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SUMMARY

Smad4 is a major tumor suppressor currently
thought to function constitutively in the transforming
growth factor b (TGF-b)-signaling pathway. Here,
we report that Smad4 activity is directly regulated
by the Wnt and fibroblast growth factor (FGF) path-
ways through GSK3 and mitogen-activated protein
kinase (MAPK) phosphorylation sites. FGF acti-
vates MAPK, which primes three sequential GSK3
phosphorylations that generate a Wnt-regulated
phosphodegron bound by the ubiquitin E3 ligase
b-TrCP. In the presence of FGF, Wnt potentiates
TGF-b signaling by preventing Smad4 GSK3 phos-
phorylations that inhibit a transcriptional activation
domain located in the linker region. When MAPK
is not activated, the Wnt and TGF-b signaling path-
ways remain insulated from each other. In Xenopus
embryos, these Smad4 phosphorylations regulate
germ-layer specification and Spemann organizer for-
mation. The results show that three major signaling
pathways critical in development and cancer are
integrated at the level of Smad4.

INTRODUCTION

Smad4, also known as deleted in pancreatic carcinoma 4

(DPC4), is amajor tumor suppressor gene that constrains cancer

growth. Pancreatic, colorectal, and prostate carcinomas prolif-

erate rapidly and progress toward metastases when Smad4

function is lost (Levy and Hill, 2006; Ding et al., 2011; Massagué,

2012). Transforming growth factor b (TGF-b) receptors signal by

phosphorylating carboxy-terminal serines of the transcription

factors Smad1/5/8 (for bone morphogenetic proteins [BMPs])

or Smad2/3 (for TGF-b/activin). These receptor-activated Smads

(R-Smads) then undergo a second set of phosphorylations in the

linker region via activation of tyrosine kinase receptors such as

those for fibroblast growth factor (FGF) and epidermal growth

factor (EGF) (Kretzschmar et al., 1997; Pera et al., 2003; Sapkota

et al., 2007; Fuentealba et al., 2007; Millet et al., 2009) or through

nuclear CDK8 and CDK9 (Alarcón et al., 2009; Gao et al., 2009;

Aragón et al., 2011). These prime phosphorylations by glycogen

synthase kinase-3 (GSK3) that target R-Smads for proteasomal

degradation (Fuentealba et al., 2007; Sapkota et al., 2007). The

transcription factor Smad4 functions as a co-Smad that binds

to R-Smads and has been considered a constitutively active

component of the pathway (Massagué, 2012).

The Wnt pathway is activated in the early stages of many

tumors, and its transcriptional effects are mediated by the sta-

bilization of b-catenin (Clevers and Nusse, 2012). Canonical

Wnt signaling causes the sequestration of cytosolic GSK3,

axin, and Dishevelled in multivesicular bodies (Taelman et al.,

2010; Vinyoles et al., 2014). In addition to b-catenin, other pro-

teins may be regulated by Wnt signaling through the decrease in

GSK3 phosphorylations that are normally recognized as phos-

phodegrons to be polyubiquitinated and degraded in the pro-

teasome (Kim et al., 2009; Taelman et al., 2010; Vinyoles

et al., 2014; Acebron et al., 2014). GSK3 is a kinase that prefers

prephosphorylated substrates, introducing phosphorylations

on Ser or Thr residues located four amino acids upstream

(S/TxxxS/T[PO3]; Cohen and Frame, 2001). During a bio-

informatic screen of the human proteome, we noticed that

Smad4 contains three putative GSK3 phosphorylation sites

primed by a mitogen-activated protein kinase (MAPK) site

(PxTP; Taelman et al., 2010).

Here, we report that Smad4 activity depends on tyrosine

kinase/MAPK- and Wnt/GSK3-regulated phosphorylations,

revealing a node of signaling integration between these two

main oncogenic pathways and the TGF-b tumor suppressor

signal. We show that, when cells received an FGF signal, phos-

phorylation of the MAPK site promoted Smad4 peak transcrip-

tional activity before priming inhibitory GSK3 phosphorylations.

Smad4 phosphorylation by GSK3 created a phosphodegron

that led to its subsequent polyubiquitination and degradation

by the E3-ligase b-TrCP. In the presence of Wnt, Smad4 GSK3

phosphorylations were inhibited and the TGF-b signal was pro-

longed, particularly at low levels of TGF-b ligands. Replacing

Smad4 with a GSK3-resistant mutant showed that the crosstalk

between TGF-b and Wnt is mediated by Smad4. This molecular

mechanism, in which Wnt and MAPK activation enhance anti-

proliferative TGF-b signals, may help understand the role of

Smad4 as a barrier to tumor progression. In the context of the

Xenopus embryo, we found that replacing endogenous Smad4

with a GSK3 phosphorylation-resistant mutant converted the
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entire ectoderm into mesoderm and expanded Spemann orga-

nizer formation, indicating that the growth-factor-regulated

Smad4 phosphorylations play an important role in animal

development.

RESULTS

Wnt and FGF Regulate Phosphorylation of Smad4 Linker
Region
The putative regulatory sites consisted of four threonines located

in the linker (middle) region of Smad4 (Figure 1A). To determine

whether Smad4 was phosphorylated by GSK3, we generated

an antibody raised against phospho-threonines 273 and 269

(pSmad4GSK3 Ab). Because the priming site was a canonical

MAPK/Erk site (PxTP), we treated 3T3 fibroblasts with FGF2

and found that a single band of endogenous pSmad4GSK3 anti-

gen was increased (Figure 1B, lanes 1 and 2). The pSmad4GSK3

signal was blocked by treatment with the MEK-specific inhibitor

U0126, demonstrating a requirement for Erk/MAPK downstream

of FGF stimulation (Figure 1B, lane 3). FGF-induced pSmad4GSK3

phosphorylation was inhibited by preincubation with Wnt3a pro-

tein (Figure 1C, lanes 2 and 3) and blocked by the GSK3 inhibitor

BIO (Figure 1C, lane 4). The specificity of the antibody was

confirmed by Smad4 small interfering RNA (siRNA) depletion

and phosphatase treatment (Figure S1).

To determine the number of sites that were phosphorylated,

we separated proteins from untransfected 3T3 cells in polyacryl-

Figure 1. The Smad4 Linker Region Is

Phosphorylated by GSK3

(A) Smad4 contains MAPK (blue) and GSK3 (red)

phosphorylation sites in its linker region.

(B) Endogenous FGF-induced pSmad4GSK3

phosphorylation requires Erk activity in serum-

depleted NIH 3T3 cells stimulated with FGF2 for

1 hr.

(C) Endogenous pSmad4GSK3 antigen is induced

by a 1 hr FGF2 treatment, inhibited by pre-

incubation withWnt3a for 5 hr, and blocked by the

GSK3 inhibitor BIO.

(D–F) Mn2+-Phos-tag analysis of endogenous

Smad4 in NIH 3T3 cells cultured in the absence of

serum.

(G) Diagrams of Smad4 constructs encoding

Smad4 wild-type (Smad4-WT) or phosphoryla-

tion-resistant mutants (Thr to Val) for MAPK

(Smad4-MM) and GSK3 (Smad4-GM) sites.

(H) GSK3 phosphorylations require an intact

MAPK site in transfected 3T3 cells.

See also Figure S1.

amide SDS gels containing the phos-

phate-binding compound Mn2+-Phos-

tag (Kinoshita et al., 2006). In the

absence of serum, a single band was

detected by a Smad4 monoclonal anti-

body, whereas upon addition of FGF,

four additional bands were displayed

(Figure 1D, lanes 1 and 2). The three

slower migrating bands were also posi-

tive for pSmad4GSK3 antibody (Figure 1E). GSK3 inhibition by

LiCl resulted in the accumulation of the monophosphorylated

form, whereas treatment with U0126 eliminated all Smad4 phos-

phorylations (Figure 1F, lanes 3 and 4). Studies with transfected

phosphorylation-resistant MAPK or GSK3 mutants (designated

as Smad4-MM and Smad4-GM, respectively, Figure 1G)

showed that the priming site (threonine 277) was required for

GSK3 phosphorylations (Figure 1H). Taken together, these re-

sults demonstrate that Smad4 is regulated by sequential phos-

phorylations as proposed in Figure 1A.

Wnt/GSK3 Regulates the Polyubiquitination and
Degradation of Smad4
Polyubiquitination of R-Smads is controlled by linker phosphor-

ylations (Sapkota et al., 2007; Fuentealba et al., 2007; Gao et al.,

2009), prompting us to investigate the effects of GSK3 phos-

phorylations on Smad4 stability. HaCaT keratinocytes (which

respond well to TGF-b and siRNA transfection, but not to

FGF) were treated with a 20 min pulse of EGF and found

that pSmad4GSK3 was degraded over a period of 4 hr (Fig-

ure 2A). Proteasomal inhibition by MG-132 greatly stabilized

the phosphorylated form of Smad4 (Figure 2A), indicating that

pSmad4GSK3 was preferentially degraded by the proteasome.

Immunoprecipitation studies showed that endogenous Smad4

polyubiquitination was increased by FGF treatment and required

GSK3 activity (Figures 2B and S2C), as well as intact phosphor-

ylation sites for GSK3 and MAPK (Figure 2C).
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Because GSK3 is a Wnt-regulated kinase, we asked whether

the Wnt growth factor could regulate Smad4 stability. In cyclo-

heximide time course experiments, endogenous Smad4 was

stabilized by addition of Wnt3a or of the GSK3 inhibitor LiCl

but only in FGF-treated 3T3 cells (Figures 2D and 2D’). Xenopus

animal caps explants microinjected with Flag-tagged Smad4

mRNAs were also used to study the degradation of Smad4;

because mRNAs were injected, any differences in protein levels

should be posttranscriptional. In Xenopus ectodermal explants,

a potent and sustained activation of the MAPK/Erk pathway is

achieved by cell dissociation (Kuroda et al., 2005). We found

that, in dissociated animal cap cells, diphospho Erk was

Figure 2. Wnt-Regulated GSK3 Phosphorylations Control Smad4 Polyubiquitination and Degradation

(A) Time course of pSmad4GSK3 phosphorylation primed by a 20 min pulse of EGF in HaCaT cells, showing that the proteasome inhibitor MG-132 preferentially

prolongs the half-life of pSmad4GSK3.

(B) Endogenous Smad4 polyubiquitination is increased by FGF and requires GSK3 activity (in the presence of the proteasome inhibitor MG132). Before

immunoprecipitation with monoclonal Smad4 antibody, 0.2% SDS was added, samples heated at 95�C for 10 min to break protein-protein interactions, and

diluted 10-fold with RIPA buffer to ensure that the polyubiquitinated bands detected were not ubiquitinated Smad4-interacting proteins (Zhu et al., 1999). For 5%

input loading, see Figure S2A. Ip, immunoprecipitation; wb, western blotting.

(C) Smad4 polyubiquitination requires intact MAPK and GSK3 sites; Flag-Smad4 or its phosphorylation-resistant mutants were cotransfected with HA-ubiquitin

into FGF-treated HEK293 cells and immunoprecipitated (Zhu et al., 1999) with anti-Flag antibodies. For 5% input loading, see Figure S2B.

(D) Wnt3a or LiCl treatment extended the half-life of endogenous Smad4 exclusively in FGF-treated 3T3 cells. Note that, in the absence of FGF, Smad4 has a

longer half-life. Similar results were obtained in two independent experiments.

(D’) Quantification of western results shown in (D).

(E) Smad4 protein is stabilized by microinjection of xWnt8 mRNA in Xenopus-dissociated animal cap cells. In dissociated cells, dpErk is activated, causing

increased pSmad4GSK3 and Flag-Smad4 degradation (lane 6). Both GSK3 phosphorylation and Flag-Smad4 degradation were blocked by coinjection of Wnt8

mRNA (lane 7). Smad4 degradation in microinjected embryos required intact GSK3 phosphorylation sites and was blocked by the Erk pathway inhibitor U0126

(40 mM). Cells were harvested at stage 10.5, early gastrula.

See also Figure S2.
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activated, the Smad4 GSK3 sites were strongly phosphorylated,

and, importantly, Flag-Smad4 was degraded (Figure 2E, lane 6).

The phosphorylation by GSK3 and the degradation of Smad4

were dependent on MAPK/Erk activity as they were blocked by

U0126 treatment (Figure 2E, lane 10). Coinjection of Wnt8

mRNA inhibited Smad4 phosphorylation by GSK3 and pre-

vented Flag-Smad4-wild-type (WT) degradation (Figure 2E,

compare lanes 6 and 7). Importantly, the GSK3 phosphoryla-

tion-resistant Smad4 mutant (Flag-Smad4-GM) was insensitive

to stabilization by Wnt8 (Figures 2E, S2D, and S2D’).

Taken together, these experiments show that linker phosphor-

ylations regulated by FGF/MAPK and Wnt/GSK3 control Smad4

polyubiquitination and degradation.

Wnt/GSK3 Regulates a Smad4 b-TrCP Phosphodegron
We next analyzed the molecular mechanism by which Smad4

phosphorylations regulated its polyubiquitination. Smad4 prote-

olysis is mediated by interaction with the F-box E3 ubiquitin

ligase b-TrCP but was not previously known to be regulated by

growth factor signaling (Wan et al., 2004, 2005; Yang et al.,

2006). Because b-TrCP recognizes phosphodegrons (Fuchs

et al., 2004), we investigated whether its binding to Smad4

was regulated rather than constitutive. Immunoprecipitation

studies with endogenous proteins showed that b-TrCP bound

preferentially to Smad4 in the presence of FGF and that Wnt3a

treatment prevented this interaction in untransfected 3T3 cells

(Figure 3A, lanes 3 and 4). We also found that intact GSK3 phos-

phorylation sites in Smad4 were essential for the FGF-induced

binding of b-TrCP to Smad4 (Figure 3B, lanes 3 and 5). Finally,

a dominant-negative form of b-TrCP (DN-b-TrCP lacking the

F-box domain; Orian et al., 2000) inhibited the polyubiquitination

of Smad4 induced by RasG12V (Figure 3C).

To test whether b-TrCP was the E3 ligase responsible for

pSmad4GSK3 degradation, we depleted HaCaT cells of b-TrCP

Figure 3. The Wnt-Regulated Smad4 GSK3 Phosphodegron Is Bound by the Ubiquitin E3-Ligase b-TrCP and Targeted for Degradation

(A) Endogenous binding between Smad4 and b-TrCP is increased by FGF and blocked by Wnt3a treatment. Immunoprecipitation of endogenous Smad4 from

untransfected 3T3 cells using a Smad4 monoclonal antibody bound to protein A/G agarose beads; 5% loading of initial lysate is shown in Figure S3B.

(B) FGF-induced binding between Smad4 and b-TrCP requires intact GSK3 phosphorylation sites in transfected 293 cells. Flag-tagged Smad4-WT bound HA-

tagged b-TrCP in the presence of FGF, but phosphorylation-resistant Smad4-GM was unable to coprecipitate with b-TrCP; 5% loading is shown in Figure S3C.

(C) Smad4 polyubiquitination induced by the oncogenic RasG12V protein is mediated by b-TrCP; 5% loading is shown in Figure S3D.

(D) b-TrCP depletion with siRNA prolongs the half-life of pSmad4GSK3 induced by a 20 min pulse of EGF in HaCaT cells.

(E) Transfection of DN-b-TrCP significantly increased TGF-b signaling in Smad4�/� MB-468 cells transfected with hSmad4-WT. DN-b-TrCP had no significant

effect in Smad4-GM-expressing MB-468 cells. Note that b-TrCP limits TGF-b signaling and that this requires the Smad4 GSK3 phosphorylation sites.

(F) Diagram of the proposed Smad4 phosphodegron recognition by b-TrCP.

See also Figure S3.
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with an siRNA that targets both b-TrCP1 and b-TrCP2 (Guarda-

vaccaro et al., 2003). GSK3 phosphorylation of Smad4

was primed by a 20 min pulse of EGF, and we found that

b-TrCP depletion strongly stabilized the pSmad4GSK3 form (Fig-

ure 3D). Finally, in a functional reporter gene assay, DN-b-TrCP

increased responsiveness to TGF-b, and this effect required

intact Smad4 GSK3 sites (Figure 3E).

Taken together, these experiments indicate that MAPK and

GSK3 trigger the formation of a phosphodegron bound by the

E3 ligase b-TrCP, causing the polyubiquitination of Smad4 as

indicated in the model in Figure 3F.

Wnt and TGF-b Signaling Crosstalk via Smad4
A central question is whether the TGF-b, FGF, and Wnt

signaling pathways are insulated from each other or integrated

via the Smad4 phosphorylation sites. To address this, human

embryonic kidney 293 (HEK293) cells were transfected with

the TGF-b-specific reporter CAGA12-luciferase (Dennler et al.,

1998) and treated with or without Wnt3a. TGF-b signaling was

unaffected by Wnt3a (Figure 4A, bars 2 and 4), as expected if

the two pathways were distinct and insulated from each other.

However, addition of FGF2 reduced TGF-b signaling by two

thirds (Figure 4A, bar 6), presumably by priming inhibitory

GSK3 phosphorylations. Importantly, in the presence of FGF2,

Wnt3a was able to stimulate TGF-b signaling, reaching signaling

levels higher than those of TGF-b alone (Figure 4A, see brackets).

Wnt also potentiated expression levels of the endogenous

TGF-b target genes PAI-1 and Smad7 in HepG2 cells (Figures

4B, S4A, and S4B), and the stimulation of TGF-b signaling by

Wnt was mimicked by the GSK3 inhibitor LiCl (Figures S4C

and S4D). A DN-Tcf3 construct (Molenaar et al., 1996) did not

affect the crosstalk between TGF-b, FGF, and Wnt3a, indicating

that this mechanism is independent of Tcf3/b-catenin-mediated

transcription (Figure S4E). We note that the stimulation of TGF-b

signaling byWnt was not observed in confluent cell cultures (Fig-

ure S4F), as is the case with other TGF-b effects (Varelas et al.,

2010).

In addition, a BMP reporter gene (BRE-Luc; Korchynskyi and

ten Dijke, 2002) was also regulated by Wnt in the presence of

FGF (Figures S4G and S4H), indicating that the Smad4 regulato-

ry mechanism described here applies to both the TGF-b and

BMP branches of the pathway. These experiments showed

that Wnt enhances TGF-b signaling but only when MAPK/Erk is

activated by FGF.

We then investigated the extent to which the observed cross-

talk between TGF-b and Wnt signaling was mediated by the

linker GSK3 phosphorylations in Smad4. The receptor-regulated

Smad2/3 contains linker SP sites as well as an unprimed GSK3

site in the DNA-binding domain of Smad3 (Guo et al., 2008; Millet

et al., 2009, Abushahba et al., 2012). To assess specifically the

role of Smad4, we used mammary carcinoma MDA MB-468

cells, which lack endogenous Smad4 and TGF-b responsiveness

(de Caestecker et al., 2000). Transfection of Smad4-WT restored

TGF-b signaling, which was potentiated by Wnt in the presence

of EGF (Figure 4C, bars 5 and 6). However, when cells were

transfected with the GSK3 phosphorylation-resistant Smad4-

GM, TGF-b caused a strong signal but lost all regulation by

Wnt3a (Figure 4C, bars 8 and 9). Because replacing Smad4 by

a GSK3-insensitive mutant eliminated Wnt potentiation, we

conclude that the observed crosstalk between TGF-b and

Wnt is mediated through the GSK3 phosphorylation sites of

Smad4 and not by other components of the signal transduction

pathway.

The potent stimulatory effect of Wnt on TGF-b signaling was

concentration dependent and best revealed in 293 cultured cells

treated with FGF and variable amounts of TGF-b (Figure 4D).

When the same data were displayed as shown in Figure 4E, it

was observed that, in the absence of Wnt3a (and presence of

FGF), 100 ng/ml TGF-b was required for a 240-fold induction

of CAGA12-Luc, whereas in the presence of Wnt3a, only 1 ng/

ml TGF-b was sufficient to reach a similar transcriptional

activation.

We also examined how Wnt affected the time course of

the TGF-b transcriptional response (Figure 4F). HaCaT cells

were treated with a 15 min pulse of 1 ng/ml TGF-b, which was

terminated by adding 2 mM of the type I TGF-b receptor inhibitor

SB-431542 (Halder et al., 2005). Analyses of transcripts for

the TGF-b target gene PAI-1 showed that Wnt significantly pro-

longed the TGF-b transcriptional response (Figure 4F).

From these functional experiments, we conclude that,

although TGF-b and Wnt signaling are insulated in the absence

of FGF, activation of the MAPK pathway causes a robust cross-

talk in which canonical Wnt enhances and prolongs signaling

by low, presumably the most physiologically relevant, levels of

TGF-b ligands.

The Smad4 Linker Contains a Growth-Factor-Regulated
Transcriptional Activation Domain
A short region of the linker has been identified as a Smad4 acti-

vation domain (SAD) (de Caestecker et al., 2000). This 48-amino-

acid sequence binds the transcriptional coactivator p300/CBP

and contains the MAPK site, but not the GSK3 sites. We asked

if a construct containing the entire linker domain (169 amino

acids) could be regulated by FGF and Wnt. The Smad4 linker

region was fused to the yeast Gal4 DNA-binding domain

(Gal4DBD) (Figure 5A) and used in transcriptional assays with

an upstream activating sequence (UAS)-Gal4-luciferase reporter

gene (de Caestecker et al., 2000). The linker region of Smad4

was both required and sufficient to drive transcriptional activity

in a TGF-b-independent way (Figures S5A and S5B). Interest-

ingly, the activity of the transcription activation domain con-

tained in the linker region was repressed by FGF and significantly

increased by Wnt3a (Figure 5B, bars 2–4). When the GSK3 sites

were mutated (Gal4DBD-S4linker-GM), Wnt lacked any signifi-

cant effect (Figure 5B, bars 6 and 7). Surprisingly, FGF stimulated

the transcriptional activity of the S4linker-GM construct instead

of inhibiting it (Figures 5B, bars 5 and 6), indicating that MAPK

phosphorylation has a positive effect on the Smad4 transcription

factor (in the absence of GSK3 phosphorylations). In agreement

with this, mutation of theMAPK-priming site (Gal4DBD-S4linker-

MM) had very low levels of transcriptional activity (Figure 5B,

bars 8–10).

An important feature of the Gal4DBD-S4linker constructs is

that their stability was not affected by FGF or Wnt treatment

(Figure 5C). In RasG12V-transfected cells, Gal4DBD-S4linker-

WT was heavily phosphorylated by GSK3, but not degraded
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(Figure 5D). In the same cells, endogenous Smad4 was destabi-

lized by the sustained Ras activation, and its steady-state levels

were restored by a dominant-negative form of GSK3 (Figure 5D,

lanes 3 and 4). Because the stability of the Gal4-DBD construct

was unchanged by phosphorylation of the linker sites, the induc-

tion of the UAS-luciferase reporter allowed the measurement of

transcriptional responses independently of changes in protein

stability.

Figure 4. Wnt and TGF-b Signaling Crosstalk via Smad4 GSK3 Phosphorylations

(A) TGF-b CAGA12-Luc reporter gene assays in 293 cells showing that Wnt potentiated TGF-b signaling but only in the presence of FGF (brackets).

(B) The endogenous TGF-b target gene PAI-1 was similarly regulated 3 hr after addition of TGF-b and FGF (HepG2 cells).

(C) TGF-b signaling was restored in MDA-MB-468 (Smad4�/�) cells by Smad4-WT. Note that Wnt3a regulation was lost when Smad4-WT was replaced by the

GSK3 phosphorylation-resistant mutant Smad4-GM.

(D) TGF-b concentration dependence of CAGA12-Luc expression in FGF2-treated 293 cells.

(E) Same data as in (D) displayed as curves, showing that Wnt3a is a very potent activator at low concentrations of TGF-b ligand.

(F) Time course analysis of the TGF-b transcriptional response after terminating 15 min of a pulse of a low amount of TGF-b with SB-431542. The induction of

PAI-1 transcripts was prolonged by Wnt3a treatment (in EGF-treated HaCaT cells).

See also Figure S4.

6 Cell Reports 9, 1–13, October 23, 2014 ª2014 The Authors

Please cite this article in press as: Demagny et al., The Tumor Suppressor Smad4/DPC4 Is Regulated by Phosphorylations that Integrate FGF, Wnt,
and TGF-b Signaling, Cell Reports (2014), http://dx.doi.org/10.1016/j.celrep.2014.09.020



These results indicate that MAPK and GSK3 phosphorylations

regulate the activity of a transcriptional activation domain

located in the Smad4 linker region (Figure 5E). The phosphoryla-

tion of Smad4 linker region byMAPK and GSK3 initially regulates

its transcriptional activation domain and then facilitates its

degradation via the E3-ligase b-TrCP.

Phosphorylation by MAPK/Erk Promotes Smad4 Peak
Activity
To further investigate the function of the MAPK phosphorylation

site, we constructed a series of Smad4 mutants mimicking

different combinations of signaling events (Figure 6A). The

MAPK/Erk site (PxTP) located at position 277 was known to be

important for Smad4 nuclear translocation in response to TGF-

b treatment (Roelen et al., 2003). Using EGF-stimulated MDA

MB-468 Smad4�/� cells, we found that a MAPK phosphoryla-

tion-resistant mutant (Smad4-MM) had lower levels of TGF-b

Figure 5. The Smad4 Linker Domain Con-

tains a Growth-Factor-Regulated Tran-

scriptional Activation Domain

(A) Diagram of the yeast Gal4 DNA-binding

domain (Gal4DBD) fused to Smad4 linker region

and of the phosphorylation-resistant mutants

used to test transcriptional activation.

(B) UAS-Gal4-luciferase reporter gene assays in

293 cells showing that the linker transcriptional

activation domain was regulated by FGF andWnt.

(C) Western blot showing that Gal4DBD-S4linker

protein levels remained unchanged by FGF and

Wnt treatment despite the differences observed in

transcriptional activity.

(D) Gal4DBD-S4linker was heavily phosphory-

lated by GSK3 when cotransfected with activated

RasG12V, but its stability is not affected. In

contrast, endogenous Smad4was destabilized by

the sustained MAPK activation driven by Ras, and

this required GSK3 activity.

(E) Model of Smad4 transcriptional activity regu-

lation by FGF and Wnt via the linker phosphory-

lation sites and binding of an as-yet-unknown

coactivator.

See also Figure S5.

signaling (Figure 6B, compare bars 4–6).

Smad4GM-MM, which differs by a single

amino acid (T277V) from Smad4-GM,

also had reduced activity (Figure 6B,

bars 8 and 10). These experiments indi-

cated that Thr 277 phosphorylation is

required for Smad4 peak activity.

In the absence of priming by EGF stim-

ulation, the crosstalk between TGF-b and

Wnt3a was not observed in Smad4WT

transfected MB-468 cells (Figure 6C,

compare bars 5 and 6). However, when

a phospho-mimetic amino acid was

introduced (T277D) at the MAPK site

(MAPK phospho-activated, Smad4-MA),

the enhancement of TGF-b signaling by

Wnt was restored (Figure 6C, compare bars 8 and 9). Wnt was

without effect when the GSK3 sites were also mutated

(Smad4GM-MA construct; Figure 6C, bars 11 and 12).

A similar requirement for the Smad4 MAPK site was found in

theXenopus embryo using an assay inwhich a low dose of b-cat-

enin mRNA (20 pg) was injected into a ventral blastomere to

induce partial secondary axes (Figure 6D). These axes were

blocked by coinjection of Smad4 antisense morpholinos (MOs)

(Dupont et al., 2009) but restored by hSmad4-WTmRNA (Figures

6E and 6F). Smad4-GM induced complete secondary axes with

heads, and this required a functional or phospho-mimetic 277

site (Figures 6G–6J and S6).

From these experiments, and others shown in this study, we

conclude that Smad4 phosphorylation at Thr 277 has a dual

function. First, it allows Smad4 to reach peak transcriptional ac-

tivity. Second, it primes Smad4 for GSK3 phosphorylations that

cause transcriptional inhibition and generate a phosphodegron
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that serves as a docking site for the ubiquitin E3 ligase b-TrCP.

Thus, both the activity and the stability of Smad4 are regulated

by FGF/EGF and Wnt.

Smad4 Regulation by GSK3 Determines Germ-Layer
Specification
The earlyXenopus embryo provides an excellent system to study

cell signaling. Using embryos depleted of endogenous Smad4

with MOs, we found that hSmad4-WT mRNA rescued expres-

sion of xBrachyury (a Nodal/TGF-bmesodermal target), whereas

the same amount of GSK3-resistant Smad4-GM showed a great

increase in signaling (Figures 7A–7D). The replacement of

endogenous Smad4 by Smad4-GM mRNA caused the entire

embryonic ectoderm to become mesoderm (Figure 7D). This

indicated that inhibition of Smad4 by GSK3 plays a crucial role

in allowing ectodermal differentiation in vivo.

Smad4-GM also caused a strong increase in Spemann orga-

nizer tissue marked by chordin mRNA in embryos depleted of

endogenous Smad4 (Figures 7E–7H). This suggested that

GSK3 activity may normally limit the size of the organizer through

Smad4. In Xenopus, Spemann organizer formation requires the

combined action of the maternal Wnt/b-catenin pathway and

Figure 6. Phosphorylation of Threonine 277 Is Required for Smad4 Peak Activity

(A) Schematic diagrams of Smad4 phospho-resistant and phospho-mimetic mutants.

(B) Phosphorylation of theMAPK site (Thr 277) was required for Smad4maximal activity in the presence of EGF in Smad4�/� cells. Brackets indicate that Smad4-

MM had decreased activity in the TGF-b pathway. The TGF-b receptor inhibitor SB-431542 (2 mM) was added in the indicated lanes to block autocrine TGF-b

derived from MDA-MB-468 cells; for results in the absence of SB-431542, see Figure S6B.

(C) In the absence of an EGF signal, mutation of the MAPK-priming site into a phospho-mimetic residue (T277D, Smad4-MA) restored the crosstalk betweenWnt

and TGF-b in transfected Smad4�/� cells. Note also that Wnt potentiation of TGF-b signaling required functional Smad4 GSK3 sites.

(D) Twenty picograms of b-catenin mRNA injected ventrally at the four-cell stage is sufficient to induce a partial duplicated axis lacking head structures.

(E) Formation of b-catenin secondary axes required Smad4.

(F) Partial axes were rescued by 125 pg of hSmad4-WT mRNA coinjected together with b-catenin mRNA and Smad4 MOs.

(G) The same amount of mRNA encoding hSmad4-GM induced complete axis with eyes and cement gland (see arrow).

(H) In this assay, 125 pg of hSmad4GM-MM mRNA in which the MAPK site was mutated (T277V) was completely inactive. Note that this construct differs from

Smad4-GM by a single amino acid. This suggests that Smad4 activity requires an intact MAPK phosphorylation site in Xenopus embryos.

(I) hSmad4GM-MA in which the MAPK site was mutated into a phospho-mimetic aspartic acid induced the strongest complete axes, indicating a positive role for

the PxTP site.

(J) Quantification of the embryos microinjection results using the dorso-anterior index (DAI) (Kao et al., 1986) to measure the completeness of secondary axes;

similar results were obtained in three independent experiments.

See also Figure S6.
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of an early zygotic Nodal signal (Labbé et al., 2000; Reid et al.,

2012) as indicated in Figure 7I.

To test whether Wnt can directly regulate Smad4 through its

GSK3 sites in the embryo, we developed a sensitive synthetic

Smad4-luciferase reporter derived from the mouse chordin pro-

moter, described in Figure S7. Smad4-depleted embryos were

coinjected with the reporter and Smad4-WT or Smad4-GM, an-

imal cap cells dissociated, and treated with activin protein (Fig-

ure 7J). Microinjected Wnt8mRNA potentiated activin signaling,

and this Wnt8 effect had a complete requirement for the GSK3

sites in Smad4 (Figure 7J, brackets). Because the Smad4 re-

porter gene does not respond to Wnt or Siamois (Figure S7E),

this result shows that the enhanced sensitivity to activin caused

by Wnt is mediated, at least in part, through the GSK3 phos-

phorylation sites in Smad4. In the Xenopus early blastula,

Figure 7. Smad4 Regulation by GSK3/Wnt

Is Involved in Germ-Layer Specification

and Organizer Formation in Xenopus

(A–D) Endogenous Smad4 replacement by

Smad4-GM, showing that GSK3 phosphorylation

was required for ectodermal specification in

Xenopus. The mesodermal marker xBrachyury

was greatly expanded when Smad4 GSK3 phos-

phorylations were prevented.

(E–H) The Spemann organizer gene chordin is

expanded by Smad4-GM injection.

(I) Diagram showing how maternal Wnt and zy-

gotic Nodal/TGF-b signals converge in early

Xenopus embryo patterning. GSK3 is proposed to

inhibit Nodal/Smad4 activity.

(J) In dissociated Xenopus animal cap cells,

xWnt8 mRNA potentiates signaling by 5 ng/ml

activin through the Smad4 GSK3 phosphorylation

sites. This experiment used a novel Smad4-lucif-

erase reporter designed for Xenopus assays and

shows that Wnt modifies the competence of cells

to activin induction through Smad4. Cells were

harvested when sibling embryos reached early

gastrula (stage 10.5).

(K) Three signaling pathways—Wnt, FGF, and

Nodal—converge on the dorsal side of the Xen-

opus embryo (stippled line) during Spemann

organizer formation.

See also Figure S7.

three signaling pathways—Wnt/b-cate-

nin, Nodal/pSmad2, and FGF/MAPK—

have been shown to be activated in the

dorsal region (Schohl and Fagotto,

2002). The convergence of these three

signals by the molecular mechanism

identified here helps explain the peak

Smad4 activity required for Spemann

organizer induction (Figure 7K).

DISCUSSION

The experiments reported here show

that Smad4, long thought to act as a

constitutively active component of the

TGF-b andBMPpathways, is strongly regulated by growth factor

signaling through phosphorylation sites in its linker region. We

found that Smad4 is phosphorylated by GSK3 in response to

FGF. GSK3 phosphorylations have a double effect on Smad4.

First, they inhibit a transcription activation domain located in

the linker domain. Second, they generate a Wnt-regulated phos-

phodegron recognized by the E3 ligase b-TrCP. The molecular

mechanism discovered here provides a means of integrating

distinct pathways, which would otherwise remain insulated, al-

lowing cells to sense FGF and Wnt inputs and adapt TGF-b

outcome to their context.

Smad4 Activity Is Regulated by Growth Factors
Although the TGF-b pathway has been extensively studied for

more than two decades, many efforts have focused on R-Smads
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regulation and less is known about Smad4. In this study, we

show that four phosphorylation sites located in the linker region

of Smad4 control its activity and stability in response to growth

factor stimulation. GSK3 phosphorylation is triggered by FGF

or EGF through activation of the Erk pathway. Phosphorylation

by growth factors via MAPK at Thr 277 allows Smad4 to reach

its peak of activity while priming it for subsequent inhibitory

GSK3 phosphorylations. The switch operated by GSK3 phos-

phorylation provides a way of controlling the duration of the

Smad4 signal by ensuring that degradation and turnover follow

transcriptional activation. Some of our experiments involved

phospho-resistant or phospho-mimetic mutations in Smad4,

which will cause exaggeration of the physiological effects (e.g.,

Smad4-GM mimics Smad4 receiving a maximal amount of

Wnt); however, all effects reported were also observed by

growth factor treatment of untransfected cells. Our observations

reconcile previous results in the literature that appeared to be

contradictory: it had been proposed that phosphorylation of

Thr 277 was required for Smad4 nuclear localization (Roelen

et al., 2003) and also for its degradation (Saha et al., 2001). How-

ever, regulation by FGF had not been addressed in these studies.

In recent work, Smad4 had been found to enter the nucleus in

transient pulses of about 30 min during TGF-b/BMP signaling

(Warmflash et al., 2012; Sorre et al., 2014). It will be very inter-

esting to investigate whether these bursts of nuclear localization

are controlled by the Smad4 growth-factor-regulated phosphor-

ylations described here.

Our finding that Wnt signals through Smad4 GSK3 sites and

can prolong the duration of a TGF-b pulse supports the view

that Smad4 phosphorylations are active regulators of TGF-b

signaling. The stimulatory effects of Wnt on TGF-b signaling

were entirely lost when Smad4-WT was replaced by the GSK3

phosphorylation-resistant Smad4-GM, both in human cultured

cells and in Xenopus embryos. This indicates that the crosstalk

between Wnt and TGF-b described here is mainly mediated by

Smad4 GSK3 sites and not by other components of the TGF-

b-signaling pathway. Perhaps the co-Smad Smad4 evolved a

specialized role in the integration of multiple signaling pathways.

Wnt and FGF/EGF growth factors had striking effects on

Smad4 transcriptional activity, particularly at low TGF-b concen-

trations (Figure 4). They also had an effect on Smad4 stability by

triggering the polyubiquitination and proteasomal degradation of

the fraction of Smad4 phosphorylated by MAPK and GSK3 (Fig-

ures 2 and 3). A short Smad4 activation domain (SAD) that con-

tains the MAPK site (but not the GSK3 sites) had been described

(de Caestecker et al., 2000).We now found that the linker domain

of Smad4 acts as a Wnt-stimulated activation domain indepen-

dently of protein degradation (Figure 5).

b-TrCP Binds to the Smad4 Phosphodegron
Smad4 is polyubiquitinated and degraded by b-TrCP (Wan et al.,

2004, 2005; Yang et al., 2006). We now show that the binding of

b-TrCP to Smad4 is not constitutive but finely regulated by GSK3

linker phosphorylations triggered by FGF and inhibited byWnt. In

Drosophila egg chambers, clonal analysis of slmbmutations (the

b-TrCP homolog) revealed high levels of Medea protein (the

Smad4 homolog), together with a high-BMP phenotype (Muzzo-

pappa and Wappner, 2005). The first two Smad4 GSK3 sites

have been conserved in Drosophila, other insects, and even

planarians (data not shown), suggesting that linker phosphoryla-

tions represent an ancient mechanism that regulates Smad4 ac-

tivity during embryonic patterning.

The positive effect of threonine 277 phosphorylation on

Smad4 activity (Figure 6) and the presence of a transcriptional

activation domain in Smad4 suggest that coactivators might

bind to themonophosphorylated PxTP site to drive transcription.

A prime candidate is p300, which has been shown to bind to the

SAD domain of Smad4 (de Caestecker et al., 2000). Recently, it

has been found that the mediator of the Hippo pathway YAP

binds phosphorylated SP sites in the Smad1 sequence (Alarcón

et al., 2009; Aragón et al., 2011) through its WW domain. The

other mediator of the Hippo pathway, TAZ, has been shown to

bind active Smad2/3/4 complexes and to connect TGF-b

signaling to cell density (Varelas et al., 2008, 2010). It is therefore

tempting to speculate that TAZ or YAP may recognize the phos-

phorylated TP site in Smad4 acting as coactivators. Alternatively,

the Smad4 linker region might recruit other coactivators, de-

pending on cellular context. Future studies will be required to

identify Smad4 phospholinker-interacting proteins.

Signaling Insulation and Crosstalk
Wnt signaling depletes active GSK3 from the cytosol, potentially

affecting the phosphorylation of many proteins in addition to

b-catenin (Taelman et al., 2010; Vinyoles et al., 2014; Acebron

et al., 2014). This raises the general question of how signaling

pathways are normally insulated from, or integrated with, each

other. The regulation of Smad4 activity by Wnt, which is

observed only in the presence of MAPK activation (or by intro-

ducing a phospho-mimetic priming site) indicates that the choice

between insulation and crosstalk depends on priming kinases

regulated by growth factors.

In the Xenopus embryo, it has been determined that, shortly

after midblastula (stage 8.5), nuclear b-catenin, diphospho Erk,

and C-terminal phospho-Smad2 are found in dorsal-marginal

cells (Schohl and Fagotto, 2002). These protein distributions

result from a maternal Wnt signal, a marginal zone gradient of

FGF that starts on the dorsal side, and a Nodal/TGF-b gradient

emanating from the dorsal-vegetal pole (Figure 7K; De Robertis

and Kuroda, 2004). This may generate a perfect storm of growth

factor signals that converge on the Smad4 protein to generate

maximal transcriptional activation. In this view, the different ter-

ritories of the embryo would be shaped and defined by Wnt/

GSK3 and FGF/MAPK feeding on the Nodal/TGF-b morphogen

gradient. Other mechanisms including combinations of tran-

scription factors, such as Siamois/Twin and activated Smad2/

3/4 at the level of specific promoters, will be important as well

(Labbé et al., 2000; Reid et al., 2012).

Replacement of endogenous Smad4 with its GSK3 phos-

phorylation-resistant mutant in Xenopus embryos resulted in

the entire ectoderm becoming mesoderm. This suggests that

GSK3 inhibition of Smad4 plays an essential role in allowing

ectodermal differentiation in vivo and extends previous findings

in the field, indicating a key role for Smad4 in ectoderm specifi-

cation (Dupont et al., 2005, 2009). In addition, phosphorylation

of Smad4 by GSK3 serves to constrain the size of Spemann’s

organizer. The crosstalk between the Wnt and Nodal/TGF-b
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pathways at the level of Smad4 could help explain in part the

mysterious ‘‘competence modifier’’ effect observed in Xenopus,

in which xWnt8 mRNA does not induce mesoderm by itself, yet

greatly sensitizes the competence of ectoderm to respond to ac-

tivin/TGF-b (Sokol andMelton, 1992; Moon and Christian, 1992).

Smad4 Linker Phosphorylation and Tumor Suppression
In cancer, Smad4/DPC4 acts as a barrier for tumor progression

(Ding et al., 2011; Vogelstein et al., 2013). TGF-b signaling has

potent antiproliferative effects in epithelia through the activation

of cyclin-dependent kinase inhibitors such as p14Ink4b and

p21WAF1 (Hanahan and Weinberg, 2011). At early stages, many

tumors are driven by activation of the Ras/Erk and the Wnt

oncogenic pathways, which increase proliferation genes such

as cyclin D and c-Myc (Hanahan and Weinberg, 2011). In our

proposed mechanism, these mitogenic effects will be counter-

balanced by the increase in TGF-b/Smad4 antiproliferative activ-

ity mediated by MAPK and Wnt/GSK3 signaling. This barrier

effect of TGF-b is lost when the Smad4 tumor suppressor is

deleted or inhibited. The discovery that Smad4 activity is not

constitutive but instead regulated by growth factors helps under-

stand why its loss has such catastrophic consequences during

progression of pancreatic, colorectal, and prostate cancers.

Smad4 is frequently deleted in metastatic tumors, but intra-

genic point mutations are also found (Levy and Hill, 2006; Xu

and Attisano, 2000). Interestingly, several of these point muta-

tions increase Smad4 degradation by facilitating binding to

b-TrCP (Wan et al., 2005; Yang et al., 2006). Our finding that

b-TrCP binding to Smad4 is regulated by GSK3 phosphoryla-

tions suggests that pharmacological GSK3 inhibitors may stabi-

lize Smad4 and restore growth control in such tumors.

EXPERIMENTAL PROCEDURES

Mammalian Cell Culture

NIH 3T3, CAGA12-HaCaT, HEK293 (lacking T antigen, which respond very

well to TGF-b), L cells (ATCC no. CRL-2648), as well as L-Wnt3a cells (ATCC

no. CRL-2647) were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (GIBCO) and cultured

at 37�C in 5% CO2. MDA-MB-468 cells (which lack Smad4) were cultured in

DMEM:Ham’s-F12 (1:1 vol:vol). L cell control-conditioned medium and

Wnt3a-conditioned medium were prepared according to the ATCC protocol

(Willert et al., 2003), with the exception that 2% serumwas used.Wnt3a-condi-

tioned medium was further boosted by adding 200 ng/ml of recombinant mu-

rine Wnt3a protein (PeproTech). DNA constructs were transfected with BioT

(Bioland) 24 hr after plating cells. siRNAs were transfected with Lipofectamine

2000 using the reverse transfection protocol (Invitrogen) and analyzed after

48 hr. Cycloheximide (Sigma no. C-7698) was dissolved in ethanol and used

at a final concentration of 20 mg/ml (Taelman et al., 2010).

Antibodies

The following antibodies were used in this study: a-Smad4 monoclonal (Santa

Cruz Biotechnology B-8; 1:250), a-diphosphorylated ERK-1 and ERK-2 mono-

clonal (Sigma; 1:500), a-GAPDH (Cell Signaling Technology 14C10; 1:7,000),

a-Flag mouse (Sigma; 1:3,000), rabbit a-ubiquitin (Santa Cruz Biotechnology

FL-76; 1:200), a-hemagglutinin (HA) (Sigma; 1:3,000), rabbit a-b-TrCP

(Cell Signal D13F10; 1:800), and mouse a-Gal4DBD (Santa Cruz RK5C1;

1:200). Secondary antibodies used were IRDye 800CW Donkey anti-Rabbit

immunoglobulin G (IgG) (LI-COR Biosciences 926-32213; 1:5,000) and IRDye

680RD Donkey anti-Mouse IgG (LI-COR Biosciences 926-68072; 1:5,000).

For custom pSmad4GSK3 antibody, a synthetic peptide ([H]-CKK-Acp-

NSTTTWT(PO3)GSRT(PO3)APY-[NH2]) was used to immunize two rabbits

(Covance). The antiserum with the highest ELISA titer was positively affinity

purified and was used at a concentration of 1:5,000 for detection of endoge-

nous Smad4 phosphorylations and at 1:25,000 for overexpressed proteins.

Statistical Analyses

Results are given as the mean ± SEM. Statistical analyses were performed

with Excel (Microsoft), applying the two-tailed t test. Differences of means

were considered significant at a significance level of 0.05. The following sym-

bols are annotated: n.s., not significant (p > 0.05); *p% 0.05; **p% 0.01; ***p%

0.001.

Additional Methods

Detailed methods for cell culture, plasmid reagents, polyubiquitination assays,

western blotting, Phos-tag analyses, Xenopus embryo assays, quantitative

RT-PCR, Gal4DBD transcriptional assays, dissociation of Xenopus animal

cap cells, reporter gene assays, phosphatase treatment, and construction of

the new Smad4-Luc reporter gene are provided in Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2014.09.020.
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Labbé, E., Letamendia, A., and Attisano, L. (2000). Association of Smads with

lymphoid enhancer binding factor 1/T cell-specific factor mediates coopera-

tive signaling by the transforming growth factor-b and wnt pathways. Proc.

Natl. Acad. Sci. USA 97, 8358–8363.

Levy, L., and Hill, C.S. (2006). Alterations in components of the TGF-b super-

family signaling pathways in human cancer. Cytokine Growth Factor Rev. 17,

41–58.
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