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Abstract 

 

Exploring methods to identify individuals infected with hepatitis C virus in the United States: An 

application of ensemble learning with national survey data 

 

By 

 

Laura E. Telep 

 

Doctor of Philosophy in Epidemiology 

 

University of California, Berkeley 

 

Professor Arthur L. Reingold, Chair 
 

 

 

Over 70 million people worldwide are living with chronic hepatitis C virus (HCV) infection. 

Untreated, HCV infection can progress to cirrhosis, advanced liver disease, and hepatocellular 

carcinoma. Our improved understanding of HCV transmission, coupled with significant 

advances in treatment have the potential to dramatically reduce the incidence and prevalence of 

HCV-related diseases. Based on these advances, the World Health Organization (WHO) has 

established a goal to eliminate HCV infection by 2030; however, a significant impediment to this 

goal is the lack of infection awareness, which perpetuates the spread of the virus. By improving 

the detection of HCV infection, we can connect patients to treatment to reduce its prevalence and 

curtail transmission to reduce future incidence of infection.  

 

This dissertation reviews the literature on known risk factors for HCV infection in the United 

States (US) and uses a large, contemporary, publicly available national dataset, the National 

Health and Nutrition Examination Survey (NHANES), to look for additional risk factors and to 

build an algorithm to identify individuals with a high probability of HCV infection. NHANES 

participants are randomly selected from the non-institutionalized and housed US population and 

screened for HCV RNA, regardless of insurance status or known risk factors, providing 

meaningful insights into the characteristics associated with HCV infection. 

 

The results of an umbrella review of circumstances associated with an increased prevalence of 

HCV infection in the US can be found in Chapter two. Risk factors were categorized as 

behavioral/lifestyle factors, risks associated with a medical condition, risks related to an 

occupation, or vulnerable populations. These findings can be used to improve outreach, 

education, and prevention programs, as many of the identified risk factors are present in 

marginalized groups that may not have access to regular healthcare or may be missed by existing 

HCV diagnosis and prevention efforts. Chapter three explores the use of ensemble learning 

methods to identify the features captured by NHANES that have the greatest impact on 

successful HCV infection prediction. NHANES data include HCV RNA measurements for all 

participants of the medical examination portion of the survey. With this information, the 

ensemble learning method Super Learner was used to identify complex patterns of characteristics 
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associated with HCV infection and to identify the characteristics that had the greatest impact on 

successful HCV infection prediction in the US (ranked variable importance). Using a subset of 

the NHANES data that would likely be available and accurate in electronic medical records, 

Chapter 4 examines the development of an HCV prediction algorithm that could be used to 

prioritize candidates for HCV screening. Overall, these findings contribute to the national effort 

to increase HCV-infection detection and accelerate progress towards HCV elimination. 
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Chapter 1: Introduction 
 

 

Over 70 million people worldwide are living with chronic hepatitis C virus (HCV) infection[1]. 

HCV is a genetically diverse, parenterally transmitted virus that causes inflammatory liver 

disease and, untreated, can progress to liver decompensation and hepatocellular carcinoma 

(HCC) [2, 3]. In 2017, 3,621 acute HCV cases were reported to the Centers for Disease Control 

and Prevention (CDC), reflecting a rate of 1.2 cases per 100,000 population nationally - with the 

highest incidence rates seen in Indiana and West Virginia (4.0 and 3.9 cases per 100,000, 

respectively). After adjusting for under-reporting and under-ascertainment, it is estimated that 

there were 50,300 (95% confidence interval (CI): 39,800 – 171,600) new (acute) HCV infections 

in the United States that year, and approximately 2.4 million people living with chronic HCV 

infection [4]. Percutaneous exposure to contaminated blood is the primary mode of transmission 

of HCV, most commonly due to injection drug use and unsafe medical practices, and less 

frequently through sexual contact and perinatal transmission [5, 6]. In 2012, the prevalence of 

HCV infection in the United States among those born from 1945 to 1965 was as much as five 

times higher than that in other age groups[7, 8]. Today the incidence of HCV infection is 

growing fastest in younger adults, driven by the opioid epidemic [9], with 3.1 and 2.6 acute cases 

of HCV infection per 100,000 in 20 and 30 year-olds respectively, in 2018, compared to 0.9 and 

0.4 new cases per 100,000 among people in their 50s and 60s [4].  

 

There is no vaccine to prevent HCV infection. After initial infection, it is estimated that 30% 

(15-45%) of those infected will spontaneously clear the virus within the first six months [10]. 

Those who develop chronic HCV infection have a 15-30% risk of developing cirrhosis within 20 

years [11, 12], and those with HCV and cirrhosis have a 3% annual risk of HCC, representing a 

15-20-fold increased risk over those not infected with HCV. Interventions prior to the onset of 

cirrhosis represent the greatest opportunity to change the clinical course of disease [13].  

 

In the past, treatment of HCV relied on interferon-based regimens, which required almost a full 

year of weekly injections; were associated with  important side-effects; and had limited success 

in achieving a sustained virologic response [14]. Safe and effective direct acting antivirals 

(DAAs) that can be administered orally became available for treating HCV in 2014. With their 

minimal side effects and comparatively short course of treatment, DAAs dramatically changed 

the HCV treatment landscape, and created a real opportunity to reverse the growing incidence 

and prevalence of HCV infection and related disease[15, 16]. Inspired by the success and 

availability of both the hepatitis B virus (HBV) vaccine and of HCV treatment, the World Health 

Organization (WHO) has challenged health agencies around the world to take action against viral 

hepatitis by establishing a sustainable development goal to eliminate hepatitis B and C. Specific 

targets include a 90% reduction in HCV incidence and a 65% reduction in HCV-related mortality 

by 2030 [17].  

 

Eliminating HCV will require interventions on many levels, including harm reduction measures, 

such as needle exchange programs and education; increased surveillance and screening; and 

linking those who test positive to treatment. Infection awareness presents one of the biggest 

obstacles in the HCV cascade of care. Published findings indicate that up to 80% of persons with 

HCV infection are unaware of their infection, including over 50% in the United States [4, 18, 

19]. In addition, it is estimated that only one out of every 12 HCV infections in the United States 
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is reported to the National Notifiable Disease Surveillance System (NNDSS) [20]. Impediments 

to accurate reporting include cases not being recognized in the absence of symptoms; patients not 

seeking medical attention, even when symptomatic; and physicians not reporting due to delayed 

test results or problematic case definitions [20, 21]. Poor access to screening and healthcare in 

some high-risk populations also contributes to under-reporting [22]. However, even among those 

with sufficient healthcare access, it is believed that the majority of HCV infections go 

unrecognized and undiagnosed [23]. This undiagnosed population represents a missed 

opportunity to both reduce the prevalence of HCV and reduce future incidence by minimizing 

opportunities for transmission.  

 

HCV Screening Recommendations 

The goal of screening is to identify individuals likely to have a disease or infection as early as 

possible - prior to symptom onset - in hopes of altering the disease course and improving 

outcomes. HCV screening in the United States has evolved along with the prevalence of HCV 

infection and demographic characteristics of those with the infection. In 2004, the USPSTF 

explicitly recommended against screening for HCV in asymptomatic adults, a grade D 

recommendation indicating that screening had no net benefit. While screening was found to be 

effective at identifying HCV infection, the prevalence of HCV infection was considered low in 

the general population,  and there was no evidence that early detection would improve long term 

health outcomes [24].  

 

In 2013, HCV infection and related chronic liver disease had become the most common 

indication for liver transplantation[25] in the United States, and the primary driver of HCC[2, 

26], prompting the USPSTF to upgrade its HCV screening recommendations to a grade B, which 

acknowledged moderate to substantial benefits. Importantly, B grades also ensure that insurance 

will cover the cost of screening with no deductible or copay under the Affordable Care Act of 

2010 [27]. The updated recommendations targeted individuals 18-79 years of age at high risk for 

HCV infection, in addition to recommending one-time screening for all adults born in the birth 

cohort from 1945 and 1965 in whom the prevalence of HCV was between 2.6-3.5%[8, 28]. 

Factors associated with a high risk of HCV infection included a history of drug use, 

incarceration, homelessness, high risk sexual behavior, blood transfusions that occurred prior to 

1992 (when screening of blood for HCV was implemented), hemodialysis, laboratory results 

indicating elevated liver enzymes, and maternal HCV infection [29]. Studies showed that after 

these recommendations were put into place, screening in the 1945 – 1965 birth cohort increased 

significantly, but little change occurred in other age groups[30].  

 

Evidence suggests that broader screening recommendations than those currently in place are 

warranted, given the inadequacy of exclusively risk-based approaches to contain the increasing 

incidence of HCV and the positive impact that such changes can have on screening practices [30, 

31]. A 2015 study by the European Union (EU) HCV Collaborators modeled the impact of 

existing interventions on the prevalence of HCV infection at time points over a 15-year period to 

determine whether existing measures would be sufficient for the EU to achieve the WHO 2030 

elimination targets. They estimated 3.2 million people had active HCV viremia in Europe in 

2015, of whom, 36% had been diagnosed, 5% had been treated, and only 4% had been cured. In 

the same year, they estimated an additional 58,000 people had been newly infected with HCV, 
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and over 30,000 people with HCV infection immigrated to the EU. By maintaining the 2015 

screening and treatment scenarios, the model projected that the entire diagnosed population 

would be cured by 2030, while the population with HCV viremia would decline by only 40%, 

falling well short of the WHO elimination goals. To achieve a 90% reduction in incidence of 

HCV infection, they estimated that annual HCV diagnoses would need to increase two-fold, and 

screening would need to expand significantly to achieve these targets [32]. These findings 

highlighted the need to expand screening from only high-risk patients to those in the general 

population. 

 

In the United States, the CDC and the US Department of Health and Human Services (HHS) 

sponsored an Institute of Medicine committee (the Committee on a National Strategy for the 

Elimination of Hepatitis B and C) to explore the feasibility of hepatitis elimination and devise a 

path forward. The two-volume report of their findings was published in 2017. Among the 

obstacles to elimination they identified are poor awareness of HCV infection and limited 

resources devoted to education and outreach, noting that, at the time of publication of the report, 

CDC funded only seven jurisdictions for viral hepatitis surveillance. [31]. The report indicated 

that 250,000 people with HCV infection will need to be diagnosed and treated annually for the 

United States to reach elimination goals and suggested that one-time universal screening of all 

adults would be a necessary step to identify a significant portion of the infected-but-unaware 

population. This estimate is supported by a modeling study conducted by Kabiri et. al (2014) that 

projected HCV infection rates from 2001 – 2050 using NHANES data under different screening 

scenarios. Study findings suggested that over the next 10 years, universal HCV screening would 

identify twice as many HCV infections as risk-based screening – up to 450,000 additional HCV-

infected persons [33]. 

 

In March 2020, driven by the WHO elimination goals, the significant rise in reported HCV 

infections related to injection drug use and the opioid crisis, the effectiveness of DAA treatment 

regimens, and the overwhelming evidence that existing guidelines were failing to capture a 

significant proportion of the HCV-infected population, USPSTF updated its screening 

recommendations. The new guidance includes one-time screening for all adults 18-79 years of 

age, including pregnant women, and more frequent screening for those with identified risk 

factors, including adolescents [34]. These recommendations have maintained their grade B 

status. 

 

Screening Challenges 

Although screening recommendations have now been expanded, adoption of these new 

guidelines has been slow [35-37]. There remain major financial, logistical, and social obstacles 

to uptake and implementation. A review examining barriers to HCV screening looked at studies 

published between 2012 and 2017 and identified limiting factors on both the patient and the 

provider side. For patients, low self-perceived risk, fear of testing positive, and perceived stigma 

associated with HCV were cited as reasons to decline screening. For providers, barriers included 

lack of HCV-specific knowledge, time constraints in the face of competing patient needs, and 

discomfort inquiring about potential HCV risk factors[38]. A recent study of HCV-infected baby 

boomers who had received treatment at the Penn Hepatology clinic and who had adult children 

found that more than half were unaware that HCV could be transmitted vertically, and many 

were unwilling to consider that they may have been infected prior to delivery. Participants were 
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offered the option to have their children receive HCV education and free testing and treatment 

through the study. Fewer than half of study participants agreed to let their children be contacted, 

and among those children who were contacted, only half agreed to be tested for HCV[39]. 

 

Alter et al. pointed out that expanding HCV testing and treatment will require a significant 

financial investment up front, even in comparatively wealthy countries such as the United States 

[40]. Studies examining the economic impact of increased HCV testing and treatment have 

demonstrated that the costs to screen and treat patients in the short term will be substantial, 

although ultimately far less than the long-term costs associated with the cirrhosis, liver cancer, 

and liver transplantation that would potentially occur without treatment [41-44]. A study by Scott 

et al. modeled the direct and indirect economic impacts of scaling up HCV testing and treatment 

to achieve the WHO 2030 elimination goals. Their findings suggest that globally, an initial 

investment of almost $5 billion would be needed, but this investment would prevent 2.1 million 

HCV-related deaths and 10 million new HCV infections, producing a net economic benefit of 

$22.7 billion by 2030 [45]. 

 

Priorities in scaling up HCV screening 

Experience from the campaigns to eliminate smallpox and polio points to the critical roles of 

surveillance and screening to control and ultimately eliminate a disease [46-48], and the 

importance of using data strategically to monitor progress and target efforts. Given competing 

needs and the finite capacity of our health systems, we need to be strategic about how resources 

can be most effectively deployed to maximize identification of people infected with HCV. A 

report published in 2019 from the Coalition for Global Hepatitis Elimination highlighted the 

need to use strategic data to prioritize activities and guide the distribution of resources, noting 

that these are essential components of disease elimination programs [49]. Recent studies have 

described strategies to expand the reach of screening programs while identifying those patients 

who would receive the greatest benefit from being prioritized for testing. Approaches that have 

shown success in screening for HCV include electronic reminders in patient records to identify 

screening candidates [50], professional education and support for non-specialists to identify and 

manage HCV infection [51], and the development of tools to leverage electronic health records 

to identify candidates at increased risk of HCV infection [51, 52]. For example, a committee of 

HCV specialists led by Dieterich at Mount Sinai Hospital developed an algorithm to assist non-

specialist health care providers in identifying and managing patients with uncomplicated HCV 

infection, and in recognizing those individuals who should be referred to specialists [53]. Tools 

such as these can be strategically employed to maximize the opportunities to identify individuals 

infected with HCV. 

 

There is an opportunity in this moment to capitalize on the momentum of expanded HCV 

screening recommendations and the WHO goal of eliminating HCV as a public health threat by 

2030. Prioritizing for screening those individuals most likely to be HCV-infected will yield the 

biggest impact on the prevalence of infection and the subsequent transmission of HCV infection 

and is the best use of finite resources as we scale up screening efforts. To this end, this 

dissertation summarizes the known risk factors for HCV infection (Chapter two) and examines 

strategies to build on this knowledge (Chapters three and four). The ensemble learning method 

Super Learner is used to identify potentially novel HCV-infection risk factors and to build an 

algorithm that could be used to prioritize high-risk candidates for HCV screening.   
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Chapter 2: Umbrella review of risk factors associated with hepatitis C virus 

infection in the United States 

 

 
2.1: Abstract 

Hepatitis C virus (HCV) infection represents a significant public health problem worldwide. As a 

result, eliminating hepatitis as a major public health threat is one of the goals proposed in the 

2030 Agenda for Sustainable Development by the World Health Assembly. Targets of this goal 

include diagnosing 90% of individuals infected with HCV and treating 80% of the treatment 

eligible population. In the United States (US), a significant impediment to achieving these targets 

lies in the substantial under-diagnosis of HCV infection, due in part to the asymptomatic nature 

of early-stage infection. To bridge this gap in diagnosis, it is critical to understand the risk factors 

associated with increased prevalence of HCV infection. In this umbrella review, systematic 

reviews or meta-analyses of observational studies reporting HCV antibody prevalence were 

identified from inception to December 2021 using BIOSIS, Embase, MEDLINE®, and Cochrane 

bibliographic databases, and manual reference screening. 

 

In the 13 reviews that met the inclusion criteria, eight risk groups were identified in the US in 

which HCV infection prevalence was disproportionately higher than that in the general 

population. They included three behavioral/lifestyle factors, two medical conditions, one 

occupation, and two vulnerable populations. HCV infection prevalence estimates among groups 

with multiple risk factors were substantially higher than HCV prevalence in the general 

population (~1.4%) or in individuals with only one identified risk factor. The highest pooled 

prevalence estimates occurred among men who have sex with men (MSM) who have ever 

injected drugs (29.9%; 95% confidence interval (CI): 16.5 – 45.2%), HIV-positive MSM who 

inject drugs (35.6%; 95% CI: 21.1 – 50.1%), and adult incarcerated individuals in North America 

with a history of injection drug use (67%; 95% CI: 25 – 80%). Across all included reviews 

prevalence estimates from individual studies that contributed to the systematic reviews ranged 

from 0% in healthcare workers to 84.9% in people who inject drugs, illustrating the significant 

heterogeneity in included studies.  

 

Identifying risk factors associated with HCV infection may assist in developing targeted outreach 

and prevention strategies for populations at high risk of exposure to HCV and serve as a starting 

point to identify additional risk factors. 
 
2.2: Introduction 

Hepatitis C virus (HCV) infection occurs through parenteral exposure to infected blood[54]. The 

virus preferentially infects hepatocytes and is associated with significant morbidity and 

mortality, making it a major public health problem around the world. The availability of highly 

effective direct acting antiviral drugs (DAAs) has changed the landscape regarding HCV 

infection and resultant disease, making the elimination of HCV an achievable ambition[15, 16, 

55]. To this end, the WHO has challenged global health agencies to prioritize viral hepatitis (B 

and C) elimination by 2030[56]. Achieving this goal, however, presents a significant challenge, 

as it will require the identification and treatment of at least 80% of people infected with hepatitis 

B virus and HCV to address current infection and prevent future transmission.  
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Based on data collected from 2013 – 2016 for the National Health and Nutrition Examination 

Survey (NHANES) and sources used to capture individuals not included in NHANES (e.g. 

nursing home residents, military personnel, incarcerated persons and unhoused individuals), an 

estimated 4.1 (3.4 – 4.9) million adults (1.7%) in the United States (US) were HCV antibody 

positive and 2.4 million were HCV RNA positive[57]. In addition, over 18,000 deaths reported 

to the National Vital Statistics System in 2016 were attributed to HCV-related sequelae. These 

estimates are considered conservative due to under-reporting and under-diagnosis of HCV 

infection[58]. According to the Centers for Disease Control and Prevention (CDC), the number 

of reported acute HCV infections increased every year from 2009 to 2019, with the highest 

incidence rates among persons 20-39 years of age[59]. Limiting the spread of HCV is 

particularly challenging in that the initial stages of infection are often asymptomatic, allowing 

the virus to persist and be passed on to others undetected. In the cascade of HCV care, 

identifying the undiagnosed, HCV-infected population remains the largest challenge[60]. It is 

estimated that up to 50% percent of individuals infected with HCV in the US are unaware of 

their infection[60, 61]. 

 

To bridge this gap in diagnosis and support elimination efforts, the United States Preventative 

Services Task Force (USPSTF) has expanded HCV screening recommendations to include 

universal one-time testing for HCV antibodies for all adults (>= 18 years of age) in any setting 

where the prevalence of HCV infection is >= 0.1%[62]. This important step is one of many 

proactive efforts needed to identify the undiagnosed HCV-infected population. Universal 

screening is necessary, but likely not sufficient to meet the WHO HCV elimination targets. 

Additional innovative efforts will be necessary. While government agencies around the world 

have taken a variety of approaches to identifying and treating those infected with HCV, there are 

financial and logistical challenges and competing priorities that hinder this effort[63, 64].  

 

In support of efforts to locate the individuals who are, both knowingly and unknowingly, 

infected with HCV, it will be important to understand the conditions associated with the highest 

prevalence of HCV infection. To this end, we have conducted an exhaustive literature review to 

summarize the known risk factors and populations associated with an increased prevalence of 

HCV infection in the US. This review focuses exclusively on systematic literature reviews 

(SLRs) to clarify existing knowledge of HCV risk factors and to identify gaps that should serve 

as a starting point for future research into novel HCV risk factors and high-risk populations. To 

our knowledge, no umbrella review has previously been conducted that summarizes HCV 

infection prevalence in US SLRs.  

 

 

2.3: Methods 

Search Strategy 

Systematic literature reviews containing estimates of the prevalence of HCV and the odds or risk 

of HCV infection in general and in high-risk populations were retrieved from BIOSIS, Embase, 

MEDLINE®, and Cochrane using Ovid®. The initial search strategy used broad terms to 

describe HCV infection and SLRs (a full list of search terms employed, and bibliographic 

databases searched is provided in Supplemental Tables S2.1 and S2.2). The search was 

conducted on December 5, 2021, with no restrictions placed on date or geographic region. SLRs 

that were presented only in conferences and meetings were excluded. A manual search of the 
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references of the identified SLRs was performed to identify additional relevant publications for 

inclusion. 

 

Study selection and eligibility 

After the initial search using the Ovid® medical research platform, titles and abstracts of 

identified studies were screened for relevance. A full text screening was then performed on the 

relevant studies. Two types of SLRs were retained – those that focused on a particular HCV 

infection risk factor and those that focused on an epidemiologic feature of HCV infection in a 

specific geographic region and included analyses of high-risk subpopulations. Studies were 

excluded for the following reasons:  

• not an SLR  

• not written in English  

• not conducted on a US population 

• HCV infection was the risk factor and not the outcome  

• did not include discussion of observable HCV risk factors 

• didn’t clearly describe methods or inclusion/exclusion criteria 

• incomplete or unlisted references 

• did not include prevalence information for HCV risk factors  

The retained SLRs were categorized by identified HCV risk factors, and the references of 

individual SLRs were explored. If multiple reviews contained the same individual study 

references, the review with the most comprehensive and contemporary reference list was 

retained. 

 

Data extraction 

Because the goal of this umbrella review was to cast as wide a net as possible to identify any 

possible HCV infection risk factors, we focused on HCV antibody prevalence (not on HCV 

RNA). For each included SLR, the following information was extracted, if available:  

• first author’s name 

• year of publication  

• data cutoff of included literature 

• risk factors described 

• included study designs 

• number of studies  

• total number of participants 

• prevalence measures and heterogeneity assessment. 

 

For studies that characterized multiple risk factors for HCV infection, an assessment of each risk 

factor was conducted separately. Only risk factors reported with sufficient detail (i.e. itemized 

references of studies with at least 50 people) were included in this review. The total numbers of 

studies and participants for each risk factor were identified and listed separately.  

 

Data synthesis 

Given the heterogeneity of outcome measures, reporting styles, and HCV risk factor definitions, 

and the inherent difficulty in combining findings from systematic reviews of observational data, 

a meta-analysis was not performed. Instead, a narrative synthesis for each HCV infection risk 
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factor in the US was conducted, including all relevant and available measures of effect size 

(pooled measures, or ranges when a pooled measure wasn’t available). HCV risk factors were 

organized and synthesized based on the following categories: behavioral and lifestyle risk 

factors, medical conditions or procedures, occupations, and special populations.  

 

 

2.4: Results 

A total of 3,099 studies were identified in the primary search of the referenced bibliographic 

databases: Medline: 990, BIOSIS: 952, Embase: 1022, Cochrane: 135 (see appendix for a full 

list). Conference and meeting reviews and duplicate references were excluded, leaving 

1,161citations. Screening of titles and abstracts excluded 1,006 additional reviews. Among the 

remaining 155 SLRs, a manual investigation of bibliographies was conducted in which two 

additional reviews were identified. Finally, a full text review was conducted by individual risk 

factor to ensure the uniqueness of references and quality of content. In addition, only references 

and reviews of US data were retained. This last step excluded 144 SLRs, yielding a final total of 

13 included SLRs (see Figure 2.1). A summary of the characteristics of the included reviews 

organized by risk factor is provided in Table 2.1. Any SLR that examined more than one HCV 

risk factor was listed with each risk factor grouping, so a review may appear more than once in 

Table 2.1. A summary table organized by review (n = 13 rows) that itemizes all risk factors and 

total numbers for included studies and participants is available in Supplemental Table S2.3.  

 

HCV infection risk factors identified in this review have been grouped into four categories: (1) 

behavioral/lifestyle, (2) medical conditions/procedures, (3) occupations, and (4) special 

populations. The behavioral/lifestyle category includes people who inject drugs (PWID), non-

injection drug users (non-IDU), and men who have sex with men (MSM). The medical 

conditions/procedures category includes human immunodeficiency virus (HIV) infection and 

severe mental illness. The occupations category includes health care workers (HCW). Last, the 

special populations category includes persons who are incarcerated, or homeless. Below is a 

summary of US-specific findings for each risk factor in each category.  

 

 

Behavioral/Lifestyle Risk Factors 

People who inject drugs (PWID) 

Eight SLRs published from 2013 to 2021 included 35 US studies with a total of more than 7,000 

participants investigating the prevalence of HCV infection among PWID[65-72]. Two studies 

reported pooled prevalence measures ranging from 29.9% (16.5 – 45.2%) among MSM who 

have ever injected drugs[72] to 35.6% (21.1 – 50.1%) among HIV-positive MSM who inject 

drugs[66].  

 

Six reviews did not include pooled measures but in individual studies, HCV infection prevalence 

measures ranged from 17.9 to 84.9%, with the highest prevalence occurring in studies of PWID 

who have other HCV infection risk factors, such as homelessness and incarceration[65, 67, 71]. 

Wirtz et al. reviewed HCV prevalence among incarcerated persons in the US and included six 

studies that reported an HCV infection prevalence among incarcerated PWID ranging from 35.8 

to 84.9%. A review of risk factors for HCV among drug users by Zhou et al.[69] included two 

US-based studies. Among individuals in the general population in Tennessee offered opt-out 
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HCV testing at family planning and sexually transmitted infection (STI) clinics, 48% (271/576) 

of self-reported PWID tested positive for HCV antibodies[73], while in a second study among 

self-reported injection drug users in Baltimore, 82.2% (204/248) tested positive for HCV 

antibodies [74].  

 

Two SLRs examined HCV infection prevalence in US populations that have been 

disproportionately affected by HCV. Bruce et al. examined HCV infection prevalence among 

American Indians and Alaska natives (AI/AN). In four studies that reported HCV infection 

prevalence among AI/AN PWID, the prevalence ranged from 25.7 to 67.6%[68]. Schalkoff et al. 

examined drug use and associated infections in rural Appalachia. They included three studies 

that report HCV infection prevalence among PWID, with measures ranging from 34.0 – 54.8% 

and cite injection of cocaine and sharing of injection equipment to be correlated with the 

increased prevalence[70].  

 

Non-injection drug use (non-IDU) 

One SLR by Jordan et al. included US data on the prevalence of HCV infection among HIV-

positive MSM who use non-injection drugs. From six studies with a total of 3,187 individuals, 

they reported a pooled HCV infection prevalence of 7.5% (5.2 – 9.9%). The prevalence reported 

in individual studies ranged from 4.9 to 12.3% [66], with a higher infection prevalence of HCV 

infection reported in the more recent studies. 

 

Men who have sex with men (MSM) 

We identified two SLRs with US data that examined the prevalence of HCV infection in MSM. 

A review by Jin et al. included 21 US studies with a total of 29,523 participants and reported a 

pooled HCV infection prevalence of 4.4% (2.6 – 6.1%) among MSM. When stratified by HIV 

infection status, the pooled HCV prevalence in HIV-positive MSM and in HIV-negative MSM 

was 9.7 % (7.1 – 12.6%, n=12 studies) and 2.3% (0.7 – 4.8%, n = 7 studies), respectively[72]. A 

second review by Wirtz et al. included one study conducted at a correctional facility in California 

that reported a 50% prevalence of HCV infection among incarcerated MSM[67]. 

 

 

Medical Conditions/Procedures 

HIV Infection 

Two global SLRs included US data on the prevalence of HCV infection among HIV-positive 

individuals. A review of HCV infection in HIV-positive MSM by Jordan et al. included seven 

US studies with a total of 4,074 individuals. The overall pooled prevalence of HCV infection in 

these studies was 12.0% (8.5 – 15.4%) among HIV-positive MSM, with individual study 

prevalence measures ranging from 6.0% to 17.9%[66]. A second global review by Jin et al. 

included 12 US studies with a total of 11,502 HIV-positive MSM and reported a pooled HCV 

infection prevalence of 9.7% (7.1 – 12.6%) in this group[72]. 

 

Severe Mental Illness 

HCV infection prevalence in the US among people with severe mental illness was characterized 

in two SLRs. A 2018 review by Ayano et al. included two studies that reported the prevalence of 

HCV infection to be 5.9% (252/4310) and 16.1% (122/777), respectively in individuals with 

severe mental illness. When stratified by sex, the HCV infection prevalence in men with severe 
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mental illness was more than double that in women in both studies (6.2% for men vs. 2.3% for 

women in the first study and 19.8% for men vs. 9.8% for women, in the second)[75], a ratio 

consistent with the higher prevalence of HCV infection in men in the general population[76]. 

The second SLR by Hughes et al. published in 2016 included 12 US studies with a total of 4,977 

individuals. They estimated the pooled prevalence of HCV infection among people with severe 

mental illness in the US to be 17.4% (95% CI: 13.2 – 22.6), with individual study prevalence 

measures in this population ranging from 2.7 to 38%[77]. 

 

 

Occupations: 

Healthcare Workers 

Data on HCV infection among healthcare workers (HCW) in the US were available in one SLR 

that included studies from around the world. This review included eight US studies of HCW 

published between 1991 and 2007 and including a total of 7,213 individuals; the HCV infection 

prevalence estimates ranged from 0% to 1.9%, consistent with the prevalence in the US general 

population[78]. Of note, they also reported a pooled odds ratio of 2.1 (95% CI: 1.3 – 3.42, I2=70) 

when comparing HCV infection among healthcare workers in the US and Europe to controls 

(blood donors) from those countries. The prevalence of HCV infection was found to be higher in 

older studies than more recent ones[79]. 

 

 

Special Populations 

People who are incarcerated 

Three SLR included US data characterizing HCV infection prevalence among incarcerated 

individuals. The reviews were published between 2013 and 2018 and contained 35 individual 

studies of over 2.2 million individuals combined. All reviews provided pooled prevalence 

estimates of HCV infection among incarcerated persons in North America that were well above 

the US and Canadian general population HCV prevalence estimate of 1.5%[78].  

 

Larney et al. estimated a pooled HCV infection prevalence of 29% (95% CI: 24 - 35%, I2 = 98.9) 

for adult incarcerated persons in North America, combining nine studies from the US (n = 

19,223) and six from Canada (n = 6,189). The US studies reported HCV infection prevalence 

measures that ranged from 20.7 to 50.5%[65]. Dolan et al. estimated a pooled HCV infection 

prevalence of 15.3% (95% CI: 13.1 - 17.7%, I2 = 99.9) in North America, with 20 US studies 

that included 35 infection prevalence estimates ranging from 0.8% to 41.4%, and two Canadian 

studies with three estimates ranging from 17.6% to 25.2%[80]. The third review by Wirtz et al. 

estimated a pooled HCV infection prevalence of 11.3% (95% CI: 6.3 - 20.3%, I2 = 96.4) in North 

America that included five US estimates ranging from 0.1% to 17% in incarcerated non-injection 

drug users, and two Canadian estimates ranging from 2.7 to 4.1%[67]. In both the Dolan et al. 

and Wirtz et al. reviews, the lower US prevalence estimates were in juvenile detention centers.  

 

Homeless Individuals 

One global review of HCV infection prevalence in homeless individuals by Beijer et al. (2012) 

included data from five US studies (combined n = 1,758). HCV infection prevalence estimates 

stratified by sex ranged from 8% in males and 10% in females in a 2009 study conducted at a 
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homeless shelter in Honolulu, to 35% in males and 27% in females in a 2001 study of homeless 

individuals who engaged with a mobile clinic in New York City[81].  

 

2.5: Discussion 

The goal of this umbrella review was to synthesize evidence concerning known risk factors for 

HCV infection in the US. This review can serve as a starting point for efforts to diagnose and 

treat individuals infected with HCV in support of the WHO’s 2030 global hepatitis elimination 

goals. Evidence in the review comes from two types of SLRs: those that characterized the 

prevalence of HCV infection among individuals with specific risk factors and those that 

described the epidemiologic features of HCV infection in a specific US region or population 

subgroup and included prevalence data on risk factors for infection in that group.  

 

In the 13 SLRs that met our inclusion criteria, we identified eight risk groups in the US in which 

HCV infection prevalence was disproportionately higher than that in the general population. 

They included three behavioral/lifestyle factors, two medical conditions, one occupation, and 

two vulnerable populations. Because few of the identified reviews assessed HCV RNA (current 

HCV infection), this review focused on HCV antibody prevalence, which captures individuals 

with either current or past HCV infection. 

 

It is important to note that many of the identified risk factors summarized in this review are 

concentrated in vulnerable and marginalized groups in the US. Given the availability of well-

tolerated and effective treatment options, we have the opportunity to eliminate HCV infection; 

however, elimination will require health agencies to target resources to groups that are often 

underserved - people who are homeless, incarcerated, suffer from mental illness, or inject drugs. 

Without a genuine investment in these communities, it is unlikely that elimination will be 

achieved. 

 

Several SLRs of HCV infection risk factors and high-risk populations were identified for PWID 

(eight reviews) and for incarcerated persons (three reviews). Two SLRs were identified for each 

of the following groups: people with severe mental illness, people infected with HIV, and MSM. 

We identified one review of US data for each of the remaining risk groups: people who use non-

injection drugs, homeless individuals, and healthcare workers (see Table 2.2). It is important to 

remember that many additional SLRs were identified in our initial search of the bibliographic 

databases. When more than one review included the same studies, we kept only the review that 

had the most comprehensive and contemporary references. 

 

The eight systematic reviews of PWID consistently reported significantly higher prevalences of 

HCV infection in this population. This evidence provides insights into the increase in HCV 

incidence in young people[59]. After the initial identification of HCV in 1989[82, 83], the 

prevalence of the infection was concentrated in people born between 1945 and 1965 (“baby 

boomers”), due to previous high-risk behaviors and encounters with the medical establishment 

before preventative measures were established, such as screening of donated blood[84]. In 2013, 

the USPSTF singled out baby boomers for additional surveillance, including a one-time 

screening for HCV antibodies[8, 29]. The rise of injection drug use has markedly changed the 

age distribution of the HCV-infected population. A systematic review done in 2020 by Hines et 

al. reported the mean age of PWID in the US to be 37.7 years of age (28 – 55), with more than 
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10% of PWID aged 25 years or younger[85]. The impact of opioid addiction has led to the 

bimodal concentration of HCV infection in individuals aged 50-69 years and in those aged 20-39 

years[86].  

 

Non-injection drug use, also an HCV risk factor, has a less clear mechanism for transmission of 

HCV infection. Only one review met our inclusion criteria, and its focus on HIV+ MSM 

suggests alternative pathways for HCV infection. An SLR by Scheinmann et al. identified 

methodologic concerns  (e.g. misclassification of drug use, lack of a primary focus on this 

population, etc.) that may limit our understanding of the association between non-IDU and HCV 

infection, and suggests that because the prevalence of HCV infection in this group continues to 

be higher than that in non-users of drugs, further research is warranted [87]. 

 

Three systematic reviews addressed the increased prevalence of HCV infection in incarcerated 

persons, and one systematic review included studies that characterized the prevalence of HCV 

infection in homeless individuals. A review by Degenhardt et al. reported that both homelessness 

and incarceration are also strongly association with injection drug use [88]. It is notable that 

several SLRs of HCV infection among PWID examined the risk within these two communities, 

illustrating that HCV infection risk is likely to be multifactorial. It is possible that injection drug 

use is instrumental in several other identified risk factors as well (e.g. severe mental illness, HIV 

infection, and MSM). A review by Schiffman et al. posited that preventing infection and re-

infection with HCV in the PWID community would require interventions that go beyond HCV 

treatment to address underlying medical and social factors that put them at greater risk[89]. 

 

Estimates of HCV infection prevalence in US MSM and in HIV-positive individuals were often 

combined. The review by Jin et al.[72] looked at HCV infection prevalence in MSM overall and 

stratified by HIV infection status. While the prevalence of HCV infection was higher in the HIV-

positive group than in the HIV-negative group, the seven studies with a total of 7,362 HIV-

negative MSM still had a pooled prevalence of HCV infection higher than that in the general 

population, providing evidence that MSM may have an elevated risk of HCV infection. The 

review by Jordan et al.[66] examined HCV infection in HIV-positive MSM who were drug users. 

After stratifying by injection drug use, HCV infection prevalence estimates were higher in HIV-

positive MSM who inject drugs, and lower in HIV-positive MSM who use non-injection drugs, 

but all included studies reported prevalence estimates higher than that in the general population.  

 

Progress has been made in limiting HCV infection risk in some circumstances. While healthcare 

workers in the US and other middle and high income countries previously experienced a small 

increased risk of HCV infection through occupational accidents (contaminated sharps, etc.), that 

risk has declined over time through the development of robust infection prevention protocols[90] 

and improved blood screening[91]. 

 

This review has several strengths. This is the first umbrella review to bring together SLRs of 

known risk factors for HCV infection in the US. We have summarized the findings from 13 

reviews that include 105 US studies with over 2.3 million individuals to thoroughly describe the 

known landscape of HCV infection risk in the US. The review findings are important because 

they illustrate the multifactorial nature of HCV infection and provide insights into pathways 

where interventions could have the biggest impact.  
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In the US, many of the high-risk groups (PWID, incarcerated, or homeless individuals) are in 

marginalized populations that may not have regular access to medical care. As a result, these 

groups might be missed by existing HCV infection outreach programs that assume some level of 

healthcare access. The information provided here can help guide outreach to currently HCV-

infected individuals, as well as help to identify populations at risk for reinfection or future 

infection with HCV. In addition, this review was intended to be a starting point for identifying 

novel risk factors and populations in which HCV infection is underdiagnosed. By summarizing 

the known information on HCV prevalence, we hope to create a jumping off point to look for as-

yet unidentified risk factors or to look for these risk factors in previously uninvestigated 

populations – whether this expansion is into different social or economic groups, or into different 

geographic regions. 

 

We also acknowledge several limitations in this umbrella review. The SLRs in this umbrella 

review included several pooled estimates of HCV infection prevalence that had significant 

heterogeneity. The underlying studies often included diverse populations and study methods, so 

the pooled measures should be interpreted with caution. In addition, many of the reviews include 

studies with cross-sectional designs (see Table 2.1), limiting the ability to make inference about 

causality. 

 

Reviewing only SLRs resulted in gaps concerning possible risk factors that did not (or not yet) 

have a systematic review. This limitation is particularly relevant in the case of newly discovered 

or emerging risk factors that may not have sufficient evidence to be reviewed and summarized. 

For some HCV infection risk factors, such as piercing and tattooing, results from published 

studies were not conclusive or were limited to specific contexts (for example, in prison, using 

equipment that may not have been adequately disinfected) [92-94]. For other activities, such as 

hemodialysis and vertical (i.e. mother-to-child) transmission, new evidence has recently been 

published[95, 96] and SLRs have not yet been conducted to summarize these findings. In many 

cases, comorbid conditions and behaviors in individuals with these risk factors for HCV 

infection make it difficult to assess whether we have identified an independent risk factor for 

HCV infection or simply a proxy for other known risk factors. Also missing were SLRs 

quantifying HCV infection prevalence in the broader HIV-positive community. SLRs of US data 

focused exclusively on HCV infection prevalence in HIV-positive MSM or in HIV-positive 

MSM who use drugs, making it difficult to understand the contribution of HIV-infection as an 

independent risk factor for HCV infection. 

 

It was difficult to analyze temporal trends in risk factors, due to the wide range of data collection 

periods in the underlying studies of each SLR. When multiple reviews for a risk factor or region 

contained the same studies, the most comprehensive and contemporary review was retained, 

which, by design, skewed our findings to more current data but obscured insight into trends over 

time in risk. 

 

We limited our review to prevalence estimates for HCV antibodies. Prevalence estimates for 

current HCV infection are fewer in number, as they require follow-up testing for HCV RNA. As 

a result, included prevalence estimates describe individuals with both current and past HCV 

infection, as opposed to describing only those with current infection.  
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Next Steps: 

Through this review, evidence gaps were discovered that warrant additional consideration. No 

systematic reviews of HCV infection prevalence associated with hemodialysis met our inclusion 

criteria, though individual studies have been published. In addition, no SLR was identified that 

examined vertical transmission of HCV infection in the US. As a result of the opioid epidemic, 

women of childbearing age are more likely to be infected with HCV than in the past. Finally, 

there were no systematic reviews of US data characterizing HCV infection prevalence in 

individuals with tattoos and piercings. While these behaviors were sometimes referenced as 

potential HCV infection risk factors in reviews examining HCV prevalence among incarcerated 

persons, they were not the focus of the studies. 

 

By describing the known HCV infection risk factors and identifying the communities most 

affected by HCV, we have developed a foundation on which further investigation can be 

initiated. Supervised machine-learning methods can be applied to population-level datasets to 

build predictive algorithms using these known HCV infection risk factors.  
 

2.6: Conclusion 

HCV infection occurs through parenteral exposure to infected blood. This review describes eight 

risk factors for this exposure in the US. To achieve the WHO 2030 viral hepatitis elimination 

goal, it is necessary to identify and treat individuals with existing HCV infection and minimize 

the incidence of future HCV infection through treatment, education, and preventative measures. 

Understanding the risk factors for HCV infection and the populations most likely to be exposed 

to those risks will aid in finding and diagnosing HCV-infected individuals and provide a starting 

point for the discovery of novel risk factors for HCV infection. 
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2.7: Figures and Tables: 

 
 

Figure 2.1: Flowchart of search strategy and article inclusion and exclusion criteria  
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Table 2.2: Counts of systematic literature reviews, studies, and individuals for each HCV 

infection risk factor, by risk category 

Risk Factor SLRs (n) Studies (n) Individuals (n) 

Behavioral/Lifestyle Factors 

PWID 8 35 6,978* 

Non-IDU 1 6 3,187 

MSM 2 22 29,523* 

Medical Conditions 

HIV Infection 2 19 15,576 

Severe Mental Illness 2 14 10,064 

Occupations 

Healthcare worker 1 8 7,213 

Special Populations 

Incarcerated 3 35 2,274,223* 

Homeless 1 5 1,758 

* Underestimated - systematic literature review did not report enrollment for individual studies 

Abbreviations: PWID, people who inject drugs; Non-ISU, non-injection drug users; MSM, men who have sex with men; HIV, 

human immunodeficiency virus;  
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2.8: Supplemental Material 

 

Supplemental Table S2.1: Systematic literature review search terms 
Search Terms (“hepatitis c” or “HCV” or “hep c” or HEPC).ti.ab 

AND 

(systematic review OR systematic literature review OR 

systematic scoping review OR systematic narrative 

review OR systematic qualitative review OR 

systematic evidence review OR systematic quantitative 

review OR systematic meta-review OR systematic 

critical review OR systematic mixed studies review OR 

systematic mapping review OR systematic cochrane 

review OR systematic search and review OR 

systematic integrative review).ti OR systematic 

review.pt 

NOT 

(conference or meeting).pt 

 

 

 

 

 

Supplemental Table S2.2: Resources searched on December 5, 2021 
Name Description and Date Range 

BIOSIS Previews  1993 to 2021 Week 52 

Embase  1974 to 2021 December 03 

EBM Reviews Cochrane Central Register of Controlled Trials: November 2021 

EBM Reviews Cochrane Database of Systematic Reviews: 2005 to December 02, 2021 

EBM Reviews ACP Journal Club: 1991 to November 2021 

EBM Reviews Cochrane Clinical Answers: November 2021 

EBM Reviews Database of Abstracts of Reviews of Effects: 1st Quarter 2016 

EBM Reviews Cochrane Methodology Register: 3rd Quarter 2012 

EBM Reviews Health Technology Assessment: 4th Quarter 2016 

EBM Reviews NHS Economic Evaluation Database <1st Quarter 2016> 

Ovid MEDLINE® Ovid MEDLINE® and Epub Ahead of Print, In-Process, In-Data-Review and 

Other Non-Indexed Citations, Daily and Versions®: 1946 to December 3, 2021 

 

  



 19 

 

 



 20 

Chapter 3: Identifying risk factors associated with hepatitis C virus infection in 

participants in the National Health and Nutrition Examination Survey using Super 

Learner 
 

 

3.1: Abstract 

Under-diagnosis is a key impediment to eliminating hepatitis C virus (HCV) infection in the 

United States (US). To address this problem, the United States Preventative Services Task Force 

(USPSTF) updated HCV screening guidelines in 2020 to include one-time testing for HCV 

antibodies in adults (18 – 79 years of age). Machine learning methods offer an opportunity to 

support increased screening in a resource-optimized way. Directing screening resources towards 

those most likely to be infected with HCV will reduce screening costs by minimizing testing of 

uninfected people, while minimizing the burden of unnecessary testing on those not infected. 

 

In the current study, the ensemble machine-learning method Super Learner was used with 

National Health and Nutrition Examination Survey (NHANES) data collected from 2013 – 2016 

to build an HCV infection prediction algorithm. Because only 1.1% of survey participants tested 

positive for HCV RNA, case control sampling was used to address class imbalance, with five 

HCV-uninfected individuals randomly selected for each HCV-infected individual. Performance 

of the predictor was evaluated by calculating the area under the precision recall curve (AUC-PR) 

and comparing precision at different levels of recall to the level of precision that would occur 

with perfect uptake of universal screening. The final fitted algorithm was used to predict HCV 

infection in the full NHANES dataset and to identify the features in the data that had the greatest 

impact on the AUC-PR, as they represent the characteristics, were most predictive of HCV 

infection. 

 

The fitted Super Learner produced a final AUC-PR of 52.0% on the full dataset. By choosing a 

probability threshold that optimized the F1 score, the algorithm achieved 55.4% precision and 

61.3% recall, meaning that for every 100 individuals classified as HCV-infected by the 

algorithm, more than 50% would be true positives if the goal was to identify at least 60% of 

those infected with HCV. Features that were most predictive of HCV infection included alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), injection drug use, age, albumin, 

globulin, and HBV infection status. Additional influential predictors included smoking-related 

features, features indicating risk factors for heart disease or stroke (triglycerides, total 

cholesterol, recommendations by a doctor to take low dose aspirin), and features related to oral 

health.  

 

As outreach continues to identify the undiagnosed HCV-infected population in the US, 

knowledge of the characteristics most predictive of HCV infection should be utilized to guide 

screening and prevention efforts. Algorithms such as the one demonstrated here can support 

these activities. 

 
3.2: Introduction 

Hepatitis C virus (HCV) is single stranded positive sense RNA virus that preferentially infects 

hepatocytes, resulting in significant morbidity and mortality globally[5]. HCV infection is 

characterized by liver inflammation and scarring and can progress to cirrhosis, liver 
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decompensation, and hepatocellular carcinoma (HCC). It is estimated that 1.7% (95% confidence 

interval; CI 1.4 – 2.0%) of the United States (US) population are HCV antibody positive, and 1% 

(95% CI: 0.8 – 1.1) have active viremia[57], making HCV one of the most common bloodborne 

viruses in this population[97, 98]. Known risk factors for HCV infection include exposure to 

infected blood through injection drug use, blood transfusion prior to HCV screening of blood 

products (pre-1992), piercing and tattooing with unsterilized needles, and occupational exposure, 

such as in healthcare work.  

 

While 15-45% of those infected with HCV will spontaneously clear the virus, most infections 

become chronic and require treatment[10, 99, 100]. The approval of direct acting antivirals 

(DAAs) to treat HCV infection profoundly simplified treatment and improved outcomes for 

people infected with the virus[15, 16]. Early treatment not only prevents complications 

associated with chronic infection[101], but also breaks the cycle of transmission. The World 

Health Organization (WHO) has challenged health agencies around the world to eliminate viral 

hepatitis (B and C) by reducing new infections by 90% by 2030[17]. A key impediment to 

eliminating HCV infection is lack of diagnosis, as the majority of infections go undetected, and 

most HCV-infected individuals are symptom free until significant liver damage has occurred. In 

fact, 80% of people with HCV infection globally, and 50% of those infected in the US remain 

unaware of the infection[18, 19, 102]. The US has employed a variety of strategies to improve 

the diagnosis of HCV infection, including a change in screening recommendations to universal 

one-time screening for all adults 18-80 years of age, with more frequent screening for pregnant 

women and those with known risk factors for infection[34, 103]. However, in the face of limited 

resources, stigma associated with HCV infection and the competing demands of the global 

Covid-19 pandemic, it’s unclear whether uptake of the new recommendations has been 

successful.  Historically, recommendations to increase HCV screening in the US have been slow 

to gain traction[35].  

 

Machine learning methods offer an opportunity to support increased screening in a resource-

optimized way. Large, richly-featured datasets, such as administrative claims data or electronic 

medical records, can be analyzed to identify complex relationships between known and unknown 

risk factors to help identify people with a high probability of infection with HCV and prioritize 

them for HCV screening. Applying screening resources to those most like to be infected with 

HCV will reduce screening costs by minimizing testing of uninfected people, while minimizing 

the burden of unnecessary testing on those not infected[104]. From these models, a list of highly 

predictive characteristics of HCV infection can be identified that could be used by public health 

organizations to guide HCV infection prevention and education and increase diagosis of 

undiagnosed HCV-infected individuals. 

 

In machine learning models, a variety of different algorithms can be applied, individually and in 

combination (ensemble learning), to form predictions. In addition, supervised learning models 

(models built on datasets where the outcome is already known) are assessed in a cross-validated 

way by comparing prediction of an outcome to actual outcome status on data that were not 

included when building the algorithm, to maximize signal detection and avoid overfitting to 

random variation in the data. These models can then be applied to novel data with the same 

features that went into creating the prediction algorithm, to produce a probability of the outcome 

of interest.  
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There is increasing interest in using machine learning to predict various outcomes in patient data. 

For example, Dinh et al. used data from the National Health and Nutrition Examination Survey 

(NHANES) to develop models that identify patients with cardiovascular disease and with 

diabetes mellitus, and to identify the strongest predictors of these conditions in the dataset. They 

achieved an area under the receiver operator characteristic curve (AUROC) of 83.9% for 

cardiovascular disease using an ensemble model (a model that combines multiple predictive 

algorithms), and 95.7% for diabetes mellitus using an eXtreme Gradient Boost model. They also 

identified the top five predictors in that dataset for each condition[105]. Oh et al. also used 

NHANES data from 1999 – 2012 to create a deep-learning algorithm to predict depression in 

Korean NHANES (K-NHANES) data from the same time period and in NHANES data from a 

different time period (2013-2014). Their algorithm had prediction success cross-culturally, with 

an AUROC of 0.77 on the K-NHANES data, and cross-temporally with an AUROC of 0.92 on 

the NHANES data from 2013-2014[106]. Doyle et al. used US administrative claims data with a 

stacked ensemble model to predict HCV infection. The resulting algorithm achieved 97% 

precision (PPV) at 50% recall (sensitivity), which can be interpreted to mean that for every 100 

individuals flagged as HCV-positive by this algorithm, approximately 97 would be true positives 

and 50% of individuals with HCV infection would be identified. At that time, the Centers for 

Disease Control and Prevention (CDC) recommended HCV screening for all persons born 

between 1945 and 1965, in whom the prevalence of HCV infection was estimated to be 2.2%; 

thus, the algorithm would have significantly outperformed the CDC screening guidelines in 

identifying HCV-infected individuals[104]. Given that HCV infection is both rare and 

significantly underdiagnosed, these examples highlight the potential benefit of using machine 

learning as a tool to improve identification of those who were HCV-infected. 

 

In the current study, the ensemble machine-learning method Super Learner was used with 10-

fold cross validation to predict HCV infection in NHANES data collected from 2013 - 2016. 

Performance was evaluated by calculating the area under the precision recall curve (AUC-PR) 

and comparing precision at different levels of recall to precision that would occur with perfect 

uptake of universal screening. From the resulting algorithm, those features in the NHANES 

dataset that have the greatest impact on the AUC-PR were identified, as they represent the 

characteristics that are most influential in HCV infection prediction. 

 

 

3.3: Methods 

Data 

The primary goal of this study was to identify the risk factors most predictive of HCV infection. 

Because many people who are infected with HCV but have not yet progressed to severe liver 

disease and are not experiencing related signs and symptoms, we wanted to use data that didn’t 

rely on symptom-driven interaction with a healthcare provider. People who are uninsured or 

under-insured will likely be under-represented in administrative healthcare data; however, they 

are an important population to include in such research, as they may have higher rates of chronic 

HCV infection than those who have fewer barriers to medical care. Finally, a supervised machine 

learning approach was employed to develop the HCV prediction algorithm, which necessitates 

working with labeled data (data that include a measurement for the outcome of interest: the 

presence of HCV RNA). NHANES data meet all of the above requirements and were, therefore, 
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selected for this research. These data are collected from a random sample of US residents; 

selection into the survey does not require health insurance, and all participants who complete the 

examination portion of the survey are tested for HCV RNA. 

 

NHANES is an ongoing population-based cross-sectional study conducted by the National 

Center for Health Statistics (NCHS), a branch of the CDC. The study began in 1960 to comply 

with the National Health Survey Act, which was passed by the US Congress in 1956 with a 

mandate to characterize the distribution of illness and disability in the United States. In order to 

be representative of the civilian non-institutionalized population, survey participants are selected 

using a complex multi-stage probability sampling design. Populations of particular interest are 

oversampled to increase the precision of subgroup estimates; therefore, survey weights are 

included with the data. Sectors of the population not included in the survey include persons who 

are incarcerated, homeless, in nursing homes, on active military duty, or living outside of the 50 

states and the District of Columbia. 

 

NHANES data are captured through both a home interview and a physical examination in a 

mobile examination center (MEC). The data collection study team includes physicians, medical 

technicians, and trained health interviewers who speak English and Spanish. An initial doorstep 

interview is conducted to ascertain whether anyone in the selected residence is eligible to 

participate in the study and the relationships between all individuals living there. Once a 

participant is identified, the home interview is conducted, including questions about 

demographic factors, socioeconomic status, diet, and disease history. A follow-up visit is then 

conducted at the MEC, where a full physical exam is performed, blood and urine samples are 

obtained, and additional interview questions are asked. Transportation is provided to and from 

the MEC, if needed, to maximize participation of the randomly selected study sample. In the 

three most recent two-year cycles, the response rates for completing both components of the 

survey were 68.5% (2013-2014), 58.7% (2015-2016), and 48.8% (2017-2018), resulting in 

approximately 9,000 respondents per cycle. 

 

Participant Inclusion/Exclusion Criteria 

In this study, people were excluded for any of the following three reasons: 

1. Did not participate in the examination portion of the survey 

2. Under 20 years of age,  

3. No information on HCV RNA.  

Note that these groups are not mutually exclusive. We focused on the adult population (i.e. 20 

years of age and older) because many questions and laboratory values in the NHANES dataset 

are not captured for individuals younger than 20 years of age. In addition, because we employed 

supervised machine learning models that require labeled training data (i.e. knowledge of HCV 

RNA status), so individuals who did not participate in the examination section of the survey, and 

who therefore were not tested for HCV RNA, were not included. 

 

Data Cleaning and Feature Engineering 

Data from the three most recent cycles of NHANES (2013-14, 2015-16, 2017-18) were 

combined to form the initial cohort for this analysis.  Prior to 2013, CDC guidelines 

recommended that people who screened positive for HCV antibodies be given a confirmatory 

recombinant immunoblot assay (RIBA) test before they were tested for current HCV infection 
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(the presence of HCV RNA) because only about 2/3 of the people who were reactive in the first 

screening were RIBA positive. However, the company that made the RIBA kits discontinued 

them at the end of 2012. As a result, guidelines were changed starting in 2013 – 2014, such that 

people who screen positive for HCV antibodies are tested directly for HCV RNA without a 

second confirmatory test[107]. Because this change would affect who is tested for HCV RNA, it 

was decided not to include survey cycles prior to 2013 with those after 2013. In addition, 

treatment changes that occurred at the end of 2013, coupled with the demographic shift brought 

about by the opioid epidemic, likely influenced the risk factor profile for current HCV infection; 

as a result, this analysis focused on the more recent NHANES population. 

 

NHANES data are grouped into five categories: Demographic variables, Examination, 

Laboratory, Questionnaire, and Diet, with over 4,000 potential datapoints collected for each 

participant. An additional category of limited access data was not considered for inclusion in this 

study. Initially, all available raw data were extracted from the NHANES website from all 

categories available from 2013 - 2018 for pre-processing. This phase involved a variety of steps, 

beginning with the elimination of covariates that were not consistently available across the three 

cycles being analyzed. A decision was made to omit diet data, as these data lean heavily on 

patient reported information that can introduce subjectivity and noise into the machine learning 

process and have a significant impact on performance. In addition, diet is unlikely to be captured 

in many publicly available data sets, making it hard to operationalize any diet-related findings. 

Among the remaining covariates, administrative questions and duplicate laboratory values with 

different units were excluded. In laboratory data, the international system of units (SI units) was 

preferentially selected when results were offered in multiple types of units. Some features were 

aggregated when, for example, the same question asked of different age groups was treated as 

distinct questions. A composite dental score was created, in consultation with a dentist, to 

address individual tooth assessments that resulted in hundreds of features that would likely lack 

power individually but might be meaningful in the aggregate. 

 

Each covariate available in NHANES is a potential feature for the machine learning prediction 

algorithm. If a feature included a “Refused to answer” (7-series) or “Don’t know” (9-series) 

option, these were recoded to “NA” to reflect the absence of a definitive answer (imputation of 

missing values will be described later in this section). Features such as numeric laboratory results 

were retained as numeric values, and features that included categorical responses were recoded 

as factor variables in R. Binary Yes/No features were retained wherever reasonable and recoded 

as 1/0/NA. Once patient inclusion/exclusion criteria had been applied and the full final cohort 

(not the case-control sample described below) was defined, any feature with a missing response 

from more than 50% of participants was excluded. For example, some features had a high rate of 

missingness due to skip logic (i.e. questions only answered based on the conditional response of 

a previous question). Exceptions to this approach were as follows: (1) all participants were 

required to have a non-NA value for HCV RNA (and no imputing was done) and (2) because no 

prescription drug was taken by >= 50% of the participants in the month preceding the interview 

portion of the survey (the criterion used by NHANES to record medication use), prescription 

drugs were grouped by drug category and patients were flagged (1/0) if any prescription from a 

particular category was recorded during the month prior to the survey. NHANES uses Lexicon 

Plus®, a database owned by Cerner Multum, Inc., which includes all drug products available 

with and without prescription in the US.  
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Case-Control Sampling: 

The Viral Hepatitis Surveillance Report from the CDC estimates the prevalence of HCV 

infection to be approximately 1% in the US[4]; therefore, it was expected that the presence of 

HCV RNA among participants of NHANES would be rare. Many machine learning algorithms 

assume classes are balanced (i.e.  that there are roughly an equal number of people with and 

without the outcome); therefore, it is likely that a prediction algorithm that is trained on the full 

dataset would perform poorly. To address this challenge to successful prediction, a case-control 

sampling approach was employed to allow the model to be trained in an environment with a 

greater concentration of cases. All participants with HCV infection (i.e. cases) were included in 

the sampled data set, and participants without HCV infection were randomly selected in a 5:1 

ratio to those with HCV infection. 

 

Modeling Process 

The first step in building a model with Super Learner (SL) is to define the machine learning task. 

Within the HCV prediction task, the following information was specified: 

• Data set: the NHANES case-control sample 

• Outcome variable: HCV RNA 

• Covariate features: all covariates except HCV RNA in the data set 

• Number of folds for cross-validation (10, stratified by outcome class to ensure balance) 

• Weights: no weights were used to train the model 

When the task is created, Super Learner imputes missing values for covariate features. For 

continuous covariates, the median is imputed; for binary and categorical covariates, the mode is 

imputed. For each covariate, if any imputation is required, an additional covariate is created to 

flag the values that were imputed as a way to detect whether there are meaningful patterns in the 

missingness. For example, if every covariate had some values missing, then the feature list 

would double. 

 

The rare outcome and large number of potential predictors in the dataset present significant 

challenges to successful prediction of HCV infection. Therefore, an ensemble learning approach 

was applied to approach this problem from multiple perspectives. Super Learner is a loss-based 

ensemble learning method that uses v-fold cross validation to create a meta-model from a 

weighted combination of algorithmic approaches that optimize the specified loss or evaluation 

function. A diverse library of parametric and non-parametric algorithms was selected to 

maximize the predictive power of our final model. Parametric learners are faster, require less 

information, and perform well with simple prediction problems, whereas the non-parametric 

learners have greater flexibility to identify complex relationships and don’t fall prey to 

misspecification:  

 

Parametric Learners: 

• Generalized linear models (glm): GLM fits a standard generalize linear model 

• bayesglm: Bayesglm is an alternative to GLM that uses student-t prior distributions for 

the coefficients to produce more stable estimates. In a model with many features, 

especially those with low variance, the use of priors can significantly reduce efficiency. 

Bayesglm uses a modified expectation-maximization algorithm to fit the model[108, 

109]. 
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• glmnet: Glmnet estimates a regularized generalized linear model. Penalty options 

include the range from l1 (Least Absolute Shrinkage and Selection Operator; LASSO), 

which can shrink the slope of unhelpful coefficients to 0, effectively removing them 

from the model, to l2 (ridge) which keeps all features but shrinks their slopes to close to 

0, and mixtures of LASSO and ridge (elastic net). The mixture is established by a 

specified alpha () that ranges from 0 (ridge) to 1 (LASSO)[110]. We used glmnet 

learners with alphas ranging from: = [0, 0.2, 0.4, 0.6, 0.8, 1].  

 

Non-Parametric Learners: 

• Extreme gradient boosting (xgboost)[111]: Xgboost uses gradient boosted decision 

trees and is optimized for speed and model performance. Boosting builds models in a 

sequential manner and uses a loss function and weights to focus on the most 

challenging cases (sequentially higher weights are given to misclassifications for 

subsequent iterations).  The number of fitting iterations was set to 500, and early 

stopping rounds was set to 50. Early stopping, a way to avoid over-fitting,is used when 

the loss on the validation set starts to increase. 

• Discrete bayesian additive regression tree sample (dbarts)[112]: Dbarts is a Bayesian 

tree ensemble method that uses individual trees as base learners. Each tree is 

constrained by a prior to be a weak learner. This learner is flexible and requires 

minimal assumptions. 

• Ranger: Random forest (an ensemble method using decision trees and bagging) is 

optimized for high dimensional data.[113] Ranger builds on random forest by allowing 

the user to choose a mode for calculating variable importance, the contribution a 

specific feature makes to prediction. Importance criteria “impurity” was used (impurity 

measurement uses the Gini index[114] for classification that is the probability that a 

randomly selected feature is classified incorrectly).  

 

The latest version of Super Learner (SL3) also includes the ability to create pipelines where one 

can add additional screening options. Pipelines perform functions sequentially, using the result of 

the first function in the second, and so on. Pipelines were used in two ways in our learning 

library.  

• First, they were used to screen covariates with a penalized regression method (LASSO) 

prior to being fit with the learners glm and bayesglm. This was done becasue glm and 

bayesglm both attempt to use every covariate that would lead to significant overfitting, 

given our sample size.  

• Next, a second pipeline was created using the learner ranger to identify the 100 most 

influential covariates (based on the selected evaluation metric – see below). These 

selected covariates were then fed to the full stack of learners in the library (including 

the learners from the first pipeline, glm and bayesglm). Screening was employed to 

exclude features that didn’t contribute meaningfully to prediction of HCV infection. 

The remaining features should be those that will perform best on out-of-sample 

prediction. 

 

After the individual base learners were defined, a metalearner was specified with the job of 

creating a weighted combination of the predictions from the individual learners. We used the 

default metalearner, nonlinear optimization via augmented lagrange.  
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Once the machine learning task, learners, and screening pipelines were defined, the following 

steps were executed: 

1. Super Learner with 10-fold cross validation was used to build a model to predict HCV 

infection in the sample data 

2. Cross-validation of the Super Learner fit (again using 10-folds) was performed to assess 

performance on unseen data.  

3. The fitted Super Learner was used to predict HCV infection on the full NHANES dataset, 

with weights to represent the US population surveyed during the six-year period. 

4. Variable importance was calculated. Characteristics that had the largest impact on 

prediction of HCV infection were identified (described below). 

 

Performance metrics 

In imbalanced classification problems (where most individual in the dataset do not experience 

the outcome of interest – called negative cases), assessing prediction success with the area under 

the receiver operation characteristic curve (AUROC) is not an ideal metric. The AUROC 

compares the proportion of those with the outcome who test positive. [(sensitivity) 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 ] to 

those without the outcome who test positive [ (1-specificity); 
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
]. Given that HCV infection 

is present in only 1.1% of the full NHANES set of participants (see above), predicting each case 

as negative will produce almost 99% accuracy, yielding a strong AUC without producing 

successful prediction. Even with case control sampling, basing performance on the AUROC 

would yield overly optimistic results. 

 

Area under the precision recall curve (AUC-PR) is preferable to the AUROC when the outcome 

of interest is rare. Precision-recall curves focus on the positive class identification (even if it’s 

rare) and don’t factor in the success of predicting true negatives. The geometric interpretation of 

the precision recall curve is the expected precision:  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  when uniformly varying the recall: 

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
.  Flach and Kull explained the limitations of precision-recall curves (lack of universal 

baseline; uninterpretable region on the lower right side of the graph; lack of calibration; 

etc.)[115]. Generally, precision and recall can be assessed through the F-score (F combines 

precision and recall into one metric, and is more useful than accuracy when you have class 

imbalance), where, when  𝛽 = 1,  and F is the harmonic mean of precision and recall[116]. The 

value of 𝛽 determines the tradeoff between precision and recall. When 𝛽 > 1, recall is given 

greater weight, when  𝛽 < 1, precision is given more weight. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒

𝑇𝑟𝑢𝑒+𝐹𝑎𝑙𝑠𝑒
=  

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            where as    𝐹𝛽 = (1 + 𝛽2) ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The baseline in a precision recall curve is equivalent to the true prevalence of the outcome at all 

values of recall (forming a horizontal line). At maximum sensitivity, all samples are predicted to 

be cases. 

 

Variable importance 
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As a final step, variable importance was calculated by considering AUC-PR with and without 

each feature, to see which features had the largest impact on the metric. The features with the 

largest impact would be useful for identifying expanding the search of people with current HCV 

infection. We used the option to “permute” rather than remove the covariate for computational 

efficiency. Both a difference and a ratio measure were calculated, where: 

• Difference = (AUC-PR without feature) – (AUC-PR with feature). 

o Thus, larger negative values are associated with features that have a higher impact 

on AUC-PR 

• Ratio = (AUC-PR without feature) / (AUC-PR with feature) 

o Thus, smaller fractional values are associated with features that have a higher 

impact on AUC-PR 

 

3.4: Results: 

Descriptive Results 

The three NHANES survey cycles from 2013-2018 included 29,400 participants from 90 unique 

primary sampling units (PSUs), where each PSU represented a single large US county or smaller 

contiguous counties. Among those selected for the survey, 1,339 (4.8%) did not participate in the 

examination. An additional 11,734 (41.8%) of the remaining 28,061 were under 20 years of age. 

Finally, 1,090 (6.7%) of the remaining 16,327 did not have screening results for HCV RNA. 

After these inclusion/exclusion criteria were applied, 15,237 people remained in the full 

NHANES HCV prediction cohort. 

 

Of the 15,237 individuals in the full cohort, 168 participants tested positive for HCV RNA, 

resulting in a prevalence of 1.1% (before applying weights). From the 15,069 participants with 

no evidence of HCV RNA, five negative individuals were randomly selected for every HCV-

infected case, resulting in 840 controls, and an effective sample size of 1,008 survey participants 

in the training dataset (Figure 3.1). No weights were included when training the prediction 

algorithm, so as to maintain the 5:1 non-case to case ratio; however, weights were added when 

prediction was done on the full 15,237-person dataset to assess overall performance of the 

algorithm. 

 

Key characteristics of the training cohort are provided in Table 3.1. Mean age was slightly 

higher in the HCV positive cohort (56.7 years, (standard deviation; SD: 10.8) vs. 50.8 years 

(17.9)). People with HCV were more likely to be male (70.8% for HCV infected vs. 48.3% for 

HCV uninfected), living below the poverty level (49.4% vs. 21.6%), and have a history of 

injection drug use (46.5% vs. 2.3%), and less likely to be married (38.7% vs. 58.5), college-

educated (32.7% vs 56.4%), and obese (30.1% vs. 42.5%). Inclusion/exclusion criteria were also 

applied to the full set of potential HCV predictors. From the 4,134 covariates in the raw data, the 

preprocessing stage identified 1,099 (excluding prescriptions medications, which were handled 

separately) (see Table 3.2).  

 

As a next step, any feature that was not available for at least 50% of the 15,237 participants in 

the full cohort was excluded, resulting in 369 remaining covariates. After adding in indicator 

variables for the 17 prescription drug categories, a total of 386 potential predictors of HCV 

infection were identified. When the machine learning task was defined for Super Learner, 303 

features in the dataset had missing values that required imputation, resulting in the creation of 
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303 additional covariates to assess patterns of missingness. In total, 689 features were used by 

Super Learner for prediction of HCV infection. (Figure 3.2). 

 

Prediction Results 

Models for each individual algorithm described in the methods section were developed using the 

369 individual features, 17 prescription categories, and 303 imputed covariate flags. The Super 

Learner divided the 1,008 participants into 10 folds (with HCV-infected participants evenly 

distributed in each fold). Nine folds were used to build a model to predict HCV infection and 

then that model was tested on the left-out 10th fold. This process was repeated for each 

permutation of nine folds, with validation on the 10th fold, until a matrix was built with out-of-

sample predictions for every survey participant on every algorithm in the learner library. This 

matrix was then used to build an ensemble learner that consisted of a weighted convex 

combination of the predictions of the individual learners. (Figure 3.3) 

 

Prediction success was assessed by the ability to maximize AUC-PR. Again, the baseline for 

AUC-PR would be the prevalence of HCV in the sample, in this case 16.7%. Results from the 

individual learners and the ensemble learner are provided in Table 3.3. Non-parametric learners 

(ranger, dbarts, xgboost) generally outperformed parametric learners. Among the top four 

learners, three were decision-tree-based algorithms. AUC-PRs from the individual learners were 

very similar, ranging from 87.2% – 89. 9%. The fitted Super Learner achieved an AUC-PR of 

90.1%, exceeding the individual models. Each of the 11 learners was weighted equally at 0.0909 

to create the ensemble learner. Reasons for the identical contribution of each learner are unclear; 

however, it may be related to fact that individual learners performed similarly. 

 

The fitted Super Learner was then cross validated so that performance of the ensemble learner 

could be assessed on unseen data. This process adds an additional layer of cross validation to the 

Super Learner process, dividing the data into 10 folds, setting aside 10% of the data (a validation 

set), and then dividing the remaining 90% of the data into 10 folds and repeating the process 

described above to create a super learner. The resulting fitted super learner was assessed on 10% 

validation set. This process was repeated 10 times, leaving out a different 10% validation set 

each time, building a super learner on the remaining 90% of the data, then validating on the hold 

out sample. Results from the cross-validation of the super learner can also be found in Table 3.3. 

Note that XGBoost, ranger, and dbarts, the three non-parametric learners, performed best in the 

cross-validated super learner, all with an AUC-PR over 89%. The super learner outperformed 

individual learners, achieving an AUC-PR of 90.1% on unseen data. 

 

Once the super learner was built and cross-validated, it was used to predict a probability of HCV 

infection for each individual, first on the NHANES sample, (N = 1,008), then on the full dataset 

(N = 15,237). Additional performance metrics are presented in Table 3.4. In the NHANES 

sample, the final AUC-PR was 97.9%. To calculate recall (sensitivity) and precision (positive 

predictive value), a prediction threshold was chosen to optimize the F1 score. In the NHANES 

sample dataset, where the prevalence of HCV infection was 16.7%, a threshold of 38.2% was 

selected (a predicted probability of HCV infection  >= 38.2% was assumed to be HCV +). This 

threshold produced 94.4% precision and 98.9 % specificity at a recall level of 90.5%, meaning 

that, out of every 100 individuals classified as HCV+, 94 would be true positives, if the objective 

was to find at least 90.5% of HCV-infected individuals. 
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In the full data set, HCV infection was comparatively rare, with a prevalence of 1.1%. The fitted 

super learner produced a final AUC-PR of 52.0%. A stricter threshold of 0.854 was needed to 

optimize the F1 score, as the full dataset has far more true negatives. Precision recall graphs are 

presented in Figure 3.4. At this threshold, precision was 55.4% and specificity was 99.4% at a 

recall level of 61.3%, meaning that, out of every 100 individuals classified as HCV infected, 

over half (55) would be true positives, if the goal was to find at least 60% of people infected with 

HCV. (See Supplemental Figure S3.1 for AUC-PR graphs of individual learners) 

 

Variable importance 

Features that had the largest impact on AUC-PR were identified both as a difference and as a 

ratio. Figure 3.5 includes the 15 features with the most influence on AUCPR, calculated as a 

difference (AUCPR without the feature – AUCPR with the feature). Figure 3.6 shows the 15 

features with the greatest influence on AUCPR, calculated as a ratio (AUCPR without feature / 

AUCPR with feature). Overall, alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), and injection drug use were identified as the most important predictors of HCV infection 

by both difference and ratio measures. Age, albumin, globulin, and HBV infection status were 

also identified by both metrics as features highly predictive of HCV infection. Additional 

influential predictors included smoking-related features, features indicating risk factors for heart 

disease or stroke (triglycerides, total cholesterol, recommendations by a doctor to take low dose 

aspirin), and features related to oral health. 

 

 

3.5: Discussion 

Underdiagnosis of HCV infection is a substantial problem. Up to 80% of people globally and 

50% of people in the US who are infected with HCV are unaware of their infection. Untreated, 

HCV infection can become chronic and lead to severe long term health consequences, as well as 

being passed onto others through exposure to infected blood. To support the WHO goal of HCV 

elimination by 2030, the United States Preventative Services Task Force (USPSTF) updated 

guidelines to recommend one-time universal screening of all adults for HCV infection. While 

this change will undoubtedly identify additional individuals with HCV infection, it also will 

result in substantial resource utilization with a low yield, given the estimated 1-4% prevalence of 

HCV infection in the US adults. In addition, it is unclear whether or how quickly the new 

universal one-time screening guidance will be embraced.  

 

The goal of this study was to support accelerated identification of HCV-infected individuals by 

developing an infection prediction algorithm using annual survey data collected from a random 

sample of the US population and then identifying the characteristics that played the largest role 

in successful prediction. This list of characteristics could be used by public health agencies for 

education and community outreach, as well as to create additional avenues for identifying 

priority candidates for HCV screening. The use of ensemble learning provided the opportunity to 

predict HCV infection in NHANES participants with multiple robust approaches, both 

parametric and non-parametric, and to create the best combination of those methods to maximize 

prediction power.  
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Previous studies have successfully used machine learning methods with large datasets to advance 

identification and treatment of HCV infection. Haga et al. used machine learning methods for 

genomic analysis to identify individuals infected with HCV variants that were resistant to 

DAAs[117], while Doyle et al. used ensemble learning with administrative claims data to 

support earlier identification of HCV infected individuals [104]. We used an ensemble learning 

approach with cross-sectional national survey data to better understand the characteristics 

associated with HCV infection. 

 

To the best of our knowledge, this is the first study to use ensemble methods with NHANES data 

to predict HCV infection. No previously published studies of HCV infection have included these 

data, as the NHANES 2017-2018 results for HCV antibody and RNA testing have only recently 

become available. This combination of current data and innovative methods provides an 

opportunity to improve identification of the HCV-infected population in the US. Other strengths 

of this study include the fact that HCV antibody screening was performed on all NHANES MEC 

participants, without regard for identified risk factors or symptoms, enabling the prediction 

algorithm to include characteristics of HCV-infected individuals who may have evaded previous 

identification efforts. Additionally, no health insurance is required for NHANES participation, 

enabling the survey to include information about people who may not have consistent access to 

health care and who might, therefore, be at greater risk of having an undiagnosed HCV infection.  

 

The algorithm produced for this study showed a significant increase in precision in identifying 

HCV infection across all levels of recall, compared to universal screening, providing evidence 

that an algorithm produced with machine learning methods could make an important contribution 

to case identification. The stacked ensemble created by Super Learner achieved over 94% 

precision at 90% recall in the NHANES sample dataset of 1,008 participants, where universal 

screening would have achieved 16.7% precision at all levels of recall. In the full data set, the 

algorithm achieved over 50% precision at 61% recall, where universal screening would have 

achieved 1.1% precision at all levels of recall. In the full data set, precision begins to decline as 

recall extends beyond 60% (i.e. at higher levels of sensitivity). 

 

To identify an HCV-infected individual, connect that individual with treatment, and prevent the 

spread of the infection to others, it might be considered a reasonable tradeoff to have high recall 

and incur more false positives to maximize identification of true positives. Additionally, in the 

universal screening scenario, testing everyone reduces some of the stigma that may accompany 

HCV screening. However, many people find blood tests (which are necessary for HCV 

screening) stressful and unpleasant, and HCV screening still may not be prioritized in the 

minimal time allotted to physician-patient encounters in the US, particularly in situations with no 

obvious symptoms or risk factors present. If an algorithm can identify subtle relationships that go 

beyond obvious risk factors for HCV infection with a significantly higher degree of precision 

than would occur through universal screening, it may provide increased motivation to prioritize 

screening of the individuals identified. 

 

The 15 features in the NHANES dataset most predictive of HCV infection could be grouped into 

three categories: (1) known risk factors, (2) factors associated with the 1945-1965 birth cohort, 

and (3) a group of characteristics that don’t fall into the first two categories. The presence of 

known risk factors, including indicators of Group 1 such as ALT, AST, HBV infection, albumin 
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(a protein produced by the liver), globulin (abnormal levels can indicate infection), lymphocytes, 

and injection drug use, inspire confidence that the algorithm is working correctly to incorporate 

current knowledge to predict HCV infection. Group 2 characteristics, such as age, triglycerides, 

total cholesterol, and features related to cardiac health (including sagittal abdominal 

diameter[118]), could represent indicators associated with aging. Because the 1945 – 1965 birth 

cohort is now 56-76 years of age, it is conceivable that features in this category simply identify 

people in the birth cohort who are known to be at greater risk of HCV infection due to exposure 

to infected blood prior to HCV screening of blood products. The third group of highly influential 

characteristics includes some unexpected characteristics, including cigarette smoking, which 

could potentially be a proxy for other high-risk behaviors that people are less willing to 

acknowledge. Additionally, indicators of poor oral health appeared on the list of important 

features, including tooth count and tooth condition, which were not among the top 15 most 

influential predictors, but which still had an impact on the AUC-PR. Current research suggests 

an32ssociateion between oral health and HCV infection[119], including a known association of 

HCV infection with oral lichen planus[120]. The influence of these features (oral health and 

smoking) on prediction of HCV infection are an area for further research. 

 

Strengths and Limitations 

Strengths of this study include the use of a current, nationally representative dataset that includes 

uninsured people and testing for HCV RNA of all participants, regardless of risk factor profile. 

Additionally, the use of ensemble methods for prediction of HCV infection achieved optimal 

performance in the training sample by combining multiple approaches (parametric and non-

parametric) and using cross-validation to prevent over-fitting. 

 

This study also had several limitations that should be considered when evaluating its findings. 

 

Known limitations of NHANES data include the lack of inclusion of homeless persons, 

institutionalized populations (prisons, nursing homes, rehab facilities), and active military. Some 

of these unincluded groups are known to be at a higher risk of HCV than those in the general 

population[121, 122], and their omission may have had an impact on the list of characteristics 

identified by the prediction algorithm. Additional datasets should be identified to study the 

characteristics most predictive of HCV infection in these groups. Another limitation of the data 

involves the methods for capturing prescriptions. Studies have identified a trajectory from 

prescription opioid use to non-prescription opioid use through injection (which is a risk factor for 

HCV)[123]. NHANES reports on only those prescriptions that were taken in the 30 days prior to 

the household interview portion of the survey. It is likely that the 30-day window isn’t sufficient 

to identify prescriptions that may have led to opioid addiction, injection drug use, and potential 

HCV infection.  

 

We also excluded people under 20 years of age. Given the rising toll of the opioid epidemic in 

younger populations, there is evidence to suggest that searching for HCV infection in people 

under 20 may be important and fruitful[124]. 

 

As a cross-sectional study, there are inherent limitations to NHANES data, including: (1) 

difficulty establishing temporal ordering, (2) social desirability bias, and (3) non-response bias. 

NHANES data are collected in two encounters that are close in time (an interview and a physical 
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exam); therefore, it would be difficult to establish causal relationships between the various 

characteristics measured. As a result, this study focused on characteristics associated with HCV 

infection and did not attempt to draw conclusions about causality between these features and 

HCV infection. Additionally, NHANES tries to gather information about health-related 

conditions that may be sensitive or personal in nature. While an effort is made to create an 

environment that will result in honest responses, it is likely that some people were uncomfortable 

or unwilling to acknowledge or report behaviors that could be associated with an increased risk 

of HCV infection. Also important to consider is the impact of non-response bias. The NHANES 

survey involves time and effort, including agreeing to some modestly invasive testing (blood 

tests, physical exams). Participants are selected through a complex, multi-stage probability 

sampling design. In some cases, those selected do not complete both the interview and the exam 

or choose not to participate in certain portions of the exam. Differences between those who do 

and do not participate are unlikely to be completely random and could distort results.  

 

Use of machine learning methods to predict a rare event presents its own set of challenges. The 

design of many machine learning algorithms includes an assumption of class balance in the 

outcome of interest. In the 2013 – 2018 NHANES sample, the prevalence of HCV infection was 

1.1%. This degree of imbalance in individuals with and without the outcome could lead to poor 

performance in predicting the minority class because there are fewer examples from which the 

algorithm can learn and detect patterns. We attempted to address this problem by building our 

super learner algorithm with an unweighted case-control design that increased the concentration 

of HCV-infected individuals in the population sample, and then assessing performance with 

measures that emphasized positive case identification (i.e., using AUC-PR as opposed to 

AUROC, which rewards identification of true negatives). Finally, we report AUC-PR in both the 

case-control sample, and the full dataset with weights. In both cases, these measures improve 

precision over that which would result from universal testing at all levels of recall (sensitivity). 

 

3.6: Conclusion 

We developed a machine learning algorithm with a high level of precision to identify people 

with current HCV infection. Machine learning models excel at identifying complex relationships 

in high-dimensional data such as NHANES. A key contribution of this research was the 

identification of those features most influential for prediction of HCV infection. Expected 

findings included those related to measures of liver health (AST, ALT, HBV infection) and 

membership in the 1945 – 1965 birth cohort (age, triglycerides, sagittal abdominal diameter). 

Additional features that may merit further exploration included measures of primary and 

secondary cigarette smoke exposure and oral health.  

 

Next steps for this research involve using the method and data described here to build a super 

learner with a more targeted suite of characteristics (possibly those available from a standard 

visit to a primary care provider) to create a portable tool for use in healthcare settings to help 

prioritize candidates for HCV screening. We believe the use of robust methods such as Super 

Learner, coupled with data collected from routine health care visits, may lead to novel pathways 

for diagnosing HCV infection and connecting individuals with treatment. 
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3.7 Figures and Tables 

 

Figure 3.1 Flowchart of survey participant inclusion and exclusion criteria 
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Figure 3.2: Feature exclusion and engineering 
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Figure 3.3: Model building 
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Figure 3.4: Precision recall curves for NHANES sample dataset and full dataset 
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Figure 3.5: Top 15 influential features determined by the difference in area-under-the-

precision-recall-curves without feature compared to including feature 

 
 

 

 

 

Figure 3.6: Top 15 influential features determined by the ratio of area-under-the-precision-

recall-curve values without the feature compared to including the feature 

 
  



 39 

Table 3.1: Descriptive characteristics of NHANES sample (N= 1,008), stratified by HCV 

infection status 
 HCV-Uninfected 

N (%) 

HCV-Infected 

N (%) 

p-value 

N 840 (83.3) 168 (16.7)  

Age (years): Mean (SD) 50.1 (17.9) 56.7 (10.8) < 0.001 

Sex (% Male) 406 (48.3) 119 (70.8) < 0.001 

Race/Ethnicity   < 0.001 

     Non-Hispanic White 328 (39.0) 59 (35.1)  

     Hispanic 213 (25.4) 32 (19.0)  

     Non-Hispanic Black 174 (20.7) 64 (38.1)  

     Non-Hispanic Asian 96 (11.4) 5 (3.0)  

     Other including Multi-Racial 29 (3.5) 8 (4.8)  

College Educated 474 (56.4) 55 (32.7) < 0.001 

Married 491 (58.5) 65 (38.7) < 0.001 

Living at or below poverty level 165 (21.6) 76 (49.4) < 0.001 

HIV Positive 3 (0.5) 2 (2.2) 0.305 

Injection Drug Use 14 (2.3) 66 (46.5) < 0.001 

 

 

Table 3.2: Feature pre-processing 

Category 

Starting 

Covariate Count 

(including restricted) 

Publicly Released 

Covariates Available 

all Six Years 

Notes 

Demographic Features 52 16 (+4 admin) 
Removed administrative and/or 

redundant 

Examination 388 131 Aggregated dental variables 

Questionnaire 1407 + (907 meds) 822 Aggregation, Convert to binary 

Diet 910 - Diet variables omitted 

Laboratory 470 126 
Removed redundant values, 

comment codes 

Total 4,134 1,099 Total covariates included 

 

  



 40 
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Table 3.4: Performance Metrics on the NHANES Sample and on the Full Data Set 

Metric 
NHANES Sample 

(N=1,008) 

Full Data Set 

(N = 15,237) 

Baseline (HCV Prevalence) 0.167 0.011 

Prediction threshold to maximize F1* 0.382 0.854 

Max F1 score 0.924 0.582 

Precision 0.944 0.554 

Recall 0.905 0.613 

Accuracy 0.975 0.990 

Specificity 0.989 0.994 

AUC 0.995 0.989 

AUC-PR 0.979 0.520 
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3.8: Supplemental Material 
 

Supplemental Figure S3.1: Area under the precision recall curve graphs for individual 

learners on full data set (N = 15,237) 

 

 

Supplemental Figure 1 
AUC-PR for Individual Learners on Full Data Set (N=15,237) 

 
GLM (AUC-PR = 0.401)   BayesGLM (AUC-PR = 0.401)   
 

         
 
 
 

      Ranger (AUC-PR = 0.961)    XGBoost (AUC-PR = 0.840)  
  

     
 
 
 
   Ridge, alpha = 0 (AUC-PR = 0.426)   Lasso, alpha = 1 (AUC-PR = 0.414)   
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Elastic Net, alpha = 0.2 (AUC-PR = 0.421)  Elastic Net, alpha = 0.4 (AUC-PR = 0.417) 
 

   
 
 
 
     Elastic Net, alpha = 0.6 (AUC-PR = 0.416)       Elastic Net, alpha = 0.8 (AUC-PR = 0.415) 
     

                
 
 
 

     dbarts  (AUC-PR = 0.584) 
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Chapter 4: Predicting hepatitis C virus infection: use of Super Learner with data 

from the National Health and Nutrition Examination Survey to find individuals 

with undiagnosed HCV infection 

 
 

 

4.1: Abstract 

Hepatitis C virus (HCV) infection is a global health concern and the source of significant 

morbidity and mortality. Of the estimated 2.4 million individuals in the United States (US) 

infected with HCV, approximately half are unaware of their infection. Proactive case-finding is 

necessary to achieve the WHO sustainable development goal of viral hepatitis elimination by 

2030. To support this effort in the US, we used national survey data and machine learning 

methods to develop an HCV prediction algorithm to identify individuals with a high probability 

of HCV infection who should be prioritized for HCV screening. 

 

Super Learner (SL) is a loss-based ensemble learning method that uses cross-validation to 

estimate the performance of multiple machine learning models and creates an optimal weighted 

average of those models using test data performance. Our prediction algorithm was built using 

National Health and Nutrition Examination Survey (NHANES) data collected from 2013 – 2018 

and a diverse library of parametric and non-parametric classifiers and screening algorithms to 

optimize performance and model run time. NHANES was selected because it employs a 

multistage probability sampling design to select participants and includes universal testing for 

HCV RNA. Class imbalance is present in the dataset due to the low prevalence of HCV infection 

in the US population (1-2%). We addressed this issue by using synthetic minority over-sampling 

technique (SMOTE) with a random sample of controls from the full NHANES dataset and a 

meta-learner that maximizes area under the precision-recall curve (AUC-PR). Experts were 

consulted to identify an appropriate subset of NHANES features (independent variables such as 

laboratory measures that are commonly available in electronic medical records) to build the 

algorithm. In addition, a probability threshold was selected to maximize the F1 score (i.e. the 

harmonic mean of precision and recall). 

 

Using the fitted SL, the maximum F1 score 0.531 was achieved with a threshold value of 0.859, 

meaning any individual whose predicted probability of HCV infection was 85.9% or higher was 

classified as a positive case. At this threshold, the prediction algorithm achieved 21.8% precision 

and 86.3% recall, and an AUC-PR of 47.7%. These results can be interpreted to mean that for 

every 100 individuals flagged as HCV positive by this algorithm, approximately 21 individuals 

would be true positives, and more than 85% of individuals with HCV infection would be 

identified. AUC-PR is a score representing success at predicting positive cases, where no-skill 

would be the underlying prevalence of HCV in the data (in this case, 1.1%). The AUC-PR of 

47.7% represents a 43-fold improvement over baseline. When the fitted SL was applied to the 

full NHANES dataset from 2013 – 2018, including survey weights, precision was maintained 

close to 55% at recall levels up to 60%. 

 

An HCV infection prediction algorithm developed with machine learning methods and 

commonly available laboratory measures can support early identification of HCV infection by 
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flagging individuals with a high probability of infection to enable prioritized HCV screening. 

Earlier diagnoses will enable earlier clinical interventions and improved HCV outcomes. 

 

 
4.2: Introduction 

Hepatitis C virus (HCV) infection, a bloodborne infection that can cause inflammation and 

progressive scarring of the liver, is a significant public health concern worldwide. While 30% 

(15-45%) of people infected with HCV will spontaneously clear HCV in the first six months[10], 

for most the infection becomes chronic and is associated with long term hepatic and extrahepatic 

complications, including cirrhosis, liver failure, and hepatocellular carcinoma[125-128]. In 2015, 

approximately 71 million people worldwide and 2.4 million in the US were chronically infected 

with HCV, producing an estimated 400,000 deaths globally and 15,000 in the US due to HCV-

related sequelae. These estimates are considered conservative due to under-reporting and under-

diagnosis of HCV infection[57, 129, 130]. 

 

Historically, treatment of HCV infection involved administering weekly injections of interferon 

for up to 48 weeks. Interferon treatment provided only limited success in suppressing HCV 

infection and did not result in elimination of the virus, and at the same time was associated with 

important side effects in many patients[131, 132]. The 2013 approval of highly efficacious direct 

acting antiviral (DAA) treatment brought about a paradigm shift in treatment of HCV infection, 

transforming the landscape from one where HCV was managed to one where it could be 

effectively eliminated in most patients[15, 16]. However, HCV infection is generally 

asymptomatic until significant liver damage has occurred, presenting a major obstacle to 

diagnosis and treatment. Up to 90% of people globally and 50% of people in the US who are 

infected with HCV are unaware of the infection[18, 19, 102]. 

 

In 2015, the United Nations (UN) established 17 Sustainable Development Goals (SDGs). Key 

among these were the prioritization of health and well-being, with a specific target to eliminate 

viral hepatitis by 2030. In 2016, the World Health Assembly (WHA), the decision-making arm 

of the World Health Organization (WHO) comprised of health ministers from 194 member-

states, established goals that aligned with the SDGs by approving the Global Health Sector 

Strategy on Viral Hepatitis. The WHO hepatitis strategy aims to eliminate viral hepatitis by 

2030, with specific goals to diagnose 90% of those with HCV infection, reduce incidence by 

80% and reduce mortality by 65% [56]. 

 

Though the United States (US) has adopted one-time universal HCV screening for all adults 18-

79 years of age[98], the diagnosis and treatment milestones needed to achieve the WHO’s 2030 

global elimination goals are not being met. A recent study of progress toward HCV elimination 

in 45 countries found that, at the current rate of diagnosis and treatment, only 24% of countries 

were on target to achieve HCV elimination by 2030, and more than 50% of countries would not 

achieve elimination by 2050, including the US[64]. Further, these elimination estimates are 

likely optimistic, given the disruption to healthcare systems and outreach programs caused by the 

global Covid-19 pandemic. 

 

In light of slower-than-hoped-for progress in identifying and treating people with HCV infection 

in the US, strategies to proactively search for individuals infected with HCV are needed more 
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than ever. One approach to this problem involves the use of machine learning methods together 

with available healthcare datasets to predict HCV infection status and prioritize individuals for 

HCV screening.  

 

Machine learning methods are particularly well-suited to identifying complex, non-linear 

patterns in high dimensional data, such as the data captured in electronic medical records (EMR) 

and claims data.[104, 105] Studies comparing the prognostic abilities of machine learning 

methods to those of traditional models have found better predictive performance by the machine 

learning models, particularly when a greater number of predictors were used[133, 134]. 

 

We consulted with primary care physicians and experts on EMR data analytics to identify a set 

of laboratory values and demographic characteristics (“features”) that are reliably captured and 

documented during healthcare encounters. Features were selected based on the following criteria: 

• likely to be available with a high degree of completeness for most patients after an annual 

physical exam or encounter with a primary care provider 

• available in structured data (i.e. not from free-text fields, which pose analytic challenges). 

From these identified features, we used ensemble machine learning methods to build an HCV 

infection prediction algorithm that could be applied to a US EMR database to identify people at 

high risk for HCV infection who should be prioritized for HCV screening.  

 

Building a prediction algorithm using supervised learning requires the use of labeled data – that 

is, data in which the HCV infection status of the included individuals is known. With this in 

mind, we used information from the National Health and Nutrition Examination Survey 

(NHANES). NHANES is an annual survey that has been conducted in the US since the late 

1960s. It includes demographic characteristics and laboratory measures from a multi-stage 

randomly selected sample of participants in the un-institutionalized and housed US population. 

All participants in NHANES are tested for HCV RNA and a full suite of additional laboratory 

measures, regardless of observable risk factors. 

 

The objective of this study was to use ensemble machine learning methods to develop an HCV 

infection prediction algorithm that can be applied to electronic health records to identify 

individuals at high risk for HCV infection and prioritize them for screening. Using the three most 

recent cycles of NHANES (2013 – 2018), we identified the demographic and laboratory 

information that would likely be available and complete in an EMR dataset. With these data and 

a diverse suite of prediction algorithms, we created a model with 10-fold cross validation to 

predict HCV infection. This model was assessed by calculating the area under the precision 

recall curve (AUC-PR), a metric that is preferred when the outcome of interest is rare (< 10% of 

the total population) because it focuses on the correct identification of positive cases. 

 

 

4.3: Methods 

Data Source 

The National Center for Health Statistics (NCHS) is a branch of the US Centers for Disease 

Control and Prevention (CDC), whose mission is to collect data and disseminate statistical 

findings to inform public health decision-making. One of the major programs of the NCHS is the 

NHANES, an annual survey conducted with the intention of taking a snapshot of the nation’s 
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health. NHANES was established in the 1960s, and has collected data continuously since 1999, 

gathering health and nutrition measurements from individuals randomly selected using a 

complex multi-stage sampling design in 15 US counties each year.  

 

An initial interview is conducted at the participant’s home to gather demographic, diet, and 

socioeconomic information, as well as a medical history. The second part of the survey includes 

a physical examination at a mobile examination center (MEC), where blood, urine, and other 

biological specimens are collected and processed. All laboratory values and demographic 

information collected by NHANES were considered for inclusion in this analysis. 

 

NCHS Research Ethics Review Board (ERB) approval to conduct NHANES was obtained for 

data collected from 2013-2016 under a continuation of protocol #2011-17. Approval for data 

collection in 2017-2018 was approved under protocol #2018-01. All NHANES data are de-

identified and publicly available on the NCHS and USDA websites. As such, this study was 

exempt from institutional review board/ethics review board oversight[135]. 

 

Study Cohort 

The overarching goal of this study was to develop a tool to identify individuals who have a high 

probability of infection with HCV so they can be prioritized for screening. Given the changing 

demographic features of the HCV-infected population, driven in part by the current opioid 

epidemic, it was determined that the most effective prediction algorithm would be built using 

contemporary demographic and medical records. To this end, cohort inclusion was restricted to 

participants in the three most recent NHANES cycles: 2013-2014, 2015-2016, and 2017-2018.  

In addition, participants were retained in the study cohort only if they met all the following 

inclusion criteria: 

• completed the medical examination portion of the survey  

• 20 years of age or older 

• HCV ribonucleic acid (RNA) test result available 

Participation in the medical examination was required for inclusion because laboratory 

specimens were collected during this portion of the survey.  Many laboratory measurements, 

however, were collected only for NHANES participants 20 years of age and older, so 

participants younger than 20 years were excluded from the current study. Last, because this study 

employed supervised learning methods to identify patterns of characteristics associated with 

HCV infection status, labeled training data (i.e. data where HCV RNA status is known) were 

necessary. As a result, only NHANES participants with non-missing HCV RNA measurements 

were included. 

 

Feature Selection 

Patient information available in an EMR has both structured and unstructured elements. 

Structured data are stored and organized in a consistent and predictable format that minimizes 

the amount of pre-processing necessary for sorting, combining, and analyzing. Unstructured data 

can appear in a variety of formats and generally require significant cleaning and interpretation to 

achieve an analyzable structure. In this study, we chose to build the best possible HCV infection 

prediction algorithm from data that would be available in a structured format in an EMR data set 

to minimize researcher assumptions and simplify study replication in NHANES and other data 
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sets. To this end, we have included only quantitative laboratory measures and minimal 

demographic features in our analytic data set. 

 

The dependent (predicted) variable in this analysis is a binary flag indicating HCV RNA status 

for each participant. NHANES uses a nucleic acid amplification test (the COBAS 

AmpliPrep/COBAS TaqMan HCV Test) to assess HCV RNA from a blood sample[136]. 

NHANES participants who did not have a result for this test were excluded. The independent 

variables (aka predictors or features) were selected from the full list of demographic and 

laboratory data present across all three NHANES cycles from 2013 – 2018. Any predictor in 

NHANES with missing values for ≥ 50% of participants was excluded. We consulted with 

subject matter experts and EMR data analysts to identify the predictors from those remaining that 

would be captured as quantitative (structured) measures from a physical or primary care 

appointment with a high degree of completeness and reliability in EMR data. 

 

Sampling Method 

Many machine learning algorithms used for binary classification have been designed with the 

assumption that the data on which the classifier is built contain relatively equal numbers of cases 

and non-cases. Given that only approximately 1% of NHANES participants test positive for 

HCV RNA, this assumption does not hold and could result in a model that does a poor job 

recognizing the minority class (HCV RNA positive). No universal solution has been developed 

to address prediction with class imbalance. However, a variety of different approaches have been 

devised to improve prediction performance, with the best solution being dependent on the 

specifics of the data used to train the model. 

 

We considered several sampling approaches and selected the one which consistently yielded the 

highest cross-validated AUC-PR. The approaches investigated included: 

1) Use of the full dataset: Data from all available participants were used to build the 

prediction algorithm. The prevalence of HCV positive individuals in this dataset was 

1.1%. 

2) Case-Control Sampling: Data from all participants who tested positive for HCV RNA 

were included to build the prediction algorithm, along with a randomly selected subset of 

individuals who tested negative for HCV RNA (5 “non-cases” for every “case”). As a 

result, the prevalence of individuals with HCV infection was now 16.7%. 

3) Synthetic Minority Over-Sampling Technique (SMOTE): In this sampling method, the 

minority class (those with HCV infection) was augmented to establish equal prevalence 

(50%) in the dataset, enabling improved performance from the machine learning 

algorithms. Oversampling of the minority class was achieved through the creation of 

synthetic data generated by randomly choosing points on the lines that connected rare 

observations to a user-specified number of nearest neighbors in feature space, rather than 

simply sampling rare cases with replacement[137].  

4) Random Over-Sampling Examples (ROSE): To create balance in the classes of the 

dependent variable, the minority class was oversampled through the creation of synthetic 

data generated based on the conditional density of the underlying data and the majority 

class was under-sampled through a process of random selection to create an appropriate-

sized subset[138]. 
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Statistical Analysis 

We used the ensemble learning algorithm Super Learner[139] (SL) with 10-fold cross-validation 

to build our predictor. Ensemble learning considers a user-specified library of candidate 

prediction algorithms with a process called stacking (individual algorithms are trained 

simultaneously, allowing for comparing and combining) and creates a weighted combination 

from the output of the individual learners that minimizes the cross-validated empirical risk 

associated with the user-specified loss function. We employed screening algorithms with each 

learner to optimize performance and model run time. Screening algorithms filter out features that 

aren’t significantly contributing to successful prediction prior to the building of the final model. 

 

A diverse library of parametric and non-parametric algorithms was selected to maximize the 

predictive power of the final model. Parametric learners are faster, require less information, and 

perform well with simple prediction problems, whereas the non-parametric learners have greater 

flexibility to identify complex relationships and don’t fall prey to misspecification: 

 

Parametric Learners 

• Generalized linear model (glm): GLM fits a standard generalized linear model 

• Bayesglm: Bayesglm is an alternative to GLM that uses student-t prior distributions for 

the coefficients to produce more stable estimates. In a model with many features, 

especially those with low variance, the use of priors can significantly reduce efficiency. 

Bayesglm uses a modified expectation-maximization algorithm to fit the model[108, 

109]. 

• Glmnet: Glmnet estimates a regularized generalized linear model. Penalty options include 

the range from l1 (Least Absolute Shrinkage and Selection Operator; LASSO), which can 

shrink the slope of unhelpful coefficients to 0, effectively removing them from the model, 

to l2 (ridge), which keeps all features but shrinks their slopes to close to 0, and mixtures 

of LASSO and ridge (elastic net). The mixture is established by a specified alpha () that 

ranges from 0 (ridge) to 1 (LASSO)[110]. We used glmnet learners with alphas ranging 

from = [0, 0.2, 0.4, 0.6, 0.8, 1]. 

Non-Parametric Learners: 

• Extreme gradient boosting (xgboost)[111]: Xgboost uses gradient boosted decision 

trees and is optimized for speed and model performance. Boosting builds models in a 

sequential manner and uses a loss function and weights to focus on the most 

challenging cases (sequentially higher weights are given to misclassifications for 

subsequent iterations).  The number of fitting iterations was set to 500, and the number 

of early stopping rounds was set to 50. Early stopping, a way to avoid over-fitting, is 

used when the loss on the validation set starts to increase. 

• Discrete Bayesian additive regression tree sample (dbarts)[112]: Dbarts is a Bayesian 

tree ensemble method that uses individual trees as base learners. Each tree is 

constrained by a prior to be a weak learner. This learner is flexible and requires 

minimal assumptions. 

Ranger: Random forest (an ensemble method using decision trees and bagging) is 

optimized for high dimensional data[113]. Ranger builds on random forest by allowing 

the user to choose a mode for calculating variable importance, the contribution a 

specific feature makes to prediction. Importance criterion “impurity” was used 
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(impurity measurement uses the Gini index[114] for classification that is the probability 

that a randomly selected feature is classified incorrectly).  

 

Meta-learning refers to the process of learning from the output of the individual learners and 

combining that output with a specified goal. We defined a metalearner with nonlinear 

optimization via augmented lagrange and selected an evaluation function that maximized area 

AUC-PR. This type of metalearner has been shown to outperform metalearners specified with 

other loss functions, as well as outperforming individual machine learning algorithms[140]. 

 

The initial fit for the Super Learner was performed using 10-fold cross validation. The data were 

divided into ten folds, each with 10% of the NHANES participants – stratified so each fold 

contained equal numbers of individuals with HCV infection, with no duplication. Each 

individual learner was trained on nine folds, then validated on the 10th fold, which was unseen 

during model training. This process was repeated, holding out a different fold each time until 

every individual in the dataset had an HCV prediction for all individual learners based on an 

algorithm that was not trained with their data. The final fitted Super Learner was the product of a 

weighted combination of the HCV infection predictions from the individual learners. 

 

Performance of the fitted Super Learner was assessed on unseen data by again using 10-fold 

cross validation (recreating the Super Learner on 90% of the data, validating on a 10% holdout 

sample, and repeating the process ten times, leaving out a different 10% sample each time). The 

final fitted Super Learner was deployed to predict HCV infection status on the full NHANES 

dataset, using NHANES-supplied weights to accurately represent the US population surveyed 

during the six-year period (2013 – 2018). 

 

Performance Metrics 

 

Performance characteristics for individual learners and for the Super Learner were assessed by 

AUC-PR and the F1-score.  

 

The precision-recall curve is made up of precision on the y-axis and recall on the x-axis and 

shows their relationship at all possible prediction thresholds. Precision, also known as positive 

predictive value (PPV) is defined as the proportion of successfully identified positive cases (TP) 

among the total number of successfully predicted positives (TP and false positives; FP). Recall, 

also known as sensitivity, is defined as the proportion of TP among the total population of 

positive cases (TP and false negatives; FN). 

 

Precision: 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  Recall:  

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 

 

The AUC-PR provides a way to quantify successful prediction of positive cases. This metric is 

desirable when the outcome of interest is rare because it doesn’t reward successful prediction of 

the true negatives that make up the majority of the data. 

 

The geometric interpretation of the precision recall curve is the expected precision when 

uniformly varying the recall. Limitations of precision-recall curves include 

• lack of universal baseline  
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• uninterpretable region on the lower right side of the graph  

• lack of calibration [115] 

 

Precision and recall can be assessed through the F-score (F combines precision and recall into 

one metric and is more useful than accuracy when you have class imbalance), where, when  𝛽 = 

1, F is the harmonic mean of precision and recall[116]. The value of 𝛽 determines the tradeoff 

between precision and recall. When 𝛽 > 1, recall is given greater weight; when  𝛽 < 1, precision 

receives more weight. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒

𝑇𝑟𝑢𝑒 + 𝐹𝑎𝑙𝑠𝑒
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 

𝐹𝛽 = (1 + 𝛽2) ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The baseline in a precision recall curve is equivalent to the true prevalence of the outcome at all 

values of recall (forming a horizontal line). At maximum sensitivity, all samples are predicted to 

be cases. 

 

 

4.4: Results 

Descriptive Analysis 

Participants in the three most recent NHANES cycles from 2013 – 2018 (n = 29,400) were 

evaluated for inclusion in this study. Among them, 1,339 did not complete the medical 

examination portion of the survey. Of the remaining 28,061participants, 11,734 were under 20 

years of age, and 1,090 did not have a recorded measurement for HCV RNA. After excluding 

those groups,15,237 individuals remained in the cohort (Figure 4.1), with an HCV RNA 

positivity prevalence of 1.1% (n = 168).  

 

Demographic and key laboratory values associated with HCV infection status are provided in 

Table 4.1. In the unweighted NHANES cohort, individuals who tested positive for HCV RNA 

were older (mean age 56.7 years; standard deviation (SD) 10.8), and more likely to be male, born 

in the United States (US), living below the poverty level, and coinfected with hepatitis B virus 

(HBV) and human immunodeficiency virus (HIV), whereas people who tested negative were 

younger (mean age 50 years; SD 17.7) and more likely to be college educated and married. 

 

Of the 126 laboratory measures and 22 demographic characteristics available in NHANES from 

2013 – 2018, 82 were excluded due to poor availability in EMR data. Sixteen demographic 

features that would not be reliably captured in structured fields were also excluded. Among the 

49 remaining features, none had missing values for ≥ 50% of NHANES participants, so no 

additional features were excluded; however, missing values were imputed in 40 of the 49 

features. The final dataset used by Super Learner included 49 features and 40 indicator variables 

with missingness flags for each variable that contained missing values requiring imputation 

(Figure 4.2). 
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Four sampling approaches were evaluated when building the HCV infection prediction 

algorithm. The SMOTE sampling method yielded the highest cross-validated AUC-PR. Results 

from all sampling methods are available in Supplemental Table S4.1. With SMOTE, laboratory 

results and demographic characteristics from the 168 individuals who tested positive for HCV 

RNA were used to generate synthetic data representing 15,042 HCV infected “cases” (Figure 

4.1). These synthetic HCV positive cases balance out the 15,069 individuals who tested negative 

for HCV RNA, which gives the model equal opportunity to learn about patterns of HCV 

positivity.  

 

Prediction Results: 

HCV infection prediction results for the eleven individual learners and for the final Super 

Learner are presented in Table 4.2. Employing a dataset with 89 features (49 discrete predictors 

and 40 indicator variables for missing values in specific predictors) and using augmentation of 

the minority class (individuals with HCV infection) via SMOTE to produce 15,042 synthetic 

cases of HCV infection to accompany the 15,069 individuals without HCV RNA present, the 

individual learners and the Super Learner achieved almost perfect discrimination in identifying 

individuals with and without HCV infection. A diagram of the model building process is 

presented in Figure 4.3. Performance for each learner was evaluated based on its ability to 

maximize AUC-PR. Using this metric, scores ranged from 0.9984 (standard error (SE) 0.0004) 

for both glm and Bayesglm up to 1.0000 (SE 0.0000) for ranger.  

 

Non-parametric learners (dbarts, xgboost, and ranger) outperformed the parametric learners in 

both the initial fit of the Super Learner (with 10-fold cross validation) and in the cross-validation 

of the Super Learner itself (again with 10-fold cross validation). The Super Learner also 

outperformed the parametric learners with an AUC-PR of 0.9995. The ensemble learner is a 

combination of equally weighted (0.0909) individual learners. Reasons for the identical 

contribution of each learner are unclear; however, it may be related to fact that individual 

learners performed similarly. 

 

The final fitted Super Learner was deployed on the unweighted, SMOTE-augmented dataset 

(HCV = 15,042; non-HCV = 15,069) and then on the full, weighted NHANES dataset (HCV = 

168, non-HCV = 15.069) to predict HCV infection. Performance metrics evaluating HCV 

infection prediction success are presented in Table 4.3.  

 

In the unweighted, SMOTE-augmented dataset, the prevalence of HCV infection was 

approximately 50%. To identify the probability threshold that maximized the F1 score, values 

from 0.001 to 0.999 were tested. A maximum F1 values of 0.976 was achieved with a threshold 

of 0.513, meaning that any individual with the probability of HCV infection at or above 51.3% 

was flagged as a positive case. With this threshold, the prediction algorithm achieved 99.4% 

precision at 50.8% recall and an AUC-PR of 99.1%.  

 

In the weighted full NHANES dataset, the prevalence of HCV infection was approximately 

1.1%. Using the fitted Super Learner, the maximum F1 score of 0.531 was achieved with a 

threshold value of 0.859, meaning any individual whose predicted probability of HCV infection 

was 85.9% or higher was classified as a positive case. At this threshold, the prediction algorithm 

achieved 21.8% precision and 86.3% recall, and an AUC-PR of 47.7%, a 43-fold improvement 
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over baseline.  These results can be interpreted to mean that for every 100 individuals flagged as 

HCV positive by this algorithm, approximately 21 individuals would be true positives, and more 

than 85% of individuals with HCV infection would be identified.  

 

Precision-recall curves for the SMOTE-augmented Super Learner and for the full weighted 

NHANES Super Learner are presented in Figure 4.4. Using the dataset on which the Super 

Learner was trained, precision remained at 99% for almost all levels of recall. When the Super 

Learner was applied to the full NHANES dataset from 2013 – 2018, including survey weights, 

precision was maintained close to 55% at recall levels up to 60%. For example, at 20% recall, for 

every 100 patients flagged by the algorithm, approximately 60 would be true positives, and at 

50% recall, for every 100 patients flagged by the algorithm, 50 would be true positives. As recall 

goes above 60%, the decline in precision becomes more pronounced. 

 

 

4.5: Discussion 

Achieving the WHO’s goal to eliminate viral hepatitis by 2030 will require a multi-pronged 

approach, and HCV prediction algorithms can play a crucial role in efficiently identifying the 

target population for screening. Globally, WHO estimates that only one out of every 10 people 

infected with HCV are aware of their infection[56]. In this study, we demonstrated that machine 

learning methods can be employed to improve the identification of individuals with HCV 

infection, as compared to relying exclusively on one-time universal HCV screening. The use of 

rich data sources, such as national health survey data and medical records/claims data, coupled 

with sophisticated tools like Super Learner, can optimize screening resources by prioritizing  

individuals who have a high likelihood of being infected with HCV. Diagnosing and treating as 

many HCV-infected individuals as possible will both reduce sequelae of HCV and prevent 

transmission from infected individuals to others.  

 

In this study, the Super Learner algorithm trained on SMOTE-augmented data achieved almost 

perfect discrimination in out-of-sample prediction. The analytic data set included every 

NHANES participant in the cohort who tested negative for HCV RNA and synthetic data 

representing a relatively equal number of HCV positive NHANES participants. Augmenting the 

data to include equal representation for people with and without HCV helps to avoid prediction 

bias toward the better-represented class[141]. Prediction performance from the algorithm built 

with the SMOTE-augmented data significantly outperformed the algorithms developed on the 

full NHANES dataset and on a case-control subset of the data, which included all 168 

individuals with HCV infection and a random 5:1 sample of individuals without HCV infection 

(Supplemental Table 1). A second minority class oversampling technique, ROSE, was also tested 

and achieved perfect discrimination in out-of-sample prediction, but it performed no better than 

baseline (HCV positivity prevalence) when deployed on the full NHANES weighted dataset. 

Reasons for this poor performance are unclear. 

 

The AUC-PR of the prediction algorithm described here (46.1%) demonstrates a 42-fold 

improvement over the AUC-PR associated with universal screening (equivalent to a population 

prevalence of HCV infection of 1.1%). There is an inverse relationship between precision and 

recall, meaning as recall is increased, precision will decrease. When graphed together, the slope 

of the relationship between these two measures is not necessarily constant. The precision of the 
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Super Learner created with the SMOTE dataset remained relatively constant for recall levels up 

to 60%, and then declines steeply as recall increases above that. Different thresholds can be 

considered in the prediction algorithm, depending on tolerance for false positive predictions 

weighed against identifying as many individuals with HCV infection as possible. At maximum 

recall, the algorithm worked no better than universal screening. 

 

Previous studies have employed machine learning to support the identification of individuals 

with HCV infection. In one study, Doyle et al. demonstrated that ensemble learning methods can 

help diagnose individuals with HCV infection earlier [104]. Using longitudinal administrative 

claims data, their findings suggest that patients with an HCV diagnosis or evidence of treatment 

had claims for HCV-related symptoms up to two to three years prior to the presence of HCV 

diagnosis codes or HCV treatment dispensing codes. A recent study by Orooji et al. described 

the design of an HCV infection prediction algorithm using machine learning in a dataset with 

significant class imbalance. They reported that performance measures for their algorithm were 

improved when they used over- and under-sampling techniques to create balance[142]. Our 

results confirmed these findings by successfully leveraging the oversampling technique to create 

class balance and by using ensemble learning methods to improve HCV infection identification 

over universal screening. Our findings also advance efforts to identify the HCV-infected 

population by training the prediction algorithm on a large US population-based random sample 

of individuals with known HCV infection status.  

 

Strengths and Limitations 

This study combines six years of contemporary survey data, including the most recent results of 

2017-2018 NHANES. To our knowledge, no published study of HCV prediction has utilized 

these data. NHANES reflects one of the most up-to-date and thorough snapshots of the health of 

non-institutionalized and housed US residents. 

 

Another strength of our study is the focus on structured data for prediction. Data available in free 

text fields present a unique analytic challenge in terms of abstraction and aggregation. 

Misspellings, difficulty in interpreting handwriting in scanned documents, differences in naming 

and abbreviation conventions, and transcription errors create significant challenges for 

consistently capturing and interpreting medical information. Structured data, such as numeric 

results from laboratory tests, require less pre-processing and are easier to reliably aggregate and 

analyze than data extracted from free-text fields.  

 

A major strength of the NHANES dataset is that HCV status is determined for all who participate 

in the examination portion of the survey. In claims and EMR data, the cohort of individuals who 

do not have an HCV diagnosis includes two types of people – people who have HCV infection 

but have not been diagnosed, and people who do not have HCV infection. Unfortunately, the 

comingling of these two populations adds significant noise to the development of a classification 

algorithm and could potentially perpetuate the underdiagnosis of HCV infection. In NHANES 

data, the non-HCV cohort contains only individuals who have tested negative for HCV RNA. As 

a result, a classification algorithm that learns from NHANES data will be able to identify 

patterns associated with individuals who are truly HCV RNA negative, rather than from the 

combination of true negatives and undiagnosed positives. 
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The cross-sectional study design of NHANES presents a limitation for the portability of the 

prediction algorithm. Deploying this HCV infection prediction algorithm in longitudinal data, 

such as EMR or claims data, will require decisions about how to handle laboratory findings that 

occur at different points in time. In addition, NHANES data include most laboratory values for 

every participant; however, EMR and claims data will likely have data sparsity which may limit 

the number of individuals who have sufficient data to receive an HCV infection classification.  

 

Next Steps 

The longterm goal of the work described herein is to develop a successful HCV infection 

prediction algorithm that can identify high priority screening candidates and contribute 

meaningfully to the WHO goal of HCV elimination by 2030. Our algorithm has been validated 

on de-identified, cross-sectional data where the HCV infection status of included individuals was 

already known. Next steps will include partnering with a health care system to pilot the 

algorithm on EMR data to identify high risk candidates for HCV infection. Ideally those patients 

flagged by the algorithm will be screened for HCV, to determine the real-world success of this 

prediction algorithm.  

 

4.6: Conclusion 

As demonstrated in our analysis, an HCV infection prediction algorithm developed with 

machine learning methods and commonly available laboratory measures can support early 

identification of HCV-infected individuals. Earlier diagnoses will enable earlier interventions 

and improved HCV outcomes. As healthcare systems adopt expanded HCV screening 

recommendations, this type of prediction algorithm can be used to focus resources on the 

population most likely to benefit. 
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4.7: Figures and Tables 

 

Figure 4.1: Flowchart of survey participant inclusion and exclusion criteria 
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Figure 4.2: Feature engineering 
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Figure 4.3: Model building 
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Figure 4.4: Precision recall results for SMOTE dataset and full weighted NHANES dataset 
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Table 4.1: Descriptive characteristics of NHANES 2013 – 2018 cohort stratified by HCV 

infection status 
 HCV-uninfected 

N (%) 

HCV-infected 

N (%) 
p-value 

N 15,069 (98.9) 168 (1.1)  

Demographic characteristics 

Age in years: mean (SD) 50.0 (17.7) 56.7 (10.8) < 0.001 

Male sex 7,175 (47.6) 119 (70.8) < 0.001 

Race/Ethnicity   < 0.001 

     Non-Hispanic White 5,666 (37.6) 59 (35.1)  

     Hispanic 3,861 (25.6) 32 (19.0)  

     Non-Hispanic Black 3,116 (20.7) 64 (38.1)  

     Non-Hispanic Asian 1,848 (12.3) 5 (3.0)  

     Other including multi-racial 578 (3.8) 8 (4.8) < 0.001 

Married 9,055 (60.1) 65 (38.7) < 0.001 

College educated 8,411 (55.9) 55 (32.7) < 0.001 

Living at or below poverty level 2,842 (21.0) 76 (49.4) < 0.001 

US born 10,330 (68.6) 148 (88.1) < 0.001 

Important laboratory measures 

Presence of hepatitis B core antibody 1,171 (7.8) 68 (40.5) < 0.001 

HIV positive 48 (0.5) 2 (2.2) 0.12 

Globulin (g/L): mean (SD) 29.3 (4.5) 34.6 (6.5) < 0.001 

Albumin (ug/mL): mean (SD) 48.4 (328.0) 152.0 (621.7) < 0.001 

AST (IU/L): mean (SD) 24.1 (15.9) 53.9 (35.8) < 0.001 

ALT (IU/L): mean (SD) 23.9 (17.2) 54.81 (40.6) < 0.001 
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Table 4.3: Performance metrics on unweighted synthetic minority oversampling technique-

augmented dataset and full weighted NHANES dataset 

Metric 

Unweighted 

SMOTE-augmented 

HCV=15,042 

non-HCV =15,069 

Weighted 

full data set 

HCV = 168 

non-HCV = 15,069 

Baseline (HCV prevalence) 0.500 0.011 

Prediction threshold to maximize F1* 0.513 0.859 

Maximum F1 score 0.976 0.531 

Precision 1.000 0.218 

Recall 0.508 0.863 

Accuracy 0.753 0.964 

Specificity 0.997 0.966 

AUC 0.994 0.985 

AUC-PR 0.991 0.477 

* Threshold values from 0.001 to 0.999 were tested to see which value maximized the F1 score.  

 

 

4.8: Supplemental Material 

 

Supplemental Table S4.1: Area under the precision recall curve for all sampling methods 

Sampling method SMOTE* ROSE** Case control Full dataset 

Sampling method 

description 

up-sample cases 

(synthetic data), 

all non-cases  

up-sample cases 

(synthetic data), 

down-sample 

non-cases 

all cases, 

random selection 

of non-cases 5:1 

all cases,  

all non-cases 

HCV prevalence 50.0% 50.0% 16.7% 1.1% 

HCV-infected count,  

HCV-uninfected count 

case: 15,042 

non-case: 15,069 

case: 7,687 

non-case: 7,550 

case: 168 

non-case: 840 

cases: 168 

non-cases: 15,069 

AUC-PR:  

Initial SL Fit 
0.9995 1.0000 0.8395 0.4075 

AUC-PR:  

Cross-validation 
0.9995 1.0000 0.8424 0.4183 

AUC-PR:  

Full data prediction 
0.4609 0.0141 0.3651 0.6550 

Abbreviations: SMOTE,  synthetic minority oversampling technique; ROSE, random over-sampling examples, 

AUC-PR, area under the precision recall curve. 
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Chapter 5: Conclusion 

 
In the United States, an estimated 50% of individuals infected with HCV are undiagnosed. 

Examining known risk factors highlights the fact that HCV infection is common in populations 

that often have limited access to both treatment and preventative measures that could reduce the 

risk of infection and reinfection. The WHO has challenged public health agencies to prioritize 

HCV elimination by 2030 with ambitious targets, including diagnosing 90% of individuals 

infected with HCV and treating 80% of the treatment-eligible population to achieve an 80% 

reduction in the incidence of HCV infection, and a 65% reduction in liver-related deaths[143]. 

To achieve these goals in the US, it is critical that policies include outreach to populations that 

traditionally experience obstacles in accessing healthcare.  

 

As we strive to identify the HCV-infected population in the US and connect them with treatment, 

education, and strategies to avoid reinfection, there is an urgent need to explore new avenues and 

develop new tools to address the persistent gap in diagnosis. A review by Razavi et al. examining 

the timing of HCV elimination reports the alarming finding that the majority of high income 

countries are not making progress on elimination targets, with 30 out of 45 countries expected to 

be at least 20 years late in achieving the 2030 elimination goal[144]. In addition, a study by 

Hoenigl et al. reported a greater than 30% drop in HCV testing and treatment in the US at the 

start of the Covid-19 pandemic and found that treatment rates had not yet recovered from this 

decline[145]. A modeling study by Blach et al. estimated that each year of delay in the 

elimination of HCV could result in at least 44,000 additional liver cancers and more than 77,000 

additional deaths globally[146]. 

 

This dissertation described the known landscape of HCV infection in the US and suggests tools 

and strategies for closing the gap in diagnosis. Chapter two summarized conditions under which 

the prevalence of HCV infection is elevated in the US. Knowledge of high-risk behaviors and 

conditions provides the opportunity to design policies and programs that directly target these 

groups.  

 

The third chapter described the use of ensemble learning methods to identify characteristics in 

NHANES data that were most influential in predicting HCV infection. Because all NHANES 

medical examination participants were tested for HCV RNA, these data provide an opportunity 

to learn about individuals who were unknowingly infected with HCV. Features identified by the 

Super Learner algorithm as highly predictive of HCV infection included known factors, such as 

ALT and AST levels, and injection drug use, but also included less obvious characteristics, such 

as those related to cardiovascular disease, smoking, and poor dental health. 

 

The fourth chapter described an analysis that used a subset of the NHANES data – specifically 

laboratory values and basic demographic information likely to be available in electronic medical 

records – to build an HCV infection prediction algorithm that could be used to prioritize 

candidates for HCV screening. The AUC-PR of the developed prediction algorithm (46.1%) 

represented a 42-fold improvement of the AUC-PR associated with universal screening (1.1%), 

suggesting that prediction algorithms such as this one could be used to optimize screening 

resources and increase diagnoses of HCV infection. Earlier diagnoses will enable earlier clinical 

interventions, resulting in improved outcomes. 
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Research has indicated that the existing approaches to identifying and treating individuals 

infected with HCV in the US are unlikely to be sufficient to achieve the WHO hepatitis 

elimination targets by 2030, and the result will be the continuation of preventable morbidity and 

mortality. It is necessary to increase the priority of the US hepatitis response and to  

take advantage of novel approaches and technologies, such as those described in this dissertation. 
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