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Abstract 
 

Relational categories underlie many uniquely human cogni-

tive processes including analogy, problem solving, and 

scientific discovery.  Despite their ubiquity and importance, 

the field of category learning has focused almost exclusively 

on categories based on features.  Classification of feature-

based categories is typically modeled by calculating similarity 

to stored representations, an approach that successfully mod-

els the learning of both probabilistic and deterministic 

category structures.  In contrast, we hypothesize that rela-

tional category learning is analogous to schema induction, and 

relies on finding common relational structures.  This hypothe-

sis predicts that relational category acquisition should 

function well for deterministic categories but suffer catastro-

phically when faced with probabilistic categories, which 

contain no constant relations.  We report support for this pre-

diction, along with evidence that the schemas induced in the 

deterministic condition drive categorization of novel and even 

category-ambiguous exemplars. 

 

Relational and Feature-Based Categorization 
Most mathematical models of human category learning start 

with the assumption that people represent categories as lists 

of features, and assign instances to categories by comparing 

the features of an instance to the features stored with the 

mental representation of the category (either a prototype or 

stored exemplars; e.g., Bruner, Goodnow, & Austin, 1956; 

Kruschke, 1992; Kruschke & Johansen, 1999; Nosofsky, 

1992; Rosch & Mervis, 1975; Shiffrin & Styvers, 1997).  

Accordingly, most studies of human category learning in the 

laboratory investigate how people learn categories with ex-

emplars consisting of well-defined (to the experimenter, at 

least) features.  

In the real world, as some researchers have forcefully 

pointed out (e.g., Barsalou, 1993; Keil, 1989; Murphy & 

Medin, 1985; Rips, 1989; Ross & Spalding, 1994) catego-

ries are less often defined in terms of lists of features than in 

terms of relations between things: either relations between 

the features or parts of an exemplar (e.g., the legs need to be 

in a particular kind of relation to the seat in order for an 

object to serve as a chair), or relations between the exemplar 

and the user’s goals (e.g., any object that affords sitting can, 

in some circumstances, be considered a chair), or relations 

between the exemplar and other objects in the world (e.g., 

what makes an object a “conduit” is a relation between that 

object and whatever thing flows through it, whether it be 

water, light, electricity, information, or karma).  In spite of 

their importance in human cognition, comparatively little is 

known about how people learn relational categories. 

Relational category learning is important because rela-

tional concepts (i.e., mental representations of relational 

categories) play an essential role in virtually all aspects of 

human thinking, including our ability to make and use 

analogies, problem solving, scientific discovery, and even 

aspects of perception (see, e.g., Gentner, 1983; Gentner et 

al., 1997; Green, 2004; Hesse, 1966; Holyoak & Thagard, 

1995; Hummel, 2000).  The utility of relational representa-

tions is that they permit generalization from a small (often 

as few as one or two) number of examples to a large (poten-

tially infinite) number of new cases (as in the case of 

inferences generated through the use of analogies, schemas 

and rules; Gick & Holyoak, 1983; Pirolli & Anderson, 

1985; Ross, 1987). 

Relational concepts cannot be adequately represented as 

lists of features (as assumed by most current models of 

category learning), but instead must be mentally represented 

as relational structures such as schemas or theories 

(Gentner, 1983; Holland, Holyoak, Nisbett, & Thagard, 

1986; Hummel & Holyoak, 2003; Keil, 1989; Murphy & 

Medin, 1985).  This observation suggests that the operations 

governing relational schema induction may also underlie the 

acquisition of relational categories (see, e.g., Kuehne et al., 

2000). 

At least one theory of schema induction, Hummel and 

Holyoak’s, 2003, LISA model, predicts that a schema in-

duced from two or more examples retains (roughly) the 

structured intersection of what the examples have in com-

mon.  For example, consider two analogous stories about 

love triangles.  In the first, Abe loves Betty, but Betty loves 

Chad, so Abe is jealous of Chad; in the second Alice loves 

Bill, but Bill loves Cathy, so Alice is jealous of Cathy.  

Drawing an analogy between these stories maps Abe to Al-

ice, Betty to Bill, and Chad to Cathy (along with the roles of 

the loves and jealous-of relations).  The schema LISA in-

duces from this analogy retains what the examples have in 

common, and de-emphasizes the ways in which they differ.  

For example, since the analogy maps males to females and 

vice versa, the resulting schema effectively discards the 

actors’ genders, stating (roughly) “person1 loves person2 

but person2 loves person3, so person1 is jealous of per-

son3,” where persons1…3 are generic people, rather than 

being specifically males or females (see Hummel & 

Holyoak, 2003).   

Importantly, this intersection discovery process also 

takes place at the level of whole propositions.  For example, 

if the second story contained a proposition stating that, as a 
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result of her jealousy, Alice was mean to Cathy, but the first 

story had no corresponding proposition, then LISA would 

simply drop this proposition in its entirety from the resulting 

schema. 

If we assume that relational category learning is a proc-

ess of relational schema induction, then this property of 

dropping unmapped propositions (i.e., unmapped relations) 

from the induced schema (i.e., category representation) 

leads to a counterintuitive prediction: If a relational category 

has a probabilistic structure, such that every member of the 

category shares some relations with every other member of 

the category, but there is no relation that all members share, 

then category learning should fail catastrophically.  The 

reason is that the process of schema induction will drop any 

relation that is absent from any exemplar from the emerging 

schema.  If every relation is absent from some exemplar 

(i.e., no relation is present in every exemplar), then schema 

induction will eventually drop every relation from the 

schema.  By the end, the induced schema will be the empty 

set.   

To clarify, consider a simple relational category with 

four exemplars, each with three relations chosen from the 

set r1, r2, r3 and r4 (for our current purposes it does not 

matter what r1…r4 are, only that they are relations of some 

sort).  Let exemplar 1 (e1) contain the relations r1, r2 and r3.  

That is, e1 = [r1, r2, r3].  Similarly, let e2 = [r2, r3, r4]; e3 = 

[r1, r3, r4]; and e4 = [r1, r2, r4].  Note that mapping, for 

example, e1 to e2 results in a schema (s1,2) that contains 

relations r2 and r3 (which e1 and e2 share), but lacks r1 

(which e1 possesses but e2 does not) and r4 (which e2 pos-

sesses but e1 does not): s1,2 = [r2, r3].  Mapping s1,2 onto, 

say, e3, produces a schema containing only r3, and mapping 

that schema onto e4 produces a schema containing no rela-

tions.  The resulting schema is clearly not a useful basis for 

classifying exemplars as members of the category. 

The point is that relational category learning is pre-

dicted to be extremely difficult when the categories have a 

strictly probabilistic structure (i.e., with no relation shared 

by all exemplars).  By contrast, if there is even a single rela-

tion that is shared by all exemplars, then category learning 

should improve dramatically relative to the purely probabil-

istic case.  Categorization performance should also improve 

dramatically, even with purely probabilistic categories, if 

the relational structure is replaced with a feature-based 

structure.  Learning of feature-based categories is well 

known to be robust to probabilistic category structures, a 

fact that underlies prototype effects (e.g., Posner & Keele, 

1968).   

In summary, we predict a sharp dissociation between 

relational and feature-based category learning with respect 

to their robustness to probabilistic category structures: Both 

relational and feature-based categories should be learnable 

when they have a deterministic structure, even if only a sin-

gle relation or feature reliably predicts category 

membership; similarly, feature-based categories should be 

learnable whether they have a deterministic structure or a 

probabilistic one.  By contrast, relational categories should 

be extremely hard to learn from examples when those ex-

amples are presented in a probabilistic structure.   

We tested this hypothesized dissociation between rela-

tional and feature-based category learning using a 2x2 

design, in which relational vs. feature-based categories were 

crossed with probabilistic vs. deterministic category struc-

tures.  In order to control all extraneous sources of potential 

effects, the same basic stimulus set was used in all four con-

ditions; only the assignment of stimuli to categories varied. 

  

Method 
Subjects.  33 UCLA undergraduate students participated for 

course credit. 

 

Instructions.  Participants were read a cover story describ-

ing a computer manufacturer trying to determine the 

function of accidentally unlabelled computer chips.  Sub-

jects then engaged in a training phase followed by a transfer 

phase.   During both phases, subjects were instructed to in-

dicate the category to which the onscreen stimulus belonged 

by pressing one of two keys.  The categories were labeled 

“math” chips and “graphics” chips. 

 

Materials.  On each trial, the subject saw an exemplar con-

sisting of an octagon and a square, arranged on a fixed 

background designed to resemble a computer chip (see Fig-

ure 1).  Each exemplar had both relational properties (e.g., 

octagon bigger than square) and featural properties (e.g., 

octagon of size 3).   

 

 

 

Figure 1: Example stimulus. 

The properties of each exemplar were determined by an 

identical family resemblance category structure (see Table 

1).  The prototypes of the two categories were defined as 

(1,1,1,1) and (0,0,0,0), and distortions were made by chang-
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ing the value of one or more dimensions to its opposite1.  

Each column in Table 1 represents an exemplar, and the 

particular value on each dimension (1 or 0) defines the value 

of a relation (in the relational condition) or a feature (in the 

featural condition) for each exemplar.  The values for both 

the relational and featural properties are listed in Table 2.  

For example, the relational prototype with structure (1,1,1,1) 

would have an octagon bigger, darker, above, and in front 
of a square, while the prototype with structure (0,0,0,0) 

would be the exact opposite.  The properties were set up so 

that using features could not result in learning to criterion in 

the relational condition, and using relations in the feature 

condition would also lead to sub-criterion responding.2  

Stimulus generation and display as well as response collec-

tion were done with a program written in Matlab. 

  

Design.  The experiment used a 2 (category structure: prob-

abilistic vs. deterministic) X 2 (relevant property: features 

vs. relations) between-subjects design. The only difference 

between the conditions in terms of the stimuli used was that, 

in the deterministic condition, a single distorted exemplar 

from each category was not presented during training, so 

that one dimension was constant for all exemplars of a cate-

gory.  The choice of which dimension was held constant 

was counterbalanced across subjects. 

 
Table 1: Family resemblance category structure.  Each col-

umn represents an exemplar, and each row a dimension. 

 

Category A Ambiguous Category B 
1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0

1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0

1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0

1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0

 

Procedure.  During the training phase subjects classified 

only distorted exemplars of each category (depicted in the 

light gray columns of Table 2).  All distortions for each 

category were shown in random order exactly once per 

block.  Responses were followed by accuracy feedback, 

during which the exemplar remained on the screen.  Sub-

jects pressed the space bar to proceed to the next trial.  The 

training phase continued until the subject responded cor-

                                                 
1 Note that the exemplars marked “Ambiguous” are equal distance 

between the two prototypes, having exactly two values different 

from each. 
2
 In the relational condition, stimuli from different categories 

could have the same features (and stimuli from the same category 

could have different features) as long as the specified relations 

held; features were thus non-diagnostic.  For the featural condition, 

the relations in front and above had no relevance to the category 

structure, and were pseudo-randomized.  The relations bigger and 

darker were made irrelevant by choosing values such that the octa-

gon was never smaller or lighter than the square (though it could 

be the same size, since only three sizes were used).  See the Dis-

cussion section for further analysis of feature and relation values. 

rectly on at least seven out of eight trials for two consecu-

tive blocks3, or until they had finished 75 blocks (600 trials) 

without reaching this criterion.   

Following the training phase, subjects were informed 

that they would be tested on chips for which feedback could 

not be given.  During this transfer phase subjects classified 

all 16 possible exemplars, including the prototypes and am-

biguous exemplars.  Subjects completed five blocks, with 

each block showing all 16 exemplars in random order ex-

actly once.  

After the transfer phase, each subjects completed a 

questionnaire in which they were asked to write down the 

criteria they used to categorize the exemplars. 

  

Table 2: Category definitions.   

 

Relational categories 
Exemplar Relation  Exemplar Relation

1 Bigger  0 Smaller 

1 Darker  0 Lighter 

1 Above  0 Below 

1 In Front  0 Behind 

 
Feature-based categories 
Exemplar Feature  Exemplar Feature

1 O size 3  0 O size 2 

1 O shade 4  0 O shade 3 

1 S size 1  0 S size 2 

1 S shade 1  0 S shade 2 

 

Note: Prototype exemplars are shown with their defining 

properties on each dimension.  In the relational condition, 

each dimension defines how the octagon (O) in the stimulus 

relates to the square (S).  For the featural condition each 

dimension defines specific feature values. 

 

Results 
Training.  Only 5 of the 7 subjects (71%) in the relational 

probabilistic (RP) condition learned to criterion within 600 

trials.  25/25 subjects (100%) in the other conditions learned 

to criterion within the 600 trial limit.  In the analyses that 

follow, the 2 subjects in the RP condition who never learned 

to criterion are treated as though they reached criterion on 

trial 601.  Given that our hypothesis predicts that learning in 

the RP condition will be harder (and therefore take longer) 

than learning in the other conditions, this assumption is ex-

tremely conservative. 

The mean number of trials to criterion is shown in Fig-

ure 2 for each condition.  Subjects in the RP condition took 

more trials to reach criterion than those in the FD (featural 

deterministic), FP (featural probabilistic), and RD (rela-

                                                 
3 This criterion level (87.5%) was selected because strategies 

involving tracking only one or two relations in the probabilistic 

condition would not meet the criterion level (both would result in 

75% correct responding). 
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tional deterministic) conditions.  A planned contrast com-

paring the RP condition to the other three revealed that this 

difference was statistically reliable (p < 0.01).  There was 

also a significant main effect of category type (relational vs. 

featural, F(1,33)=4.64, p < 0.05).  The main effect of cate-

gory structure (deterministic vs. probabilistic) and the 

interaction were both marginally reliable (0.05 < p < 0.15). 

 

Category acquisition (Training)
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Figure 2: Average number of trials required by subjects in 

each condition to reach criterion during training. 

 

Transfer.  The key prediction for the transfer phase was 

that subjects in the deterministic condition would categorize 

exemplars based on whatever dimension was held constant 

during training.  This prediction applied especially to the 

relational condition, which could not rely on holistic proc-

essing.  To test this hypothesis we analyzed classification of 

the ambiguous exemplars, which were equidistant between 

the two prototypes.  Subjects who used all category dimen-

sions equally should be unsystematic in their classification 

of these ambiguous exemplars.  By contrast, subjects who 

attend to a single dimension should classify ambiguous ex-

emplars according to that dimension only (as detailed in 

Table 3).  If a classification response for a dimension that 

was held constant during training matched the response pat-

tern in Table 3, then +1 was scored for that response; 

classifications that did not match Table 3 response patterns 

were scored as -1.  Under this scoring system, consistently 

responding to ambiguous exemplars in the direction pre-

dicted by the constant training dimension results in a 

positive score; consistently responding in the direction op-

posite the constant dimension results in a negative score; 

and unsystematic responding results in a score near zero. 

Classification of ambiguous exemplars in accordance 

with the dimension that was constant during training was 

significantly above chance (p < 0.01).  Breakdown into fea-

tural and relational conditions showed a non-significant 

trend for the relational condition to evoke classifications 

based on the constant training dimension more often than 

the featural condition (Figure 3). 

 

Discussion 
The results showed that acquisition of relational probabilis-

tic categories takes significantly longer than acquisition of 

deterministic relational categories, or featural categories of 

any kind (probabilistic or deterministic). Importantly, the 

ease of acquisition in the deterministic relational condition 

shows that this effect is not due strictly to the relational na-

ture of the task. Instead, the catastrophic failure represents 

an interaction between the relational nature of the stimuli 

and the probabilistic structure of the categories.  This inter-

action is consistent with the hypothesis that relational 

category learning is a process akin to relational schema in-

duction by intersection discovery: When the intersection is 

the empty set (as it is in the probabilistic condition but not 

the deterministic condition), relational category learning 

suffers markedly.  By contrast, feature-based category learn-

ing is much more robust to the probabilistic category 

structure, presumably because feature-based category learn-

ing is not a process of relational schema induction; instead, 

as predicted by models of feature-based category learning, it 

may be that learning feature-based categories can be ac-

complished simply by cataloging and matching features. 

 

Table 3: Classification of exemplars based on single 

                     dimensions 

 

Exemplar Dim 1 Dim 2 Dim 3 Dim 4

1 1 0 0 A A B B 

1 0 1 0 A B A B 

1 0 0 1 A B B A 

0 0 1 1 B B A A 

0 1 1 0 B A A B 

0 1 0 1 B A B A 

 

Note: Table entries indicate how each exemplar would be 

categorized by a subject who attended only to a single di-

mension (columns in the table).  For example, a subject who 

attended only to the first dimension (Dim 1) would classify 

the first, second and third exemplars as As since their values 

on that dimension are all one, and B for the fourth, fifth and 

sixth exemplars (the values of which are zero on that dimen-

sion). 

Schema use in ambiguous exemplars
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Figure 3: Average match to predicted classification pattern. 

Positive values indicate schema-based classification; zero 

corresponds to unsystematic responding. 
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The significant match of subjects’ responses with sin-

gle-dimension classification predictions in the deterministic 

condition also shows that subjects do preferentially use di-

mensions that are constant during training to classify novel 

and even category-ambiguous exemplars. 

Is it possible to explain these results in other ways?  

One possibility is that rather than attending to the relations, 

subjects in the relational conditions may instead be tracking 

the feature values of certain dimensions.  On this hypothe-

sis, there is no schema induction going on in any condition; 

instead, responding is based on the values of particular fea-

tures.  This account obviates the need for a separate process 

to explain relational categorization. 

However, analysis reveals that subjects tracking a fea-

ture of a single dimension would only classify 5/6 correct in 

the deterministic condition, and 2/3 correct in the probabilis-

tic condition.  Both of these values are below the 7/8 

criterion, suggesting that subjects who reach criterion were 

not doing so by tracking a feature of a single dimension. 

The possibility remains that subjects were tracking the 

values of multiple features or dimensions, although these 

seem unlikely strategies for a number of reasons.  First, 

even when tracking the values of a single feature the subject 

must hold in mind three or four values and their associations 

with each category (for example, each size of the octagon 

and its corresponding category).  Each additional feature or 

dimension would double the number of values necessary to 

track.  This strategy does not seem plausible given the well-

known limits on the capacity of working memory.  Also, 

subjects’ responses to the debriefing questionnaires in the 

relational conditions did not suggest such strategies were 

being used; instead, they generally reported the use of one 

or two relations as diagnostic, often along with some excep-

tion exemplars.  Thus it seems more likely that subjects 

were indeed attending to the relations between the compo-

nents of each stimulus rather than tracking feature values of 

those components. 

Another hypothesis to explain the difference between 

the featural and relational conditions is that subjects were 

memorizing all the possible exemplars, and a difference in 

the number of distinct exemplars made the relational condi-

tion harder.  This view must also hold that the deterministic 

conditions do not rely on such memorization, in order to 

explain the results.  This view has some merit, though two 

factors reduce its likelihood.   

First, the total number of distinct exemplars in the fea-

tural condition is not very different than the relational 

condition: 128 vs. 144.  While this is a difference between 

the categories, it is difficult to ascribe the extra difficulty of 

the relational probabilistic condition to its having an extra 

16 exemplars.   

Second, although debriefing questionnaires did indicate 

subjects were memorizing some of the exemplars in the 

relational probabilistic condition, these were of very limited 

number (usually ~2 exemplars) and were memorized as ex-

ceptions to a more general classification rule.  Thus while it 

remains a theoretically possible explanation, the “number of 

exemplars” view is not very compelling. 

Preliminary analysis of the debriefing forms for sub-

jects who learned to criterion in the relational probabilistic 

task suggest that what is learned is often a classification rule 

(such as might result from a schema induction process) 

along with a few memorized exceptions.  Subjects often 

mentioned one or two relations in their classification rules; 

only one subject reported attending to all four dimensions; 

unsurprisingly, this subject was the only one who deduced 

the formal category structure (that is, that three out of four 

of the dimensions are necessary for category membership).   

Subjects in the featural probabilistic condition also 

failed to show feature-tracking strategies in their debriefing 

questionnaires.  Instead, their responses often showed a reli-

ance on emergent properties of the stimuli such as high vs. 

low contrast.  Questionnaires from the deterministic condi-

tions tended to show a focus on the dimension that was 

constant during training, and mentioned particular features 

in the featural condition and relations in the relational condi-

tion.  Thus subjects’ explicit responses often fit well with 

the predictions about processing. 

Why should relational categories rely on schema induc-

tion processes?  One possibility is that feature-based 

categories tend to give rise to emergent properties, since 

their features are fixed at some value or limited range of 

values.  However, it is much more difficult for emergent 

properties to arise in relational categories, because they can 

take on many different and overlapping values.  The lack of 

emergent properties may explain the dependence of rela-

tional categorization on deterministic dimensions.  This 

view is consistent with subjects’ self-reported strategies. 

Another interpretation of the present results is that peo-

ple are either unwilling or unable to perceive, predicate and 

categorize patterns across four relations.  This deficit may 

be due to working memory constraints, strategy choice, or 

low prior experience with similar situations. Studies of 

working memory suggest that we can hold about four 

chunks or role bindings in working memory (e.g., Halford, 

Wilson, & Phillips, 1998); holding four two-place relations 

exceeds this limit. It may be that people can learn some 

probabilistic relational categories with experience by re-

coding relations as features; others may be learned by 

dividing the probabilistic category into deterministic sub-

categories, or by perceiving a unifying causal relation for 

the entire category. 

In conclusion, the results of the present experiment 

suggest that relational category learning relies heavily on 

finding common relations across exemplars.  In contrast, 

feature-based category learning appears to function robustly 

whether common elements are present or not.  These find-

ings are consistent with the view that relational category 

learning is a kind of relational schema induction that de-

pends on intersection discovery.  Performance on the 

transfer trials also support this conclusion in that dimensions 

that were constant during training dominated classification 

of novel exemplars, even those that were category-

ambiguous.  Such findings suggest that relational category 
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learning may be fundamentally different from feature-based 

category learning, though more work is needed to distin-

guish these modes of category learning. 
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