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Abstract:  In cases of severe wildlife population decline, a key question is whether recovery 33 

efforts will be impeded by genetic factors such as inbreeding depression. Decades of excess 34 

mortality from gillnet fishing have driven Mexico's vaquita porpoise (Phocoena sinus) to ~10 35 

remaining individuals. We analyzed whole genome sequences from 20 vaquitas and integrated 36 

genomic and demographic information into stochastic, individual-based simulations to quantify 37 

the species' recovery potential. Our analysis suggests the vaquita's historical rarity has resulted 38 

in a low burden of segregating deleterious variation, reducing the risk of inbreeding depression. 39 

Similarly, genome-informed simulations suggest the vaquita can recover if bycatch mortality is 40 

immediately halted. This study provides hope for vaquitas and other naturally rare endangered 41 

species and highlights the utility of genomics in predicting extinction risk. 42 

 43 

One-sentence summary: Whole genome sequencing and genomics-based population viability 44 

analyses suggest the vaquita is not doomed to extinction. 45 

  46 
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Main Text: 47 

A central question for populations that have undergone severe declines is whether recovery is 48 

possible, or if it may be hindered by deleterious genetic factors (1). Perhaps the most 49 

immediate genetic threat in populations of very small size (<25 individuals) is the deterioration 50 

of fitness due to inbreeding depression (2, 3). Thus, predicting the threat of inbreeding 51 

depression under various genetic and demographic conditions is essential for the conservation 52 

of endangered species.  53 

 54 

The critically endangered vaquita porpoise (Phocoena sinus), found only in the northernmost 55 

Gulf of California, Mexico, has declined from ~600 individuals in 1997 to around 10 individuals 56 

at present (4). This precipitous decline has been driven by incidental mortality in fishing gillnets 57 

(bycatch) ((4, 5); Fig. 1A). Efforts to reduce the intensity of illegal gillnet fishing and implement 58 

stronger protections for vaquitas have not been successful, and vaquitas are now considered 59 

the most endangered marine mammal (4). A recent viability analysis found that the vaquita 60 

population could theoretically rebound if bycatch mortality is eliminated (6). However, the 61 

degree to which genetic factors may prevent a robust recovery is unknown, leading some to 62 

argue that the species is doomed to extinction from genetic threats (see discussion in (1, 7, 8)). 63 

 64 

Population viability analysis (PVA) has long been an important tool for modelling extinction risk 65 

(9). However, it is often challenging to parameterize PVA models for highly endangered species 66 

where information on the potential impact of inbreeding depression is limited. Genomic data 67 

offer a potential solution, as they can be used to estimate the fundamental genetic and 68 

demographic parameters underlying inbreeding depression. Although the potential applications 69 

of genomics in conservation have been widely discussed (10, 11), genomics remain under-70 

utilized in forecasts of population viability and extinction risk. 71 

 72 

To investigate the impact of the vaquita’s recent decline and to quantify the species’ recovery 73 

potential, we sequenced genomic DNA of 19 archival tissue samples to high depth (total n = 20 74 

including genome from (12), mean coverage = 60X; table S1). Samples were obtained across 75 
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three time periods: 1985-1993, 2004, and 2016-2017, spanning ~3 vaquita generations 76 

(assuming a generation time of 11.9 years; (13)) and an estimated ~99% decline in population 77 

size (Fig. 1A, (5)). All 20 vaquita genomes contain uniformly low heterozygosity (mean = 78 

9.04x10-5, standard deviation (S.D.) = 2.44x10-6 heterozygotes/site; Fig. 1B and fig. S1), 79 

consistent with a previous estimate from a single individual (12). Additionally, genome-wide 80 

diversity appears stable over the sampling period (Fig. 1B, C), as expected given the short 81 

duration of the decline. 82 

 83 

We also investigated whether vaquita genomes show signs of recent inbreeding. We found that 84 

the mean cumulative fraction of vaquita genomes in long (≥1 Mb) runs of homozygosity (ROH) 85 

is 5.42% (S.D. = 1.7%), implying a low average inbreeding coefficient of FROH = 0.05 (Fig. 1D and 86 

fig. S2). Furthermore, ROH in our sample are relatively short (mean length 1.59-3.18 Mb), 87 

suggesting that they trace to a common ancestor from roughly 15-31 generations ago (178-369 88 

years; (5)). This result indicates that these ROH are a consequence of the vaquita’s historically 89 

limited population size rather than recent inbreeding. Finally, we found limited evidence for 90 

close relatives in our dataset, aside from two known mother-fetus pairs (fig. S3). 91 

 92 

To better characterize the vaquita’s long-term demographic history, we used the distribution of 93 

allele frequencies to perform model-based demographic inference. Overall, we found good fit 94 

for a two-epoch model in which the vaquita effective population size (Ne) declined from 4,485 95 

to 2,807 individuals ~2,162 generations ago (~25.7 KYA; (5); Fig. 1E, figs. S4 and S5, tables S2 to 96 

S4). Thus, vaquitas have persisted at relatively small population sizes for at least tens of 97 

thousands of years, resulting in uniformly low genome-wide diversity that is among the lowest 98 

documented in any species to date (12). Here, we use ‘long-term small population size’ to mean 99 

Ne on the order of a few thousand individuals over thousands of generations, as opposed to 100 

‘small population size’ meaning Ne ≤100, as in some other contexts (e.g., (14, 15))). 101 

 102 

A predicted consequence of long-term small population size is the reduced efficacy of purifying 103 

selection against weakly deleterious alleles with selection coefficients <<1/(2*Ne) (14, 15). Such 104 
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alleles can drift to high frequencies and become fixed, potentially contributing to reduced 105 

fitness. To investigate this, we compared the burden of putatively deleterious protein-coding 106 

variants in vaquitas with 11 other cetacean species (table S5, fig. S6). Specifically, we focused 107 

on nonsynonymous mutations at sites under strong evolutionary constraint (16), and loss-of-108 

function (LOF) mutations that are predicted to disrupt gene function. We used the ratio of 109 

deleterious to synonymous variants as a proxy for the efficacy of purifying selection (5) and 110 

used genome-wide heterozygosity as a proxy for Ne (Fig. 2A, B and fig. S7). The ratio of 111 

deleterious variants is significantly negatively correlated with Ne (phylogenetic generalized least 112 

squares (PGLS) regression, pdel. = 1.32x10-2, pLOF = 7.88x10-3), consistent with expectation. 113 

Among all species in our study, vaquitas have the highest proportional burden of deleterious 114 

alleles. Compared to the species with the next lowest diversity (orca, Orcinus orca), ratios for 115 

deleterious and LOF mutations in vaquitas are 1.14x and 1.23x higher, respectively. 116 

Furthermore, we demonstrate using simulations that this elevated ratio is minimally impacted 117 

by the vaquita’s recent population decline, and is instead attributable to its historical 118 

population size (fig. S9; (5)). Similar trends exist for homozygous deleterious mutations, which 119 

includes variants that may be fixed in the species (fig. S8). Thus, elevated ratios of deleterious 120 

to neutral variation among polymorphisms (heterozygotes) and substitutions (homozygotes) in 121 

vaquitas are consistent with an accumulation of weakly deleterious alleles under long-term 122 

small population size. The remaining vaquita individuals appear healthy and are actively 123 

reproducing (17, 18), suggesting the species’ fitness has not been severely compromised by its 124 

longstanding elevated burden of weakly deleterious alleles. 125 

 126 

A larger concern for vaquita recovery is future fitness declines due to inbreeding depression, 127 

given the inevitability of inbreeding in any recovery scenario. However, the risk of inbreeding 128 

depression (or “inbreeding load”) is predicted to be reduced in species with long-term small 129 

population size because 1) increased homozygosity exposes recessive strongly deleterious 130 

alleles to selection more frequently, and 2) drift decreases the absolute number of segregating 131 

recessive deleterious variants (19, 20). To assess the potential for future inbreeding depression 132 

in vaquitas relative to other cetaceans, we quantified the total number of heterozygous 133 
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deleterious alleles per genome, which reflect alleles that could contribute to inbreeding 134 

depression when made homozygous through inbreeding. We found that the total number of 135 

heterozygous putatively deleterious alleles per genome is positively correlated with genome-136 

wide diversity (PGLS pdel. = 5.57x10-6, pLOF = 1.91x10-5) (Fig. 2C, D). Among all cetaceans in our 137 

study, vaquitas harbor the fewest deleterious heterozygotes per genome. Compared to the 138 

orca, vaquitas have 0.33x and 0.36x the number of deleterious and LOF heterozygotes, 139 

respectively. Similar trends are evident in all mutation classes, including conserved noncoding 140 

regions (fig. S10). Thus, although vaquitas have an elevated proportion of deleterious relative to 141 

neutral variants (Fig. 2A, B, fig. S8), they nevertheless have a low absolute number of 142 

segregating deleterious variants (Fig. 2C, D), implying a low inbreeding load. 143 

 144 

To model potential recovery scenarios for the vaquita, we combined our genomic results with 145 

information about vaquita life history to parameterize stochastic, individual-based simulations 146 

using SLiM3 ((5, 21); Fig. 3A, fig. S11). These simulations were designed to model vaquita 147 

protein-coding regions, incorporating both neutral mutations and recessive deleterious 148 

mutations, the latter of which are thought to underlie inbreeding depression (3, 22). We used 149 

our genomic dataset to estimate a vaquita mutation rate (fig. S12) as well as a distribution of 150 

selection coefficients for new mutations (fig. S13), and assumed an inverse relationship 151 

between dominance and selection coefficients (5). Importantly, our model allows for 152 

deleterious mutations to drift to fixation and impact fitness (figs. S14 to S16; (5)). We used our 153 

demographic model (Fig. 1E) to simulate the historical vaquita population (figs. S17 and S18), 154 

then initiated a bottleneck by introducing stochastic bycatch mortality at a rate calibrated to 155 

the empirical rate of recent decline as of 2018 (Fig. 1A and fig. S19; (5)). Finally, we allowed for 156 

recovery by reducing the bycatch mortality rate after the population reached a ‘threshold 157 

population size’ of 10 or fewer individuals, based on the current estimated population size.  158 

 159 

We first used this model to examine the impact of varying levels of bycatch mortality on 160 

extinction risk over the next 50 years. We estimate a high probability of recovery if bycatch 161 

mortality ceases entirely, with only 6% of simulation replicates going extinct (Figs. 3B, 4A). In 162 
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addition, simulated populations that persist exhibit substantial growth, with a mean population 163 

size in 2070 of 298.7 individuals (S.D. = 218.2; Fig. 4A). However, if bycatch mortality rates are 164 

decreased by just 90%, extinction rates increase to 27% (Figs. 3B and 4B), with more limited 165 

recovery in population sizes (mean of 49.2 individuals in 2070, S.D. = 34.4; Fig. 4B). Finally, if 166 

bycatch mortality rates are decreased by just 80%, extinction occurs in 62% of simulation 167 

replicates. Thus, recovery potential critically depends on reducing bycatch mortality rates, with 168 

even moderate levels of bycatch resulting in a high likelihood of extinction.  169 

 170 

Next, we examined the importance of the threshold population size, given uncertainty in the 171 

2018 estimate of 10 individuals (4). As expected, extinction rates decrease when assuming a 172 

threshold population size of 20 and increase when assuming a threshold population size of 5 173 

(Fig. 3B). These results emphasize that the number of remaining vaquita individuals is also a 174 

critical factor underlying extinction risk. 175 

 176 

To quantify the inbreeding load in our model, we estimated the ‘number of diploid lethal 177 

equivalents’ (or 2B), which characterizes the rate at which fitness is lost with increasing levels of 178 

inbreeding (2, 23). Typically, inbreeding load is quantified by comparing estimates of individual 179 

fitness and inbreeding in natural populations (2, 24); however, such data do not exist for most 180 

species, including the vaquita. Under our simulation parameters, we estimate an inbreeding 181 

load of 2B = 0.95 in vaquitas (table S6), significantly lower than the median empirical estimate 182 

for mammals of 6.2 (24), likely due to the vaquita’s relatively small historical Ne. Nevertheless, 183 

simulations that exclude deleterious mutations result in a significantly lower extinction rate 184 

(Fig. 3B), confirming that inbreeding depression impacts recovery potential in our model.  185 

 186 

To further explore how the inbreeding load in our model depends on historical demography, we 187 

ran simulations with the historical Ne increased x20. We found an increased extinction rate of 188 

52%, compared to 27% with our empirical population size parameters, with minimal recovery 189 

for replicates that persisted (mean of 16.2 individuals in 2070, S.D. = 14.5, Fig. 4C). Additionally, 190 

with this larger historical Ne, we observe a greatly increased inbreeding load of 2B = 3.32 (fig. 191 
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S20 and table S6). These findings further demonstrate the importance of the vaquita’s natural 192 

rarity as a factor underlying their low inbreeding load and increased potential for recovery.  193 

 194 

Given the uncertainty in many of our model parameters, we conducted sensitivity analyses 195 

varying the calving interval, mutation rate, distribution of dominance and selection coefficients, 196 

and target size for deleterious mutations (5). Although these factors influence extinction 197 

probabilities, recovery remains the likely outcome (>50% probability) in nearly all cases when 198 

assuming a threshold population size of 10 and a 90% reduction of bycatch mortality (fig. S21 199 

and table S6). Two notable exceptions to this are for models with a higher mutation rate, where 200 

we observed a 55% extinction rate compared to 27% in our ‘base’ model, and for models with 201 

decreased calving interval, where we also observed a 55% extinction rate (fig. S21 and table S6). 202 

Thus, although uncertainty exists in our projections, the overall conclusion that recovery is 203 

possible if bycatch is greatly reduced remains robust to our model assumptions. Finally, we 204 

note that our simulations do not consider factors such as reduced adaptive potential or 205 

increased susceptibility to disease caused by low genetic variability, which may impact future 206 

persistence. Vaquitas have survived with low diversity for tens of thousands of years and have 207 

endured environmental changes in the past (12), suggesting that these factors alone do not 208 

doom the species to extinction. Conceivably, low diversity in the vaquita may limit the species’ 209 

capacity to adapt to increasing global change over the long term, but this risk is challenging to 210 

quantify and should not preclude recovery efforts in the short term.  211 

 212 

In conclusion, our results suggest there is a high potential for vaquita recovery in the absence of 213 

gillnet mortality, refuting the view that the species is doomed to extinction by genetic factors. 214 

Our approach leverages genomic data and methodology to forecast population viability and 215 

extinction risk, enabling a more nuanced assessment of the threat of genetic factors to 216 

persistence. The key aspect of the vaquita that our analysis reveals is that its historical 217 

population size was large enough to prevent the fixation of all but weakly deleterious alleles, 218 

and small enough to reduce the inbreeding load from recessive strongly deleterious mutations. 219 

Numerous other examples of species rebounding from bottlenecks of similar magnitude to that 220 
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of the vaquita have been documented (reviewed in (1)). For example, many parallels exist 221 

between the vaquita and Channel Island foxes, which similarly have exceptionally low genetic 222 

diversity, yet were able to rebound from severe recent bottlenecks without apparent signs of 223 

inbreeding depression (25). Together, these examples challenge the assumption that 224 

populations that have experienced catastrophic declines are genetically doomed and provide 225 

hope for the recovery of endangered species that are naturally rare. Finally, our analysis 226 

demonstrates the potential for genomics-informed population viability modelling, which may 227 

have widespread applications given the increasing feasibility of genomic sequencing for non-228 

model species amid a worsening extinction crisis (26). 229 

  230 
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Figure Legends 392 

Fig. 1. Vaquita genome-wide diversity and demographic history. (A) Model of vaquita census 393 
population size based on previous surveys (5) shows a dramatic recent decline. (B) Bar plots of 394 
per-site heterozygosity in 1-Mb genomic windows in three individuals (one from each sampling 395 
period; see fig. S1 for all) show little variability within or between individuals. (C, D) Genome-396 
wide heterozygosity and ROH burden are consistent between sampling periods. Lines connect 397 
mother-fetus pairs; open symbols indicate offspring. (E) Two-epoch demographic model 398 
inferred with !a!i. Parameter 95% confidence intervals indicated in parentheses. 399 
 400 

Fig. 2. Deleterious variation in vaquitas and other cetaceans. Ratios of deleterious 401 
nonsynonymous (A) and LOF (B) heterozygotes to synonymous heterozygotes are significantly 402 
negatively correlated with genome-wide heterozygosity (per bp, log-scaled). Total numbers of 403 
deleterious nonsynonymous (C) and LOF (D) heterozygotes per genome are significantly 404 
positively correlated with genome-wide heterozygosity (per bp). Grey lines show phylogeny-405 
corrected regressions (excluding the Indo-Pacific finless porpoise (5)). 406 
 407 

Fig. 3. Model schematic and extinction rates under various simulation parameters. (A) 408 
Diagram of events that occur during one year in our SLiM simulation model. (B) Percent of 409 
replicates going extinct over the next 50 years under varying recovery parameters. Shading 410 
indicates extinction rates when only neutral mutations are simulated, and “N” represents the 411 
threshold population size.  412 
 413 

Fig. 4. Simulation trajectories under various recovery scenarios. (A) Simulation trajectories 414 
under empirically-inferred historical demographic parameters assuming a reduction in bycatch 415 
mortality of 100%. (B) Simulation trajectories with bycatch mortality rate decreased by only 416 
90%. (C) Simulation trajectories with historical population size increased x20 and assuming a 417 
decrease in bycatch mortality of 90%. For all simulations, we assumed a population size 418 
threshold of 10 individuals. Replicates that went extinct are colored red and replicates that 419 
persisted are colored blue.  420 
 421 
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