,

HCMM also requires the knowledge of the computation model.

Coded Cooperative Computation Protocol (C3P)

C3P [126] is a state-of-the-art CDC scheme for heterogeneous mobile computing systems.

In this scheme, the master node packetizes each row of A and encodes each packet. Given an

input vector x, it first broadcasts x to all worker nodes and then gradually offloads the coded

packets to the worker nodes one by one. To optimize the computing performance, the offloading

89

interval is dynamically adjusted based on the worker nodes’ response times to previous tasks.

This scheme does not require any knowledge of the computation, communication or mobility

model, and hence can be directly used to solve problem P1.

As all benchmarks do not consider mobility control, to solve P2, we apply the bench-

marks for load allocation and the DRL method described in Sec. 4.6.2 for UAV mobility control,

which runs independently.

4.7.3 Evaluation of Solution to P1

This section evaluates our solution to P1 for the scenario where the mobility of UAVs is

uncontrollable.

Experiment Settings

We consider the following three computation scenarios with varying number of UAVs

and task sizes.

• Scenario 1: N = 3, p = 5000.

• Scenario 2: N = 6, p = 10000.

• Scenario 3: N = 12, p = 20000.

In all computation scenarios, the dimension of each input vector is set to m = 105. Initially, the

UAVs are randomly distributed over a 400m × 400m area. The total number of computation

tasks to be computed is K = 25 and the travel interval is set to ∆T = 10s. To understand the

impact of the bias term ξ in the computation model, we also evaluate the case when ξ = 0, in

addition to the more realistic case when ξ = 0.04. In all experiments, the parameters of the

DRL method are configured as γ = 0.95,τ = 0.01,ω1 = 15,ωc = 5, initial episode num = 205,

max training iteration = 1000, and max episode num = 4.

90

Figure 4.6. Training reward of our method for P1.

Training Reward

We first show the learning curves of our method in different computation scenarios with

different bias settings. As shown in Fig. 4.6, our method converges in all scenarios.

Comparative Results

The first comparative study evaluates the computation efficiency of different methods.

For each computation scenario, we run each method 100 times and record the mean time spent

for completing each computation task, referred to as the average task completion time. As shown

in Fig. 4.7, our method achieves the highest efficiency in all computation scenarios. Comparing

Fig. 4.7(a) and Fig. 4.7(b), we can observe that the efficiency of both our method and C3P is

significantly impacted by the value of ξ , the overhead induced by task initialization and function

calls. However, ξ has a negligible impact on the performance of HCMM, LBU and UU. This is

because the worker nodes in our method and C3P process each task batch by batch, where each

packet in C3P can be considered as a batch with size hi, j = 1, ∀i ∈ [N],∀ j ∈ [K]. Nevertheless, in

HCMM, LBU, and UU, worker nodes process each task as a whole. Hence, when ξ is non-zero,

the overhead induced by the many batches in our method and C3P can be significant.

Moreover, we can observe from Fig. 4.7(a) that although the efficiency of C3P is compa-

rable to our method when the batch overhead is negligible, it is much slower than our method

when the batch overhead cannot be ignored (see Fig. 4.7(b)). This is because the C3P fixes the

91

batch size to 1 and hence does not address the performance-cost trade-offs. Furthermore, as

the C3P applies a simple moving average algorithm [126] to approximate the worker nodes’

computation times when making the offloading decisions, it achieves a poor performance when

the computation times have a large variance, which can happen if UAVs are conducting many

other tasks at the same time. To illustrate this, we let the computing parameters µ and α of

each worker node change frequently over time, by randomly sampling a new value from the

range [100,500] after each batch is processed. The results are shown in Fig. 4.8. By comparing

Fig. 4.7(a) and Fig. 4.8, we can observe that though the performance of both C3P and our method

degrades as nodes’ computing resources change frequently, our method is much more resilient to

such changes. Of interest, UU is not impacted by such changes. This is because UU divides the

load equally, disregarding the different computing capabilities of the worker nodes.

(a) (b)

Figure 4.7. Average task completion times of different methods in different scenarios when a)
ξ = 0 and b) ξ = 0.04.

The second comparative study evaluates the resilience of different methods to network

topology changes caused by high UAV mobility. Particularly, we randomly pick one or two

worker nodes and make them move out of the communication range of the master node, which is

set to 1500m. Therefore, results computed by the nodes left cannot be received by the master

node.

Fig. 4.9 shows the simulation results with ξ = 0.04. As we can see, our method still

achieves the highest efficiency and is the most resilient to topology changes. Of note, there

92

Figure 4.8. Average task completion times of different methods in different scenarios when
ξ = 0 and computation times have a large variance.

is no data for the LBU and UU schemes, as they require results from all the worker nodes to

successfully complete a computation task and hence any node leaving would cause the whole

task to fail. To further evaluate the resilience of different methods, we perform a stress test and

measure the success rate (ratio of successful runs) of each method when the number of nodes

left increases. Fig. 4.10 shows the results for computation Scenario 2 with N = 6. The results for

the other two scenarios are similar and thus are eliminated to save space. From the figure, we can

see that both our method and C3P can complete all computation tasks as long as there is a worker

node within the network. The success rate of HCMM decreases quickly when more nodes leave

the network, and both UU and LBU fail all tasks when there is one or more nodes left.

(a) (b)

Figure 4.9. Average task completion times of different methods in different scenarios when
there are a) one and b) two worker nodes leaving the NAC network.

93

Figure 4.10. Success rates of different methods in Scenario 2 (N = 6) when an increasing
number of worker nodes leave the NAC network.

4.7.4 Evaluation of Solution to P2

This section evaluates our solution to P2 for the NAC formation scenario with control-

lable UAVs.

Experiment Settings

We consider the following two computation scenarios.

• Scenario 1: N = 3, p = 5000.

• Scenario 2: N = 6, p = 10000.

The parameters of the reward function in (4.8) are set to ω = 15 and ωc = 5. The target locations

gi,∀i ∈ [N +1] are randomly sampled from [−200m×200m]× [−200m×200m]. The bias term

in the computation model is configured as ξ = 0.04.

We notice that our DRL method is limited in the scale of the NAC network it can handle,

due to the exponentially growing state and action spaces. This is an issue inherent in all RL

methods. One potential solution is to use MARL [178], but this requires the change of the

computing architecture. We will leave this problem to the future work.

94

Figure 4.11. Training reward of our method for P2.

Training Reward

Fig. 4.11 shows the learning curves of our method under different settings. As we can

see, the training rewards increase with more training iterations and finally converge.

Inference Time

The average inference time of our method measured over 50 runs is about 0.012s, which

is small enough for UAVs to promptly react to potential collisions.

Comparative Results

Fig. 4.12(a) shows the total cost J2 of different methods averaged over 100 experimental

runs, where our method (separate) refers to the method that optimizes the two objectives of P2

separately, by using our solution to P1 for load allocation and the DRL algorithm described

in Sec. 4.6.2 for UAV mobility control. As we can see, our method that jointly optimizes

the two objectives outperforms all benchmark schemes in achieving the best tradeoff between

computation efficiency and travel cost. It is noted that we can tune the weight ω to capture the

relative importance of the two objectives depending on the application needs.

To better understand the performance of our method, we also plot in Fig. 4.12(b) and

Fig. 4.12(c) the values of the total task completion time and total flight time, respectively.

The results show that our method (joint) completes all computation tasks the most quickly, but

95

(a) (b)

(c)

Figure 4.12. a) Total cost, b) average task completion times and c) total flight time of different
methods in different scenarios.

consumes the highest UAV flight time. This is expected as all benchmark methods adopt the

DRL policy that minimizes the flight time without considering the computing performance.

Moreover, the comparison results between our method (joint) and our method (separate) confirm

our hypothesis that the mobility of the UAVs can be proactively controlled to facilitate computing.

Fig. 4.13 plots the sample trajectories of the UAVs in Scenario 1 (N = 3) implementing

different methods. The initial and target locations of the UAVs are marked using stars and

diamonds, respectively. As we can see from Fig. 4.13(a), our method ensures that all UAVs

will reach their target positions. Comparing Fig. 4.13(a) and Fig. 4.13(b), it is observed that the

trajectories generated by benchmark methods are more straight than that generated by our method.

This is because the benchmark methods optimize two objectives separately. Moreover, Fig. 4.14

96

(a) (b)

Figure 4.13. Sample trajectories of the UAVs in Scenario 1 by using a) our method with joint
optimization; and b) benchmark methods.

(a) (b)

Figure 4.14. Sample trajectories of the UAVs in Scenario 1 a) when computation tasks are
completed; and b) when the whole mission is completed.

illustrates how our method addresses the case when the computation tasks are completed before

UAVs arrive at their target locations.

4.8 Conclusion

This chapter introduces innovative approaches to enable efficient, robust, and adaptable

cooperative airborne computing in the dynamic, heterogeneous, and uncertain airspace. A

CDC scheme, called D-BPCC, was first introduced that leverages the coding theory and a

dynamic batch-processing based procedure to address the uncertainties in the dynamic and

97

heterogeneous NAC system. To optimize system performance, DRL based online decision-

making strategies are then designed for two typical NAC formation scenarios, which do not

rely on perfect communication, computation or UAV mobility models. Simulation results show

that our methods are more resilient to uncertain system disturbances than existing solutions,

including the UU, LBU, HCMM, and C3P schemes, and are adaptive to network topology and

resource changes. Moreover, the effectiveness of our method in solving scenarios where NAC

is formed by controllable UAVs demonstrates the benefits of UAV mobility control to robust

computing. In the future, we will investigate MARL to address the scalability issue encountered

by our DRL methods when the number of UAVs is large. We will also take energy consumption

into the consideration.

4.9 Acknowledgement

This Chapter is a reprint of the accepted journal paper: B. Wang, J. Xie, K. Lu, Y. Wan,

S. Fu, “Learning and Batch-Processing Based Coded Computation with Mobility Awareness for

Networked Airborne Computing”, IEEE Transactions on Vehicular Technology, Nov. 2022.

98

Chapter 5

Coded Distributed Multi-Agent Reinforce-
ment Learning with One-hop Neighbors

5.1 Introduction

In the previous two chapters (Chapters 3 and 4), we investigated how to achieve efficient

and robust networked airborne computing in uncertain, heterogeneous, and dynamic airspace

by exploring coded distributed computing techniques. In these studies, the simple and basic

matrix multiplication problem was considered. In this chapter, we investigate a more complex

computation problem, i.e., multi-agent reinforcement learning (MARL), and explore how to

efficiently and robustly train MARL, even in large-scale settings, over the NAC systems.

Recent years have witnessed tremendous success of reinforcement learning (RL) in

challenging decision making problems, such as robot control and video games. Research efforts

are currently focused on multi-agent settings, including cooperative robot navigation [179],

multi-player games [180], and traffic management [181]. Direct application of RL techniques in

multi-agent settings by running single-agent algorithms simultaneously on each agent exhibits

poor performance [178]. This is because, without considering interactions among the agents, the

environment becomes non-stationary from the perspective of a single agent.

Multi-agent reinforcement learning (MARL) [182] addresses this challenge by consider-

ing all agents and their dynamics collectively when learning the value function and policy of an

individual agent. Most effective MARL algorithms, such as multi-agent deep deterministic policy

99

gradient (MADDPG) [178] and counterfactual multi-agent (COMA) [183], adopt this strategy.

However, learning a joint-state value or action-value (Q) or policy function is challenging due to

the exponentially growing joint state and action spaces with increasing number of agents [184].

Policies trained with joint state-action pairs have poor performance in large-scale settings as

demonstrated in recent work [185, 186] because their accurate approximation requires models

with extremely large capacity.

MARL algorithms that improve the quality of learned policies for large-scale multi-agent

settings often employ value function factorization, e.g., as in mean-field MARL (MFAC) [185]

or scalable actor critic (SAC) [184], and training with an evolutionary population curriculum

(EPC) [186]. While these methods achieve excellent performance, the training time can be

significant when the number of agents increases because these methods cannot be easily trained

in a distributed or parallel manner over multiple computers.

To address the challenge of training policies for large numbers of agents over a dis-

tributed computing architecture, we propose a MARL algorithm called Distributed multi-Agent

Reinforcement Learning with One-hop Neighbors (DARL1N). DARL1N’s main advantage over

state-of-the-art MARL methods is that it allows distributed training, where each compute node

simulates only a very small subset of the agent transitions. This is made possible by modeling

the agent team topology as a proximity graph and representing the Q function and policy of

each agent as a function of its one-hop neighbors only. This structure significantly reduces

the representation complexity of the Q and policy functions and yet maintains expressiveness

when training is done over varying states and numbers of neighbors. Furthermore, when agent

interactions are restricted to one-hop neighborhoods, training an agent’s Q function and policy

requires transitions only of the agent itself and its potential two-hop neighbors. This enables

highly efficient distributed training because each compute node needs to simulate only the

transitions of the agents assigned to it and their two-hop neighbors.

RL or MARL policies can be trained over a distributed computing architecture either

asynchronously or synchronously, which involves a central controller used to send and receive

100

value or policy parameters or gradients. Asynchronous training faces multiple challenges

including slow convergence, difficult debugging and analysis, and sometimes subpar quality

of learned policies as learners may return stale gradients evaluated with old parameters [187,

188, 189, 190, 191]. Synchronous training is superior in these aspects but is vulnerable to

straggler compute nodes [156], caused by communication bottlenecks or software and hardware

problems, that are prevalent in NAC system due to the high mobility of UAVs and airspace

uncertainties, which lead to delays or failures in the training process. This chapter proposes

a synchronous distributed learning architecture that mitigates the effects of stragglers in NAC

system by employing coding theory.

Contributions: Our first contribution is a new MARL algorithm called DARL1N,

which employs one-hop neighborhood factorization of the value and policy functions, allowing

distributed training with each compute node simulating a small number of agent transitions.

DARL1N supports highly-efficient distributed training and generates high-quality multi-agent

policies for large agent teams. Our second contribution is a novel coded distributed learning

architecture, which allows individual agents to be trained by multiple compute nodes simul-

taneously, enabling resilience to stragglers. Our analysis shows that introducing redundant

computations via coding theory does not introduce bias in the value and policy gradient estimates.

Our third contribution is a systematic investigation of five state-of-the-art coding schemes for

MARL training, including MDS, Random Sparse, Repetition, LDPC, and LDGM codes. More-

over, we conduct comprehensive experiments comparing DARL1N with four state-of-the-art

MARL methods, including MADDPG, MFAC, EPC and SAC, and evaluating their performance

in different RL environments, including Ising Model, Food Collection, Grassland, Adversarial

Battle, and Multi-Access Wireless Communication. We also conduct experiments to evaluate the

resilience of DARL1N to stragglers when trained under different coding schemes.

101

5.2 Related Work

5.2.1 Multi-Agent Reinforcement Learning

Many MARL algorithms like MADDPG [178] adopt a centralized training and decen-

tralized execution framework that considers other agents’ behaviors when training an agent.

However, learning accurate centralized value or Q functions under this framework becomes

increasingly challenging when the number of agents increases due to exponentially growing

joint and state and action spaces. This problem can be alleviated by factorizing the value or Q

function into a combination of independent local value or Q functions that only depend on the

local observations and actions of each agent. For example, in VDN [192], a full factorization

of the Q function into a sum of local Q functions is employed. QMIX [193] improves VDN by

combining the local Q functions monotonically using a mixing neural network, which makes it

possible to represent more general Q functions without increasing the representation complexity

significantly. QTRAN [194] further extends VDN and QMIX by factorizing a transformed value

function without additivity and monotonicity assumptions.

The value or Q function can also be factorized according to a graph describing the agent

team coordination. For instance, [195, 196] decomposed the Q function into a set of local Q

functions with dependencies specified by agents that are connected in an undirected graph. [197]

factorizes the Q function according to a coordination graph learned by a deep neural network.

Mean-Field MARL [185] including Mean-Field Actor Critic (MFAC) and Mean-Field Q further

approximates the factorized Q function by replacing the input actions with the mean value of

neighboring agents’ actions. Another method closely related to this chapter is SAC [184], which

factorizes Q function of each agent using the states and actions of its κ-hop neighbors. The

Q function factorization is similar to ours but SAC training cannot be distributed because it

uses gradient descent with momentum which requires simultaneous simulation of multi-step

transitions for many agents.

In addition to value factorization, there are several other methods proposed to enable

102

scalable MARL. MAAC [198] uses an attention module to abstract states of other agents when

training an agent’s Q function, which reduces the quadratically increasing input space to a

linear space. EPC [186] applies curriculum learning to gradually scale MARL up. It adopts

population invariant policy and Q functions represented with attention modules to support varying

numbers of agents in different learning stages. To further speed up training, EPC is implemented

in a parallel computing architecture that trains agents and simulates environments in parallel

processes.

5.2.2 Distributed and Parallel Architectures for RL and MARL

Multiple distributed or parallel architectures have been proposed to accelerate RL and

MARL training. The first massively parallel architecture was presented in [199] to train deep Q

networks. It creates multiple actors and learners, with each actor interacting with its environment

independently and each learner updating the parameters. This architecture, however, only works

for off-policy RL algorithms. To support both off-policy and on-policy RL algorithms, a more

general parallel architecture called A3C [200] was then developed. In A3C, multiple compute

nodes run in parallel to train agent’s policy asynchronously. Extensions of A3C include A2C

[190], which is a synchronous version of A3C, and GA3C [201], which is a GPU version of

A3C. A3C has also been extended to multi-agent settings [202], where each computing instance

performs independent training for all agent parameters asynchronously. Also of interest is the

distributed architecture presented in [203] which was designed to reduce the communication

overhead between learners and the central controller by only communicating significant gradients.

The main focus of this chapter is to handle the presence of stragglers in distributed computing

systems, which has not been considered by existing distributed and parallel methods for training

RL and MARL algorithms.

103

5.2.3 Coded Distributed Computing

Coded computation has recently gained increasing popularity as a promising approach to

mitigate straggler effects in distributed computing systems [115]. It was first proposed in [115]

to speed up the computation of distributed matrix multiplication in the presence of stragglers, and

has since been extended to accelerate other computation tasks such as linear inverse problems

[158], convolution [204], and map reduce [161]. Applying coded computation to the training

of distributed MARL algorithms has not been investigated thoroughly. In our previous work

[162], we conducted a preliminary study on the merits of coded computation in speeding up the

training of MADDPG [178] in a distributed manner. In this work, we extend our formulation

and apply it to the DARL1N algorithm, which is designed to support distributed computation by

limiting the number of operations that need to be performed at each compute node.

5.3 Background

This section introduces the MARL problem. In MARL, M agents learn to optimize their

behavior by interacting with the environment. Denote the state and action of agent i ∈ [M] :=

{1, . . . ,M} by si ∈Si and ai ∈Ai, respectively, where Si and Ai are the corresponding state and

action spaces. Let s := (s1, . . . ,sM) ∈S := ∏i∈[M]Si and a := (a1, . . . ,aM) ∈A := ∏i∈[M]Ai

denote the joint state and action of all agents. At time t, a joint action a(t) applied at state

s(t) triggers a transition to a new state s(t + 1) ∈ S according to a conditional probability

density function (pdf) p(s(t +1)|s(t),a(t)). After each transition, each agent i receives a reward

ri(s(t),a(t)), determined by the joint state and action according to the function ri : S ×A 7→ R.

The objective of each agent i is to design a policy µi : S →Ai to maximize the expected

cumulative discounted reward:

V µ

i (s) := Ea(t)=µ(s(t))
s(t)∼p

[
∞

∑
t=0

γ
tri(s(t),a(t))

∣∣ s(0) = s
]
,

104

where µ := (µ1, . . . ,µM) denotes the joint policy of all agents and γ ∈ (0,1) is a discount factor.

The function V µ

i (s) is known as the value function of agent i associated with joint policy µ . Many

RL and MARL techniques consider stochastic policies to support the exploration-exploitation

trade-off when approximating the value and policy functions [205]. However, since optimal

policies are known to be deterministic, it is possible to directly restrict attention to deterministic

policies during the learning process, e.g., as done in DDPG [206] and MADDPG [178].

An optimal policy µ∗i for agent i can also be obtained by maximizing the action-value

(Q) function:

Qµ

i (s,a) := Ea(t)=µ(s(t))
s(t)∼p

[
∞

∑
t=0

γ
tri(s(t),a(t))

∣∣ s(0) = s,a(0) = a
]

and setting µ∗i (s) ∈ argmaxai maxa−i Q∗i (s,a), where Q∗i (s,a) := maxµ Qµ

i (s,a) and a−i denotes

the actions of all agents except i. In the rest of the chapter, we omit the time notation t for

simplicity, when there is no risk of confusion.

5.4 Problem Statement

To develop a distributed MARL algorithm, we impose additional structure on the MARL

problem. Assume that all agents share a common state space, i.e., Si = S j, ∀i, j ∈ [M] and let

dist : Si×Si→ R be a distance metric on the state space.

Consider a proximity graph [207] that models the topology of the agent team. A d-disk

proximity graph is defined as a mapping that associates the joint state s ∈S with an undirected

graph (V ,E) such that V = {s1,s2, . . . ,sM} and E = {(si,s j)|dist(si,s j) ≤ d, i ̸= j}. Define

the set of one-hop neighbors of agent i as Ni := { j|(si,s j) ∈ E }∪{i}. We make the following

assumption about the agents’ motion.

Assumption 1. The distance between two consecutive states, si(t) and si(t +1), of agent i is

bounded, i.e., dist(si(t),si(t +1))≤ ε , for some ε > 0.

105

This assumption is satisfied in many problems where, e.g., due to physical constraints,

the agent states can only change by a bounded amount in a single time step.

Define the set of potential neighbors of agent i at time t as Pi(t) := { j|dist(s j(t),si(t))≤

2ε +d}, which captures the set of agents that may become one-hop neighbors of agent i at time

t+1. Denote the joint state and action of the one-hop neighbors of agent i by sNi = (s j1, . . . ,s j|Ni|
)

and aNi = (a j1, . . . ,a j|Ni|
), respectively, where j1, . . . , j|Ni| ∈Ni. Our key idea is to let agent i’s

policy, ai = µi(sNi), only depend on the one-hop neighbor states sNi instead of all agent states

s. The intuition is that agents that are far away from agent i at time t have little impact on its

current action ai(t). To emphasize that the output of a function f : ∏i∈[M]Si 7→ R is affected

only by a subset N ⊆ [M] of the input dimensions, we use the notation f (s) = f (sN) for s ∈S

and sN ∈∏i∈N Si in the remainder of the chapter. We make two additional assumptions on the

problem structure to ensure the validity of our policy model.

Assumption 2. The reward of agent i can be fully specified using its one-hop neighbor states

sNi and actions aNi , i.e., ri(s,a) = ri(sNi,aNi) and its absolute value is upper bounded by

|ri(sNi,aNi)| ≤ r̄, for some r̄ > 0.

Assumption 2 is satisfied in many multi-agent problems where the reward of one agent is

determined only by the states and actions of nearby agents. Examples are provided in Sec. 5.8.

Similar assumptions are adopted in [184, 208, 209].

Assumption 3. The transition model of agent i depends only on its action ai and one-hop

neighbor states sNi , i.e., pi (si(t +1) | s(t),ai(t)) = pi
(
si(t +1) | sNi(t),ai(t)

)
.

Assumption 3 is common for multi-agent networked systems as in [184, 209]. As a result,

the joint state transition pdf decomposes as:

p(s(t +1) | s(t),a(t)) =
M

∏
i=1

pi
(
si(t +1) | sNi(t),ai(t)

)
.

106

The objective of each agent i is to obtain an optimal policy µ∗i by solving the following problem:

µ
∗
i (sNi) = argmax

ai
max
a−i

Q∗i (s,a), (5.1)

where Q∗i (s,a) := maxµ Qµ

i (s,a) is the optimal action-value (Q) function introduced in the

previous section.

The goal of this chapter is to develop a MARL algorithm that (i) utilizes policy and

value representations that scale favorably with the number of agents M and (ii) allows efficient

training on a distributed computing system containing straggler compute nodes, which are slow

or unresponsive.

To analyze the performance of distributed training algorithms in the presence of stragglers,

we make the following general assumption.

Assumption 4. In each training iteration, each compute node in a distributed computing system

has a probability of η ∈ [0,1] to become a straggler that slows down computation or fails

completely.

5.5 Distributed multi-Agent Reinforcement Learning with
One-hop Neighbors

This section develops the DARL1N algorithm to solve the MARL problem with proximity

graph structure introduced in Sec. 5.4. Instead of considering global agent interactions, DARL1N

only considers the effect of the one-hop neighbors of an agent in representing its Q and policy

functions. This allows updating the Q and policy function parameters using only local one-hop

neighborhood transitions.

Specifically, the Q function of each agent i can be expressed as a function of its one-hop

neighbor states sNi and actions aNi as well as the states sN −
i

and actions aN −
i

of the remaining

107

agents that are not immediate neighbors of i:

Qµ

i (s,a) = Qµ

i (sNi,sN −
i
,aNi,aN −

i
). (5.2)

Inspired by the SAC algorithm [184], we approximate the Q value with a function Q̃µ

i that

depends only on one-hop neighbor states and actions:

Q̃µ

i (sNi,aNi) = ∑
s
N −i

,a
N −i

wi(sNi,sN −
i
,aNi,aN −

i
)Qµ

i (sNi,sN −
i
,aNi,aN −

i
)

where the weights wi(sNi,sN −
i
,aNi,aN −

i
) > 0 satisfy ∑s

N −i
,a

N −i
wi(sNi,sN −

i
,aNi,aN −

i
) = 1.

The approximation error is given in the following lemma.

Lemma 9. Under Assumptions 2 and 3, the approximation error between Q̃µ

i (sNi,aNi) and

Qµ

i (s,a) is bounded by:

|Q̃µ

i (sNi,aNi)−Qµ

i (s,a)| ≤
2r̄γ

1− γ
.

Proof. See Appendix B.1.

We parameterize the approximated Q function Q̃µ

i (sNi,aNi) and the policy µi(sNi) by θi

and φi, respectively. To handle the varying sizes of sNi and aNi , in the implementation, we let the

input dimension of Q̃µ

i to be the largest possible dimension of (sNi,aNi), and apply zero-padding

for agents that are not within the one-hop neighborhood of agent i. The same procedure is

applied to represent µi(sNi). Implementation details are provided in Sec. 5.8.

To learn the approximated Q function Q̃µ

i , instead of incremental on-policy updates to

the Q function as in SAC [184], we apply off-policy temporal-difference learning with a buffer

similar to MADDPG [178]. The parameters θi of the approximated Q function are updated by

108

minimizing the following temporal difference error:

L (θi) = E(sNi ,aNi ,ri,{sN ′l
}∀l∈N ′i

)∼Di

[(
Q̃µ

i
(
sNi,aNi

)
− y
)2
]

y = ri + γQ̂µ̂

i

(
sN ′

i
,aN ′

i

)
(5.3)

where Di is a replay buffer for agent i that contains information only from Ni and N ′
i , the

one-hop neighbors of agent i at the current and next time steps, and the one-hop neighbors N ′
l

for l ∈N ′
i . To stabilize the training, a target Q function Q̂µ̂

i with parameters θ̂i and a target

policy function µ̂i with parameters φ̂i are used. The parameters θ̂i and φ̂i are updated using

Polyak averaging:

θ̂i = τθ̂i +(1− τ)θi,

φ̂i = τφ̂i +(1− τ)φi,

where τ is a hyperparameter. In contrast to MADDPG [178], the replay buffer Di for agent i

only needs to store its local interactions (sNi,aNi,ri,{sN ′
l
}∀l∈N ′

i
) with nearby agents. Note that

{sN ′
l
}∀l∈N ′

i
is used to calculate aN ′

i
. Also, in contrast to SAC [184], each agent i only needs

to collect its own training data by simulating local two-hop interactions. This allows efficient

distributed training as we explain in Sec. 5.6. Agent i’s policy parameters φi are updated using a

gradient

g(φi) = EsNi ,aNi∼Di

[
∇φi µi

(
sNi

)
∇aiQ̃

µ

i
(
sNi,aNi

)]
, (5.4)

where again data Di only from local interactions is needed.

To implement the parameter updates proposed above, agent i needs training data Di =

(sNi,aNi,ri,{sN ′
l
}l∈N ′

i
) from its one-hop neighbors at the current and next time steps. The

relation between one-hop neighbors at the current and next time steps is captured by the following

proposition.

Proposition 1. Under Assumption 1, if an agent j is not a potential neighbor of agent i at time t,

109

i.e., j ̸∈Pi(t), it will not be a one-hop neighbor of agent i at time t +1, i.e., j ̸∈Ni(t +1).

Proof. See Appendix B.2.

Proposition 1 allows us to decouple the global interactions among agents and limit the

necessary observations to be among one-hop neighbors. To collect training data, at each time

step, agent i first interacts with its one-hop neighbors to obtain their states sNi and actions aNi ,

and compute its reward ri(sNi,aNi). To obtain sN ′
l

for all l ∈N ′
i , we first determine agent i’s

one-hop neighbors at the next time step, N ′
i . Using Proposition 1, we let each potential neighbor

k ∈Pi perform a transition to a new state s′k ∼ pk(·|sNk ,ak), which is sufficient to determine

N ′
i . Then, we let the potential neighbors Pl of each new neighbor l ∈N ′

i perform transitions

to determine N ′
l and obtain sN ′

l
.

Fig. 5.1(a) illustrates the data collection process. At time t, agent i obtains sNi , aNi , and

ri(sNi,aNi) for Ni = {i,1}. Then, the potential neighbors of agent i, Pi = {1,2, i}, proceed to

their next states at time t +1. This is sufficient to determine that N ′
i = {i,2} and obtain sN ′

i
.

Finally, we let agent 3, which belongs to set P2 = {i,1,2,3}, perform a transition to determine

that N ′
2 = {i,2,3} and obtain sN ′

2
.

As each agent only needs to interact with one-hop neighbors to update its parameters, the

agents can be trained in parallel on a distributed computing architecture, where each compute

node only needs to simulate the two-hop neighbor transitions for agents assigned to it for training.

5.6 Coded Distributed Learning Architecture

In this section, we introduce an efficient and resilient distributed computing architecture

for training DARL1N, which significantly accelerates the training speed, especially for large

agent teams, and mitigates the effect of stragglers in distributed computing systems by leveraging

coding theory.

110

(a)

(b)

Figure 5.1. (a) One-hop neighbor transitions from one time step to the next in a d-disk proximity
graph; (b) Coded distributed learning architecture.

5.6.1 Coded Distributed Learning Architecture

A coded distributed learning architecture, illustrated in Fig. 5.1(b), consists of a central

controller and N computation nodes, called learners. The central controller stores a copy of

all parameters of the policy φi, target policy φ̂i, Q function θi, and target Q function θ̂i, for all

i ∈ [M]. In each training iteration, the central controller broadcasts all agents’ parameters to all

learners, who then calculate and return the gradients required for updating the parameters. In a

traditional uncoded distributed architecture, each agent is only trained (with its policy and value

gradients computed) by a single learner node. If any learner becomes slow or unresponsive, the

whole training procedure is delayed or may fail. Our coded distributed learning architecture

addresses the possible presence of stragglers in the computing system by introducing redundant

computations. We let more than one learner train each agent, which not only improves the system

resilience to stragglers and but also accelerates the training speed, as we show in Sec. 5.8.2. To

describe which learners are assigned to train each agent, we introduce an assignment matrix

C ∈ RN×M with non-zero entries c j,i ̸= 0 indicating that learner j ∈ [N] is assigned to train

111

agent i ∈ [M]. The complete set of learners assigned to train an agent i can then be determined

by { j|c j,i ̸= 0,∀ j ∈ [N]}. To construct the assignment matrix C, we apply coding theory as

explained in Sec.5.7.

To calculate the gradients for an agent i, each learner j with c j,i ̸= 0 simulates transitions

to get the interaction data (sNi,aNi,ri,{sN ′
l
}l∈N ′

i
) as described in Sec. 5.5, which are stored in

a replay buffer D j,i. After that, learner j calculates the gradients of the temporal difference error

needed for updating the Q function parameters θi of agent i using (5.3) and updating the policy

parameters φi using (5.4).

As the replay buffer D j,i can have a large size, to improve efficiency, we use a mini-batch

B j,i uniformly sampled from D j,i to estimate the expectations in (5.3)-(5.4). In particular, the

temporal difference error in (5.3) is estimated with:

L̂ j (θi) =
1
|B j,i| ∑

(sNi ,aNi ,ri,{sN ′l
}∀l∈N ′i

)

∈B j,i

[(
Q̃µ

i
(
sNi,aNi

)
− y
)2
]

y = ri + γQ̂µ̂

i

(
sN ′

i
,aN ′

i

)
. (5.5)

Similarly, the gradients used to update policy parameters are estimated with:

ĝ j(φi) =
1
|B j,i| ∑

(sNi ,aNi)

∈B j,i

[
∇φi µi

(
sNi

)
∇aiQ̃

µ

i
(
sNi,aNi

)]
. (5.6)

Let ê j,i = [∇L̂ j(θi), ĝ j(φi)] denote the concatenation of estimated gradients. Instead of directly

returning the estimated gradients for all agents trained by learner j, i.e., {ê j,i|∀i ∈ [M],c j,i ̸= 0},

learner j calculates a linear combination of the gradients:

y j =
M

∑
i=1

c j,iê j,i

with weights provided by the assignment matrix C and returns y j back to the central controller.

112

At the central controller, let yJ denote the results that have arrived by a certain time

from learners J = { j|y j is received}. Moreover, let CJ ∈R|J |×M be a submatrix of C formed

by the j-th row of C,∀ j ∈J . The received gradients yJ satisfy:

yJ = Dq

D = diag(CJ ,1,CJ ,2, . . . ,CJ ,|J |)

q = [ê1,1, ê1,2, . . . , êN,M−1, êN,M], (5.7)

where diag() creates a block-diagonal matrix with the i-th rows of CJ , denoted as CJ ,i, on

its diagonal. The vector q is a concatenation of all the gradients estimated by all the learners.

The central controller updates the agents’ parameters once it receives enough results to decode

all estimated gradients, denoted as ẽ. This happens when rank(CJ) = M, and the decoding

equation is given as follows:

ẽ = (CT
J CJ)−1CT

J yJ . (5.8)

Alg. 3 summarizes the coded training procedure of DARL1N over a distributed computing

architecture.

5.6.2 Assessment of Gradient Estimator

In our coded distributed learning architecture, the gradients ẽ used by the central

controller for parameter updates are estimates of the true gradients e = [e1, . . . ,eM], where

ei = [∇L (θi),g(φi)] with L (θi) and g(φi) defined in (5.4) and (5.3), respectively. In this

section, we evaluate the bias and variance of this gradient estimator.

We calculate the bias of the gradient estimator ẽ using (5.7) and (5.8):

E[ẽ]− e = (CT
J CJ)−1CT

JE[yJ]− e

= (CT
J CJ)−1CT

J DE[q]− e. (5.9)

113

Since each learner uses the same set of parameters broadcast by the central controller for agent-

environment interaction in each training iteration, the replay buffers D j,i, ∀ j ∈ [N], all follow the

same distribution as that of Di. Therefore, we have E[ê j,i] = ei and DE[q] = CJ e leading to:

E[ẽ]− e = (CT
J CJ)−1CT

J CJ e− e = 0, (5.10)

which shows that ẽ is an unbiased estimator.

Next, we compute the variance of the gradient estimator ẽ:

Var[ẽ] = Var[(CT
J CJ)−1CT

J yJ] (5.11)

= (CT
J CJ)−1CT

J DVar(q)DT ((CT
J CJ)−1CT

J)T ,

where Var[q] = diag(Var(ê1,1), . . . ,Var(êN,M)), since êi, j,∀i ∈ [M] are independent from each

other for each j ∈ [N]. According to (5.11), we can see that the variance of the gradient estimator

ẽ is impacted by CJ , which is determined by the assignment matrix C as well as the learners

who return their computations promptly. The impact of the gradient estimator variance on the

training performance will be evaluated empirically in Sec. 5.8.2. In the following section, we

investigate the construction of assignment matrix C.

5.7 Assignment Matrix Construction

In this section, we introduce different schemes, both uncoded and coded, to construct

the assignment matrix C. Five schemes that have been used for enhancing the resilience of

distributed computing systems are investigated.

5.7.1 Uncoded Assignment Scheme

In an uncoded distributed training architecture, different learner nodes train different

agents exclusively. The assignment matrix for the uncoded scheme assigns a single agent to each

114

Algorithm 3: Coded DARL1N
// Central controller:

1 Initialize policy, target policy, Q, and target Q parameters φ = {φi, φ̂i}i∈[M], θ = {θi, θ̂i}i∈[M];
2 Broadcast φ ,θ to the learners;
3 yJ ← [];
4 do
5 Listen to channel and collect y j from the learners: yJ ← [yJ ,y j], j ∈ [N];
6 while ẽ is not recoverable;
7 Send acknowledgements to learners;
8 Update φ ,θ with ẽ;
// Learner j:

9 Initialize replay buffer D j,i;
10 for iter = 1 : max iteration do
11 Listen to channel;
12 if φ ,θ received from the central controller then
13 y j← 0; i← 1;
14 while i≤M and no acknowledgement received do
15 if c j,i ̸= 0 then

// Local interactions:

16 Perform local interactions to collect training data for agent i and store the
data into D j,i;

17 Sample a mini-batch from D j,i and calculate ê j,i using (5.5)-(5.6);

18 y j← y j + c j,iê j,i;
19 i← i+1;
20 Send updated y j to the central controller;

of the first M learners and no agents to the remaining learners:

CUncoded = [IM|0]T . (5.12)

The next proposition shows the probability that the uncoded scheme will be influenced, i.e.,

delayed or failed, by randomly occurring straggler nodes.

Proposition 2. Under Assumption 4 with C in (5.12), the probability that the distributed training

procedure in Alg. 3 will be influenced by stragglers is 1− (1−η)M.

Remark 3. Under the Uncoded scheme (5.12), the distributed training procedure fails whenever

one or more learners fail to return their gradient computations at any training iteration since the

115

central controller requires results from all learners to update the agents’ parameters.

5.7.2 Coded Assignment Schemes

Coded distributed training assigns each agent to multiple learners. Different codes lead to

different assignment matrices C with different properties. We introduce five assignment schemes

designed based on five commonly used codes.

MDS Code

A Maximum Distance Separable code [210] is an erasure code with the property that

any square submatrix of its assignment matrix CMDS has full rank. There are multiple ways to

construct MDS assignment matrices. One common way is to use a Vandermonde matrix [211]:

CMDS =



1 1 · · · 1

α1 α2 · · · αM

α2
1 α2

2 · · · α2
M

...
...

...
...

α
N−1
1 α

N−1
2 · · · α

N−1
M


, (5.13)

where αi ∈ R, αi ̸= 0, i ∈ [M], can be any non-zero distinct real numbers. The next proposition

quantifies the resilience of the MDS assignment to stragglers.

Proposition 3. Under Assumption 4 with C in (5.13), the probability that the distributed training

procedure in Alg. 3 will be influenced by stragglers is ∑
N
j=N−M+1

(N
j

)
(1−η)N− jη j.

Proof. See Appendix B.3.

Remark 4. Under an MDS coding scheme (5.13), each agent is assigned to all learners since

all entries in the assignment matrix CMDS are non-zero.

116

Random Sparse Code

Compared to an MDS code, a Random Sparse code [212] results in sparser assignment

matrices. The (j, i)-th entry of the assignment matrix, denoted CRandom, is determined as follows:

CRandom
j,i =


0, with probability 1−ξ ,

ζ , with probability ξ .

(5.14)

where ζ ∼N (0,1) and ξ ∈ [0,1].

Remark 5. Under a Random Sparse coding scheme (5.14), the sparsity of the assignment matrix

is determined by the parameter ζ . The smaller ζ is, the sparser CRandom is and the fewer learners

each agent is assigned to.

Repetition Code

A Repetition code [212] assigns agents to the learners repetitively in a round-robin

fashion. The (j, i)-th entry of the assignment matrix under this scheme, denoted CRepetition, is

given by:

CRepetition
j,i =


1, if i = (j mod M)+M1(j mod M)=0,

0, else,
(5.15)

where mod is the modulo operator and 1 is an indicator function.

Remark 6. Under a Repetition coding scheme (5.15), each agent is assigned to at least ⌊ N
M⌋

learners.

117

LDPC Code

The assignment matrix of an LDPC code [213] is constructed using a parity check matrix:

H=



Iω Iω Iω · · · Iω

Iω A A2 · · · A
N
ω
−1

...
...

...

Iω A
Y
ω
−2 A2(Y

ω
−2) · · · A(Y

ω
−2)(N

ω
−1)

Iω A
Y
ω
−1 A2(Y

ω
−1) · · · A(Y

ω
−1)(N

ω
−1)


∈FY×N

2 ,

where F2 denotes the binary field, ω is a prime number satisfying N
ω
∈ Z+, Y ∈ [N] satisfies

Y
ω
∈ Z+, Iω ∈ Rω×ω is an identity matrix, and A is a permutation matrix given by:

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

0 0 0 · · · 1

1 0 0 · · · 0


∈F ω×ω

2 .

The LDPC assignment matrix CLDPC can then be obtained by:

CLDPC = [IM|P]T ∈F N×M
2 , (5.16)

where P is obtained by solving H = [−PT |IN−M] with M = N−ω− (Y
ω
−1)(ω−1).

LDGM Code

An LDGM code [214] is a special type of an LDPC code that constructs a sparser

assignment matrix. By applying a systematic biased random code ensemble [214], the LDGM

118

assignment matrix takes the form:

CLDGM = [IM|P̂]T ∈F N×M
2 , (5.17)

where each entry of P̂ is generated independently according to a Bernoulli distribution with

success probability Pr(P̂i, j = 1) = ρ . Note that when ρ ≤ 1
2 , the assignment matrix of LDGM

code has a low density.

5.8 Experiments

In this section, we evaluate the DARL1N algorithm and our coding schemes for dis-

tributed training.

5.8.1 Performance of DARL1N

We conduct a series of comparisons between DARL1N and four state-of-the-art MARL

algorithms. For fair comparison, we train DARL1N using a distributed learning architecture with

uncoded assignments (5.12), and assume a reliable computing system without stragglers.

Experiment Settings

This subsection describes the experiment settings.

Environment Configurations

We evaluate DARL1N in five environments, including the Ising Model [185], Food

Collection, Grassland, Adversarial Battle [186], and Multi-Access Wireless Communication

[184], which cover cooperative and mixed cooperative competitive games. Please refer to

[184, 185, 186] for the description of each environment.

To understand the scalability of our method, we vary the number of agents M and the

size of the local state spaces. The number of agents in the Ising Model and Food Collection

environments is set to M = 9,16,25,64 and M = 3,6,12,24, respectively. In the Grassland

119

and Adversarial Battle environments, the number of agents is set to M = 6,12,24,48. In the

Multi-Access Wireless Communication environment, we adopt the setting in [184] and consider

a grid of 3×3 agents, with each having a state space of Si = {0,1}z to indicate whether there is

a packet to send by time step z. In the experiments, z is set to either z = 2 or z = 10.

Distance Metrics

The one-hop neighbors of an agent are defined over the agent’s state space using a

distance metric. In the Ising Model and Multi-Access Wireless Communication environments,

the topology of the agents is fixed, and the one-hop neighbors of an agent include its vertically

and horizontally adjacent agents and itself. In the other environments, the Euclidean distance

between two agents in 2-D space is used, and the neighbor distance d is set to 0.15, 0.2,

0.25, 0.3, 0.35 when M = 3,6,12,24,48, respectively. The bound ε for potential neighbors is

determined according to the maximum velocity and time interval between two consecutive time

steps, and is set to 0.05, 0.10, 0.15, 0.20, 0.25 when M = 3,6,12,24,48, respectively. The size

of agents’ activity space is set to [−1,1]× [−1,1], [−1.5,1.5]× [−1.5,1.5], [−2,2]× [−2,2],

[−2.5,2.5]× [−2.5,2.5], [−3,3]× [−3,3] when M = 3,6,12,24,48, respectively.

Benchmarks

We compare our method with four state-of-the-art MARL algorithms: MADDPG [178],

MFAC [185], EPC [186], and SAC [184]. The SAC algorithm only works in the Multi-Access

Wireless Communication environment due to the reward assumption and thus is not considered

in other environments.

Evaluation Metrics

We measure the performance using two criteria: training efficiency and policy quality.

To measure the training efficiency, we use two metrics: 1) average training time spent to run a

specified number of training iterations and 2) convergence time. The convergence time is defined

as the time when the variance of the average total training reward over 90 consecutive iterations

does not exceed 2% of the absolute mean reward, where the average total training reward is the

120

(a) (b)

(c) (d)

Figure 5.2. Average training time of different methods to run (a) 10 iterations in the Ising Model,
(b) 30 iterations in the Food Collection, (c) 30 iterations in the Grassland, and (d) 30 iterations in
the Adversarial Battle environments.

total reward of all agents averaged over 10 episodes in three training runs with different random

seeds. To measure policy quality, we use convergence reward, which is the average total training

reward at the convergence time.

Computing Configurations

We run our experiments on the Amazon EC2 computing clusters [131]. To evaluate the

training efficiency, we configure the computing resources used to train each method in a way

so that DARL1N utilizes roughly the same or fewer resources than the baseline methods. To

train DARL1N, Amazon EC2 instance c5n.large is used in all scenarios for all environments.

To train MADDPG and MFAC, instance z1d.3xlarge is used in the first scenario (M = 9) for

Ising Model and in the first two scenarios for Food Collection, Grassland and Adversarial

Battle, and in all scenarios for Multi-Access Wireless Communication. In the other scenarios,

instance z1d.6xlarge is used. To train EPC, we use instance c5.12xlarge in all scenarios for

Food Collection and in the first three scenarios for Ising Model, Grassland and Adversarial Battle.

The other scenarios use instance c5.18xlarge. To configure the parallel computing architecture

in EPC, we set the number of parallel computing instances and the number of independent

121

Table 5.1. Configurations of Amazon EC2 instances

Instances
CPU
cores

CPU
frequency Memory Network

Hourly
price

c5n.large 2 3.4 GHz 5.3 GB ≤ 25 Gb $ 0.108
z1d.3xlarge 12 4 GHz 96 GB ≤ 10 Gb $ 1.116
z1d.6xlarge 24 4 GHz 192 GB ≤ 10 Gb $ 2.232
c5.12xlarge 48 3.6 GHz 96 GB 12 Gb $ 2.04
c5.18xlarge 72 3.6 GHz 144 GB 25 Gb $ 3.06

environments to 3 and 25, respectively. More configuration details including the configurations

of the selected Amazon EC2 instances are provided in Tab. 5.1.

Training Parameters

All environments use the same training parameters. In particular, the Adam optimizer

[215] is used to update the policy and Q function parameters with a learning rate of 0.01. The

parameter τ in the Polyak averaging algorithm for updating the target policy and target Q

functions is set to τ = 0.01. The discount factor γ is set to γ = 0.95. The size of the replay

buffer is set to 106. For mini-batches, the size is set to 32 in the Ising Model and 1024 in other

environments. The parameters are updated after every 4 episodes. The max transition number

in Alg. 3 of DARL1N is set to 4 times of the length of one episode. In the Ising Model and Food

Collection environments, the length of each episode is set to 25 in all scenarios. In the Grassland

and Adversarial Battle environments, the length of an episode is set to 25,30,35 and 40 for the

scenarios of M = 6,12,24 and 48, respectively.

Q Function and Policy Function Representations

For DARL1N, MADDPG, MFAC and SAC, we use neural networks with fully connected

layers to represent the approximated Q function and policy function. The neural networks have

three hidden layers with each layer having 64 units and adopting ReLU as the activation function.

To handle the varying sizes of sNi and aNi in the approximated Q function in DARL1N, we let

the input dimension of the approximated Q function to be the size of the joint state and action

122

Table 5.2. Convergence time and convergence reward of different methods in the Ising Model
environment.

Method Convergence Time (s) Convergence Reward
M = 9 16 25 64 9 16 25 64

MADDPG 62 263 810 1996 460 819 1280 1831
MFAC 63 274 851 2003 468 814 1276 1751
EPC 101 26 51 62 468 831 1278 3321
EPC Scratch 101 412 993 2995 468 826 1275 2503
DARL1N 38 102 210 110 465 828 1279 2282

space of the maximum number of agents that can be in Ni. In particular, in the Ising Model, the

maximum number of one-hop neighbors of an agent is 5, which is fixed. The input dimension of

the approximated Q function for agent i is then 5× (|Si|+ |Ai|). For other environments, the

maximum number of one-hop neighbors of an agent is the total number of agents. The EPC

adopts a population-invariant neural network architecture with attention modules to support

arbitrary number of agents in different stages for training the Q and policy functions.

Experiment Results

This subsection presents the main experiment results.

Ising Model

Tab. 5.2 shows the convergence reward and convergence time of different methods. When

the number of agents is small (M = 9), all methods achieve roughly the same reward. DARL1N

takes the least amount of time to converge while EPC takes the longest time. When the number

of agents increases, it can be observed that the EPC converges immediately and the convergence

reward it achieves when M = 64 is much higher than the other methods. The reason is that,

in the Ising Model, each agent only needs information of its four fixed neighbors, and hence

in EPC the policy obtained from the previous stage can be applied to the current stage. The

other methods train the agents from scratch without curriculum learning. For illustration, we

also show the convergence reward and convergence time achieved by training EPC from scratch

123

Table 5.3. Convergence time and convergence reward of different methods in the Food Collection
environment.

Method Convergence Time (s) Convergence Reward
M = 3 6 12 24 3 6 12 24

MADDPG 501 1102 4883 2005 24 24 -112 -364
MFAC 512 832 4924 2013 20 23 -115 -362
EPC 1314 723 2900 8104 31 34 -16 -87
DARL1N 502 382 310 1830 14 25 13 -61

(a) (b)

Figure 5.3. Average total training reward of different methods in the Food Collection environ-
ment when there are (a) M = 12, (b) M = 24 agents.

without curriculum learning (labeled as EPC Scratch in Tab. 5.2). The results show that EPC

Scratch converges much slower than EPC as the number of agents increases. Note that when

the number of agents is 9, EPC and EPC Scratch are the same. Moreover, DARL1N achieves

a reward comparable with that of EPC Scratch but converges much faster. Fig. 5.2(a) shows

the average time taken to train each method for 10 iterations in different scenarios. DARL1N

requires much less time to perform a training iteration than the benchmark methods.

Food Collection

The convergence rewards and convergence times in this environment are shown in

Tab. 5.3. The results show that, when the problem scale is small, DARL1N, MADDPG and

MFAC achieve similar performance in terms of policy quality. As the problem scale increases,

124

the performance of MADDPG and MFAC degrades significantly and becomes much worse

than DARL1N or EPC when M = 12 and M = 24, which is also illustrated in Fig. 5.3. The

convergence reward achieved by DARL1N is comparable or sometimes higher than that achieved

by EPC. Moreover, the convergence speed of DARL1N is the highest among all methods in all

scenarios.

Fig. 5.2(b) shows the average training time for running 30 iterations. Similar as the

results obtained in the Ising Model, DARL1N achieves the highest training efficiency and its

training time grows linearly as the number of agents increases. When M = 24, EPC takes the

longest time to train. This is because of the complex policy and Q neural network architectures

in EPC, the input dimensions of which grow linearly and quadratically, respectively, with more

agents.

Figure 5.4. Mean and standard deviation of normalized total reward of competing agents trained
by different methods in the Adversarial Battle environment with M = 48.

Grassland

Similar as the results in the Food Collection environment, the policy generated by

DARL1N is equally good or even better than those generated by the benchmark methods, as

shown in Tab. 5.4 and Fig. 5.2(c), especially when the problem scale is large. DARL1N also has

the fastest convergence speed and takes the shortest time to run a training iteration.

125

Table 5.4. Convergence time and convergence reward of different methods in the Grassland
environment.

Method Convergence Time (s) Convergence Reward
M = 6 12 24 48 6 12 24 48

MADDPG 423 6271 2827 1121 21 11 -302 -612
MFAC 431 7124 3156 1025 23 9 -311 -608
EPC 4883 2006 3324 15221 12 38 105 205
DARL1N 103 402 1752 5221 18 46 113 210

Table 5.5. Convergence time and convergence reward of different methods in the Adversarial
Battle environment.

Method Convergence Time (s) Convergence Reward
M = 6 12 24 48 6 12 24 48

MADDPG 452 1331 1521 7600 -72 -211 -725 -1321
MFAC 463 1721 1624 6234 -73 -221 -694 -1201
EPC 1512 1432 2041 9210 -75 -215 -405 -642
DARL1N 121 756 1123 3110 -71 -212 -410 -682

Adversarial Battle

In this environment, DARL1N again achieves good performance in terms of policy quality

and training efficiency compared to the benchmark methods, as shown in Tab. 5.5 and Fig. 5.2(d).

To further evaluate the performance, we reconsider the last scenario (M = 48) and train the good

agents and adversary agents using two different methods. The trained good agents and adversarial

agents then compete with each other. We apply the Min-Max normalization to measure the

normalized total reward of agents at each side achieved in an episode. To reduce uncertainty, we

generate 10 episodes and record the mean values and standard deviations. As shown in Fig. 5.4,

DARL1N achieves the best performance, and both DARL1N and EPC significantly outperform

MADDPG and MFAC.

Multi-Access Wireless Communication

Fig. 5.6 shows the training rewards achieved by DARL1N and SAC when z takes different

values. We can see that SAC achieves a higher reward than DARL1N when z = 2. However,

126

Figure 5.5. States of a subset of agents during an episode in Adversarial Battle with agents
trained by different methods when there are M = 48 agents.

when z increases to 10, which causes an exponential growth of the state space, DARL1N achieves

a much higher reward and converges much faster than SAC. This demonstrates that DARL1N

scales better than SAC with the size of the state space.

5.8.2 Performance of Coded Distributed Learning Architecture

In this section, we first conduct numerical studies to evaluate the performance of different

agent assignment schemes described in Sec. 5.7 before implementing DARL1N. We then train

DARL1N over the proposed coded distributed computing architecture and conduct experimental

studies to evaluate the performance of DARL1N when trained with different agent assignment

127

(a) (b)

Figure 5.6. Average total training reward of DARL1N and SAC in the Multi-Access Wireless
Communication environment when (a) z = 2 (b) z = 10.

schemes.

Numerical Evaluation

We first conduct numeral simulations to evaluate the performance of different agent

assignment schemes based on the following aspects: 1) computation overhead, 2) resilience to

stragglers, and 3) impact on policy quality.

Computation Overhead

The coded schemes mitigate the impact of stragglers on the distributed learning system

by assigning each agent to more than one learner. The training performed by the extra learners

is redundant. To measure the amount of redundant computation overhead introduced by each

scheme, we use the following metric:

o =
1
M

N

∑
j=1

M

∑
i=1

1C j,i ̸=0−1,

where the first term calculates the average number of learners used for training each agent.

Fig. 5.7 shows the overhead introduced by different schemes when M = 12, N = 24,

ρ = 0.3, and ξ = 0.8. For Random Sparse and LDGM schemes, the mean overhead averaged

128

Figure 5.7. Overhead introduced by different agent assignment schemes when there are M = 12
agents and N = 24 learners.

over 10 experiment runs are shown. We can see that the Random Sparse and MDS schemes

introduce larger overhead than the other four schemes. The MDS scheme generates the largest

overhead, as it assigns each agent to all learners. On the contrary, as the uncoded scheme assigns

each agent to a single learner, it does not introduce any redundant computation. Generally, we

can observe that schemes generating denser assignment matrices introduce larger overhead.

As the Random Sparse and LDGM schemes are characterized by the parameters ξ and ρ ,

respectively, in Fig. 5.8 we vary the values of these parameters to understand their impact on the

overhead. The increase of ξ or ρ leads to denser assignment matrices and we can see that the

overhead increases too.

Resilience to Stragglers

According to (5.8), the central controller is able to update the agents’ gradients only after

it receives results from enough learners, specifically when rank(CJ) = M. The presence of

stragglers may delay or fail the gradient computations. To evaluate the resilience of different

coding schemes to stragglers, we randomly turn some learners into stragglers that fail to return

any results according to Assumption 4. We then conduct Monte Carlo simulations to measure the

ratio of training iterations in which gradients can be successfully estimated with results returned

129

(a) (b)

Figure 5.8. Overhead introduced by (a) Random Sparse and (b) LDGM schemes when their
parameters take different values.

from non-stragglers. Fig. 5.9 shows the ratio of successful iterations achieved by different

schemes as the straggler probability η (chance of becoming a straggler for each learner at each

iteration) increases when M = 12 and N = 24. The Random Sparse and MDS schemes achieve

the highest resilience and can tolerate up to 12 stragglers, as their assignment matrices are the

densest. LDPC is more robust than LDGM and Repetition based schemes. The Uncoded scheme

performs the worst and cannot tolerate any stragglers. These results demonstrate that higher

resilience can be achieved if using schemes that generate a denser assignment matrix.

The resilience of the LDGM and Random Sparse schemes are also affected by their

parameters, ρ and ξ , respectively. From Fig. 5.10, we can see that with the increase of ρ and ξ ,

both schemes can tolerate more stragglers due to the growing density of the resulting assignment

matrix.

Impact on Policy Quality

To understand the impact of different coding schemes on the quality of trained policies,

we use the following metric that reflects the variance of the estimated gradients:

V = log(det(Var[ê])). (5.18)

130

Figure 5.9. Resilience of different agent assignment schemes to stragglers when the straggler
probability η increases.

To calculate the value of V , we set Var(êi, j) = 1,∀i ∈ [N], j ∈ [M], and vary the number of

learners whose results are utilized by the central controller for estimating the gradients. The

results are shown in Fig. 5.11, where each value is an average over 20 experiment runs. We can

see that V decreases as more learners contribute to the estimation of the gradients. Moreover,

the Repetition code generates the smallest V , indicating that it has the least impact on the policy

quality. The Random Sparse, LDPC, and LDGM schemes achieve a similar performance with

V close to 0. On the contrary, the value of V obtained using an MDS scheme is relatively high,

indicating large variance of the estimated gradients, which may lead to low-quality learned

policies.

Experiments

To understand the performance of the coded distributed learning architecture, we train

DARL1N using different agent assignment schemes and evaluate its performance in different

straggler scenarios.

131

(a) (b)

Figure 5.10. Resilience of (a) Random Sparse and (b) LDGM schemes when their parameters
take different values.

Experiment Settings

We select the Food Collection environment and set the number of agents and learners in

all experiments to M = 12 and N = 24, respectively. To evaluate the impact of stragglers, we

vary the straggler probability η in Assumption 4. The straggler effect is simulated by letting the

stragglers delay returning results for ∆ > 0 amount of time using the sleep() function.

Experiment Results

We first evaluate the average training time of DARL1N with different agent assignment

schemes. We vary the straggler probability η and the straggler effect ∆. The results are shown in

Fig. 5.12(a) when ∆ = 1 and Fig. 5.12(b) when ∆ = 4, where the training time is measured by

averaging the time for running 30 training iterations. We can observe that when no stragglers

exist (η = 0), the Uncoded scheme is the most efficient as it does not involve any redundant

computations. The MDS and Random Sparse schemes require a much longer training time

than the other schemes because of the many redundant computations introduced by these codes.

When stragglers exist (η > 0), the performance of the Uncoded scheme degrades significantly,

especially when the straggler effect is significant as shown in Fig. 5.12(b). Compared to the

Uncoded scheme, the LDPC, LDGM, and Repetition codes are more resilient to stragglers, as

132

Figure 5.11. Average V of different agent assignment schemes calculated using results from
different number of learners.

indicated by the slower increase in training time. They are also more efficient than the MDS

and Random Sparse schemes in most cases. On the contrary, the training time of MDS and

Random Sparse does not grow much as η increases, evidencing their high resilience to stragglers.

Although they require more training time than the other schemes when the straggler effect ∆ or

the straggler probability η is small, they achieve higher training efficiency when ∆ and/or η are

large.

To evaluate the impact of different agent assignment schemes on the quality of trained

policies, we measure the training reward achieved by each DARL1N implementation with ∆ = 1.

The convergence time and convergence reward of different implementations as the straggler

probability η increases are summarized in Tab. 5.6. We can see that the Uncoded scheme

converges fast when no stragglers exist (η = 0) but its convergence speed decreases significantly

when stragglers exist (η > 0). The MDS and Random Sparse schemes achieve the lowest reward

and slowest convergence rate, while the LDPC and LDGM based implementations achieve the

highest reward and convergence rate in most cases, especially when the straggler probability η is

high. The Repetition code generally achieves good training reward performance and converges

fast when the straggler probability is small. From these results, we can infer that a sparser

133

(a)

(b)

Figure 5.12. Average training time of different DARL1N implementations with straggler effect
a) ∆ = 1 and b) ∆ = 4.

assignment matrix generally leads to a better policy and a higher convergence rate.

We also calculate the variance of the gradients estimated by each DARL1N implementa-

tion, measured by V in (5.18). Tab. 5.7 summarizes the values of V averaged over 600 training

iterations for different implementations. We can see that the MDS and Random Sparse schemes

have relatively higher V , indicating worse training reward performance. The variance V of the

Repetition scheme is the smallest, while the variance of other implementations are close to zero

regardless of the increase of η , which matches with the numerical results shown in Fig. 5.11.

Of interest, V obtained by the LDGM and Repetition schemes are even smaller than that of the

Uncoded implementation in most cases. This is because the two coded implementations may use

results from more than one learner to estimate the gradients for each agent, while the Uncoded

scheme uses results from a single learner only.

134

Table 5.6. Convergence time and convergence reward of different DARL1N implementations.

Schemes Convergence Time (s) Convergence Reward
η = 0 0.1 0.2 0.3 0.5 0 0.1 0.2 0.3 0.5

Uncoded 323 502 510 532 521 8 9 5 13 10
MDS 502 752 748 771 625 -231 -202 -253 -255 -212
Random Sparse 512 1252 820 620 670 -252 -255 -231 -241 -227
Repetition 331 248 372 605 564 11 7 6 4 8
LDPC 318 253 364 310 420 12 11 8 5 9
LDGM 324 261 320 331 450 9 10 12 7 14

Table 5.7. Average V of different DARL1N implementations.

Schemes Average V
η = 0 0.1 0.2 0.3 0.5

Uncoded 0 0 0 0 0
MDS 82.08 85.75 100.10 103.25 104.06
Random Sparse 15.28 13.11 13.47 13.69 12.88
Repetition -3.16 -3.27 -4.49 -4.36 -4.15
LDPC 0 0.14 0.13 0.03 0.03
LDGM -0.66 -0.61 -0.51 0.14 0.35

5.9 Conclusion

This chapter introduced DARL1N, a scalable MARL algorithm that can be trained over a

distribute computing architecture. DARL1N reduces the representation complexity of the value

and policy functions of each agent in a MARL problem by disregarding the influence of other

agents that are not within one hop of a proximity graph. This model enables highly efficient

distributed training, in which a compute node only needs data from an agent it is training and

its potential one-hop neighbors. We conducted comprehensive experiments using five MARL

environments and compared DARL1N with four state-of-the-art MARL algorithms. DARL1N

generates equally good or even better policies in almost all scenarios with significantly higher

training efficiency than benchmark methods, especially in large-scale problem settings. To

improve the resilience of DARL1N to stragglers common in distributed computing systems,

we developed coding schemes that assign each agent to multiple learners. The properties of

135

MDS, Random Sparse, Repetition, LDPC, and LDGM codes were evaluated. Our results show

that the MDS and Random Sparse codes offer high resilience to large numbers of stragglers.

However, both schemes involve many redundant computations and have low training efficiency.

The Repetition, LDGM, and LDPC coding schemes achieve better performance in both training

efficiency and policy quality but can handle fewer stragglers in the system.

5.10 Acknowledgement

This chapter is based on the published conference proceedings: B. Wang, J. Xie, N.

Atanasov, “DARL1N: Distributed multi-Agent Reinforcement Learning with One-hop Neigh-

bors”, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); B.

Wang, J. Xie, N. Atanasov, “Coding for Distributed Multi-Agent Reinforcement Learning”, 2021

International Conference on Robotics and Automation (ICRA), and on the submitted journal pa-

per: B. Wang, J. Xie, N. Atanasov, “Coding for Distributed multi-Agent Reinforcement Learning

with One-hop Neighbors”, IEEE Transactions on Neural Networks and Learning Systems, Nov.

2022.

136

Chapter 6

Simulator and Testbed Design and Imple-
mentation

6.1 Introduction

Before deploying the approaches introduced in previous chapters in actual UAV systems,

it is imperative to test their performance on realistic testbeds. In Chapter 2, we designed an

airborne computing platform that is equipped with NVIDIA Jetson TX2 of high computing

power and also supports broadband wireless communication that can facilitate network-based

UAV research. Nevertheless, its design is centered on a single UAV, and inter-vehicle resource

sharing is not supported. Moreover, its communication module, equipped with a directional

antenna, was designed and tested only for point-to-point communications. Nevertheless, NAC

may involve point-to-multipoint or multipoint-to-multipoint communications. In this chapter, we

aim to

In existing studies on UAV-based computing [19, 20, 21, 22, 23], performance evalua-

tion was typically conducted through simulations with UAV movement, communication, and

computing behaviors described using mathematical models. While mathematical model-based

simulations offer the advantage of being inexpensive and easy to deploy, their underlying mod-

els, due to simplicity, may not accurately reflect the intricate behavior of real UAV systems.

Hardware tests have been limited to single or dual UAVs. For example, [216] investigated the

application of airborne computing for computer vision and machine learning, and developed a

137

UAV-based MEC system with two UAVs to analyze communication and computation delays for

video streaming between the two UAVs.

Although the absence of realistic testbeds for NAC research remains, various testbeds

have been created to aid research in UAV control, communication, and networking [217, 218, 219,

220, 221, 222, 223]. For instance, [217] created a testbed to investigate the communication and

control in UAV swarms. [218] introduced a UAV hardware testbed for control and information

acquisition. To support robotics applications, such as collision avoidance, [219] built a UAV

simulator that runs on the cloud using Docker. In the realm of UAV communication, [220]

presented a new evolved packet core (EPC) that can be placed directly on UAV to establish

UAV-based LTE networks. They evaluated its performance in a two-UAV LTE network, which

resulted in improved client connectivity. [221] developed a directional antenna-based broadband

and long-range communication system for UAV-to-UAV communication, which has the ability to

automatically adjust antenna directions for optimizing communication performance in unknown

communication environments.[222] proposed a new UAV network design using mmWave for

Gigabit speed communication and evaluated it on a hardware testbed. Additionally, [223] created

a UAV simulator to investigate the communication security issue.

Main contributions: In this chapter, we aim to address the research gap regarding the

scarcity of realistic testbeds for NAC research. To this end, two NAC platforms are designed and

implemented. One is a realistic simulator created using ROS (Robot Operating System) [26]

and Gazebo [27]. Another is a hardware testbed composed by multiple UAVs with computing

and inter-vehicle resource sharing capabilities. Moreover, we conduct various simulations and

real flight tests with two computation applications to examine the impact of UAV mobility on

NAC. The obtained insights are vital for progressing NAC research by uncovering the barriers to

achieving high-performance NAC. They also provide guidance for future enhancements of the

proposed NAC platforms.

The rest of the chapter is organized as follows. Sec. 6.2 presents the computing model

for UAV-based NAC. Sec. 6.3 and Sec. 6.4 describe the designs for the simulator and hardware

138

Algorithm 4: Computing model in NAC
// Master:

1 Broadcast X to workers.
2 for i = 1 : N do
3 Listen to the channel and collect result fi(X) from worker i.

4 Calculate and output final result using { f1(X), f2(X), . . . , fN(X)}
// Worker i:

5 Listen to the channel and receive X from the master.
6 Compute fi(X) and send results back to the master.

testbed, respectively. The simulation and flight test results are presented in Sec. 6.5 and Sec. 6.6,

respectively. Finally, Sec. 6.7 concludes the chapter.

6.2 Computing Model

In this section, we describe how a computation task is completed collaboratively by UAVs

in NAC. Consider a NAC system with N+1 UAVs, where N UAVs are the workers and one UAV

serves as the master. Suppose the master UAV needs to complete a decomposable computation

task f(X), where X ∈ Rm×n is the input to the task. To enhance computational efficiency, the

master partitions the task into N subtasks represented as { f1(X), f2(X), . . . , fN(X))}, and assigns

each worker i with subtask fi(X). During execution, the master shares the input X with all the

workers, which then calculate their respective subtasks and send the results back to the master.

The master then combines the results to produce the final output of the task f(X). Algorithm 4

summarizes the task execution procedure.

In subsequent simulation and experimental studies, we select two computation tasks to

be executed using the above computing model. They are 1) matrix multiplication and 2) linear

regression, both of which are fundamental components for more complicated computations such

as those in machine learning applications [224, 225]. Here we briefly describe each of the tasks.

To perform a matrix multiplication task AB, where A ∈ Rm×n is a pre-stored matrix and

B ∈ Rn×l is the input, the master equally divides A row-wise into N submatrices A1,A2, . . . ,AN .

139

Suppose each submatrix Ai is pre-stored in the corresponding worker i. The master distributes B

to each worker, which then computes A1B,A2B, . . . ,ANB, respectively, and returns the results to

the master. The master then aggregates the received results [A1B,A2B, . . . ,ANB] to obtain the

final result AB.

For linear regression, we use a real-world data set collected in Montesinho park [226]

as input to train a forest fire detector. The goal is to predict burned areas given meteorological

information by training a linear regressor using gradient descent. The data set consists of 517

meteorological data samples, each containing information such as location in the park, time,

temperature, humidity, wind speed, and the burned area of the forest. To train the linear regressor

in NAC, the data set is divided into N equal parts, with each part stored in a worker. The master

starts by initializing the parameters of the linear regressor and updating them iteratively. During

each iteration, the master sends the current parameters to each worker, which calculates the

gradients using their local data and returns the gradients to the master. The master then updates

the parameters using the received gradients.

6.3 Simulator Design

This section presents a ROS- and Gazebo-based simulator designed to provide a realistic

simulation environment for NAC research. The simulator (see Fig. 6.1) consists of five modules:

UAV hardware module, controller module, visualization module, wireless communication

module, and computation module. These modules communicate through ROS topics [227].

The functionalities of each module and their associated ROS topics are described as follows.

6.3.1 UAV Hardware Module

The UAV hardware module simulates the physical attributes of a UAV including its frame,

motor, and sensors. Users can configure UAV’s frame such as base size, weight, shape, arm

length, etc. using the configuration file. Additionally, users can select different types of motors

to simulate UAVs of different sizes and aerodynamics.

140

Figure 6.1. NAC simulator design.

ROS offers plugins for various sensors that can be attached to UAV to track its states,

such as position, velocity, and orientation. In our simulator, each UAV is equipped with a GPS

sensor for localization, a magnetic sensor for orientation, an IMU sensor for acceleration, and

a barometer sensor for flight height measurement, etc. Moreover, each UAV includes a Wi-Fi

receiver and Wi-Fi transmitter [228] to simulate wireless communication between UAVs. Users

can also add additional sensors as needed.

6.3.2 Controller Module

The controller module controls UAV’s movement to follow the planned waypoints. This

is achieved by using two controllers: velocity controller and position controller. Particularly, the

position controller calculates the desired velocities based on the planned waypoints and inputs

the desired velocities into the velocity controller. The velocity controller, provided by ROS

plugin, then generates control commands to drive the UAV to reach the desired velocities. The

141

calculation of the desired velocities is performed using the following equations:

v̂x = kx(x− xg)

v̂y = ky(y− yg)

v̂z = kz(z− zg) (6.1)

where v̂x, v̂y, v̂z are the desired velocities in three directions. kx,ky,kz are the gains of the

position controller. (x,y,z) and (xg,yg,zg) are UAV’s current position and the desired position,

respectively.

6.3.3 Visualization Module

The visualization module allows users to monitor the status of UAVs during NAC

simulations in real time. This is achieved using Gazebo [27], which provides a realistic simulation

environment and an interactive graphic interface. Moreover, by using Rviz [229], the data

captured by UAV’s sensors, such as trajectories and images captured by the onboard camera,

can be displayed. Our simulator provides the real-time visualization of waypoints and UAV

trajectories.

6.3.4 Wireless Communication Module

The communication module simulates the wireless communication between UAVs, each

equipped with a Wi-Fi transmitter and receiver. The received signal strength (RSS) at the

Wi-Fi receiver, denoted by S(dBm), is calculated using the well-known Hata-Okumura model

[230, 231] by the following equation:

S = St +PL, (6.2)

142

where St(dBm) is the transmission power and PL(dB) is path loss given by

PL = D+Elog10(d)+F. (6.3)

In the above equation, d(km) is the distance between two UAVs. The values of D, E, and F

depend on the transmission frequency, antenna heights, and environment types. In particular, D

and E are represented by

D = 69.55+26.16log10(fc)−13.82log10(hb)−a(hm)

E = 44.9−6.55log10(hb) (6.4)

where fc is the frequency of transmission in MHz (valid range: 150MHz−1500MHz), hb is the

effective height of the transmitter in meters (valid range: 30m−200m), hm is the effective height

of the receiver (valid range: 1m−10m), and a(hm) is the mobile antenna height correction factor,

which is a function that depends on the environment. F is a factor to correct formulas for open

rural and suburban areas. Given RSS S, the maximum data rate, denoted by C (bps), can then be

calculated according to Shannon’s Theory:

C =W log2(1+
10

(S−30)
10

N0
), (6.5)

where W (Hz) is the communication bandwidth and N0 (Watts) is the noise power.

6.3.5 Computing Module

The computing module simulates the distributed computing process using Message

Passing Interface (MPI)[232], which provides system interfaces for users to program parallel

computing applications and supports various programming languages. In our simulator, each

process represents a UAV that runs computation tasks in parallel and communicates with each

other via MPI. Each process uses the states of UAV to calculate the data rate using (6.5). We

143

Figure 6.2. NAC hardware testbed design.

calculate the delay as I
C (s), where I(bits) is the size of data being transmitted. This delay is

introduced manually using the time.sleep() function in Python before sending data via MPI.

6.3.6 ROS Topics

In our simulator, communication between modules is achieved through ROS topics

as shown in Fig. 6.1. Each module can either subscribe to a topic to receive messages

or publish messages to a topic. For example, GPS publishes UAV’s position to the topic

/uav/ground truth to t f/pose. The position controller subscribes to this topic to receive the

UAV’s current position. After calculating the desired velocities, the position controller then

publishes these values to the topic /uav/cmd vel, which is subscribed by the UAV’s velocity

controller. Moreover, the Wi-Fi receiver publishes the RSS signals to the topic /uav/recv signal,

which is subscribed by the communication module to calculate the data rate.

144

6.4 Hardware Testbed Design

In this section, we present the design of a NAC hardware testbed, consisting of three

UAVs, two constructed using Tarot 650 Quadrotor frames and one using a DJI F550 frame (see

Fig. 6.2). The Tarot quadrotors serve as workers, while the F550 serves as the master. In the

following, we describe the hardware design from four aspects: computing, communication, flight

control, and power management. For each aspect, we detail its functionalities and the hardware

devices used to achieve them.

6.4.1 Computing

The computing unit on each UAV is a NVIDIA Jetson TX2 [233], which boasts a

powerful 6-core CPU and 256-core NVIDIA Pascal GPU, and has 8GB memory. Despite its

compact size (50mm×87mm) and lightweight (85g), Jetson TX2 requires a development board

to operate and the original one from NVIDIA is too large (17cm×17cm) to be placed on the UAV.

To overcome this, we utilize a compact carrier board developed in our previous works [136]. To

enable computing resource sharing among UAVs, we connect Jetson TX2 to the same Wi-Fi

network as described in the following subsection. This allows UAVs to perform collaborative

computing using MPI.

6.4.2 Communication

As illustrated in Fig. 6.2, there are three types of communications in NAC including

UAV-to-UAV, UAV-to-Ground/Ground-to-UAV, and Transmitter-to-Receiver. The features and

enabling techniques for each communication type are described as follows.

UAV-to-UAV Communication

The UAV-to-UAV communication is used to exchange data between UAVs, such as

data needed for computation and UAV’s state information. Our testbed achieves this through a

TP-Link Wi-Fi router network. In particular, one TP-Link Wi-Fi router is set up as an access

145

point on the master while the remaining TP-Link Wi-Fi routers on the workers are configured

as clients connecting to the master. This allows the master to communicate with both workers

simultaneously. Each router is connected to the Jetson TX2 via an Ethernet port.

UAV-to-Ground/Ground-to-UAV Communication

The UAV-to-Ground/Ground-to-UAV communication is used to monitor the states of

UAV such as its position, rotation, battery status, etc. It is enabled by the FPVDrone 500MW

Radio Telemetry Kit 915 Mhz Air and the Ground data transmit module. The air data transmit

module is connected to the Pixhawk telemetry port and the ground module is connected to a

laptop USB port. In our design, we use the QGroundControl software [234] installed on the

ground station, which is a laptop, to interact with the UAV such as commanding it to take off or

land. We can also create different missions such as waypoint following and upload them to the

flight controller.

Transmitter-to-Receiver Communication

The transmitter-to-receiver communication is used to control the UAV. The transmitter

has joysticks that allow manual control of throttle, yaw, pitch, and roll angles. The UAV’s flight

modes can also be changed by adjusting the switches, such as the Manual control mode, Mission

mode for completing pre-programmed missions, and Hold mode for maintaining altitude.

6.4.3 Flight Control

Each UAV is equipped with a Pixhawk flight controller, which is capable of controlling

the UAV based on manual inputs or following planned waypoints with the aid of GPS signals.

Both the receiver and the telemetry air module are connected to the Pixhawk.

6.4.4 Power Management

Each UAV is equipped with two 4S Lipo batteries with each battery having 14.8 Voltage

to provide power to all its subsystems. The first battery is designated to power the computing

146

Figure 6.3. Visualization of the simulation environment with Gazebo.

Figure 6.4. Visualization of the UAVs’ pre-planned waypoints and paths with Rviz.

and communication subsystems while the second battery is used to power the flight control and

propulsion subsystems of the UAV. The flight time of UAV with the battery fully charged is

around 15 minutes and the operation time of the computing and communication unit with the

battery fully charged is around 45 minutes.

6.5 Simulation Studies

In this section, we simulate NAC using the designed ROS- and Gazebo-based simulator

with UAVs collaboratively completing the matrix multiplication task. We examine the impact of

UAV mobility by comparing results from two scenarios: the moving scenario where UAVs move

continuously during task execution and the static scenario where the UAVs remain stationary

during task execution. The detailed simulation configurations and results are presented as

follows.

147

(a) (b)

Figure 6.5. a) Trajectories of the four UAVs and b) distances between the master UAV and
worker UAVs in the simulation.

6.5.1 Simulation Configurations

We simulate a NAC system with four UAVs. The computation task considered is matrix

multiplication as described in Sec. 6.2. The matrices A and B are randomly generated and

have a dimension of 100×10000 and 10000×1, respectively. This matrix multiplication task

is conducted repeatedly for 40 iterations. The parameters of the position controller described

in (6.1) are set to kx = 0.15,ky = 0.15,kz = 1. The parameters of the wireless communication

module as described in (6.2), (6.4) and (6.5) are set to St = 1200MHz, fc = 1200MHz,W =

1200MHz,N0 = 1.1× 10−35 watts. In the moving scenario, UAVs are controlled to follow

pre-planned waypoints (see Figs. 6.3-6.4 as an illustration). In the static scenario, UAVs are

placed on the ground.

6.5.2 Simulation Results

The simulation results, including the throughput and computation time, for both the

moving and static scenarios, are presented as follows.

Moving Scenario

The trajectories of the four UAVs in the moving scenario are shown in Fig. 6.5(a). Each

UAV takes off from the ground, flies straightly at a constant altitude, and finally lands. The

148

(a) (b)

Figure 6.6. a) Throughput between the master and worker UAVs and b) completion time for a
single iteration of matrix multiplication in the moving scenario.

master UAV flies a shorter distance than the worker UAVs to vary the distances between them.

Fig. 6.5(b) shows the distances between the master and worker UAVs. As we can see, the

distances between the master and workers decrease during the first 35s, remain stable for 15s,

and then decrease again until landing at around 60s.

As shown in Fig. 6.6(a), the varying distances between the master and workers result in

changes in the throughputs. The throughputs increase over time as the distances decrease. It is

also noted that there are significant variations in the throughputs due to UAVs’ mobility. Fig.

6.6(b) shows the completion time for a single iteration of matrix multiplication, which has an

average value of around 5s.

Static Scenario

In the static scenario, the distances between the master and worker UAVs are set to 9.43m,

12.80m, and 17m. Fig. 6.7(a) depicts the throughputs between UAVs. Compared to Fig. 6.6(a),

we can see that the throughputs between the static UAVs have smaller variances, resulting in

more stable communication between the UAVs. The time for completing a single iteration of

matrix multiplication in the static scenario is shown in Fig. 6.7(b).

To further understand the relationship between distance and communication performance,

we vary the distance between two UAVs and measure the throughput. The results, which include

149

(a) (b)

Figure 6.7. a) Throughput between the master and workers and b) completion time for a single
iteration of matrix multiplication in the static scenario.

Figure 6.8. Throughput between two UAVs at various distances in simulations.

the mean values and standard deviations of 100 data samples, are shown in Fig. 6.8. As we can

see, the throughput decreases quickly as the distance between the UAVs increases. This graph

demonstrates the crucial impact of UAV mobility in NAC.

6.6 Real Flight Tests

In this section, we conduct real flight tests at San Diego State University (SDSU) sport

field as shown in Fig. 6.9 to evaluate the NAC hardware testbed for performing linear regression.

The experiments include both moving and static scenarios to assess the impact of UAV mobility

on the system performance. The configurations and results of the experiments are described in

150

Figure 6.9. Flight test of NAC hardware testbed with three UAVs at the San Diego State
University (SDSU) sport field.

Figure 6.10. Trajectories of the three UAVs.

detail below.

6.6.1 Experiment Configurations

In the flight tests, each UAV in the moving scenario follows pre-planned waypoints with

a flying speed of 0.67 m/s and a constant altitude of 3.04m. In the static scenario, all UAVs

remain stationary on the ground. The computation task performed by the UAVs in both scenarios

is to train a linear regressor for forest fire detection as described in Sec. 6.2. The throughput

between two UAVs is measured using I per f 3 [235].

151

6.6.2 Experiment Results

Moving Scenario

We extract the positions of UAVs from the flight logs and calculate the distance between

the master UAV and the two worker UAVs. The trajectories of the UAVs are displayed in Fig.

6.10. The two workers follow straight lines in parallel, while the master flies a short distance in

between them and then hovers until the completion of the task.

The distances between master UAV and worker UAVs are shown in Fig. 6.11(a). The

corresponding throughputs between UAVs are depicted in Fig. 6.11(b). It can be observed

that within the first 40s, the throughput between master and worker 2 increases even though

the distance between them remains relatively stable. This variation in the throughput may be

attributed to the impact of UAV mobility and wireless communication interference. Moreover,

the throughput between master and worker 2 is much larger than that between master and worker

1 during the first 40s, due to the shorter distance between them. After this point, both throughputs

decrease drastically as the distances continuously increase and approach zero when the distances

reach around 20m. The training terminates after 75s due to communication loss caused by

increasing distances.

Fig. 6.12. presents the impact of distance on communication performance. As ex-

pected, the throughput decreases as the distance between the UAVs increases. The maximum

communication distance between two UAVs is around 25m as indicated in the figure.

Static Scenario

To further evaluate the impact of mobility on the communication and computation

performance, we keep all UAVs stationary on the ground and re-run the forest fire detection

application. This allows us to compare and contrast the results with those obtained from the

moving scenario.

In this scenario, we set the distances between the master and worker 1 and 2 to 9.8m and

8.9m, respectively. The throughputs between the UAVs are shown in Fig. 6.14(a). Compared to

152

(a) (b)

Figure 6.11. a) Distance and b) throughput between the master UAV and worker UAVs in the
moving scenario.

Figure 6.12. Throughput between two UAVs at various distances in flight tests.

the throughputs when UAVs are moving as shown in Fig. 6.11(b), we can see that, during the

first 40s, the throughput between the master and worker 2 is lower in the static case due to the

larger distance. However, the throughput variance is smaller when the UAVs are static.

We further analyze the computation performance by showing the training time for 10

iterations and the training cost in Fig. 6.14(b) and Fig. 6.14(c), respectively. The results indicate

that the task completion time is generally smaller in the static case compared to the case when

UAVs are moving due to shorter inter-vehicle distances as shown in Fig. 6.13(a). Moreover, the

training completes 640 iterations within 200s when UAVs are static, while only 310 iterations

are completed in the moving case within 75s. This is due to the fact that, in the moving scenario,

153

(a) (b)

Figure 6.13. a) Time for completing 10 training iterations and b) the associated training cost in
the moving scenario.

(a) (b) (c)

Figure 6.14. a) Throughput between the master UAV and worker UAVs in the static scenario;
b) Time for completing 10 training iterations and c) the associated training cost in the static
scenario.

the training terminates when workers move out of the master’s communication range, which

occurs at 75s. As more training iterations are performed, the training cost is also smaller in the

static case as shown in Fig. 6.13(b) and Fig. 6.14(c).

6.7 Discussions and Conclusions

The simulation and flight tests reveal challenges in achieving high-performance NAC.

In particular, UAV mobility results in significant communication variance, which can lead to

The flight tests also demonstrate the limitations of standard Wi-Fi routers with omni-directional

antennas. They have limited communication range and do not provide sufficient communication

throughput for real-time applications. To address these limitations, our future work will focus on

154

improving the UAV-to-UAV communication range and throughput through the use of phased

array antennas and mmWave 5G technology [222].

In conclusion, this chapter introduces a realistic simulator and hardware testbed for

NAC research. The simulator, built using ROS and Gazebo, emulates networked UAVs with

inter-vehicle resource sharing and distributed computing capabilities and can simulate various

realistic environments. The hardware testbed consists of three quadrotors each with a Pixhawk

control unit, Jetson TX2 computing unit, and telemetry radio and TP-Link Wi-Fi router for

communication. The simulation and real flight tests on two computation applications showed

that UAV mobility has a direct impact on the throughput, resulting in degraded and unstable

communication performance as distance increases.

6.8 Acknowledgement

This chapter, in full, has been submitted for publication of the material as it may appear

in: B. Wang, J. Xie, K. Ma, Y. Wan “UAV-based Networked Airborne Computing Simulator and

Testbed Design and Implementation”, 2023 International Conference on Unmanned Aircraft

Systems (ICUAS).

155

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Networked Airborne Computing is a new computing paradigm that has the potential to

significantly improve the onboard computing capabilities of UAVs to support advanced UAVs

applications as well as provide computing services to ground users. Due to unique features

of UAVs such as high maneuverability and small load, enabling NAC is challenging because

of its unique features such as high mobility, small load, and uncertain operating environment.

This dissertation introduces innovative techniques to address these challenges, as a step towards

enabling NAC.

Starting from designing a single UAV platform for NAC, Chapter 2 designs a new UAV-

based airborne computing platform to address the onboard computing limitations of existing

UAV platforms. This airborne computing platform was designed from two aspects: hardware

and software. To design the hardware, we first investigated the desired features for the onboard

computing hardware, and then conducted a comprehensive comparison study among state-of-

the-art single-board computers to select a suitable one as the computing unit. A prototype

was then designed and implemented, which not only contains the computing unit, but also

hardware for UAS mobility, communications and control. To design the software, we investigated

two representative virtualization techniques, VM using KVM and container using Docker, and

evaluated their performances from various aspects. Through comprehensive experimental studies,

156

we find that Docker outperforms KVM in most performance aspects, including computing,

networking, isolation of most hardware resources, power consumption, and resource usage.

Docker also successfully virtualizes all CPU cores and GPU in Jetson TX2. On the other hand,

KVM is more secure.

NAC consists of multiple UAV platforms, which can further enhance computing capabili-

ties by computing resources sharing and distributed computing. Chapter 3 proposes a novel CDC

framework, namely, BPCC, for NAC. The key idea of BPCC is to optimally exploit partial coded

results calculated by all distributed computing nodes in NAC. Under this BPCC framework,

we then investigated a classical CDC problem, matrix-vector multiplication, and formulated an

optimization problem for BPCC to minimize the expected task completion time, by configuring

the computation load. The BPCC was proved to provide an asymptotically optimal solution and

outperform a state-of-the-art CDC scheme for heterogeneous clusters, namely, heterogeneous

coded matrix multiplication (HCMM). Theoretical analysis reveals the impact of BPCC’s key

parameter, i.e., number of batches, on its performance, the results of which infer the worst

and best performance that BPCC can achieve. To evaluate the performance of the proposed

BPCC scheme and better understand the impacts of its parameters, we conducted extensive

simulation studies and real experiments on the Amazon EC2 computing clusters. The simulation

and experimental results verify theoretical results and also demonstrate that the proposed BPCC

scheme outperforms all benchmark schemes in computing systems with uncertain stragglers, in

terms of the task completion time and robustness to stragglers.

Chapter 4 further extends BPCC to consider mobility of UAVs in NAC and proposes

D-BPCC (Dynamic-BPCC) to enable efficient, robust, and adaptable cooperative airborne com-

puting in the dynamic, heterogeneous, and uncertain airspace. To optimize system performance,

DRL based online decision-making strategies are then designed for two typical NAC formation

scenarios, which do not rely on perfect communication, computation or UAV mobility models.

Simulation results show that our methods are more resilient to uncertain system disturbances

than existing solutions, including the UU, LBU, HCMM, and C3P schemes, and are adaptive to

157

network topology and resource changes. Moreover, the effectiveness of our method in solving

scenarios where NAC is formed by controllable UAVs demonstrates the benefits of UAV mobility

control to robust computing.

Chapter 5 explores applications of NAC in MARL. In particular, we present DARL1N, a

scalable MARL algorithm that can be trained over a distribute computing architecture. DARL1N

reduces the representation complexity of the value and policy functions of each agent in a MARL

problem by disregarding the influence of other agents that are not within one hop of a proximity

graph. This model enables highly efficient distributed training, in which a compute node only

needs data from an agent it is training and its potential one-hop neighbors. We conducted

comprehensive experiments using five MARL environments and compared DARL1N with four

state-of-the-art MARL algorithms. DARL1N generates equally good or even better policies

in almost all scenarios with significantly higher training efficiency than benchmark methods,

especially in large-scale problem settings. To improve the resilience of DARL1N to stragglers

common in distributed computing systems, we developed coding schemes that assign each

agent to multiple learners. The properties of MDS, Random Sparse, Repetition, LDPC, and

LDGM codes were evaluated. Our results show that the MDS and Random Sparse codes offer

high resilience to large numbers of stragglers. However, both schemes involve many redundant

computations and have low training efficiency. The Repetition, LDGM, and LDPC coding

schemes achieve better performance in both training efficiency and policy quality but can handle

fewer stragglers in the system.

Chapter 6 introduces a realistic simulator and hardware testbed for NAC research. The

simulator, built using ROS and Gazebo, emulates networked UAVs with inter-vehicle resource

sharing and distributed computing capabilities and can simulate in various realistic environments.

The hardware testbed consists of three quadrotors each with a Pixhawk control unit, Jetson

TX2 computing unit, and telemetry radio and TP-Link Wi-Fi router for communication. The

simulation and real flight tests on two computation applications showed that UAV mobility has a

direct impact on the throughput, resulting in degraded and unstable communication performance

158

as distance increases.

7.2 Future Work

There are several suggestions for future work. In Chapter 2, UAV platform adopts

directional antenna to achieve long range and broadband communication, which, however,

requires that two antennas’s directions are physically adjusted to face to each other. To support

more flexible communication, phased array antennas can be used to adjust directions without

physically moving antennas. Moreover, KVM and Docker based live migration that allows

migrating a running container or virtual machine from one UAV to another UAV without

interruption can be investigated to improve the robustness and flexibility of single UAV platform.

For BPCC and D-BPCC methods proposed in Chapter 3 and 4, respectively, energy

consumption or storage can be considered for optimization in addition to task completion time

and UAV flight time.

In Chapter 5, both DARL1N and Coded DARL1N adopt centralized training architecture

in which there is a central controller that collects and sends training parameters from and to

workers. This centralized training architecture relies on central controller for successful training.

In the future, a fully decentralized training architecture can be explored to improve the system

robustness and flexibility.

For hardware testbed design in Chapter 6, the UAV-to-UAV communication range and

throughput can be improved through the use of phased array antennas and mmWave 5G technol-

ogy [222].

159

Appendix A

Proofs of Chapter 3

A.1 Proof of Lemma 1

To derive the infimum and supremum of λi, we first prove that they are attained at pi→∞

and pi = 1, respectively. Define the following auxiliary function

hi(x,y) = (1+
µix
y
)e−µi(

x
y−αi), (A.1)

where x > 0 and y ∈ [0,1]. Note that hi(x,y) is a monotonically increasing function with respect

to y, as ∂hi(x,y)
∂y = µix

y3 e−µi(
x
y−αi) > 0. Also define P(z) = {y0,y1,y2, . . . ,yz} as a partition of the

range of y, i.e., [0,1], with yk =
k
z , z ∈ Z+, k ∈ {0}∪ [z], and let

Mk(x) = sup
y
{hi(x,y)| yk−1 ≤ y≤ yk}= hi(x,yk) = (1+

µixz
k

)e−
µixz

k +µiαi (A.2)

for each k ∈ [z]. We then let ∆yk = yk− yk−1 =
1
z , k ∈ [z], and define

U(z,x) =
z

∑
k=1

Mk(x)∆yk =
1
z

z

∑
k=1

(1+
µixz

k
)e−

µixz
k +µiαi

According to Theorem 6.4 in [236], if there exists another partition P(z′) that satisfies

P(z′)⊃ P(z), then

U
(
z′,x
)
<U(z,x) (A.3)

160

We can then derive that

U(∞,x)<U(z,x)≤U(1,x), (A.4)

as P(z)⊇ P(1) and P(z)⊂ P(∞), ∀z ∈ Z+. The right equality holds when z = 1. Furthermore,

as ∂U(z,x)
∂x = 1

z ∑
z
k=1−

u2
i zx
k2 e−

uizx
k +µiαi < 0, U(z,x) is a monotonically decreasing function with

respect to x.

Now let x = λi and z = pi. We then have

U(pi,λi) =
1
pi

pi

∑
k=1

(1+
µiλi pi

k
)e−

µiλi pi
k +µiαi = 1, (A.5)

according to Eq. (7). Using proof of contradiction, we can then derive that the infimum and

supremum of λi are attained when pi → ∞ and pi = 1, respectively. Specifically, suppose

supλi = λ̄ is attained at pi = p̄ > 1 and λ ∗ is attained at pi = 1, we then have λ̄ ≥ λ ∗ and

U(1, λ̄)≤U(1,λ ∗) as U(z,x) is a monotonically decreasing function with respect to x. Since

U(p̄, λ̄) =U(1,λ ∗) according to Eq. (A.5), we have U(1, λ̄)≤U(p̄, λ̄), which contradicts with

U(1, λ̄)>U(p̄, λ̄) according to Eq. (A.4). Therefore, supλi must be attained at pi = 1. Similarly,

we can prove that the infimum of λi is attained when pi→ ∞.

Next, we find the specific formulas for the infimum and supremum of λi. In particular, the

infimum of λi is attained when pi→ ∞, which can be found by solving Eq. (A.5). Specifically,

lim
pi→∞

1
pi

pi

∑
k=1

(1+
µiλi pi

k
)e−

µiλi pi
k +µiαi = 1 (A.6)

which is equivalent to solving

∫ 1

0
(1+

µiλi

x
)e
−µiλi

x dx = e−µiαi (A.7)

Define variable v = µiλi
x , the term in the left side of the above equation can be simplified as

161

∫ 1

0

(
1+

µiλi

x

)
e−

µiλi
x dx

=−µiλi

∫
∞

µiλi

(1+ v)e−vd
(

1
v

)
=−µiλi

[
(
1
v
+1)e−v|∞

µiλi
−
∫

∞

µiλi

1
v

d((1+ v)e−v)

]
=(1+µiλi)e−µiλi−µiλi

∫
∞

µiλi

e−vdv

=e−µiλi (A.8)

Combining Eq. (A.7) and Eq. (A.8), we can get λi = αi, when pi→ ∞.

Similarly, we can obtain the supremum of λi by solving Eq. (A.5) and setting pi = 1.

Specifically, we aim to solve the following equation

(1+µiλi)e−µiλi+µiαi = 1 (A.9)

According to [130], the solution to ax = x+b is x = −b−W (−a−b lna)
lna , where W (·) is the Lambert

W function. We can then get the following solution to the above equation

λi =
W (−e−αiµi−1)+1

−µi
,

by letting x = µiλi−αiµi, a = e and b = αiµi +1.

A.2 Proof of Lemma 2

To prove τ∗− o(1) < t∗ ≤ τ∗+ o(1) in Lemma 2, we will apply the McDiarmid’s

inequalities [237] described as follows. For a set of independently distributed random variables,

162

x1,x2, . . . ,xN ∈X , if a function f : X N → R satisfies the Lipschitz condition:

∣∣ f (x1, . . . ,xi, . . . ,xN)− f
(
x1, . . . ,x′i, . . . ,xN

)∣∣≤ ci,

for all x1, . . . ,xN ,x′i ∈X , then, for any σ > 0,

Pr [E[f (X)]− f (X)≥ σ] ≤ e
− 2σ2

∑
N
i=1 c2

i (A.10)

Pr [f (X)−E[f (X)]≥ σ] ≤ e
− 2σ2

∑
N
i=1 c2

i (A.11)

where X = (x1,x2, . . . ,xN) ∈X N . To apply the above McDiarmid’s inequalities in our problem,

we define xi(t) = si(t)bi, ∀i ∈ [N], and further define

X(t) =
N

∑
i=1

xi(t) =
N

∑
i=1

si(t)bi = S(t).

Clearly, under such definitions, we have ci(t) = ℓi(t). To facilitate further discussions, we let

δ = Θ

(
logN√

N

)
= o(1), ε = δ 2. We also summarize the asymptotic scales for the parameters:

r = Θ(N), λi = Θ(1), β = Θ(N), τ∗ = Θ(1), ℓ∗i (τ
∗) = Θ(1).

Now, let’s prove the first inequality in Lemma 2: τ∗− o(1) < t∗. Define t = τ∗− δ .

According to Eq. (12), we can derive

β t = βτ
∗−βδ = r−βδ .

163

Applying the second McDiarmid’s inequality in Eq. (A.11), we can then derive

Pr [S∗(t)≥ r+ ε]

=Pr [S∗(t)≥ E[S∗(t)]−E[S∗(t)]+ r+ ε]

=Pr [S∗(t)≥ E[S∗(t)]−β t + r+ ε]

=Pr [S∗(t)−E[S∗(t)]≥ βδ + ε]

≤e
− 2(βδ+ε)2

∑
N
i=1(ℓ

∗
i (t))

2 (A.12)

Using the asymptotic scales of parameters in the right hand side of Ineq. (A.12), we have

Pr [S∗(t)≥ r+ ε]≤Θ(e− log2 N). (A.13)

Consequently, we have

Pr [S∗(t)< r+ ε]> 1−Θ(e− log2 N) = Θ(1). (A.14)

Ineq. (A.14) shows that, if t∗ ≤ τ∗−δ , then the probability Pr [S∗(t∗)< r+ ε] is not o(1
N), which

does not satisfy the constraint in P
(2)
alt . Therefore, t∗ > τ∗−o(1).

Next, we prove the second inequality in Lemma 2: t∗ ≤ τ∗+o(1). Define t ′ = τ∗+δ .

According to Eq. (12), we can derive

β t ′ = βτ
∗+βδ = r+βδ .

164

Applying the first McDiarmid’s inequality in Eq. (A.10), we can then derive

Pr
[
S∗(t ′)≤ r− ε

]
=Pr

[
S∗(t ′)≤ E[S∗(t ′)]−E[S∗(t ′)]+ r− ε

]
=Pr

[
S∗(t ′)≤ E[S∗(t ′)]−β t ′+ r− ε

]
=Pr

[
E[S∗(t ′)]−S∗(t ′)≥ βδ + ε

]
≤e
− 2(βδ+ε)2

∑
N
i=1(ℓ

∗
i (t))

2 (A.15)

Using the asymptotic scales of parameters in the right hand side of Ineq. (A.15), we have

Pr
[
S∗(t ′)≤ r− ε

]
≤Θ(e− log2 N).

Ineq. (A.15) shows that t ′ = τ∗+δ can satisfy the constraint in P
(2)
alt . Since t∗ is the minimal

time that satisfies the constraint, t∗ ≤ t ′ = τ∗+δ . Therefore, t∗ ≤ τ∗+o(1).

Proof of Theorem 3

The asymptotic optimality of BPCC shown in Eq. (16) can be proved by showing that

t∗−o(1)≤E [TOPT]≤E [TBPCC]≤t∗+o(1)

Since E [TOPT]≤ E [TBPCC] is straightforward because E[TOPT] is the optimal value of P′main, we

use two steps, inspired by [25], to prove the other two inequalities.

Step 1: To prove t∗−o(1)≤ E [TOPT].

Let ℓOPT =(ℓOPT,1, · · · , ℓOPT,N) be the optimal load allocation obtained by solving P ′
main

and let SOPT(t) be the amount of results received by the master node by time t under load

165

allocation ℓOPT. The inequality above can be proved by showing the following inequalities:

t∗−δ2−δ1
(b)
≤ τ

∗
OPT−δ1

(a)
≤ E [TOPT]

where τ∗OPT is the solution to E [SOPT(t)] = r, and δ1 and δ2 are both Θ

(
logN√

N

)
= o(1). To prove

Ineq. (a), we first define an auxiliary function gi(t) for each node i as

gi(t) = 1− 1
pi

pi

∑
k=1

e
−µi(

t pi
kℓOPT,i

−αi)
.

According to Eq. (5), we have

E [SOPT(t)] =
N

∑
i=1

ℓOPT,igi(t)

and
r−E[SOPT (τ

∗
OPT−δ1)]

= E [SOPT(τ
∗
OPT)]−E[SOPT (τ

∗
OPT−δ1)]

=
N

∑
i=1

ℓOPT,i [gi(τ
∗
OPT)−gi(τ

∗
OPT−δ1)]

=
N

∑
i=1

ℓOPT,i

(
dgi(τ

∗
OPT)

dτ∗OPT
δ1 +O

(
δ

2
1
))

According to our previous discussions, r = Θ(N), so ℓOPT,i = Θ(1), ∀i ∈ [N]. Therefore, gi(t)

does not change with N, i.e., gi(t) = Θ(1). We then have

r−E [SOPT (τ
∗
OPT−δ1)] = Θ(Nδ1)+O

(
Nδ

2
1
)

= Θ(Nδ1)

166

By using the McDiarmid’s inequality in Eq. (A.11), we have

Pr [SOPT (τ
∗
OPT−δ1)≥ r]

=Pr{SOPT (τ
∗
OPT−δ1)−E [SOPT (τ

∗
OPT−δ1)]≥

r−E [SOPT (τ
∗
OPT−δ1)}

≤ e
−

2(E[SOPT(τ∗OPT−δ1)]−r)
2

∑
N
i=1 ℓ

2
OPT,i

= e−Θ(Nδ 2
1) = o

(
1
N

)
,

which implies that E[TOPT]≥ τ∗OPT−δ1.

Next, we proceed to prove Ineq. (b). Since E[S∗(t)] is the optimal value of P(1)
alt , we have

E[S∗(t)] ≥ E[SOPT(t)]. Moreover, as E[S∗(τ∗)] = r according to Eq. (10), E[SOPT(τ
∗
OPT)] = r,

and both E[S∗(t)] and E[SOPT(t)] increase monotonically with t, we can derive

τ
∗
OPT ≥ τ

∗

According to Lemma 2,

τ
∗ ≥ t∗−δ2

Therefore,

τ
∗
OPT−δ1 ≥ t∗−δ1−δ2

We have now proved t∗−o(1)≤ E [TOPT].

Step 2: To prove E [TBPCC]≤ t∗+o(1).

Let Tmax be a random variable that denotes the time required for all worker nodes to

complete their tasks assigned using BPCC. Let E1 = {Tmax > Θ(N)} and E2 = {TBPCC > t∗} be

two events. E[TBPCC] can then be computed by

167

E [TBPCC] =E [TBPCC|E1]Pr [E1]

+E [TBPCC|E c
1 ∩E2]Pr [E c

1 ∩E2]

+E [TBPCC|E c
1 ∩E c

2]Pr [E c
1 ∩E c

2] (A.16)

The first term in the right hand side of Eq. (A.16) can be written as

E [TBPCC|E1]Pr [E1]

= E [TBPCC|Tmax > Θ(N)]×Pr [Tmax > Θ(N)]

≤ E [Tmax|Tmax > Θ(N)]×Pr [Tmax > Θ(N)]

=
∫

∞

Θ(N)
t fmax(t)dt, (A.17)

where fmax(t) is the probability density function (PDF) of Tmax. A stochastic upper bound

of Tmax can be found by using N worker nodes that all take the smallest straggling parameter

min{µi} and the largest shift parameter max{αi}. Using the PDF of the maximum of N i.i.d.

exponential random variables, we then have

E [TBPCC|E1]Pr [E1]

≤
∫

∞

Θ(N)
t fmax(t)dt

≤
∫

∞

Θ(N)
tNk1e−k1t

(
1− e−k1t

)N−1
dt

≤
∫

∞

Θ(N)
Nk1te−k1tdt

=−N(t +
1
k1
)e−k1t |∞t=Θ(N)

= o(1) (A.18)

168

where k1 is a constant, i.e., k1 = Θ(1).

The second term in the right hand side of Eq. (A.16) can be written as

E[TBPCC|E c
1 ∩E2]Pr [E c

1 ∩E2]

= E [TBPCC|Tmax ≤Θ(N),TBPCC > t∗]

×Pr [Tmax ≤Θ(N),TBPCC > t∗]

≤ E [Tmax|Tmax ≤Θ(N),TBPCC > t∗]

×Pr [TBPCC > t∗] (A.19)

where E [Tmax|Tmax ≤Θ(N),TBPCC > t∗] can be computed by

E[Tmax|Tmax ≤Θ(N),TBPCC > t∗]

=
1

Pr [Tmax ≤Θ(N),TBPCC > t∗]

×
∫

Θ(N)

t1=0

∫
∞

t2=t∗
t1d Pr [Tmax ≤ t1,TBPCC ≤ t2]

≤ Θ(N)

Pr [Tmax ≤Θ(N),TBPCC > t∗]

×
∫

Θ(N)

t1=0

∫
∞

t2=t∗
d Pr [Tmax ≤ t1,TBPCC ≤ t2]

= Θ(N)

Since the master node receives at least r rows of inner product results by time TBPCC, we have

S∗(TBPCC)≥ r. Next, since S∗(t) is a monotonically increasing function with respect to time t,

we can derive that, if S∗(t∗)< r, then TBPCC > t∗, which leads to

Pr [TBPCC > t∗]≤ Pr [S∗ (t∗)< r] = o
(

1
N

)

169

Therefore, Eq. (A.19) can be written as

E [TBPCC|E c
1 ∩E2]Pr [E c

1 ∩E2] ≤ Θ(N) ·o
(

1
N

)
= o(1) (A.20)

The third term in the right hand side of Eq. (A.16) can be written as:

E[TBPCC|E c
1 ∩E c

2]Pr [E c
1 ∩E c

2]

= E [TBPCC|Tmax ≤Θ(N),TBPCC ≤ t∗]

×Pr [Tmax ≤Θ(N),TBPCC ≤ t∗]

≤ E [TBPCC|Tmax ≤Θ(N),TBPCC ≤ t∗]

=
1

Pr [Tmax ≤Θ(N),TBPCC ≤ t∗]

×
∫

Θ(N)

t1=0

∫ t∗

t2=0
t2d Pr [Tmax ≤ t1,TBPCC ≤ t2]

≤ t∗

Pr [Tmax ≤Θ(N),TBPCC ≤ t∗]

×
∫

Θ(N)

t1=0

∫ t∗

t2=0
d Pr [Tmax ≤ t1,TBPCC ≤ t2]

= t∗ (A.21)

Combining Eq. (A.16), Eq. (A.18), Eq. (A.20), and Eq. (A.21), we then have E [TBPCC] ≤

t∗+o(1).

A.3 Proof of Theorem 4

According to Lemma 2 and Theorem 3, we can derive

τ
∗−o(1)≤ E [TBPCC]≤ τ

∗+o(1)

170

Therefore, limN→∞E [TBPCC] = τ∗.

Proof of Theorem 5

Before showing the proof of Theorem 5, we first present the following lemma, which

will be used to prove this theorem.

Lemma 10. Suppose g(x) is a non-decreasing concave function and g(x)≥ 0, then

1
p

p

∑
k=1

g
(

k
p

)
≥ 1

p+1

p+1

∑
k=1

g
(

k
p+1

)
, (A.22)

for any p ∈ Z+.

Proof. Let yk =
k
p and zk =

k
p+1 , where k ∈ [p]. We then have

yk =

(
1− k

p

)
zk +

k
p

zk+1. (A.23)

As g(x) is a concave function, we have

g(yk) = g
[(

1− k
p

)
zk +

k
p

zk+1

]
≥
(

1− k
p

)
g(zk)+

k
p

g(zk+1) (A.24)

Moreover, as g(x) is also a non-decreasing function, which implies g(zk) ≤ g(zk+1), we then

have

171

g(yk)≥
(

1− k
p

)
g(zk)+

k
p

g(zk+1)

= g(zk)+
k
p
(g(zk+1)−g(zk))

≥ g(zk)+
k

p+1
(g(zk+1)−g(zk))

=

(
1− k

p+1

)
g(zk)+

k
p+1

g(zk+1) (A.25)

By summing over all possible values of k for both sides of the above inequality, we get

p

∑
k=1

g(yk)≥
1

p+1

p

∑
k=1

(p+1− k)g(zk)

+
1

p+1

p

∑
k=1

kg(zk+1)

=
1

p+1
[p

p

∑
k=1

g(zk)+
p

∑
k=1

(1− k)g(zk)

+ pg
(
zp+1

)
+

p

∑
k=2

(k−1)g(zk)]

=
p

p+1

p+1

∑
k=1

g(zk) (A.26)

which leads to 1
p ∑

p
k=1 g

(
k
p

)
≥ 1

p+1 ∑
p+1
k=1 g

(
k

p+1

)
.

Now let’s prove Theorem 5. To prove that τ∗ = r
β

decreases with the increase of any pi,

i ∈ [N], we just need to prove that β increases with the increase of any pi. Note that

β =
N

∑
i=1

1
λi

(
1− 1

pi

pi

∑
k=1

e−µi(
λi pi

k −αi)

)
(A.27)

is dependent on both λi and pi. In the following, we first show that the change of λi does not

172

impact β . Particularly, by taking the partial derivative of β with respect to λi, we have

∂β

∂λi
=− 1

λ 2
i

(
1− 1

pi

pi

∑
k=1

e−µi(
λi pi

k −αi)

)

+
1
λi

pi

∑
k=1

µi

k
e−µi(

λi pi
k −αi)

=− 1
λ 2

i
+

1
λ 2

i

pi

∑
k=1

(
1
pi
+λi

µi

k

)
e−µi(

λi pi
k −αi)

(a)
=− 1

λ 2
i
+

1
λ 2

i

=0, (A.28)

where (a) is obtained using Eq. (7). Therefore, β does not change as λi varies.

Next, we prove that β increases with the increase of any pi, i ∈ [N]. Define the following

auxiliary function for each i ∈ [N],

gi(x) = e−
µiλi

x (A.29)

We can easily verify that gi(x) is a concave and increasing function, as µi > 0,λi > 0, and

gi(x)≥ 0. According to Lemma 10, 1
pi

∑
pi
k=1 gi

(
k
pi

)
≥ 1

pi+1 ∑
pi+1
k=1 gi

(
k

pi+1

)
. Therefore, with the

increase of any pi, the term 1
pi

∑
pi
k=1 e−µi(

λi pi
k −αi) in Eq. (A.27) decreases, causing β to increase.

A.4 Proof of Theorem 6

According to Theorem 5, τ∗ decreases with the increase of any pi, i ∈ [N]. Therefore,

the infimum of τ∗ is attained when pi→ ∞, ∀i ∈ [N], i.e.,

infτ
∗ = lim

pi→∞,∀i∈[N]
τ
∗ = lim

pi→∞,∀i∈[N]

r
β

(A.30)

173

Let’s now calculate limpi→∞,∀i∈[N]β . According to Lemma 1, we have limpi→∞ λi = αi, which

leads to

lim
pi→∞,∀i∈[N]

β

= lim
pi→∞,∀i∈[N]

N

∑
i=1

1
λi

(
1− 1

pi

pi

∑
k=1

e−µi(
λi pi

k −αi)

)

= lim
pi→∞,∀i∈[N]

N

∑
i=1

1
λi

(
1− eµiαi

∫ 1

0
e−

µiλi
x dx

)
=

N

∑
i=1

1
αi
(1− eµiαi

∫ 1

0
e−

µiαi
x dx) (A.31)

Therefore,

infτ
∗ = lim

pi→∞,∀i∈[N]
τ
∗

=
r

∑
N
i=1

1
αi
(1− eµiαi

∫ 1
0 e−

µiαi
x dx)

(A.32)

Similarly, from Theorem 5, we can derive that the supremum of τ∗ is attained when

pi = 1, ∀i ∈ [N], i.e.,

supτ
∗ =

N

∑
i=1

1
supλi

(
1− e−µi(supλi−αi)

)
, (A.33)

where supλi is given by Eq. (9).

174

A.5 Proof of Corollary 6.1

As τ∗ approaches its infimum when pi→ ∞, ∀i ∈ [N], we have

ℓ̂i = lim
p j→∞,∀ j∈[N]

ℓ∗i

= lim
p j→∞,∀ j∈[N]

r
βλi

=
r

αi ∑
N
j=1

1
α j
(1− eµ jα j

∫ 1
0 e−

µ jα j
x dx)

, (A.34)

according to Eq. (14) and Eq. (A.31) in the proof of Theorem 6.

A.6 Proof of Theorem 7

According to Theorem 4, we have limN→∞E [TBPCC] = τ∗. Similarly, according to [25],

we can derive limN→∞E [THCMM] = τ∗H . Since HCMM is a special case of BPCC with pi = 1,

∀i ∈ [N], by applying Theorem 5, we have

lim
N→∞

E [TBPCC]≤ lim
N→∞

E [THCMM]

175

Appendix B

Proofs of Chapter 5

B.1 Proof of Lemma 9

Consider the Q-value function Qµ

i of agent i. For two different sets of non-neighbor

states ŝN −
i
̸= sN −

i
and actions âN −

i
̸= aN −

i
, we first show that:

|Qµ

i (sNi,sN −
i
,aNi,aN −

i
)−Qµ

i (sNi, ŝN −
i
,aNi, âN −

i
)|

≤ 2r̄γ

1− γ
. (B.1)

Letting (s,a) and (ŝ, â) denote (sNi,sN −
i
,aNi,aN −

i
) and (sNi, ŝN −

i
,aNi, âN −

i
), respectively, we

have:

∣∣Qµ

i (s,a)−Qµ

i (ŝ, â)
∣∣

=

∣∣∣∣E[∞

∑
t=0

γ
tri
(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (s,a)]

−E[
∞

∑
t=0

γ
tri
(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (ŝ, â)]

∣∣∣∣
≤

∞

∑
t=0

∣∣E[γ tri
(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (s,a)

]
−E

[
γ

tri
(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (ŝ, â)

]∣∣
(a)
=

∞

∑
t=1

∣∣E[γ tri
(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (s,a)

]

176

−E
[
γ

tri
(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (ŝ, â)

]∣∣
≤

∞

∑
t=1

γ
t(
∣∣E[ri

(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (s,a)

]∣∣
+
∣∣E[ri

(
sNi(t),aNi(t)

)
| (s(0),a(0)) = (ŝ, â)

]∣∣)
≤

∞

∑
t=1

2γ
t r̄ =

2r̄γ

1− γ
(B.2)

where (a) derives from the fact that (sNi,aNi) are part of both (s,a) and (ŝ, â). In the above

equations, the expectation E is over state-action trajectories generated by the policy µ and the

transition model p. Then, we have:

∣∣Q̃µ

i
(
sNi,aNi

)
−Qµ

i (s,a)
∣∣

=

∣∣∣∣ ∑
s
N −i

,a
N −i

ωi(sNi,aNi,sN −
i
,aN −

i
)Qµ

i (sNi,aNi,sN −
i
,aN −

i
)

−Qµ

i (sNi,aNi, ŝN −
i
, âN −

i
)

∣∣∣∣
≤ ∑

s
N −i

,a
N −i

ωi(sNi,aNi,sN −
i
,aN −

i
)

∣∣∣∣Qµ

i (sNi,aNi,sN −
i
,aN −

i
)

−Qµ

i (sNi,aNi, ŝN −
i
, âN −

i
)

∣∣∣∣≤ 2r̄γ

1− γ

B.2 Proof of Proposition 1

If agent j ̸∈Pi(t), then based on the definition of potential neighbors, we have dist(si(t),

s j(t))> d+2ε . According to the triangle inequality, dist(si(t),s j(t+1))+dist(s j(t+1),s j(t))≥

dist(si(t),s j(t)), and according to Assumption 1, dist(s j(t +1),s j(t))≤ ε . Therefore, dist(si(t),

s j(t + 1)) > d + ε . Using the triangle inequality again, we obtain dist(si(t + 1),s j(t + 1))+

dist(si(t + 1),si(t)) ≥ dist(si(t),s j(t + 1)). As dist(si(t + 1),si(t)) ≤ ε , we have dist(si(t +

1),s j(t +1))> d. Therefore, agent j will not be a one-hop neighbor of agent i at time t +1.

177

B.3 Proof of Proposition 3

The performance of the MDS code scheme will be affected only if the number of

stragglers exceeds N−M because CMDS has rank M. If there are W > N−M stragglers, the

results from non-straggler nodes will be insufficient for the central controller to decode the

parameter gradients and it needs to wait for results from the stragglers. Under Assumption

4, W follows a binomial distribution with probability mass function p(W = w) =
(N

w

)
(1−

η)N−wηw. Therefore, the probability that the performance will be affected by the stragglers is

∑
N
j=N−M+1 p(W = j) = ∑

N
j=N−M+1

(N
j

)
(1−η)N− jη j.

178

Bibliography

[1] D. W. Casbeer, R. W. Beard, T. W. McLain, S.-M. Li, and R. K. Mehra, “Forest fire
monitoring with multiple small uavs,” in Proceedings of the 2005 American Control
Conference, June Hilton Portland Portland, Oregon, June 2005, pp. 3530-3535.

[2] E. Kuiper and S. Nadjm-Tehrani, “Mobility models for uav group reconnaissance appli-
cations,” in Proceedings of the 2006 International Conference on Wireless and Mobile
Communications, July Vancouver, Canada, July 2006, pp. 33-33.

[3] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa, F. Ruess,
M. Suppa, and D. Burschka, “Toward a fully autonomous uav: Research platform for
indoor and outdoor urban search and rescue,” IEEE robotics & automation magazine,
vol. 19, no. 3, pp. 46–56, 2012.

[4] F. Nex and F. Remondino, “Uav for 3d mapping applications: a review,” Applied geomatics,
vol. 6, no. 1, pp. 1–15, 2014.

[5] V. Hassija, V. Chamola, A. Agrawal, A. Goyal, N. C. Luong, D. Niyato, F. R. Yu, and
M. Guizani, “Fast, reliable, and secure drone communication: A comprehensive survey,”
IEEE Communications Surveys & Tutorials, 2021.

[6] H. Wang, H. Zhao, J. Zhang, D. Ma, J. Li, and J. Wei, “Survey on unmanned aerial
vehicle networks: A cyber physical system perspective,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 2, pp. 1027–1070, 2019.

[7] B. Alzahrani, O. S. Oubbati, A. Barnawi, M. Atiquzzaman, and D. Alghazzawi, “Uav
assistance paradigm: State-of-the-art in applications and challenges,” Journal of Network
and Computer Applications, vol. 166, p. 102706, 2020.

[8] W. Chen, B. Liu, H. Huang, S. Guo, and Z. Zheng, “When uav swarm meets edge-cloud
computing: The qos perspective,” IEEE Network, vol. 33, no. 2, pp. 36–43, 2019.

[9] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward uav-based airborne computing,” IEEE Wireless
Communications, vol. 26, no. 6, pp. 172–179, 2019.

[10] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”
IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

179

[11] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G. Y. Li, “Joint offloading and trajectory
design for uav-enabled mobile edge computing systems,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 1879–1892, 2018.

[12] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization in uav-enabled
wireless-powered mobile-edge computing systems,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 1927–1941, 2018.

[13] L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, and Y. Liu, “Multi-uav-enabled
load-balance mobile-edge computing for iot networks,” IEEE Internet of Things Journal,
vol. 7, no. 8, pp. 6898–6908, 2020.

[14] S. Jeong, O. Simeone, and J. Kang, “Mobile cloud computing with a uav-mounted cloudlet:
optimal bit allocation for communication and computation,” Iet Communications, vol. 11,
no. 7, pp. 969–974, 2017.

[15] L. Lyu, F. Zeng, Z. Xiao, C. Zhang, H. Jiang, and V. Havyarimana, “Computation bits
maximization in uav-enabled mobile edge computing system,” IEEE Internet of Things
Journal, 2021.

[16] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao, and X. Shen, “Energy-efficient uav-assisted
mobile edge computing: Resource allocation and trajectory optimization,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 3, pp. 3424–3438, 2020.

[17] X. Hu, K.-K. Wong, K. Yang, and Z. Zheng, “Uav-assisted relaying and edge computing:
Scheduling and trajectory optimization,” IEEE Transactions on Wireless Communications,
vol. 18, no. 10, pp. 4738–4752, 2019.

[18] J. Xiong, H. Guo, and J. Liu, “Task offloading in uav-aided edge computing: Bit allocation
and trajectory optimization,” IEEE Communications Letters, vol. 23, no. 3, pp. 538–541,
2019.

[19] A. Asheralieva and D. Niyato, “Hierarchical game-theoretic and reinforcement learning
framework for computational offloading in uav-enabled mobile edge computing networks
with multiple service providers,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8753–8769, 2019.

[20] H. Wang, H. Ke, and W. Sun, “Unmanned-aerial-vehicle-assisted computation offloading
for mobile edge computing based on deep reinforcement learning,” IEEE Access, vol. 8,
pp. 180 784–180 798, 2020.

[21] H. Zhou, Z. Wang, G. Min, and H. Zhang, “Uav-aided computation offloading in mobile
edge computing networks: a stackelberg game approach,” IEEE Internet of Things Journal,
2022.

[22] H. Chang, Y. Chen, B. Zhang, and D. Doermann, “Multi-uav mobile edge computing and
path planning platform based on reinforcement learning,” IEEE Transactions on Emerging
Topics in Computational Intelligence, 2021.

180

[23] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and L. Hanzo, “Multi-agent deep reinforce-
ment learning-based trajectory planning for multi-uav assisted mobile edge computing,”
IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 1, pp.
73–84, 2020.

[24] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded computation over
heterogeneous clusters,” in Proceedings of the 2017 IEEE ISIT, Aachen, Germany, June
2017.

[25] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded computation over
heterogeneous clusters,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp.
4227–4242, 2019.

[26] ROS, “Robot operating system (ros),” Accessed: March 23, 2023. [Online]. Available:
https://www.ros.org/

[27] GAZEBO, “Gazebo,” Accessed: March 23, 2023. [Online]. Available: https:
//gazebosim.org/home

[28] A. C. Satici, H. Poonawala, and M. W. Spong, “Robust optimal control of quadrotor uavs,”
IEEE Access, vol. 1, pp. 79–93, 2013.

[29] A. Fotouhi, M. Ding, and M. Hassan, “Flying drone base stations for macro hotspots,”
IEEE Access, vol. 6, pp. 19 530–19 539, 2018.

[30] K. Li, W. Ni, X. Wang, R. P. Liu, S. S. Kanhere, and S. Jha, “Energy-efficient cooperative
relaying for unmanned aerial vehicles,” IEEE Transactions on Mobile Computing, vol. 15,
no. 6, pp. 1377–1386, 2016.

[31] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile internet of things: Can uavs
provide an energy-efficient mobile architecture?” in Proceedings of 2016 Global Com-
munications Conference (GLOBECOM), December Washington D.C., USA, December
2016, pp. 1-6.

[32] Z. M. Fadlullah, D. Takaishi, H. Nishiyama, N. Kato, and R. Miura, “A dynamic trajectory
control algorithm for improving the communication throughput and delay in uav-aided
networks,” IEEE Network, vol. 30, no. 1, pp. 100–105, 2016.

[33] N. H. Motlagh, M. Bagaa, and T. Taleb, “Uav-based iot platform: A crowd surveillance
use case,” IEEE Communications Magazine, vol. 55, no. 2, pp. 128–134, 2017.

[34] B. Qureshi, A. Koubaa, M.-F. Sriti, Y. Javed, and M. Alajlan, “Poster: Dronemap-a cloud-
based architecture for the internet-of-drones.” in Proceedings of the 2016 International
Conference on Embedded Wireless Systems and Networks, Graz, Austria, 2016 February,
pp. 255-256.

181

https://www.ros.org/
https://gazebosim.org/home
https://gazebosim.org/home

[35] A. Giyenko and Y. Im Cho, “Intelligent uav in smart cities using iot,” in Proceedings
of 2016 16th International Conference on Control, Automation and Systems (ICCAS),,
October Gyeongju, Korea, 2016, pp. 207-210.

[36] S.-J. Yoo, J.-h. Park, S.-h. Kim, and A. Shrestha, “Flying path optimization in uav-assisted
iot sensor networks,” ICT Express, vol. 2, no. 3, pp. 140–144, 2016.

[37] “Jetson TX2 Module,” Accessed: March 23, 2023. [Online]. Available: https:
//elinux.org/Jetson TX2

[38] C. Dall and J. Nieh, “Kvm/arm: the design and implementation of the linux arm hy-
pervisor,” ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 333–348,
2014.

[39] D. Merkel, “Docker: lightweight linux containers for consistent development and deploy-
ment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[40] “Raspberry Pi,” Accessed: March 23, 2023. [Online]. Available: https://www.raspberrypi.
org/

[41] “Odroid Xu,” Accessed: March 23, 2023. [Online]. Available: https://www.hardkernel.
com/ko/tag/odroid-xu/

[42] “Arduino,” Accessed: March 23, 2023. [Online]. Available: https://www.arduino.cc/

[43] “Cubieboard,” Accessed: March 23, 2023. [Online]. Available: http://docs.cubieboard.
org/products/start

[44] “Arndale Board,” Accessed: March 23, 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Arndale Board

[45] Z. Shang and Z. Shen, “Real-time 3d reconstruction on construction site using visual slam
and uav,” arXiv preprint arXiv:1712.07122, 2017.

[46] “Jetson TX1 Module,” Accessed: March 23, 2023. [Online]. Available: https:
//developer.nvidia.com/embedded/jetson-tx1

[47] “UDOO X86,” Accessed: March 23, 2023. [Online]. Available: https://www.udoo.org/
docs-x86/Introduction/Introduction.html

[48] “Intel Aero Compute Board,” Accessed: March 23, 2023. [On-
line]. Available: https://www.intel.com/content/www/us/en/products/sku/97178/
intel-aero-compute-board/specifications.html

[49] “LattePanda Alpha,” Accessed: March 23, 2023.
[Online]. Available: https://www.kickstarter.com/projects/139108638/
lattepanda-alpha-soul-of-a-macbook-in-a-pocket-siz

182

https://elinux.org/Jetson_TX2
https://elinux.org/Jetson_TX2
https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.hardkernel.com/ko/tag/odroid-xu/
https://www.hardkernel.com/ko/tag/odroid-xu/
https://www.arduino.cc/
http://docs.cubieboard.org/products/start
http://docs.cubieboard.org/products/start
https://en.wikipedia.org/wiki/Arndale_Board
https://en.wikipedia.org/wiki/Arndale_Board
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx1
https://www.udoo.org/docs-x86/Introduction/Introduction.html
https://www.udoo.org/docs-x86/Introduction/Introduction.html
https://www.intel.com/content/www/us/en/products/sku/97178/intel-aero-compute-board/specifications.html
https://www.intel.com/content/www/us/en/products/sku/97178/intel-aero-compute-board/specifications.html
https://www.kickstarter.com/projects/139108638/lattepanda-alpha-soul-of-a-macbook-in-a-pocket-siz
https://www.kickstarter.com/projects/139108638/lattepanda-alpha-soul-of-a-macbook-in-a-pocket-siz

[50] “UP Squared,” Accessed: March 23, 2023. [Online]. Available: https://up-board.org/
upsquared/specifications/

[51] “Raspberry Pi 4,” Accessed: March 23, 2023. [Online]. Available: https:
//www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

[52] “Jetson AGX Xavier,” Accessed: March 23, 2023. [Online].
Available: https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/
jetson-agx-xavier/#jetson-agx-xavier

[53] “DJI Manifold,” Accessed: March 23, 2023. [Online]. Available: https://www.dji.com/
manifold

[54] “HiKey960,” Accessed: March 23, 2023. [Online]. Available: https://www.96boards.org/
product/hikey960/

[55] “Rock 960,” Accessed: March 23, 2023. [Online]. Available: https://www.96rocks.com/

[56] “Support Resources,” Accessed: March 23, 2023. [Online]. Available: https:
//developer.nvidia.com/embedded/community/support-resources

[57] S. Li, C. He, M. Liu, Y. Wan, Y. Gu, J. Xie, S. Fu, and K. Lu, “Design and implemen-
tation of aerial communication using directional antennas: learning control in unknown
communication environments,” IET Control Theory & Applications, vol. 13, no. 17, pp.
2906–2916, 2019.

[58] “DJI Matrice 100,” Accessed: March 23, 2023. [Online]. Available: https:
//www.dji.com/matrice100

[59] “NanoStation Loco M5,” Accessed: March 23, 2023. [Online]. Available:
https://store.ui.com/collections/wireless/products/nanolocom5

[60] “WS323 300Mbps Wireless Range Extender User Guide,” Accessed: March 23, 2023.
[Online]. Available: https://www.manualslib.com/manual/547195/Huawei-Ws323.html#
manual

[61] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the linux virtual machine
monitor,” in Proceedings of the Linux symposium, vol. 1, Ottawa, Ontario, July 2007.

[62] M.-K. Yoon, B. Liu, N. Hovakimyan, and L. Sha, “Virtualdrone: virtual sensing, actuation,
and communication for attack-resilient unmanned aerial systems,” in Proceedings of the
8th International Conference on Cyber-Physical Systems, April Pittsburgh, PA, April
2017, pp. 143-154.

[63] N. Jain and S. Choudhary, “Overview of virtualization in cloud computing,” in 2016
Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India,March
2016, pp.1-4, pp. 1–4.

183

https://up-board.org/upsquared/specifications/
https://up-board.org/upsquared/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-agx-xavier/#jetson-agx-xavier
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-agx-xavier/#jetson-agx-xavier
https://www.dji.com/manifold
https://www.dji.com/manifold
https://www.96boards.org/product/hikey960/
https://www.96boards.org/product/hikey960/
https://www.96rocks.com/
https://developer.nvidia.com/embedded/community/support-resources
https://developer.nvidia.com/embedded/community/support-resources
https://www.dji.com/matrice100
https://www.dji.com/matrice100
https://store.ui.com/collections/wireless/products/nanolocom5
https://www.manualslib.com/manual/547195/Huawei-Ws323.html#manual
https://www.manualslib.com/manual/547195/Huawei-Ws323.html#manual

[64] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Performance compari-
son analysis of linux container and virtual machine for building cloud,” Advanced Science
and Technology Letters, vol. 66, no. 2, pp. 105–111, 2014.

[65] L. Malhotra, D. Agarwal, and A. Jaiswal, “Virtualization in cloud computing,” J Inform
Tech Softw Eng, vol. 4, no. 136, p. 2, 2014.

[66] J. Shuja, A. Gani, K. Bilal, A. U. R. Khan, S. A. Madani, S. U. Khan, and A. Y. Zomaya,
“A survey of mobile device virtualization: Taxonomy and state of the art,” ACM Computing
Surveys (CSUR), vol. 49, no. 1, pp. 1–36, 2016.

[67] R. Morabito, “A performance evaluation of container technologies on internet of things
devices,” in Proceedings of the 2016 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), April San Francisco, CA ,April 2016, pp.999-1000.

[68] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded hypervisor xvisor:
A comparative analysis,” in Proceedings of the 2015 23rd Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing (PDP), Turku, Finland,
March 2015, pp. 682-691.

[69] F. Gu, F. Hu, and H. Chen, “Real-time performance evaluation of linux arm virtualization,”
in Proceedings of the 2nd International Conference on Energy Science and Applied
Technology (ESAT 2015), August Wuhan, China, August 2015.

[70] S. Toumassian, R. Werner, and A. Sikora, “Performance measurements for hypervisors on
embedded arm processors,” in Proceedings of 2016 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), September Jaipur, India,
September 2016, pp.851-858.

[71] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “Kvm, xen and docker: A performance
analysis for arm based nfv and cloud computing,” in Proceedings of the 2015 IEEE 3rd
Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE),
November Riga, Latvia, November 2015, pp. 1-8.

[72] R. Morabito and N. Beijar, “Enabling data processing at the network edge through
lightweight virtualization technologies,” in Proceedings of 2016 IEEE International
Conference on Sensing, Communication and Networking (SECON Workshops), London,
UK,June 2016, pp. 1-6.

[73] R. Morabito, “Virtualization on internet of things edge devices with container technologies:
a performance evaluation,” IEEE Access, vol. 5, pp. 8835–8850, 2017.

[74] P. Bellavista and A. Zanni, “Feasibility of fog computing deployment based on docker
containerization over raspberrypi,” in Proceedings of the 18th international conference on
distributed computing and networking, NY, USA, January 2017, p. 16.

184

[75] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy, “Fog of
everything: Energy-efficient networked computing architectures, research challenges, and
a case study,” IEEE access, vol. 5, pp. 9882–9910, 2017.

[76] “Edge Computing for UAVs, UASs, and Drones,” Accessed: March 23, 2023. [Online].
Available: https://www.nutanix.com/go/edge-computing-for-drones.html

[77] N. Kalatzis, M. Avgeris, D. Dechouniotis, K. Papadakis-Vlachopapadopoulos, I. Roussaki,
and S. Papavassiliou, “Edge computing in iot ecosystems for uav-enabled early fire
detection,” in Proceedings of 2018 IEEE International Conference on Smart Computing
(SMARTCOMP), July Kuala Lumpur, Malaysia, July 2018, pp.106-114.

[78] B. Wang, J. Xie, S. Li, Y. Wan, S. Fu, and K. Lu, “Enabling high-performance onboard
computing with virtualization for unmanned aerial systems,” in Proceedings of 2018
International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, June 2018,
pp. 202-211.

[79] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron, “Rodinia:
A benchmark suite for heterogeneous computing,” in Proceedings of IEEE International
Symposium on Workload Characterization, October Austin, TX, October 2009, pp.44-54.

[80] R. Montella, G. Giunta, G. Laccetti, M. Lapegna, C. Palmieri, C. Ferraro, and V. Pelliccia,
“Virtualizing cuda enabled gpgpus on arm clusters,” in Parallel Processing and Applied
Mathematics. Springer, 2016, pp. 3–14.

[81] D. Kang, T. J. Jun, D. Kim, J. Kim, and D. Kim, “Convgpu: Gpu management middleware
in container based virtualized environment,” in Proceedings of the 2017 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), September Hawaii, USA,September
2017, pp.301-309.

[82] A. Tirumala, T. Dunigan, and L. Cottrell, “Measuring end-to-end bandwidth with iperf
using web100,” in Proceedings of Passive and Active Monitoring Workshop, April San
Diego, CA, April 2003.

[83] Z. Wei, G. Xiaolin, H. R. Wei, and Y. Si, “Tcp ddos attack detection on the host in the kvm
virtual machine environment,” in Proceedings of the 2012 IEEE/ACIS 11th International
Conference on Computer and Information Science (ICIS), May Shanghai, China, May
2012, pp. 62-67.

[84] R. Mabry, J. Ardonne, J. N. Weaver, D. Lucas, and M. J. Bays, “Maritime autonomy in a
box: Building a quickly-deployable autonomy solution using the docker container envi-
ronment,” in Proceedings of OCEANS 2016 MTS/IEEE Monterey, September Monterey,
CA, September 2016, pp.1-6.

[85] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. De Rose,
“Performance evaluation of container-based virtualization for high performance computing
environments,” in Proceedings of the 2013 21st Euromicro International Conference

185

https://www.nutanix.com/go/edge-computing-for-drones.html

on Parallel, Distributed and Network-Based Processing (PDP), February Belfast, UK,
February 2013, pp. 233-240.

[86] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamilton, M. Mc-
Cabe, and J. Owens, “Quantifying the performance isolation properties of virtualization
systems,” in Proceedings of the 2007 workshop on Experimental computer science, June
San Diego, CA, June 2007, p.6.

[87] D. H. Bailey, NAS Parallel Benchmarks. Boston, MA: Springer US, 2011, pp. 1254–1259.

[88] “Jetson TX2 Thermal Design Guide,” Accessed: March 23,
2023. [Online]. Available: https://devtalk.nvidia.com/default/topic/1036126/
measure-jetson-x2-energy-usage-during-a-given-task/

[89] “Sysstat,” Accessed: March 23, 2023. [Online]. Available: http://sebastien.godard.
pagesperso-orange.fr/

[90] C. Yu and F. Huan, “Live migration of docker containers through logging and replay,” in
Proceedings of the International Conference on Mechatronics and Industrial Informatics
Advances in Computer Science Research, October Zhuhai, China, October 2015.

[91] “Checkpoint and Restore,” Accessed: March 23, 2023. [Online]. Available:
https://criu.org/Main Page

[92] “Docker,” Accessed: March 23, 2023. [Online]. Available: https://www.docker.com/

[93] “OpenDroneMap,” Accessed: March 23, 2023. [Online]. Available: http://opendronemap.
org/

[94] “Jetson inference,” Accessed: March 23, 2023. [Online]. Available: https:
//github.com/dusty-nv/jetson-inference

[95] “UCF Aerial Action Data Set,” Accessed: March 23, 2023. [Online]. Available:
http://crcv.ucf.edu/data/UCF Aerial Action.php

[96] S. Kartik and C. S. Ram Murthy, “Task allocation algorithms for maximizing reliability
of distributed computing systems,” IEEE Transactions on Computers, vol. 46, no. 6, pp.
719–724, 1997.

[97] B. Hong and V. K. Prasanna, “Distributed adaptive task allocation in heterogeneous
computing environments to maximize throughput,” in Proceedings of the 2004 IPDPS,
Santa Fe, New Mexico, April 2004.

[98] K. Lu, J. Xie, Y. Wan, and S. Fu, “Toward UAV-Based Airborne Computing,” IEEE
Wireless Communications, vol. 26, no. 6, pp. 172–179, 2019.

[99] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

186

https://devtalk.nvidia.com/default/topic/1036126/measure-jetson-x2-energy-usage-during-a-given-task/
https://devtalk.nvidia.com/default/topic/1036126/measure-jetson-x2-energy-usage-during-a-given-task/
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
https://criu.org/Main_Page
https://www.docker.com/
http://opendronemap.org/
http://opendronemap.org/
https://github.com/dusty-nv/jetson-inference
https://github.com/dusty-nv/jetson-inference
http://crcv.ucf.edu/data/UCF_Aerial_Action.php

[100] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
Computing with Working Sets,” in Proceedings of the 2010 HotCloud, Boston, USA, June
2010.

[101] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2,
pp. 74–80, 2013.

[102] C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely-throughput optimal coded com-
puting over cloud networks,” in Proceedings of the 20th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, Catania, Italy, July 2019.

[103] K. T. Kim, C. Joe-Wong, and M. Chiang, “Coded edge computing,” in Proceedings of the
2020 IEEE INFOCOM, Virtual, July 2020.

[104] J. Yue and M. Xiao, “Coding for distributed fog computing in internet of mobile things,”
IEEE Transactions on Mobile Computing, 2020.

[105] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, “Improving MapReduce
Performance in Heterogeneous Environments,” in Proceedings of the 2008 OSDI, San
Diego, CA, December 2008.

[106] J. Dean, “Achieving Rapid Response Times in Large Online Services,” Accessed: March
23, 2023. [Online]. Available: https://research.google/pubs/pub44875/

[107] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective Straggler Mitiga-
tion: Attack of the Clones,” in Proceedings of the 2013 NSDI. Lombard, IL: USENIX,
April 2013.

[108] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E. Harris,
“Reining in the outliers in map-reduce clusters using Mantri,” in Proceedings of the 2010
OSDI, BC, Canada, October 2010.

[109] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis,
“Dremel: Interactive analysis of web-scale datasets,” Proceedings of the VLDB Endowment,
vol. 3, no. 1, pp. 330–339, 2010.

[110] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Why let resources idle?
aggressive cloning of jobs with dolly,” in Proceedings of the 2012 HotCloud. Boston,
MA: USENIX, June 2012.

[111] C. Liu, Q. Wang, X. Chu, Y.-W. Leung, and H. Liu, “Esetstore: An erasure-coded storage
system with fast data recovery,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 9, pp. 2001–2016, 2020.

[112] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” in Proceedings of
the 2015 Allerton, IL, USA, September 2015.

187

https://research.google/pubs/pub44875/

[113] Y. Zhu, P. P. Lee, Y. Xu, Y. Hu, and L. Xiang, “On the speedup of recovery in large-scale
erasure-coded storage systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 7, pp. 1830–1840, 2013.

[114] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up
distributed machine learning using codes,” in Proc. of IEEE ISIT 2016. IEEE, aug 2016,
pp. 1143–1147.

[115] ——, “Speeding Up Distributed Machine Learning Using Codes,” IEEE Transactions on
Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[116] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed computation,” in
Proceedings of the 2016 Allerton, IL, USA, September 2016.

[117] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient Coding: Avoiding
Stragglers in Distributed Learning,” in Proc. of the 34th International Conference on
Machine Learning. PMLR, 2017, pp. 3368–3376.

[118] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix multiplication,”
in Proceedings of the 2017 IEEE ISIT, Aachen, Germany, June 2017.

[119] Y. Yang, P. Grover, and S. Kar, “Coded Distributed Computing for Inverse Problems,”
Advances in Neural Information Processing Systems, pp. 710–720, 2017.

[120] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded computation for
multicore setups,” in Proceedings of the 2017 IEEE ISIT, Aachen, Germany, June 2017.

[121] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large Linear Transforms
Distributedly Using Coded Short Dot Products,” arXiv, apr 2017. [Online]. Available:
https://arxiv.org/abs/1704.05181

[122] S. Li, M. A. Maddah-Ali, and A. Salman Avestimehr, “A unified coding framework for
distributed computing with straggling servers,” in Proceedings of the IEEE Globecom
2016 Workshops, Washington, DC USA, December 2016.

[123] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A Fundamental Tradeoff Between
Computation and Communication in Distributed Computing,” IEEE Transactions on
Information Theory, vol. 64, no. 1, pp. 109–128, jan 2018.

[124] M. Kim, J.-Y. Sohn, and J. Moon, “Coded Matrix Multiplication on a Group-Based
Model,” arXiv, jan 2019. [Online]. Available: http://arxiv.org/abs/1901.05162

[125] D. Kim, H. Park, and J. Choi, “Optimal Load Allocation for Coded Distributed
Computation in Heterogeneous Clusters,” arXiv, 2019. [Online]. Available: http:
//arxiv.org/abs/1904.09496

[126] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-aware coded
cooperative computation at the edge,” in Proceedings of the 2018 ICNP, Athens, Greece,
September 2018.

188

https://arxiv.org/abs/1704.05181
http://arxiv.org/abs/1901.05162
http://arxiv.org/abs/1904.09496
http://arxiv.org/abs/1904.09496

[127] K. G. Narra, Z. Lin, M. Kiamari, S. Avestimehr, and M. Annavaram, “Slack squeeze
coded computing for adaptive straggler mitigation,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, Denver,
CO, November 2019.

[128] N. Ferdinand and S. C. Draper, “Hierarchical Coded Computation,” in Proceedings of
2018 IEEE ISIT, Vail, USA, June 2018.

[129] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi, “Rateless codes for
near-perfect load balancing in distributed matrix-vector multiplication,” Proceedings of
the ACM on Measurement and Analysis of Computing Systems, vol. 3, no. 3, pp. 1–40,
2019.

[130] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the lambertw
function,” Advances in Computational mathematics, vol. 5, no. 1, pp. 329–359, 1996.

[131] AWS, “Amazon ec2,” Accessed: March 23, 2023. [Online]. Available: https:
//aws.amazon.com/ec2/

[132] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with
the Message-Passing Interface. The MIT Press, 1999.

[133] “mpi4py,” Accessed: March 23, 2023. [Online]. Available: https://mpi4py.readthedocs.io/
en/stable/

[134] J.-X. Pan and K.-T. Fang, “Maximum likelihood estimation,” in Growth curve models and
statistical diagnostics. Springer, 2002, pp. 77–158.

[135] D. Sharma, “Estimation of the reciprocal of the scale parameter in a shifted exponential
distribution,” Sankhyā: The Indian Journal of Statistics, Series A, pp. 203–205, 1977.

[136] B. Wang, J. Xie, S. Li, Y. Wan, Y. Gu, S. Fu, and K. Lu, “Computing in the air: An
open airborne computing platform,” IET Communications, vol. 14, no. 15, pp. 2410–2419,
2020.

[137] B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “Coding for heterogeneous uav-based
networked airborne computing,” in 2019 IEEE Globecom Workshops (GC Wkshps).
IEEE, 2019, pp. 1–6.

[138] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani, “Mobile ad hoc
cloud: A survey,” Wireless Communications and Mobile Computing, vol. 16, no. 16, pp.
2572–2589, 2016.

[139] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, and M. Imran, “Heterogeneity-aware task
allocation in mobile ad hoc cloud,” IEEE Access, vol. 5, pp. 1779–1795, 2017.

[140] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the decentralised cloud: Survey on
approaches and challenges for mobile, ad hoc, and edge computing,” ACM Computing
Surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

189

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/

[141] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-performance cloudlets for
computation offloading in mobile ad hoc clouds,” The Journal of Supercomputing, vol. 71,
no. 8, pp. 3009–3036, 2015.

[142] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya, “mcloud: A
context-aware offloading framework for heterogeneous mobile cloud,” IEEE Transactions
on Services Computing, vol. 10, no. 5, pp. 797–810, 2015.

[143] N. Fernando, S. W. Loke, and W. Rahayu, “Dynamic mobile cloud computing: Ad hoc
and opportunistic job sharing,” in 2011 Fourth IEEE International Conference on Utility
and Cloud Computing. IEEE, 2011, pp. 281–286.

[144] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge computing and
networking: A survey,” Mobile Networks and Applications, pp. 1–24, 2020.

[145] W. Zhang, L. Li, N. Zhang, T. Han, and S. Wang, “Air-ground integrated mobile edge
networks: A survey,” IEEE Access, vol. 8, pp. 125 998–126 018, 2020.

[146] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment and task scheduling
optimization for large-scale mobile users in multi-uav-enabled mobile edge computing,”
IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3984–3997, 2019.

[147] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient resource alloca-
tion in uav-enabled mobile edge computing networks,” IEEE Transactions on Wireless
Communications, vol. 18, no. 9, pp. 4576–4589, 2019.

[148] Y. Luo, W. Ding, and B. Zhang, “Optimization of task scheduling and dynamic service
strategy for multi-uav-enabled mobile edge computing system,” IEEE Transactions on
Cognitive Communications and Networking, 2021.

[149] Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, “Path planning for uav-mounted mobile
edge computing with deep reinforcement learning,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 5, pp. 5723–5728, 2020.

[150] X. Tao and W. Song, “Task allocation for mobile crowdsensing with deep reinforcement
learning,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2020, pp. 1–7.

[151] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based on deep reinforcement
learning in iot edge computing,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1133–1146, 2020.

[152] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight task offload-
ing strategy for mobile edge computing based on deep reinforcement learning,” Future
Generation Computer Systems, vol. 102, pp. 847–861, 2020.

190

[153] O. S. Oubbati, M. Atiquzzaman, A. Baz, H. Alhakami, and J. Ben-Othman, “Dispatch
of uavs for urban vehicular networks: A deep reinforcement learning approach,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 12, pp. 13 174–13 189, 2021.

[154] O. S. Oubbati, A. Lakas, and M. Guizani, “Multi-agent deep reinforcement learning for
wireless-powered uav networks,” IEEE Internet of Things Journal, 2022.

[155] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Adaptive and heterogeneity-aware coded
cooperative computation at the edge,” IEEE Transactions on Mobile Computing, 2021.

[156] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded computation over
heterogeneous clusters,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp.
4227–4242, 2019.

[157] B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “On batch-processing based coded computing
for heterogeneous distributed computing systems,” IEEE Transactions on Network Science
and Engineering, vol. 8, no. 3, pp. 2438–2454, 2021.

[158] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for inverse problems,”
in Proceedings of the 31st International Conference on Neural Information Processing
Systems, 2017, pp. 709–719.

[159] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel and distributed
computing within a deadline,” in Proceedings of the 2017 IEEE ISIT, Aachen, Germany,
June 2017.

[160] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A unified coded deep neural
network training strategy based on generalized polydot codes,” in 2018 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2018, pp. 1585–1589.

[161] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” in Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, 2015, pp.
964–971.

[162] B. Wang, J. Xie, and N. Atanasov, “Coding for distributed multi-agent reinforcement
learning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 10 625–10 631.

[163] A. Frigård, S. Kumar, E. Rosnes et al., “Rateless codes for low-latency distributed
inference in mobile edge computing,” arXiv preprint arXiv:2108.07675, 2021.

[164] A. Asheralieva and D. Niyato, “Fast and secure computational offloading with lagrange
coded mobile edge computing,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 5, pp. 4924–4942, 2021.

[165] P. Brusilovski, A. Kobsa, and W. Nejdl, The adaptive web: methods and strategies of web
personalization. Springer Science & Business Media, 2007, vol. 4321.

191

[166] Y. Liu, P. Sun, N. Wergeles, and Y. Shang, “A survey and performance evaluation of deep
learning methods for small object detection,” Expert Systems with Applications, vol. 172,
p. 114602, 2021.

[167] B. Zhou, J. Xie, and B. Wang, “Dynamic coded convolution with privacy awareness for
mobile ad hoc computing,” in 2022 IEEE International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2022.

[168] C. Douma, B. Wang, and J. Xie, “Coded distributed path planning for unmanned aerial
vehicles,” in AIAA AVIATION 2021 FORUM, 2021, p. 2378.

[169] Q. Y. Kenny et al., “Indicator function and its application in two-level factorial designs,”
The Annals of Statistics, vol. 31, no. 3, pp. 984–994, 2003.

[170] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971,
2015.

[171] R. S. Sutton and A. G. Barto, “An introduction to reinforcement learning, chapter 3,”
2018.

[172] A. C. Marreiros, J. Daunizeau, S. J. Kiebel, and K. J. Friston, “Population dynamics:
variance and the sigmoid activation function,” Neuroimage, vol. 42, no. 1, pp. 147–157,
2008.

[173] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint
arXiv:1803.08375, 2018.

[174] A. Redder, A. Ramaswamy, and H. Karl, “Asymptotic convergence of deep multi-agent
actor-critic algorithms,” arXiv preprint arXiv:2201.00570, 2022.

[175] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Deep deterministic policy gradient (ddpg)-based
energy harvesting wireless communications,” IEEE Internet of Things Journal, vol. 6,
no. 5, pp. 8577–8588, 2019.

[176] Y. Al-Eryani, M. Akrout, and E. Hossain, “Multiple access in cell-free networks: Outage
performance, dynamic clustering, and deep reinforcement learning-based design,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 4, pp. 1028–1042, 2020.

[177] M. Liu, Y. Wan, S. Li, F. L. Lewis, and S. Fu, “Learning and uncertainty-exploited
directional antenna control for robust long-distance and broad-band aerial communication,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 593–606, 2019.

[178] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-agent actor-
critic for mixed cooperative-competitive environments,” in Advances in neural information
processing systems, 2017, pp. 6379–6390.

192

[179] Y. Jin, S. Wei, J. Yuan, and X. Zhang, “Hierarchical and stable multiagent reinforcement
learning for cooperative navigation control,” IEEE Transactions on Neural Networks and
Learning Systems, 2021.

[180] R. Song, F. L. Lewis, and Q. Wei, “Off-policy integral reinforcement learning method to
solve nonlinear continuous-time multiplayer nonzero-sum games,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 3, pp. 704–713, 2016.

[181] G.-P. Antonio and C. Maria-Dolores, “Multi-agent deep reinforcement learning to manage
connected autonomous vehicles at tomorrow’s intersections,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 7, pp. 7033–7043, 2022.

[182] L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforcement learning: An
overview,” Innovations in Multi-agent Systems and Applications, pp. 183–221, 2010.

[183] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-
agent policy gradients,” in AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[184] G. Qu, A. Wierman, and N. Li, “Scalable reinforcement learning of localized policies for
multi-agent networked systems,” in Learning for Dynamics and Control (L4DC). PMLR,
2020, pp. 256–266.

[185] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field multi-agent
reinforcement learning,” in International Conference on Machine Learning (ICML).
PMLR, 2018, pp. 5571–5580.

[186] Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, and X. Wang, “Evolutionary population
curriculum for scaling multi-agent reinforcement learning,” in International Conference
on Learning Representations (ICLR), 2020.

[187] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger,
and E. P. Xing, “More effective distributed ml via a stale synchronous parallel parameter
server,” in Advances in Neural Information Processing Systems (NeurIPS), 2013, pp.
1223–1231.

[188] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient distributed ma-
chine learning with the parameter server,” in Advances in Neural Information Processing
Systems (NeurIPS), 2014, pp. 19–27.

[189] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and stale gradients can
win the race: Error-runtime trade-offs in distributed sgd,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2018, pp. 803–812.

[190] OpenAI, “A2C,” Accessed: March 23, 2023. [Online]. Available: https://openai.com/
blog/baselines-acktr-a2c/

193

https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/

[191] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in
Proceedings of the tenth international conference on machine learning, 1993, pp. 330–337.

[192] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanc-
tot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and T. Graepel, “Value-decomposition networks
for cooperative multi-agent learning,” arXiv preprint:1706.05296, 2017.

[193] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson, “Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning,” in
International Conference on Machine Learning (ICML). PMLR, 2018, pp. 4295–4304.

[194] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, “Qtran: Learning to factorize
with transformation for cooperative multi-agent reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2019, pp. 5887–5896.

[195] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent reinforcement learning
for urban traffic control using coordination graphs,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 2008, pp. 656–671.

[196] J. R. Kok and N. Vlassis, “Collaborative multiagent reinforcement learning by payoff
propagation,” Journal of Machine Learning Research, vol. 7, pp. 1789–1828, 2006.

[197] W. Böhmer, V. Kurin, and S. Whiteson, “Deep coordination graphs,” in International
Conference on Machine Learning (ICML). PMLR, 2020, pp. 980–991.

[198] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2019, pp. 2961–2970.

[199] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershel-
vam, M. Suleyman, C. Beattie, S. Petersen et al., “Massively parallel methods for deep
reinforcement learning,” in International Conference on Machine Learning (ICML), 2015.

[200] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Interna-
tional Conference on Machine Learning (ICML), 2016, pp. 1928–1937.

[201] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Reinforcement learning
through asynchronous advantage actor-critic on a gpu,” in International Conference on
Learning Representations (ICLR), 2017.

[202] D. Simões, N. Lau, and L. P. Reis, “Multi-agent actor centralized-critic with communica-
tion,” Neurocomputing, 2020.

[203] T. Chen, K. Zhang, G. B. Giannakis, and T. Başar, “Communication-efficient policy
gradient methods for distributed reinforcement learning,” IEEE Transactions on Control
of Network Systems, vol. 9, no. 2, pp. 917–929, 2022.

194

[204] B. Zhou, J. Xie, and B. Wang, “Dynamic Coded Distributed Convolution for UAV-
based Networked Airborne Computing,” in IEEE International Conference on Unmanned
Aircraft Systems (ICUAS), 2022, pp. 955–961.

[205] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press,
2018.

[206] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning.” in International Conference on
Learning Representations (ICLR), 2016.

[207] F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic networks: a math-
ematical approach to motion coordination algorithms. Princeton University Press,
2009.

[208] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement learning for large-
scale traffic signal control,” IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 3, pp. 1086–1095, 2019.

[209] Y. Lin, G. Qu, L. Huang, and A. Wierman, “Distributed reinforcement learning in multi-
agent networked systems,” arXiv preprint:2006.06555, 2020.

[210] J. Lacan and J. Fimes, “Systematic mds erasure codes based on vandermonde matrices,”
IEEE Communications Letters, vol. 8, no. 9, pp. 570–572, 2004.

[211] A. Klinger, “The vandermonde matrix,” The American Mathematical Monthly, vol. 74,
no. 5, pp. 571–574, 1967.

[212] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded computation for
multicore setups,” in IEEE International Symposium on Information Theory (ISIT), 2017,
pp. 2413–2417.

[213] E. M. Gabidulin and M. Bossert, “On the rank of ldpc matrices constructed by vander-
monde matrices and rs codes,” in International Symposium on Information Theory, 2006,
pp. 861–865.

[214] S. Cai, W. Lin, X. Yao, B. Wei, and X. Ma, “Systematic convolutional low density
generator matrix code,” IEEE Transactions on Information Theory, vol. 67, no. 6, pp.
3752–3764, 2021.

[215] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint:1412.6980, 2014.

[216] A. Douklias, L. Karagiannidis, F. Misichroni, and A. Amditis, “Design and implementation
of a uav-based airborne computing platform for computer vision and machine learning
applications,” Sensors, vol. 22, no. 5, p. 2049, 2022.

195

[217] J. Diller, P. Hall, C. Schanker, K. Ung, P. Belous, P. Russell, and Q. Han, “Iccswarm: A
framework for integrated communication and control in uav swarms,” in Proceedings of
the Eighth Workshop on Micro Aerial Vehicle Networks, Systems, and Applications, 2022,
pp. 1–6.

[218] E. Pereira, K. Hedrick, and R. Sengupta, “The c3uv testbed for collaborative control and
information acquisition using uavs,” in 2013 American Control Conference. IEEE, 2013,
pp. 1466–1471.

[219] M. Schmittle, A. Lukina, L. Vacek, J. Das, C. P. Buskirk, S. Rees, J. Sztipanovits, R. Grosu,
and V. Kumar, “Openuav: A uav testbed for the cps and robotics community,” in 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). IEEE,
2018, pp. 130–139.

[220] M. Moradi, K. Sundaresan, E. Chai, S. Rangarajan, and Z. M. Mao, “Skycore: Moving
core to the edge for untethered and reliable uav-based lte networks,” in Proceedings of the
24th Annual International Conference on Mobile Computing and Networking, 2018, pp.
35–49.

[221] S. Li, C. He, M. Liu, Y. Wan, Y. Gu, J. Xie, S. Fu, and K. Lu, “Design and implemen-
tation of aerial communication using directional antennas: learning control in unknown
communication environments,” IET Control Theory & Applications, vol. 13, no. 17, pp.
2906–2916, 2019.

[222] R. K. Sheshadri, E. Chai, K. Sundaresan, and S. Rangarajan, “Skyhaul: An autonomous
gigabit network fabric in the sky,” arXiv preprint arXiv:2006.11307, 2020.

[223] A. Y. Javaid, W. Sun, and M. Alam, “Uavsim: A simulation testbed for unmanned aerial
vehicle network cyber security analysis,” in 2013 ieee globecom workshops (gc wkshps).
IEEE, 2013, pp. 1432–1436.

[224] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up
distributed machine learning using codes,” IEEE Transactions on Information Theory,
vol. 64, no. 3, pp. 1514–1529, 2017.

[225] C. Wu and J. Z. Yu, “Evaluation of linear regression techniques for atmospheric applica-
tions: the importance of appropriate weighting,” Atmospheric Measurement Techniques,
vol. 11, no. 2, pp. 1233–1250, 2018.

[226] U. M. L. Repository, “Forest fires data set,” Accessed: March 23, 2023. [Online].
Available: https://archive.ics.uci.edu/ml/datasets/forest+fires

[227] ROS, “Ros topic,” Accessed: March 23, 2023. [Online]. Available: http:
//wiki.ros.org/Topics

[228] S. Moon, J. J. Bird, S. Borenstein, and E. W. Frew, “A gazebo/ros-based communication-
realistic simulator for networked suas,” in 2020 International Conference on Unmanned
Aircraft Systems (ICUAS). IEEE, 2020, pp. 1819–1827.

196

https://archive.ics.uci.edu/ml/datasets/forest+fires
http://wiki.ros.org/Topics
http://wiki.ros.org/Topics

[229] Rviz, “Rviz,” Accessed: March 23, 2023. [Online]. Available: http://wiki.ros.org/rviz

[230] M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE
transactions on Vehicular Technology, vol. 29, no. 3, pp. 317–325, 1980.

[231] Y. Okumura, “Field strength and its variability in vhf and uhf land-mobile radio service,”
Rev. Electr. Commun. Lab., vol. 16, pp. 825–873, 1968.

[232] “MPI,” Accessed: March 23, 2023. [Online]. Available: https://ds.cs.luc.edu/mpi/mpi.html

[233] “Jetson TX2,” Accessed: March 23, 2023. [Online]. Available: https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems-dev-kits-modules/

[234] “Q Ground Control,” Accessed: March 23, 2023. [Online]. Available: http:
//qgroundcontrol.com/

[235] “Iperf 3,” Accessed: March 23, 2023. [Online]. Available: https://iperf.fr/iperf-download.
php

[236] W. Rudin et al., Principles of mathematical analysis. McGraw-hill New York, 1964,
vol. 3.

[237] R. Combes, “An extension of McDiarmid’s inequality,” arXiv, 2015. [Online]. Available:
http://arxiv.org/abs/1511.05240

197

http://wiki.ros.org/rviz
https://ds.cs.luc.edu/mpi/mpi.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
http://qgroundcontrol.com/
http://qgroundcontrol.com/
https://iperf.fr/iperf-download.php
https://iperf.fr/iperf-download.php
http://arxiv.org/abs/1511.05240

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	Contributions of the Dissertation

	Airborne Computing Platform Design
	Introduction
	Hardware Design for the Airborne Computing Platform
	Desired Features
	Single-Board Computer Selection
	A Prototype

	Software Design for the Airborne Computing Platform
	Background and Related Work
	Computing Performance
	Networking Performance
	Isolation Performance
	Power Consumption
	Discussions

	Performance of the Airborne Computing Platform
	OpenDroneMap
	Real-Time Object Detection

	Conclusion
	Acknowledgement

	Batch-Processing Based Coded Comput-ing for Static Networked Airborne Computing Systems
	Introduction
	Related Work
	System Models
	Computing System
	Computing Schemes
	Problem Formulation

	Main Results
	Notations for Asymptotic Analysis
	A Simplified Formulation
	A Two-Step Alternative Formulation
	Solution to the Two-Step Alternative Problem
	Optimality Analysis
	Analysis of the Impact of Parameter bold0mu mumu ppreisizadeh19codedpppp
	Comparison with HCMM

	Simulation Studies
	Simulation Settings
	Parameter Impact Analysis
	Comparative Performance Studies

	Experiments on the Amazon EC2 Computing Cluster
	Experiment Settings
	Parameter Estimation
	Experimental Results

	Conclusion
	Acknowledgement

	Learning and Batch-Processing Based Coded Computation for Mobile Networked Airborne Computing Systems
	Introduction
	Related Work
	Networked Airborne Computing
	UAV-assisted Mobile Edge Computing
	DRL-based UAV-Assisted Networks
	Coded Distributed Computing

	NAC System
	Dynamic Batch-Processing Based Coded Computation Framework
	D-BPCC Framework
	Problem Formulation

	DRL-based Solution to P1
	RL based Formulation for P1
	Deterministic Policy Gradient Method
	Deep Neural Network based Function Representation
	Training DRL Agent
	Convergence and Complexity Analysis

	DRL-based Solution to P2
	RL based Formulation for P2
	Solution to P2

	Simulation Studies
	Simulator Design
	Benchmarks
	Evaluation of Solution to P1
	Evaluation of Solution to P2

	Conclusion
	Acknowledgement

	Coded Distributed Multi-Agent Reinforcement Learning with One-hop Neighbors
	Introduction
	Related Work
	Multi-Agent Reinforcement Learning
	Distributed and Parallel Architectures for RL and MARL
	Coded Distributed Computing

	Background
	Problem Statement
	Distributed multi-Agent Reinforcement Learning with One-hop Neighbors
	Coded Distributed Learning Architecture
	Coded Distributed Learning Architecture
	Assessment of Gradient Estimator

	Assignment Matrix Construction
	Uncoded Assignment Scheme
	Coded Assignment Schemes

	Experiments
	Performance of DARL1N
	Performance of Coded Distributed Learning Architecture

	Conclusion
	Acknowledgement

	Simulator and Testbed Design and Implementation
	Introduction
	Computing Model
	Simulator Design
	UAV Hardware Module
	Controller Module
	Visualization Module
	Wireless Communication Module
	Computing Module
	ROS Topics

	Hardware Testbed Design
	Computing
	Communication
	Flight Control
	Power Management

	Simulation Studies
	Simulation Configurations
	Simulation Results

	Real Flight Tests
	Experiment Configurations
	Experiment Results

	Discussions and Conclusions
	Acknowledgement

	Conclusion and Future Work
	Conclusion
	Future Work

	Proofs of Chapter 3
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Corollary 6.1
	Proof of Theorem 7

	Proofs of Chapter 5
	Proof of Lemma 9
	Proof of Proposition 1
	Proof of Proposition 3

	Bibliography

