
UCLA
UCLA Previously Published Works

Title

Machine Learning-Based Epigenetic Classifiers for Axillary Staging of Patients with ER-
Positive Early-Stage Breast Cancer

Permalink

https://escholarship.org/uc/item/31m5h65g

Journal

Annals of Surgical Oncology, 29(10)

ISSN

1068-9265

Authors

Orozco, Javier IJ
Le, Julie
Ensenyat-Mendez, Miquel
et al.

Publication Date

2022-10-01

DOI

10.1245/s10434-022-12143-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/31m5h65g
https://escholarship.org/uc/item/31m5h65g#author
https://escholarship.org
http://www.cdlib.org/


Machine learning-based epigenetic classifiers for axillary 
staging of patients with ER-positive early-stage breast cancer

Javier I. J. Orozco1,‡, Julie Le2,‡, Miquel Ensenyat-Mendez3, Jennifer L. Baker2, Joanne 
Weidhaas4, Alexandra Klomhaus5, Diego M. Marzese, PhD3,*, Maggie L. DiNome, MD6,*

1Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA, USA.

2Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

3Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Institut d’Investigació Sanitària 
Illes Balears (IdISBa), Palma, Spain.

4Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 
USA.

5Department of Medicine Statistics Core, David Geffen School of Medicine, University of 
California Los Angeles, Los Angeles, CA, USA.

6Department of Surgery, Duke University School of Medicine, Durham, NC, USA.

Abstract

Introduction: In the era of molecular stratification and effective multimodality therapies, 

surgical staging of the axilla is becoming less relevant for patients with estrogen receptor 

(ER)-positive early-stage breast cancer (EBC). Therefore, a non-surgical method for accurately 

predicting lymph node disease is the next step in the de-escalation of axillary surgery. This study 

sought to identify epigenetic signatures in the primary tumor that accurately predict lymph node 

status.

Methodology: We selected a cohort of patients in The Cancer Genome Atlas (TCGA) with 

ER-positive, HER2-negative invasive ductal carcinomas, and clinically-negative axillae (n=127). 

Clinicopathological nomograms from MSKCC and MDACC were calculated. DNA methylation 

(DNAm) patterns from primary tumor specimens were compared between pN0 and >pN0 patients. 

The cohort was divided into training (n=85) and validation (n=42) sets. Random Forest was 

employed to obtain the combinations of DNAm features with the highest accuracy for stratifying 

>pN0 patients. The most efficient combinations were selected according to the Area Under the 

Curve (AUC).

Results: Clinicopathological models displayed a modest predictive potential for identifying 

>pN0 disease (MSKCC AUC=0.76, MDACC AUC=0.69, p=0.15). Differentially methylated 

sites (DMS) between pN0 and >pN0 patients were identified (n=1,656). DMS showed a 
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similar performance to the MSKCC model (AUC=0.76, p=0.83). Machine learning approaches 

generated five epigenetic classifiers, which showed higher discriminative potential than the 

clinicopathological variables tested (AUC>0.88, p<0.05).

Conclusions: Epigenetic classifiers based on primary tumor characteristics can efficiently 

stratify patients with no lymph node involvement from those with axillary lymph node disease, 

thereby providing an accurate method of staging the axilla.

INTRODUCTION:

Surgical staging of the axilla is becoming less relevant in the modern era of molecular 

stratification and effective multimodality therapies for patients with early-stage breast cancer 

(EBC). Current clinical guidelines consider surgical staging optional for patients with 

favorable tumors, older patients, those whose treatment decisions will not be impacted, 

or those with severe comorbidities.1,2 Based on the ACOSOG Z0011 and RxPONDER 

trials, a positive sentinel node no longer drives surgical or adjuvant chemotherapy decision-

making, especially in postmenopausal patients.3,4 Nodal status, however, still maintains a 

role in providing information regarding prognosis and stage and may influence the delivery 

of radiation therapy. Although the morbidity of sentinel lymph node biopsy (SLNB) is 

significantly reduced compared to axillary lymph node dissection (ALND), no surgical 

procedure is without risk.5,6 Therefore, an alternate method for accurately predicting lymph 

node disease would support the omission of the surgical staging of the axilla in patients with 

EBC.

Several mathematical models have been developed to predict whether breast cancer (BC) 

has spread to the axillary lymph nodes. The Memorial Sloan Kettering Cancer Center 

(MSKCC) and the MD Anderson Cancer Center (MDACC) nomograms are online tools 

that consider patient and tumor variables such as age, tumor location, tumor size, histology, 

grade, multifocality/multicentricity, lymphovascular invasion (LVI), and hormone receptor 

expression in their prediction models. However, the performance of these nomograms, 

confirmed by subsequent external validation studies, ranges from 67 to 78%, which has 

precluded widespread clinical adoption.7–10

Currently, machine learning methods significantly improve the sensitivity and specificity 

of predictive algorithms. In previous studies, we and others have demonstrated that 

epigenetic classifiers identified through machine learning of DNA methylation (DNAm) 

profiles are highly informative and reliable for disease stratification, precision diagnosis, 

and BC prognosis.11–14 Therefore, applying machine-learning methods to epigenetic and 

clinicopathological data can improve the accuracy of predictive algorithms and thus 

produce more robust decision-making assays for routine clinical practice. In this study, 

we constructed a machine learning classifier based on DNAm profiles of primary tumors 

to provide a BC subtype-specific predictive tool that accurately identifies patients who may 

safely omit surgical staging of the axilla.

Orozco et al. Page 2

Ann Surg Oncol. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHODS:

Patient Selection

We manually curated and cataloged the clinicopathological data from all patients (n=1,108) 

with breast cancer in The Cancer Genome Atlas (TCGA-BRCA) from the National 

Cancer Institute Genomic Data Commons (NCI/GDC) portal.15 Only female patients with 

histologically confirmed invasive ductal carcinoma with clinically-negative axillae (cN0) at 

presentation were included. Male patients, female patients with inoperable BC (tumor with 

direct extension to the chest wall and/or to the skin, inflammatory BC, or de novo stage 

IV BC), or those who received neoadjuvant therapy, and patients without axillary surgery 

data were excluded. Patients with estrogen receptor (ER)-negative and/or HER2-positive 

tumors were also excluded. Finally, specimens with tumor purity lower than 65% or with 

missing DNAm data were removed from the analyses. The final cohort included 127 patients 

between 2002 and 2013, 70 with pathologically negative lymph nodes (pN0) and 57 with 

positive lymph nodes (>pN0) (Figure 1).

Clinical nomograms evaluation

The variables used to calculate the nomograms from MSKCC and MDACC included age at 

diagnosis, tumor location and size (cm), LVI, multifocality/multicentricity, histologic type, 

histologic grade, and hormone receptors and HER2 status. The nomograms were calculated 

using the available online tools.16,17 Three trained reviewers generated the scores for all 

the patients independently. The cases showing discrepancies were reviewed and final scores 

were determined by consensus with a surgical oncologist.

DNA methylation data access and processing

DNAm data (HumanMethylation450 BeadChip array) were downloaded using the R/

Bioconductor TCGAbiolinks package v2.16.4,18 on April 13, 2021. Probes that did not 

pass the GenomeStudio quality controls (Illumina), with known cross-reactivity or missing 

data in any patient, were discarded from the analysis (final n=384,258). The effective 

tumor purity was evaluated using the consensus estimate purity (CPE) algorithm.19 DNAm 

levels were reported as β-values and calculated using the signal intensity value for each 

CpG site, as we previously showed.11,12 Differentially methylated sites (DMS) between 

patients with pN0 and >pN0 were identified using the Wilcoxon test. All CpG sites 

with differential methylation over 0.10 and p-value below 0.01 were considered DMS. 

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) and 

hierarchical clustering were employed to visualize the stratification capacity of all DMS 

using R/M3C (v.1.10)20 and R/gplots (v.3.1.1) packages. Genes affected by each DMS 

were obtained using the T-Gene algorithm.21 Pathway enrichment of the selected genes was 

performed using the R/GOfuncR v.1.8.0 package.22 Our analysis involved the gene and gene 

pathway analysis based on the three categories of gene ontology (biological process, cellular 

compartment, and molecular function).
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Machine learning-based construction of classifiers for prediction of lymph node 
involvement

The cohort was divided into training (67%, n=85) and validation (33%, n=42) sets. Regions 

identified as differentially methylated (156 hypermethylated and 1500 hypomethylated sites) 

were employed as input for Machine Learning. In this study, we employed Random Forest 

(RF) in the training cohort to identify combinations of the minimum number of genomic 

regions with high accuracy for stratifying patients with pathological involvement of axillary 

lymph nodes. RF was only applied to epigenetic data from patients in the training cohort 

using the R/varSelRF package (v.0.7–8).23 To ensure the reproducibility of the results, this 

process was iterated 150 times. The epigenetic signatures (EpiLN) selected by RF with 

high performance in the training cohort were then tested in the validation cohort. Finally, 

EpiLN signatures with high predictive performance in the validation cohort were evaluated 

in the entire cohort and reported. To ensure reproducibility of the machine learning data 

processing, we have included all the scripts for the open-source packages employed in this 

study at the GitHub repository (https://github.com/mensenyat/EpiLN).

Statistical analysis

Univariate comparisons were assessed using Pearson’s chi-square and Fisher’s exact tests 

for categorical variables, while Wilcoxon tests were used to examine continuous variables. 

All statistical calculations were performed using Stata, v.15.0 (StataCorp, College Station, 

TX) and SPSS, v.23 (IBM, Armonk, NY) software. The performance (sensitivity and 

specificity) of the clinicopathological nomograms (MSKCC and MDACC), all the DMS, 

and the top five best-performing signatures were assessed and represented by the Receiver 

Operating Characteristics (ROC) Curve/Area Under Curve (AUC) using the R/ROCR 
package (v.1.0–11).24 The predictive ability of the different models was compared using 

DeLong’s test for correlated ROC curves.25

RESULTS:

Patient Characteristics and clinicopathological nomograms

A total of 127 patients with ER-positive/HER2-negative, invasive ductal carcinoma were 

included in our study and divided into two groups: pN0 (n=70) and >pN0 (n=57). There 

were no statistical differences between age at diagnosis, tumor size, tumor laterality, grade, 

or tumor location in the overall cohort (Table 1) or the training and validation cohorts 

(Supplementary Table 1). The median number of lymph nodes examined in the pN0 and 

>pN0 groups was 2.0 and 14.0, respectively (p-value <0.001) in the overall cohort. The 

median number of positive nodes for patients in the >pN0 group was 2.0. As expected, the 

presence of LVI was significantly higher among >pN0 compared to the pN0 group (21% vs. 

49%, p <0.005). Extranodal extension was present in 38% of patients with positive nodes.

We calculated the risk of lymph node (LN) metastases in patients (n=88) based on the 

clinicopathological variables from the two established nomograms. Similar to what has been 

previously reported, both models showed a modest prediction potential, and no statistical 

differences were detected between the two (MSKCC AUC=0.76 and MDACC AUC=0.69, 

p=0.15, Table 2).
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Differential methylation according to pathological lymph node status

DMS between pN0 and >pN0 patients were identified (n=1,656, p<0.01). Notably, primary 

tumors from patients with positive LN disease showed 156 hypermethylated and 1,500 

hypomethylated CpG sites (Figure 2A). Interestingly, we observed that genes associated 

with these DMS are involved in functions that may affect the ability of breast cancer cells to 

spread to lymph nodes. The most relevant differences involved cellular immune recognition, 

cell adhesion, cell proliferation, morphological reprogramming, chemotaxis, extracellular 

matrix remodeling, cell migration, and mesenchymal cell differentiation, among other 

functions and processes related to metastatic progression (Supplementary Table 2). Using 

these 1,656 DMS, there was a non-significant separation between patients with pN0 and 

>pN0 (Figures 2B–C). However, DMS displayed a similar predictive potential (AUC=0.76) 

to the MSKCC (p=0.84) and MDACC nomograms (p=0.31) for identifying patients with 

pathological LN involvement (Figure 2D, Table 2). Interestingly, pathways enriched in DMS 

in >pN0 versus pN0 appear to be involved in cellular adhesion, cell migration, extracellular 

matrix, and immune response.

Machine learning-based DNAm signatures to predict pathological lymph node status

Starting with all DMS, we used a Random Forest algorithm to generate epigenetic classifiers 

to predict pathological LN status. We identified five top-performing epigenetics signatures 

ranging from 15 to 37 genomic regions (aka “EpiLN” signatures). All signatures showed 

very good performance stratifying pN0 and >pN0 patients (AUC>0.88, Figures 3A–B). 

These epigenetic signatures demonstrated a significantly higher discriminative potential 

than the clinicopathological variables tested (p=0.02, Table 2). The EpiLN signatures 

represent efficient combinations of differentially methylated sites from various genomic 

regions with the potential to identify patients with >pN0. For example, the EpiLN-37, 

which showed the highest predictive potential (AUC=0.89), includes 37 genomic regions 

with 18 hypermethylated and 19 hypomethylated sites in >pN0 tumors, affecting different 

gene structures and non-coding genomic regions in 19 out of the 23 chromosomes 

(Supplementary Table 3).

DISCUSSION:

Only a third of patients with clinically negative axillae have positive sentinel nodes at 

biopsy,26 yet axillary lymph node surgery is offered to most patients to complete pathologic 

staging for invasive breast cancer. Fortunately, with the adoption of SLNB, morbidity 

from axillary surgery has decreased tremendously.6,27 And, with multimodality treatments 

improving locoregional control and overall survival, strategies to de-escalate axillary surgery 

even further have been at the forefront of care. The Society of Surgical Oncology released 

the Choosing Wisely guidelines in 2016 that advocated for the omission of SLNB in patients 

over age 70 with early-stage clinically node-negative ER-positive breast cancer.1 Data from 

the ACOSOG Z0011 and RxPONDER trials further minimized the influence of the sentinel 

node in the decision making for completion of ALND or adjuvant chemotherapy in patients 

with ER-positive breast cancer.3,4 As we continue to search for ways to safely de-escalate 

axillary surgery, non-surgical tools to predict nodal disease will be invaluable.
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Clinical nomograms from MSKCC and MDACC provided the initial risk assessment 

tools to predict sentinel node positivity in patients with EBC.16,17 Both models utilize 

clinicopathological data, including tumor size, tumor location, histologic type and grade, 

multifocality, hormone receptor status, and presence of lymphovascular invasion.16,17 The 

performance of both clinical models has been validated externally, with the accuracy of 

predicting lymph node metastasis ranging from AUC 0.67 to 0.78.7–10,28 The modest 

performance of these models in the different cohorts has been one of the primary limitations 

hindering routine clinical use of these classifiers. Furthermore, these classifiers were 

developed based on variables from surgical pathology specimens, rather than core biopsy 

tissue, raising concerns for the clinical applicability of these nomograms in the presurgical 

setting.

More recently, molecular classifiers have emerged as promising tools for classifying 

cancers based on DNA methylation (DNAm) signatures. DNAm profiling has been 

shown to accurately distinguish cancers of unknown primary,29 primary brain tumors,30,31 

and other neoplasms.32 We demonstrated that DNAm profiles can not only accurately 

differentiate primary from metastatic brain tumors, but also further define the origin of a 

metastatic tumor, including therapeutically-relevant breast cancer subtypes with sensitivity 

and specificity greater than 90%.11,14 In the current study, we identified 1,656 DMS 

between pN0 and >pN0. Notably, primary tumors from patients with positive LN disease 

showed 156 hypermethylated and 1,500 hypomethylated CpG sites. This disproportion of 

hypomethylated sites in LN-positive primary tumors may reflect a higher transcriptional 

activity in tumors that are prone to lymph node invasion. However, the predictive potential 

of DMS demonstrated similar stratification accuracy as the clinical classifiers for lymph 

node disease (AUC=0.76).

Artificial intelligence algorithms, including machine and deep learning techniques, have 

fundamentally transformed the way we analyze and utilize data. Machine-learning 

approaches can integrate multiple layers of information to generate highly robust classifiers, 

as we and others have shown.12,33,34 These methods select the most informative features, 

decreasing the need for large numbers of variables in the final classifiers and increasing the 

accuracy by removing non-relevant information. Notably, the Random Forest signatures 

generated in this study, which include only 15–37 features, have significantly better 

performance (AUC=0.88–0.89) than using all DMS. Perhaps, the main advantage of 

including only a small number of informative genomic regions in the DNAm classifiers is 

that these can be adapted and evaluated using quantitative PCR.11 This technique, which 

is now widely used in low-complexity pathology laboratories, facilitates the near-term 

clinical adoption of machine learning-based signatures. Evaluating the feasibility of profiling 

these classifiers on core needle biopsies is an essential next step; indeed, one of the main 

advantages of these machine learning-based epigenetic signatures compared to the clinical 

nomograms is the ability to utilize presurgical tissue from core biopsies, thus identifying 

patients with negative nodes prior to surgery who could forego surgical staging of the axilla. 

However, the translation of these assays to routine practice is challenging, especially for 

core biopsy-derived DNA specimens, as the BeadChip microarray technology requires at 

least 200 ng of good-quality genomic DNA. In this regard, we and others have recently 

set up quantitative methylation-specific PCR assays to profile multiple genomic regions in 

Orozco et al. Page 6

Ann Surg Oncol. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



epigenetic signatures using minimum paraffin embedded archived tissue specimens from 

core biopsies and metastatic brain lesions.11,35,36 However, before defining the optimal 

combination of genomic regions for targeted assays and given the relatively small number 

of cases employed in this study, additional genome-wide DNAm profiling of clinically-

annotated cohorts may be necessary to improve the performance of our EpiLN signatures.

In conclusion, we have identified epigenetic classifiers based on primary tumor 

characteristics that can efficiently stratify patients with no lymph node involvement from 

those with axillary disease. These classifiers display better performance than current 

clinical-based nomograms. Identifying an accurate, non-invasive, and easily adoptable 

method for staging the axilla can provide the prognostic information needed without the 

morbidity of surgery. The small number of genomic regions employed for this analysis can 

facilitate the use of PCR-based assays, decreasing the cost compared to high-throughput 

technology, therefore allowing easier translation into clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SYNOPSIS:

Epigenetic classifiers represent a valuable non-invasive method to accurately predict 

axillary status as we continue to de-escalate axillary surgery in estrogen receptor-positive, 

HER2-negative early-stage breast cancer.

Orozco et al. Page 10

Ann Surg Oncol. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Patient selection based on clinical and DNA methylation features.
Patient selection flow chart based on inclusion criteria of ER-positive, HER2-negative 

invasive ductal carcinoma with clinically negative axilla. Exclusion criteria included 

unknown axillary surgery, *tumor purity <65% as estimated by the consensus estimate 

purity (CPE) algorithm,19 incomplete or aberrant DNA methylation data.
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Figure 2: Differentially methylated site analysis between pN0 and >pN0 patients.
A. Volcano plot demonstrating differential methylation between pN0 and >pN0 BC patients 

B. Heatmap showing clustering of BC patients using all DMS C. UMAP representation of 

clustering of BC patients using all DMS D. ROC curve displaying the AUC of MSKCC, 

MDACC, and all DMS that differentiates pN0 and >pN0 patients
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Figure 3: Machine learning-based epigenetic classifiers.
A. UMAP representation of the stratification efficiency using a 37-genomic region DNAm 

classifier (EpiLN-37) in all patients. B. ROC curve created with the entire study population 

and the top five performing classifiers.
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Table 1 –

Clinicopathological features of patients with pN0 and >pN0 disease

Characteristics Overall
Node status

p-value
pN0 >pN0

No. of Patients 127 70 57 --

Age, median (IQR), (years) 55.0 (18.0) 55.5 (18.0) 54.0 (18.0) 0.32

Lymph Nodes Examined, median (IQR) 4.0 (11.0) 2.0 (3.0) 14.0 (14.0) <0.001

Positive LN (H&E), median (IQR) -- -- 2.0 (1.0) --

Tumor Size, median (IQR), (cm) 2.3 (1.1) 2.1 (1.0) 2.4 (1.8) 0.08

Tumor Size

 T1 47 (37%) 28 (40%) 19 (33%)

0.66
 T2 67 (53%) 34 (49%) 33 (58%)

 T3 6 (5%) 3 (4%) 3 (5%)

 Missing 7 (5%) 5 (7%) 2 (4%)

Laterality, No (%)

 Left 66 (52%) 37 (53%) 29 (51%)
0.82

 Right 61 (48%) 33 (47%) 28 (49%)

Tumor Location, No (%)

 UOQ 60 (47%) 33 (47%) 27 (47%)

0.40 Non-UOQ 58 (46%) 30 (43%) 28 (49%)

 Missing 9 (7%) 7 (10%) 2 (4%)

Histological grade, No (%)

 I or II 80 (63%) 44 (63%) 36 (63%)

0.96 III 39 (31%) 21 (30%) 18 (32%)

 Missing 8 (6%) 5 (7%) 3 (5%)

LVI, No (%)

 Present 43 (34%) 15 (21%) 28 (49%)
0.005

 Absent 58 (46%) 38 (54%) 20 (35%)

 Missing 26 (20%) 17 (24%) 9 (16%)

LN ENE, No (%)

 Present 22 (17%) -- 22 (39%)

-- Absent 92 (72%) -- 22 (39%)

 Missing 13 (10%) -- 13 (22%)

Abbreviations: IQR, interquartile range; UOQ, upper outer quadrant; LVI, lymphovascular invasion; LN, lymph-node; ENE, extranodal extension
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Table 2 –

Predictive performance of different models

Models AUC 95% CI p-value*‡ p-value*†

MSKCC 0.76 0.65–0.86 ref 0.15

MDACC 0.69 0.58–0.80 0.15 Ref

DMS 0.76 0.68–0.84 0.84 0.31

EpiLN-37 0.89 0.84–0.95 0.019 0.0013

EpiLN-30 0.88 0.82–0.94 0.032 0.0022

EpiLN-24 0.88 0.82–0.94 0.037 0.0028

EpiLN-19 0.88 0.82–0.94 0.025 0.0016

EpiLN-15 0.88 0.82–0.94 0.026 0.0019

Abbreviations: MSKCC, Memorial Sloan Kettering Cancer Center; MDACC, MD Anderson Cancer Center; DMS, Differentially methylated sites.

*
The predictive ability of the different models was compared using DeLong’s test.

‡
MSKCC is used as a reference.

†
MDACC is used as a reference.
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