
UC Berkeley
Research Reports

Title
Object Management Systems

Permalink
https://escholarship.org/uc/item/31m9j7ct

Author
Gollu, Aleks Ohannes

Publication Date
1995

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/31m9j7ct
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

June 1995

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Object Management Systems

UCB-ITS-PRR-95-19
California PATH Research Report

Aleks Ohannes Göllü

Object Management Systems

by

Aleks Ohannes G�oll�u

B.S. (Massachusetts Institute of Technology, Cambridge) 1987

M.S. (University of California, Berkeley) 1989

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering

and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Pravin Varaiya, Chair

Professor Felix F. Wu

Professor James Pitman

1995

The dissertation of Aleks Ohannes G�oll�u is approved:

Chair date

date

date

University of California at Berkeley

1995

iii

To My Parents : : :

You wanted grandchildren,
I give you a brainchild.

Not quite the same, but hey,
there are no diapers to change.

and

To the late Bosphorus (millions B.C. - 1989 A.D.),
the blue waters (now green) I used to swim in, and

the green (now pale concrete gray) hills I used to enjoy.

Object Management Systems

Copyright (1995)

by

Aleks Ohannes G�oll�u

1

Abstract
Object Management Systems

by
Aleks Ohannes G�oll�u

Doctor of Philosophy in Engineering { Electrical Engineering and Computer Sciences
University of California at Berkeley
Professor Pravin Varaiya, Chair

We describe a new approach for developing large-scale object-oriented software systems, called Ob-
ject Management Systems (OMS). OMS are model-based applications used to simulate, evaluate,
and control large-scale physical environments. Examples of such environments are transportation
networks, telecommunications networks, power distribution networks, air tra�c control systems, and
management information systems. These environments are heterogeneous, dynamic, and distributed.

The OMS Object Model consists of the semantic data and process model components.
The data model is used to specify entities, their input, output, and state attributes; their methods;
and their constraints. The process model is used to specify how a collection of objects and their
relationships evolve based on their state and their input-output interconnections.

The OMS development methodology consists of four stages: Domain Customization; Sys-
tem Architecture; Application Development; and System Test. The �rst two stages customize the
Object Model based on the application needs and deliver a Customized Object Model. The appli-
cation developers further extend the Customized Object Model to an OMS Application.

Domain customization starts with the OMS Object Model and uses it to specify the rel-
evant components of a particular application domain: objects, their relationships, constraints, be-
havior, and observation and control channels; event propagation mechanisms, control strategies; and
user interfaces. System architecture uses the OMS Object Model to determine the optimal partition-
ing of the deployed system with respect to distributed processing, distributed databasing, process
and object migration strategies, concurrency control, and versioning. Application programming �lls
in the details of object behaviors and control strategies keeping in mind the system constraints.

OMS Applications support con�guration, fault, performance, accounting, access and se-
curity, resource, and planning management functions.

We demonstrate the methodology by implementing the SmartAHS simulation framework,
a Customized Object Model. SmartAHS is used to capture di�erent Automated Highway System
designs and benchmark scenarios and to generate performance metrics through micro-simulation
of the designs. SmartAHS provides generic objects for modeling highways, vehicles, control and
communication agents, and performance monitors. SmartAHS also provides a scheduling engine
that simulates time and event-driven object behaviors. The scheduler is con�gurable, and it can
simulate objects at di�erent time scales.

The California PATH Program at UC-Berkeley has proposed a hierarchical control archi-
tecture that yields up to a four-fold increase in transportation capacity while enhancing safety. We
demonstrate the use of SmartAHS by implementing elements of the PATH automation architecture.
The resultant OMS Application is called SmartPATH.

Professor Pravin Varaiya, Chair

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Background : 1
1.2 The OMS Approach : 3

1.2.1 The OMS Object Model : 4
1.2.2 SmartDb : 5

1.3 Automated Highway Systems, an OMS Application : : : : : : : : : : : : : : : : : : : 6
1.3.1 Evaluation using SmartAHS : 7
1.3.2 Deployment using SmartAHS : 8

1.4 Roadmap : 8
1.5 Acknowledgements : 8

2 Background 9

2.1 Desirable Software Features : 9
2.1.1 Modularity : 9
2.1.2 Performance : 9
2.1.3 Scalability : 9
2.1.4 Openness : 9
2.1.5 Robustness : 10
2.1.6 Ease-of-use : 10

2.2 Semantic Modeling : 10
2.3 Traditional Software Engineering Process : 11
2.4 Object-Oriented Modeling Constructs : 11

2.4.1 Entities and Instances : 11
2.4.2 Inheritance : 12
2.4.3 Polymorphism : 12
2.4.4 Extended Constructs : 12

2.5 Object-Oriented Methodology : 13
2.5.1 Booch : 13
2.5.2 Rumbaugh : 15
2.5.3 Shlaer-Mellor : 15
2.5.4 General Comments : 16

2.6 Architectural Concepts : 16
2.6.1 Process Organization : 17
2.6.2 Asynchronous vs. Synchronous Execution : 17

2.7 Persistence Storage: RDBMS and OODBMS : 17
2.7.1 RDBMS : 17
2.7.2 OODBMS : 18
2.7.3 Choosing an OODBMS : 19

2.8 Functional Categories : 20
2.8.1 Con�guration Management : 20

vi

2.8.2 Fault and Event Management : 20
2.8.3 Performance Management : 20
2.8.4 Access and Security Management : 20
2.8.5 Financial Management : 20
2.8.6 Resource Management : 20
2.8.7 Planning and Design Management : 20

2.9 Formal Modeling Methods : 21
2.9.1 Automata : 21
2.9.2 Petri-Nets and Data Flow Diagrams : 22
2.9.3 Other representations : 22

2.10 Sample Software Frameworks : 23
2.10.1 Ptolemy : 23
2.10.2 COSPAN : 23
2.10.3 CSIM : 24
2.10.4 Other : 24

2.11 Conclusions : 24

3 Sample Problems 25

3.1 Automated Highway Systems : 25
3.1.1 Underlying Concepts : 26
3.1.2 Framework Requirements : 28
3.1.3 Distinguishing Problem Characteristics : 31

3.2 Power Distribution Systems : 32
3.2.1 Entities in the Distribution Network : 33
3.2.2 Problem Nature and Requirements : 36

3.3 Data Network Management Systems : 37
3.3.1 Standards : 38
3.3.2 NMS Functional Categories : 39
3.3.3 Suppliers : 39
3.3.4 The Needs : 40

4 Object Management Systems 41

4.1 Semantic Data Model : 41
4.1.1 Object Identi�er or Distinguished Name (DN) : : : : : : : : : : : : : : : : : 42
4.1.2 Attributes : 42
4.1.3 Methods : 43
4.1.4 Constraints : 44

4.2 Semantic Process Model : 44
4.2.1 Object Con�guration : 45
4.2.2 The Method Run : 46
4.2.3 Sequencer Entities : 46
4.2.4 Other Services : 47

4.3 Extended Constructs : 48
4.3.1 Virtual Attributes : 48
4.3.2 Association and List-Association Attributes : : : : : : : : : : : : : : : : : : : 49
4.3.3 Relationships : 50
4.3.4 Time and Event Driven Behavior : 51
4.3.5 Event Generation : 54

4.4 OMS Process Phases : 55
4.4.1 Domain Customization : 55
4.4.2 System Architecture : 57
4.4.3 Application Development : 59
4.4.4 OMS Users : 60

4.5 Satisfying Functional Category Requirements : 60
4.5.1 Con�guration management : 60
4.5.2 Fault and event management : 61

vii

4.5.3 Performance management : 61
4.5.4 Access and security management : 61
4.5.5 Financial management : 61
4.5.6 Resource management : 61
4.5.7 Planning and design management : 61

4.6 OMS Evaluation Criteria : 62
4.6.1 Ease-of-Use : 62
4.6.2 Conicting Requirements : 64

5 Automated Highway Systems 65

5.1 SmartDb Implementation Platform : 66
5.1.1 Tool Selection : 66
5.1.2 Data Model : 67
5.1.3 Process Model : 68
5.1.4 Extended Object Model Constructs : 68

5.2 Domain Customization : 68
5.2.1 Data Model : 68
5.2.2 SmartAHS Modules : 69
5.2.3 Process Model : 71

5.3 System Architecture : 72
5.3.1 Process Structure : 72
5.3.2 Time and Event Driven Simulation : 73
5.3.3 Distribution Architecture : 74
5.3.4 Collecting Statistics : 76
5.3.5 Veri�cation Support : 76
5.3.6 Monotonic Inheritance : 77

6 SmartAHS Implementation 78

6.1 Domain Customization: Entities and Relationships : : : : : : : : : : : : : : : : : : : 79
6.1.1 SmartDb Classes : 79
6.1.2 Highway Entities : 82
6.1.3 Automation Devices : 85
6.1.4 SmartObject : 87
6.1.5 Vehicle : 87
6.1.6 Tra�c Entities : 89

6.2 System Architecture, Entity Speci�cations : 91
6.2.1 Packets, Events, and Messages : 91
6.2.2 Scheduling Mechanism : 93
6.2.3 Transmitters and Receivers Revisited : 95

6.3 The State Machine Language : 98
6.3.1 Basic Syntax : 98
6.3.2 Extended Syntax : 100
6.3.3 The Dynamics : 103
6.3.4 State Machine Implementation : 103
6.3.5 Inputs and Outputs : 107
6.3.6 Usage : 107

6.4 Graphical Object Editor : 108
6.4.1 Object Editor Grammar : 108
6.4.2 Editor Implementation : 112

6.5 Graphical Debugger : 113
6.5.1 Overall Architecture : 113
6.5.2 The GUI layer : 113
6.5.3 The Pack Code-Generator : 114
6.5.4 The Graphical Debugger Process : 115

6.6 Parametric Interfaces : 116
6.7 Naming Convention : 116

viii

6.7.1 Highway Entities : 117
6.7.2 Vehicles : 117
6.7.3 Automation Devices : 117
6.7.4 Scheduling Objects : 118
6.7.5 States : 118

6.8 Other Modules : 118

7 SmartPATH Implementation 119

7.1 Implementing SmartPATH Entities : 119
7.1.1 Creating Vehicles : 120
7.1.2 Creating Control Objects : 122
7.1.3 Creating State Machines : 123
7.1.4 Creating Monitors : 129
7.1.5 Specializing Sensors, Transmitters, and Receivers : : : : : : : : : : : : : : : : 129

7.2 Creating the Process Layers : 130
7.2.1 Physical Layer : 130
7.2.2 Regulation Layer : 130
7.2.3 Coordination Layer : 130
7.2.4 GUI Layer : 130

7.3 Simulation Setup : 131
7.3.1 Highway Layout : 131
7.3.2 Tra�c Patterns : 131
7.3.3 Roadside Automation : 131
7.3.4 Vehicle Automation : 131
7.3.5 Simulation Granularity : 131
7.3.6 Simulation Parameters : 134
7.3.7 The GUI Debugger : 134
7.3.8 Running the Simulation : 134

7.4 Implementation Critique : 135
7.4.1 Ease-of-use : 135
7.4.2 AHS Requirements : 136
7.4.3 Software System Requirements : 137
7.4.4 Performance Statistics : 137

8 Conclusions 141

8.1 The Object Model and SmartDb : 141
8.2 SmartAHS Expansion Directions : 142

Bibliography 143

9 Appendix 149

9.1 C++ Overview : 149
9.2 The Versant OODB : 152

9.2.1 Versant Data Types : 152
9.2.2 Versant Limitations : 153

9.3 The Traverser Class : 154
9.4 Sample State Machine : 160

9.4.1 The CoordSup state machine : 160
9.4.2 The Generated Header File CS.h : 160
9.4.3 The Generated Source File CS.C : 162
9.4.4 The Generated File CSEntEx.C : 168

9.5 Highway Creation Grammar : 171

ix

List of Figures

1.1 Sample OMS execution sequence from left top to right bottom. (a) A Sample OMS.
(b) Triggering Input. (c) State Transition. (d) End State. : : : : : : : : : : : : : : : 5

3.1 Layered Control Architecture. : 27
3.2 Hierarchy of Live Elements in Power Distribution : 35
3.3 Possible Network Hierarchy : 37
3.4 Available Network Services : 38
3.5 NMS Software Architecture : 40

4.1 Basic Entity : 42
4.2 A Sequencer Object : 47
4.3 Directed Association : 49
4.4 Symmetric Association : 49
4.5 Time and Event Driven Evolution Example : 51

5.1 SmartPATH Stages : 65
5.2 SmartAHS Speci�cation Sequence for Simulation Setup : : : : : : : : : : : : : : : : 70
5.3 Integrating Specialized Classes During Simulation Setup : : : : : : : : : : : : : : : : 73
5.4 SmartPATH Process Architecture. : 74
5.5 Distributed Simulation : 75
5.6 Distributed Simulation : 75

6.1 Base Class Inheritance Hierarchy : 79
6.2 Class Hierarchy for Highway Entities : 82
6.3 Containment Hierarchy for Highway Entities : 83
6.4 The SmartObject and its containees. : 87
6.5 Logical Representation of Vehicle in Lane : 88
6.6 Inheritance and Containment Hierarchy for Tra�c Entities : : : : : : : : : : : : : : 89
6.7 Class Hierarchy for Event Management Entities : 91
6.8 Class Hierarchy for Scheduling Entities : 93
6.9 Containment Hierarchy for Scheduling Entities : 94
6.10 Class Hierarchy for Communication Entities : 96
6.11 Class Hierarchy for State Machine Entities : 104
6.12 Containment Hierarchy for State Machine Entities : : : : : : : : : : : : : : : : : : : 104
6.13 Editor Planes : 109
6.14 Relationship Nesting : 110
6.15 Relationship Nesting Types : 111
6.16 Ambiguous Relationship Containment : 111
6.17 The BUS construct : 111
6.18 Graphical Debugger Architecture : 114

7.1 Class Hierarchy for MyVehicle components : 120
7.2 Containment Hierarchy for MyVehicle components : : : : : : : : : : : : : : : : : : : 122
7.3 Single Agent Vehicles Moving On Highway : 138

x

7.4 2-Vehicle Platoons Moving On Highway : 139
7.5 Single Agent Vehicles Moving On Highway with Hard-Coded Displacement : : : : : 139
7.6 Memory Use of Simulation : 140

xi

List of Tables

2.1 Traditional Project Stages : 11

4.1 Stages and Key Players in OMS : 55
4.2 Key OMS Users : 55

6.1 Relationships Among Highway Entities : 84
6.2 Special Correspondents : 101
6.3 Boxes and Circles : 112

7.1 Relationships within a Vehicle : 120
7.2 The MyVehicle Constructor : 121
7.3 The CoordControl Constructor : 123
7.4 The CoordControl Connect Method : 124
7.5 The RegControl Run Method : 125
7.6 The MergeInit State Machine De�nition : 126
7.7 The MergeInitSMInstanceState UpdateCorr Method : : : : : : : : : : : : : : : : : 127
7.8 The CheckSMState Enter Method : 127
7.9 The AccelSMState Enter Method, Code Fragment : : : : : : : : : : : : : : : : : : : 128
7.10 The AccelSMState Exit Method, Code Fragment : 128
7.11 The SetSMState Enter Method, Code Fragment : 128
7.12 The Camera Constructor : 129
7.13 The Camera Connect Method : 130
7.14 Specialized Physical Layer Methods : 131
7.15 Specialized Regulation Layer Methods : 132
7.16 The Executable Creating the Scheduler Objects : 133
7.17 The Executable to Run the Simulation : 134

9.1 Sample C++ Class De�nition : 150

Acknowledgements 1

There are so many superlatives with which I can thank Prof. Pravin Varaiya, all have
been used before, repeatedly. I say as much: In his absence, I would not have returned
to my PhD.

Professors Felix Wu, Jim Pitman and Jean Walrand served on my qualifying exam com-
mittee or my reading committee. Among other things, Felix read the �rst and least
readable draft of my thesis and Jean has revolutionized the concept of presentation for
all of us.

Akash, Farokh, Praveen, John-Park, Delnaz, Daren, Grace, John, Yu-Kai, and Daniel
contributed to this thesis not only with their discussions but also with their work.

Heather Brown, Annie Hayick, Ferenc Kovac, and Katherina Law were shining beacons
whenever I was lost in the administrative maze.

Since I �rst joined, a couple of generations passed through 275m. It has always been,
and still is, good company!

In return for a mere phone-call every fortnight, my parents have given me so much love
and care.

Finally, I thank all my friends, who are hidden in the following lines.

Three years pursuing a green card, three years pursuing PhD,
more people, more places, more fragments ...

\Where is the window?", 7.2, the big blue, 90� lag, mohavi, sublet, \Make sure you eat
the shrimpies", Monterrey, French Hotel, Q, shear walls, become, Cabo, Roxie, not quite
housed, Sam's Cafe, no College Park, Cinnabar, nice clay dirt, FL Keys, not informant,
ikkyu, aquila, tummy-tuck, ower boxes, Orbatello, dolmas, Jupiter, \once you cross the
ocean � � �", the roadblocks of Min and Max, cheese rolls, Harrah's, latte, 1812 San Pablo,
many many more knees, p�hh (with a French accent), 18 �, INFJ, lingo, poha�ca, Nefeli,

Grizzly,
� < >

> <

�
, nutrition, BBQs, PokFuLam, Za'Ha'Dun, kurzum wurzum, chello, ich

m�ochte schwimmen gehen.

1This researchwas supportedas part of the California PATH programof the University of California, in cooperation
with the State of California Business, Transportation, and Housing Agency, Department of Transportation, and the

Army Research O�ce under contract DAAH04-94-9-0026.

1

Chapter 1

Introduction

Large engineering systems, such as telecommunication network management, highway
automation, power distribution automation, factory automation, and air tra�c control systems,
face the challenge of providing reliable services using scarce resources. Clients of such systems
demand performance, safety, comfort, and e�ciency.

The problem is often compounded by physical resources that are saturated, ine�ciently
utilized, or technologically outdated. In many industries, failure to improve the performance of such
systems results in signi�cant �nancial or social costs.

Due to the heterogeneity of the system elements and the large system size, the planning
and control of such systems cannot always be done in a mathematical framework. Experimentation
with the actual physical system is often not feasible; in many cases the physical system is not yet
built. Furthermore, most real systems have an abundance of unstructured information, too many
superuous details, no well-de�ned observation and control mechanisms, and no single access location
due to their distributed nature.

Large-scale, complex software applications are needed to specify, simulate, evaluate, and
manage the behavior of such systems.

The speci�cation and implementation of such applications is more of an art than a well-
structured process. There is a gap between the speci�cation and implementation constructs required
to build such applications on the one hand, and the interfaces provided by database management
systems and programming languages on the other hand. In the absence of the right tools, managing
system complexity becomes time consuming and costly. There is a need for a formally sound semantic
data and process model that captures application level constructs for such systems. Furthermore,
the model has to be structured to support partial system veri�cation whenever possible.

This thesis proposes and demonstrates an object-oriented data and process model and an
end-to-end development process for speci�cation and implementation of large-scale real-life engineer-
ing software applications, called Object Management Systems (OMS). OMS are used to simulate,
evaluate, and control heterogeneous, dynamic, distributed physical environments.

The following sections of this chapter provide a summary of this thesis.

1.1 Background

Object Management Systems (OMS) are object-oriented software systems used to simu-
late, evaluate, and control large-scale physical environments. Examples of such environments are
transportation networks, telecommunications networks, power distribution networks, air tra�c con-
trol, and management information systems. These environments are heterogeneous, dynamic, and
distributed.

OMS provide the following functions.1

Con�guration Management|
the ability to specify and control the con�guration of the physical environment;

1These functions are based on the OSI NM/Forum functional categories for network management [67].

2

Fault Management|
the ability to detect faults and signi�cant events in the physical environment, to respond to
them with graceful degradation of system performance, and to recover from them;

Performance Management|
the ability to track, optimize, and �ne-tune the physical system performance;

Accounting Management|
the ability to account for physical system usage and charge the users according to pricing
policies;

Access and Security Management|
the ability to specify and control users' access to the physical system in a multi-user operating
environment;

Resource Management|
the ability to provide an inventory of all physical system resources and to administer their
maintenance schedules;

Planning Management|
the ability to specify, simulate, and evaluate alternative physical system con�gurations and
control policies.

Three technological factors have a profound impact on the success of OMS for complex
physical environments:

� The data and process models used to describe the physical environment;

� The software tools used for implementing these models; and

� The software engineering processes followed to realize the system.

The data and process models capture the domain expertise required for describing and managing the
physical environment. Typical modeling approaches use relational databases for data modeling and
programming languages for process modeling. In complex application domains, the object-oriented
approach is gaining popularity due to its superior modeling power. While the relational model
only describes system state, the object model has the potential for describing both system state (or
data) and system behavior (or the processes), in an integrated manner.2 Yet this potential is rarely
exploited in practice, and the object model is often used only for data description.

Because it has been followed for a long time, the approach based on relational databases
and programming languages provides a mature set of software tools. Typically, relational databases
provide an end-to-end development platform that includes the core database engine, modeling tools,
such as form and report generators, and application development utilities. Furthermore, the rela-
tional model has a powerful Structured Query Language (SQL) with a sound mathematical basis
[29]. A standardized set of tools with a wide applicability is possible in this approach because of
the structural simplicity of the relational model consisting solely of a collection of at, �xed-format
tables. The popularity of this approach in today's applications can be attributed to the existence of
these tools.

The role of tools in an object-oriented approach is even more signi�cant since the object
model is semantically richer than the relational model. However, the generality of the model itself has
precluded the development of a standardized set of widely applicable tools, and the object databases
have failed to converge to a standard query language such as SQL [33, 25]. The emerging object
databases are of two types: those tied closely to the relational model, such as Matisse and Postgres,
or those tied closely to programming languages, such as Versant. The former provide enhanced
relational databases with an object interface, while the latter provide programming languages with
persistent objects. Another class of tools common today are translators between objects on the

2Refer to the object-orientedmethodologies described by Booch [11], Coad [14], Rumbaugh [16], Shlaer and Mellor

[18], amongst others.

3

program side and relational tuples on the storage side. While these tools are useful, application-
level tools that implement semantic data and process models are sorely needed.

Typical software engineering life-cycles consist of the following stages: requirements analy-
sis, functional speci�cation, system architecture, prototype development, system design, implemen-
tation, integration, system test, release, and maintenance. The stages up to implementation are
treated as the �rst phase of the project and the subsequent stages up to system test are treated as
the second phase of the project. Most often, the output of the �rst phase is a design document and
the output of the second phase is the software system. A strictly waterfall approach [2] to software
development treats these as sequential stages. In the object-oriented methodologies the stages within
a phase and even the phases themselves are repeated cyclically to obtain the �nal software system.

While the software industry has gained a fair amount of expertise in managing and de-
livering such projects, this phased approach has inherent risks which must be analyzed carefully.
Ensuring coordination between the large number of project stages leads to management overhead.
There are no streamlined mechanisms to ensure that what is implemented is what was designed.
Poor coordination can lead to a \disconnect" between the domain experts involved in the �rst phase
and the system experts involved in the second phase. Finally, the sta�ng pro�le of the project is
typically back-loaded, leaving little control over schedule slippage.

1.2 The OMS Approach

Standardized tools and processes can emerge if a model-based approach is adopted for
the development of software systems. For example, the relational model enabled the development
of standardized tools such as SQL by restricting state descriptions to a tabular format. Such a
restriction of modeling power constrains the class of applications to which these tools and processes
can be applied.

In the OMS approach, we focus on an important class of applications, namely management
systems that are used to control the behavior of heterogeneous, dynamic, and distributed physical
environments. For this class of applications, we develop the OMS Object Model, a powerful semantic
data and process model. We implement this model as the SmartDB software platform and customize
it for speci�c application domains|SmartAHS for automated highway systems, SmartPower for
power distribution management, and SmartNet for network management.

The OMS software engineering process consists of the following stages:

� Domain customization;

� System architecture;

� Application programming; and

� System test.

Domain customization starts with SmartDB (or one of the customized SmartDB platforms) and uses
it to specify the relevant components of the physical environment: objects, their interrelationships,
constraints, behavior, and observation and control channels; event propagation mechanisms; control
strategies; and user interfaces. System architecture uses SmartDB to determine the optimal parti-
tioning of the deployed system with respect to distributed processing, distributed databasing, process
and object migration strategies, concurrency control, and versioning. Application programming �lls
in the details of object behaviors and control strategies keeping in mind the system constraints.
These stages are followed by the system test, release, and maintenance stages.

The OMS process provides signi�cant overlap between the di�erent stages of the software
life-cycle. The �rst two stages deliver a customization of the OMS object model along with an
application architecture, all in software. Each stage successively re�nes the output of the previous
stage using the OMS Tool Set. This integrated environment reduces project management overhead;
the risk of a \disconnect" between domain experts and system experts is absent; and the sta�ng
pro�le is fairly even throughout the project.

4

We reemphasize that the OMS approach achieves integrated models, tools, and processes
by focusing on a speci�c, but large, class of applications such as transportation networks, telecom-
munications networks, power distribution, air tra�c control, and management information systems,
and by following a model-based approach to development.

1.2.1 The OMS Object Model

The OMS object model is derived from two streams of theoretical development: object-
oriented modeling and mathematical systems theory. We give a brief description of the model
features.

State

An object's attributes describe its state, inputs, and outputs. The system is an inter-
connected collection of objects, and its state can be thought of as the state of individual objects
along with their input-output interconnections. The system as a whole has inputs and outputs
corresponding to the free inputs and outputs of objects in it.

Methods

The methods of an object are maps from its state and input to a new state and new
outputs. In addition, a method can specify new objects to be created, existing objects to be deleted,
new input-output connections to be made, and existing input-output connections to be removed.

Each method also speci�es its triggering inputs and triggered outputs.

State Transitions

The system is activated by triggering some subset of its inputs. All object methods
triggered by these inputs are executed. The outputs of these executed methods themselves trigger
other methods, which are then executed, and so on.

We require and impose conditions to ensure that this method execution sequence is unique
(i.e., there are no race conditions and indeterminacies) and that it terminates.

If such an execution sequence satis�es all system constraints, then the system state at the
end of the sequence is committed; otherwise it is rolled back to the beginning of the sequence and
the triggering input is discarded.

Constraints

Constraints of four types are de�ned:

� State constraints|constraints on the values of the state, inputs, and outputs of an individual
object;

� Connection constraints|constraints on establishment of input-output connections between
objects;

� Relationship constraints|state constraints expressed over several objects that are related
through relationships; and

� Behavior constraints|state constraints that must be satis�ed before and after the execution
of a single method of an object.

Figure 1-a shows a sample OMS with three interconnected objects. Figure 1-b shows a
triggering input applied to the OMS and the method that it triggers. Figure 1-c shows the e�ect
of the state transition caused by this triggering input: creating a new object and connecting it
to existing objects through input-output relationships, and computing the triggered output of the
system. Figure 1-d shows the resulting OMS state. Note the resemblance of this OMS data and
process model to integrated circuit diagrams, output feedback control systems, Petri nets, and neural
networks.

5

Object1

Object2

Object3

OMS Engine

Object1

Object2

Object3

OMS Engine

Object4

Free
Inputs Free

Outputs
Triggering
Input

Create New Object and Connect it

Successive
Method
Triggerings

Triggered
Outputs

Checking of
constraints
before commiting

Object1

Object2

Object3

OMS Engine

Object1

Object2

Object3

OMS Engine

Object4

state transition

Free
Inputs Free

Outputs

Figure 1.1: Sample OMS execution sequence from left top to right bottom. (a) A Sample OMS. (b)
Triggering Input. (c) State Transition. (d) End State.

1.2.2 SmartDb

SmartDB is a software implementation of the OMS Object Model. In addition to the
implementation of this austere model, SmartDB provides several additional features:

� It implements a relationship object and provides speci�c and useful relationships such as input-
output, containment, views, agent-manager, client-server, and process layers; (A process layer
is a collection of objects scheduled for execution at a common time- or event-granularity.)

� It implements objects such as events, sensors, actuators, schedulers, and users;

� It implements the OMS Engine, the machinery that executes the model dynamics. The OMS
Engine provides an interface for creating and deleting objects, connecting and disconnecting
them, triggering methods, executing state transitions, checking constraints, propagating event
noti�cations, and providing event- and time-based scheduling; and

� It provides system architecture tools for data distribution, process distribution, object migra-
tion, process migration, packaging objects into process layers based on their scheduling re-
quirements, versioning, concurrency control, backup and restore, schema evolution, and other
utilities.

Assumed Capabilities

SmartDB is middleware built on top of a persistent storage medium.
It requires the following capabilities: persistent storage, schema generation, implicit re-

trieval, predicated queries, backup and restore, and commit and rollback.
The following features are desired but not essential: versioning, data distribution with

location transparency, object migration, directory services, and concurrency control with locking
and deadlock detection.

6

The following features are useful but not essential: utilities for forms and reports, and
on-line schema evolution.

SmartDB functionality is limited by the availability of these features.

Customized Extensions

We have customized SmartDB to form the SmartAHS and SmartPATH platforms for
highway system simulation and evaluation. SmartDB can also be customized for power distribution
management and telecommunications networks. We describe briey the features of these SmartDB
extensions.

SmartAHS|

Highway objects: lane segment, highway section, entry, exit, and zone. Vehicle objects: ve-
hicle, engine, brakes, steering, sensors, transmitters, and receivers. Process layers: physical,
regulation, coordination, link, and network. Data and processing distribution based on zones.

SmartPower|

Links: three phase, two phase, and single phase high voltage, medium voltage, and low voltage
transmission lines. Nodes: generators, transformers, loads, serial capacitors, parallel capaci-
tors, and connectors (1{2, 2{1).

SmartNet|

Links: channels, facilities, circuits, packets, and services. Network elements: equipment, func-
tions, modules, multiplexors, bu�ers, switches, terminals, and users. Process layers: physical,
data link, network, transport, session, presentation, and application; Data and processing dis-
tribution based on geographical regions. Sensors and actuators based on SNMP and CMIP
protocols [71, 55].

Implementation

Currently SmartDB is implemented using the C++ programming language, Versant Ob-
ject Database, Tcl/Tk user interface tool kit, and the UNIX operating system.

The SmartAHS platform represents about ten person-years of e�ort, and the SmartPATH
platform represents another �fteen person-years of e�ort.

1.3 Automated Highway Systems, an OMS Application

Anybody who has driven across the Bay Bridge in San Francisco3 in late afternoon is
acutely aware of highway congestion. Congestion occurs when demand for travel exceeds highway
capacity. What's worse is that during congestion highway throughput falls below capacity. Intel-
ligent Vehicle Highway System (IVHS) proponents claim that a proper combination of control,
communication, and computing technologies (3C) placed on the vehicle and on the highway can
increase highway untilization and driver safety.

The PATH Program at UC-Berkeley has proposed a hierarchical control architecture that
yields up to a four-fold increase in transportation capacity while enhancing safety. The architecture
proposes a strategy of platooning several vehicles as they travel along the highway. The separation of
vehicles within a platoon is small (2m) while separation of platoons from each other is large (60m).
The movement of vehicles is realized through simple maneuvers|merge, split, lane change, entry,
and exit|that are coordinated.

The automation strategy of the PATH AHS architecture is organized in a control hierarchy
with the following layers:

Physical Layer|

the automated vehicles and highways;

3Or any major highway in an urban area.

7

Regulation Layer|

control and observation subsystems responsible for safe execution of simple maneuvers such as
merge, split, lane change, entry, and exit;

Coordination Layer|

communication protocols that vehicles and highway segments follow to coordinate their strate-
gies for achieving high capacity in a safe manner;

Link Layer|

control strategies that the highway segments follow in order to maximize throughput; and

Network Layer|

end-to-end routing so that vehicles reach their destinations without causing congestion.

To avoid single-point failures and to provide maximum exibility, the design proposes
distributed multi-agent control strategies. Each vehicle and each highway segment is responsible
for its own control. However, these agents must coordinate with each other to produce the desired
behavior of high throughput and safety.

There is a diversity of opinion about the implementation alternatives of highway \intel-
ligence." Various other multilayer control strategies are suggested for guiding the vehicles along
the highway in a partial or fully automated fashion. None of the proposed architectures has a
\closed form" mathematical representation for proper evaluation. Furthermore, the evaluation is
multidimensional, including utilization, travel time, safety, comfort, implementation complexity etc.

An objective comparison of these proposals requires the existence of a uniform simulation
framework in which these architectures can be speci�ed, simulated, and evaluated. The SmartAHS
customization of SmartDb provides such a framework.

The SmartPATH OMS is obtained when the PATH AHS architecture is implemented in
SmartAHS.

1.3.1 Evaluation using SmartAHS

SmartAHS is used to capture di�erent AHS designs and benchmark scenarios and to
generate performance metrics through micro-simulation of the designs. The SmartPATH OMS is
obtained when the PATH AHS architecture described above is implemented in SmartAHS.

SmartAHS provides generic objects for modeling highway con�guration, vehicles, control
and communication agents, and performance monitors. SmartAHS also provides a scheduling engine
that simulates time- and event-driven object behaviors. The scheduler is con�gurable and it can
simulate objects at di�erent time scales. Vehicle movement, for example, may be scheduled every
hundred milliseconds and roadside controllers every �fteen seconds.

SmartPATH is obtained by specifying the PATH AHS design using SmartAHS. The design
is given in terms of dynamical system models such as di�erential equations, �nite state machines,
uid ows, and queueing networks, and it also speci�es sensors, actuators, transmitters, receivers,
control and communication policies, and operating rules. The SmartPATH simulation setup consists
of the following speci�cations: highway con�guration, travel demand, highway automation devices,
vehicle automation devices, the simulation scheduling policy, and automation device parameters.
Automation devices consist of sensors, actuators, communications devices, and control agents. Sim-
ulation runs are used to collect design performance metrics such as safety, productivity, comfort,
and environmental impact, generated by monitoring the system state during the simulation runs.
SmartAHS can be used to optimize design performance with respect to these metrics by tuning
design parameters dynamically.

SmartPATH simulation performance depends on the time-granularity of the simulation. If
the integration routines used to calculate vehicle displacement are set to 5ms step size, and vehicle
position on the highway is updated every 100ms, 50 vehicles can be simulated in real-time on a
Sun Sparc 10 workstation. Simulation pro�les indicate that 80% of the simulation time is spent on
time-driven simulation of the di�erential equations that model vehicle dynamics.

A distributed processing version of SmartPATH is under implementation for problem scales
as large as 100,000 vehicles over 1000 miles of highways.

8

1.3.2 Deployment using SmartAHS

Once an AHS design is simulated, evaluated, and optimized, SmartAHS can be used
with hardware emulators as well as actual hardware components instead of software sensors and
actuators. This aids model validation and robustness testing of the control laws. For full deployment,
the regulation layer control algorithms can be deployed in vehicles and the link and network layer
control algorithms can be deployed on the roadside. In this environment, SmartAHS acts as a
real-time distributed operating system for command control of the deployed AHS.

1.4 Roadmap

The scope of this thesis is the design and implementation of software frameworks that
facilitate the speci�cation, simulation, and evaluation of hierarchical control architectures for diverse
applications. A general methodology is developed, and the methodology is used to build a software
framework, SmartAHS, intended for highway automation architecture speci�cation and evaluation.

This thesis assumes the reader has some familiarity with object-oriented programming
languages, automata theory, and databases. Chapter 2 summarizes some of the required background
in these areas and provides a survey of the state of the art.

Chapter 3 consists of three application area descriptions: 1) highway automation, 2) data
network management, and 3) power distribution systems.

Chapter 4 contains the OMS Object Model description and a discussion of the OMS
process stages.

Chapters 5 and 6 discuss the implementation of the SmartAHS platform. Since the current
SmartDb implementation is quite limited most constructs that are discussed as part of Object Model
are implemented in SmartAHS.

Chapter 7 provides an overview of SmartPATH and use cases of SmartAHS.
Chapter 8 contains the conclusions.
An index is provided for all class, attribute, and method de�nitions in Chapters 7 and 8.

1.5 Acknowledgements

Above we've stated that SmartAHS reects about ten person-years of e�ort. Clearly,
the author was not the sole contributor to its implementation. As the scope and the problem size
of dissertations grow, it becomes necessary that the work leading to a thesis, or several theses, is
performed by a team, rather than by isolated individuals.

This dissertation not only bene�ted from discussions with the people listed below, but,
was actually built upon their work. As such, this dissertation requires an acknowledgements section
within its actual body, rather than just one in its preamble.

Grace Liu contributed to some of the early prototypes.
Yu-Kai Ng and John Park Hong implemented the graphical object editor discussed in

Section 6.4.
Daren Lee implemented the graphical debugger discussed in Section 6.5.
Daniel Wiesmann implemented the code-generators for the state machine language and

the parametric interfaces discussed in Sections 6.3.4 and 6.6. Daniel also ran most of the performance
tests.

Praveen Hingorani implemented most of the base classes, the highway entities, the tra�c
entities, and the event generation and propagation mechanisms. Working with John Lygeros, he
also implemented the regulation layer SmartPATH objects.

Farokh Eska� and Delnaz Khorrmabadi started this work with their implementation of
SmartPATH [36]. The future of the distributed version of SmartAHS now lies in Farokh's hands.

Akash Deshpande participated in numerous discussions that resulted in the current for-
mulation of the Object Model.

Finally, Prof. Pravin Varaiya and Prof. Felix Wu have always provided sound advice and
have patiently read many earlier drafts of this thesis.

9

Chapter 2

Background

The following sections provide a brief overview of relevant background and state of the
art in software and control engineering.

2.1 Desirable Software Features

There are some characteristics any software system should have. These are summarized
below.

2.1.1 Modularity

Modularity is a powerful design tool in software engineering or otherwise.
Myers observes, \The act of partitioning a program into individual components can reduce

its complexity to some degree. : : : Although partitioning a program is helpful for this reason, a
more powerful justi�cation for partitioning a program is that it creates a number of well de�ned,
documented boundaries within the program. These boundaries, or interfaces, are invaluable in the
comprehension of the program" [4].

In OMS applications it is essential that the logical counterparts of physical entities are
well-encapsulated in independent modules.

2.1.2 Performance

Any software application has to meet some run-time performance requirement.
On-line control applications have to meet real-time performance criteria. In particular the

sensory data has to be propagated from the physical system to the application; the data has to be
processed within the application; and the control data has to be communicated back to the physical
system, all within an \acceptable" time frame.

In today's software technology faster hardware is always an easy way of buying better
performance. However, a good design should yield good performance given the hardware at hand.

2.1.3 Scalability

A simulation framework that can simulate ten vehicles in real time but collapses if the
number of vehicles exceed one hundred, is of limited use. A good application will scale with accept-
able performance as the problem size grows.

2.1.4 Openness

Any well-designed large software application consists of many modules. If the interfaces of
these modules are well-de�ned, if the modules can be accessed directly, and if they can be replaced
with third party components, an application is said to have an open architecture.

10

2.1.5 Robustness

A robust software application does not su�er from a single point of failure. A robust
design would isolate the e�ects of incorrect use or localized errors.

2.1.6 Ease-of-use

The traditional approach to categorizing a modeling syntax gauges it along two axis: the
�rst measures its expressiveness, the second measures how much a problem can be analyzed if it is
modeled in this syntax.

The Chomsky language hierarchy is well understood. It consists of:

� regular languages, implemented by �nite state automata;

� context-free languages, implemented by pushdown automata;

� context-sensitive languages, implemented by linear bounded automata;

� recursively enumerable sets, implemented by Turing Machines.

As we go down the list, the expressive power of a language goes up, but alas, the ability
to analyze a given speci�cation goes down. In particular most questions become undecidable. (A
question is said to be decidable if there is an algorithm that takes as input an instance of the problem
and determines whether the answer to that instance is \yes" or \no".)

In the context of software applications the speci�cation language at hand usually has
su�cient power to be Turing equivalent and a third question emerges: how easy is it to express a
given problem in this syntax? Unfortunately there is no objective measure to answer this question
for a given modeling syntax.

2.2 Semantic Modeling

Wegner [10] de�nes three categories of modeling paradigms:

� Object-Based Modeling: The modeling paradigm that requires all elements of interest to
be objects with clearly de�ned interfaces;

� Class-BasedModeling: The modeling paradigm that requires all objects to belong to classes.
Classes are used as templates for objects;

� Object-Oriented Modeling: The modeling paradigm that categorizes the classes into a
inheritance hierarchy.

As we move from object to class-based modeling a distinction between Meta-Data and
Data emerges. Meta-data, i.e, classes, serve as a template that de�ne how data looks like. Instances
of classes, i.e., the data, are the realization of meta-data.

As we move to object-oriented modeling, the distinction between the meta-data and data
becomes weaker. After all, meta-data is also data of a given form; so classes can be considered to be
instances of a Meta-Class. However, most object-oriented programming language implementations
still impose a separation between meta-data and data. In the remainder of this thesis we observe this
separation and assume that the meta-data remain static as data is instantiated and manipulated.

Object Management Systems are object-oriented. We discuss object-oriented modeling
constructs in more detail in Section 2.4.

11

system analysis and functional speci�cation System Analysts, Domain Experts
system architecture and high-level design System Architects
prototype implementation Developers
detailed design System Designers
development Developers
unit testing Developers and Testers
system integration and system testing Developers and Testers
system release
system support Maintenance Team
system use System Users

Table 2.1: Traditional Project Stages

2.3 Traditional Software Engineering Process

The development of large scale software systems can not be treated as one amalgamated
task. Two main software production processes have evolved over the last decades; the traditional
waterfall; [5, 6] and the circular object-oriented methodologies (OOM) [11, 16, 14, 18]. Table 2.1
summarizes the basic stages of these processes and the skill set required for each stage. Clearly
di�erent interpretations of these methodologies may omit or reorder some of these stages.

Whereas the waterfall approach treats these as sequential tasks, the OOM repeats the
analysis through relase phases in several cycles until one converges to a good solution [2].

The deliverables of the analysis, functional speci�cation, high-level design and detail design
phases consist of documentation only, and all implementation is left to the subsequent phases.
Typical commercial software development results in a back-loaded process and the implementation,
testing, and maintenance phases use up the largest amount of resources [3].

2.4 Object-Oriented Modeling Constructs

Booch observers, \As Rentsch correctly predicted, `My guess is that object-oriented pro-
gramming will be in the 1980s what structured programming was in the 1970s. Everyone will be in
favor of it. Every manufacturer will promote his products by supporting it. Every programmer will
practice it (di�erently). And no one will know just what it is' [9]. Rentsch's predictions still apply
to the 1990s" [12].

Our architecture relies on the existence of object-oriented languages and databases and the
abstractions they provide. In this section, we briey highlight some of the main features of object-
oriented methodology and programming language characteristics that make our design viable.

2.4.1 Entities and Instances

OO methodology makes it possible to encapsulate the characteristics and behavior of
physical components as logical software objects. This organization provides natural boundaries for
modularity. The logical counterpart of a particular component type is called a class or an entity; it
contains attributes and methods. Each occurrence of this type of component is then represented by
an instance of this class.

This organization is particularly useful in control and simulation software, where the
software system structure has to mimic the underlying physical system. Once a mapping between
physical elements and their logical counterparts is established, research for control strategies can
proceed without regard to the peculiarities of the physical objects themselves. Furthermore the
system can be scaled just by creating more instances.

12

2.4.2 Inheritance

Classes are used to categorize similar instances. Inheritance provides a way of categorizing
classes and organizes them in a hierarchy of increasing specialization.

Inheritance provides a useful set of scoping rules that matches the \common sense" think-
ing in real world. It supports modularity and reuse of meta-data.

A class which has direct instances is called a concrete class, otherwise it is an abstract

class. A subclass or a child inherits from a superclass or a parent. A superclass is sometimes called
a base class. Classes without subclasses are leaf classes.

Monotonic Inheritance

Inheritance is a mechanism of incremental re�nement. Many avors of inheritance exist.
Under monotonic inheritance, every subclass must inherit each and every attribute and method
speci�ed for its superclasses and may not cancel any of them. As part of inheritance a subclass may
add attributes and methods; specialize the domains of superclass attributes; specialize the domains
of method return values; and specialize the method behaviors.

2.4.3 Polymorphism

Functional polymorphism is the ability to use classes and their children interchangeably.
Every car, truck, and bus is a vehicle. (Clearly the converse is false.) This gives us the ability
to implement other software classes that know about the vehicle class only. These other software
classes then do not have to be modi�ed or extended, if we add the \semi" and the \taxicab" to the
subclasses of vehicle.

One question remains. Assume the vehicle class provides a generic \move" method that
given a jerk, computes a displacement. Assume vehicle subclasses specialize this method based on
their speci�c dynamics. Assume a given object, say a \scheduler" in charge of moving vehicles,
knows only about vehicles and invokes the move method on a vehicle, which happens to be a truck.
Will the displacement be that of a vehicle or of a truck?

The answer points to the di�erence between dynamic and static type checking. If the
implementation language provides dynamic type checking (also called dynamic binding), it will at
the time of this action seamlessly determine that this particular vehicle is a truck and invoke the
truck's move method.

Another form of polymorphism is the signature polymorphism, also called overloading.
The syntax and sequence of arguments supplied to a function together constitute the signature of a
function. Given two methods with the same name, signature polymorphism refers to invoking the
correct method based on the argument list.

2.4.4 Extended Constructs

The constructs discussed in this subsection are not supported by any existing commercial
object-oriented programming language. A language with these constructs would simplify system
design, speci�cation, and implementation.

Most of these constructs are frequently used in network management applications [62,
59]. Bapat [52] discusses them in his book that develops mechanisms for modeling communication
networks through the use of practical examples.

Object Identi�ers

Each object and each of its methods and attributes must have a unique object identi�er,
called Distinguished Name (DN)1.

Most programming languages use a pointer to an object as the DN. However, the value of
a pointer is not persistent and an application usually must implement a di�erent naming convention.

1The DN and RDN terminology is borrowed from network management.

13

Assume a vehicle has a length and speed. A possible notation would use \Vehicle" as the
DN of the entity, \Vehicle::Length" and \Vehicle::Speed" as the DN of the attributes.

The concept of a Relative Distinguished Name (RDN) is also important. The RDN
uniquely identi�es a component within the Scope of a DN-pre�x. In the above example, \Vehi-
cle::" is a DN-pre�x that de�nes the scope of a particular entity. \Length" and \Speed" are unique
attribute RDN's within that scope.

A more complicated example is the DN of a particular vehicle instance's length. A pos-
sible notation would be \Vehicle{Car1" for the instance, \Vehicle{Car1::Length" for the DN of the
attribute value.

Virtual Attributes

A virtual attribute provides implicit access to the value of another attribute, which we
call its Source.

A virtual attribute speci�cation contains two components: 1) A Scope, an RDN, such as
\Vehicle{.::Length" as in the above example and 2) a DN-Pre�x, the DN of another instance.

In this case, if the DN-Pre�x has the value \Vehicle{Car1", the value of this virtual
attribute would be the length of vehicle car1.

Virtual attributes can be implemented in several ways. In an on-demand-update im-
plementation the virtual attribute retrieves the value of its Source when accessed. It does so by
constructing the Source DN from the current value of the DN-Pre�x and the Scope. In an always-
up-to-date scheme, the virtual attribute stores the value of its Source. In this case, the virtual
attribute must be updated when the DN-Pre�x or the Source are updated.

It is possible to create cyclic dependencies with virtual attributes. Depending on the
virtual attribute dependencies, such dependencies can be detected at compile or at run time.

Associations

Associations are used to model binary relations. An association is very much like a bi-
directional pointer, in fact in most applications a pair of pointers are used to implement associations.
In the absence of an atomic association construct data integrity is compromised.

Consider the one-to-one positional relationship between two vehicles, \front/back" vehicle.
Consider two vehicles v1 and v2, with v1 driving behind v2. If this relationship is implemented as an
association, the moment v1 changes lane and moves behind v3, v2 will terminate the \back vehicle"
relationship with v1. Otherwise, v3 may enter the \back vehicle" relationship with v1, while v2 still
has v1 as its \back vehicle".

If relationships are modeled as entities an association construct is still needed to identify
the relationship between the relationship entity and its participants.

2.5 Object-Oriented Methodology

Several object-oriented methodologies have emerged over the last decade. These method-
ologies generally provide a graphical notation that captures a design during the analysis and design
stages of a project. The analysis and design notation is independent of the implementation platform,
and currently no tools exist to convert the design into an implementation. Furthermore, there is no
mechanism to validate a design other than through implementation.

This section serves as a summary of three such methodologies.

2.5.1 Booch

Booch states, \Object-oriented methodology is built upon a sound engineering foundation,
whose elements we collectively call the object model. The object model encompasses the principles
of abstractions, encapsulation, modularity, hierarchy, typing, concurrency, and persistence" [12].

For object-oriented analysis and high level design, he provides an extensive notation. The
notation is independent of the detailed design and implementation. In fact, many notation constructs
have no implementation counterparts in any programming language.

14

The detailed design and implementation phases are expected to �nd some implementation
of the system captured in the notation.

The Booch notation has the following components:

� class diagrams;

Class diagrams are used to specify classes, their attributes, methods, relationships and roles,
the relationship cardinalities, class categories, containment and class nesting hierarchies, con-
straints, and access restrictions.

� state transition diagrams;

A state may correspond to particular attribute value assignments of an object or it may have
independent semantics. Transitions correspond to actions an object can take. State transition
diagrams capture sequences of actions objects can take, based on their state. State transition
diagrams allow transitions to be conditioned on attribute values and states to consist of state
transition diagrams.

� object diagrams;

Object diagrams are used to specify possible object2 con�gurations of the system, and the
sequence of actions objects can take in these con�gurations. The notation contains constructs
for roles, keys, data ow, visibility, synchronization, and time budgets.

� interaction diagrams;

Interaction diagrams provide an alternative representation of object diagrams and are used to
trace the execution sequences for a given set of objects.

� module diagrams; and

Module diagrams are used to show the allocation of classes and objects to modules in the
physical design of a system.

� process diagrams;

Process diagrams are used to show the allocation of processes to processors in the physical
design of a system.

The Booch notation has constructs to represent concepts from a variety of implementation
alternatives. The range includes representations for procedures, for meta-data/data distinction, or
for treating meta-data as data.

In the Booch notation object relationships are denoted by arcs. However, none of the
diagrams model the evolution of relationships. The instantiation relationship is denoted by arcs,
but no constructs are provided to model the \deleting" relationship, nor are there any constructs
that specify why and how often instantiation takes place.

Booch distinguishes the macro and micro development processes.
The macro process is the controlling framework of the micro process and consists of concep-

tualization, analysis, design, evolution, and maintenance. Conceptualization establishes the vision
for the idea and validates its assumptions through a throw-away prototype. Analysis provides a
model of the system behavior, what it does, and how it does it. Analysis is expected to deliver
a speci�cation of key desired and undesired behavior. The design creates an architecture for the
evolving implementation, and establishes common tactical policies for the project. Evolution grows
and changes the implementation though successive re�nement, ultimately leading to the production
system. Maintenance manages post-delivery evolution.

The micro process represents the daily activities of the developers. Classes and objects
and their semantics, relationships, and interfaces are identi�ed and implemented.

Booch admits that software engineering is still largely an art form.

2Booch uses the word object when referring to \Data". In an implementation where only instances are data,

objects are instances. In an implementation where both classes and instances are data, object refers to both.

15

2.5.2 Rumbaugh

The Object Modeling Technique (OMT) methodology employs three kinds of models as
part of the information model of the system [16]. These are:

� the object model;

� the dynamic model; and

� the functional model.

The object model is used to specify the static structure of objects.
Object diagrams (these are similar to Booch's class diagrams) are used to capture classes,

attributes, methods relationships, aggregation and inheritance hierarchies and constraints.

The dynamic model is used to capture the input-output behavior of an application and
the interactions among objects within an application. In Rumbaugh's approach the input-output
dynamic model of a compiler is trivial: it has one input, a source �le, and one output, an executable.

State diagrams are used to capture the dynamic model. Like in Booch notation, a state
is an abstraction of the attribute values and the object's relationships and no formal notation is
introduced to de�ne a state. Conditional transitions are used to move from one state to another
upon events; actions are generated as part of the transitions.

The functional model is used to capture the data transformations within an application.
In Rumbaugh's approach the functional model of a persistent storage medium is trivial since it only
stores the data but does not alter it.

Data Flow Diagrams (DFDs) are used to capture the functional model of a system. DFDs
have three types of nodes: processes that transform the data, actor objects that process and consume
the data, and data store objects that passively store the data. Data is moved among the nodes by
data ow arrows.

Rumbaugh claims that the three models of an application are orthogonal and does not
provide any constructs to connect them. However, clearly the states in a state diagram are derived
from the object model and the functional transformations depend on the data and the state. This
gap is expected to be �lled during implementation.

Rumbaugh's notation is most suitable for object-oriented languages that distinguish meta-
data and data. Unlike Booch, he does not introduce notation that supports objects that could
correspond to instances, classes, or meta-classes. As such he uses class diagrams only and does not
require object diagrams.

Like the Booch notation, the OMT object diagrams provide constructs to model asso-
ciations and instantiation relationships. However, there is no construct to capture the \delete"
relationship, nor is there any way to describe dynamics of relationship evolution, instantiation or
deletion.

Rumbaugh separates system development into three stages: analysis, system design, and
object design. The analysis stage captures the problem statement, and the object, dynamic, and
functional models in a design document. The system design phase generates a document describing
the structure of basic architecture for the system, as well as high level strategy decisions. The
object design phase results in a document with detailed object, dynamic, and functional models.
Implementation is not discussed.

2.5.3 Shlaer-Mellor

Like Rumbaugh, Shlaer and Mellor represent a system in three models. In their terminol-
ogy these models are:

� the information model;

� the state model; and

16

� the process model.

The informationmodel, discussed in great length in [18], categorizes objects into domains3

and subdomains; describes entities, their attributes and associations, and the policies, rules, and
physical laws that prevail in the real world. A graphical notation is used to depict objects and
their relationships. The information model corresponds to Booch's class and object diagrams, and
Rumbaugh's object model.

The state model, discussed in great length in [19], is concerned with the behaviors of
objects and their relationships over time. Like Rumbaugh's dynamic model, the state model is
represented by �nite state machines within classes. A formal representation of state machines is
not provided, rather, a set of concepts are discussed. These concepts include states, begin and end
states, events, actions, input events, output events, event sequences, event synchronization, timers,
and monitors that govern event synchronization.

Shlaer and Mellor do address object creation and deletion, as well as, relationship evolu-
tion. However, again, the discussion remains at the conceptual level. A state machine goes to its
begin state when created, and it is deleted when it reaches its end state. Relationship evolution is
represented by state machines.

The process model, described by Action Data Flow Diagrams (ADFD), further re�nes each
action speci�ed in the state model. The ADFD consists of processes that represent unit operations
within objects; the object data stores that represent the object attributes; and arcs that represent
the event and data ow.

Shlaer and Mellor separate the development process into three major stages: analysis,
design, and implementation.

The analysis phase partitions the system into domains and delivers the information, state,
and process models.

The OODLE (Object Oriented Design LanguagE) notation is introduced as a language-
independent design notation. The notation consists of the following components:

� Class diagrams that capture the external view of individual classes;

� class structure charts that show the internal structure and operations of the class;

� dependence diagrams that depict the relationships between classes; and

� inheritance diagrams that depict the class inheritance hierarchy.

Implementation is expected to transform the analysis and design results to actual running
code.

2.5.4 General Comments

Many other object oriented methodologies exist. Among others, Coad [14], Jacobson [15],
Schultz [17], Wirfs-Brock [20], and Buhr [13] have their avors of the OOM. However, like the three
methodologies described above, these methodologies target the analysis phase of a project and barely
touch the design. The primary products are documents that capture the analysis and design results
in a general and loose notation. It is di�cult, if not impossible, to streamline the conversion of these
documents into actual implementations.

2.6 Architectural Concepts

This section de�nes some basic process and architectural concepts.

3Booch's modules

17

2.6.1 Process Organization

In a client-server architecture, processes have roles. A server responds to requests of many
clients. The client-server architecture can be organized as a tree, i.e., a client can act as a server
to other processes. In many applications the client-server architecture is used to separate the data
stored in the server from the client user applications.

The agent-manager roles are frequently used in network management. A process that
provides a direct access to a hardware component is called an agent. The manager uses the agent's
services to access the hardware. Agent and manager roles can be nested. To access the hardware,
an agent may actually use another agent. Furthermore, based on the operation, a process can act
both as an agent and as a manager .

The peer-to-peer architecture removes all role semantics. It refers to two communicating
processes.

2.6.2 Asynchronous vs. Synchronous Execution

Most conventional programming languages have a single execution thread. If the process
state is modeled as a piece of memory, a sequence of method invocations result in a sequence of
changes in the process state. Once invoked, each method assumes full control, causes some state
change, and terminates. A method call usually corresponds to a line of code where the method
returns a value and control is moved to the next line. Such a method invocation is usually called
synchronous.

If a method call can cause state changes in a process after it returns it is called asyn-

chronous. True asynchronous execution requires the spawning of other processes that somehow
share the same state.

Asynchronous behavior can be implemented in a single threaded language. Usually a
main control loop is used that invokes a series of methods in a loop. Some of these methods
result in the creation of Events which are queued in some bu�er. Other methods, when invoked,
process the bu�ers and deliver the events to their recipients. In this case, event delivery takes place
asynchronously.

2.7 Persistence Storage: RDBMS and OODBMS

2.7.1 RDBMS

The Entity-Relation (ER) model is well understood [27, 28, 29]. Like in the above dis-
cussion an entity is a thing which can be distinctly identi�ed, and a relationship is an association
among entities. In the ER model, relationships themselves are entities. Properties of entities are
described by attributes that can have arbitrary universe of discourse.

The entity-relationship model distinguishes meta-data and data.

In most implementations a three-schema architecture is used for metadata modeling lan-
guages:

� Data De�nition Language (DDL), used to de�ne the global schema;

� View De�nition Language (VDL), used to de�ne the external schema;

� Storage De�nition Language (SDL), used to de�ne the internal schema for persistent storage.

A Data Manipulation Language (DML) is provided to manipulate the Data. The DML can
be a graphical or command-line driven. It can be a high level query language or provide interfaces
to programming languages.

The entity-relationship model is implemented by Relational Database Management Sys-
tems. The correspondence between the model and its implementation is summarized below:

18

Entity Database Table
Instance Table Row
Attribute Type Column Type
Entity Attribute Table Column
Entity Name Table Name
Instance Identity Primary Key Column of Table
Relationships A secondary key column in a table, containing the

primary key of relationship participant

Major RDBMS providers include Informix, Ingres, Oracle, and Sybase.
There are certain shortcomings of the RDBMS implementations. These are:

� Relationships are not implemented as entities, but rather as a reference to a primary key;

� There is no semantic support to identify the relationship type;

� There is no explicit construct for object identi�cation. The primary key is just any other
column with extended semantics;

� Attributes are restricted to atomic values. To represent sets one needs to resort to using a
secondary table. To represent ordered lists, a separate column is needed to maintain the order;

� Complex entities, with many relationships and complex attributes, must be decomposed to
many tables, incurring access overhead.

Finally there are certain shortcomings of the entity-relationship model itself:

� There is no behavior description;

� There is no good model for cardinality and semantic constraints;

� There is no support for event management;

� There is an inherent impedance mismatch between the entity-relationship model and program-
ming languages.

2.7.2 OODBMS

Object-oriented databases have evolved as an extension of object-oriented methodology.
As yet, there is no formal object database model, but just manifestoes [25, 33]. The correspondence
between basic OODBMS and RDBMS implementation constructs are summarized below:

Class Database Table
Instance Table Row
Attribute Type Column Type
Class Attribute Table Column
Class Name Table Name
Object Identi�er Primary Key Column of Table

Some OODBMSs provide association constructs.
Most RDBMS providers have started to provide OODB constructs. Other OODMS

providers include GemStone, Matisse, O2, ODI's ObjectStore, Objectivity, Ontos, and Versant.
There are two main implementation approaches to OODBMSs.
The �rst approach extends an object-oriented language with persistence. A base class is

used to implement methods related to persistence. Pointers are replaced with an overloaded Link

construct that has similar syntax as pointers. Links have the additional capability of seamlessly
retrieving an object from disk if the object is not in memory. Other persistent list and set attributes
are provided in an extension library that the user can treat as part of the language. Most commercial
databases use this approach.

19

This approach simpli�es the integration of persistent storage into an application and re-
moves the impedance mismatch that the ER model su�ers from. However, in the absence of standard
language extensions, the apparent seamless integration makes the application dependent on a par-
ticular vendor's language extensions. Furthermore, in this approach the granularity of the save and
retrieve operations is usually limited to object instances. There is no support for retrieving only a
subset of attributes of an object.

The second approach is more closely tied to the relational model. The database is in-
dependent of the programming language, but, provides an interface to save and retrieve objects.
This approach makes it easier to treat persistence as an independent module and also provides
constructs for saving and retrieving parts of an object. However, by nature of the design, there
is an impedance mismatch between the persistence constructs and the programming language. All
database operations have to be stated explicitly by the programmer.

The overall OODBMS model has a number of shortcomings:

� There is no relationship semantics;

� The behavior description is too unstructured;

� There is no inherent support for event management;

� There is no or limited support for aggregation and views;

� There is no standardized query language.

In the absence of more structured behavior description languages, it is unlikely that a
standardized query language will ever emerge.

2.7.3 Choosing an OODBMS

There are many more services that a database management system has to provide. These
are:

� Transaction management;

transaction logs, shared transactions, long transactions, check-pointing, check-out and check-in
support, atomicity, consistency.

� Concurrency management;

optimistic and pessimistic locking, deadlock detection, version control.

� Security management;

positive and negative authorization at class or instance level, users, user groups.

� Distribution support;

migration, directory services, distributed indexes, location independence, local autonomy.

� Architecture independence;

hardware, operating system, programming language independence.

� Schema evolution;

meta-data/data independence, adding, deleting, and modifying meta-data without losing ex-
isting data.

� System management.

replication versioning, back-up and recovery.

Last but not least databases must have good performance.
For a more complete treatment of object database features the reader is referred to [26, 32].

Some database comparisons can be found in [30, 24], however, the reader should always look for the
most recent evaluations.

20

2.8 Functional Categories

OSI/NM Forum has identi�ed seven functional categories for network management4.
These categories were summarized in the Introduction and can be used for many other applica-
tion areas. We now list object model requirements that result from these functional categories.

2.8.1 Con�guration Management

In all applications a logical model for a physical system must be created. The logical
model must capture the entities in the system, their state, their inputs, outputs, interrelations, and
behavior.

Tools are needed to instantiate these entities and to create sets of instances with particular
interrelationships.

The logical model captures the possible behavior of objects. Other constructs are needed
to control the behavior of collections of objects.

Logical counterparts of sensors and actuators are needed to specify the event and control
ow. In particular constructs are needed to specify time and event driven evolution of the system.

2.8.2 Fault and Event Management

All physical systems have normal and degraded modes of operation; in the limit they fail.
Constructs are needed to specify the di�erent modes of operation of a system. An event

creation mechanism is needed for identi�cation of possible faults and performance degradation.
Other fault recovery constructs are needed that ensure that the system remains in normal mode and
that provide graceful recovery in case of faults. Finally an event noti�cation mechanism is needed
to propagate events to fault recovery constructs.

2.8.3 Performance Management

A given system has to satisfy many, possibly conicting, performance requirements. Con-
structs are needed to de�ne an evaluation criterion or evaluation criteria as needed.

Other constructs are needed to observe the behavior of a system and measure its perfor-
mance based on evaluation criteria.

Finally constructs are needed that can adapt the system to changing evaluation criteria
and optimize its behavior.

2.8.4 Access and Security Management

An application has many users. It is crucial to restrict the access level of individual users.
Users may be allowed to access certain types of entities only, certain instances only, or speci�c
operations of speci�c instances only.

2.8.5 Financial Management

The users of the system are required to pay for the rendered services. Constructs are
needed to track system usage.

2.8.6 Resource Management

Constructs are needed to provide an inventory of all objects in the physical system and to
administer their maintenance schedules.

2.8.7 Planning and Design Management

Macroscopic planning decisions require the ability to specify, simulate, and evaluate alter-
native physical system con�gurations and control policies.

4More recent work emphasizes the �rst �ve categories only.

21

2.9 Formal Modeling Methods

In Section 2.2 we discussed the trade-o� between the expressive power of a formalmodeling
syntax and the possibility of analyzing a problem modeled in that syntax.

Although most of this thesis is primarily concerned with facilitating the speci�cation and
evaluation of control architectures through simulation, veri�cation of control algorithms is always
preferable. Simulation exercises the behavior of the system for a subset of possible inputs; veri�cation
exercises it for all possible inputs, and can make absolute statements about the system.

Most large systems can not be veri�ed. However, partial veri�cation of a system is always
an option. In this case the challenge is to abstract the veri�able subset of a system in a formal
manner, such that the veri�ed abstraction still has a well-de�ned relation to the actual system.

In this section we provide an overview of some existing formal speci�cation models and
their use in control and veri�cation of systems.

2.9.1 Automata

The least expressive yet most decidable and most popular formal syntax is that of Finite
State Machines (FSM).

A FSM is a �ve-tuple: (Q;�; q0; fqfg; �), where Q is a �nite set of states, � is a �nite set
of possible events, q0 is the initial state, fqfg is the set of possible �nal states, and � : Q �� ! Q

is a partial function called state transition function.

To model a real system using FSMs, one sets up a correspondence between the possible
states of the system and the states of the FSM. The state transition then de�nes the behavior of
the system in response to certain events.

The language generated by a FSM is de�ned to be the set of all strings of events, called
traces, that can be generated starting at the initial state and ending at a �nal state.5

FSM representations have been used to express the Discrete Event Control of systems.
Most existing work follows a language approach. Given a desirable subset of the language generated
by an automaton, certain transitions of the automaton are disabled to restrict its language to the
desired subset [89]. The state based approach disables transitions to keep the automaton within a
desired subset of automaton states [87].

FSMs have been widely studied. In particular one can decide whether the language gen-
erated by two FSMs are the same, or if the language of an automaton is empty.

These results make FSMs suitable for veri�cation. If a complex system is modeled by a
FSM, one can create a second FSM modeling undesirable event strings. If the language intersection
of the two FSMs is empty, one can conclude that the complex system does not exhibit the undesired
behavior.

Analysis and veri�cation tools for �nite automata are readily available [95, 94].

FSMs can not represent continuous evolution. Several formalisms have evolved that extend
the FSM syntax with continuous components [74, 84]. Such extended FSM representations are called
Hybrid Dynamical Systems [78].

Deshpande summarizes, \Hybrid systems are continuous variable, continuous time systems
with a phased operation. Within each phase the system evolves continuously according to the
dynamical law of that phase, and when an event occurs, the system makes a transition from one
phase to the next. Thus, hybrid systems display both discrete and continuous behavior. The discrete
behavior consists of abrupt transitions between phases, and the continuous behavior consists of
smooth ows within phases. The terms \modes," \locations," or \places" are also used to refer to
the phases of operation.

The state of the system can be thought of as a pair|the discrete state and the continuous
state. The discrete state identi�es a ow, and the continuous state identi�es a position in it. For a
transition to take place, the discrete state and the continuous state together must satisfy a condition
that enables the transition. Once a transition occurs, the discrete state and the continuous state
are changed abruptly. Then, until the next transition, the continuous state evolves according to the

5There are many other avors of FSM and FSM language de�nitions [86, 76].

22

ow identi�ed by the new discrete state. Thus, the discrete dynamics and the continuous dynamics
inuence each other" [77].

Most OMS applications are hybrid systems. The control of a continuous state dynamical
system or plant is often organized in several layers. At the lower layers, the plant is regulated in
the traditional manner: a controller continuously monitors the plant state or output and selects the
real time control input. At the upper layers, event-based supervisors are used that issue symbolic
commands and receive symbolic responses indicating either the successful execution of the command
or the occurrence of an error condition.

Unfortunately very few analytic results are available for hybrid systems and many ques-
tions concerning hybrid automata are proving to be undecidable.

Most analysis tools rely on proper abstraction of the continuous components of the model
and provide only partial system veri�cation. Simulation is used to explore the full behavior of the
automaton.

2.9.2 Petri-Nets and Data Flow Diagrams

Some of the ideas of the Object Model constructs proposed in this thesis are borrowed
from Petri-Nets and Data Flow Diagrams.

A Petri Net is a four-tuple: (P; T;M;A), where P is the �nite set of places, T is the
�nite set of transitions, M is the initial marking of the Petri Net, and A is two sets of directed arcs
Ai � P �T and Ao � T �P . Ai describes the arcs from places to transitions, Ao describes the arcs
from transitions to places.

The state of a Petri Net at any instance is given by its mark, which is the number of
tokens in each place. A transition ti can �re if all places having an arc to ti have a token. When a
transition �res, it removes one token from each of its input places, and places one token in each of
its output places, places to which that ti has an arc.

There are many ways of de�ning Petri Net languages. It is known that they properly
contain FSMs, and that they overlap with context free grammars. The question whether a mark is
reachable for a given Petri Net is decidable, yet the question whether two Petri Nets have the same
reachability set is undecidable.

Petri Nets have found extensive use in the industry and academia. They are widely used
in many applications such as modeling of operating systems, job shops etc. Research in Petri Nets
is still very active.

Data Flow Diagrams are widely used to describe the functional model of complex systems
[5, 16, 18] in a graphical notation.

A Data Flow Diagram is given by a triple: (P;D;A), where P is a set of processes,
representing some data transformation operation; D is a set of data stores, representing conceptual
persistent data storage elements; and A is a set of data ow arcs, carrying data among processes
and data stores. The traces of directed arcs between processes and data stores describe the sequence
of transformations a unit data undergoes.

2.9.3 Other representations

Many other notational techniques exist for formal speci�cation of behavior.

Calculus of Communicating Sequences (CCS) [85], Communication Sequential Processes
(CSP) [79] and Finitely Recursive Processes (FRP) [82] have a di�erent perspective than FSMs.
The main concept they model is not the state of a device, but rather a process that has certain
characteristics. This perspective has a more intuitive appeal if one wants to model processors that
run in parallel.

Estelle, a name derived from Extended Transition Language, is a standardized formal
description technique for the speci�cation of communication protocols and services [92].

LOTOS, a name derived from Language of Temporal Ordering Speci�cations, is a stan-
dardized formal description technique which speci�es communication systems by de�ning the tem-
poral relations between its externally visible interfaces [93].

23

SDL, Speci�cation and Description Language, is a language used for formal speci�cation
of real-time, interactive, distributeed systems. SDL has been used for partial speci�cation of many
telecommunication systems [91].

DEVS (Discrete Event Dynamical System) [75, 80, 88, 90] formalisms are also widely used
in the computer science and arti�cial intelligence communities.

2.10 Sample Software Frameworks

In this section we summarize three software frameworks. Ptolemy is a data ow based
simulation tool intended for signal processing applications. COSPAN is a veri�cation tool used for
veri�cation of discrete event systems. CSIM provides basic scheduling constructs for modeling event
driven evolution of processes.

None of these frameworks is suitable for implementation of object management systems,
however, they may be used as components in some applications.

2.10.1 Ptolemy

Ptolemy is an object-oriented data ow based simulation tool [97]. Ptolemy objects, called
stars, are represented by inputs, outputs, and input-output maps. In Ptolemy, object interaction is
governed by messages that are propagated across input-output connections. The Ptolemy scheduler
implements timely propagation of messages.

Ptolemy domains are used to capture the various evolution modes of objects. Object
evolution can be driven by time, by events, by data tokens or by a combination thereof.

A message queue domain is provided to exchange messages between objects that are not
connected, but the semantic support for this domain is limited. Unconnected objects share a blank
piece of memory that they can use arbitrarily.

Constructs do exists to dynamically alter the input-output connections between objects
during a simulation run. However, these constructs are not well-integrated into the conceptual
framework.

Ptolemy is particularly useful for speci�cation and simulation of data ow among a static
con�guration of objects. It is not suitable for representing large number of objects with evolving
relationships.

Object con�gurations are speci�ed with a graphical editor, and monitor objects are used
to observe the system output in graphical or �le format.

Ptolemy does not have a well-de�ned and e�cient interface for interacting with other
simulationpackages. Other constructs absent in the current implementationof Ptolemy are: dynamic
activation of monitors, persistence of simulation state, and distribution support. Veri�cation is not
within the scope of Ptolemy.

Ptolemy is an active system still under development and some of these shortcomings may
be addressed in future releases.

2.10.2 COSPAN

COSPAN is a general-purpose software tool for coordination-speci�cation analysis. It
provides an automaton description syntax and a set of operators to combine automata. The physical
system is described by a set of automata, with language LP . The desired behavior of the physical
system is described by a second set of automata with language LD. Conceptually, COSPAN veri�es
the correctness of the statement:

LP \ (LD)C = ; (2.1)

Here (LD)C denotes the complement of LD, i.e. the undesired behavior.

Har'El and Kurshan, the main developers of COSPAN, claim, \Typical applications
of COSPAN include software development and hardware development for the implementation of
control-intensive structures such as communication protocols; analysis of circuits (with arbitrary

24

feedback) at transistor or gate-level for race conditions and logical correctness; analysis of array pro-
cessors for functional correctness; logical analysis of discrete-event models in economics, medicine
and strategic planning.

Logical analysis consist of symbolic testing of a system for quite general user-de�ned
behavior (not simulation or execution of the system); as such, the analysis constitutes a mathematical
proof (or disproof) of the stated behavior of the system" [95].

2.10.3 CSIM

CSIM [96] is a general purpose, C-based, process-oriented environment, designed to sim-
ulate a discrete event system. It is commonly used to simulate the behavior of data communication
networks and VLSI designs.

The primary unit of execution in CSIM is a process. Processes are initiated by other active
processes. Upon initiation, a process executes independently of its initiator. The main process is
sim and does not require initiation.

Processes can interact by sending, receiving, broadcasting, and setting events. A process
can wait for an event, or put itself on hold for a speci�ed time interval.

CSIM provides a quasi-parallel environment, i.e., simulation time does not advance until
all processes which are scheduled for the current time are activated, exercise their behavior, and are
re-scheduled for a later time. However, the real or cpu time needed per unit of simulation increases
with the number of processes present in the simulation.

There are experimental versions of CSIM that run on parallel machines. However, a
distributed version of CSIM is not available.

2.10.4 Other

Most standard formal modeling languages such as Estelle, SDL, and LOTOS have im-
plementations that are commercially or publically available. Current available implementations do
not provide the necessary interfaces that would facilitate their e�cient incorporation into a larger
simulation framework.

2.11 Conclusions

We have summarized desirable software features, semantic modeling constructs; software
engineering processes; object-oriented analysis, design, and programming methodologies; relational
and object database management systems; state machine representations, Petri-nets, and data-
ow diagrams; and software platforms that provide implementations of these various component
technologies.

The applications we address in this thesis require the integration of all these component
technologies into one uniform framework.

The OMS approach organizes and extends these technologies around an austere object
model and an end-to-end development process.

25

Chapter 3

Sample Problems

Object Management Systems (OMS) are object-oriented software systems used to simu-
late, evaluate, and control large-scale physical environments. Examples of such environments are
transportation networks, telecommunications networks, power distribution networks, air tra�c con-
trol, and management information systems. These environments are heterogeneous, dynamic, and
distributed.

In this chapter we provide an overview of three application domains: automated highways,
power distribution automation, and network management.

3.1 Automated Highway Systems

Highway congestion is imposing an intolerable burden on many urban residents. It is
estimated that lost productivity due to tra�c congestion costs $100 billion each year in the United
States. Alongside congestion, safety continues to be a prime concern. In 1991, 41,000 persons died
in tra�c accidents, and more than 5 million persons were injured. The National Safety Council
estimates that in 1992, the cost of accidents totaled $157 billions.

Intelligent Vehicles and Highway Systems (IVHS) is a comprehensive program initiated
by the U.S. Government under the Intermodal Surface Transportation E�ciency Act of 1991 to im-
prove safety, reduce congestion, enhance mobility, minimize environmental impact, save energy, and
promote economic productivity in the transportation system. The IVHS program combines several
modern technologies, including information processing, communications, control, and electronics.
IVHS has the following sub-programs.

Advanced Tra�c Management Systems

ATMS provides subsystem integration of tra�c management and control systems, and performs
real-time tra�c control to respond to dynamic tra�c conditions.

Advanced Traveler Information Systems

ATIS acquires and analyzes information about transportation network dynamically, and com-
municates advisory information to travelers.

Advanced Vehicle Control Systems

AVCS uses computers, communications, and control systems in the vehicles and the highways
to enhance vehicle control.

Commercial Vehicle Operations

CVO improves the safety and e�ciency of commercial vehicle and eet operations.

Advanced Public Transportation Systems

APTS integrate public transportation with vehicle-highway systems by using component tech-
nologies from other functional areas.

26

Outside the U.S., there is substantial IVHS activity in Europe under the PROMETHEUS1

and the DRIVE2 projects, and in Japan under the RACS3, AMTICS4 and VICS5 projects.
Modeling and simulation have been identi�ed as important steps in realizing these trans-

portation initiatives. The IVHS strategic plan [42] requires modeling and simulation in the following
areas: urban tra�c network models, tra�c system models, vehicle-road models, driver-vehicle mod-
els, tra�c models with dynamic tra�c assignment, driving scenario simulation, and advanced vehicle
control systems (AVCS) architecture simulation. Such modeling and simulation environments would
address the following seven functional categories:

Con�guration Management|
the ability to specify a highway network con�guration, the tra�c patterns on it, and the vehicle
and tra�c control strategies;

Fault Management|
the ability to detect faults and signi�cant events such as accidents and congestion, and to
respond to them with graceful degradation of highway performance and with automatic fault
recovery;

Performance Management|
the ability to track, evaluate, optimize, and �ne-tune the transportation system performance;

Planning Management|
the ability to specify and simulate alternative highway and tra�c con�gurations and control
strategies for the purpose of planning;

Resource Management|
the ability to provide an inventory of all highway and vehicle resources and to schedule them
for preventive maintenance;

Accounting Management|
the ability to specify tolls and taxes, and to account for highway usage;

Access and Security Management|
the ability to restrict access to information about the transportation system to authorized
users only.

It is important to distinguish the actual control and communication design of an automa-
tion strategy from its simulation and evaluation. The mandate of the automation strategy is to
provide cheap, safe, speedy, comfortable, and clean transportation. The objective comparison of
proposed alternatives is an independent task.

A software framework in which alternative IVHS strategies can be speci�ed, simulated,
and uniformly evaluated is crucial for objective comparison of the proposed alternatives. The simu-
lation framework would provide con�guration, fault detection, performance evaluation, and planning
functionalities. The requirements of such a simulation framework are discussed in Section 3.1.2

3.1.1 Underlying Concepts

The organization of highway automation will embody the following concepts:

� layered control architecture,

� coordination of distributed control agents,

� combined discrete and continuous dynamical systems, known as hybrid systems, and their
control and veri�cation,

1Program for European Tra�c with Highest E�ciency and Unprecedented Safety
2Dedicated Road Infrastructure for Vehicle Safety in Europe
3Road/Automobile Communication System
4Advanced Mobile Tra�c Information and Communication System
5Vehicle Information and Communication System

27

Layered Control Architecture

In the layered control architecture proposed by Varaiya and Shladover [41, 39], vehicles
perform simple maneuvers such as merging into platoons, splitting from platoons, following the
leader, changing lanes, and entry and exit. A vehicle executes complex end-to-end trajectories by
performing a sequence of such simple maneuvers. E�cient transportation throughput is achieved
by tuning tra�c parameters such as platoon size and vehicle speed. The control strategies for such
behavior are hierarchically organized in four layers: regulation layer, coordination layer, link layer,
and network layer. These layers are shown in Figure 3.1.

planning &

vehicle

Neighbor NeighborVehicle

maneuver
complete

sensor
signals

order
maneuver

control
signal

coordination
messages

path, speed,
pltn size

flow, density,
incidents

Roadside

Vehicle

link

coordination

dyanmics

regulation

Network

system

system

routing table traffic info.

Figure 3.1: Layered Control Architecture.

Given a maneuver to perform, the vehicle follows a control strategy that regulates its
dynamical behavior to a trajectory that realizes that maneuver. Such control strategies constitute
the regulation layer. The maneuver to be followed by a vehicle at a given time is determined by
coordinating with other vehicles in the neighborhood. The control strategies used for such coor-
dination constitute the coordination layer. The control strategies adapt their behavior based on
information about highway tra�c conditions. The tra�c conditions on highway segments are moni-
tored and controlled by road-side control elements, organized in the link layer. Finally, information
from individual highway segments is aggregated, and end-to-end routing and congestion control is
accomplished in the network layer.

The framework should allow the speci�cation of this and other layered control architec-
tures.

Coordination of Distributed Control Agents

The layered scheme described above yields a distributed control strategy since each vehicle
and each highway segment is responsible for its own control. At the same time, e�ective coordination
of these distributed control agents is essential for e�ciency and safety. The agents coordinate by
following simple heuristic rules. For example, when a vehicle senses another vehicle ahead of it, it
requests a merge with it to form a platoon. Forming a platoon increases the e�ciency of the highway.
However, if the leading vehicle is already a part of a large platoon, it may refuse the merge request
since inordinately large platoons are potentially unsafe. Such coordination strategies are modeled
using a Discrete Event System (DES) approach. The control agents communicate the discrete events
to each other based on coordination protocols. Thus, communication mechanisms are essential both
for gathering sensory information and for executing these coordination protocols.

28

The framework should allow the speci�cation of sensors, transmitters and receivers, and
of communication protocols.

Veri�cation and Control of Hybrid Systems

Whereas the coordination strategies deal with discrete events, regulation strategies deal
with continuous evolution. For example, if a merge maneuver is to be executed, then the regulation
layer controller must �rst accelerate the vehicle, close the distance between itself and the vehicle
ahead of it, and �nally decelerate and follow at the same speed while maintaining a safe distance in
between. Acceleration and braking, speed, and distance are continuous parameters that evolve in
continuous time. Thus, the discrete coordination event corresponding to the merge command and
the continuous regulation law corresponding to the merge trajectory must be dealt with together.
A hybrid system approach is used to model the combined discrete and continuous behavior.

The framework should allow the speci�cation of both discrete and continuous behavior.

3.1.2 Framework Requirements

In this Section we list the functional, modeling, and software system requirements for a
software framework that would facilitate the speci�cation, simulation, and objective evaluation of
highway automation strategies. Part of the functional and modeling requirements are derived from
the MITRE report [40].

Framework Users

The simulation framework will have several categories of users. These are:

� Control and Communication engineers;

These users design, implement, and test individual control and communication components.
They need the ability to de�ne clear input and output interfaces for their components, and a
straightforward mechanism for integrating their components into the overall system.

� System analysts;

These users test and evaluate automation strategies. They need the ability of integrating
various control and communication components to evaluate their collective performance.

� System Planners.

These users select the automation strategy for deployment based on system analyst's evaluation
results.

Con�guration Management Requirements

The framework has to provide the following con�guration management functionalities to
address the users' needs.

� Ability to represent arbitrary highways;

A set of highway objects must be provided for the creation of highway networks. A grammar
or set of rules is needed that describes the valid ways of interconnecting highway objects.

� Ability to represent incoming and outgoing tra�c patterns;

Extensive work has been done for studying tra�c patterns for certain highways. A mechanism
must be provided to incorporate such information into the simulation. Such tra�c patterns
may also be generated by urban roadway simulators. Interoperability with other simulation
packages is essential.

� Ability to create vehicles consisting of many components;

Vehicles must be represented as composite objects. Di�erent control architectures will select
a di�erent set of automation components for vehicles.

29

� Ability to create roadside controllers consisting of many components;

Di�erent control architectures will select a di�erent set of automation components for the
roadside. Therefore a composite roadside control mechanism is needed.

� Ability to have di�erent types of vehicles on the highway;

Not every vehicle on the highway will consists of exactly the same components. The dynamics
of a truck will be di�erent from that of an automobile.

� Ability to represent inter-vehicle and vehicle-to-roadside communication; and

Most automation strategies will employ some sort of inter-vehicle and vehicle to roadside
communication.

� Ability to de�ne tra�c rules.

A high level speci�cation language is needed to specify tra�c rules such as \no lane change in
this section". Any violations of these rules must be recorded by the framework.

Fault Management Requirements

The simulation framework does not provide fault recovery. Fault avoidance and fault
recovery are part of the control and communication architecture design.

The simulation framework provides fault detection and fault creation mechanisms:

� Ability to detect accidents;

Accidents and component failures are part of the physical system. The framework has to be
able to detect accidents and take some action upon accident detection.

� Ability to create accidents.

Since the \Falling Rock Zone" is unlikely to be an explicit part of the simulation framework,
there should be a means of inducing accidents and equipment failures, in order to evaluate
how various automation strategies cope with them.

Performance and Planning Requirements

The evaluation criteria for automation strategies are multidimensional, including utiliza-
tion, travel time, safety, comfort, and implementation complexity, and cannot be speci�ed a priori.
The framework must support:

� Ability to collect arbitrary statistics;

There should be a straightforward mechanism for collecting statistics about system state.

Modeling Requirements

Based on functional requirements we summarize a minimal list of entities that must be
present in the simulation framework. Any highway automation architecture would depend on the
existence of these entities.

� Highway representation;

Lanes, lane splits, highways, highway splits, entries, exits are needed to represent highways.
Geometric representations for curvature, incline and tilt are needed for realistic simulations.

� Vehicle representation;

Vehicles and specializations such as car, truck, bus etc., are needed.

� Control components;

Microsimulation takes place at vehicle component level. Representations of control components
such as lateral and longitudinal controllers are needed.

30

� Sensors;

Any automation strategy must rely on sensory input data to observe system state.

� Communication devices;

An automation strategy is likely to include communications, at least at the roadside control
level.

� Monitor components;

The simulation framework is intended for evaluation. Monitors provide an interface between
the simulation and evaluation components.

Concepts such as platoons and carrier plates speci�c to automation architectures will be
added to this list as they emerge.

Validation and Deployment Requirements

The framework simulates logical models of physical objects. The framework should provide
a clear path between logical and physical representations:

� Ability to validate logical models;

The accuracy of simulation results are limited by the quality of component models. It should
be possible to test their accuracy against their physical counterparts.

� Deployability of component speci�cations;

In many cases the components used in simulation will correspond to planned or experimental
hardware. A migration path is required to convert the software speci�cations into hardware
elements.

Software System Requirements

In the introduction we argued that modularity, good performance, scalability, openness,
and robustness are desirable characteristics for any software system. In this application these re-
quirements appear in the following form:

� Ability to associate physical and logical representations: Modularity;

The framework models numerous physical components. Since the \components" have to be
interchangeable, their implementation, i.e., software encoding, must be self-contained.

Each such \logical" component will be deployed as a \physical" component as the IVHS system
matures. This modularity will also facilitate model validation and deployment.

� Ability to add new components to the system with minimal code rewrite: Openness, Modu-
larity, Robustness;

New vehicle and roadside components will be added to the framework as work progresses. The
incorporation of such new components should require minimal rewrite of any other existing
software.

Since separate groups may implement various control agents and since things won't work
perfectly when these agents are �rst integrated in one system, the simulation framework has
to enforce strict boundaries between di�erent control agents. These boundaries can then be
used to identify faulty control agents and to provide fault identi�cation.

� Ability to collect arbitrary statistics during simulation: Openness, Modularity;

Unless the full state of the system is visible, arbitrary statistics can not be collected. As part
of evaluation support, the framework should be able to trace the behavior of any subset of
objects for future review and replay. Such tracing information can also be used for animations
and for virtual reality display devices to measure driver responses.

There are many existing software packages for processing statistical data. The framework
should provide an open interface to interact with these packages.

31

� Ability to run simulations with acceptable performance: Performance;

For most purposes, the simulation does not have to be real-time. Indeed, no architecture can
guarantee an upper bound on the simulation time of a given object, since this time greatly
depends on the amount of detail in the object model. A vehicle's position can be calculated
simply as the third integral of its jerk, or, many state variables can be introduced to take the
entire engine into account.

The simulation framework, however, does impose a lower bound on the simulation perfor-
mance. Assume all vehicles move forward by one meter at each time increment with no
further behavior. At each time increment the framework has to obtain these displacement val-
ues for each vehicle and update their position on the highway. The time taken to perform such
\bookkeeping" operations impose a lower bound by the framework for a single time increment.

The deployed system, on the other hand, has to satisfy many real-time requirements. A real-
time operating system is needed within each vehicle and on the roadside to coordinate all
system components. This task is beyond the scope of the simulation framework. However, one
should keep in mind that the algorithms embedded in each system component have to meet
real-time requirements in the target hardware they will be deployed on.

� Ability to adjust simulation granularity: Modularity, Openness;

The framework should allow the users to specify di�erent levels of physical models to adjust
model granularity. The framework is intended for micro-simulation, however, simulating de-
tailed engine dynamics during ow calculations in a 500 mile highway is not very productive.
The framework should also allow the user to adjust the granularity of time evolution. Time
increments for vehicle position updates, or statistics collection should be variable.

� Ability to simulate up to 100.000 vehicles: Performance;

Not every simulation run will encompass 100.000 vehicles. But, system level simulation runs
must be capable of supporting large number of vehicles.

� Ability to specify system behavior in a straightforward language: Ease-of-use;

The behavior descriptions have time and event driven components. Suitable languages are
needed to express time and event driven behavior.

3.1.3 Distinguishing Problem Characteristics

We summarize framework requirements into the following four criteria that dictate certain
design decisions:

� The modularity requirements dictate that we follow the object-oriented paradigm for system
speci�cation and implementation;

� The openness requirements and the need to collect arbitrary statistics dictate that the simu-
lation state be fully visible and can be saved in a persistent storage medium;

� Performance and modularity requirements dictate that simulation is distributed; and

� Inter-vehicle communication requirements eliminate static block diagram based simulation
environments.

A number of component technologies were discussed in the previous chapter. These tech-
nologies provide partial solutions, yet none meets all requirements. Object oriented methodology
provides a start, but is to broad to be a solution. Databases meet some of the persistence re-
quirements, yet, they do not provide any semantic support nor any application level speci�cation
constructs. Formal modeling methods are useful, but limited unless they are part of a broader
framework.

No existing simulation environment satis�es all four criteria; nor do they have a su�ciently
open architecture that allows their proper customization to the application domain.

Object Management Systems, discussed in subsequent chapters, are designed to meet these
criteria in one integrated uniform framework.

32

3.2 Power Distribution Systems

The electric utility industry throughout the world is undergoing fundamental changes.
After decades of continuing decline in the price of electricity, the 1970's mark the beginning of
escalation of electricity costs. As a result, the electric power industry is being signi�cantly restruc-
tured in order to adapt to increased competition, a harsher �nancial climate, new technologies, and
heightened environmental concerns. Privatization of the power industry is a fact in England, Wales,
Norway, and Chile, and in the US, it is being planned.

Two noteworthy features of this restructuring are:

� Organizational changes;

Internal reorganization of utility companies to improve accountability and to encourage en-
trepreneurship; the entrance of independent power producers; and growing reliance on the part
of regulatory authorities on market forces as a means to greater e�ciency.

� Move to di�erentiated services.

A reorientation of the utility industry's strategic mission from one of providing uniformly high
quality power to all customers, to one, in which customer needs are assessed and services are
tailored to match customer market segments.

Potential areas of major performance gains as a result of restructuring include:

� Reduced and deferred capital expenditures through better planning and equipment utilization;

� Reduced generation capacity expansion and fuel costs through greater use of wheeling, better
coordinated inter-�rm economic dispatch, and demand management; and

� Increased revenues through an expanded set of value-enhanced and di�erentiated services
matched to customer needs.

Major performance improvements in power system operation can be achieved by extending
automation to the level of lower voltage distribution systems and all the way to consumers. Only
such automated distribution systems can accommodate future expansion of enhanced demand-side
management and customer service. It is estimated that billions of dollars could be saved by operating
the distribution networks more e�ciently [51].

A comprehensive list of distribution automation functions is presented in [50]. Tradition-
ally, automated power distribution network management functions are grouped under the following
categories [45]:

� Supervisory Control and Data Acquisition (SCADA);

Normal operation SCADA functions are: feeder recon�guration to perform load balancing
and loss minimization; and Voltage and Var6 control through capacitor switching, voltage
regulation, and reactive power control.

Emergency response SCADA functions are: protection through adaptive relaying; feeder
switching and sectionalizing; and customer restoration.

� Demand Side Management (DSM); and

DSM functions include power quality control, direct load control, remote metering, real-time
pricing, priority service, and customer service.

� Automated Mapping (AM), Facilities Management (FM), and Geographic Information Sys-
tems (GIS).

AM/FM/GIS functions include maintenance and work order management.

6Var, i.e., Reactive power is discussed in Section 3.2.1.

33

These domain speci�c functional categories can be reorganized under the seven functional
categories of Section 2.8. Normal SCADA operation functions correspond to con�guration man-
agement, emergency response SCADA functions correspond to fault management, DSM functions
primarily cover �nancial management, and AM/FM/GIS functions correspond to resource manage-
ment.

Power distribution management operations and their implementation are current topics of
research. The realization of these performance gains requires a vastly expanded capability to monitor
and control the entire power network. The relative cost-e�ectiveness of proposed control, communi-
cation, and computing architectures (3C) must be assessed before costly hardware implementations
are started. As in IVHS, the objective comparison of the various architectures requires the exis-
tence of a uniform software framework in which these architectures can be speci�ed, simulated, and
evaluated.

Once the distribution network architecture and the appropriate services are selected, a
Distribution Network Management System is needed to manage the actual system. This applica-
tion needs to monitor and control large number of points with di�erent ownerships and di�erent
manufacturer peculiarities, spreading over wide geographic areas in the power distribution system.

3.2.1 Entities in the Distribution Network

In this section we present a summary of power distribution system entities and their basic
characteristics.

The purpose of the power distribution network is to distribute power from a generator to
the loads, i.e., customers. How the power ows through the distribution network is dictated by the
objects it has to ow through, the physical laws governing them, and the load demands.

For a distribution network, the following assumptions are made:

� All voltages and currents are sinusoidal;

� !, i.e, the frequency is �xed;

� power is delivered to a main distribution center, and then, it is radially distributed through
feeders and laterals to various customers; and

� the transients of the distribution network are not relevant.

In a power distribution system, exact state information about every point in the network
is generally not be available. Some, hopefully su�cient amount of measurement data is used to
calculate or estimate the complete state of the network. The state of the system at a point of the
distribution network is given by a proper subset of the following power parameters:

� Vmax, the amplitude of the Voltage;

� Imax, the amplitude of the Current;

� �, the phase shift between Voltage and Current, where � is positive if current is lagging;

� P , the amplitude of the real (or active) power owing radially towards ground, measured in
Watts, (W);

� Q, the amplitude of the reactive (or complex) power owing radially towards ground, measured
in VoltAmperes Reactive, (VAR); and

� R+ jX, the impedance looking radially towards ground.

Some of the relationships between these parameters are summarized below:

34

V (t) = Vmax cos(!t)
I(t) = Imax cos(!t � �)
p(t) = VmaxImax

2
(cos(�) + cos(2!t� �))

= P (1 + cos(2!t)) �Q sin(2!t)

Imax = Vmax=
p
R2 +X2 = 2

p
P 2 + Q2=Vmax

P = VmaxImax cos(�)

2

Q = VmaxImax sin(�)

2

� = arctanX=R = arctanQ=P
cos(�) = Rp

R2+X2

(3.1)

The value of cos(�) is referred to as the Power Factor. In power systems, it is desirable
to have negative � values. If current is leading the voltage, constant voltage levels at a load can be
sustained over larger power consumption intervals, without altering voltage levels at the generators
[43].

The distribution elements are best organized into three categories:

� Live Elements|all entities with power owing through them;

� Relay Elements|all entities that can perform operations on the Live Elements and/or on the
network in general; and

� Communication Elements|all entities that model the communication mechanism between the
management centers and live and relay elements.

The relay and communication elements are particular to the control and communication
architectures.

The live elements have the following common characteristics:

� At their input and output ports they have a value for: P;Q; V; I;R;X; and �;

Some of these values are measured, others are derived, some, such as the impedance, can be
known from the physical model. Some output ports may be grounded.

� they have a transfer function that maps their inputs to outputs;

� the input ports are generally connected to output ports of other devices; and

� they have a maximum current and maximum voltage they can tolerate.

The duration, possibly zero, these values can be tolerated and the possible results of exceeding
these values must be modeled.

Live Elements can be further categorized based on their number of terminals:

� Inline elements, such as lines and serial capacitors, are two terminal devices;

� Terminal elements, such as loads and generators, have one of their terminals grounded; and

� Connectors, used to create branches and to recon�gure the distribution network, are three-
terminal devices.

We now briey discuss each category. A hierarchy of live elements is given in Figure 3.2.
The details of these elements are discussed in [44].

35

Live Element

GeneratorSwitch

Load

Shunt Capacitor

Circuit Breaker

Terminal Element Connectors

Basic Connector

Binary Switch

Recloser

Sectionalizer

Fuse

Line

Serial Capacitor

Transformer

Inline Element

Figure 3.2: Hierarchy of Live Elements in Power Distribution

Inline Elements

Inline elements include lines, serial capacitors, transformers, and switches.
A Line is the basic copper wire with an associated length and impedance R+ jX.
Serial Capacitors are used to change the power factor of the system.
Transformers are used to step up/down the voltage along the network. Common char-

acteristics of single phase transformers include their gain, their input impedance, and their output
impedance. The gain is used to regulate voltage levels. Based on transformer type, it may be set
manually, remotely, or automatically by the transformer. The models for single-phase transformers
are straightforward. More complex models are needed for di�erent three phase transformers and
their possible connection types [48].

A Switch opens or closes a circuit and changes the network con�guration. The time,
manner, and reason these operations are performed change based on switch type. Some switch
types are:

� Fuse;

A fuse \burns", i.e., opens, when current through it exceeds a certain value for a certain
duration. A fuse can be opened manually. If it burns, it needs to be replaced manually.

Sectionalizer;

A sectionalizer can be opened and closed manually when the circuit is not live. Opening a
sectionalizer during power ow may result in arching. A sectionalizer can not be controlled
remotely.

Circuit breaker; and

A circuit breaker opens if current through it exceeds a certain value for a speci�ed time. A
circuit breaker can be opened and closed manually. Based on breaker type, it can be operated
remotely. Remote operation is achieved with a relay. Circuit breakers can be operated when
the circuit is live; arching is either suppressed by plasma, or it is avoided by opening the circuit
during a zero crossing of the current.

Recloser.

A recloser is like a circuit breaker, however, it opens and closes itself. Reclosure time and
algorithm may be �xed or it may be programmable.

36

Terminal Elements

Terminal elements have one free terminal|their second terminal is grounded. They in-
clude shunt capacitors, generators, and loads.

Shunt Capacitors are used to change the power factor of the system. Shunt capacitors
are switched in and out, based on power demand.

Generators are the source of power. Their characteristics include Pmax, Qmax, V gener-
ated, fuel type, cost, etc.

A Load is an aggregated entity. An entire lateral circuit, an apartment complex, a factory,
or a toaster oven can all be modeled as loads.

Loads come in various avors. Some loads are linear and can be represented as R+jX. For
most loads, the value R+ jX is time dependent. Other nonlinear loads may be directly dependent
on the voltage levels or on the price of power. Loads may have priorities. Di�erent control strategies
may be used to manage loads with various priority levels. To summarize all these characteristics
a load mixture can be represented by a function f(p; c; x; t), where p represents the load priority
mixture, c represents the control picked for each priority level, x represents the dependencies of the
load value on other parameters, and t represents the time dependency,

Connectors

Connectors are three terminal devices.
In a power distribution network, arbitrary number of branchings are possible at a given

point. However, each branch e�ects the power ow directly and has to be kept track of by numerical
algorithms [46] that solve for power parameters. A Basic Connector entity is used to model a
branch. A basic connector has one input and two outputs.

Binary Switches are used to change the network con�guration. A binary switch has two
inputs and one output. At any given time, at most one input terminal is connected to the output.
Special algorithms are needed to ensure that particular binary switch settings do not violate the
radial network assumption.

3.2.2 Problem Nature and Requirements

The users', management, deployment, and software system requirements of power distri-
bution systems are similar to that of highway automation systems and are not repeated here.

However, one distinguishing characteristic of the power system needs emphasis: a change
in power demand at one point of the distribution network may have immediate e�ects on the entire
distribution network.

Unlike the highway system, the distribution network does not exhibit any inherent charac-
teristics that simplify distributed simulation. Both the ow of power as well as certain management
decisions depend on detailed information deep into the distribution network.

A hierarchical control architecture is needed to simplify both the system management and
the system simulation. Figure 3.3 suggests one such possible hierarchy.

Since any aggregation of loads is still a load, at the main feeder level laterals may be
treated as loads. Such a lateral load can be viewed as an \agent" to the rest of the system. The
feeder layer \manager" can then send management requests to these agents. This manger-agent
relationship can be extended recursively as the system requirements warrant.

37

Lateral Lateral

Generator Live Elements Live Elements Live Elements

Lateral Load

VGenerator Live Elements Live Elements Live Elements

Load Load

VGenerator Live Elements Live Elements Live Elements

Feeder Level

Lateral Level

Service Level

Figure 3.3: Possible Network Hierarchy

3.3 Data Network Management Systems

In the preface of his book, Bapat observes, \The growth of networking technologies in the
past few years has been explosive. Digital communication networks, once limited to moving data
between computers in universities and research laboratories, now permeate almost everywhere. The
existing infrastructure of the worldwide telephone network, assiduously constructed over the last
hundred years to provide voice communication, is undergoing a radical transformation as digital
technologies are being deployed to provide improved quality and advanced services. In the world
tomorrow, it is not inconceivable that a combination of underlying transport technologies |wireless,
analog wireline, and digital �ber among them| will combine to form a worldwide network intercon-
necting o�ces, factories, residences, commercial establishments, transportation vehicles, and many
other entities. Technical reachability will impose almost no limit; actual reachability will only be
constrained by policy considerations such as security, con�dentiality, service deployment costs, and
service usage costs.

Clearly, the task of constructing communication networks of this magnitude is formidable.
As with all complex systems, the best way to approach the construction task in a manner that is
manageable and understandable is to decompose the system and create a model for it" [52].

Information resources supported by multi-vendor, multi-technology international networks
are a strategic and indispensable resource in today's corporations and government agencies. These
networks form the backbone of the information management systems of these agencies and enable
them to communicate between their various operation cites. Automated bank tellers, credit card
authorization systems, the ever-so-indispensable electronic mail and the World Wide Web all depend
on communication networks. The need to maintain these networks with a high degree of reliability
coupled with the need to adapt them to ever changing requirements is central to their users' success
and strategic competitiveness.

The heterogeneity of the network equipment and the complexity of the services they sup-
port makes the maintenance and continual modi�cation of the networks a daunting task. Network
Management Systems (NMS) are needed to con�gure, secure, control, monitor, analyze, document,
diagnose, and repair any of the components that constitute the network. A NMS must provide
complete and e�cient network management capabilities that are readily accessible to their users.

A plethora of services are available that provide varying degrees of latency and throughput
for data transmission, see Figure 3.4. Some of these services, such as Asynchronous Transmission

38

Mode (ATM) networks, Synchronous Optical Networks (SONET), and Switched Multimegabit Data
Service (SMDS) can actually be con�gured to meet speci�c service needs.

Bandwidth

Burstiness

SubDS0 DS0 DS1 DS3

High

Low Dedicated
Analog
Lines

Digital
Data
Services

Frac.
T1

T1

T3
SONET

ATM

SMDS
Frame
RelayX.25

Dial-up
Analog ISDN

Switched
T1

Figure 3.4: Available Network Services

3.3.1 Standards

To create some uniformity within which workable network management solutions can
be implemented, a number of standard organizations have come into existence. The two main
organizations are the Internet Activities Board (IAB) and the International Standard Organization's
OSI/NM Forum.

While there is disagreement about the direction of these network management standards,
the general assessment is that IAB's Internet protocol suit will provide the short-term solution
whereas OSI will eventually supersede it to become a broadly accepted and widely applicable stan-
dard solution [65].

Internet

The Internet suite of protocols were initially sponsored by the U.S. D.O.D. and D.A.R.P.A.,
and grew out of ARPANET, which at the time connected a few dozen computer systems. Rose ob-
serves: \The best term to use when describing the Internet protocols is focused. There was a
problem to solve, that of allowing a collection of heterogeneous computers and networks to commu-
nicate [...] The Internet researchers made open systems a reality by limiting the problem, gauging
the technology, and, by and large, making a set of well thought out engineering decisions" [65].

The Simple Network Management Protocol (SNMP) [55, 54] is now maintained by the
Internet Activities Board and has quickly become a de facto industry standard for managing local
area networks. SNMP provides an application framework which runs on top of Transmission Control
Protocol/Internet Protocol (TCP/ IP) [56], and User Datagram Protocol (UDP) [64].

OSI

Open Systems Interconnection/Network Management Forum is responsible for the devel-
opment of a broad set of network management standards. Unlike the Internet suite of protocols,
these standards are aimed at a very wide spectrum of applications.

The OSI standards include:

39

� The seven layer decomposition of the communication architecture [66];

These layers (physical, data link, network, transport, session, presentation, and application)
provide a widely accepted decomposition of the communication architecture.

� The Common Management Information Service (CMIS) de�nitions [70];

The de�nitions include the agent-manager roles for OSI network management elements and a
set of management operations such as get, set, create, delete, event-report, and generic actions.

� The Common Management Information Protocol (CMIP) communications standard [71];

CMIP is the OSI counterpart of SNMP and implements the services de�ned by CMIS.

� The seven functional categories of Section 2.8 [67]; and

The network management interpretation of these functional categories are discussed below.

� A standard set of managed object de�nitions [68];

A set of \managed objects", such as network, circuit, service, facility, and equipment, are
de�ned. These objects are organized in a class hierarchy. Their attributes, basic operations,
and containment rules are speci�ed. A naming convention, based on the containment hierarchy,
is developed.

Most of the OSI standards have evolved into ISO standards [69, 72, 73].

3.3.2 NMS Functional Categories

The seven functional categories of Section 2.8 correspond to the following NMS functions:

Con�guration management provides the necessary functionality to add and remove net-
work objects to the system; to change the layout and connectivity of the network; and to set the
con�gurable parameters of network objects.

Fault management functions are responsible for monitoring and maintaining the network's
health and for providing graceful fault recovery.

Performance mangement functions ensure the productive operation of the network. They
measure, �ne-tune, and optimize network performance.

Access and security management functions maintain the privacy and security of the user
data. Since parts of the network are leased to di�erent customers, the concepts of user, user groups,
and user access levels are essential to a NMS.

Financial management functions track the network use and bill its users.

Resource Management functions provide an inventory of the hardware in the system and
track their maintenance schedules.

Planning and Design Management is the process of deciding the future of a network.

3.3.3 Suppliers

Highway automation and power distribution automation, discussed in the previous sec-
tions, are emerging technologies. Network management systems, on the other hand, have seen wide
use over the last decade.

Many commercial NMSs exist. Some of these applications, such as Bell Canada's MegaS-
tream, GEC Plessy's NMCS, and Paradyne's NetCare, are element managers targeted at managing
speci�c hardware components.

IBM's NetView, HP's OpenView, Sun's SunNet, and Novell's Netware support the SNMP
protocol.

IBM's Netview and HP's OpenView claim CMIP compliance. British Telecom's Concert
and AT&T's Accumaster were products aimed at supporting OSI standards.

The experiences the author gained when developing network management systems laid
some of the groundwork that lead to Object Management Systems [59, 60, 61, 62].

40

3.3.4 The Needs

Functional Gaps

The functionality of existing NMS is mostly limited to con�guration and fault manage-
ment. Fault management still greatly depends on operator assistance and intuition.

Performance management generally relies on the existence of a number of prede�ned net-
work con�gurations. These con�gurations are used based on the time of the day or load threshold
crossings. Detailed information on the network load, actual packet travel times, and packet loss
rates is not available.

Financial and resource management applications are not well integrated with other NMS
functions. Independent applications are used to perform these operations. The billing of Internet
use is an active research topic [58].

Most network planning tools are experimental [63, 38].

Software Tools

All NMS use a similar software architecture, see Figure 3.5. A logical object model is used
to capture the elements in the network. The state of the network, derived from the logical model, is
stored in a persistent storage medium, usually a RDBMS. A Management Information Base (MIB)
is used to interface between the network, the persistence storage medium, and the user interface.

Most of the NMS functionality is implemented in the MIB.

Persistent
Storage

The NetworkMIB

User
Interface

Figure 3.5: NMS Software Architecture

In Chapter 1, we stated that there is a gap between the interfaces provided by the database
management systems and programming languages on the one hand, and the speci�cation and im-
plementation constructs required to build engineering applications on the other hand.

There are no good commercial tools that �ll this gap. As a result, in a typical NMS
development project, the major portion of the resources are spent on tedious implementation tasks
and the actual NMS functionality is shortchanged.

Object Management Systems �ll this gap and help focus project resources on the design
and implementation of actual domain speci�c application functionalities.

41

Chapter 4

Object Management Systems

This chapter describes the OMS methodology. The methodology consists of four stages:
1) Domain Customization, 2) System Architecture 3) Application Development, 4) System Test.

The speci�cation and implementation of an Object Model precedes these stages. The
domain customizers and system architects are expected either to select an existing Object Model or
to develop one that suits their application needs. The �rst two stages customize the Object Model
based on the application needs and deliver a Customized Object Model, or Customized OM. The
application developers further extend it to an OMS Application. The overall process is referred to
as OMS.

In this chapter we �rst describe constructs that should be present in an Object Model.
We distinguish between the data and process model of the Object Model. The data model is used
to specify entities, their input, output, and state attributes; their methods; and their constraints.
The process model is used to specify how a collection of objects evolve based on their state and
input-output interconnections.

Next we describe the stages of the OMS process, and how the Object Model evolves in
these stages.

Then, we look at the system functional categories and discuss which portions of the func-
tional categories are satis�ed by the Object Model in each process stage.

Finally we give evaluation criteria and a list of trade-o�s for systems built with this
approach.

The Object Model and the OMS process borrow concepts from system theory; object
oriented analysis, design, and programmingmethodologies; Petri-nets, data-ow diagrams, and state
machine representations. Our contribution is in selecting the right concepts and in extending and
organizing them in an austere model and an end-to-end development process. The end result, the
Object Management System, addresses the needs of a restricted, yet, large class of complex software
systems.

4.1 Semantic Data Model

In this section we describe data model constructs that should be present in the Object
Model.

Since our goal is to implement software systems for speci�cation and control of systems,
our model borrows concepts from both the object oriented paradigm and system theory. In classical
system theory objects have state, inputs, outputs, and maps that de�ne input to state and (input,
state) to output behavior. These maps can be time or event driven, based on the nature of the system,
and there is a domain of validity for the model. These objects are then interconnected in a static
con�guration. In object oriented software methodology, objects are organized in a class hierarchy.
Classes consist of attributes and methods, and correspond to entity descriptions. Instances of these
classes are created, interconnected, modi�ed, and deleted as needed.

We combine these concepts. As in the object oriented methodology, we specify and im-
plement entities in a class hierarchy that supports monotonic inheritance, functional polymorphism,

42

and dynamic binding. As in system theory we have an input-output representation of objects.
In OMS, entities consist of the following components:

� name;

� state attributes;

� input attributes;

� output attributes;

� a set of methods from (input, state) to (state, output);

� a set of constraints that state, input and output attributes have to satisfy.
Figure 4.1 shows the canonical representation of an entity. The concept of an entity

or a class is quite universal and was discussed in Section 2.4.1. We use the two terms class and
entity interchangeably. Entities are logical representations of their physical counterparts. Vehicles,
Lanes, RS232 Ports, Cats are all entities. Based on application requirements entities abstract and
encapsulate the relevant characteristics of their physical counterparts.

Outputs Behavior Inputs

State

Constraints

Name

Figure 4.1: Basic Entity

Entities are organized in a class hierarchy. A subclass inherits all components of its
superclass. It can add constraints, methods, and input, output, and state attributes. It can also
change the methods, and add new inputs and outputs to the methods.

Entities represent the meta-data and their speci�cation is assumed to be static. Instances
are the realizations of entities and are created and deleted as needed. All instances of a given entity
constitute the extent of that entity.

In the following subsections, we describe the components of entities in more detail. We
use the term object when we want to refer to both entities and instances.

4.1.1 Object Identi�er or Distinguished Name (DN)

Every object, and every component of an object must have a unique identi�er. Every
entity, every instance of an entity, every attribute of an instance of an entity, etc. has a Distinguished
Name.

A particular naming convention has to be selected in the domain customization and system
architecture stages that supports the use of RDNs1.

4.1.2 Attributes

Attributes can be arbitrarily complex, they can be atomic or list valued, they can contain
DN values. Attributes only exist as components of an object. Entities de�ne the name and the
domain of each attribute. Instances assign them a particular value.

List attributes provide the constructs needed to treat each list element as an independent
attribute. The number of elements in a list attribute is part of the list attribute value.

1DNs and RDNs were discussed in 2.4.4.

43

The particular object model implementation should provide a basic set of attribute domain
de�nitions and supply a mechanism for de�ning new ones.

All attributes must provide an Update method for setting their value.

State Attributes

Every object has an internal state, given by a list of attributes. The weight of a person,
the speed of a car are such state attributes.

The state is entirely internal to an object and can not be accessed by other objects.

If the DN of an instance is stored as a state attribute, its value cannot be used to access
that instance directly. A connection with that instance must be created explicitly as discussed in
Section 4.2.1.

Input and Output Attributes

The inputs and outputs represent the information shared by objects. This information
may semantically correspond to shared state or the control one object exerts upon another.

Each input can be connected to at most one output. An output can be connected to
multiple inputs. An input takes on the value of the output it is connected to. The domain of an
output attribute must be a subset of the domain of the input attribute to which it is connected.

We emphasize again that list attributes must provide the necessary mechanisms that treat
each element in the list as a separate input/output. Each element in an input list attribute can be
connected to a di�erent output.

Consider a Statistic entity with a list of input Salaries and an AverageSalary output.
The number of salaried employees in the department is variable; for each employee an independent
Salary input is needed that can connect to that employee's salary output.

The input/output attributes have the following components:

Value output-DN For Inputs only: The DN of the output to which an input
is connected.

input-list-DN For Outputs only: The list of input DNs to which an out-
put is connected.

Methods Connect used to establish connections.
Disconnect used to terminate connections.
Enable accessible to methods used to enable them.

The input-output attribute methods will be discussed in Section 4.2.1.

4.1.3 Methods

The behavior of objects is given by a set of methods. Each method speci�es a subset
of the named input attributes of an entity as its input and a subset of the named outputs as its
output. Each method de�nes a subset of its inputs as enabling inputs. This speci�cation is called
the signature of a method.

The signature of a method, and the map from input to output values are speci�ed as part
of the entity.

Since \an enabling input is enabled" is not ideal terminology, we borrow from Petri-Nets
and say \a token is placed on an enabling input" to mean \an enabling input is enabled".

Methods are executed in instances. When all enabling inputs of a method in a given
instance have a token, the method accesses the values of the input and state attributes of the
instance, derives the new state and output values, and sets the state and output attributes of the
instance to the derived values. A method can choose to place tokens on a di�erent subset of its
outputs in each execution.

The language used to specify the maps from inputs to outputs can be arbitrary; the domain
customization and system architecture stages may choose to specialize it.

44

4.1.4 Constraints

Constraints are used to specify both the valid states and the state transitions of instances.
Like methods, they are speci�ed as part of the entity and executed in instances. They can be thought
of as methods that map input, output, and state attribute values to TRUE or FALSE. State constraints
restrict the universe of discourse of state, input, and output attributes. State transition constraints
restrict the value assignments of methods.

Methods specify what an entity does, constraints specify what it should not do. Con-
straints are usually speci�ed during the domain customization and system architecture stages. The
application developers then have the responsibility of implementing methods that obey the con-
straints.

Note that since input/output attributes store the DN of the output/input to which they are
connected as part of their value, constraints can be used to restrict possible input-output connections.

The Object Model may or may not provide an exception mechanism. The decision about
what to do when a constraint is violated is delegated to domain customization and system architec-
ture stages.

Example Constraints

Example Constraints are:
� State constraints;

These are constraints on the value of an attribute or a set of attributes.

1) Let Month be an entity with an integer attribute numDays corresponding to the number of
days in a month. There is no 32nd day in any month.

2) Let Month be an entity with an integer attribute numDays corresponding to the number of
days in a month, and a string attribute name corresponding to the name of the month. 31st
of February does not exist.

3) Let Employee be an entity with a DN attribute Manager. The value of the DN can only
belong to a manager instance and not to a month.

� Cardinality and participation, or connection, constraints;

These are constraints on the cardinality of list attributes.

1) Let myManager be a List-DN attribute of an Employee. Each employee must have at least
one manager.

2) Let myEmployees be a List-DN attribute of a Manager. Each manager must have at least
three and at most ten employees.

� State transition, or behavior, constraints;

1) Qualitative: Let Car have two attributes EngineState and Speed. Speed can not change if
the engine is turned o�.

2) Quantitative: Let Car have an attribute position. A car can not move ahead more than
�fty meters within one transition.

4.2 Semantic Process Model

The data model provides the constructs to de�ne entities and their components. The
process model addresses the following issues: 1) where are all the objects located; 2) how are
instances created, deleted, connected, and disconnected; 3) how are outputs propagated; and 4) how
are the initial inputs provided.

Objects are grouped into domains. An instance can be part of one and only one domain,
whereas an entity can be part of several domains.

The Object Model provides a special object OMSEngine that is in charge of managing a
domain. Each OMSEngine manages the evolution of the objects in its domain and provides methods
to create, delete, connect and disconnect them.

45

The OMSEngine has the following components:

Inputs Create List attribute. Consists of an entity DN and other values required
for initialization.

Delete List attribute. Consists of an instance DN and other values re-
quired for termination.

Connect List attribute. Consists of two attribute DNs, input-provider
and output-consumer.

Disconnect List attribute. Consists of two attribute DNs, input-provider
and output-consumer.

EnableRun List Boolean attribute. Used to enable the method Run.

Outputs Data The value of this attribute contains information about the last
execution sequence.

Methods DoCreate Method to create instances.
DoDelete Method to delete instances.
DoConnect Method to connect objects.
DoDisconnect Method to disconnect objects.
Run Method to carry out execution sequences

We now discuss the process model and the OMSEngine components in more detail.

4.2.1 Object Con�guration

The Connect and Disconnect attributes are used to change the input-output con�guration
of the system. These attributes contain two attribute DNs input-provider and output-consumer.

To establish input-output connections, an object must have a Connect output attribute
connected to the Connect input attribute of the OMSEngine2. To establish a connection the object
sets the values of input-provider and output-consumer and enables its output. Input-output
connections are terminated the same way by using the Disconnect attribute.

The Create and Delete attributes are used to create and delete instances of entities. The
create attribute contains an entity DN, class-name, the delete attribute contains an instance DN,
instance-name. Both attributes may contain other data used for initialization or termination of
instances.

To create an instance of an entity, an object must have a Create output connected to the
Create input of the OMSEngine. The object sets the class-name and enables its output. Instances
are deleted the same way by using the Delete attribute and providing the instance-name.

Comments

Create and Delete can be implemented as entity methods. An object that wants to
create an instance must then have an output attribute connected to the Create input attribute of
the respective entity3. To delete an instance an object must have an output attribute connected to
the Delete input attribute of the instance.

These methods are expected to implement the necessary bookkeeping required for the
creation and deletion. Such bookkeeping includes proper initialization of the state of the instance
as part of creation, establishing/terminating the input-output connections of the new/late instance,
and noti�cation of the OMSEngine.

Whenever possible, create and delete methods should be implemented in the domain
customization and system architecture stages. Note that an object can create an instance of an
entity only if it has an output connected to that entity.

An OMS Application consists of many interacting OMSEngines. The Object Model must
provide constructs for connecting the inputs and outputs of objects in di�erent domains. This is
easily accomplished if the input-provider and output-consumer are not restricted to be in the

2Recall that the Connect and Disconnect input attributes of the OMSEngine are list attributes. Thus many objects
can connect to this input.

3Unlike all other input attributes, the Create input attribute is part of the entity itself.

46

domain of the same OMSEngine, and the OMSEngine has the ability to locate objects in other
domains.

4.2.2 The Method Run

Based on our de�nition in Section 4.1.3, if a method executes, it may result in the execution
of other methods until no more executions are possible. We call this an execution sequence.

In its most general form the execution sequence of a method may not be unique, can be
cyclic, and in�nite. Tokens may remain on inputs after termination. Furthermore, connect and
disconnect outputs discussed above may alter the execution path itself. The Object Model must
impose restrictions to ensure that execution sequences are unique and �nite. A valid execution
sequence that obeys these restrictions is called a transition.

The OMSEngine carries out execution sequences when its Run method is invoked. This
method determines if and what methods are enabled on the placement of tokens, propagating the
output tokens of these methods, connecting and disconnecting inputs and outputs, creating and
deleting instances, checking that the execution sequence is valid, checking that the transition satis�ed
all the constraints, and accepting or rejecting the inputs.

Comments

The following restrictions ensure �nite and unique execution. When a method is executed
it consumes all its input tokens, simultaneously updates its outputs, and simultaneously places
tokens on its outputs. Every input connected to this output is updated and delivered one token
simultaneously. If an execution enables several other methods, these are executed in arbitrary
sequence. An execution sequence is valid if the executed methods had at most one update operation
on their inputs (if �rst one input is updated and then another, this is considered two updates) and
no connect and disconnects take place on inputs and outputs of executed methods. At the end of a
transition all remaining tokens are removed. Roughly speaking this restricts execution sequences to
directed trees.

Tokens are bookkeeping constructs; unconsumed tokens are removed at the end of each
transition so as not to carry state information between transitions. State information shared between
transitions can be encapsulated within an entity's state, inputs, or outputs.

There are several other ways of ensuring uniqueness. One could de�ne an execution
sequence to be valid if no input of a method is modi�ed after it has been executed, generalizing
execution sequences to directed acyclic graphs. In this case one also must assume that if the execution
of a method enables several other methods, these are executed simultaneously.

The execution sequence that a method generates depends on the internal state and inputs
of objects. As such, even if all input-output connections of two systems are identical, the execution
sequences may di�er. We emphasize that assuring valid execution sequences without further restric-
tions is not a trivial task. The domain customization and system architecture stages are expected
to provide a mechanism to ensure valid execution sequences and, if necessary, provide an exception
handling mechanism to deal with execution sequences that are not valid.

One may �nish an execution sequence and then check if the constraints are satis�ed, or
one may require that constraints are satis�ed at all times during the execution sequence. If the
transition is considered to be an \atomic" operation constraints should be checked at the end of the
execution sequence. In this case if several methods of an object are executed within one transition,
the object is allowed to temporarily violate its constraints.

Checking for constraints adds a performance penalty to the system. Furthermore, during
development stages certain constraints are bound to be violated due to unimplemented behavior.
The OMSEngine should provide an option to turn constraint checking o�.

4.2.3 Sequencer Entities

Consider an initial collection of objects in the domain of an OMSEngine, with a number
of unconnected inputs and outputs. Using the OMSEngine interface, any entity can connect to

47

these inputs, change their values, and place tokens on them, and invoke the Run method of the
OMSEngine, possibly resulting in a transition.

Next, we need a construct with the ability to specify a sequence of transitions in the
domain of an OMSEngine.

The Sequencer objects are used to specify sequences of transitions. This object is described
in Figure 4.2.

Outputs

Inputs

State

Constraints

Name

Behavior

Domain
of

OMSEngine

OMS
Engine

Figure 4.2: A Sequencer Object

A sequencer connects to the EnableRun input and Data output of an OMSEngine. The
domain of the OMSEngine with which a sequencer interacts is called the subdomain of the sequencer.
The sequencer also connects to a number of input and output attributes in its subdomain. It places
tokens on select inputs in its subdomain and invokes the Run method of the OMSEngine. This
results in a transition and produces a number of outputs. Based on output values, the sequencer
determines the next set of tokens to be placed.

Sequencers themselves are in the domain of an OMSEngine and behave like any other
entity in that domain. However, their methods do not complete execution until they have executed
the proper transitions in their subdomain.

Sequencers are the key to creating hierarchical abstractions. What appears to be a single
transition within the domain of one OMSEngine may require several transitions in the domain of
another. A scheduling mechanism for time and event driven behavior that uses sequencers and three
domains is discussed in Section 4.3.4.

The exact structure of Sequencer methods is chosen in the domain customization and
system architecture stages based on application needs. One may choose state machines, programming
constructs such as sequences, while-loops, if-then-else constructs, and, if needed, build an exception
mechanism. The allowed nesting patterns for the domains and subdomains also depend on the
nature of the application.

4.2.4 Other Services

So far we have provided the key ingredients for an Object Model. There are several other
services that are needed to build OMS. These services are:

� Persistence;

The state of an OMS should be stored in some persistent storage medium.

� Query Language;

Data stored in the persistent storage medium should be accessible through a query language.

� Transactions, checkpointing, versioning;

These are standard persistent storage constructs. In particular, one should be able to save the
state history of instances.

48

� Multithreading, Concurrency;

A construct is needed that can enable several, possibly conicting, execution sequences simul-
taneously.

� Object locking mechanisms;

In presence of multithreading, a locking mechanism is needed to guarantee the atomicity of
transitions.

� Parallelization;

It may be possible to parallelize the execution of an execution sequence. In presence of multi-
threading, the execution of the transitions can be parallelized.

� Distribution Support;

We have not speci�ed how to access a given OMSEngine. A construct is needed to access
OMSEngines independent of their location.

� Object migration;

Instances should be able to move from the domain of one OMSEngine to another.

� Entity evolution;

Although we assumed that the entity de�nitions are static, eventually a mechanism is needed
to add, remove, and modify entity de�nitions as application needs change.

� Veri�cation.

Whenever possible components of the OMS should be veri�ed. It may be possible to check if
the execution sequences designed in the domain customization and system architecture stages
are always valid. Or, it may be possible to verify whether a given set of methods always ful�ll
the entity constraints.

These constructs are expected to be provided either by the Object Model or by the Cus-
tomized OM based on application needs.

4.3 Extended Constructs

In this section we present further constructs that provide semantic support and simplify
system speci�cation. Although they can be composed from the constructs of the previous section, a
given Object Model implementation may provide them as atomic constructs.

Virtual attributes, associations, and relations are part of the data model. Time and event
driven scheduling and event generation are part of the process model.

4.3.1 Virtual Attributes

Virtual attributes were discussed in 2.4.4. In OMS virtual input attributes can be used
to create implicit input-output connections between objects. The DN-Prefix of a virtual input
attribute is set to the value of another input DN attribute of the entity, its Scope is set to the RDN
of an output attribute. The value of the output-DN of the input attribute is then derived from the
DN-Prefix and the Scope.

Virtual attributes are not used for state or output attributes. Using them as state at-
tributes would implicitly convert state into inputs. Using them as outputs would cause consistency
problems if a virtual input were connected to a virtual output.

If virtual attributes are used, the Object Model has to provide an implementation that
ensures proper output propagation.

The use of virtual attributes greatly simpli�es system speci�cation.
Assume each Vehicle has a Regulator. Assume this relationship is captured by their

respective myRegulator and myVehicle input DN attributes. Assume the Regulator has two in-
puts RSpeed and RAcceleration which should be connected to the Vehicle outputs VSpeed and
VAcceleration.

49

Connecting a regulator instance to a vehicle instance requires 1) Setting the myRegulator
and myVehicle attributes, 2) Connecting the Speed and the Acceleration attributes. Virtual
attributes save the speci�cation of the second step. If the Regulator's RSpeed and RAcceleration

inputs are virtual, with myVehicle as their DN-prefix, and VSpeed and VAcceleration as their
Scope, setting the value of myVehicle attribute implicitly and consistently establishes the input-
output connections.

4.3.2 Association and List-Association Attributes

In the example above the semantics of the problem requires that to maintain consistency if
the myVehicle attribute of a Regulator is updateded, the myRegulator attribute of the previous and
current Vehicle instances are updated as well. A construct like an association discussed in Section
2.4.4 is needed to simplify this operation and to ensure data integrity.

An association consists of two input attributes, one in each participating entity, and en-
sures the consistency of these attributes. Assume that the myVehicle and myRegulator attributes
in the above example are associations. If a Vehicle \CarX" has \RegulatorY" as its myRegulator,
then \RegulatorY" is guaranteed to have \CarX" as its myVehicle.

The particular association speci�cation and implementation in an Object Model cannot
violate the assumption that an input is connected to at most one output. An input can either be
implicitly connected to the association, or to an outside output, but not both. We now discuss two
possible association semantics.

Directed Association

myNamemyVehicle myRegulator
Vehicle

Regula-
tor

Figure 4.3: Directed Association

In a directed association only one input attribute is implicitly connected to the association,
the other input is \open" and can be connected to another output.

The association implicitly adds a DN output attribute to the entity with the open input.
This attribute, myName, carries the DN of the instance. When the input attribute of this entity is
updated, the association reconnects the myName output as required.

Symmetric Association

myNamemyName myRegulatormyVehicle
VehicleRegula-

tor

Figure 4.4: Symmetric Association

In a symmetric association both inputs are implicitly connected to the association output.
As such, an external mechanism is required to atomically establish/terminate the necessary input-
output connections. This mechanism can be provided by the OMSEngine, or it can be implemented
as a method in some entity.

50

4.3.3 Relationships

A relationship is an ordered association between entities. The Vehicles in a Lane, Vehicle
adjacent to another Vehicle, and a game consisting of two teams, a referee, a �eld, and a score are
relationships.

The association and list-association constructs of the previous subsection can express
ordered on-to-one, one-to-many, and many-to-many relationships. However, they have no semantics
and cannot express more complex relationships such as a game.

Relationships are entities. A designated subset of their inputs keep track of the relationship
participants. These are association or list-association attributes whose domain is restricted to the
DN values of instances participating in the relationship.

At this point we should revisit Figure 4.1 and further categorize the input attributes. Each
entity has a list of input attributes that keep track of the relationships it participates in. These are
association attributes and are not necessarily used by any method. Each entity has a number of
virtual input attributes. These inputs can not be connected to outputs directly, rather they create
implicit interconnections. The remaining inputs have no particular semantics.

We now de�ne some example relationships.

Membership

Class managers keep track of the extent, i.e., the members, of an entity.

Views

Views are useful constructs for providing access control to the outputs of an object. The
View of an instance may make selected outputs of its source instance accessible via its own outputs.

Input-Output Relations and Switches

Input-Output Relationships (IORs) are used to specify the connection structure of in-
stances participating in the relationship. Their use is similar to that of virtual attributes. They are
initialized with a list of instances, and establish the necessary interconnections.

Switches are similar to IORs. However, they accept the output of the participating in-
stances as inputs and implement methods that determine how to propagate them.

Switches enable us to create arbitrary input-output con�gurations without having to alter
the source and target entity speci�cations. Assume an entity x has three inputs, sometimes inputs
one and two may be supplied by entity y, sometime inputs two and three by entity z. Furthermore
in future we may introduce entity w, that supplies input one and three.

Composition or Containment

A complex entity can be composed of several other entities, its components. In this case
the complex entity contains its components.

A given entity can be contained in at most one entity.

Containment is sometimes used to specify the distinguished name of an instance. However,
this is not an option if the container of an instance can change over its lifetime.

Aggregations

Aggregations provide us with the means of creating higher levels of abstractions of a
system.

Assume that the Lane entity has the output ContainedVehicles, a List-DN attribute.
Assume that the Vehicle entity has the output speed. We de�ne the LaneStatistic relationship
as follows.

51

LaneStatistic

Inputs myLane An association attribute whose domain is restricted to Lane in-
stance DNs.

theVehicles A virtual List-DN attribute, with myLane as DN-prefix and
ContainedVehicles as Scope.

theSpeeds A virtual List-oat attribute, with theVehicles as DN-prefix
and speed as Scope.

Outputs averageSpeed A oat attribute.

Methods Go With input theSpeeds and output averageSpeed. When en-
abled, calculates and outputs the average speed.

The outputs of the LaneStatistic instances can be the only outputs of a domain. The user
of these outputs does not need to know how these statistics are generated. They can be results of a
microsimulation, actual physical data, or any other set of statistics.

4.3.4 Time and Event Driven Behavior

The Object Model constructs discussed so far do not enforce any particular implementation
of time or event driven behavior. The Object Model should provide constructs for time and event
driven scheduling that can be customized and con�gured by the Customized OM.

Below we provide a possible implementation of time and event driven evolution in three
OMSEngine layers.

CLOCK

TDS EDS

T
D
S
R

T
D
O
R

E
D
O
R

E
D
S
R

Event
Entity

Three

Two

One

T
D
S
M

E
D
S
M

EDOMEDOM

State

Sample Instance

Figure 4.5: Time and Event Driven Evolution Example

OMSEngine One

The domain of OMSEngine One contains the bulk of the system. It has four special
relationship entities TDSR, TDOR, EDSR, EDOR, an Event Entity, and a base class Base. All other
entities in OMSEngine One monotonically inherit from Base.

52

TDSR, TDOR, EDSR, EDOR are bookkeeping Relations. They manage Time/Event Driven
State/Output methods of instances. Each relationship entity has the same structure. We describe
the TDSR entity:

Inputs myInstances List-association attribute shared with the myTDSR input of in-
stances. Maintains a list of all the instances in the domain.

Enabling DN attribute. Enabling input of the method Go. Its value cor-
responds to the instance whose corresponding method should be
enabled. Its value can be set to ALL denoting all instances.

Outputs EnableList List-Boolean attribute. Each element of this attribute is con-
nected to the EnableTDSM input of an instance.

Methods Go With Enabling as its enabling input and EnableList as its out-
put. When enabled it places a token on the output connected to
the instance speci�ed by its input value.

The Event Entity has the following components:

Inputs Instances List-association attribute shared with myEventEntity input of
instances. Maintains a list of all the entities in the domain.

CreateList Virtual List-Boolean attribute, with Instances as its DN-prefix
and Create as its Scope. Setting this value to true, denotes a
create request from the source instance.

TargetList Virtual List-DN attribute, with Instances as its DN-prefix and
Target as its Scope. Its value speci�es the target of the Event
instance to be created.

Enabling Boolean attribute. The enabling input of the method Go.

Outputs EventTargetList List-DN attribute. Contains the list of instances with a newly
created Event.

Methods Go A single method with CreateList, TargetList, and Enable as
inputs, and EventTargetList as output.

The method Go implements the following functionality:

1) For each CreateList element set to true, it creates an Event;

2) Ensures that each newly created event enters a relationship with its target instance, by
connecting the input attribute myTarget of the Event instance and the input attribute myEvent of
the target instance;

3) Sets EventTargetList to the DNs of all instances with a newly created Event.

The Event instances have the following components.

Inputs myTarget Association shared with the myEvents attribute of an instance.

Outputs mySource DN attribute. Its value is set at creation to the source of the
event.

type Integer attribute. Identifys the event type.

The Base entity has the following components:

Inputs myEventEntity Association-attribute shared with the myInstances input of the
Event Entity. Set to the DN of the Event Entity.

myTDSR Association-attribute shared with the myInstances input of a
TDSR. Set to the DN of the TDSR instance.

myTDOR Association-attribute shared with the myInstances input of a
TDOR. Set to the DN of the TDOR instance.

myEDSR Association-attribute shared with the myInstances input of a
EDSR. Set to the DN of the EDSR instance.

myEDOR Association-attribute shared with the myInstances input of a
EDOR. Set to the DN of the EDOR instance.

53

EnableTDSM Virtual attribute, with myTDSR as DN-prefix, and EnableList

as its Scope. Enabling input for the Method TDSM.
EnableTDOM Virtual attribute, with myTDOR as DN-prefix, and EnableList

as its Scope. Enabling input for the Method TDOM.
EnableEDSM Virtual attribute, with myEDSR as DN-prefix, and EnableList

as its Scope. Enabling input for the Method EDSM.
EnableEDOM Virtual attribute, with myEDOR as DN-prefix, and EnableList

as its Scope. Enabling input for the Method EDOM.
myEvents List-association attribute shared with myTarget input of Events.

Contains Event instance DNs.
eventTypes Virtual List-integer attribute with myEvents as its DN-prefix

and type as its Scope.

Outputs Create Boolean attribute. Connected to the CreateList input of the
Event Entity.

Target DN-attribute. Connected to the TargetList input of the Event
Entity.

Methods TDSM With EnableTDSM its enabling input. Represents time driven
evolution. It is a method from Inputs to State.

TDOM With EnableTDOM its enabling input. Represents time driven
evolution. It is a method from (EnableTDOM, State) to Outputs.
In particular it is connected to the Create and Target outputs.

EDSM With EnableTDSM, myEvents, eventTypes as input. Represents
event driven evolution. It is a method from Inputs to State.

EDOM With EnableTDOM as its enabling input. Represents time driven
evolution. It is a method from (EnableEDOM, State) to Outputs.
In particular it is connected to the Create and Target outputs.

The inputs of the domain of OMSEngine One are the Enabling inputs of the four rela-
tionship entities. The output is the EventTargetList output of the Event Entity.

OMSEngine Two

It consists of two Sequencing entities TDS, EDS, (Time and Event Driven Schedulers re-
spectively) both treating the �rst OMSEngine as their subdomain.

The TDS has the following components:

Subdomain OMSEngine One

Inputs EnableTDS Boolean attribute. Enabling input of the method Go.

Subdomain

Outputs

EnableTDSR DN attribute. Connected to the Enabling input of the
TDSR instance.

EnableTDOR DN attribute. Connected to the Enabling input of the
TDOR instance.

Methods Go Has EnableTDS as its enabling input.

The Method Go has the following functionality:

1) Sets the EnableTDSR to \ALL" and places a token on it;

2) Upon completion of this transition, it sets the EnableTDOR to\ALL" and places a token
on it;

3) Upon completion of this transition the method execution terminates.

The EDS has the following components:

Subdomain OMSEngine One

Inputs EnableEDS Boolean attribute. Enabling input of the method Go.

Subdomain

Inputs

EventTargetList List-DN attribute. Connected to EventTargetList of
EventEntity.

54

Subdomain

Outputs

EnableEDSR DN attribute. Connected to the Enabling input of the
EDSR instance.

EnableEDOR DN attribute connected to the Enabling input of the
EDOR instance.

EnableEventEntity Boolean attribute. Connected to the Enabling input of
the Event Entity.

Methods Go Has EnableTDS as its enabling input.
The method Go has the following functionality:
1) It enables the Event Entity.
2) It reads the EventTargetList output of the Event Entity and for each element in

this list:
a) It sets EnableEDSR to the value of the element, and enables EnableEDSR.
b) Upon completion of this transition, it sets EnableEDOR to the value of the element,

and enables EnableEDOR.
4) It repeats the �rst two steps till the Event Entity outputs an empty EventTargetList.
5) Upon completion of this transition does not generate any further tokens.
The inputs of the domain of OMSEngineTwo are the EnableTDS and EnableEDS inputs

of the TDS and EDS instances. OMSEngineTwo has no outputs.

OMSEngine Three

The third OMSEngine consists of one Sequencing entity, with a single method. When
enabled with an integer value n, this method goes in a loop of length n, enabling in each loop the
time and event driven scheduler of the second OMSEngine.

That's the overall time and event driven model.
In this example, if the Event Entity keeps creating events the EDS executes in�nite number

of transitions in its subdomain. If this is not an acceptable behavior, one can restrict the number
of transitions the EDS executes when enabled, or specify a mechanism for termination after some
number of transitions.

Other applications may have entities with di�erent time scales of evolution, or they may
require several iterations until the time driven evolution from all inputs to outputs may reach a
steady state. The number of such iterations may be state dependent. Again, appropriate sequencer
entities can be speci�ed in the domain of OMSEngine Two to implement the desired behavior.

4.3.5 Event Generation

Using these constructs one can represent event generation and propagation.
Events are generated only if some object requests their creation. For event generation one

has to specify the proper entities that decide when to create the event.
Events will be propagated if some object chooses to propagate them. For event propagation

one has to specify the proper entities that have the necessary information to decide how and to which
objects to propagate the events.

Finally, if an object needs to be noti�ed of the creation of an event, it has to enter into
a relationship with the source for that event. If an object wants to be noti�ed of events that meet
speci�c conditions only, then a �lter entity has to be speci�ed that implements these conditions.
The �lter can then enter a relationship with the source of the events and propagate the event to the
object if the conditions are met.

55

Domain Customization System Analysts, Domain Experts
System Architecture System Architects
Application Development, unit testing Development Engineers
System Integration and System Test Testers and All other members

Table 4.1: Stages and Key Players in OMS

System Support Maintenance Team
OMS Operation Day-to-day system users
System Supervision Managers, Supervisors
Physical System Operation Field Operators

Table 4.2: Key OMS Users

4.4 OMS Process Phases

In this section we describe the di�erent stages of speci�cation and implementation of an
Object Management System and what each stage is expected to deliver. Our discussion emphasizes
o�-line OMSs targeted at simulation and evaluation.

The OMS process consists of four major stages. These stages and the key players of each
stage are summarized in Table 4.1. Project management is beyond the scope of this thesis.

The domain customizer and system architect work closely together. They provide an
Object Model speci�cation and implementation that provides the constructs discussed earlier in this
chapter.

Using the Object Model the domain customizer speci�es all the entities in the system, their
inputs, outputs, relationships, constraints, and method interfaces. The system architect organizes
the entity speci�cations in a hierarchy of OMSEngines. Together they design the transition structure.
The system architect is also responsible for the speci�cation and implementation of other constructs
such as exception handling, distribution, concurrency, etc., as the application needs dictate. The
deliverable of these two stages is the Customized OM. Unlike in other methodologies, the Customized
OM has an implementation, i.e., it is a running system with skeletal functionality.

The application developers implement entity behaviors, to meet the constraints speci�ed
by the domain customizers. They specialize the base class entities provided by the �rst stage and
extend the customized OMS and to an OMS Application.

System test stage tests whether the OMS Application runs without violating any con-
straints for allowed input patterns. This stage is not discussed in this thesis.

The OMS process is not strictly sequential. Although the �rst two stages have to deliver
a Customized OM before application development starts, this deliverable is not cast in stone. As
application development progresses, the customized OMS evolves with the emerging needs of the
�nal application.

The OMS-based management system has several types of users summarized in Table 4.2.
In the following subsections we discuss the activities that take place in each stage, their

deliverables, and the users of the OMS.

4.4.1 Domain Customization

The domain customizer speci�es the overall data and process model.
Several methodologies are available for specifying the data model of a system. The domain

customizer picks his/her favorite and starts the OMS process by identifying the entities in the system,
their state, input, and output attributes, their relationships, their constraints and their expected
behavior.

The domain customizer decides how far these entities are speci�ed and implemented as
part of the Customized OM and how the OMS Application will specialize them for complete imple-
mentation.

56

Once a �rst cut of the data model is available, the process model needs to be examined.
For each entity several key questions should be answered:

� Identify cause of creation and deletion;

� Identify relationship evolution;

� Identify time scale of evolution;

� Specify constraints;

� Identify modes of operation;

� Ensure satisfaction of functional requirements and user needs.

Creation and Deletion

Recall that objects can be created and deleted only by objects that have the proper input-
output connections with the OMSEngine for these operations.

The domain customizer speci�es the create/delete relations of objects. Failure to properly
restrict the objects that have create/delete power results in haphazard evolution of the system.

The domain customizer also speci�es when and how frequently objects are created and
deleted. Instances of certain entities may be created once at system initialization time and never
deleted. Other instances may be created and deleted very frequently.

Instance creation requires proper initialization of all input-output connections. Instance
deletion requires proper termination of all input-output connections. The domain customizer works
with the system architect to provide the proper constructs for object creation and deletion. If
possible, the domain customizer speci�es the create and delete methods of all entities. Subclasses
speci�ed by application developers may have to implement their own create and delete methods.

Relationship Evolution

Recall that two objects enter an input-output, or any other sort of, relation if a connect
output is sent to the OMSEngine on their behalf. Such connections can be established only by
objects that can send the corresponding outputs to the OMSEngine. Furthermore these objects
need to have su�cient information to establish proper connections.

The domain customizer speci�es the objects that are in charge of establishing/terminating
relations. Failure to properly restrict the objects that have connect/disconnect power results in
haphazard evolution of the system.

The domain customizer also speci�es when and how frequently relationships change. Most
systems have a set of objects and relationships that are either entirely static, or evolve at a much
slower time scale than the rest of the system.

The domain customizer works with the system architect to provide the proper constructs
for relationship creation. Whenever possible special modules are provided to initialize the static
relationships.

Time Scale of Evolution

State evolution can be time or event driven. The domain customizer decides how to
represent time and event driven evolution.

Time driven entities change state with the passage of time. Clearly for a time driven
object it is impossible to simulate every state change. Such simulation has to take place at some
meaningful sampling rate. The domain customizer has to determine this rate, i.e., the time scale of
evolution of time driven entities.

Event driven entities change state upon certain events. The domain customizer has to
specify the structure for event generation and event propagation. The domain customizer may be
able to de�ne all events and messages or may delegate this task to application developers. In the
physical world, events have to be delivered through some medium. If a detailed model of the medium

57

is not part of the simulation, the domain customizer may choose to assign a time delay for event
delivery. The response of an entity to an event may not be instantaneous. The domain customizer
determines the event response time of entities.

In hybrid simulations, time scale applies to event driven objects as well. Delivery of events
does not need to take place at every clock tick.

There is a trade-o� between the clock-rate and simulation performance. It is the respon-
sibility of the domain customizer to work with the system architect and to select the right time
scale of evolution for each entity. Sometimes, a sliding time scale must be used due to problem
requirements. Updating vehicle positions every hundred milliseconds may be acceptable in normal
mode of operation. However, if detailed accident simulation is part of the requirements, vehicles
that come together closer than one meter may have to change their time scale of evolution.

The domain customizer may choose to specify the time and/or event driven behavior of
select physical entities. Most behavior speci�cation is delegated to application development.

Identi�cation of Operation Modes

Failures and undesired behavior are bound to be part of any physical system. The domain
customizer identi�es the ideal and degraded modes of operation of the system.

The domain customizer designs entities that can identify failures and take corrective action.
The detailed speci�cation and implementation of the behavior of these entities may be delegated to
application development.

Functional Requirements and User Needs

The entire data and process model is developed with the functional requirements and user
needs in mind. This step merely performs a �nal check to ensure that these requirements and needs
are indeed satis�ed.

The domain customizer ensures that the Customized OM and OMS Application are ad-
dressing the needs of the users. A canonical advice to each domain customizer is to provide each user
with as much information as necessary but as little information as possible. The provided operations
have to be at the right level of granularity. For example, for frequent operations, simple and quick
methods are needed. It is important to understand what the users want to change, why they want
to change it, and how often they want to change it.

4.4.2 System Architecture

Working with the domain customizer the system architect �rst selects/develops a speci�-
cation syntax for the Object Model, and develops an implementation of it. Given today's computer
technology the Object Model implementation starts with the selection of a hardware platform, an
operating system, a programming language, and a database management system.

Based on the application needs an of-the-shelf software tool may be available to implement
the Object Model. A more likely scenario is the use of several component tools that address various
aspects of the application needs.

A good system architect avoids tools that meet only part of the system requirements,
but do not provide any obvious means of extensions to meet the rest. With today's rapid rate
of technology evolution, using tools and platforms just because one is familiar with them is bad
engineering practice. Such tools provide a quick start to the project, resulting in false con�dence,
and are a recipe for failure.

The system architect and domain customizer bootstrap from the Object Model and im-
plement the Customized OM based on the domain customizer's entity speci�cations.

The system architect is responsible for delivering the Customized OM implementation
that meets all software requirements. In particular the system architect speci�es and implements 1)
the data and process distribution architecture, 2) the time and event driven scheduling constructs,
and 3) other constructs speci�ed in 4.2.4 and 4.3 that are not part of the Object Model but are
needed for the application at hand.

We now discuss some of the decisions facing the system architect.

58

Distribution Support

With the help of the domain customizer the system architect organizes objects into do-
mains. The domain boundaries should be selected such that the interaction between domains is
minimized. The domains provide natural boundaries for process distribution. However, sometimes
many or all domains may reside in the same process. Alternatively, if execution sequences can be
parallelized, a single domain may be simulated in several processes.

In case of a distributed architecture, the system architect designs the proper mechanisms
that support the interaction among OMSEngines. These mechanisms include 1) data dictionary
services to locate OMSEngines and objects; 2) output propagation; 3) migration support for objects.

If a domain is simulated in several processes the system architect must ensure that each
process has a consistent image of the domain.

Time and Event Driven Scheduling

With the help of the domain customizer, the system architect speci�es the execution and
transition sequences of the system. The system architect makes sure that the execution sequences are
valid and speci�es sequencer entities that implement time driven, event driven, or hybrid evolution
of objects.

Some applications may require a con�gurable simulation granularity. In this case some
of the sequencer speci�cation must be delegated to later stages of OMS. The system architect
implements the necessary mechanisms to specialize sequencer behavior. These mechanisms may
vary from parameter speci�cation to specialization through inheritance.

Analysis Support and System History

The state of an object is given by its state, input, and output attribute values. The state
of a domain is given by the list of the entities and instances it contains, the particular input-output
connections, and the state of these instances.

Most applications require the ability to record the state history of a single object, a
collection of objects, or an entire domain. Clearly, saving the entire state of a domain after every
transition provides su�cient information, but this approach is infeasible in most applications due to
system size. The system architect has to provide constructs to save and restore state at the right
level of granularity.

These constructs must provide a labeling mechanism that imposes an order to the recorded
history. In some applications a global clock is used to represent time passage. The time stamp of the
global clock may be used to label recorded history. However, if an object can participate in several
transitions within the same time stamp a di�erent labeling mechanism is needed. For example, event
driven objects may take several transitions at the same time stamp.

In some applications it su�ces to save the state history of individual objects. In this case
a mechanism is needed to specify the objects whose state should be saved. In particular one should
be able to specify an object that may be created in the future. For time driven objects, state history
should be recorded at appropriate time intervals. For event driven objects, state history should be
recorded only if events occur.

The system architect must decide what to do with the recorded history of an object if that
object is deleted. In most applications the recorded history of an object has to be saved even after
the object ceases to exist. For example, in a simulation of vehicles on the highway, the state history
of the vehicle contains important statistical data that is needed even after the vehicle leaves the
highway. In fact, if one wants to replay the vehicle's state trajectory along the highway the vehicle
instance itself must be saved after it leaves the highway.

The system architect must decide what to do with the recorded history of an object if that
object is migrated to another domain. The decision is based on how the recorded history is used. If
the state history is considered to be part of the object ,it should be migrated with the object, but,
if it is considered to be part of the domain in which it was recorded, it should stay behind.

59

Specialized Maps

It is unlikely that one Object Model can provide the perfect speci�cation syntax for all
application domains. Even within a given application, there usually are components with very
di�erent evolution models. For example, in hybrid systems, one �nds both state machine and
di�erential equation representations for object behavior. Other applications may require rule-based
input-output maps.

Based on the application requirements, the system architect designs and implements ex-
tended speci�cation languages and the necessary translators that convert speci�cations in these
languages to the Object Model or the Customized OM constructs.

Veri�cation

OMS are used to simulate the complete behavior of the system at hand. A simulation run
starts at a speci�c initial condition and runs for �nite duration. Even after extensive simulations,
only a subset of all possible OMS states are reached.

In general, absolute statements about OMS behavior are undecidable. For highway au-
tomation, e.g., one usually cannot prove that a given architecture does not result in any accidents.

However, it is very desirable to get such results and to verify system behavior whenever
possible. Such results can usually be obtained with simpli�ed or partial object models.

As discussed in Section 2.9.1, decidability results exist for discrete event systems; but,
such results are very limited for hybrid systems.

In the previous subsection we stated that the system architect designs and implements
extended speci�cation languages to meet the needs of an application. These languages should be
designed to facilitate partial system veri�cation.

Consider a hybrid system representation where the continuous behavior results in events
that e�ect the discrete evolution. If the speci�cation syntax has clear boundaries between its discrete
and continuous components, partial veri�cation may be possible. The e�ects of the continuous
behavior can be replaced with a nondeterministic discrete automaton and the resulting system can
be translated into a syntax, such as COSPAN, for veri�cation.

An example of such a language is given in Section 6.3.

4.4.3 Application Development

The application developers are the users of the Customized OM. In most OMS applications,
application developers include communication and control engineers who design proper local control
actions to ensure that the overall system evolves without violating any constraints. The application
developers bridge the gap between computer, communications, and control technologies. A detailed
discussion of relevant communication and control technologies is beyond the scope of this thesis.

Based on application needs, the application developers specialize the entities of the Cus-
tomized OM by adding state, input, and output attributes, methods, and constraints. Following the
guidelines of the domain customizer and the system architect, application developers also implement
the appropriate interfaces for the OMS users.

The OMS approach greatly reduces application development time and increases software
reliability.

The application developers are shielded from system level decisions since the skeleton of
an application is provided by the Customized OM. The application developers can focus on a small
set of objects, their inputs and outputs, and design the proper input-output behavior.

The specialized speci�cation maps of the Customized OM enable application developers
to design in a language appropriate for their expertise, without loosing time to the peculiarities of a
programming language. Code-generators are then used to reliably translate these speci�cations into
Object Model or Customized OM constructs.

Since the Customized OM is an actual running system, it provides the necessary harness
for unit-testing. Application developers do not need to duplicate e�ort to create test-beds to test
their objects, but rather, they integrate them directly into the Customized OM for unit-testing.

60

4.4.4 OMS Users

The users of the OMS Application can be classi�ed into several groups. These groups are
discussed briey.

Support Sta�

Once the OMS is deployed the support sta� provides day-to-day support to other OMS
users. They explain the use of the OMS interfaces and identify possible shortcomings of the deployed
system. These shortcomings are addressed in subsequent releases of the OMS.

OMS Operator

The OMS Operators are the daily users of the OMS. Based on their responsibilities they
use speci�c subsets of OMS functionality.

If the OMS is targeted to simulation they run extensive simulations and evaluate the
system behavior.

If the OMS is targeted to managing a deployed system, they monitor the behavior of the
physical system through the OMS interface and take microscopic control actions based on the advice
provided by the OMS, their own intuition, and their level of authority.

In many applications they interact with Physical System Operators and coordinate their
activities.

System Supervisor and Manager

System Supervisors and Managers are the occasional users of the OMS, but, have higher
level of authority in terms of macroscopic decisions.

They exercise a wide range of OMS functionality, collect high level performance informa-
tion about the system, and are in charge of planning management.

Physical System Operator

In the case of a deployed system, not all operations can be performed through the OMS
interfaces. A burnt transformer along a transmission line, for example, must be replaced physically.

The Physical System Operators have the responsibility to perform physical maintenance
activities. Their e�orts are coordinated by the OMS Operators.

4.5 Satisfying Functional Category Requirements

In Section 2.8 we have discussed seven functional categories common to all Object Man-
agement Systems and the constructs required to satisfy them. This Section discusses how the OMS
approach satis�es the requirements of these functional categories.

4.5.1 Con�guration management

The Object Model provides the ability to specify the logical model of a physical system.
The OMSEngine provides the necessary constructs to create, delete, and interconnect

instances. The Customized OM provides specialized tools and interfaces for these operations.
The application developers design and implement the entity methods that ensure that the

system evolves without violating the constraints speci�ed by the domain customizer.
The event and control ow is speci�ed by the domain customizer and the system architect

as part of the execution sequence and the time and event driven scheduling design.
If sensors and actuators are needed to interface with a physical system, these are speci�ed

as application layer entities. The methods of these entities encapsulate and abstract the details of
the physical system interfaces.

61

4.5.2 Fault and event management

The di�erent modes of operation are part of system speci�cation in the Customized OM
and the OMS Application.

The Object Model provides the necessary constructs for event creation and propagation.
The domain customization and system architecture stages customize these constructs based on
application needs and design entities responsible for the creation, propagation, and correlation of
events. The event set used for fault identi�cation and recovery may be speci�ed by the domain
customizer, by the application developers or by both.

Fault correlation and identi�cation are hard problems. Application developers specialize
the entities responsible for event creation, propagation, and correlation to provide graceful fault
recovery.

4.5.3 Performance management

Monitor and aggregation entities are speci�ed to measure the performance of the system.
These entities usually measure many di�erent performance parameters and delegate the speci�cation
of the exact evaluation criteria as a function of these parameters to the OMS Application users.

Design and implementation of a system with good performance is a harder problem. The
domain customization stage decomposes the performance management requirements and speci�es a
number of control entities that address localized performance criteria. Application developers design
and implement the methods of these entities. The OMS Application is used to simulate and evaluate
the performance of the design. Based on simulation results the designs are re�ned until the required
level of performance is reached.

4.5.4 Access and security management

The Object Model provides constructs to satisfy access and security management require-
ments.

An object can restrict access to its inputs and outputs by allowing certain kinds of inter-
connections only. An object can choose to provide restricted access by its views. Alternatively, a
user relation can be created that is capable of connecting to speci�c entities or instances only. The
user relation can be used to represent actual human users or other software entities.

The speci�c access and security management structure is designed and implemented in
the domain customization and application development stages.

4.5.5 Financial management

The ability to record history facilitates �nancial management. Since users can be repre-
sented as entities their recorded state history can be converted into billing statements according to
the billing policy.

4.5.6 Resource management

Since the OMS Application provides an open interface, resource management functions
can easily be integrated into the overall system. Maintenance scheduling and inventory tracking can
be implemented by a set of entities that perform the required functions.

4.5.7 Planning and design management

Object Management Systems are designed for system speci�cation, simulation, and eval-
uation. The con�guration, fault, and performance management functionalities facilitate planning
and design management.

62

4.6 OMS Evaluation Criteria

An OMS has to address many conicting requirements. Each application developer and
each user has di�erent needs and there is no single metric that can assign a grade to the quality of
a Customized OM or an OMS Application.

So far we have discussed constructs that should be part of the Object Model and the
Customized OM. The expressive power is only the beginning of a good design, its ease-of-use is
what makes the system succeed or fail. The ease-of-use is in direct conict with the exibility and
the expressive power of the system. A system that has a single function can be operated by a single
button. The more operations it supports the more \buttons" one has to add.

The popularity of an application is usually a good measure of its overall quality. However,
there are many factors that contribute to an application's popularity that are beyond our scope.
These factors include its price, the availability of technical support, the vendor's reputation, the
absence of competition, etc.

This section addresses key criteria that determine the ease-of-use of a system and discusses
potential trade-o�s for conicting software system requirements.

4.6.1 Ease-of-Use

Relevance of Entities

The entity de�nitions are expected to abstract and encapsulate the characteristics and
behavior of physical objects. The simplicity of a system is crucial for its ease-of-use. However,
abstraction is aimed at hiding irrelevant information. Oversimpli�cation may lead to a neat, yet
practically useless system. Three questions should be asked of a Customized OM or an OMS:

� Does the model provide \real" concepts or are the constructs too far removed from the actual
system;

� Is there a clear translation mechanism between the modeled entities and the actual physical
world objects;

� Is there a match between the operations provided by the OMS and the operations possible in
the physical world?

Locality of Reference and Learning Curve

Application developers should be able to add entities and to specify and change behavior.
The following questions should be asked of a Customized OM:

� How many entities/modules does one need to modify to perform these operations;

� How much does one need to know about other objects and the process model of the system;

� How many steps and how much time are required to integrate the changes?

The OMS Application users perform di�erent operations based on the application; how-
ever, similar questions apply to the OMS Application. In particular one should ask:

� What's the minimum a user has to learn to start using the system;

� Do simplicity of operations match their frequency of use?

Ease of speci�cation

A Customized OM and an OMS Application should provide tools to simplify the speci�-
cation tasks of application developers and system users. Such tools may include �nite state machine
representations, protocol speci�cation languages, di�erential equation solvers, and graphical editors.

The following questions should be asked of these tools:

63

� Is the tool suitable for the problem domain;

� Is it possible to specify an incorrect behavior/con�guration with the tool;

� What happens at run-time if an incorrect behavior/con�guration is speci�ed?

Ease of Evaluation

Both the application developer and the OMS Application users need services to facilitate
system evaluation. These services should include:

� Ability to save a snapshot of system state;

� Ability to trace individual objects;

� Ability to \replay" traces;

� Ability to collect aggregate state information.

System Level Issues

The seven functional categories of Section 2.8 apply to the Customized OM and to the
development of an OMS Application.

� Con�guration management;

Ability to mix and match Customized OM constructs to create OMS Applications, ability to
track and maintain releases and various versions of the Customized OM are example con�gu-
ration management functions.

� Fault management;

The ability to prevent and detect faulty speci�cations and the ability to identify speci�cation
errors at run time are fault management functions. \Segmentation Fault" and \Bus Error"
are, unfortunately, the most common software error events.

� Performance management;

For o�-line simulation the OMS does not need to meet real-time performance requirements. In
fact, no architecture can guarantee an upper bound on the simulation time of a given object,
since this time greatly depends on the application layer code. On the other hand, the lower
bound imposed by the Customized OM overhead has to be acceptable.

For on-line management, the OMS Application has to meet real-time performance require-
ments. Events in the physical world must be communicated to the OMS Application; these
events have to be delivered to the appropriate modules in the OMS Application which deter-
mine the control actions; and �nally the control actions must be communicated back to the
physical system, all within an acceptable delay. Furthermore, the OMS Application must be
able to handle worst-case event rates.

Memory and disk usage can also be categorized under performance management. Although
memory and disk space are getting cheaper, they still impose a constraint as complex appli-
cations penetrate the lap-top computer market.

� Access and security management;

Not all application developers nor all users should be allowed to modify all parts of an appli-
cation.

� Financial management;

Software licensing is a topic of its own and is beyond our scope.

64

� Resource Management;

The maintenance of a Customized OM and OMS Application includes the tracking of bugs
and the upgrading of the software with evolving hardware platforms.

� Planning and Design Management;

Planning management includes the evolution of the Object Model and the various Customized
OM frameworks.

4.6.2 Conicting Requirements

In this section we list some key conicting requirements in software systems.

� Object Model versus other requirements;

Adding more constructs to the Object Model usually results in sacri�cing performance and
increasing memory and disk usage. Complex constructs can also make an application error-
prone. For example, if the meta-data is dynamic, one can change class de�nitions on-line.
However, in this case it is not clear how much one can modify a class without having to
remove all existing instances.

� Modularity versus other requirements;

If everything were implemented in one function using machine code, we would get fastest
performance. The more components one introduces, the more interfaces one needs to maintain
and the larger the overall system gets.

� Performance versus other requirements;

One can usually trade-o� memory for performance. Scalability and distribution support require
bookkeeping mechanisms that add overhead. Robustness and openness require that there is
minimal or no transient data; however, clearly recording system state at every step reduces
performance.

65

Chapter 5

Automated Highway Systems

In this chapter we discuss the domain customization and system architecture stages of an
OMS that is targeted to Automated Highway Systems. The Object Model speci�cation and imple-
mentation is called SmartDb, the Customized OM is called SmartAHS, the �nal OMS Application,
used to implement the Varaiya/Shladover architecture, is called SmartPATH.

SmartPATH decomposes the IVHS modeling and simulation problem into the following
stages:

1. Parametrized modeling of the physical system and the control agents in an object oriented
semantic data model; Delivery of SmartAHS;

2. Design and implementation of various control and communication strategies;

3. Simulation of the discrete and continuous behavior of all the objects in the model, and opti-
mization of the model parameters; Delivery of SmartPATH;

4. Evaluation of system performance according to speci�ed criteria;

5. Model validation and implementation of selected control strategies for deployment.

These stages are shown in Figure 5.1.

Simulation Framework Design

Implementation and Deployment

Performance Evaluation

Simulation and Optimization

Communication and Control Design

Figure 5.1: SmartPATH Stages

This thesis discusses the �rst step, namely the speci�cation and implementation of Smar-
tAHS simulation framework. The actual design and implementation of control and communication
strategies are beyond our scope. However, parts of SmartPATH are discussed in Chapter 7 to
illustrate the use of SmartAHS.

The domain customizers and the system architects are responsible for delivering SmartDb
and SmartAHS. These roles are assumed by the author. In Section 3.1 we discussed the multi-
layer control strategy for highway automation. This design constitutes signi�cant existing domain

66

customization e�ort. However, SmartAHS has to meet the needs of this or any other automation
strategy.

The application developers design and implement individual control and communication
components. They provide parametric interfaces for adapting their control algorithms to evaluation
criteria. The application development team consists of control and communication engineers and
delivers SmartPATH.

Detailed evaluation is to be performed by system analysts. They select evaluation criteria
and run extensive simulations in SmartPATH to measure the performance of selected automation
strategies.

Based on the performance results and other social and political considerations an automa-
tion strategy is selected for deployment by system planners.

This chapter discusses the early stages of the domain customization and system archi-
tecture for SmartDb and SmartAHS, describes the implementation environment for SmartDb, and
provides a high level discussion of the data and process model for SmartAHS.

The implementation of SmartAHS is discussed in the next chapter.

5.1 SmartDb Implementation Platform

This subsection describes the selection process for the implementation platform compo-
nents of SmartDb and SmartAHS. Most of the decisions are guided by concerns of practical imple-
mentation.

5.1.1 Tool Selection

No existing simulation tool satis�es all the criteria summarized in Section 3.1.3. After a
review of SmartPATH requirements the system architect and domain customizer decided on Sun-
Sparc stations as the hardware platform, Unix as the operating system, C++ as the programming
language, Versant as the OODB, and Tcl/Tk as the graphics package for the SmartDb implemen-
tation.

The reasons for these decisions are discussed briey.

The need for an open architecture requires that the system state be fully and easily
accessible. The need to collect arbitrary statistics during simulation requires that state be saved
to a persistent storage medium during simulation. Since SmartDb is based on the object-oriented
paradigm, the system architect decided to use an OODB to implement persistence. An OODB
has a well-de�ned interface, makes the simulation state visible to the user, and provides a default
mechanism for any other simulation package to interface with SmartAHS.

A survey of the available object oriented databases suggested Versant as the OODB of
choice. Versant's advantages over other current systems are discussed in Appendix 9.2. Since Versant
provides persistence through inheritance, making the base class of SmartAHS inherit from Versant's
PVirtual class achieves persistence for all entities. The PVirtual class provides the necessary
methods to make an object persistent.

Versant supports two object-oriented programming languages: C++ and SmallTalk. C++
is a compiled language and supports only static entity de�nitions at run time. However, since
SmartDb assumes static entity de�nitions, this limitation of C++ does not preclude its use. Since
SmallTalk is a proprietary language, and since C++ tools are more readily available in the commer-
cial market, C++ was chosen as the implementation language for SmartDb.

Versant and C++ are only available on the Unix operating system and on SunSparc
and Silicon Graphics (SGI) workstations. These restrictions are acceptable since these are good
platforms for development. They provide computational power and operating system support for
the implementation of large multi-user multi-process distributed applications.

Unix is selected as the operating system. Since SunSparc has better support for software
tools, it is selected as the hardware platform. This choice does not preclude the option of porting
the system to SGI in the future, if needed.

67

Finally the system architect selected the public domain graphical package Tcl/Tk for user
interface implementation. Tcl/Tk is an extensible, interpretive environment that supports inter-
process communication. It runs on Unix/Sparc and Unix/SGI and supports a C/C++ interface.

These components implement only a subset of the constructs discussed in the previous
chapter. The domain customizer and system architect bootstrap from SmartDb and provide the
remaining constructs within SmartAHS.

The following subsections describe how these component tools are used to provide the
Object Model constructs.

5.1.2 Data Model

As a programming language C++1 provides the constructs to de�ne classes, attributes,
and methods. C++ distinguishes between private, protected, and public class components and
supports multiple inheritance, polymorphism, and dynamic binding. C++ does not provide full
monotonic inheritance support. In particular, there is no syntax to restrict the domain of an at-
tribute as part of specialization2. SmartAHS speci�cation depends on attribute specialization and
its implementation provides work-arounds for this C++ de�ciency, as discussed in Section 5.3.6.

Versant libraries are summarized in appendix 9.2. The system architect bootstraps from
C++ constructs and Versant libraries and implements entities as C++ classes. Entity components
are speci�ed as follows:

� Distinguished Name;

The Link construct provided by Versant, a persistent pointer, is used as the instance identi�er
at runtime. The scoping rules of C++ provide all other constructs to identify individual
components of instances.

Links do not carry any semantic meaning. Furthermore, the value of a Link is de�ned at
runtime only. An independent naming convention is developed to name all instances in the
system. The naming convention is discussed in Section 6.7.

� State, input, and output attributes;

A distinction is made between static and dynamic state attributes.

The length of a car, the width of a lane, etc., constitute static state. Their values are initialized
at instance creation time and not modi�ed during a simulation run. All static relationships
and static state characteristics are implemented as class attributes.

The speed of a car, average density of a lane, etc., constitute dynamic state. The values
of these attributes change during a simulation run. Dynamic state, inputs, and outputs are
implemented as independent classes, these classes also contain dynamic relationships among
objects.

� Methods;

C++ methods are used to implement behavior. These methods do not support the input-
output propagation described in the previous chapter. This issue is discussed in the process
model.

� Constraints;

C++ is a strongly typed language. Each type de�nes the value domain of an attribute. For
example, one can de�ne an enumerated data type, which is a �nite list of integers. Semantic
constraints and participation constraints are implemented by proper attribute type de�nitions.
These constraints are enforced by the C++ compiler.

Other constraints are implemented as regular class methods.

1See Appendix 9.1 for a quick overview of the C++ programming language.
2According to monotonic inheritance, discussed in Section 2.4.2, a subclass can restrict the domain of a base class

attribute. An attribute declared as float, for example, may be restricted to integer values only in the subclass.

68

5.1.3 Process Model

Execution Sequences and Transitions

C++ provides synchronous method calls only3. Input-output propagation among the base
classes of SmartAHS is achieved by these synchronous method calls.

SmartAHS classes bootstrap from C++ methods and implement an asynchronous event
delivery mechanism. SmartPATH classes are required to de�ne their inputs and outputs as separate
classes. Their public methods do not use arguments.

The OMSEngine

OMSEngine constructs are distributed to a collection of C++ classes.

Constructor and destructor methods are used in entities to specify create and delete meth-
ods. The C++ language provides \new" and \delete" operators that are accessible to all objects.
SmartAHS limits the use of these operators to speci�c entities only.

Input-output connections are maintained by SmartAHS classes. The Link construct of
Versant provides direct access to the instance it identi�es. As such access to the Link of an instance
provides access to all its public components. SmartAHS de�nes input and output interfaces for
entities and expects SmartPATH objects to use these interfaces rather then using Links for direct
access to objects.

Execution sequences and transitions for SmartPATH are designed and implemented as
part of SmartAHS. SmartAHS implements these constructs using the C++ methods.

Sequencing Objects

In C++, a method can call other methods. This gives sequencing power to all objects.
SmartAHS delivers a framework where only scheduling objects act as sequencers.

5.1.4 Extended Object Model Constructs

Virtual attributes and associations are not used. Binary relations are implemented by
Link, VVList and VVarray constructs of Versant. More complex relationships are represented by
C++ classes.

The static relationships in the application are initialized in independent modules. These
modules guarantee relationship integrity. Dynamic relationships are maintained by SmartAHS
classes.

Time and event driven evolution constructs are part of SmartAHS.

5.2 Domain Customization

5.2.1 Data Model

After several iterations and continued discussions with the system architect, domain cus-
tomizer categorized SmartAHS entities and drew the line between SmartAHS and SmartPATH as
follows:

SmartDb Entities

Two abstract base classes FrameworkObject and StatedObject are used as the base class
of all SmartAHS classes. The base classes State, Input, and Output encapsulate the corresponding
attributes of objects. These base classes are discussed in Section 6.1.1.

3Recall from Section 2.6.2 that a synchronous method call �nishes all computation before it delivers a return value,

whereas an asynchronous method call may continue computation after it delivers a return value.

69

Highway Entities

The description of highway networks is decomposed into smaller building blocks. The
highway network is divided into Zones; each zone contains multiple highway Segments interconnected
using Junctions. The highway segments are terminated using tra�c Sources and Sinks. The
highway segments consist of Sections, Entrys, and Exits. Junctions and sections are divided into
Lanes. Lanes can have curvature. The full implementation and speci�cation of highway entities are
part of SmartAHS. These classes are discussed in Section 6.1.2.

Vehicles

SmartAHS provides Vehicle as an abstract base class. It de�nes the input and output
attributes of a Vehicle and maintains its position within the highway. Application developers are
expected to inherit from Vehicle and specialize it according to automation strategy.

Vehicles are discussed in Section 6.1.5

Automation Devices

Entities used to achieve automation and performance evaluation are called automation
devices. SmartAHS provides them only as abstract base classes. Application developers are expected
to inherit from these classes and to specialize them. The specializations of these classes interact with
other objects through their inputs and outputs only. Their evolution is managed by the time and
event driven scheduling objects.

These classes are discussed in Section 6.1.3.

Tra�c Entities

Entities used to create tra�c and vehicles are called tra�c entities. SmartAHS provides
them only as abstract base classes. These classes are discussed in Section 6.1.6.

SmartAHS de�nes the input and output attributes of Tra�c Entities and their methods.
Application developers are expected to inherit from them and specialize these methods.

Scheduling Entities

These are sequencing entities used to implement time and event driven behavior. Smar-
tAHS provides con�gurable scheduler base classes. Based on simulation granularity application
developers con�gure them with the help of a system architect.

These classes are discussed in Section 6.2.

State Machine Entities

A special language is used to implement event driven behavior of entities. SmartAHS
provides full speci�cation and implementation of this language.

The state machine language is discussed in Section 6.3.

5.2.2 SmartAHS Modules

The domain customizer also drew a line between the simulation setup and the simulation
run. The steps for simulation setup are summarized in Figure 5.2. These steps are:

Highway speci�cation

The highway network is created as part of the simulation setup and remains static during
a simulation run. The highway creation mechanism of SmartAHS is designed as an independent
module. A graphical object editor (GOE) is used to create highways. This object editor is discussed
in 6.4.

The GOE provides a meta-data de�nition language for the speci�cation of instantiable
classes, their possible relationships, and their attributes. The GOE interprets the meta-data and

70

Specify Highway

Specify Factory

Specify Traffic
Select Roadside

Controllers

Specify Runtime
Parameters

Run Simulation

Build and Load
Scheduler

Figure 5.2: SmartAHS Speci�cation Sequence for Simulation Setup

allows the user to create and connect instances and to set attributes, i.e., de�ne the data, according
to the meta-data speci�cation.

Tra�c Pattern Speci�cation

Tra�c entities are used to specify incoming and outgoing tra�c patterns. An independent
module is used to select speci�c tra�c entities for each simulation run.

Roadside Automation Device Speci�cation

Di�erent automation strategies will choose di�erent con�gurations of automation devices
on the highway. An independent module is used to con�gure a highway network with automation
devices.

Vehicle Automation Device Speci�cation

Di�erent automation strategies will choose di�erent con�gurations of automation devices
in the Vehicles. Application developers are expected to provide Factory entities that have the
capability of creating vehicles with the appropriate con�guration.

Factorys are discussed in Section 6.1.6.

Speci�cation of Simulation Granularity

The time step of each simulation, the degree of monitoring and evaluation, and the set of
objects simulated in detail may vary for each simulation. A special module is used to con�gure the
scheduling objects and to specify the simulation granularity.

71

Speci�cation of Simulation Parameters

Tra�c entities and automation devices may provide parametric interfaces. A special mod-
ule is used to set these parameters before each simulation run.

5.2.3 Process Model

For the simulation run the domain customizer makes the following process model decisions:

Creation and Deletion

The highway network, the highway automation devices, and the tra�c patterns are created
as part of the simulation setup and remain static during a simulation run.

For Vehicles each control strategy is required to provide its own Factory that knows how
to create the proper Vehicle types. During the simulation run, various types of Vehicles are created
by Factory entities in Generator objects based on incoming tra�c patterns. Vehicles leave the
highway at Absorber objects based on outgoing tra�c patterns. Outgoing vehicles are not deleted
but ushed to the database. Vehicle instantiation is further discussed in Sections 6.1.6 and 7.1.1.

Relationship Evolution

In SmartAHS all relations among highway entities and all relations among the objects
within a Vehicle are set at creation time and remain static during a simulation run. The Vehicle
has a static relationship with the Entry/Source where it enters the highway and with its Exit/Sink
destination. These relationships are initialized at creation time.

All relationships based on the location of Vehicles are dynamic.
Vehicle position and the relationship between a Vehicle and its Lane are maintained by

SmartAHS as discussed in Sections 6.1.2 and 7.2.1.
All other inter-vehicle relations are derived using Sensors and are discussed in Section

6.1.3. Sensors are also used to identify the receiver ids of objects in the sensing range.
Packets are used for event driven communication. SmartAHS maintains the relationships

of Packets, i.e., it implements Packet delivery.

Time Scale of Evolution

In SmartAHS, object state evolution is driven by passage of time or by occurrence of
events. SmartAHS provides distributed scheduling for time and event driven objects.

A global clock is used to de�ne the simulation time.
Each time driven object speci�es the time step for its state evolution as a multiple of the

global clock step. Rapidly evolving objects, such as engines, change their state more frequently,
while more passive objects, such as roadside link controllers, change their state at larger time steps.
Time driven objects are capable of creating events.

Event driven objects exercise their behavior only when events are delivered to them.
Events are generated by objects as output messages and are communicated to the addressed ob-
jects as input messages. SmartAHS objects communicate using their transmitters and receivers.
SmartAHS does not simulate a communication channel; it assumes reliable message transmission.
Events are delivered at increments of the global clock time step. As such, event delivery is not
instantaneous, but happens within a �nite time interval.

Time and event driven evolution is implemented in a three layer hierarchy by the System
Architect discussed in Section 6.2.

Constraint Speci�cation

C++ is a strongly typed language, and it is used to restrict the attribute domains.
SmartAHS does not specify other constraints. If needed constraints can be implemented

as special monitor entities that observe system state and state transitions and determine if any
constraints are violated. These objects then become part of SmartAHS simulation.

72

Identi�cation of Operation Modes

The di�erent modes of operation are part of the semantics of individual automation strate-
gies. As such the domain customizer identi�es a single undesired behavior: an Accident.

If two Vehicles occupy the same space, or they fall outside the highway boundaries, we have
an Accident. Detailed accident simulation is not part of SmartAHS. SmartAHS detects accidents,
and creates corresponding noti�cation events.

User Needs

The users of SmartAHS are control and communication engineers who will design and
implement the automation devices. They will use SmartAHS as a simulation tool to debug and
improve their designs. To this end they need graphical tools that simplify the display of the system
state during simulation.

The users of SmartPATH will run extensive simulations, collect statistics, save and replay
state trajectories of objects. They, too, need a graphical tool for these tasks.

The graphical debugger that addresses these requirements is discussed in Section 6.5.
Conceptually, the graphical debugger is another sequencing object that enables the user to execute
a sequence of transitions. In particular, it provides the following functionality:

� provides access to objects by name;

� displays object attributes in numerical or graphical format;

� allows users to set error levels of objects. Objects with higher error level print more detailed
information;

� allows users to set the logging level of objects. Turning the logging on results in recording the
state history of an object;

� allows users to stop and start the simulation;

� replays the recorded history of objects.
The replayer has �ve buttons: 1) Play; 2) Stop; 3) Step forward; 4) Step backward; and

5) Go to time. The last button takes an argument specifying the global clock time stamp.
Finally the domain customizer determines how application developers extend SmartAHS

objects. Figure 5.3 describes how specialized classes become part of the simulation setup. The
details of application development are discussed in Chapter 7.

5.3 System Architecture

So far the domain customizer has addressed most modeling, con�guration, fault, and
performance management requirements of SmartAHS. The system architect addresses the software
and system requirements.

5.3.1 Process Structure

The system requirements dictate that the simulation be distributed. The system architect
uses the highway Zones as the basis for distribution. Distribution is discussed in Section 5.3.3.

Within a Zone all objects are simulated in a single process. This decision is based on
performance evaluation results of early prototype implementationswhere separation of the simulation
of the various automation devices into independent processes resulted in poor performance. The
prototypes attempted to use the database as a blackboard that would always reect the state of
a zone. The prototypes revealed that read/write database access duration for a zone with 2000
vehicles is in the order of seconds. Since the simulation granularity requires that the global clock
time step be about 0.1 seconds, this observation made it infeasible to save the simulation state to
the database after every transition.

73

Specify Highway

Specify Factory

Specify Traffic
Select Roadside

Controllers

Specify Runtime
Paramaneters

Run Simulation

Build and Load
Scheduler

Vehicle Automation
Devices

Vehicle Factories:
Cars, trucks, etc.

Traffic Pattern
Generators

Gateways to other
simulation packages

Roadside
Automation Devices

Specify and Configure
Schedulers

Application Class
Parameters

Figure 5.3: Integrating Specialized Classes During Simulation Setup

Modularity of simulation requires that the scheduling architecture itself be con�gurable.
A given simulation should be able to select its own granularity and decide time scale of evolution
for objects within the simulation.

After these observations the system architects started specifying the time and event driven
scheduling and event delivery mechanisms.

5.3.2 Time and Event Driven Simulation

This section describes how SmartAHS guarantees the timely evolution of each object and
the timely communication of events to objects. Distribution is deferred to the next section.

Time and Event driven simulation is achieved in a three layer architecture similar to the
example given in Section 6.2.

The bottom layer domain is de�ned by the highway Zone and all of its containees.
The middle layer scheduling entities are called Process Layers. They are used to execute

the simulation of collections of objects that evolve at the same time steps or respond to the same
collection of events. The process layers themselves can be time or event driven.

The top layer domain contains a Process Coordinator. The process coordinator is in charge
of managing the execution of the middle layer scheduling objects, the process layers, and the Global
Clock.

The process coordinator schedules the execution of time driven process layers based on
their time step and schedules the execution of event driven process layers if any events are raised
against them by an object.

The global clock represents the passage of time and de�nes the smallest time step of the
system. All evolution takes place at discrete advancements of this clock. The clock value is accessible
to all objects in the system.

The clock also provides a timer service. Objects can send an event to the clock to register
a timeout request. This request speci�es the number of time clicks after which the timer expires and
a message to be delivered when it does. When scheduled for execution, the clock delivers timeout

74

events as part of its behavior.
A process layer can do the following:

� simulate the time driven evolution of all instances of an object type;

� for all instances of an object type with an outstanding event, deliver the event and simulate
the event driven evolution.

If event driven objects are put in a time driven process layer, event delivery for these
objects takes place only when the corresponding process layer is executed.

In a simulation run, the process coordinator executes the process layers according to their
time step, which in turn execute the simulation of the objects they are responsible for.

Example

The process architecture that would implement the layered architecture proposed by
Varaiya [41] is shown in Figure 5.4.

Process

Regulation Layer

Coordinator

Link Layer

Physical Layer

Domain
Image

Coordination Layer

Network Layer

Global Clock

Events

Highway Zone
Time and Event Driven
Process Layers

Process Layer
Coordination

User

Figure 5.4: SmartPATH Process Architecture.

The physical layer is time driven and maintains the position of the vehicles on the highway.
The regulation layer is time driven. It contains event driven regulation supervisors and

time driven maneuver objects. The supervisors switch between maneuvers based on incoming mes-
sages from the coordination layer; the maneuvers control the behavior of the throttle, braking, and
steering actions and generate the vehicle displacement.

The coordination layer is time driven. It contains event driven coordination objects.
Coordination objects in di�erent vehicles exchange messages to determine the maneuver a vehicle
should execute. These decisions are communicated to regulation layer supervisors through messages.

The link layer is time driven. It contains time driven link objects that set tra�c parameters
such as target speed and average platoon size in highway sections.

The network layer is event driven. It is executed only if an accident occurs. Upon an
accident it recon�gures the routing tables.

5.3.3 Distribution Architecture

The need for a distributed architecture was identi�ed in the problem speci�cation. The
distribution can be vehicle or highway based, i.e., a domain either consists of a given set of vehicles or
a given subset of the highway network for simulation. Since locality of reference is better represented
by highway network subsets the system architect chose to use the zone object as the basis for
distribution.

SmartAHS supports distributed simulation. Zones serve as the unit of distribution: dif-
ferent zones can be distributed to di�erent processors; they have their own database and their own

75

clock. Since a vehicle can communicate with and sense other vehicles in its neighborhood only, com-
munication between the distributed processors is restricted to objects in adjacent highway segments.
This locality of reference enables e�cient distributed processing.

Distributed simulation is depicted in Figure 5.5. The boundary object between the last
section of the previous zone and the the �rst section of the next zone coordinates communication
between the processors, ensures synchronization of simulation clocks on di�erent processors, and
controls object migration between databases.

Section SectionSection Section

Zone 1 Zone 2

DB1 DB2

Boundary

Figure 5.5: Distributed Simulation

The locality of reference assumption only holds for vehicles and roadside control objects.
Tra�c management centers, or network routing optimizers need a global view of the highway network
and hence need access to all zones. SmartAHS provides for time and event driven scheduling of such
External Global Processes. Figure 5.6 summarizes the distributed scheduling of time and event
driven layers.

TDLL

EDLL

EDGLA

EEDGP

PC

...

TDGLA

ETDGP

TDLL

EDLL

EDGLA

PC

...

TDGLA

DB DB

Figure 5.6: Distributed Simulation

Time and Event Driven Global Layer Agents (TDGLA and EDGLA) are used within each
zone to coordinate the scheduling of the external processes.

An External Time Driven Global Process (ETDGP) exercises its behavior periodically.
The TDGLA's in each zone are scheduled with this period and send a \Go" message to their
ETDGP when scheduled. The ETDGP exercises its behavior after receiving the \Go" message from
all TDGLA's, and returns a \Done" message to all of them.

An External Event Driven Global Process (EEDGP) exercises its behavior upon an event.
The EEDGP should exercise its behavior when all EDGLAs are scheduled. Since a local event in a
zone may require the scheduling of an EEDGP, its scheduling requires more coordination e�ort. First
the EDGLA with the event noti�es the EEDGP. The EEDGP in turn sends an event to all process
coordinators, requesting the scheduling of the EDGLA layer at every time click, until otherwise
noted. The process coordinator acknowledges this request upon receiving it. The EDGLAs send
a \Go" message to the EEDGP when scheduled. The EEDGP responds to these messages with
a \Don't Block" message until it receives the acknowledgements of all process coordinators. An
EDGLA returns control to its process coordinator if it receives the \Don't Block" message. After

76

receiving all acknowledgements, the EEDGP collects all the \Go" messages, exercises its behavior,
and returns a \Done" message. At that point the EDGLA's cancel their scheduling request.

The details of distributed simulation are not discussed in this thesis. They can be found
in [34].

5.3.4 Collecting Statistics

The evaluation of system performance is achieved by monitor objects that collect statistical
data. In most cases monitor objects need to record state histories for future statistical processing.

Versant provides a versioning mechanism that saves versions of objects. However, Versant
does not support the migration of versioned objects. Since the state trajectories of vehicles need
to be recorded, and since vehicles do migrate from one domain to the other, the system architect
designed a state history recording mechanism as part of SmartAHS.

During a SmartAHS simulation the evolution of an object results in a change in its state,
input, and output attributes only. Since state, input, and output attributes are implemented as
independent classes, an object's history can be recorded by versioning the state, input, and output
instances. The object itself then can provide the necessary bookkeeping constructs to version, save,
and restore their history. These bookkeeping constructs are implemented within base classes and
further discussed in Section 6.1.1. Here we summarize the key features:

� The global clock is used to index the state history of objects;

� If an object takes several transitions at the same time stamp, a secondary index is used to
label them;

� State history of objects is recorded only if their logging is turned on;

� Logging can be turned on through the graphical interface. The parametric interface can be
used to turn logging on at object instantiation time;

� Objects keep track of the intervals during which their logging was turned on, i.e, their state
was recorded;

� Time driven objects record their state at every time click at which their state changes;

� Event driven entities record their state at every transition;

� Monitor objects have the ability to specify the frequency with which to save their history.

The recorded history is saved within the OODB and is accessible to any application.

5.3.5 Veri�cation Support

It is envisioned that the automation strategies will result in a hybrid control framework.
Automation devices, such as coordination layer controllers, will use Discrete Event Controllers to
specify symbolic control actions. These controllers use events to interact with each other and to
observe the continuous evolution of the system.

The system architect and the domain customizer designed a special language, called State
Machine Language, to specify event driven behavior. This language distinguishes the events ex-
changed among event driven controllers from events resulting from continuous behavior.

As such, it becomes possible to partially verify the discrete event behavior of the au-
tomation devices. In the simulated environment, the events resulting from continuous behavior are
deterministic and result from actual simulation. In the veri�cation environment, these events are
treated as the nondeterministic component of state machines.

The state machine language is discussed in Section 6.3.

77

5.3.6 Monotonic Inheritance

C++ does not provide full monotonic inheritance support. This becomes a problem when
referring to state, input, and output classes. The SmartAHS base class StatedObject de�nes a
relation with the base class State. This relation must be de�ned at this level since base class
methods need to access it.

However, this relation needs to be specialized for each subclass. The Vehicle class must
have a relation with a VehicleState and not a LaneState. Furthermore, Vehicle's methods need
access to the attributes de�ned in the VehicleState. The base class State can not have all these
attributes.

SmartAHS provides a work-around for this problem by introducing a new relation for
each subclass. The StatedObject has a relation named theState, the Vehicle introduces a relation
named vehicleState, a Truck introduces a relation named truckState. The same TruckState

instance then participates in all three relations.

78

Chapter 6

SmartAHS Implementation

In this chapter we discuss the implementation of SmartAHS. SmartAHS uses the program-
ming constructs1 provided by C++ and Versant to create a Customized OM. SmartAHS provides
the Object Model constructs described in Chapter 4 and the entity speci�cations for automated
highways.

The reader should understand that SmartAHS is a \live" system that will evolve over
time. The entity speci�cations in this thesis serve as examples of the concepts discussed in earlier
Sections. For up-to-date documentation, the reader should always refer to the latest version of the
reference manual and the user's guide of SmartAHS.

To maintain readability many details of entities are omitted. In particular:

� The distinctions between public, protected, and private components are not discussed;

� For all relations, SmartAHS entities provides speci�c Get and Set methods. If the relationship
is represented by a list, further methods such as Insert, Delete, Replace, and GetNumOf are
provided. These methods are not discussed;

� Most public methods implement their behavior with a number of private methods to maintain
modularity. In most cases the private methods are omitted.

A relationship between two entities is implemented by a Link attribute in each object. If
the object enters the same relationship with multiple objects a VVList attribute is used. In some
cases explicit de�nition of the relationship attribute type is omitted.

For each object we describe the following components as appropriate:

� Static state relationship attributes;

� Static state value attributes;

� Dynamic state relationship attributes;

� Dynamic state value attributes;

� Inputs and Outputs; and

� Methods.

In the �gures instantiable classes are represented by ovals, abstract classes are represented
by rectangles. In the class hierarchy diagrams, inheritance is indicated by an arrow from parent
to child class. Since the containment hierarchy is a one-to-many relationship, in the containment
hierarchy diagrams, cardinality is indicated on the containee's side only.

We make an explicit distinction between static and dynamic attributes. The static at-
tributes are part of the class, the dynamic attributes are in a separate class2. This separation
facilitates the recording of state history.

1The C++ and Versant constructs are summarized in Sections 9.1 and 9.2 respectively.
2A pair of Links are used to establish the relationship between an object and its state.

79

SmartAHS base classes use C++ methods to communicate. For these methods we list
their return value, their name, their list of arguments, and a brief description of their functionality.
Unless otherwise noted, return values of methods that are of type int correspond to an error code.
In the text we refer to methods by their name, e.g. Run(). If it is clear from context that Run is a
method, the parentheses may be omitted.

Many methods are de�ned in a base class and specialized in all subclasses in some spe-
ci�c way. These methods are discussed only in the base class with a description of how they are
specialized.

SmartAHS base classes develop an input-output formalism for control devices. Example
SmartPATH control objects are discussed in the next chapter.

6.1 Domain Customization: Entities and Relationships

SmartAHS speci�es abstract base classes for all objects and implements the leaf classes
for highway objects.

In this section we discuss the SmartDb, highway, vehicle, automation, and tra�c entities of
SmartAHS, their class hierarchy, their containment hierarchy, their relationships, their state, input,
and output attributes, and their methods.

6.1.1 SmartDb Classes

We de�ne �ve abstract base classes: FrameworkObject, StatedObject, State, Input, and
Output. The SmartAHS inheritance hierarchy for base classes is described in Figure 6.1.

(from Versant PVirtual)

Vehicle

MonitorControlSmartObject

State

Framework
Object

Lane
Container

Stated
Object

ReceiverTransmitterSensor

.............

Output

.............

Input

.............

Projection

.............

.............

.............

Figure 6.1: Base Class Inheritance Hierarchy

FrameworkObject

FrameworkObject is the base class of the simulation framework. It de�nes some basic
methods that apply to all framework classes. These methods and their arguments are:

int SetName (const char* newName);

This method sets the name of the object to newName.

const char* GetName ();

This method returns the name of an object.

80

virtual int SetAttribute (const char *attrName

const char *attrValue);

This method sets the attrName attribute's value to attrValue. All subclasses should implement
this method for their attributes and conclude the method with an explicit call to their parent's
SetAttribute method.

virtual int SetRelation (Link<PVirtual> otherObject,

const char *relation,

const char *inputName,

const char *outputName);

This method establishes the relation between this and the otherObject. The inputName

and outputName specify the input and output to be connected. All subclasses should implement
this method for their relations and conclude the method with an explicit call to their parent's
SetRelation method.

virtual int GetContainees (LinkVstrAny & myContainees)

This method sets the contents of myContainees to all the containees of the object. All subclasses
should implement this method for their containees and conclude the method with an explicit
call to their parent's GetContainees method.

virtual int WakeUp (o u4b handle,

Link<Message> state);

This method is used to deliver a timeout to this object by BigBen. The request is identi�ed
by handle; state is passed to BigBen while registering the timeout request. This method is
revisited in Sections 6.3 and 6.2.2.

virtual int ProcessEvent (o u4b packetType);

This method is used to deliver events identi�ed by packetType. It is revisited in Sections 6.3
and 6.2.2.

virtual int ProcessMsg (Link<Message> newMsg);

This method is used to deliver newMsg to the object. It is revisited in Sections 6.3 and 6.2.2.

virtual void Pack (char* request);

This method is used by the graphical debugger to display the static and dynamic state of the
object. It encodes all or part of the object in a standard format, based on request type. This
method is revisited in Section 6.5.

virtual LinkAny Duplicate ();

This method creates a deep copy of the object.

virtual int SetErrorLevel (o u1b newLevel);

This method sets the errorLevel attribute of the object to newLevel.

The attributes of FrameworkObject are errorLevel and name.

StatedObject

StatedObject captures the relation between an object and its State. This static relation-
ship is de�ned by the currState and myObj attributes respectively. As discussed in Section 5.3.6
C++ does not provide full monotonic inheritance support. Hence, subclasses of StatedObjectmay
de�ne attribtues other than currState to identify the relationship between a StatedObject and
its State. Examples, such as VehicleState, SMInstanceState, and LaneState, are discussed in
subsequent sections.

The static attributes of StatedObject are:

StatedObject Static Attributes

Values

VEArray<o u4b> logIntervals Used to maintain intervals of recorded history.
o u1b logLevel If it is set to greater than zero, logging is active.
Relations

Link<State> currState Identi�es the State of the object.

81

Link<BigBen> myBigBen The clock used to register timeouts. This at-
tribute is set by the instantiable leaf class.

VVArray<State> stateHistory Used to record history. Index corresponds to
time stamp.

We said that the dynamic attributes of an object are stored in its State class. The
logIntervals and stateHistory attributes do change during a simulation when the logLevel is
turned on and o�. However, these attributes are not part of the dynamic State of an object since
they do not e�ect the actual evolution of objects. Furthermore, if stateHistory were part of State
it would have to record its own history. Future releases of SmartAHS may move the logLevel,
logIntervals, and stateHistory attributes into an independent StateHistory class.

Key StatedObject methods are:

virtual int SaveState ();

This method duplicates the currState of the object if logLevel is greater than zero. It uses
the global clock to get the time stamp and inserts the duplicated state at the time stamp index
of stateHistory. If state has already been saved at this time stamp, the History object is used
to implement the necessary bookkeeping.

virtual int SetToTime (o u4b time);

This method restores currState to the State from the time index of the stateHistory.

virtual int SetLogLevel (o u1b newLevel);

This method sets the logLevel attribute to the value of newLevel. It implements the necessary
bookkeeping to maintain logIntervals and to turn logging on or o�.

virtual o bool InLogIntervals (o u4b time);

This method returns true if State has been recorded at the speci�ed time.

virtual int Run ();

This method should be specialized by subclasses to implement time driven behavior.

State

This abstract base class has two static relationship attributes identifying its StatedObject
and its History. We document them below:

State Static Attributes

Relations

Link<History> myHist Identi�es its History.
Link<StatedObject> myObj Identi�es the StatedObject.

The History object is used to implement a linked list structure for recording several state
transitions at the same time stamp. The �rst transition is inserted into the stateHistory array
of the StatedObject at the index given by the time stamp. Subsequent transitions are saved in a
linked list and chained along the sameClickState attribute of the myHist of the State.

The History class has the following static attributes:

History Static Attributes

Relations

Link<State> myState Used to identify the State owning the History.
Link<State> sameClickState Next transition recorded at the given time click.
eventId o u4b Secondary index identifying transition within the given

time stamp.

Inputs and Outputs

As illustrated in Figure 6.1 these objects share a base class called Projection. Input and
Output Projections are used by the State Machines only. Their discussion is deferred to Section
6.3.5.

82

6.1.2 Highway Entities

Highway network description is decomposed into a number of highway entities. These are:
Lane: A portion of the road wide enough for one vehicle.
Section: A portion of the road consisting of several lanes.
Junct2to1: A portion of the road, where two sections merge into one.
Junct1to2: A portion of the road, where one section splits into two.
EntrySection: A particular type of section where vehicles are allowed to enter the highway.
ExitSection: A particular type of section where vehicles are allowed to leave the highway.

Segment: A consecutive set of sections that do not contain any junctions.
Sink: An ending point for highways.
Source: A beginning point for highways.
Entry An on-ramp for entering the highway.
Exit An o�-ramp for exiting the highway.
Zone: A part of the highway network, containing sinks, sources, segments, and

junctions.
The highway entities are organized in the inheritance hierarchy described in Figure 6.2.

Note that LaneContainer, Generator, Absorber, and Junction are introduced as abstract base
classes. The SmartObject class is discussed in Section 6.1.4.

JunctionAbsorberGenerator

Lane
Container

Stated
Object

SmartObject

Section

EntrySection

ExitSection SinkSource

ExitEntry
Zone

Segment

Lane

Junt2to1

Junct1to2

Figure 6.2: Class Hierarchy for Highway Entities

The containment hierarchy for these entities is given in Figure 6.3. Since the containment
hierarchy is a one-to-many relationship, cardinality is indicated on the containee's side only.

Finally a number of binary relationships among highway entities are summarized in Table
6.1. These relationships specify how instances of highway classes can be connected to create highway
networks. The �rst column of the table has the attribute name that identi�es the relationship in
a given class. Relationships are implemented by Link and VVList attributes; Table 6.1 omits the
attribute type de�nitions. The second column identi�es the second class participating (or classes
that can participate) in the relationship. The third column of the table has the attribute name that
identi�es the relationship in the second participant. If a relationship is between two instances of the
same class, the relationship is listed only once. The fourth column describes the cardinality of the
relationship.

Cardinality is given as a : b where a; b 2 f0; 1; 0j1; n;mg. A cardinality of the form a : b
denotes that the �rst class can participate in a such relationships, whereas the second in b. A
LaneContainer (LC) may be related zero or one LaneContainers through its prevLC1 relationship.
The reciprocal of this particular relationship is nextLC1. A LaneContainer may be related to one
or zero LaneContainer's through its nextLC1 relationship.

83

Lane
Container

1..n

0..n

0..n

 1

1..n

1..n

1..n

0..n1..n

0..n

 1
Lane

Section

Entry Exit

Junct1to2

EntrySection

ExitSection

Junt2to1Source

SinkSegment

Zone

Figure 6.3: Containment Hierarchy for Highway Entities

Some relationships are speci�ed in a base class and then specialized in subclasses. A
Generator, for example, further restricts the prevLC1 relationship and states that one Generator

can participate in zero such relationships.

A highway network consists of multiple Zones; the Zones provide the basis for distribution
and de�ne domain boundaries. However, for simplicity, in what follows, we assume that the highway
network consists of a single Zone.

Most highway entities have little behavior of their own and are used to create highway
networks only. Their behavior is derived from the automation devices they are con�gured with.

We now discuss the highway entity methods that are used by the physical layer scheduling
objects to create and move the Vehicles along the highway. These methods are revisited in Section
7.2.1.

Lane

The static relationships of Lane were discussed above. The Lane's dynamic state at-
tribtues are de�ned in the LaneState class. The Lane specializes the currState relationship of
StatedObject by its laneState attribute as discussed in Section 5.3.6. The LaneState attributes
are:

LaneState Attributes

Relations

VVList<Vehicle> myVehicles List of Vehicles in the Lane.
VVArray<Vehicle> cellArray List of Vehicles in the Lane indexed by their

position along the Lane.

The methods that are used to move the Vehicles along the highway are:

int MoveVehiclesInLane ();

This method updates the cellArray based on the current xP and yP values of the Vehicle, and
sets the Vehicle's absDist, currLane, and cellId attributes. It moves Vehicles to the next
LaneContainer if they have moved beyond the end of this Lane.

The Lanes have curvature. The Vehicle movement methods encapsulate the curvature of
the Lane, so methods and attributes regarding Lane curvature are not discussed.

84

Entity Relationship With Entity Reciprocal Cardinality
Lane prevLane Lane nextLane 0j1: 0j1
Zone prevZones Zone nextZones n:m
Segment prevLC Junction | Source nextSegment1 |

nextSegment2
1:1

nextLC Junction | Sink prevSegment1 |

prevSegment2
1:1

Lane Container prevLC1 LaneContainer nextLC1 0j1:0j1
Junction prevSegment1 Segment nextLC 1:1

nextSegment1 Segment prevLC 1:1
prevLC1 Section nextLC1 1:1
nextLC1 Section prevLC1 1:1

Generator prevLC1 NONE 1:0
Absorber nextLC1 NONE 1:0
Section prevLC1 Junction | Section nextLC1 1:1
Section nextLC1 Junction | Section prevLC1 1:1
EntrySection prevLC2 Entry nextLC1 1:1
ExitSection nextLC2 Exit prevLC1 1:1
Junct2to1 prevSegment2 Segment nextLC 1:1

prevLC2 Section nextLC1 1:1
Junct1to2 nextSegment2 Segment prevLC 1:1

nextLC2 Section prevLC1 1:1
Sink prevSegment1 Segment nextLC 1:1

prevLC1 Section nextLC1 1:1
Source nextSegment1 Segment prevLC 1:1

nextLC1 Section prevLC1 1:1
Exit nextLC1 NONE 1:0

prevLC1 ExitSection nextLC2 1:1
Entry nextLC1 ExitSection prevLC2 1:1

prevLC1 NONE 1:0

Table 6.1: Relationships Among Highway Entities

85

LaneContainer

LaneContainer provides one method for Vehicle movement int MoveVehicles(). This
method calls MoveVehiclesInLane() on each of the Lanes of the LaneContainer.

Generator

Generators are the creation source of Vehicles. They contain Factory and InTraffic

objects. (See Figure 6.6.) The Generator's state depends on its InTraffic's State.
Generator provides one method: int GenerateVehicles(). When invoked this method

may create a new Vehicle. The InTraffic's AnyVehicle() method decides whether to create a
Vehicle and if so what type of Vehicle to create. The actual Vehicle creation is performed by
the Factory.

Absorber

All Vehicles eventually reach an Absorber and leave the highway. The Absorber contains
an OutTraffic object which models the road conditions outside the highway. The Absorber's State
depends on its OutTraffic's State.

The Absorber provides one method: int AbsorbVehicles(). This method implements
the necessary bookkeeping for deactivating Vehicles, and invokes the OutTraffic's TakeVehicle
method.

Vehicles that leave the highway are \deactivated" and written to database. Deactivation
Terminates all state machines (See Section 6.3.4.) and sets the logLevel and errorLevel of
automation devices to zero.

6.1.3 Automation Devices

Sensors, Controllers, Receivers, Transmitters, and Monitors are added to vehicles and
to the roadside for automation and evaluation. These �ve entities are called automation devices.

Longitudinal and lateral Sensors provide information about the environment such as dis-
tance and speed to the Vehicle in front, or to the left. Transmitters and Receivers are used for
communicating with other objects. Example Control objects are regulators that determine speed,
and coordinators that select maneuvers to perform. Monitors are read-only entities that collect
statistics.

SmartAHS provides only abstract base classes for these objects and expects the application
developers to fully develop their behavior in subclasses.

Control

Control objects use the Input and Output classes to de�ne their input and output at-
tributes. None of their public methods take any arguments.

An Engine object in the Vehicle, for example, accepts xJerk and yJerk as inputs, and
when enabled generates xP, xVel, xAccel, yP, yVel, and yAccel as outputs.

Control objects can be time driven, event driven, or both. The event driven controllers
utilize state machines and their discussion is deferred to Section 6.3. The time driven controllers
specialize the Run() method. This method is invoked by the process layer in charge of scheduling
the extent of a given Control class. An example Run() method is discussed in Section 7.2.2.

Transmitter and Receiver

In SmartAHS transmitters and receivers are modeled as zero-delay devices that deliver
messages with full reliability. Application developers have the ability to implement more detailed
transmitter and receiver models by specializing their methods,

The communication channel between objects is not part of SmartAHS simulation. Objects
establish a communication link by using their Sensors. An object that wants to send a Message to

86

another object locates and identi�es its target using its Sensor. In particular the Sensor returns a
Link to the ReceiverProxy of the target object.

Since transmitters and receivers are mainly used for event delivery we defer their discussion
to Section 6.2.3.

Sensor

In SmartAHS Sensors are used to establish communication channels between objects. To
send a Message to another object, the sender uses its Sensor to get the Receiver's identi�er.

SmartAHS provides a VehicleSensor that can locate the Vehicles to the front, back,

left, and right of a given Vehicle. The VehicleSensormodels a sensor with full accuracy within
a given sensing distance. The sensing distance of the VehicleSensor is a runtime parameter.

Application developers can specialize the SmartAHS VehicleSensor and its methods to
implement more accurate sensor models.

The VehicleSensor has the following static attributes that set its sensing distance in each
direction:

VehicleSensor Static Attributes

static o float frontDistance.
static o float leftDistance.
static o float rightDistance.
static o float backDistance.

The VehicleSensor provides the following Method:

Link<Vehicle> GetVehicle (eSENSOR SIDE side,

eSENSOR LANE lane,

o float &deltaX,

o float &deltaVel) const;

This method determines the deltaX and deltaVel to the �rst Vehicle in the side direc-
tion within the sensing range. eSENSOR SIDE and eSENSOR LANE are enumerated data types.
side can be one of f eFront, eLeft, eBack, eRight g. lane can be one of f eThisLane,

eAdjacentLane, eNextToAdjacentLane g.

Subclasses of Sensor are implemented by application developers and specialize the meth-
ods based on the accuracy of the particular sensor being modeled.

Monitor

Monitors are read only objects and their behavior does not e�ect the simulation. Their
execution is scheduled on an as needed basis. The behavior of a Monitor is executed by invoking
its Run() method.

Like with any other object, a process layer can be used to schedule the execution of all
Monitors of a given type.

Alternatively, a single Monitor instance can be activated during simulation. In this case
the Monitor uses its myBigBen3 to periodically schedule its execution. A Monitor can be activated
through its parametric interface on instantiation or by using the graphical debugger.

The history of a Monitor is recorded like any other object. Turning the logging on for a
Monitor automatically activates it.

The Monitor class implements the following methods:

virtual int SetErrorLevel (o u1b newLevel);

A Monitor is activated if newLevel is one or higher. A Monitor is deactivated if newLevel is zero
and logging is o�. When activated the Monitor registers a timeout request with its myBigBen.

3The BigBen class is described in Section 6.2.1

87

virtual int SetLogLevel (o u1b newLevel);

The logging of a Monitor is turned on if newLevel is one or higher. Turning logging on auto-
matically activates the Monitor. If logging is turned on, the Monitor registers a timeout request
with its myBigBen. Logging is turned o� if newLevel is zero.

virtual int WakeUp (o u4b handle,

Link<Message> state);

This method is invoked by myBigBen when a timeout request expires. The method invokes the
Run() method. If logging is on, it invokes the SaveState() method. Finally, it registers a new
timeout request with the myBigBen.

virtual int Run ();

This method has no behavior in the base class and must be specialized by subclasses.

Subclasses of Monitor de�ne the particular State attributes for a Monitor and implement
the Run() method that sets the State values. The Monitor objects have free access to all objects'
inputs, outputs, and state.

6.1.4 SmartObject

Automation devices are either on the roadside or in a Vehicle. We formalize this relation-
ship with the abstract entity SmartObject. SmartObject and its containees are depicted in Figure
6.4.

SensorMonitor TransmitterControl Receiver

SmartObject

1..n 0..n 1..n1..n1..n

Figure 6.4: The SmartObject and its containees.

The automation devices are specialized based on the automation strategy and based on
the type of SmartObject they are contained in. The particular relations among automation devices
in a given SmartObject are speci�ed by application developers.

6.1.5 Vehicle

The Vehicle is a composite object, i.e., it is composed of many other objects. Its state
and behavior is derived from its components. State attributes that are shared by its automation
devices are speci�ed in the VehicleState class. The Vehicle specializes its currState relation by
its vehicleState attribute. The Vehicle does not distinguish between input, output, and state
attributes. Automation devices specify which attributes they treat as inputs and which ones as
outputs.

The Vehiclemoves along the highway. All relationships based on the location of Vehicles
are dynamic. At a given time a Vehicle is in a given cell of the cellArray of a given Lane. A
Vehicle's position in a Lane is given by a pair of coordinates xP and yP. These coordinates de�ne
the location of its right front bumper. The Vehicle's position on the highway is maintained by
SmartAHS classes. Although at a given time a Vehicle is in one cell of one Lane, its body can cover
up to four cells, four Lanes, and two Sections. (See Fig 6.5).

Subclasses of Vehicle are expected to provide constructors that con�gure the Vehicle

with automation devices as discussed in Section 7.1.1.

Vehicle has a number of static state attributes these are:

88

Sections

Lanes

Cells

Vehicle Vehicle in cellArray

Lanes

Figure 6.5: Logical Representation of Vehicle in Lane

Vehicle Static Attributes

Value

o float length Vehicle length.
o float width Vehicle width.
Relations

PString origin The name of its generator.
PString destination The name of its intended Absorber.
Link<VehicleState> vehicleState A Link to its State.

VehicleState inherits from State. It contains basic continuous and discrete state infor-
mation about Vehicles. Vehicle subclasses may use this class directly or subclass it further to add
other attributes. Within a vehicle, automation devices can read and write VehicleState values.
Between two Vehicles access is limited to Sensors only. VehicleState attributes are:

VehicleState Attributes

Values

o float xP x position in a cell array, used as input.
o float yP y position in a cell array, used as input.
o float xVel x Velocity, used as input.
o float yVel y Velocity, used as input.
o float xAccel x Acceleration, used as input.
o float yAccel y Acceleration, used as input.
o float xJerk x Jerk, used as input.
o float yJerk y Jerk, used as input.
o float absDist x position in a Lane.
o float oldXP x position, used as output.
o float oldXP y position, used as output.
o float oldXVel x Velocity, used as output.
o float oldYVel y Velocity, used as output.
o float oldXAccel x Acceleration, used as output.
o float oldYAccel y Acceleration, used as output.
o float oldXJerk x Jerk, used as output.
o float oldYJerk y Jerk, used as output.
o float oldAbsDist x position in a Lane, used as output.
Relations.
Link<Lane> currLane The Lane it is contained in.
o u4b cellId The cellArray index of the currLane.

The VehicleState maintains the current and the last continuous state attributes. The
current values are set by appropriate control devices within the Vehicle. The last values are used
as outputs to other automation devices within the Vehicle or to Sensors in other Vehicles. The
current values are copied to last values at the end of each physical layer transition.

A Vehicle's position on the highway is maintained by SmartAHS. In particular the Lane
method MoveVehiclesInLane() sets the absDist, currLane, and cellId attributes of the Vehicle.

In the Varaiya/Shladover automation strategy a Vehicle is either a single agent or it is
in a platoon. If a Vehicle is in a platoon, it can be a leader or a follower. At all times a Vehicle

89

is performing a maneuver. Sample maneuvers are lead, follow, split, merge, and lane change.
The following attributes are added to VehicleState to support these concepts.

VehicleState Attributes for SmartPATH

Values

PString currManeuver Type of current maneuver, identi�ed by
state machine name

o bool amILeader True if Vehicle is a single agent or it is a
platoon leader.

Relations

VVList<ReceiverProxy> myPlatoon Identi�es the followers if Vehicle is a pla-
toon leader.

Link<ReceiverProxy> myLeader Identi�es the platoon leader if Vehicle is a
follower.

The automation devices are expected to maintain these attributes.

6.1.6 Tra�c Entities

Vehicles are created and deleted in the Generator and Absorber objects based on in-
coming and outgoing tra�c patterns. The tra�c entities Factory, InTraffic, and OutTraffic are
used to implement this functionality.

InTraffics are responsible for generating incoming tra�c patterns, OutTraffics are re-
sponsible for generating outgoing tra�c patterns. These objects may in fact provide gateways to
other urban tra�c simulation packages for more detailed tra�c modeling. Factory objects have the
knowledge to create various types of Vehicles. The location of these entities in the inheritance and
containment hierarchy is given in Figure 6.6.

Generator

OutTraffic

InTraffic

Factory

StatedObject

Absorber

1..n 1..n1..n

InTraffic OutTrafficFactory

Figure 6.6: Inheritance and Containment Hierarchy for Tra�c Entities

Factory

The abstract base class Factory provides one method:

virtual Link<Vehicle> MakeVehicle (VEH TYPE vehType);

This method creates a subclass of Vehicle identi�ed by vehType.

The vehType is an enumerated integer identifying the Vehicle subclass; the user of a
given subclass of Factory must know what Vehicle subclass a given vehType corresponds to.

Subclasses of Factory specialize the MakeVehicle()method and make an explicit call to
the constructor of a particular Vehicle subclass.

OutTra�c

The OutTraffic absorbs Vehicles leaving the highway. Its State reects the conditions
o� the highway. The Absorber's State depends on its OutTraffic's State.

90

It is the responsibility of the application developer to design control algorithms that would
ensure that the departing Vehicles meet the OutTraffic's requirements such as speed, spacing,
maneuver etc.

The Absorber \deactivates" a Vehicle that leaves the highway and writes it to the
database.

An OutTraffic can model multiple lanes. It has the following virtual method:

virtual int TakeVehicle (Link<Vehicle> vehicle,

int laneId,

Link<Lane> containingLane);

This method moves vehicle from containingLane to the OutTraffic lane identi�ed by laneId.

InTra�c

The InTraffic generates Vehicles entering the highway, it determines the arrival rate
and type of Vehicles. Its State reects the conditions o� the highway.

It is the responsibility of the application developer to design control algorithms and check-
in protocols that would ensure that the incoming Vehicles meet the highway requirements, such as
speed, spacing, and maneuver or the presence of certain automation devices.

An InTraffic can model multiple lanes. It has the following virtual method:

virtual Link<Vehicle> AnyVehicle (int laneId,

o u4b numOfLanes,

Link<LaneState> receiving);

Based on the receiving LaneState, this method may create a Vehicle in lane numOfLanes.
Its return value is NULL if no Vehicle is created.

91

6.2 System Architecture, Entity Speci�cations

In this section we discuss the time and event driven scheduling mechanism implemented
by SmartAHS.

6.2.1 Packets, Events, and Messages

This section describes the building blocks of inter-object communication. SmartPATH
objects communicate with Events or Messages. The base class Packet captures the common features
of Events and Messages.

The creator of a Packet has the responsibility to set the Receiver of the Packet. It passes
the Packet to its Transmitter, which in turn puts it in an appropriate PacketBox.

All Packets are channeled through a PacketBox. Currently PacketBox is one big table
of Packets with little other behavior. In future releases, this object may support �lter processing
for event noti�cation.

Each PacketBox is in a process layer. When the process layer is scheduled for execution
each Packet is delivered to the speci�ed Receiver. This ensures that within an event driven process
layer only objects with an outstanding Packet exercise any behavior.

Objects can send Packets to themselves.
The BigBen class provides a timer that delivers Packets after a speci�ed time interval.

To register a timeout request with a BigBen, an object speci�es a Packet and the number of time
clicks after which the Packet should be delivered.

Each BigBen is contained in a process layer or in the process coordinator. When a BigBen
is advanced by a time step by its container, it is also asked to deliver all Packets that correspond
to timeout requests that expire at that time.

We now discuss the classes involved in event delivery. The class hierarchy for these classes
is given in Figure 6.7.

Packet

.............

Framework
Object

Stated
Object

MessageEvent

PacketBox BigBen

Figure 6.7: Class Hierarchy for Event Management Entities

Packet

The abstract base class Packet has the following relation attributes.

Packet Static Attributes

Relations

Link<Receiver> msgTo Packet to be sent to the Receiver identi�ed
by msgTo .

Link<Receiver> rspTo Receiver responds to the rspTo �eld of Packet

The fullType of a Packet is given by three parts Type, Subtype and Id. These �elds
are used for the categorization of Packets. Packet does not impose any semantics to them.

92

Currently Type is used to identify whether the Packet is a Message or an Event. Id is
used to identify the particular Message or Event type. Subtype is not used.

The following static methods are provided to set and get the type of a packet:

static o u1b GetType (o u4b packetType);

This method returns the Type of a Packet given its full type.

static o u1b GetSubtype (o u4b packetType);

This method returns the Subtype of a Packet given its full type.

static o u4b GetId (o u4b packetType);

This method returns the Id of a Packet given its full type.

static o u4b MakePacketType (o u1b type, o u1b subtype, o u4b id);

This method constructs a full type given type, subtype, and id.

The Packet constructor takes the packet type as an argument.

Event

The Event class extends the Packet class by an o bool status attribute. This attribute
can be used to set the event on or o�.

Message

The Message does not specialize the Packet class in any way. The subclasses of Message
specialize it by adding attributes.

Message and its subclasses are instantiated by SMInstance objects as discussed in Section
6.3.4. The subclass constructor is overloaded, the PLMessage, for example, is given below:

PLMessage (o u4b fullType

Link<SMInstance> csi);

The constructor uses the Inputs, Outputs, and the State of csi to derive the attribute
values of the PLMessage.

BigBen

The BigBen class implements clocks and provides timer services. Among other book-
keeping constructs, the BigBenState has the attribute o u4b currTimeClick corresponding to the
current time.

BigBen has the following methods:

o u4b WakeMeUp (o u2b clicks,

Link<FrameworkObject> owner,

Link<Message> clientData);

The owner of the request, wants to be woken up in clicks time clicks with the clientData

Message. The return value is an identi�er for this request.

int ClearWakeUp (o u4b handle);

This method cancels the wake-up request identi�ed by handle.

o u4b GetTime ();

This method returns the value of the currTimeClick, i.e., the current time.

PacketBox

The PacketBox class stores and delivers Packets. The details of the bookkeeping con-
structs are omitted.

93

6.2.2 Scheduling Mechanism

In SmartAHS the ProcessCoordinator manages the execution of process Layer objects.
Arbitrary number of process Layers register with the ProcessCoordinator and specify the period
with which they want to be scheduled. If a process Layer wants to be scheduled on an event driven
basis, it sets its period to in�nity4.

The ProcessCoordinator loops through its Layers and executes them according to their
period. After every loop, it checks if there are any Events requesting the scheduling of event driven
Layers.

SmartAHS provides three abstract classes Traverser, EventDriver, and Hybrid that
subclass Layer. Any Layer can request to be scheduled on a time or event driven basis.

All Layers contain a BigBen. They increment the BigBen when scheduled and ask it to
deliver all outstanding timeouts.

The Traverser traverses the Zone from Sink to Source. For each LaneContainer along
the traversal, it invokes a sequence of virtual methods. These methods are specialized by the
Traverser subclasses and invoke the time driven evolution methods of the proper objects within
the LaneContainer.

The EventDrivers contain a PacketBox and deliver all Packets in the PacketBox. Note
that the delivery of a Packet may result in more Packets being placed into the PacketBox in
response to the delivered Packets.

The Hybrids exercise both time and event driven behavior.

The ProcessCoordinator and the Layers are Sequencers, as discussed in Section 4.2.3.
The delivery of each timeout request in a Layer and the delivery of each Packet in an EventDriver

is considered to be a transition. Each virtual method on a LaneContainer in the Traverser corre-
sponds to at least one transition. Subclass specializations of these methods may choose to execute
a number of transitions in these methods.

We now discuss the scheduling objects in more detail. Their inheritance hierarchy is given
in Figure 6.8. Their containment hierarchy is given in Figure 6.9.

TraverserEventDriver

Layer

SObject

Hybrid

Framework
Object

.............

Process
Coordinator

Figure 6.8: Class Hierarchy for Scheduling Entities

SObject

This abstract base class contains a Link<Zone> myZone attribute identifying the Zone

that a given scheduling object is managing. It provides the necessary private methods for proper
initialization of this attribute.

4In implementation, in�nity is just a very large number.

94

Traverser EventDriver

Process
Coordinator

Hybrid

0..n 0..n 0..n

Layer

 1

EventDriver

 1

 1

BigBenBigBen

Figure 6.9: Containment Hierarchy for Scheduling Entities

ProcessCoordinator

The ProcessCoordinator implements the main control loop. It allows a number of Layer
objects to register with it at a given period and manages the execution of these scheduling objects.
The ProcessCoordinator also manages the global clock.

The ProcessCoordinator derives a duration from the periods of its Layers. When
scheduled for execution, the ProcessCoordinator runs for duration clicks of the global clock.

The internal data structures that keep track of Layers, their periods, and execution times
are not discussed.

The ProcessCoordinator provides the following methods.

int Register (Layer* aLayer,

char* name,

o 4b period);

This method registers the named aLayer for execution with the speci�ed period.

int DeRegister (Layer* aLayer);

int DeRegister (char* layerName);

These methods stop the execution of the Layer identi�ed by aLayer or layerName.

int WakeUp (char* layerName,

int clicks);

This method schedules the layerName for execution in clicks time clicks. It is used for event
driven layer scheduling.

int Ping (char* layerName);

This method schedules the layerName for immediate execution. This means that the layerName
execution is scheduled and completed before this method returns. Ping is currently not used.

int virtual Go ();

This method schedules the ProcessCoordinator for execution. It runs for duration time clicks
of the global clock, scheduling the execution of its Layers at each click, as appropriate.

Layer

The Layer abstracts the Go() method of its subclasses. It also holds common attributes
such as o 4b period, PString layername, and Link<BigBen> myBigBen.

The Layer subclasses have the responsibility of scheduling the execution of their myBigBen
in their Go() method.

Traverser

The Go() method of the Traverser traverses the Zone from Sinks to Sources.5 For each
LaneContainer, it invokes three virtual methods: prepare, execute, and �nish.

The traversal guarantees the following conditions:

5Current implementation of the Traverser assumes that there are no loops within a Zone.

95

1. When a LaneContainer is executed its prevLCs will have already been prepared.

2. When a LaneContainer is executed its nextLCs will have already been executed, but not
�nished.

For LaneContainers of type EntrySection and ExitSection, the Traverser also invokes
prepare, execute, and �nish methods on the corresponding Entry and Exits.

The virtual methods of the Traverser are:

virtual Start ()

virtual End ()

virtual ELC (Link<LaneContainer> LC)

virtual PLC (Link<LaneContainer> LC)

virtual FLC (Link<LaneContainer> LC)

virtual EAbsorber (Link<Absorber> LC)

virtual PAbsorber (Link<Absorber> LC)

virtual FAbsorber (Link<Absorber> LC)

virtual EGenerator (Link<Generator> LC)

virtual PGenerator (Link<Generator> LC)

virtual FGenerator (Link<Generator> LC)

Start() is invoked before the Zone traversal is started, End() is invoked after the Zone

traversal is �nished. ELC,PLC and FLC are used for all LaneContainers that are not Generators
and Absorbers. Special methods are used for these LaneContainer subtypes.6

These methods have no behavior in the Traverser, and its subclasses are expected to
specialize them as needed. The Physical layer, for example, uses the ELC() method to move each
Vehicle in a LaneContainer based on the displacement generated in the Regulation layer. The
Physical layer, a subclass of Traverser, is discussed in Section 7.2.1.

The exact traversal algorithm is not discussed here. The Traverser class code can be
found in Appendix 9.3.

The execution of the myBigBen precedes the Zone traversal in the Go() method.

EventDriver

The EventDriver contains a PacketBox. Its Go() method delivers all Packets in the
PacketBox until the PacketBox is empty. The delivery of a Packet may result in more Packets
being placed in the PacketBox. Current EventDriver implementation assumes that the application
development will guarantee that Packet generation will terminate.

The execution of the myBigBen precedes the Packet delivery in the Go() method.

Hybrid

A Hybrid displays both Traverser and EventDriver behavior. It specializes the Start

method to schedule the execution of the contained EventDriver.

Note that, rather than multiply inheriting from Traverser and EventDriver, this class
only uses the EventDriver.

6.2.3 Transmitters and Receivers Revisited

The class hierarchy for communication entities is given in Figure 6.10.

We now discuss these classes.

6Note that the overloading implementation in C++ does not provide overloading based on subclass (signature
resolution takes place at compile time, not at run time.). As such the ELCmethod, for example, can not be overloaded
to invoke the method of correct signature based on the LaneContainer subclass with which it is invoked. We have to

resort to using a di�erent method name.

96

InVeh
Transmitter

TransmitterReceiver

OutVeh
Transmitter

VehToRoad
Transmitter

Receiver
Proxy

Figure 6.10: Class Hierarchy for Communication Entities

Transmitter

Every Transmitter has a primary PacketBox identi�ed by the myPacketBox attribute.
Unless otherwise speci�ed Packets are delivered to this PacketBox.

It provides three delivery methods

virtual int SendPacket (Link<Packet> packet);

This method puts the Packet in the myPacketBox.

virtual int SendPacket (Link<Packet> packet,

int destination)

This method is expected to be specialized by subclasses.

virtual int SendPacket (Link<Packet> packet,

char* layerName,

int destination)

This method is expected to be specialized by subclasses.

InVehTransmitter

This Transmitter specializes the third SendPacket method to properly channel the
Messages within a Vehicle. It uses the Coordination layer and Regulation layer PacketBoxes.

OutVehTransmitter

This Transmitter is specialized to use the Coordination layer PacketBox for Packet

delivery.

Receiver

The abstract class Receiver provides one virtual method ReceivePacket(Link<Packet>)
which is expected to be specialized by its subclasses.

ReceiverProxy

The ReceiverProxy implements a Receiver with a bu�er. Arbitrary number of classes
can share a ReceiverProxy.

The ReceiverProxy provides two service modes: waiting mode and listening mode. Ob-
jects register with the ReceiverProxy by specifying the service mode and the type of Packets they
want to listen to/wait for.

If an object is waiting for a Packet and the Packet arrives, the ReceiverProxy noti�es
the object.

If an object is listening to a Packet and the Packet arrives, the ReceiverProxy bu�ers
the Packet. If the object starts waiting for a Packet that has been bu�ered, it is immediately

97

delivered the bu�ered Packet. If the object stops listening to a Packet, any such bu�ered Packets
are discarded.

Between the two services, waiting has priority. If the same object is both listening to and
waiting for a Packet and the Packet arrives, the Packet is delivered to the object without bu�ering.

If several objects are waiting for the same Packet and the Packet arrives, each object is
delivered a duplicated copy of the Packet.

The methods Listen, ClearListen, Wait and ClearWait allow an object to use the
services of the ReceiverProxy. The bookkeeping methods of ReceiverProxy are not discussed.

98

6.3 The State Machine Language

Finite state machines are based on quintuples that de�ne state, alphabet, transitions,
begin state, and end states. The quintuples de�ne a single automaton or state machine. Algebraic
operators are then used to build more complex automata from these basic quintuples. One such
operator is the synchronous composition operator which requires that two automata take transitions
jointly if the transition is de�ned for a common symbol of their alphabet. Semantically this operator
can also be interpreted as an input-output connection between two automata.

Extended automaton descriptions sometimes partition the alphabet into input, output,
and internal symbols to represent input-output behavior. Again an operator is de�ned that syn-
chronizes output generation and input consumption of two automata.

Recall the discussion in Section 2.2. Automata descriptions are object based. An automa-
ton is rarely thought of as an instantiable class. System descriptions consist of a number of automata
that are combined with algebraic operators. Usually, the automata capture the behavior of objects,
the algebraic operators represent their relationships. Such a static description has limitations in
those real life applications where the relationships themselves have to evolve.

Consider a number of vehicles moving on a highway. Assume each vehicle's behavior is
given by an automaton with inputs and outputs. Assume each vehicle can interact with its front,
back, left, and right vehicle. These other vehicles may be input providers or output consumers.
At any given time the list of vehicles with which a given vehicle interacts depends on the physical
position of vehicles on the highway; clearly, this list is not static.

In this example, assume the alphabet of the automaton describing a vehicle has a number
of input and output symbols. These symbols are independent of the other objects with which they
are communicated. To model such interaction among objects with traditional automata, one must
de�ne a new element of the alphabet for every pair of objects in the system. This results in an
explosion of alphabet size for large systems.

Hybrid automata are used to model systems with both continuous and discrete behavior.
Whereas analysis and veri�cation tools are readily available for �nite automata, most questions
concerning hybrid automata are proving to be undecidable. Most analysis tools rely on proper
abstraction of the continuous components of the model and provide only partial system veri�cation.
Simulation is used to explore the full behavior of the hybrid automaton.

Unfortunately, the interoperation between the veri�cation and the simulation tools is lim-
ited. A language used to represent the full behavior of a hybrid automaton is rarely compatible with
the languages used to represent veri�able abstractions. Manual translations from one representation
syntax into the other reduce the reliability of the veri�cation and simulation process.

In this section we de�ne an input-output based State Machine Language which distin-
guishes a) the input-output representation of an automaton from the mechanism that establishes the
input-output interconnections; and b) the continuous behavior from the discrete behavior. Further-
more, these automata are class based, i.e., the state machine descriptions correspond to instantiable
entities.

Automata speci�ed in this language can be compiled to become SmartAHS entities for
simulation. Since in simulation both continuous and discrete behavior are fully exercised, automata
behavior in SmartAHS is deterministic.

Alternatively, these automata can be translated into COSPAN representations.7 Since the
veri�cation tools exercise discrete behavior only, events and input-output recon�gurations resulting
from continuous behavior become nondeterministic. Nonetheless, partial veri�cation of the discrete
behavior of the original automaton is streamlined.

In the following, we describe the basic syntax for this language and its associated semantics.
We then discuss its implementation and use in SmartAHS. The SmartAHS implementation of the
SML language introduces syntactic sugar to facilitate speci�cation ease.

6.3.1 Basic Syntax

A State Machine (SM) class consists of the following components:

7Translation into COSPAN has not yet been carried out.

99

Machine Name The name of this instance.
States The list of states.
Input Events The inputs resulting from continuous behavior.
Input Messages The inputs resulting from other SMs.
Output Messages The outputs sent to other SMs.
Active Partners List of variables to keep track of other SMs.
Passive Partners List of variables to keep track of other SMs.
Begin State Begin state for this SM.
Transitions A set of transitions for this SM.

A Packet is de�ned as a triple, (Machine Name � Message � Machine Name).
Consider the packet: (RspTo, message, MsgTo). It represents a message sent from the SM with
machine name RspTo to the SM with machine name MsgTo; message is an output message in
RspTo, and is expected to be an input message in MsgTo.

An active partner is a state machine that initiates an input-output connection with this
machine by sending the �rst packet. A passive partner is a SM with which this machine initiates a
connection by sending the �rst packet.

The passive partners are set by a mechanism external to the SM.

A transition is de�ned as a quadruple,
(FromState � Input Action � Output Actions � ToState).
FromState and ToState are states. A transition is executed if its Input Action takes place. As
part of the transition, the SM moves from the FromState to the ToState and generates the Output
Actions.

An input action can have several forms. The speci�cation syntax and the associated
semantics are described below:

ActivePartnerName:MessageName Transition is executed if a packet containing named
message arrives. The named active partner variable
is set to the sender of the packet.

ActivePartnerName=MessageName Transition is executed if a packet containing named
message arrives and it is sent by the SM identi�ed
by the current value of the named active partner
variable.

PassivePartnerName=MessageName Transition is executed if a packet containing named
message arrives and it is sent by the SM identi�ed
by the current value of the named passive partner
variable.

PassivePartnerName=0 Transition is executed if the named passive partner
variable is not set (connected).

PassivePartnerName!=0 Transition is executed if the named passive partner
variable is set (connected).

InputEventName Transition is executed for named event.

An output action consists of a set of packets speci�ed with the syntax:

PartnerName:OutMessageName PartnerName is an active partner or passive partner
variable name and OutMessageName is an output
message.

The existence of a reliable channel is assumed. For each output action generated by a SM
instance, the channel delivers the packet to its recipient as an input action.

The semantics of a SM is simple. It is initialized to its Begin State. Based on incoming
events, incoming messages, or availability of connections it takes state transitions. As part of these
transitions it generates output messages.

Two SM instances interact if one machine sends a packet to the other. Two de�nitions are
possible to specify what happens if a packet arrives at a SM for which no transition is de�ned at the

100

current state: 1) the packet is ignored, 2) the packet is queued until it can be used by a transition.
Either de�nition is acceptable, however, the latter introduces a \bu�er state" and complicates the
semantics.8

The constructs used to create or delete SM instances, to set PassivePartner variables, and
to generate Events are external to the SM. The speci�cation of a State Machine is independent of
the nature of these constructs.

SM speci�cations can be veri�ed if passive and active partner value assignments are static
and event generation is assumed to be arbitrary and nondeterministic. However, in general, a more
accurate model of event generation is needed to restrict the possible behavior of the SMs.

If SM speci�cations are simulated, passive partner value assignments and event generation
are derived from simulated behavior.

Example

Above we did not introduce the complete speci�cation notation of a state machine, but,
assuming that the notation is evident, we de�ne the \Hello Friend" state machine.

States Asleep, Awake, Chat, Tired;
InputEvents WakeUp, FallAsleep;
InputMessages Hello, Bye;
OutputMessages Hello, Bye;
ActivePartner AFriend;
PassivePartner TheFriend;
BeginState Asleep;
Transitions
Asleep WakeUp () Awake;
Awake TheFriend!=0 TheFriend:Hello Chat;
Awake AFriend:Hello AFriend:Bye Awake;
Chat TheFriend=Bye () Tired ;
Chat AFriend:Hello AFriend:Bye Chat;
Tired AFriend:Hello AFriend:Bye Tired;
Tired FallAsleep () Asleep;

The external components of this machine wake it up, put it to sleep, and determine if
TheFriend is available to accept an input.

The messages exchanged with other sate machines keep it awake until this machine gets
to chat with the TheFriend. Meanwhile, the machine reponds to other machines by saying Bye.
Note that any state machine is capable of sending the Hello message, not only the \Hello Friend"
machine instances.

In this speci�cation, a machinemay not fall asleep before it gets a response fromTheFriend.
The State Machines do not use the packets to synchronize transitions. Sending a packet

does not guarantee an immediate transition at the recipient. As a result, a SM may be blocked while
waiting for incoming packets. In the above example, if TheFriend is Asleep when the Hello packet
is sent, the SM will not be able to leave the Chat state {assuming packets are not bu�ered.

6.3.2 Extended Syntax

The SmartAHS version of the state machine consists of more components. We restate the
State Machine de�nition and give its SmartAHS interpretation.

MachineName The name of the State Machine.
Children Any child SMs used by this machine.
SMStates The list of state machine states.
InputEvents The list of input events resulting from continuous behavior.
InputMessages The list of input messages and their types.
OutputMessages The list of output messages and their types.

8In SmartAHS the ReceiverProxy class is used to implement a bu�er.

101

Parent The Parent SM. Message is sent to Parent's proxy by InVehTransmitter.
Child The Child SMs. Message is sent to Child's proxy by InVehTransmitter.
REG Regulation Controller.

Message is sent to Regulation proxy by InVehTransmitter.
COORD Coordination Controller.

Message is sent to Coordination proxy by InVehTransmitter.
LINK The Link Layer Controller.

Message is sent to the current Link's proxy by VehToRoadTransmitter.
PL The Platoon Leader. Message is sent to the Platoon Leader's Coordination

proxy by OutVehTransmitter.
PLATOON All followers of a platoon. Message is sent to all following Vehicles' Coordina-

tion proxies by OutVehTransmitter.

Table 6.2: Special Correspondents

Correspondents List of variables to keep track of other SMs.
BeginState Begin state for this SM.
EndState End state for this SM.
Timers List of timers used by this SM.
Inputs Name of class inheriting from Input. Used for inputs to this SM.
Outputs Name of class inheriting from Output. Used for outputs from this SM.
Variables List of variables and their types used by this SM.
Transitions The transitions for this SM.

Children are introduced to allow modularity. A SM can activate and deactivate a child
SM.

A SMState9 consists of a name, an Enter()method, and an Exit()method. The methods
provide the link between the automaton and the continuous evolution. These methods have access
to the inputs, outputs, variables, and the last incoming message. In particular the Enter methods
are responsible for generating the InputEvents.

In SmartAHS Messages are typed. A Message can be an instance of the Message class
or one of its subclasses. A Message is identi�ed by its Message Id10. State machines use symbolic
names that correspond to numeric Packet Ids.

Active and Passive Partners are collectively called Correspondents. All correspondents are
identi�ed by their ReceiverProxy. Some Correspondent Names have prede�ned semantics. These
correspondents, summarized in Table 6.2, are used without being declared.

Timers are used to register timeouts with the BigBen. Usually, if a Message is sent to
another object, a timer is registered to be able to take the necessary action in case of a delayed
response.

When activated the state machine moves to its BeginState. Every state machine has an
EndState. When deactivated the state machine moves to the EndState. There are no transitions
de�ned out of the EndState. A state machine is activated either at instantiation or by its parent, if
it has one.

Before we give the full speci�cation syntax of the SML we �rst de�ne some terms. Below
* is used as Kleene Closure. Each occurring of \Name" refers to a unique name. Angle brackets
refer to optional arguments. The bar refers to alternate options.

MessageClass Name Name can be \Message" or the name of any other class inher-
iting from Message.

MessageId Name Symbolic name corresponding to a Message Id.
VariableType Name This is any valid variable type in the programming environment.
InitialCondition Name This is any valid value for the variable type it is used with.

9The word State is overloaded. State machine states are referred to as SMStates for clarity.
10Recall from Section 6.2.1 that Message inherits from Packet and Packet has a Type, Subtype and Id.

102

FromState Name Transitions originate in these states. Name should be a state.
ToState Name Transitions end in these states. Name should be a state.
InAction See Below These are the inputs for which a transition is de�ned.
OutAction See Below One of the Outputs generated during a transition.
StartChild Name Name of Child SM activated during this transition.
StopChild Name Name of Child SM deactivated during this transition.

A transition is de�ned as follows:
FromState InAction OutActions ToState [StartChild [StopChild]]

Recall that in SmartAHS a Message has an Id and a RspTo �eld identifying its sender. An InAction
can have one of the following forms:

CorrName:MessageId Transition de�ned for Message Id. The named correspon-
dent is set to the RspTo �eld of the Message.

CorrName=MessageId Transition de�ned for Message Id if Message is sent by the
current value of the named Correspondent.

EventName Transition de�ned for internally generated named Event.
These Events are usually generated by the Enter method
of a SMState.

TimerName Transition de�ned if named Timer expires. Timeouts are
delivered by a BigBen instance.

At every transition several OutActions are generated. Each OutAction can have one of
the following forms:

CorrName:MessageId The Message is sent to the named Correspondent.
CorrName:Forward:[MessageId] The last incoming Message is forwarded to the named

Correspondent. Optionally the Id of the Message is
changed to MessageId.

TimerName:Value A timeout is registered with the BigBen, which will ex-
pire in Value clicks. Named timer is used to identify the
request.

TimerName:Cancel The named timer is cancelled with the BigBen instance
of the SM.

OutActions is de�ned as \(OutAction (, OutAction)*)" or as \()" if no messages are
generated.

The InAction and OutAction de�nitions are also used for their speci�cation syntax. The
overall SM speci�cation syntax is given below:

MachineName: Name;
[Children: Name (, Name)* ;]
States: Name (, Name)* ;
InputEvents: Name (, Name)* ;
InputMessages: MessageClass:MessageId (,MessageClass:MessageId)* ;
OutputMessages: MessageClass:MessageId (,MessageId:Name)* ;
[Correspondents: Name (, Name)* ;]
BeginState: Name;
EndState: Name;
[Timers: Name (, Name)* ;]
Inputs: Name;
Outputs: Name;
[Variables: VariableType Name [InitialCondition] ,

(VariableType Name [InitialCondition])*;]
Transitions: (cr Transition)*

In the last line "cr" refers to carriage return.

103

6.3.3 The Dynamics

Each state machine is associated with a number of Transmitters and one ReceiverProxy.
Messages are created as part of the output actions and passed to a Transmitter. The

Transmitters used for special correspondents are de�ned in Table 6.2. All other Messages are sent
to the OutVehTransmitter.

Message delivery is asynchronous. The Transmitters place the Message in a PacketBox.
Messages are delivered only when the PacketBox is scheduled for execution in a process layer.

Each SM and all its children share a ReceiverProxy11. They all pass the list of input
messages they are listening to and/or waiting for to their ReceiverProxy. If a SM is waiting for
a message and the message comes in, the proxy passes it to the SM. If the message is only being
listened to, the proxy will hold the message until the SM starts waiting for it or stops listening to it.

When activated a state machine goes to its begin state. It starts listening to all its input
messages and starts waiting for the messages for which the begin state has transitions.

A transition is executed if one of these messages comes in; if an input event is generated;
or if a timeout happens.

The execution of a transition has several stages:

1. If there is a child SM to stop, it is deactivated;

2. If there is a child SM to start, it is activated;

3. All OutActions are generated;

4. The Exit method of the FromState is called;

5. The Enter method of the ToState is called.

The Enter and Exit methods provide access to external continuous behavior through the
inputs, outputs, and variables of the State Machine. In particular the Enter method is responsible
for creating InputEvents.

At this stage one of several things can happen:

� If an InputEvent is set by the Enter method that enables an immediate transition, the From-
State clears the messages it was waiting for, and the new transition is executed;

� Else, if the From State and ToState are the same, nothing else happens;

� Else the FromState clears the messages it was waiting for and the ToState starts waiting for
its messages. In this case, if a message is already present in the proxy, the corresponding
transition is executed.

If several Messages are present that the ToState waits for, the message with highest priority
determines the transition. The order of transitions in the state machine speci�cation assigns
Messages priority.

When a SM is deactivated, it clears all the messages it was listening to, and goes to its
stop state.

6.3.4 State Machine Implementation

We have already discussed that State Machines are class based, i.e., a SM speci�cation
corresponds to an instantiable class. The SM implementation reects this characteristic. The
abstract base classes SMState and SMAlgorithm implement the SM classes. The abstract base class
SMInstance implements SM instances.12

A State Machine speci�cation is implemented by the following C++ classes:

11ReceiverProxy was discussed in Section 6.2.3.
12The reader should not be confused by the fact that, as far as C++ is concerned, SMState, SMAlgorithm, and

SMInstance are all classes.

104

� An SMAlgorithm subclass is created that represents the SM Class;

� A SMState subclass is created for each SMState in the SML speci�cation;

� An SMInstance subclass is created that represents the SM instances;

� An SMInstanceState subclass is created that represents the SM instance state.

The class TransitionNode is used to represent transitions. This class is not specialized,
and its instances are used to represent the transitions for each state.

The inheritance and containment hierarchy of these classes are given in Figure 6.11 and
6.12 respectively.

SM
State

SM
Algorithm

StatedObject

SMInstance
StateSMInstance

Framework
Object

Transition
Node

Figure 6.11: Class Hierarchy for State Machine Entities

SM
State

SM
Algorithm

SMInstance
State

SMInstance

0..n

1..n 1

Output

Input
 1

 1 Transition
Node

Figure 6.12: Containment Hierarchy for State Machine Entities

An SMAlgorithm contains several SMStates.

Each SMState contains a list of TransitionNodes de�ning the Events, Messages, and
timeouts (WakeUp calls) it responds to. In a given simulation process, only one instance of these
classes exist, and they have no dynamic state.

Each TransitionNode instance is de�ned for a speci�c Packet (Event or Message). It
has a �eld identifying the next SMState and the child SMs that need to be activated or deactivated
as part of the transition.

Each SMInstance has a reference to its SMAlgorithm and maintains a reference to its
currSMState in its own SMInstanceState.

When a Packet arrives at the SMInstance, the currSMState is used to locate the correct
transition, to validate the Packet (InAction), and to generate new Packets (OutActions).

The details of these classes are discussed below.

105

TransitionNode

A TransitionNode has the following attributes.

TransitionNode Attributes

o u4b InEvent Packet Id, or timeout identi�er for which the
transition is de�ned

o u4b OutEvent If there are any OutAction to be generated this
�eld is set to one.

Link<SMState> NextState The SMState this transition leads to.
PString stopSM Name of child SM to stop.
PString startSM Name of child SM to start.

Instances of TransitionNode are created with the appropriate values for each transition
of a SMState.

SMState

Each SMState is in charge of managing all its transitions. It contains a list of transitions
that are expected to be speci�ed by its subclasses. These are:

SMState Attributes

VVList<TransitionNode> MsgList Transition list for Messages.
VVList<TransitionNode> EventList Transition list for Events and timeouts.

The following methods are implemented by this class.

Link<TransitionNode> AcceptEvent (o u4b inEvent);

Given an input inEvent returns the corresponding TransitionNode.

Link<TransitionNode> AcceptMessage (o u4b inMessage);

Given an input inMessage returns te corresponding TransitionNode.

Link<Message> StartWait (Link<SMInstanceState> theState);

This method invokes GetProxy() on theState to get the ReceiverProxy. MsgList is registered
with the ReceiverProxy in waiting mode.

The following virtual methods are expected to be implemented by the base classes. The
SMState class provides no implementation.

virtual int Enter (Link<SMInstanceState> theState,

Link<InputProjection> inputs,

Link<OutputProjection> outputs);

Using inputs, outputs, and theState this method implements arbitrary behavior. It might
generate an Event. This method is expected to be written by the user.

virtual int Exit (Link<SMInstanceState> theState,

Link<InputProjection> inputs,

Link<OutputProjection> outputs);

Using inputs, outputs, and theState this method implements arbitrary behavior. This
method is expected to be written by the user.

virtual int ProcessMessage (Link<SMInstanceState> theState);

This method processes the lastMessage in theState. Among other things it checks the RspTo
�eld of the lastMessage against appropriate correspondents. The code of this method is auto-
generated from the InAction speci�cation.

virtual int ProcessTimeout (o u4b handle,

Link<SMInstanceState> theState);

This method validates the timeout using the data in theState. The code of this method is
auto-generated from the InAction speci�cation.

106

virtual int PostMessage (Link<SMInstanceState> theState);

This method posts Messages as appropriate using the data in theState. The code of this
method is auto-generated from the OutAction speci�cation.

SMAlgorithm

The SMAlgorithm is primarily a data structure. The SMAlgorithm subclass code corre-
sponding to a State Machine is auto-generated. An SMAlgorithm contains the following attributes:

SMAlgorithm Attributes

VVList<SMState> stateList The list of SMStates, set by subclasses.
VEList<o u4b> eventList The list of Events, set by subclasses.
VEList<o u4b> messageList The list of Messages, set by subclasses.
Link<SMState> startState The StartState of the SM, set by subclasses.
Link<SMState> stopState The StopState of the SM, set by subclasses.

The SMAlgorithm implements one method:

int StartListen (Link<SMInstanceState> inst);

This method invokes GetProxy on inst to get the ReceiverProxy. MsgList is registered with
the ReceiverProxy in listening mode.

SMInstanceState

The SMInstanceState is a specialization of the State class. Each State Machine fur-
ther specializes this class to add its own attributes corresponding to the Variables �eld of the SM
speci�cation. The SMInstanceState has the following attributes:

SMInstanceState Attributes

Link<SMInstance> theInst The corresponding SMInstance.
Link<SMState> currSMState The current SMState of this SMInstance.
Link<SMInstance> curChild The current active child SM of this SMInstance.
Link<SMInstance> theParent The parent SM of this SMInstance if any.
Link<Message> lastMessage The most recent Message received by this SMInstance.
o u4b directEvent The Enter methods of a SMState set this �eld to a

non-zero value corresponding to an Event id.

The SMInstanceState class provides a number of methods that provide access to the
Receiver and Transmitters in a Vehicle. These are: GetProxy(), GetInVT(), GetOutVT(),
GetLT().

Finally the SMInstanceState class has a virtual method, UpdateCorr(), that needs to be
implemented in the subclasses. This method is not auto-generated.

virtual int UpdateCorr ();

This method should use the Sensors in the Vehicle to set the PassivePartner Correspondent
ReceiverProxys.

SMInstance

The SMInstance class provides the methods that govern the behavior of a State Machine
instance. Packets arrive through ProcessEvent(), ProcessMsg(), or WakeUp() methods. These
methods specialize the corresponding FrameworkObjectmethods and invoke the AcceptEvent() or
the AcceptMessage() method of the currSMState to locate the correct TransitionNode.
The TransitionNode is then passed to the AcceptTransitionmethod for proper execution.

A SMInstance has the following attributes.

107

SMInstance Static Attributes

Link<SMAlgorithm> theAlg A reference to the State Machine class.
Link<SMInstanceState> theState A reference to the State.
Link<Input> inputs A reference to the Input.
Link<Output> outputs A reference to the Output.
VVList<SMInstance> myChildren The list of child SMInstances. Note that

this list is maintained in the SMInstance

and not in the SMAlgorithm.

Each subclass has a proper specialization of Input and Output classes.
The SMInstance class implements the following methods:

virtual int AcceptTransition (Link<TransitionNode> myT);

This method implements the control loop described in Section 6.3.3.

virtual int Initialize ();

This method forces a transition to the StartState when the SM is activated.

virtual int Terminate ();

This method forces a transition to the StopState when the SM is deactivated.

The following methods are expected to be specialized by SMInstance subclasses. These
methods are all auto-generated.

virtual int ProcessEvent (o u4b newEvent);

This method processes Events and is auto-generated.

virtual int ProcessMsg (Link<Message> myMsg);

This method processes Messages and is auto-generated.

virtual int WakeUp (o u4b handle, Link<Message> state);

This method processes timeouts and is auto-generated.

6.3.5 Inputs and Outputs

Finally we discuss the Input and Output classes that are used by the State Machines.
The Input class encapsulates all external information available to a SMInstance. In a Vehicle, this
information may include a Vehicle's internal state or other information accessible through Sensors.
The Output class encapsulates all outputs a SMInstance generates.

These classes have the same base class: Projection. The Projection has one attribute,
Link<FSMInstance> myFSM, identifying the State Machine of this Projection. It has one virtual
method Update() which is expected to be specialized by its subclasses. Subclasses of Projection
are expected to add attributes that specify the input and output attributes. For an Input, the
specialized Update() method refreshes all input attribute values. For an Output, the specialized
Update() method propagates the outputs.

In the current implementation, it is the application developer's responsibility to invoke
the Update method when needed in the specialized Enter() and Exit() methods of an SMState.

6.3.6 Usage

Code Generation takes care of the SM construction and transition execution. The code
generator also assigns numeric Ids to symbolic message and event names used by the state machines.

Users are expected to write the following components:
� Actual implementation of Inputs, Outputs and specialized Messages;

� The Updateing of the Inputs and Outputs;

� Initialization of declared correspondents in the UpdateCorr() method.

� The implementation of the Enter() and Exit() methods for each SM state.
For an example of a state machine speci�ed in State Machine Language and its SmartAHS

implementation the user is referred to Appendix 9.4.

108

6.4 Graphical Object Editor

In Chapter 4 we discussed how the Object Model provides the constructs for specifying the
possible relationships among objects at the entity level. The Graphic Object Editor (GOE) provides
an environment for specifying the actual relationships among instances.

The GOE provides a meta-data de�nition language for the speci�cation of instantiable
classes, their possible relationships, and their attributes. The GOE interprets the meta-data and
allows the user to create and connect instances and to set attributes, i.e., de�ne the data, according
to the meta-data speci�cation.

The GOE is class based, i.e, it does not support inheritance. Its classes correspond to
instantiable classes in the Object Management System. The GOE is used to create initial con-
�gurations of objects and is best suited for the speci�cation of the static relationships, the static
attributes, and the initial conditions of the dynamic relationships and attributes.

In the GOE, objects are represented by icons; each object icon has a number of input and
output ports. Directed arcs are used to represent ordered binary relationships. A binary relationship
is established by connecting output and input ports. (More complex relationships can be represented
by objects.)

The GOE consists of two columns: the class column and the instance column. Instantiation
takes place by clicking on a class icon in the class column and dragging and dropping it to the instance
column. A relationship is established by clicking on the corresponding output and input ports of
the two participating instances.

The containment relationship has special semantics. Double-clicking on an instance icon
opens a window with the containees of that instance. The containment hierarchy results in viewing
planes. In the highway grammar, for example, zones contain segments and junctions, segments
contain sections, sections contain lanes. As such, at the highway plane, the editor displays the zones
and their interconnections. Opening a zone, places the user in the zone-contents plane, displaying
the segments and junctions of that zone. Opening a segment, places the user in the segment-contents
plane etc. This idea is illustrated in Figure 6.13.

The GOE supports relationships among instances that are part of di�erent containment
hierarchies. Consider two instances A and B, containing the instances A:1 and B:1 respectively. It is
possible to connect A:1 and B:1. As illustrated in Figure 6.13, the graphical editor allows connections
between the output of an object and an output of its container. If the output of A:1 is connected to
the output of A and if the input of B:1 is connected the input of B the connection between A:1 and
B:1 is channeled via the connection between A and B. In other words, the relationship (connection)
between A and B nests the relationship between A:1 and B:1. This convention imposes a restriction
on connecting instances. Two instances can be connected only if they are in the same plane, or if
their containers are connected.

In the graphical editor, double-clicking on a relationship displays its nested elements. This
idea is illustrated in Figure 6.14.

Object attributes are displayed in independent windows. Clicking on a class icon displays
the attributes and default values of that class. Clicking on an instance displays the attribute values
of that instance.

6.4.1 Object Editor Grammar

So far we have discussed the main concepts of the object editor. We now introduce the
meta-data grammar. A sample speci�cation �le that describes the highway editor can be found
in Appendix 9.5. Table 6.3 gives a simple example. The top layer consists of boxes. A box
can contain arbitrary number of circles. Boxes are connected to boxes, circles are connected to
circles. The BoxOut-BoxIn relationship nests the relationship between the circles. The circle-to-
circle relationship is intentionally named BoxOut-BoxIn to illustrate the need for a relationship
nesting type. A sensible design would use the names CircleOut and CircleIn for these ports. The
bus construct is discussed below.

109

Section

Lane

Exit Section

Entry Section

Entry

Exit

Segment

Junct2to1

Junct1to2

Sink

Source

Zone Zone Zone

Segment

Section Entry Section

Entry

Exit Section

Exit

Zone Plane

Segment Plane

Lane

Lane

Lane

Entry Section Plane

Junct2to1

Segment
Segment

Highway Plane

Class Icons for Each Plane Sample Planes and Contained Instances

Class Column Instance Column

Figure 6.13: Editor Planes

The Con�guration File

A con�guration �le consists of four elements:
(Top Plane Classes, Classes, Relationships, Buses)

The top plane classes list the classes that are at the top viewing plane. Classes list the class
de�nitions, relationships list relationship de�nitions, and buses list bus de�nitions.

Class

A class is de�ned by the following components:
(Class Name, Instance Pre�x, Bitmap Name, Inputs, Outputs, Attributes, Containees).

Class name is the name of the class.

Instance pre�x is used to name instances. Each instance name consists of the name of its
container concatenated with its instance pre�x concatenated with an ordinal, e.g. the third circle
in box \B5" is called \B5C3".

Bitmap name is used to identify an icon �le.
An input consists of the following components:

(Input Name, C++ Information, Graphical Information, Cardinality).

The C++ information is used to translate input and output names to C++ relationship attribute
names. In the above example, the BoxIn input is mapped to an attribute called boxIn. The graphical
information speci�es the location of the arc on the icon. The BoxOut output, for example, is on the
right side (R = Right, L = Left, T = Top, B = Bottom) half way (0.5) from the top. Cardinality
speci�es the number of such inputs this object can have.

An output consists of the following components:
(Output Name, C++ Information, Graphical Information, Cardinality, Input Names).

110

Zone Zone

Segment

Section Entry Sect.

Entry

Exit Section

Exit

Zone-Zone Relationship

Segment-Segment Relationship

Junct2to1
Segment

Segment

Highway Plane

Viewing Relationships

Segment
Junct1to2

Segment
Segment

Section SectionExit Section

Exit

Figure 6.14: Relationship Nesting

The input names �eld contains the names of the inputs this output is allowed to connect to. These
names are independent of class names.

An attribute consist of two components:
(Attribute Name, Initial Value).

The current grammar does not provide attribute types. Attribute types can easily be introduced in
future versions.

A containee is given by a pair:
(Class Name, Cardinality).

Containees specify the types of objects a given class can contain and how many of them it can/must
contain.

Possible cardinality values are de�ned by the following set:
f0, 0|1, 1, 0..n, 1..n, K..n, 0..N, 1..N, K..Ng
where capital letters correspond to �xed integers. A box can contain arbitrary number of circles.

Relationship

A relationship is de�ned by the following components:
(Output Name, Input Name, Nested Elements).

The input-output name pair de�nes the relationship. These names correspond to input
and output names.

A nested element is given by the following components:
(Output Name, Input Name, Nesting Type)

The nested element is identi�ed by its input-output name pair. The nesting type is needed to avoid
ambiguities.

Consider Figure 6.15. The connection between the boxes on the left side, may contain
either of the three relationships on the right. To make this representation unique a type is associated
with each nested relationship. In Figure 6.15, the box-box relationship would contain the box-circle
relationship as type one, the circle-box relationship as type two, and the circle-circle relationship as

111

1

2

3

Figure 6.15: Relationship Nesting Types

type three. Note that both the circle-box and the box-circle relationships can contain the circle-circle
relationship (as type two and type one respectively). In the example of Table 6.3, the relationships
between circles are nested as type 3.

The input-output name values of the nested elements of a relationship must be unique, i.e.,
the same relationship can not be declared as a nested element twice. Furthermore, a relationship
is allowed to nest at most one instance of a relationship. Consider two sections on the highway
containing three lanes each. If all three lane-to-lane connections were nested by the section-to-
section relationship, as depicted in Figure 6.16, it would be unclear which lane is connected to
which.

Lane

Lane

Lane

Lane

Lane

Lane

Figure 6.16: Ambiguous Relationship Containment

However, it is desirable to channel all lane-to-lane relationships through one section-to-
section connection. Which leads us to our �nal construct, the Bus, illustrated in Figure 6.17.

Bus

Lane

Lane

Lane

Lane

Lane

Lane

Figure 6.17: The BUS construct

Buses come in pairs. The 1ToN bus has outputs that can connect to inputs; the NTo1 bus
has inputs that outputs can connect to. A bus pair is given by two components:
(Bus Name, Terminals)

The bus name identi�es the particular bus class.
Each terminal is given by a triple:

(Input Name, Output Name, Cardinality)
The input and output names identify the outputs and inputs that can be connected to

this bus. Cardinality identi�es the number of such relationships a bus can group.

112

// Top Plane
fBoxg
// Classes
f

fBox B bitmaps/box.bm
ffBoxIn boxIn L .5 0..ngg
ffBoxOut boxOut R .5 1 fBoxInggg
ffheight 5gfwidth 8gg
ffCircle 0..ngg

g
fCircle C bitmaps/circle.bm

ffBoxIn circleIn L .5 1 1gg
ffBoxOut circleOut R .5 1 1 fBoxInggg
ffradius 2gg
ffgg

g
g
// Relationships
f

fBoxOut-BoxIn f fBoxOut-BoxIn 3g gg
g
// Buses
f

fCircleBus fBoxOut-BoxIn ngg
g

Table 6.3: Boxes and Circles

The output of an NTo1 bus of a given type can only connect to the input of a bus of the
same type. Therefore, if a bus connection is nested in a relationship this nesting can only be of type
three.

Bus-to-bus connections are not declared as nested relationships. A relationship nests a
bus-to-bus connection if it can nest all the terminal connections of the bus.

6.4.2 Editor Implementation

The editor is implemented using the Tcl/Tk graphics package. The current implementa-
tion does not support cardinality constraints. It implements inputs and outputs with cardinality one
and buses with �xed number of ports. The editor implementation is not discussed here. A sample
speci�cation �le that describes the highway editor can be found in Appendix 9.5.

113

6.5 Graphical Debugger

Conceptually, the graphical debugger is another sequencing object that enables the user
to collect outputs and to execute transitions. The graphical debugger enables the user to view the
evolution of the system at instance level. In particular, it provides the following functionality:

� provides access to objects by name;

� displays object attributes in numerical or graphical format;

� allows users to set error levels of objects. Objects with higher error level print more detailed
information;

� allows users to set the logging level of objects. Turning the logging on results in recording the
state history of an object;

� allows users to stop and start the simulation;

� replays the recorded history of objects.

The replayer has �ve buttons: 1) Play; 2) Stop; 3) Step forward one time click; 4) Step
backward one time click; and 5) Go to time. The last button takes an argument specifying the
global clock time stamp.

The following functionality is planned; however, it is not available in the current imple-
mentation:

� provide write access to object attributes;

� provide an event generator to send events to objects;

� provide a view de�nition language to create composite objects within the graphical environ-
ment;

� provide hooks in SmartDb classes to support instance level breakpoints in key object methods.

In this section we discuss the overall design of the graphical debugger. Its Tcl/Tk imple-
mentation is not discussed.

6.5.1 Overall Architecture

The overall architecture of the graphical debugger is illustrated in Figure 6.18.
The GUI layer acts as a proxy to the graphical debugger process (GDP). It maintains

the list of objects currently displayed by the GDP. When the GUI layer is scheduled, it \packs" all
information regarding the objects currently displayed and sends it to the GDP. The GDP has the
responsibility to \unpack" this information and to display it on the screen. As the user speci�es
new requests through the display, such as retrieving an object by name, stopping the simulation etc,
the GDP propagates these requests to the GUI layer. The GUI layer processes these requests when
scheduled.

An object can \pack" itself or send other textual information to the GDP.

6.5.2 The GUI layer

When a stop request is propagated to the GUI layer, it stops the simulation by simply
going into a loop that reads further requests from the GDP. Simulation is continued when a start
request is received.

When a get request is propagated to the GUI layer, it sets the errorLevel of that instance
to one. For time driven objects the GUI layer packs and sends the state information of these objects
when scheduled. Event driven objects are expected to assume responsibility for packing themselves
and for sending state information only as their state changes. The AcceptTransition()method of
the SMInstance class, for example, checks the errorLevel of the SMInstance and packs and sends

114

Various Layers

Process
Coordinator

Various Layers

Domain
Image

GUI Layer

Highway Zone
Time and Event Driven
Process Layers

Process Layer
Coordination

Simulation,

Tcl/Tk XWindows Display Process

t

v

Z6G1_V1 xVel

Z6G1_V1
length

width

myControls

myMonitors

xVel

xAccel

myLane

5m

3m

==>

==>

20m/sec

0

Z6H1S1L1

Z6H1S1L1 cellArray

5 6 7 8 9

Set Error Level

Set Log Level

Get

View Options

Set

Control Panel

Start/Stop

Commit

Get

10

Graphical Debugger Process.

Request Translation

Data Unpacking

Request

Data Packing

Server Process

Client of Simulation, Server of Display.

Tracking

IPC Transmission

Merge Complete

Figure 6.18: Graphical Debugger Architecture

its state if necessary. Objects use the return value of the SetErrorLevel() method to indicate to
the GUI layer whether they are time or event driven.

The GUI layer recognizes SmartDb objects only. The methods it invokes on objects are
restricted to SetErrorLevel(), SetLogLevel(), and Pack(). Polymorphism ensures that proper
SmartAHS or SmartPATH object methods are invoked.

The Pack method must be specialized by each class. A special code-generator is im-
plemented that can generate the Pack method of a class from its header �le speci�cation. The
code-generator also generates a template �le that is interpreted at run time by the GDP.

6.5.3 The Pack Code-Generator

The code-generator works for arbitrary classes; however, the set of attributes it recognizes
are �xed. It recognizes all elemental data types, arbitrary Links, VVLists, VELists, VVArrays,
and VEArrrays. It knows to distinguish between the static and dynamic attributes of objects and
between the relation and value attributes. Links, VVLists, VELists, VVArrays, and VEArrrays are
interpreted as relations. An object's attributes are treated as static, its State is treated as dynamic.
Static attributes are packed only once when the get request is received; subsequent pack operations
pack the state attributes only.

115

New entities can be integrated into the graphical debugger environment simply by running
the code-generator on the header �le of the class.

6.5.4 The Graphical Debugger Process

The graphical debugger is implemented in Tcl/Tk. It recognizes the same set of attributes
as the pack code-generator. It interprets the packed data using the template �le generated by the
code-generator.

It displays attributes in tabular or graphical format.
In the tabular format all attributes of an object are displayed in one window. In Figure

6.18, \Z6G1 V1" is a Vehicle displayed in tabular format. The window is divided into six sub-
windows. The �rst subwindow contains the instance's name and a menu button to select viewing
options for the attributes. The second through fourth subwindows display static value, static rela-
tionship, dynamic value, and dynamic relationship attribtues. The �fth subwindow displays events
and messages generated by the instance. The sixth subwindow displays operation buttons. The
second through �fth subwindows can be scrolled independently; they can be closed and reopened.

Double-clicking on a relationship attribute opens a new window. In the case of a Link

attribute, an instance window is opened. In the case of a VVList attribute, the window displays a list
of Links, denoted by icons. In the case of a VVArray attribute, the window displays an array, where
each index may contain a Link. In Figure 6.18, the cellArray is a VVArray<Vehicle> attribute.

The user can choose to display numerical value attributes in graphical format. In this
case, a new window is opened. In Figure 6.18, the xVel of the vehicle is displayed graphically. The
template �le can be used to specify the labels of the graph axes.

Data Unpacking

A packed instance consists of a header identifying the class and the instance and an ordered
list of attribute values. The attribute order for each class is speci�ed in the template �le.

The template �le contains the class de�nitions. The template �le class de�nitions are
similar to the corresponding C++ class de�nitions. Methods are omitted, graphical information is
added. Template �le class de�nitions support inheritance. Each class consists of its parent and an
ordered list of attributes. An attribute is given by its name, type, and default display driver.

Each attribute type can have several display drivers. Currently only text and x-t13 graph
drivers are supported. More complex drivers for VEArray, VEList, and complex attributes are under
implementation.

The template �le is interpreted by the GDP class manager which maintains a class de�-
nition structure for each class.

Each instance window has its own manager. Upon initialization, the instance manager
retrieves its class de�nition information from the class manager.

The instance manager maintains an independent list of display drivers for each attribute.
Once the window is opened, the user may change the display format of attributes.

When a packet arrives at the GDP, based on its header, it is forwarded to the corresponding
instance manager. The instance manager forwards each attribute value to the proper display driver.

13x-t graphs are used for numerical attributes only. The attribute value is displayed over time.

116

6.6 Parametric Interfaces

Parametric interfaces are used to specify initial values of attributes at instantiation time
of an object.

SmartAHS provides a tool to simplify the speci�cation of parametric interfaces for ele-
mental data types.

Each class is expected to declare its parameters in an independent \parameters" class.
Parameter class de�nitions consist of elemental data type attributes. Each attribute must also
specify its global default value.

A code-generator is provided that can read in parameter class de�nitions and produce the
following:

� A Read() function that can read in and interpret a parameter value �le;

� For each parameter class, say VehParams, a function of the form
VehParams* GetVehParams(char* instanceName).

A parameter �le has entries of the form:
ClassName*[InstanceName]*AttributeName*AttributeValue.

Here, ClassName identi�es the parameter class name, InstanceName identi�es an instance.
If InstanceName is omitted, the entry speci�es a class level attribute default value.

The Read function parses the parameters �le and creates data structures with class and
instance level default attribute values.

The Get() method looks up the instanceName in the data structure. If any instance level
attribute values are provided, it uses these. Otherwise, if class level attribute values are provided,
it uses these. Otherwise it uses the global defaults. It returns these values in a parameter class
instance, e.g. a VehParams instance.

The constructors of classes are expected to Get the default attribute values based on the
speci�c instance's name.

6.7 Naming Convention

The name of an object is an attribute in the FrameworkObject. The SetName() method
can be used to set the name of an instance. Class constructors are overloaded; instance names can
be passed in as an argument, or a default naming mechanism may be used by a class to name its
instances.

The naming convention is based on the static containment hierarchy of objects. Each
instance's name consists of the concatenation of its container's name, a string identifying its class
name, and an ordinal.

The containment hierarchy of highway and tra�c instances is static, as such, their names
are derived from the concatenation of their container's name, their class identi�er, and an ordinal.
The Zone object provides the root for highway object names.

Vehicles are named by the Factory they are created in.
The containment hierarchy within a SmartObject is static, as such, the names of the

automation devices and their containees are derived from the concatenation of their container's
name, their class identi�er, and an ordinal. The Vehicle or the particular highway object provide
the root for automation device names.

Since scheduling objects are created for each Zone, the Zone name acts as the root of
scheduling objects.

Event, Message and Message subclass instances are not assigned unique names. These
instances usually take a name based on their class.

State, Input, and Output subclass instances are named after their StatedObject in-
stance name.

The following subsections discuss the naming convention in more detail and present ex-
amples.

117

6.7.1 Highway Entities

The highway and tra�c entity classes are identi�ed by short strings. These strings and
example instance names are given below:

Class Id Examples
Zone Z Z1, Z3, Z98
Segment H Z1H1, Z3H12
Sink AS Z1AS5, Z3AS2
Source GS Z1GS12, Z13GS1
Junct1to2 O Z1O3, Z2O5
Junct2to1 T Z1T5
Section S Z1H1S4, Z12H3S78
EntrySection ES Z1H1ES4, Z12H3ES78
ExitSection XS Z1H1XS4, Z12H3XS78
Entry GE Z1H1GE12, Z13H12GE1
Exit AE Z1H12AE5, Z3H1AE2
Lane L Z1O3L1, Z1H1S1L1

The \G" of the Entry and Source class ids is a mnemonic for Generator, the \A" in Sink

and Exit, a mnemonic for Absorber.
The tra�c entity names are derived from the concatenation of the containing Absorber

or Generator name and the particular tra�c entity identi�er. Example classes and their identi�ers
are given below:

myInTra�c I Z6GS1I1
myOutTra�c U Z6GS1U1
myFactory F Z6GS1F1, Z6H1GE1F2

The application developers are responsible for selecting proper identi�ers for their tra�c
object specializations.

6.7.2 Vehicles

Vehicles are named by the Factorys they are created in. A Vehicle name consists of a
Factory name and an ordinal, e.g. \Z6H1GE1F2 7" or \Z3GS2F1 12".

6.7.3 Automation Devices

Automation device names are created by concatenating the SmartObject name with a
class identi�er for the automation device and an ordinal. Automation devices are responsible for
naming their containees.

Some automation device class identi�ers and example instance names are given below:

InVehTransmitter INTX Z1GS1F1 1 INTX1
OutVehTransmitter OUTTX Z1GS1F1 1 OUTTX1
ReceiverProxy RCVR Z1GS1F1 1 RCVRReg, Z1GS1F1 1 RCVRCoord
VehicleSensor SENS Z1GS1F1 1 SENSBasic
Camera CAMERA Z1GS1F1 1 CAMERA1
CoordControl CC Z1GS1F1 1 CC1
RegControl RC Z1GS1F1 1 RC1

The automation devices have the responsibility to name their containees. For example,
state machine instance names are derived by concatenating the containing controller's name with
the particular SMInstance name.

118

6.7.4 Scheduling Objects

There is a single instance of the ProcessCoordinator in a Zone; its name is a concate-
nation of the Zone name and the class name, e.g. \Z1 ProcessCoordinator". Layers use a similar
convention. Their instance names are derived by concatenating the Zone name with the class name,
e.g., \Z6 Physical".

The names of PacketBox and BigBen instances are created by concatenating the containing
scheduling instance's name with the corresponding class name, e.g., :\Z6 Regulation BigBen",
\Z1 Coordination PacketBox".

6.7.5 States

The names of State, Input, and Output instance are derived by concatenating their
StatedObject instance name with the corresponding subclass name.

6.8 Other Modules

Currently, the GOE does not support meta-data evolution, i.e., highway layouts created
with di�erent highway editor speci�cations can not be shared. As a result the �rst three steps of
the simulation setup must be combined.

Using the GOE meta-data language, the application developers are expected to extend
the highway editor speci�cation to include the newly created automation devices. The GOE is then
used to create the highway layout along with the automation devices and the tra�c entities.

119

Chapter 7

SmartPATH Implementation

7.1 Implementing SmartPATH Entities

In this section we give examples of State Machines, and Control, Monitor, and Traverser

subclasses. In particular we create the MyVehicle that is capable of performing merge, lead, and
follow maneuvers.

First we summarize how SmartAHS objects are extended.

� Control objects;

SmartAHS provides minimal de�nition of Control object interfaces. Control objects can be
arbitrarily complex composite objects.

The virtual Run method is used to implement time driven behavior. Control objects are
expected to use state machines to implement event driven behavior.

� Monitor objects;

Each Monitor subclass has a specialized State consisting of attributes. Each Monitor sub-
class specializes the Run method for time driven scheduling and implements the necessary
functionality to collect the data for the Monitor's State.

The Monitor subclasses can schedule themselves using the BigBen timers. This functionality
is implemented in the Monitor class.

Alternatively Monitor subclasses can receive Packets from other objects. In this case, the
other objects must be implemented to send the Packets.

� Sensor, Transmitter, and Receiver objects;

SmartAHS de�nes the virtual method interfaces of these objects. Subclasses of these classes
have to provide the proper method implementations. Alternatively new virtual method inter-
faces can be added. However, these interfaces would be used by SmartPATH objects only.

Currently Sensors are used to set the Inputs and Outputs of Control objects, and to collect
the data for Monitors. Transmitters and Receivers are used by state machines for Message
delivery.

� State machines;

State machines are implemented in a special syntax and translated into C++ code. The appli-
cation developer is expected to implement the Enter() and Exit() methods of the SMState
subclasses and the UpdateCorr() method of the SMInstanceState subclass.

� Input, Output and Message objects;

Input and Output subclasses specialize the base class by adding attributes and by specializing
the Update() method. The relationship attributes specify the relationships from which the
data is derived, the value attributes specify the actual input and output values. The Update()
method is responsible for propagating the inputs and outputs.

120

Entity Relationship With Entity Cardinality
VehicleControl myProxy ReceiverProxy 1

myInVT InVehTransmitter 1
myOutVT OutVehTransmitter 1

CoordControl regProxy ReceiverProxy 1
RegControl coordProxy ReceiverProxy 1

Table 7.1: Relationships within a Vehicle

� Vehicles;

The Vehicle is a composite object. Application developers are expected to implement a
constructor that instantiates proper automation devices and initializes their relationships.

� Highway objects;

Application developers are not expected to specialize these classes. Any extesions to highway
classes should become part of SmartAHS.

� InTraffic, OutTraffic, and Factory;

SmartAHS de�nes the virtual method interfaces of these objects. Subclasses of these classes
have to provide the proper method implementations. Alternatively new virtual method inter-
faces can be added. However, these interfaces would be used by SmartPATH objects only.

� Scheduling objects.

SmartAHS de�nes the virtual method interfaces of three scheduling base classes. Speci�c
sublasses specialize these methods.

7.1.1 Creating Vehicles

The MyVehicle class is composed of many components.
The class hierarchy for MyVehicle components is given in Figure 7.1. The �gure omits the

SMState and SMAlgorithm subclasses that are generated, as well as the Input and Output classes
used by each state machine. The MyVehicle containment hierarchy is given in Figure 7.2. The
static relationships within a MyVehicle are given in Table 7.1. These methods use the L AS macro,
discussed in Appendix 9.2, for safe type-casting.

Reg
Control

Coord
Control

Control SMInstance

Vehicle
Control

CoordSup
SMInstance

MergeMan
SMInstance

MergeResp
SMInstance

MergeInit
SMInstance

RegSup
SMInstance

LeadMan
SMInstance

FollowMan
SMInstance

Figure 7.1: Class Hierarchy for MyVehicle components

121

MyVehicle::MyVehicle(char* name)

f
Link<VehicleSensor> vehSensor = new Persistent VehicleSensor();

InsertSensor(vehSensor, 0, TRUE);

Link<InVehTransmitter> inXmitter = new Persistent InVehTransmitter();

InsertTransmitter(inXmitter, 0, TRUE);

Link<OutVehTransmitter> outXmitter = new Persistent OutVehTransmitter();

InsertTransmitter(outXmitter, 1, TRUE);

ReceiverProxy* coordRcvr = new Persistent ReceiverProxy();

InsertReceiver(coordRcvr, 0, TRUE);

ReceiverProxy* regRcvr = new Persistent ReceiverProxy();

InsertReceiver(regRcvr, 1, TRUE);

CoordControl* coordControl = new Persistent CoordControl();

InsertControl(coordControl, 0, TRUE);

RegControl* regControl = new Persistent RegControl();

InsertControl(regControl, 0, TRUE);

Camera* camera = new Persistent Camera();

InsertMonitor(camera, 0, TRUE);

myBigBen = ProcessCoordinator::GetBigBen("GLOBALBIGBEN");

coordControl->Connect();

regControl->Connect();

camera->Connect();

g

Table 7.2: The MyVehicle Constructor

122

MergeMan
SMInstance

RegSup
SMInstance

LeadMan
SMInstance

FollowMan
SMInstance

 1

 1
Camera

myVehicle

 1

OutVeh
Transmitter

Receiver
Proxy

InVeh
Transmitter

Vehicle
Sensor

 1

Reg
Control

Coord
Control

 1

 1 2

CoordSup
SMInstance

MergeResp
SMInstance

MergeInit
SMInstance

 1

 1

 1

 1

 1

 1

 1

Figure 7.2: Containment Hierarchy for MyVehicle components

The Vehicle creation takes place in two stages. First all objects in the containment hier-
archy are instantiated and their container-containee relationship is set. Then all other relationships
of these objects are established. This two-stage creation is necessary, since a relationship between
two objects can only be established after they both have been instantiated.

The MyVehicle constructor instantiates and properly inserts automation devices into the
MyVehicle. The Insert method sets the container-containment relationship. These objects' con-
structors have the responsibility of recursively instantiating their containees. The VehicleSensor,
InVehTransmitter, OutVehTransmitter and ReceiverProxy classes were discussed in the last
chapter. CoordControl, RegControl, and Camera are the speci�c Control and Monitor devices
used by MyVehicle. These classes are discussed below.

After all containees are instantiated, the MyVehicle constructor Connects its containees.
The Connect method of each object has the responsibility of establishing its relationships, and the
relationships of its containees.

The Vehicle constructor is given in Table 7.2.

7.1.2 Creating Control Objects

CoordControl

The CoordControl class consists of three state machines. These are the CoordSup, the
MergeInit, and the MergeResp state machines. The CoordSup is the parent of the other two state
machines and has a supervisory role. It determines if and when to activate/deactivate the MergeInit
and MergeResp state machines. The CoordSup is activated at instantiation and remains active until
the MyVehicle leaves the highway.

The CoordControl constructor instantiates the state machines; the Connect method es-
tablishes all initial relationships. The CoordControl object is strictly event driven; as such, it does
not specialize the Run method.

The constructor of CoordControl is given as in Table 7.3; its Connect method is given in
Table 7.4.

RegControl

The RegControl class consists of four state machines. These are the RegSup, the Merge-
Man, the FollowMan, and the LeadMan state machines. The RegSup is the parent of the other three
state machines and has a supervisory role. Based on the requests sent by the coordination layer

123

CoordControl::CoordControl()

f
CoordSupSMInstance* cSup1 = new Persistent CoordSupSMInstance();

InsertSM(cSup1);

MergeInitSMIInstance* MI1 = new Persistent MergeInitSMIInstance();

InsertSM(MI1);

MergeRespSMInstance* MR1 = new Persistent MergeRespSMInstance();

InsertSM(MR1);

/* Establish the parent child relationship among the state machines */
cSup1->InsertChild(MI1);

cSup1->InsertChild(MR1);

layerName = ``COORD'';

regProxy = NULL LINK;

g

Table 7.3: The CoordControl Constructor

state machines, it determines which maneuver to activate. The RegSup is activated at instantiation
and remains active until the MyVehicle leaves the highway. Upon activation, RegSup activates the
LeadMan.

The constructor and the Connect methods of the RegControl class are similar to the
methods of CoordControl and are omitted. However, since RegControl is both time and event
driven RegControl specializes the Run method. The Run method delivers a click Event to the
active maneuver state machine. The RegControl Run method is given in Table 7.5.

7.1.3 Creating State Machines

Seven SMInstances, their Inputs, Outputs, and specialized Messages need to be de�ned.
We discuss the MergeInitSMInstance only.

The MergeInit state machine de�nition is given in Table 7.6. The state machine code
generator is used to translate this speci�cation into the MergeInitSMInstance class.

First, we introduce the specialized Messages, Inputs, and Outputs of the MergeInit state
machine, then we discuss its behavior.

MRMessage and MDMessage

The only specialized Message classes used by the MergeInit state machine are MRMessage,
and MDMessage. They contain the following attributes:

MRMessage Attributes

o u1b platoonSize Size of platoon, one if single agent.

MDMessage Attributes

VVList<Receiver> myFollowers The new followers.

Assume platoon A initiates a merge with platoon B in front of it. A's leader sends the
MRMessage containing the size of platoon A. (If a single agent initiates the maneuver, platoon size is
one.) Using this size and other information the leader of platoon B determines if the merge should

124

CoordControl::Connect

f
/* Call Parents Connect First */
VehicleControl::Connect();

/* Establish the myOutVT relationship */
Link<Transmitter> myT = inSmartObject->GetTransmitter(``OUTTX1'');

if (myT == NULL LINK) f /* Error Code OMITTED */ g
SetOutVT(myT);

/* Establish the myProxy relationship */
Link<Receiver> myR = inSmartObject->GetReceiver(``RCVRCoord'') ;

if (myR == NULL LINK) f /* Error Code OMITTED */ g
SetProxy(L AS(ReceiverProxy, myR));

/* Establish the regProxy relationship */
myR = inSmartObject->GetReceiver(``RCVRReg'') ;

if (myR == NULL LINK) f /* Error Code OMITTED */ g
SetRegProxy(L AS(ReceiverProxy, myR));

myBigBen = Zone::GetBigBen(``Coordination BigBen'');

/* Set the relationships of the State Machines */
o u4b s = myInstances.size();

for (o u4b i =0; i < s; i++)f
if (myInstances[i].inputs != NULL LINK)f
myInstances[i].inputs->myVehicle = L AS(Vehicle, inSmartObject);

g
if (myInstances[i].outputs != NULL LINK)f
myInstances[i].outputs->myVehicle = L AS(Vehicle, inSmartObject);

g
g

/* Activate the CoordSupSMInstance and register a timeout for CoordSup */
Link<FSMInstance> temp = & myInstances[0];

Link<CoordSupSMInstance> cSup = L AS(CoordSupSMInstance, temp);

cSup->Initialize();

cSup->myState->mergeTimer = cSup->RegisterTimer(3, MERGETIMEROUT);

return TRUE;

g

Table 7.4: The CoordControl Connect Method

125

RegControl::Run() f
Link<FSMInstance> mySup = & myInstances[0];

mySup->theState->curChild->ProcessEvent(TICK);

return TRUE;

g

Table 7.5: The RegControl Run Method

take place. When A completes the merge, it sends an MDMessage containing a list of the Vehicles
in platoon A. The leader of platoon A adds these Vehicles to its list of myFollowers.

CoordSupIn and MIOut

The specialized Input and Output classes used by MergeInit are CoordSupIn and MIOut.
These classes contain the required information for the Enter and Exit methods to generate the
necessary internal Events.

The attributes of CoordSupIn are:

CoordSupIn Attributes

Relations

Link<Vehicle> sourceVehicle Inputs are derived from the sourceVehicle's
State.

Values

o bool amILeader True if platoon leader.
o u1b platoonSize Size of platoon, one if single agent.
o u1b targetPlatoonSize Preferred platoon size.
Link<Receiver> myLeadersProxy If follower, leaders proxy.
VVList<Receiver> myFollowers If leader, followers' proxys.

The attributes of MIOut are:

MIOut Attributes

Relations

Link<Vehicle> targetVehicle Outputs are propagated to targetVehicle's
State.

Values

o bool amILeader True if platoon leader.
Link<Receiver> myLeadersProxy If follower, leaders proxy.

Both objects specialize the Update method. The Update method of CoordSupIn derives
the values of the attributes, the Update method of MIOut propagates the values of the attributes to
the VehicleState. The Update methods are invoked in the specialized Enter and Exit methods of
the SMState subclasses.

MergeInitSMInstance Behavior

The MergeInit state machine is activated by its parent, the CoordSup state machine. As
part of activation, the parent sends the START Message.

The Initialize method of a SMInstance invokes the virtual UpdateCorr method of its
SMInstanceState. MergeInitSMInstanceState specializes this method and sets the correspondent
variable F for the front Vehicle using its Sensor. The UpdateCorr method is given in Table 7.7.

126

machineName: MergeInit;
children: NULL;
states: Idle, Check, ReqWait, Accel, Set;
InputEvents: YES, NO;
inputMessages: Message:START, Message:OK MERGE,

Message:DONT MERGE, Message:BUSY,
Message:MERGE M DONE, Message:MERGE M FAILED;

outputMessages: MRMessage:MERGE REQUEST, Message:MERGE MAN,
Message:LEAD MAN, Message:MERGE I DONE,
Message:MERGE I FAILED, MDMessage:MERGE DONE,
Message:MERGE FAILED;

beginState: Idle;
correspondents: F, FLead;
timers: miTimer;
inputs: CoordSupIn;
outputs: MIOut;

transitions:
Idle Parent:START () Check

Check YES (F:MERGE REQUEST, miTimer:20) ReqWait
Check NO (Parent:MERGE I FAILED) Idle

ReqWait FLead=OK MERGE (REG:MERGE MAN, miTimer:Cancel, Accel
miTimer:50)

ReqWait FLead=DONT MERGE (Parent:MERGE I FAILED, Idle
miTimer:Cancel)

ReqWait FLead=BUSY (Parent:MERGE I FAILED, Idle
miTimer:Cancel)

ReqWait miTimer (Parent:MERGE I FAILED) Idle

Accel REG:MERGE M DONE (miTimer:Cancel, Set
FLead:MERGE DONE,
Parent:MERGE I DONE)

Accel REG:MERGE M FAILED (FLead:MERGE FAILED, Idle
Parent:MERGE I FAILED,
miTimer:Cancel)

Accel miTimer (FLead:MERGE FAILED, Idle
Parent:MERGE I FAILED,
REG:LEAD MAN)

Set YES () Idle

Table 7.6: The MergeInit State Machine De�nition

127

MergeInitSMInstanseState::UpdateCorr() f
Link<VehicleSensor> myS = L AS(VehicleSensor,

theInst->myController->GetSmartObject()->GetSensor("SENSBasic"));

double frontDist, frontVel;

Link<Vehicle> frontVeh = myS->GetVehicle(eFront, eThisLane, frontDist,

frontVel);

if (frontVeh == NULL LINK)f F = NULL LINK; g
else f F = frontVeh->GetReceiver("RCVRCoord"); g
return TRUE;

g

Table 7.7: The MergeInitSMInstanceState UpdateCorr Method

CheckSMState::Enter(Link<SMInstanceState> theState, Link<Input> i,

Link<Output> o)

f
Link <MergeInitInstanceState> myState =

L AS(MergeInitInstanceState, theState);

Link <CoordSupIn> myIn = L AS(CoordSupIn, i);

Link <MIOut> myOut = L AS(MIOut, o);

/* User speci�ed code of the Enter method consists of the next two lines.

The wrapper is auto-generated. */

if (myState->F == NULL LINK) f myState->directEvent = NO; g
else f myState->directEvent = YES; g

return TRUE;

g

Table 7.8: The CheckSMState Enter Method

The Enter method of the CheckSMState is specialized to determine if there is a Vehicle

ahead. Its Enter method is given in Table 7.8.

If there is a Vehicle within the sensing distance a MERGE REQUEST Message is sent to that
Vehicle, F. The response comes from the leader of F, or just F if it is a single agent.

If FLead, the leader of the front platoon, gives permission for the merge maneuver the
regulation controller is asked to execute the merge maneuver.

The Enter and Exit methods of the AccelSMState are specialized to Update the outputs
of the MergeInitSMInstance. If the merge maneuver is successful, the regulation layer automatically
switches to the follow maneuver which depends on the myLeadersProxy relationship. Therefore, it
is necessary to set the State of the Vehicle to reect the new myLeadersProxy. The Enter method
of SMAccelState updates the State of the Vehicle and sets its myLeadersProxy relationship. The
Exit method reverses this operation in case the maneuver fails. The corresponding code fragments
are given in Table 7.9 and 7.10.

If the maneuver is successful, the SetSMState's Entermethod is called to set the Vehicle's
State. The code fragment for this method is given in Table 7.11

128

myOut->myLeadersProxy = myState->FLead;

myOut->amILeader = FALSE;

myOut->Update();

Table 7.9: The AccelSMState Enter Method, Code Fragment

myOut->myLeadersProxy = NULL LINK;

myOut->amILeader = TRUE;

myOut->Update();

Table 7.10: The AccelSMState Exit Method, Code Fragment

myState->directEvent = YES;

myOut->amILeader = FALSE;

myOut->myLeadersProxy = myState->FLead;

myOut->Update();

Table 7.11: The SetSMState Enter Method, Code Fragment

129

Camera::Camera()

f
/* Create the CameraState and establish the myCameraState relationship */

/* The state constructor establishes the myObj relationship */
myCameraState = new Persistent CameraState(this);

/* Establish the currState relationship of StatedObject */
currState = (State*)myState;

/* Hardcode sensing distance to 15 cellArray cells */
frontDist = 15 + 1;

myBigBen = Zone::GetBigBen("Regulation BigBen");

g

Table 7.12: The Camera Constructor

7.1.4 Creating Monitors

Camera

The Camera object models a camera mounted on the front hood of a vehicle. It captures
information about the Vehicles ahead in its CameraState.

Most of Camera behavior is implemented by its parent, Monitor. Camera only specializes
the Run method to invoke the Update method of CameraState.

The Update method of CameraState uses the Camera's static relationships to derive the
current CameraState values.

The Camera has the following static attributes and relations:

Camera Static Attributes

Relations

Link<VehicleState> itsState The containing Vehicle's State.
Link<Sensor> itsSensor The containing Vehicle's Sensor.
Values

o u2b frontDist Distance within the vision of Camera.

The CameraState consists of the following attributes:

CameraState Attributes

Values

o float dxFront Distance di�erential with Vehicle ahead.
o float dyFront Speed di�erential with Vehicle ahead.
Relations

VVArray<Vehicle> frontVehicles Vehicles ahead within the next frontDist

meters.

The constructor and the Connect methods of the Camera are given in Table 7.12 and 7.13
respectively. The Camera is turned on or o� through the graphical debugger.

7.1.5 Specializing Sensors, Transmitters, and Receivers

In this example myVehicle uses the SmartAHS communication and sensor devices. How-
ever, one could specialize these objects simply by inheriting from them and specializing their virtual

130

Camera::Connect()

f
if (inSmartObject == NULL LINK) f /* Error code OMITTED */ g
Link<Vehicle> myVehicle = L AS(Vehicle, inSmartObject);

Link<State> temp = myVehicle->GetState();

if (temp == NULL LINK) f /* Error code OMITTED */ g
itsState = L AS(VehicleState, temp);

itsSensor = L AS(VehicleSensor, myVehicle->GetSensor("SENSBasic"));

return TRUE;

g

Table 7.13: The Camera Connect Method

methods.

7.2 Creating the Process Layers

Four special process layers are created.

The Physical layer is used to update the position of a Vehicle on the highway. The
Physical layer is actually part of SmartAHS.

The Regulation layer is used to generate the displacement of a Vehicle.

The Coordination layer is used to implement the coordination control layer.

The GUI layer is used to communicate with the graphical debugger.

7.2.1 Physical Layer

The Physical Layer subclasses the Traverser and specializes the methods EAbsorber(),
EGenerator(), and ELC(). As shown in in Table 7.14, these methods invoke the LaneContainer

methods that implement Vehicle movement on the highway, Vehicle creation, and Vehicle re-
moval.

7.2.2 Regulation Layer

The Regulation layer subclasses the Hybrid class. It contains the PacketBox for the
RegControl state machines.

The Regulation layer also specializes the ELC method, to invoke the Run method of each
RegControl object.

The corresponding methods are in Table 7.15.

7.2.3 Coordination Layer

The Coordination class does not provide any specialized methods. It only sets the name
of the EventDriver to \Coordination".

7.2.4 GUI Layer

The GUI class directly inherits from the Layer class and specializes the Go method to
execute the appropriate graphical debugger code.

131

Physical::ELC(Link<LaneContainer> LC)f
LC->MoveVehicles();

return 0;

g

Physical::EAbsorber(Link<Absorber> LC)f
LC->AbsorbVehicles();

return 0;

g

Physical::EGenerator(Link<Generator> LC)f
LC->GenerateVehicles();

return 0;

g

Table 7.14: Specialized Physical Layer Methods

7.3 Simulation Setup

We follow the steps outlined in Section 5.2.2

7.3.1 Highway Layout

A highway layout is created using the GOE.
This layout is saved to a C++ �le and compiled to executable format. The executable is

run to place the highway into the database.

7.3.2 Tra�c Patterns

An InTraffic subclass is created that generates a MyVehicle every n time clicks, where
n is a con�gurable parameter. A Factory subclass is created that instantiates a myVehicle. These
objects are inserted into the highway.

7.3.3 Roadside Automation

No roadside automation devices are used for this simulation.

7.3.4 Vehicle Automation

The implementation of MyVehicle was discussed above.

7.3.5 Simulation Granularity

The implementation of the scheduling objects were discussed above. The executable that
instantiates the scheduling objects is given in Table 7.16.

The ConfigFile object provides methods to get simulation parameters. It reads in a
simulation parameters �le and returns the required information. Using the ConfigFile object, this
executable creates the scheduling object instances and names them.

Other simulation granularity is speci�ed through the simulation parameters.

132

Hybrid::Start()f
myEventDriver->Go();

return 0;

g

Regulator::ELC(Link<LaneContainer> LC)f
VVList<Lane> theLanes = LC->GetLanes();

VVList<Vehicle> vehicleList;

Link<Vehicle> aVehicle;

Link<Control> aControl;

o u4b i, j;

i = 0;

while (i < myLanes.size()) f
vehicleList = &myLanes[pos].GetVehicles();

j = 0;

while (j < vehicleList.size()) f
aVehicle = &vehicleList[j];

aControl = aVehicle->GetControl("RC1");

if (aControl == NULL LINK) f /* Error Code OMITTED */ g
aControl->Run();

j++;

g
i++;

g
return 0;

g

Table 7.15: Specialized Regulation Layer Methods

133

extern ConfigFile* CFO;

main(int argc, char **argv)

f

dom = new PDOM();

dom->beginsession(CFO->getMyDbName(), "session1");

InternalSynchronizer* myIS =

new Persistent InternalSynchronizer(CFO->getMyISName());

Physical* myP = new Persistent Physical();

myIS->Register(myP, myP->getName(), myP->getPeriod());

Regulator* myR = new Persistent Regulator();

myIS->Register(myR, myR->getName(), myR->getPeriod());

Coordination* myE = new Persistent Coordination();

myIS->Register(myE, myE->getName(), myE->getPeriod());

GUI* myGUI = new Persistent GUI(dom);

myIS->Register(myGUI, myGUI->getName(), myGUI->getPeriod());

dom->Commit();

g

Table 7.16: The Executable Creating the Scheduler Objects

134

extern ConfigFile* CFO;

main(int argc, char **argv) f
int steps = atoi(argv[1]);

dom = new PDOM();

dom->beginsession(CFO->getMyDbName(), "session1");

PPredicate aPredicate = PAttribute("FrameworkObject::name") ==

CFO->getMyISName();

LinkVstr<InternalSynchronizer> IS =

PClassObj<InternalSynchronizer>.select(NULL, FALSE, aPredicate);

Link<InternalSynchronizer> myIS = IS[0];

for (int i = 1; i <= steps; i++)f
myIS->Go();

g

dom->Commit();

g

Table 7.17: The Executable to Run the Simulation

7.3.6 Simulation Parameters

The controllers used in this simulation do not use any parameters.
The Physical and Regulation layers are run at every time click. The Coordination

and GUI layers are run every fourth time click. The time click step size is set to 0:1 seconds.
The integration time step is set to 0:005 seconds. This information is speci�ed in the simulation
parameters �le.

7.3.7 The GUI Debugger

The GUI debugger does not require any particular con�guration.

7.3.8 Running the Simulation

The executable that runs the simulation is in Table 7.17. Two inputs are read in from
the simulation parameters �le: the name of the InternalSynchronizer to be simulated and the
name of the database the simulation is stored in. Using this information the executable retrieves
the corresponding InternalSynchronizer instance from the database.

The ProcessCoordinator runs for duration time clicks every time its Go() method is
invoked. The main executable takes in an argument that speci�es how many times the Go() method
of the ProcessCoordinator should be invoked.

This particular executable chooses to Commit to database only at the end of simulation.

135

7.4 Implementation Critique

Evaluation criteria for a Customized OM and an OMS Application were discussed in
Section 4.6. This section provides a critique of SmartAHS design and implementation. In particular,
the SmartAHS must satisfy the requirements identi�ed in Section 3.1.2.

7.4.1 Ease-of-use

We discuss the requirements of Section 4.6 in the context of SmartAHS.

� Relevance of Entities;

SmartAHS attempts to provide abstractions for microsimulation. Most SmartAHS entities
are \planned" objects; a process needs to be developed to convert software speci�cations into
actual physical components.

� Locality of reference and learning curve;

The developer of automation devices needs minimal understanding of the process model. The
required information is limited to the inputs, outputs and the time scale of evolution of the
object.

The coordination between various automation devices requires more design e�ort.

The developer of scheduling objects, usually the system architect, needs a good understanding
of the process model; however, in general the system architect is shielded from the details of
other objects.

Adding entities requires the writing and compiling of C++ code. The steps to integrate a
new entity were summarized in Figure 5.3. The steps required to set up a simulation are
more streamlined. In particular, the parameter �le and the graphical debugger provide quick
speci�cation mechanisms.

� Ease of speci�cation;

A number of tools are provided to simplify system speci�cation. These tools have room for
improvement. In particular, better syntax checking is needed both for the state machine code
generator and the GOE grammar parser. A new tool is needed to automatically convert contin-
uous time di�erential equations into C++ programming constructs. Currently this conversion
is manual.

� Ease-of-evaluation;

Monitor speci�cation syntax is C++. However, once a monitor entity is created its use is
straightforward. The use of the database simpli�es the recording and the replaying of system
state.

� System level issues;

{ Con�guration management;

The GOE is a tool for creating instance con�gurations. As this tool matures, it will
be used to create automation strategies by mixing and matching existing entities. A
con�guration management tool is needed to track simulation runs. Other con�guration
management problems are addressed by system utilities such as Revision Control System
(RCS).

{ Fault management;

All C++ development tools can be used by SmartAHS. The graphical debugger aids in
fault management. Better syntax checking is needed both for the state machine code
generator and the GOE grammar parser.

136

{ Performance management;

SmartAHS allows time driven objects to evolve at di�erent time scales. Event driven
schedulers execute the behavior of objects with outstanding events only. The users are
allowed to set simulation granularity.

The client-server architecture makes it possible to run the graphical debugger and the
simulation on di�erent workstations.

Performance and memory use statistics are discussed in Section 7.4.4.

{ Access and security management;

Application developers do not need write access to the SmartAHS classes. Proper imple-
mentation of SmartPATH will ensure that system users do not need write access to the
SmartPATH classes.

{ Financial management;

Financial management is beyond the scope of this thesis.

{ Resource Management;

SmartAHS is designed to run on SunSparc and SGI platforms. Future releases should
eliminate the dependence on the Versant database.

{ Planning and Design Management;

Both SmartDb and SmartAHS are expected to evolve over time.

7.4.2 AHS Requirements

This section summarizes requirements that are not fully addressed by SmartAHS.

� All user requirements are addressed;

� Con�guration requirements;

Actual speci�cation and implementation of automation devices and tra�c entities are left to
the application developer. The state machine language is designed to streamline protocol
speci�cations.

Currently, no special language is provided to de�ne tra�c rules. As these rules are better
understood a particular speci�cation language may emerge.

� Fault management requirements;

Accident detection is part of SmartAHS. Current version of the graphical debugger has a read
only interface. As the read-write interface is implemented, inducing component failures will
be streamlined.

� Performance and planning requirements;

Gateways need to be designed to interface with other packages.

� Modeling requirements;

Better geometric highway representation support is needed. Automation device speci�cation
and implementation is left to application development.

� Validation and deployment;

A new automated process is needed to meet these requirements. The modularity of SmartAHS
is expected to provide a head-start.

The state machine language provides veri�cation support.

137

7.4.3 Software System Requirements

A number of desirable software system characteristics were discussed in Section 2.1 and
revisited in Section 3.1.2. Here, these characteristics are discussed in the context of SmartAHS.

� Ability to associate physical and logical representations: Modularity;

The object-oriented approach and the OMS Object Model make SmartAHS a modular system.
Actual and planned physical objects are well encapsulated in classes.

� Ability to add new components to the system with minimal code rewrite: Openness, Modu-
larity, Robustness;

Application developers are able to add new objects by subclassing SmartAHS classes.

The application developer and the system user are both capable of composing complex objects
from simpler components.

Current SmartAHS architecture does not provide su�cient software fault isolation. Since all
objects are simulated in the same process, it may not always be possible to pinpoint the exact
source of a software failure. A more robust architecture would simulate each control layer in
a di�erent process. However, this approach results in poor performance.

� Ability to collect arbitrary statistics during simulation: Openness, Modularity;

SmartAHS enables monitor objects to collect and store arbitrary statistics at run-time.

The entire simulation state can be saved in the OODB for later use. However, it is not practical
to save the entire state after every transition since the commit time of a zone with thousand
vehicles is in the order of seconds.

� Ability to run simulations with acceptable performance: Performance;

Performance statistics are presented in the next section.

� Ability to adjust simulation granularity: Modularity, Openness;

The scheduling objects are con�gurable like any other object.

� Ability to simulate up to 100.000 vehicles: Performance;

A distributed version of SmartAHS is forthcoming. Current implementation introduces signif-
icant overhead for distribution support. Distribution is discussed in more detail in [34].

7.4.4 Performance Statistics

In this section we provide performance results for several simulation runs. The simulations
were run on a Sparc10 workstation with 64Meg of memory.

Figures 7.3, 7.4, and 7.5 plot the amount of time taken for one second of highway simulation
versus the number of vehicles simulated. The graphs have two curves; the �rst plots the total elapsed
time, the second plots the time taken up by the regulation layer.

The simulation is started with a 2km long empty highway and a new vehicle is created
every 2 seconds. The 2km highway accommodates 500 vehicles. Hence, the curves level o� after 500
vehicles.

Vehicle positions on the highway are updated every 0.1 seconds. The integration time step
is set at 0.005 seconds. The elapsed time is measured every 4 seconds of simulation time.

The �rst scenario, in Figure 7.3, uses the physical and regulation layers only. The vehicles
enter the highway, remain single agents, traverse the highway, and eventually leave the simulation.
The regulation layer determines the vehicle displacements through integration, the physical layer
moves the vehicles on the highway based on these displacements.

About 98.5% of simulation time is taken up by the integration routines in the regulation
layer and the two curves are barely distinguishable. The plot indicates that about 32 vehicles can
be simulated in real time.

138

Total Time

Regulation Time

Total Elapsed Time

Number of Vehicles

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

0.00 100.00 200.00 300.00 400.00 500.00

Figure 7.3: Single Agent Vehicles Moving On Highway

The second scenario, Figure 7.4, introduces the coordination layer. The coordination layer
is scheduled twice a second. Vehicles enter the highway, try to merge with other vehicles, traverse
the highway in platoons, and eventually leave the simulation. About 88% of elapsed time is taken
up by the regulation layer. Platoons of size 2 are created. Since the displacement for a follower
vehicle in a platoon is based on the leader vehicle's displacement, less time is taken up in integration
routines. As a result, about 55 vehicles are simulated in real time.

The third scenario, Figure 7.5, provides a measure for the framework simulation overhead.
Only the physical and regulation layers are used. Instead of calculating the vehicle displacement
through integration, the displacement is hardcoded to 2m. Still, the regulation layer takes up 75%
of the total elapsed time. Framework bookkeeping, such as, creating vehicles, removing vehicles,
traversing objects, maintaining the vehicle positions within a lane, etc. is limited to 25%.

Finally, Figure 7.6 displays the memory use of the simulation. The resident and total sizes
of the program are plotted against the number of vehicles in the simulation.

139

Total Time

Regulation Time

Total Elapsed Time

Number of Vehicles
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

0.00 100.00 200.00 300.00 400.00 500.00

Figure 7.4: 2-Vehicle Platoons Moving On Highway

Total Time

Regulation Time

Total Elapsed Time

Number of Vehicles
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

0.00 100.00 200.00 300.00 400.00 500.00

Figure 7.5: Single Agent Vehicles Moving On Highway with Hard-Coded Displacement

140

Total Size

Resident Size

KBytes x 103

Number of Vehicles2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

100.00 200.00 300.00 400.00 500.00

Figure 7.6: Memory Use of Simulation

141

Chapter 8

Conclusions

A summary of the thesis is provided in the Introduction.
As we stated earlier SmartDb and SmartAHS are \live" systems that will evolve over time.

In this chapter we summarize some of the future evolution directions for the OMS Object Model,
its SmartDb implementation, and the SmartAHS simulation framework.

8.1 The Object Model and SmartDb

The current SmartDb implementation supports only a subset of the Object Model con-
structs. Most of the Object Model constructs are actually implemented as part of SmartAHS.

A number of modules that were discussed in Chapter 6 as part of SmartAHS should
become application independent SmartDb constructs. Some of these modules are already quite
generic, others require some design work to eliminate their dependency on the highway automation
application. These modules are:

� The graphical object editor;

As the reader may have already noticed this module is generic and does not depend on the
highway application.

� The graphical debugger;

The graphical debugger is able to display any entity, so long its attributes are from a speci�c
set. However, some work is required to be able to de�ne application domain speci�c attributes
and attribute icons.

� State machine language; and

The code generator for the state machine language uses SmartAHS entities, such as Receivers
and Transmitters, as target C++ classes. A more abstract SML syntax and a con�gurable
code generator is needed to make the SML part of SmartDb. Each Customized OM can then
provide customizations of the SML.

� Time and event driven scheduling objects;

The Traverser traverses highways and is application speci�c. However, the concept of travers-
ing a system for the extent of a class is generic. Similarly, Packets and PacketBoxes used by
the EventDrivers can be used by any application domain. Application independent time and
event driven scheduling mechanisms should become part of SmartDb.

As other specialized speci�cation languages emerge, such as di�erential equation solvers
and rule-based systems, their generic components should become part of SmartDb.

The current implementation of SmartDb does not have a clear interface with Versant and
depends on Versant data types. Although the use of Versant data types has initially speeded up the
implementation process, eventually, these data types should be replaced with vendor independent
implementations. Eventually SmartDb should eliminate its dependence on Versant entirely and work
with any persistent storage system.

142

8.2 SmartAHS Expansion Directions

An implementation critique of SmartAHS is provided in Section 7.4. Most suggested
improvements are in the direction of \productizing" the SmartAHS simulation platform.

The current development e�orts for SmartAHS are:

� More domain speci�c objects;

More accurate sensor, transmitter, and receiver models, vehicle dynamics models and even-
tually some standard automation devices should become part of SmartAHS. More highway
entities, such as bridges and tunnels, and more tra�c entities are being developed.

� Other specialized speci�cation languages;

These speci�cation languages may include di�erential equation solvers, rule-based speci�cation
languages, or even tra�c rule speci�cation languages.

� Streamlining simulation setup;

Better graphical and command line interfaces are planned for simulation setup and monitor
speci�cation.

� Interfaces to other simulation and veri�cation platforms; and

SmartAHS has an open architecture that facilitates integration with other tools. However,
such integration requires that the other tools be open as well. A SML-to-COSPAN translator
is under development. Integration with urban tra�c simulators is planned.

� SmartAHS Distribution.

A distributed version of SmartAHS is under development. Current implementation introduces
signi�cant overhead for distribution support. Distribution is discussed in more detail in [34]

143

Bibliography

[1] \The Common Object Request Broker (CORBA): Architecture and Speci�cation",
Object Management Group (OMG), Framingham, MA, Dec. 1991.

Software Engineering

[2] K. Beck, et.al.\Can Structured Methods Be Objecti�ed?",
Panel discussion in Proceedings of OOPSLA '91.

[3] B. Boehm. Software Engineering Economics,
Prentice-Hall, Engelwood Cli�s, NJ, 1981.

[4] G. Myers. Composite/Structured Design,
New York Ny: Van Nostrand Reinhold, 1978, p21.

[5] Edward Yourdon and Larry Constantine. Structured Design,
Yourdon Press, Englewood Cli�s, N.J., 1979.

[6] Edward Yourdon. Modern Structured Analysis,
Yourdon Press, Englewood Cli�s, N.J., 1989.

Object Oriented Paradigm

[7] L. Cardelli and P. Wegner. \On Understanding Types, Data Abstraction, and Polymorphism",
Computing Surveys, vol 17, no.4, 1985 pp. 471-522.

[8] Ralph E. Jonson. \How to Develop Frameworks",
OOPSLA Tutorial Notes, ACM Press. 1993.

[9] T. Rentsch. \Object-Oriented Programming",
SIGPLAN Notices vol 17(12), p 51.

[10] Peter Wegner. \Concepts and Paradigms of Object-Oriented Programming",
ACM SIGPLAN OOPS Messenger, 1(1), Aug 1990.

Object Oriented Methodologies

[11] G. Booch. Object Oriented Design with Applications,
Benjamin/Cummings, Redwood City, CA. 1991.

[12] [11] p 27.

[13] R.J.A. Buhr. Practical Visual Techniques in System Design: With Applications to Ada

Prentice-Hall, Englewood Cli�s, N.J., 1991.

[14] P. Coad and E. Yourdon. Object-Oriented Analysis,
Yourdon Press, Englewood Cli�s, NJ. 1991.

144

[15] Ivar Jacobson et.al. Object-Oriented Software Engineering,
Addison-Wesley, ACM Press, 1992.

[16] James Rumbaugh et.al. Object Oriented Modeling and Design,
Prentice-Hall, Englewood Cli�s, N.J., 1991.

[17] Ron Schultz. \A Game Plan for OOD Developers",
in Open Systems Today, Sept. 21 1992.

[18] Sally Shlaer and Stephen Mellor. Object-Oriented Systems Analysis: Modeling the World in

Data,
Yourdon Press, Englewood Cli�s, N.J., 1988.

[19] Sally Shlaer and Stephen Mellor. Object-Oriented Systems Analysis: Modeling the World in

States,
Yourdon Press, Englewood Cli�s, N.J., 1988.

[20] Rebecca Wirfs-Brock, B. Wilkerson, and L. Weiner. Designing Object-Oriented Software,
Prentice Hall, Englewood Cli�s, N.J. 1990.

Object Oriented Programming Languages

[21] Margaret Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual,
Addison-Wesley, Reading MA, 1990.

[22] Adele Goldberg and D. Robson. Smalltalk 80: The language and its Implementation,
Addison-Wesley, Reading, Massachusetts, 1983.

[23] Stanley B. Lippman. C++ Primer,
Addison-Wesley, Reading MA, 1991

Databases

[24] S. Ahmed, A. Wong, D. Sriram, and R. Logcher. \A Comparison of Object-Oriented Database
Management Systems for Engineering Applications",
Research Report R91-12, Massachusetts Institute of Technology, Intelligent Engineering Systems
Laboratory.

[25] M. Atkinson et.al. \The Object-Oriented Database System Manifesto",
Proceedings of 1st Intn. Conf. on Deductive and Object-Oriented Databases Kyoto, Japan, Dec.
1989

[26] Douglas K. Barry. \ODBMS Feature Listing",
Object Magazine, January-February 1993, pp. 48-53.

[27] Edgar F. Codd. \A Relational Model for Large Shared Data Banks",
Communications of the ACM, 13(60, pp. 377-387, Jun 1970.

[28] Edgar F. Codd. \Relational Completeness of Database Sublanguages",
Data Base Systems, R. Rustin ed.,Prentice Hall, Englewood Cli�s, N.J. 1972.

[29] Chris J. Date. An Introduction to Database Systems,
Addison-Wesley, Reading, Massachusetts, 1985.

[30] A.R. Hurson, S.H. Pakzad, and J. Cheng. \OODBMS: Evolution and Performance Issues",
IEEE Computer Magazine, February 1993, pp. 48-60.

[31] Larry Lai and Leon Guzenda. \How to Benchmark an OODBMS",
JOOP 1991.

145

[32] Bindu Rao. Object-Oriented Databases,
McGraw Hill, 1994.

[33] M. Stonebreaker et.al. \Third Generation Data Base System Manifesto",
Proceedings of IFIP DS-4 Workshop on Object-Oriented Databases Windermere, England, July
1990.

Automated Highway Systems

[34] F. Eska�. Work in progress
PhD thesis, UC Berkeley. June 1996.

[35] F. Eska� and P. Varaiya. \SmartPath: Automatic Highway Simulator"
PATH Technical Memorandum, UC Berkeley. June 1992.

[36] F. Eska�, Delnaz Khorramabadi, and P. Varaiya, \An Automatic Highway System Simulator"
Transportation Research -C Vol. 3, No, 1, pp. 1-17, 1995.

[37] A. G�oll�u, A. Deshpande, P. Hingorani, P. Varaiya. \SmartDb: An Object Oriented Simulation
Framework for Highway Systems.",
Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, pp.
244-251, Gainesville, Florida. 1994.

[38] Ivy Hsu and Jean Walrand. \Communication Requirements and Network Design for IVHS"
PATH Technical Report, UCB-ITS-PWP-93-18.

[39] Steve Shladover et.al. \Automated Vehicle Control Developments in the PATH program",
IEEE Trans. Vehicular Tech. Vol. 40. pp. 114-130. Feb. 1991.

[40] W.B. Stevens. \The Automated Highway System (AHS) Concept Analysis",
MITRE Research Report MTR-93W0000123, (draft.), August 1993, McLean, Viriginia.

[41] Pravin Varaiya. \Smart Cars on Smart Roads: Problems of Control",
IEEE Trans. Automatic Control Vol. 38, No 2. Feb. 1993.

[42] IVHS America. Strategic Plan for Intelligent Vehicle-Highway Systems in the United States.
Report No IVHS-AMER-92-3. 20 May 1992.

Power Distribution Systems

[43] Arthur R. Bergen. Power System Analysis,
Prentice-Hall, Englewood Cli�s, N.J, pp. 34-35.

[44] Matthew Brundjar. Power Distribution Management,
Work in progress, Masters' thesis, UC Berkeley.

[45] William R. Cassel. \Distribution Management Systems: Functions and Payback",
IEEE/PES 1992 Summer Meeting, Seattle, WA, July 12-16, 1992, 92 SM 450-7 PWRS.

[46] D. Chiang and M.E. Baran. \On the Existence and Uniqueness of Load Flow Solution for Radial
Distribution Power Networks",
IEEE Trans. on Circuits and Systems, Vol 37, No 3, pp. 410-416, March 1990

[47] Aleks G�oll�u and Felix F. Wu. \New Directions for Network Management",
Proceedings of Distribution 2000. Melbourne, Australia. Electricity Supply Association of Aus-
tralia.

[48] Y. Sekine, K.Takahashi, T.Sakaguchi. \Real-Time Simulation of Power System Dynamics"
Proceedings of 11th Power Systems Computation Conference, Avignon France, pp. 3, August
1993.

146

[49] Felix F. Wu and R. D. Masiello eds.;
Special Issue on Computers in Power System Operation, Proceedings of the IEEE, Vol 75, pp.
1553-1712, Dec 1987.

[50] EPRI Report. Guidelines for Evaluating Distribution Automation,
Technical Report EL-3728, November 1984.

[51] IEEE Tutorial Course,Distribution Automation,
IEEE Power Engineering Society 88EH0280-8-PWR 1988.

Network Management Systems

[52] Subodh Bapat. Object-Oriented Networks,
Prentice Hall, Englewood Cli�s, N.J.

[53] Uyless D. Black. Network management standards : the OSI, SNMP, and CMOL protocols

McGraw-Hill, New York, 1992

[54] Uyless D. Black. Network management standards : SNMP, CMIP, TMN, MIBs, and object

libraries,
McGraw-Hill, New York, 1994.

[55] J. Case, M. Fedor, M. Scho�stall, and J. Davin. \A Simple Network Management Protocol",
Request for Comments 1098, DDN Network Information Center, SRI International, April, 1989

[56] Douglas E. Comer. Internetworking with TCP/IP Volume 1: Principles, Protocols, and Archi-

tecture,
Prentice-Hall, Englewood Cli�s, N.J.,1991.

[57] Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP Volume 2: Design,

Implementation, and Internals,
Prentice-Hall, Englewood Cli�s, N.J.,1991.

[58] Richard J. Edell, Nick McKeown and Pravin Varaiya. \Billing Users and Pricing for TCP
Tra�c",
To appear in IEEE Journal of Selected Areas in Communications, Special Issue on \Advances

in the Fundamentals of Networking."

[59] Aleks G�oll�u and D. Moen. \Building Large Network Management Systems with C++"
Proceedings of OOPSLA. 1991.

[60] Aleks G�oll�u and W. Caplinger. \Performance Issues in Network Management Systems",
Proceedings of Wescon 1992.

[61] Aleks G�oll�u, W. Caplinger, and D. Moen. \IMS a Network Management Integrator Compliant
with OSI/NM Forum",
Proceedings Silicon Valley Networking Conference, April 1991

[62] Aleks G�oll�u and G. Caravias. \Network Management in a Heterogeneous Environment",
Proceedings Wescon 91, San Francisco, California.

[63] Shau-Ming Lun, Felix Wu, Ning Xiao, and Pravin Varaiya. \NetPlan: An Integrated Network
Planning Environment",
State of the Art in Performance Modeling and Simulation: Computer and Communication
Networks, Vol.1, Kluwer Academic Publisher, 1993.

[64] J. B. Postel. \User Datagram Protocol",
Request for Comments 768, DDN Network Information Center, SRI International, August 1980.

[65] M. Rose. The Open Book, A Practical Perspective,
Prentice Hall.

147

[66] OSI/Network Management Forum; \Basic Reference Model",
International Electrotechnical Committee 1984.

[67] OSI/Network Management Forum; \Application Services",
Forum 002; Issue 1; January 1989

[68] OSI/Network Management Forum; \Object Speci�cation Framework",
Forum 003; Issue 1.0; September 1989

[69] \OSI Basic Reference Model",
ISO 7498-1, 1992.

[70] \Common Management Information Service (CMIS) De�nition",
ISO 9596-1, 1992.

[71] \Common Management Information Protocol, Part 1:Speci�cation",
ISO 9596-1, 1992.

[72] \International Standardized Pro�les | OSI Management | Management Functions", Parts
1-5,
ISO ISP 12060, 1993.

[73] \Management Information Services | Structure of Management Information |" Parts 1-7,
ISO 10165-1 to ISO 10165-7.

Formal Methods

[74] R. Alur, C. Courcoubetis, and D. Dill. \Model-Checking for Real Time Systems",
Proceedings 5th IEEE Symp. on Logic in Computer Science, IEEE Computer Society Press,
1990.

[75] F.J. Barros, M.T.Mendes, and B.P. Zeigler. \Variable DEVS | Variable Structure Modeling
Formalism: An Adaptive Computer Architecture Application",
Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, pp.
185-192, Gainesville, Florida. 1994.

[76] J. R. B�uchi. \On a decision method in restricted second order arithmetic",
Proceedings of the International Congress on Logic, Methodology and Philosophy of Science,
pages 1{11. Stanford University Press, 1962.

[77] Akash Deshpande. Control of Hybrid Systems,
PhD. thesis, UC Berkeley 1994.

[78] Aleks G�oll�u and Pravin Varaiya. \Hybrid Dynamical Systems",
Proceedings 28th Conf. on Decision and Control. Vol. 3, pp. 2708-2712, Tampa FL, December
1989.

[79] C.A.R. Hoare. Communicating Sequential Processes,
Prentice/Hall International, 1985

[80] G.P. Hong and T.G. Kim. \The DEVS Formalism: A Framework for Logical Analysis and
Performance",
Fifth Annual Conference on AI, Simulation, and Planning in High Autonomy Systems, pp.
170-178, Gainesville, Florida. 1994.

[81] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata Theory, Languages, and

Computations

Addison-Wesley, Reading Massachusetts, 1979

148

[82] Kemal Inan and Pravin Varaiya. \Finitely Recursive Process Models for Discrete Event Sys-
tems,"
IEEE Trans. Auto. Control, vol. AC-33, no. 7, pp. 626-639, July 1988.

[83] Kemal Inan and Pravin Varaiya. \Algebras of Discrete Event Models,"
Proceedings of the IEEE, vol. 77, no. 1, pp. 24-38, January 1989.

[84] J. McManis and P. Varaiya. \Suspension Automata: A Decidable Class of Hybrid Automata",
Proceedings 6th Workshop Computer-Aided Veri�cation, Stanford CA 1994.

[85] R.Milner. A Calculus of Communicating Systems,
Springer-Verlag, 1980

[86] D.E. Muller. In�nite sequences and �nite machines.
In Proceedings of the 4th Annual Symposium on Switching Circuit Theory and Logical Design,
pages 3{16, IEEE, October 1963.

[87] C. M. �Ozveren. Analysis and Control of Discrete Event Dynamic Systems: A State Space

Approach.
PhD thesis, MIT, 1989.

[88] H. Praehofer, F. Auernig, adn G. Resinger. \An Environment for DEVS-based multiformalisms
simulation in Common Lisl/CLOS",
Discrete Event Dynamic Systems: Theory and Application, 3(2):119-149, 1993.

[89] P. Ramadge and W. Wonham. Supervisory control of a class of discrete event processes,
SIAM J. Control Optim., 25(1):206{230, January 1987.

[90] Bernard Zeigler. Multifacetted modeling and discrete event simulation,
Academic Press, London, Orlando, 1984.

[91] \Speci�cation and Description Language SDL",
International Telecommunications Union-T Rec.Z.100 1988.

[92] \Estelle { A Formal Description Technique Based on Extended State Transition Model"
ISO9074, 1988

[93] \LOTOS { A Formal Description Technique Based on the Temporal Ordering of Observational
Behavior"
ISO8807, 1989

Simulation and Veri�cation Tools

[94] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodr��guez, and J. Sifakis. \A Toolbox
for the Veri�cation of LOTOS Programs",
Proceedings of the 14th International Conference on Software Engineering, Melbourne, Aus-
tralia, 192.

[95] Z. Har'El and R. P. Kurshan. COSPAN User's Guide,
AT&T Bell Laboratories, Murray Hill, NJ, 1987.

[96] H. Schwetman. CSIM Reference Manual (Revision13),
Microelectronics and Computer Technology Corporation, 3500 West Balcones Center Drive,
Austin, TX 78759, 1989

[97] The Almagest. Ptolemy Manual Vol 1-4,
Version 0.5.2, College of Engineering, UC Berkeley, 1995

149

Chapter 9

Appendix

9.1 C++ Overview

This section provides a quick overview of the C++ object model and its implementation
of object-oriented constructs. The reader is recommended to read either [21] or [23] for a complete
treatment.

C++ is everything C is and more; in particular it provides the \class" construct. A sample
class de�nition can be found in Table 9.1.

C++ has many built-in data types. It enables the user to de�ne new types and new classes.
Each class is a data type. (Clearly the converse is false.). Some C++ data types are summarized
below:

int integer.
enum an enumerated set of integers, a name is assigned to each integer in the set.
char a single character.
float a oating point number.
void any type.

C++ also provides some built-in operators. These are summarized below:

* The pointer operator.
int* foo Declares foo as a pointer to an integer.
*foo Assuming that foo is a pointer, it dereferences the pointer to

get the value.
int* f(char*) A function that accepts a pointer to a character and returns a

pointer to an integer.

& The address operator.
&foo Returns the address of foo.
void f(int&) A function that takes in a reference to an integer. When in-

voked as f(foo), the argument passed to f is the address of (a
reference to) foo.

[] The array operator.
int[] foo Declares foo as an array of integers.

new The instantiation operator.
new Car Instantiates a Car.

delete The deletion operator.
delete foo Deletes the instance foo.

150

class Car: public Vehicle

f
public:

/* Two constructors. The constructor is overloaded. */
Car(char* name);

Car();

/* The destructor */
�Car();

/* Virtual Public Instance Method */
virtual int Run();

/* Public Class Method */
static int HowManyCars();

protected:

/* Protected Instance Method */
int GetLength();

private:

/* Private static attribute, used to maintain cardinality of the extent */
static int numberOfCars;

/* Private attribute */
float length;

g;

Table 9.1: Sample C++ Class De�nition

151

sizeof(.) Returns the memory size of its argument in bytes.
sizeof(int) Returns size of integer.

++ Increment operator.
int foo; foo++ Equivalent to foo = foo +1

int* foo; foo++ Increments the pointer by sizeof(int). Consider
int i; int[] bar;.
If foo == &(bar[i]) then foo++ == &(bar[i++])

A class consists of its members, these are attributes and methods. Attributes can be of
any data type. Methods take arguments and return a value. C++ methods can take arguments by
value and by reference. Methods have access to the attributes of their class.

Classes can declare their members to be private, protected, or public. Public members are
accessible to all other classes, protected members are accessible only to subclasses, private members
are only accessible within that class.

There are two special methods: the constructor and the destructor. They both must have
the same name as the class. The destructor name is preceded by �.

The constructor is invoked on the class to create instances. Declaring the constructor of
a class private makes the class abstract.

An instance of a class assigns values to the attributes. In C++, an instance is identi�ed
by a pointer to it. Methods are invoked on instances. The syntax to invoke a method is
instancePointer->methodName(arguments).
When a method is invoked on an instance, it uses the attribute values of that instance.

A class may contain static members. Static attributes take on values within the class and
are shared by the extent of the class. If they are public, other objects can access them with the
syntax:
ClassName::attributeName.
Static methods are invoked on the class. If they are public other objects can invoke them with the
syntax:
ClassName::methodName(arguments).
In the above example any class can invoke Car::HowManyCars(), however, Car::NumberOfCars is
not accessible to other classes.

C++ supports single and multiple inheritance. A subclass can add new attributes and
methods or specialize existing methods. Attribute specialization1, method argument specialization,
and method return value specialization are not supported.

In the above example Car inherits all public and protected members of Vehicle and adds
a number of methods and attributes of its own.

C++ provides signature overloading. Signature identi�cation takes place at compile time.
However, two methods f(a) and f(b) have the same signature if b is a subclass of a. In the above
example the constructor is overloaded.

C++ provides dynamic binding and parametric polymorphism. If a method is declared to
be virtual it can be overwritten (specialized) in a subclass. At run-time C++ determines the proper
method to invoke based on the speci�c type of an instance. In the above example the Run method
is virtual.

1Here specialization refers to restricting the domain of an attribute

152

9.2 The Versant OODB

Bindu Rao observes \Versant is an object-oriented database system that is particularly
useful when several teams work in parallel on di�erent parts of a project, project requirements
change over time, diverse activities must be tied together, a distributed environment is necessary,
or complex data types are employed" [32].

Versant was chosen for the SmartAHS implementation for the following key reasons:

� Versant provides persistence through inheritance, as such the application developer does not
need to be aware of the persistent nature of the program;

� Versant provides a library of persistent data types such as lists and arrays. The use of these
constructs speeds up the development process;

� Versant provides instance level locking which is essential for distributed simulation;

� Versant provides dirty reads which is essential for distributed simulation;

Other features of Versant are summarized in [32].

9.2.1 Versant Data Types

Versant provides a set of persistent data types. These are:

o 1b, o 2b, o 4b n-byte signed integer, an elemental type.
o u1b, o u2b, o u4b n-byte unsigned integer, an elemental type.
o double, o float oating point numbers, an elemental type.
o bool Boolean TRUE or FALSE, an elemental type.
Vstr<type> dynamic array of any of above elemental types.
Link<class> persistent equivalent of a pointer.
LinkVstr<class> array of links to persistent objects.
BiLink<class, returnAttr> bidirectional link between 2 persistent objects.
BiLinkVstr<class, returnAttr> array of bidirectional links.
PString persistent string, used as part of a class.
Vstring persistent stand-alone string.
VVList<class> list of persistent objects.
VVArray<class> array of persistent objects.
VEList<type> list of persistent elemental types.
VEArray<type> array of persistent elemental types.

The VVList, VEList, VVArray, and VEArray objects provide a number of methods these
are:

set(const VVList<type>&) Copies contents of passed in list to this list
and drop its own contents.

o u4b size() const Returns number of elements in the list.
o bool valid key(o u4b pos) const TRUE if pos is valid for this list.
type first() const Returns �rst element of the list.
type last() const Returns last element of the list.
replace first(type elem) Replaces the �rst element with elem.
replace last(type elem) Replaces the last element with elem.
replace position(o u4b pos, type elem) Replaces the element at pos with elem.
insert first(type elem) Inserts elem at �rst pos in list.
insert last(type elem) Inserts elem at last pos in list.
insert position(o u4b pos, type elem) Inserts elem before position pos.
delete first() Deletes �rst element in list.
delete last() Deletes last element in list.
delete position(o u4b pos) Deletes the element in list at position pos.

153

Versant also provides a macro for safe type-casting. The line
Link<A> foo = L AS(derivedClass, baseClass);

converts the pointer baseClass to a member of class derivedClass and returns a pointer if possible.
If the conversion is not possible, it raises an exception.

9.2.2 Versant Limitations

Versant is an evolving product. If the following limitations of Versant were addressed, the
implementation of SmartAHS would be improved and signi�cantly simpli�ed.

� Partial commits are not supported. In particular there is no construct to commit the extent
of a class;

� Partial object retrieval is not possible;

� There are no distributed directory services;

� Versioned objects can't be migrated;

� Migration is not supported in shared sessions;

� The Link construct can't be subclassed to implement relationship semantics;

� The server does not provide events or triggers.

154

9.3 The Traverser Class

/*

* Copyright (c) 1994-1996 The Regents of the University of California.

* All rights reserved.

*

* Permission is hereby granted, without written agreement and without

* license or royalty fees, to use, copy, modify, and distribute this

* software and its documentation for any purpose, provided that the

* above copyright notice and the following two paragraphs appear in

* all copies of this software.

*

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR

* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT

* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF

* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS

* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO

* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

*/

/*

Traverser.C

*/

/*

This is a simplified version of the actual Traverser.

This version works for one Zone only.

Also we need to resolve how to access the other database

*/

#include <Traverser.h>

#include <LaneContainer.h>

#include <Access.h>

#include <Sink.h>

#include <Source.h>

#include <Junct1to2.h>

#include <Junct2to1.h>

#include <Zone.h>

#include <Highway.h>

#include <Section.h>

#include <EntrySection.h>

#include <ExitSection.h>

#include <Entry.h>

#include <Exit.h>

#include <Lane.h>

#include <State.h>

#include <Vehicle.h>

extern "C" {

#include <unistd.h>

}

#include <cxxcls/try.h>

Implement PClassObj<Traverser>;

// ===

Traverser::Traverser(char* name):

Layer(name)

{

// The following to be used for bookkeeping purposes

// Get number of Junct1to2s in my zone

myJ1to2size = (MyZone->GetJunct1to2s()).size();

// create array of integers representing them

155

myJ1to2s = new JSTATE[myJ1to2size];

// initialize list

for (int i = 0; i < myJ1to2size; i++){

myJ1to2s[i] = ZERO;

}

}

/**

Traverser::Traverser()

{

// The following to be used for bookkeeping purposes

// Get number of Junct1to2s in my zone

myJ1to2size = (MyZone->GetJunct1to2s()).size();

// create array of integers representing them

myJ1to2s = new JSTATE[myJ1to2size];

// initialize list

for (int i = 0; i < myJ1to2size; i++){

myJ1to2s[i] = ZERO;

}

}

**/

// ===

Traverser::~Traverser()

{

}

// ===

int

Traverser::Go()

{

o_u4b j;

Start();

// Get the List of Sinks

VVList<Sink> mySinks = MyZone->GetSinks();

o_u4b numSinks = mySinks.size();

for (j=0; j < numSinks; j++){

Link<Sink> currSink = &mySinks[j];

// Deals with boundary condition and then calls ZapHighway

ZapSink(currSink);

}

End();

return 0;

}

// ===

int

Traverser::ZapHighway(Link<LaneContainer> inCurr,

Link<LaneContainer> inNext,

int alreadyExecuted){

Link<LaneContainer> currLC = inCurr;

Link<LaneContainer> nextLC = inNext;

o_u4b i;

LaneContainer *currLCPtr = inCurr;

LaneContainer *nextLCPtr = inNext;

Link<Highway> currHighway = (L_AS(Section, currLC))->GetHighway();

Highway *currHighwayPtr = currHighway;

// How many sections do I have to execute

o_u4b mySize = (currHighway->GetSections()).size() +

(currHighway->GetEntrySections()).size() +

(currHighway->GetExitSections()).size() - alreadyExecuted - 1;

156

// Now iterate thru the mySize sections in this segment

for (i=0; i < mySize; i++) {

Link<LaneContainer> prevLC = currLC->GetPrevLaneContainer1();

LaneContainer *prevLCPtr = prevLC;

ZapSection(prevLC, currLC, nextLC);

nextLC = currLC;

currLC = prevLC;

// prevLC set at beginning of loop

}

// We are about to hit the beginning of the segment

// Get the prevLC and delegate

Link<LaneContainer> prevLC = currLC->GetPrevLaneContainer1();

const char* myName = prevLC->class_name();

// Check and see if we hit a Highway boundary

if (!strcmp(myName, "Source")){ // I am a Source

// Deal with this elsewhere

ZapSource(L_AS(Source, prevLC), currLC, nextLC);

}

else if (!strcmp(myName, "Junct2to1")){

// We have to branch

ZapJunct2to1(L_AS(Junct2to1, prevLC), currLC, nextLC);

}

else if (!strcmp(myName, "Junct1to2")){

ZapJunct1to2(L_AS(Junct1to2, prevLC));

}

else {

exit(0);

}

}

// ==

int

Traverser::ZapSink(Link<Sink> currSink)

{

Sink *currSinkPtr = currSink;

Link<LaneContainer> prevLC = currSink->GetPrevLaneContainer1();

Link<LaneContainer> prevprevLC = prevLC->GetPrevLaneContainer1();

LaneContainer *prevLCPtr = prevLC;

LaneContainer *prevprevLCPtr = prevprevLC;

PAbsorber(currSink);

PrepareSection(prevLC);

EAbsorber(currSink);

PrepareSection(prevprevLC);

ExecuteSection(prevLC);

FAbsorber(currSink);

// We have executed one section

ZapHighway(prevprevLC, prevLC, 1);

return 0;

}

// ==

// ???????? Should prevLC had been cast as a Source

int

Traverser::ZapSource(Link<Source> mySource,

Link<LaneContainer> currLC, Link<LaneContainer> nextLC)

{

PGenerator(mySource);

ExecuteSection(currLC);

FinishSection(nextLC);

157

EGenerator(mySource);

FinishSection(currLC);

FGenerator(mySource);

return 0;

}

// ===

int

Traverser::ZapJunct1to2(Link<Junct1to2> myJunct)

{

// Get its index -> check error

o_u4b myIndex = GetIndex(MyZone->GetJunct1to2s(), myJunct);

// Get its State

JSTATE myJState = myJ1to2s[myIndex];

if (myJState == ZERO){ // First time around

myJ1to2s[myIndex] = ONE; // Can't do much else now

return 0;

}

else if (myJState == ONE) { // Other side is done

myJ1to2s[myIndex] = ZERO;

// We have just found a Junct1to2 where the other side was marked

// Finish Both incoming Highways and move to the next one

Link<LaneContainer> nextLC1 = myJunct->GetNextLaneContainer1();

Link<LaneContainer> nextnextLC1 = nextLC1->GetNextLaneContainer1();

Link<LaneContainer> nextLC2 = myJunct->GetNextLaneContainer2();

Link<LaneContainer> nextnextLC2 = nextLC2->GetNextLaneContainer1();

Link<LaneContainer> prevLC = myJunct->GetPrevLaneContainer1();

Link<LaneContainer> prevprevLC = prevLC->GetPrevLaneContainer1();

PLC(myJunct);

ExecuteSection(nextLC1);

FinishSection(nextnextLC1);

ExecuteSection(nextLC2);

FinishSection(nextnextLC2);

PrepareSection(prevLC);

ELC(myJunct);

FinishSection(nextLC1);

FinishSection(nextLC2);

PrepareSection(prevprevLC);

ExecuteSection(prevLC);

FLC(myJunct);

// We have not executed any sections of the segment

ZapHighway(prevprevLC, prevLC, 1);

}

return 0;

}

// ===

int

Traverser::ZapJunct2to1(Link<Junct2to1> myJunct,

Link<LaneContainer> inCurr, Link<LaneContainer> inNext){

Link<LaneContainer> prevLC1 = myJunct->GetPrevLaneContainer1();

Link<LaneContainer> prevprevLC1 = prevLC1->GetPrevLaneContainer1();

Link<LaneContainer> prevLC2 = myJunct->GetPrevLaneContainer2();

Link<LaneContainer> prevprevLC2 = prevLC2->GetPrevLaneContainer1();

PLC(myJunct);

ExecuteSection(inCurr);

FinishSection(inNext);

158

PrepareSection(prevLC1);

PrepareSection(prevLC2);

ELC(myJunct);

FinishSection(inCurr);

PrepareSection(prevprevLC1);

PrepareSection(prevprevLC2);

ExecuteSection(prevLC1);

ExecuteSection(prevLC2);

FLC(myJunct);

// Now recurse on both prev Highways

// Note that we have already executed one section

ZapHighway(prevprevLC1, prevLC1, 1);

ZapHighway(prevprevLC2, prevLC2, 1);

return 0;

}

// ===

int

Traverser::ZapSection(Link<LaneContainer> prevLC,

Link<LaneContainer> currLC, Link<LaneContainer> nextLC){

PrepareSection(prevLC);

ExecuteSection(currLC);

FinishSection(nextLC);

return 0;

}

// ===

int

Traverser::PrepareSection(Link<LaneContainer> myLC){

const char* myName = myLC->class_name();

if (!strcmp(myName, "Section")){

PLC(myLC);

}

else if (!strcmp(myName, "EntrySection")){

PLC(myLC);

PGenerator((L_AS(EntrySection, myLC))->GetEntry());

}

else if (!strcmp(myName, "ExitSection")){

PAbsorber((L_AS(ExitSection, myLC))->GetExit());

PLC(myLC);

}

else{ // Ooooooops!

exit(0);

}

return 0;

}

// ===

int

Traverser::ExecuteSection(Link<LaneContainer> myLC){

const char* myName = myLC->class_name();

if (!strcmp(myName, "Section")){

ELC(myLC);

}

else if (!strcmp(myName, "EntrySection")){

ELC(myLC);

EGenerator((L_AS(EntrySection, myLC))->GetEntry());

}

else if (!strcmp(myName, "ExitSection")){

159

EAbsorber((L_AS(ExitSection, myLC))->GetExit());

ELC(myLC);

}

else{

exit(0);

}

return 0;

}

// ===

int

Traverser::FinishSection(Link<LaneContainer> myLC){

const char* myName = myLC->class_name();

if (!strcmp(myName, "Section")){

FLC(myLC);

}

else if (!strcmp(myName, "EntrySection")){

FLC(myLC);

FGenerator((L_AS(EntrySection, myLC))->GetEntry());

}

else if (!strcmp(myName, "ExitSection")){

FAbsorber((L_AS(ExitSection, myLC))->GetExit());

FLC(myLC);

}

else{ // Ooooooops!

exit(0);

}

return 0;

}

// ===

int

Traverser::GetIndex(VVList<Junct1to2> myList, Link<Junct1to2> myObj){

o_u4b mySize = myList.size();

Link<Junct1to2> currJunct;

for (o_u4b i = 0; i < mySize; i++){

currJunct = &myList[i];

if (currJunct == myObj){

return i;

}

}

return -1;

}

160

9.4 Sample State Machine

9.4.1 The CoordSup state machine

machineName: CS;

children: CMI, CLCI, CMR, CLCR, CSR;

states: Idle, SetPL, MR, MI, AmILMR;

InputEvents: YES, NO;

inputMessages: MRMessage:MERGE_REQUEST, Message:MERGE_R_DONE,

Message:MERGE_R_FAILED, Message:MERGE_I_DONE,

Message:MERGE_I_FAILED, Message:SET_PL;

outputMessages: Message:BUSY, MRMessage:MERGE_REQUEST_F,

Message:START;

correspondants: aCar, otherCar, PL;

beginState: Idle;

inputs: CoordSupIn;

outputs: CoordSupOut;

timers: mergeTimer;

transitions:

Idle aCar=MERGE_REQUEST () AmILMR CMR NULL

Idle mergeTimer (Child:START) MI CMI NULL

Idle PL=SET_PL () SetPL NULL NULL

SetPL YES () Idle NULL NULL

AmILMR YES (Child:forward:MERGE_REQUEST_F) MR CMR NULL

AmILMR NO PL:forward Idle NULL NULL

MR otherCar=MERGE_REQUEST otherCar:BUSY MR NULL NULL

MR Child:MERGE_R_DONE () Idle NULL CMR

MR Child:MERGE_R_FAILED () Idle NULL CMR

MR mergeTimer mergeTimer:20 MR NULL NULL

MI otherCar=MERGE_REQUEST otherCar:BUSY MI NULL NULL

MI Child:MERGE_I_DONE () Idle NULL CMI

MI Child:MERGE_I_FAILED mergeTimer:10 Idle NULL CMI

9.4.2 The Generated Header File CS.h

#ifndef CS_H

#define CS_H

#include <iostream.h>

#include <FSM.h>

#include <FSMState.h>

#include <FSMInstance.h>

// State Classes

// ==

class CSIdleState: public FSMState {

public:

CSIdleState();

~CSIdleState();

virtual int Enter(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int Exit(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int ProcessMessage(Link<FSMInst_State> theState);

virtual int PostMessage(Link<FSMInst_State> theState);

161

virtual int ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState);

};

// ==

class CSSetPLState: public FSMState {

public:

CSSetPLState();

~CSSetPLState();

virtual int Enter(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int Exit(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int ProcessMessage(Link<FSMInst_State> theState);

virtual int PostMessage(Link<FSMInst_State> theState);

virtual int ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState);

};

// ==

class CSMRState: public FSMState {

public:

CSMRState();

~CSMRState();

virtual int Enter(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int Exit(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int ProcessMessage(Link<FSMInst_State> theState);

virtual int PostMessage(Link<FSMInst_State> theState);

virtual int ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState);

};

// ==

class CSMIState: public FSMState {

public:

CSMIState();

~CSMIState();

virtual int Enter(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int Exit(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int ProcessMessage(Link<FSMInst_State> theState);

virtual int PostMessage(Link<FSMInst_State> theState);

virtual int ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState);

};

// ==

class CSAmILMRState: public FSMState {

public:

CSAmILMRState();

~CSAmILMRState();

virtual int Enter(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int Exit(Link<FSMInst_State> theState,

Link<InputProjection> i, Link<OutputProjection> o);

virtual int ProcessMessage(Link<FSMInst_State> theState);

virtual int PostMessage(Link<FSMInst_State> theState);

virtual int ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState);

};

// State Machine Classes

// ==

class CSAlgorithm: public FSMAlgorithm {

public:

CSAlgorithm();

~CSAlgorithm();

private:

};

// ==

class CSInstance: public FSMInstance {

public:

CSInstance();

~CSInstance();

162

Link<CSInst_State> myState;

static Link<CSAlgorithm> myAlg;

virtual int Reconnect();

};

// ==

class CSInst_State: public FSMInst_State {

public:

CSInst_State();

~CSInst_State();

Link<Receiver> aCar;

Link<Receiver> otherCar;

Link<Receiver> PL;

o_u4b mergeTimer;

o_u4b lcTimer;

virtual int UpdateCorr();

};

#endif

9.4.3 The Generated Source File CS.C

#include <iostream.h>

#include <CS.h>

#include <Message.h>

#include <def.h>

#include <InVehTransmitter.h>

#include <Vehicle.h>

#include <MRMessage.h>

#include <Message.h>

#include <LinkMessage.h>

#include <MRMessage.h>

#include <CoordSupOut.h>

#include <CoordSupIn.h>

#include <Zone.h>

#include <ConfigFile.h>

extern ConfigFile *CFO;

Implement PClassObj<CSIdleState>;

Implement PClassObj<CSSetPLState>;

Implement PClassObj<CSMRState>;

Implement PClassObj<CSMIState>;

Implement PClassObj<CSAmILMRState>;

Implement PClassObj<CSAlgorithm>;

Implement PClassObj<CSInst_State>;

Implement PClassObj<CSInstance>;

CSIdleState::CSIdleState() {SetName("CSIdle");}

CSIdleState::~CSIdleState() {}

CSSetPLState::CSSetPLState() {SetName("CSSetPL");}

CSSetPLState::~CSSetPLState() {}

CSMRState::CSMRState() {SetName("CSMR");}

CSMRState::~CSMRState() {}

CSMIState::CSMIState() {SetName("CSMI");}

CSMIState::~CSMIState() {}

CSAmILMRState::CSAmILMRState() {SetName("CSAmILMR");}

CSAmILMRState::~CSAmILMRState() {}

// ==

CSAlgorithm::CSAlgorithm() {

CSIdleState* myIdleStateObject= new Persistent CSIdleState;

CSSetPLState* mySetPLStateObject= new Persistent CSSetPLState;

CSMRState* myMRStateObject= new Persistent CSMRState;

CSMIState* myMIStateObject= new Persistent CSMIState;

CSAmILMRState* myAmILMRStateObject= new Persistent CSAmILMRState;

163

StateList.insert_last(*myIdleStateObject);

StateList.insert_last(*mySetPLStateObject);

StateList.insert_last(*myMRStateObject);

StateList.insert_last(*myMIStateObject);

StateList.insert_last(*myAmILMRStateObject);

startState = myIdleStateObject;

MessageList.insert_last(MERGE_REQUEST);

MessageList.insert_last(MERGE_R_DONE);

MessageList.insert_last(MERGE_R_FAILED);

MessageList.insert_last(MERGE_I_DONE);

MessageList.insert_last(MERGE_I_FAILED);

MessageList.insert_last(SET_PL);

EventList.insert_last(YES);

EventList.insert_last(NO);

EventList.insert_last(MI);

EventList.insert_last(MERGETIMEROUT);

myIdleStateObject->InsertMTransition

(MERGE_REQUEST, NOPOST , myAmILMRStateObject, "CMR", NULL);

myIdleStateObject->InsertETransition

(MERGETIMEROUT, POST , myMIStateObject, "CMI", NULL);

myIdleStateObject->InsertMTransition

(SET_PL, NOPOST , mySetPLStateObject, NULL, NULL);

mySetPLStateObject->InsertETransition

(YES, NOPOST , myIdleStateObject, NULL, NULL);

myAmILMRStateObject->InsertETransition

(YES, POST , myMRStateObject, "CMR", NULL);

myAmILMRStateObject->InsertETransition

(NO, POST , myIdleStateObject, NULL, NULL);

myMRStateObject->InsertMTransition

(MERGE_REQUEST, POST , myMRStateObject, NULL, NULL);

myMRStateObject->InsertMTransition

(MERGE_R_DONE, NOPOST , myIdleStateObject, NULL, "CMR");

myMRStateObject->InsertMTransition

(MERGE_R_FAILED, NOPOST , myIdleStateObject, NULL, "CMR");

myMRStateObject->InsertETransition

(MERGETIMEROUT, POST , myMRStateObject, NULL, NULL);

myMIStateObject->InsertMTransition

(MERGE_REQUEST, POST , myMIStateObject, NULL, NULL);

myMIStateObject->InsertMTransition

(MERGE_I_DONE, NOPOST , myIdleStateObject, NULL, "CMI");

myMIStateObject->InsertMTransition

(MERGE_I_FAILED, POST , myIdleStateObject, NULL, "CMI");

}

CSAlgorithm::~CSAlgorithm() {}

Link<CSAlgorithm> CSInstance::myAlg= NULL_LINK;

// ==

CSInstance::CSInstance() {

SetName("CS");

if (myAlg == NULL_LINK) {

LinkVstr<CSAlgorithm> aAlg =

PClassObj<CSAlgorithm>.select(CFO->getMyDbName(), FALSE,

NULL_PREDICATE);

if (aAlg.size() > 0) {

if (aAlg[0] != NULL_LINK)

myAlg = aAlg[0];

}

else {

myAlg = new Persistent CSAlgorithm;

LinkVstrAny listOfObjects;

listOfObjects.add(myAlg);

myAlg->GetContainees(listOfObjects);

dom->gwriteobjs(listOfObjects);

164

for (o_4b i = 0; i < listOfObjects.size(); i++)

dom->downgradelock(listOfObjects[i], NOLOCK);

}

}

theAlg = (CSAlgorithm*)myAlg;

myState = new Persistent CSInst_State;

theState = (CSInst_State*)myState;

currState= (CSInst_State*)myState;

myState->theInst = this;

theState->curState = myAlg->startState;

outputs = new Persistent CoordSupOut;

outputs->SetFSM(this);

inputs = new Persistent CoordSupIn;

inputs->SetFSM(this);

myBigBen = Zone::GetBigBen("COORDBIGBEN");

dirty() ;

}

CSInstance::~CSInstance() {}

// Process Message Methods

// ==

// ==

int

CSMIState::ProcessMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg = myState->lastMessage;

o_bool retval=FALSE;

switch (msgID) {

case MERGE_I_FAILED:

{

if (myMsg->rspTo == myState->curChild->GetProxy())

retval=TRUE;

break;

}

case MERGE_I_DONE:

{

if (myMsg->rspTo == myState->curChild->GetProxy())

retval=TRUE;

break;

}

case MERGE_REQUEST:

{

myState->otherCar = myMsg->rspTo;

retval=TRUE;

break;

}

} // End of the Case

return retval;

}

// ==

int

CSMRState::ProcessMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg = myState->lastMessage;

o_bool retval=FALSE;

switch (msgID) {

case MERGE_R_FAILED:

{

if (myMsg->rspTo == myState->curChild->GetProxy())

retval=TRUE;

break;

}

case MERGE_R_DONE:

{

if (myMsg->rspTo == myState->curChild->GetProxy())

retval=TRUE;

break;

165

}

case MERGE_REQUEST:

{

myState->otherCar = myMsg->rspTo;

retval=TRUE;

break;

}

} // End of the Case

return retval;

}

// ==

int

CSAmILMRState::ProcessMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg = myState->lastMessage;

o_bool retval=FALSE;

return retval;

}

// ==

int

CSSetPLState::ProcessMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg = myState->lastMessage;

o_bool retval=FALSE;

return retval;

}

// ==

int

CSIdleState::ProcessMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg = myState->lastMessage;

o_bool retval=FALSE;

switch (msgID) {

case SET_PL:

{

myState->PL = myMsg->rspTo;

retval=TRUE;

break;

}

case SPLITF_REQUEST:

{

if (myMsg->rspTo == myState->PL)

retval=TRUE;

break;

}

case MERGE_REQUEST:

{

myState->aCar = myMsg->rspTo;

retval=TRUE;

break;

}

} // End of the Case

return retval;

}

// Post Message Methods

// ==

// ==

int

CSMIState::PostMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg;

o_bool retval=FALSE;

switch (msgID) {

166

case MERGE_I_FAILED:

{

myState->mergeTimer = myState->theInst->RegisterTimer(10, MERGETIMEROUT);

break;

}

case MERGE_REQUEST:

{

myMsg = new Persistent Message(MSG_TYPE, 0, BUSY);

myMsg->SetMsgTo(myState->otherCar);

myMsg->SetRspTo(myState->theInst->GetProxy());

myMsg->SetName("BUSY");

myState->theInst->GetOutVT()->SendPacket(myMsg);

retval=TRUE;

break;

}

}

return retval;

}

// ==

int

CSMRState::PostMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg;

o_bool retval=FALSE;

switch (msgID) {

case MERGETIMEROUT:

{

myState->mergeTimer = myState->theInst->RegisterTimer(20, MERGETIMEROUT);

break;

}

case MERGE_REQUEST:

{

myMsg = new Persistent Message(MSG_TYPE, 0, BUSY);

myMsg->SetMsgTo(myState->otherCar);

myMsg->SetRspTo(myState->theInst->GetProxy());

myMsg->SetName("BUSY");

myState->theInst->GetOutVT()->SendPacket(myMsg);

retval=TRUE;

break;

}

}

return retval;

}

// ==

int

CSAmILMRState::PostMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg;

o_bool retval=FALSE;

switch (msgID) {

case NO:

{

myMsg = myState->lastMessage;

myMsg->SetMsgTo(myState->PL);

myState->theInst->GetOutVT()->SendPacket(myMsg);

myState->lastMessage = NULL_LINK;

retval=TRUE;

break;

}

case YES:

{

myMsg = myState->lastMessage;

myMsg->SetMsgTo(myState->curChild->GetProxy());

myMsg->SetPacketType(Packet::MakePacketType(MSG_TYPE, 0,MERGE_REQUEST_F));

myState->theInst->GetInVT()->

SendPacket(myMsg, myState->theInst->GetLayerName(), CHILD);

167

myState->lastMessage = NULL_LINK;

retval=TRUE;

break;

}

}

return retval;

}

// ==

int

CSSetPLState::PostMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg;

o_bool retval=FALSE;

return retval;

}

// ==

int

CSIdleState::PostMessage(Link<FSMInst_State> theState) {

Link<CSInst_State> myState= L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

Link<Message> myMsg;

o_bool retval=FALSE;

switch (msgID) {

case MERGETIMEROUT:

{

myMsg = new Persistent Message(MSG_TYPE, 0, START);

myMsg->SetMsgTo(myState->curChild->GetProxy());

myMsg->SetRspTo(myState->theInst->GetProxy());

myMsg->SetName("START");

myState->theInst->GetInVT()->

SendPacket(myMsg, myState->curChild->GetLayerName(), CHILD);

retval=TRUE;

break;

}

}

return retval;

}

// Process Timeout Methods

// ==

// ==

// ==

int

CSMIState::ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState) {

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

o_bool retval=FALSE;

handle = 0;

return retval;

}

// ==

int

CSMRState::ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState) {

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

o_bool retval=FALSE;

switch (msgID) {

case MERGETIMEROUT:

{

if (myState->mergeTimer== handle) {retval=TRUE; }

break;

} // End of the case

}

return retval;

}

// ==

int

CSAmILMRState::ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState) {

168

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

o_bool retval=FALSE;

handle = 0;

return retval;

}

// ==

int

CSSetPLState::ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState) {

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

o_bool retval=FALSE;

handle = 0;

return retval;

}

// ==

int

CSIdleState::ProcessTimeout(o_u4b handle, Link<FSMInst_State> theState) {

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

o_u4b msgID = myState->directEvent;

o_bool retval=FALSE;

switch (msgID) {

case MERGETIMEROUT:

{

if (myState->mergeTimer== handle) {retval=TRUE; }

break;

} // End of the case

}

return retval;

}

9.4.4 The Generated File CSEntEx.C

This �le contains the user provided modi�cations.

#include <iostream.h>

#include <CS.h>

#include <Message.h>

#include <def.h>

#include <InVehTransmitter.h>

#include <Vehicle.h>

#include <MRMessage.h>

#include <LinkMessage.h>

#include <Message.h>

#include <MRMessage.h>

#include <CoordSupIn.h>

#include <CoordSupOut.h>

int

CSIdleState::Enter(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link <CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

return FALSE;

}

int

CSIdleState::Exit(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

169

return FALSE;

}

int

CSSetPLState::Enter(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link <CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

// ==

myOut->myLeadersProxy = myState->PL;

myOut->Update();

myState->directEvent = YES;

return TRUE;

// ==

}

int

CSSetPLState::Exit(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

return FALSE;

}

int

CSMRState::Enter(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link <CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

return FALSE;

}

int

CSMRState::Exit(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

return FALSE;

}

int

CSMIState::Enter(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link <CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

return FALSE;

}

int

CSMIState::Exit(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

170

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

// ==

myState->UpdateCorr();

// ==

return FALSE;

}

int

CSAmILMRState::Enter(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link <CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

// ==

myIn->Update();

if (myIn->amILeader == TRUE){

myState->directEvent = YES;

}

else {

myState->directEvent = NO;

}

return TRUE;

// ==

}

int

CSAmILMRState::Exit(Link<FSMInst_State> theState,

Link <InputProjection> i,

Link <OutputProjection> o)

{

Link<CSInst_State> myState = L_AS(CSInst_State, theState);

Link <CoordSupIn> myIn = L_AS(CoordSupIn, i);

Link <CoordSupOut> myOut = L_AS(CoordSupOut, o);

return FALSE;

}

CSInst_State::UpdateCorr() {

Link<InputProjection> In = theInst->inputs;

Link<CoordSupIn> myIn = L_AS(CoordSupIn, In);

// ==

myIn->Update();

PL = myIn->myLeadersProxy;

return TRUE;

// ==

}

CSInst_State::~CSInst_State() {}

CSInst_State::CSInst_State() {

aCar = NULL_LINK;

otherCar = NULL_LINK;

PL = NULL_LINK;

mergeTimer = 0;

lcTimer = 0;

}

171

9.5 Highway Creation Grammar

Note that the following �le does not use the C++ information �eld of a class speci�cation.
This �led is set to \Wire".

{

Zone

}

{

{Zone Z bitmaps/highway/zone22.bm

{{ZoneIn Wire L .25 1 1} {ZoneIn Wire L .75 1 1}}

{{ZoneOut Wire R .25 1 1 {ZoneIn}} {ZoneOut Wire R .75 1 1 {ZoneIn}}}

{{}}

{{Junct2To1 I} {Junct1To2 I} {Segment I} {Sink I} {Source I}}

}

{Junct2To1 T bitmaps/highway/injunct.bm

{{JunctIn Wire L .25 1 1} {JunctIn Wire L .75 1 1}}

{{JunctOut Wire R .50 1 1 {SegmentIn SectionIn}}}

{{length 200}}

{{Lane I}}

}

{Junct1To2 O bitmaps/highway/outjunct.bm

{{JunctIn Wire L .50 1 1}}

{{JunctOut Wire R .25 1 1 {SegmentIn SectionIn}}

{JunctOut Wire R .75 1 1 {SegmentIn SectionIn}}}

{{length 200}}

{{Lane I}}

}

{Lane L bitmaps/highway/lane.bm

{{LaneIn Wire L .50 1 1}}

{{LaneOut Wire R .50 1 1 {LaneIn}}}

{{width 4}}

{}

}

{Segment H bitmaps/highway/segment.bm

{{SegmentIn Wire L .50 1 1}}

{{SegmentOut Wire R .50 1 1 {SegmentIn JunctIn SinkIn}}}

{{}}

{{Section I} {EntrySection I} {ExitSection} {Entry I} {Exit I}}

}

{Section S bitmaps/highway/section.bm

{{SectionIn Wire L .5 1 1}}

{{SectionOut Wire R .5 1 1 {SectionIn JunctIn SinkIn}}}

{{length 200}}

{{Lane I}}

}

{EntrySection ES bitmaps/highway/ensection.bm

{{EntryIn Wire B 0.15 1 1} {SectionIn Wire L .5 1 1}}

{{SectionOut Wire R .5 1 1 {SectionIn JunctIn SinkIn}}}

{{length 200}}

{{Lane I}}

}

{ExitSection XS bitmaps/highway/exsection.bm

{{SectionIn Wire L .5 1 1}}

{{SectionOut Wire R .5 1 1 {SectionIn JunctIn SinkIn}}

{ExitOut Wire B .85 1 1 {ExitIn}}}

{{length 200}}

{{Lane I}}

}

{Entry GE bitmaps/highway/source.bm

{}

{{EntryOut Wire R .5 1 1 {EntryIn}}}

{{length 200}}

{{Lane I}}

}

{Exit AE bitmaps/highway/sink.bm

{{ExitIn Wire L .5 1 1}}

{}

{{length 200}}

172

{{Lane I}}

}

{Source GS bitmaps/highway/source.bm

{}

{{SourceOut Wire R .5 1 1 {SegmentIn SectionIn}}}

{{length 200}}

{{Lane I}}

}

{Sink AS bitmaps/highway/sink.bm

{{SinkIn Wire L .5 1 1}}

{}

{{length 200}}

{{Lane I}}

}

}

Relation list

{

{ZoneOut-ZoneIn

{{JunctOut-SegmentIn 3} {SegmentOut-SegmentIn 3}}

}

{SegmentOut-SegmentIn

{{SectionOut-SectionIn 3}}

}

{JunctOut-SegmentIn

{{JunctOut-SectionIn 1}}

}

{SegmentOut-JunctIn

{{SectionOut-JunctIn 2}}

}

{SegmentOut-SinkIn

{{SectionOut-SinkIn 2}}

}

{SourceOut-SegmentIn

{{SourceOut-SectionIn 1}}

}

{SourceOut-SectionIn

{{LaneOut-LaneIn 3}}

}

{JunctOut-SectionIn

{{LaneOut-LaneIn 3}}

}

{SectionOut-JunctIn

{{LaneOut-LaneIn 3}}

}

{SectionOut-SinkIn

{{LaneOut-LaneIn 3}}

}

{EntryOut-EntryIn

{{LaneOut-LaneIn 3}}

}

{ExitOut-ExitIn

{{LaneOut-LaneIn 3}}

}

{SectionOut-SectionIn

{{LaneOut-LaneIn 3}}

}

{LaneOut-LaneIn

{}

}

}

Bus List

{

{MyBus {LaneOut-LaneIn LaneOut-LaneIn}}

}

173

Index

Absorber, 85
AbsorbVehicles(), 85

BigBen, 92
ClearWakeUp(), 92
GetTime(), 92
WakeMeUp(), 92

C++ Example, 150
Camera, 129

Attributes, Dynamic, 129
Attributes, Static, 129
Camera(), 129
Connect(), 130

Control, 85
CoordControl, 122

Connect(), 124
CoordControl(), 123

Coordination, 130
CoordSupIn, 125

Attributes, 125

Event, 92
EventDriver, 95

Factory, 85, 89
MakeVehicle(), 89

FrameworkObject, 79
Duplicate(), 80
GetContainees(), 80
GetName(), 79
Pack(), 80
ProcessEvent(), 80
ProcessMsg(), 80
SetAttribute(), 79
SetErrorLevel(), 80
SetName(), 79
SetRelation(), 80
WakeUp(), 80

Generator, 85
GenerateVehicles(), 85

GUI, 130

Highway Entities, 82
Relations, 84

History, 81
Attributes, Static, 81

Hybrid, 95

Inputs, 81, 107
Update(), 107

InTra�c, 85, 90
AnyVehicle(), 90

Lane, 83
Attributes, Dynamic, 83
MoveVehiclesInLane(), 83

LaneContainer, 85
MoveVehicles(), 85

Layer, 94

Main Executable, 134
MDMessage, 123

Attributes, Static, 123
MergeInitSMInstance, 125

AccelSMState Enter(), 128
AccelSMState Exit(), 128
CheckSMState Enter(), 127
SetSMState Enter(), 128
State Update(), 127

Message, 92
MIOut, 125

Attributes, 125
Monitor, 86

Run(), 87
SetErrorLevel(), 86
SetLogLevel(), 86
WakeUp(), 87

MRMessage, 123
Attributes, Static, 123

MyVehicle, 120
MyVehicle(), 121

Outputs, 81, 107
Update(), 107

OutTra�c, 85, 89
TakeVehicle(), 90

Packet, 91
Attributes, Static, 91
GetId(), 92
GetSubtype(), 92
GetType(), 92
MakePacketType(), 92

PacketBox, 92

174

Physical, 130
Methods, 131

PLMessage, 92
PLMessage(), 92

ProcessCoordinator, 94
DeRegister(), 94
Go(), 94
Ping(), 94
Register(), 94
WakeUp(), 94

Receiver, 85, 96
ReceiverProxy, 96
ClearListen(), 97
ClearWait(), 97
Listen(), 97
Wait(), 97

RegControl, 122
Run(), 125

Regulation, 130
Methods, 132

Scheduler Creation, 133
Sensor, 86

Attributes, Static, 86
GetVehicle(), 86

SMAlgorithm, 106
Attributes, Static, 106
StartListen(), 106

SmartObject, 87
SMInstance, 106

AcceptTransition(), 107
Attributes, Static, 106, 107
Initialize(), 107
ProcessEvent(), 107
ProcessMsg(), 107
Terminate(), 107
WakeUp(), 107

SMInstanceState, 106
GetInVT(), 106
GetOutVT(), 106
GetProxy(), 106
UpdateCorr(), 106

SMState, 105
AcceptEvent(), 105
AcceptMessage(), 105
Attributes, Static, 105
Enter(), 105
Exit(), 105
PostMessage(), 105
ProcessMessage(), 105
ProcessTimeout(), 105
StartWait(), 105

SObject, 93
State, 81

Attributes Static, 81

State Machine
Special Correspondents, 101

StatedObject, 80
Attributes, Static, 80
InLogIntervals(), 81
Run(), 81
SaveState(), 81
SetLogLevel(), 81
SetToTime(), 81

TransitionNode, 105
Attributes, Static, 105

Transmitter, 85, 96
InVehTransmitter, 96
OutVehTransmitter, 96
SendPacket(), 96

Traverser, 94
Virtual Methods, 95

Vehicle, 87
Attributes, Dynamic, 88, 89
Attributes, Static, 88

