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. ABSTRACT
The mathematical problem of calculating the yield of an isotope
produced in a chain of first order transformation processes is discussed.
Several new approximation formulas are derived, as well as the

well-known general exact solution.
A samplé calculation of the pile yieid of isotopes in a chain

of radiative neutron capture processes is carried out, illustrating

a method of tabulation designed to minimize numerical errors.
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' METHODS OF CALCULATING YIELDS IN CHAINS OF
' SUCCESSIVE NUCLEAR TRANSFORMATIONS
John- 0. Rasmussen, Jf.'and Rosemary J. Barrett
Radiation Laboratory and Department of Chemistry

University of California, Berkeley, California

May 26, 1952

INTRODUCTION .

The mathematical problem of the variation with time of quantities
involved in chains of first order tranéforﬁations (as radioa¢tiveugrowth
and decay and nuclear transformations effected by bombardment of matter
by neutroné, cﬁarged particles, or gamma rays) has been ﬁreated by
several authors. >

In connection with some of the expérimental work at phé University
of,California_Rédiatidn'Laboratory it has been necessary po make ex-
tensive;ﬁsé,of:tﬁis type of calculation. Some new series expansions
have béen_déveloped for use in certain cases.. It was felt that it
would be ﬁorth while to set down our general methods of setting up
éuch‘pfobléms,.to list_labof—saving fdrmulas and,tp illustrate a method
of tabulation, dgsigned to minimizg\the poésibility of error.

Sihée the;first order differential.equations in any complex chain
constitute a éet of linear equations, we can immediately divide any
complex chain with any distribution of initial quantities into sums of
unbranched chains'with onlj the parent initially present. The cal-
culations canibe cagfied‘thfbugh1indi#iduélly ahd the summation numeri-

callygperfofmed as’the_lést_stepo‘ o
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"PROBLEM OF THE SINGLE CHAIN WITH ONLY THE
PARENT INITIALLY PRESENT
‘Consider a chain of first order transformations. (as a series of
n,Y reactions at constant neutren flux# or a radioactive decay chain):

 a, a a ay
2 3 4 °© 00 b e n ¥
Al >A2 " )AB >3 >An

\bl-az \b2-8.3 \le-ah ' \\bn ‘

where a; is the constant coefficient governing the .rate of

production of isotope Ai from its parent Ai—l° :If
this production is by radioactive deCay, n
| ay = Ay = 0.693/half-life

of'Ai_l in seconds; and if_thé.prdductién'is-a bbmbard-

ment particle-induced reaction, then a; = Ios, where
"I is thevflux 6f bombarding particles in pérticlés per
square centimeter per-second, and oi-iétfhe capture
cross section of A{;l ih'squaré centimétérs}‘
is the constant coefficient gdvérﬁing the rate of
destruction of isotope Ai by all processes. It'is then

the sum of all ;\, for radiocactive decay 6f‘Ai by all

- i j
modes j plus the sum of all;l(ick) for all particle-

induced reactions k deétréying-Ai where oy is the

If no radioactive decay processes are significant in the chain, the
condition of constant neutron flux need not be imposed. The total inte-
grated flux: (nvt) is all that need be known. But if radioactive decay
processes are significant, the flux variations give to the.set of dif-

- ferential equations constants variable with time. If the variations can
be treated as stepwise constant, the problem may be broken up and treated
in separate segments. A suitable polynomial in time t might be fitted

to the flux variation and the resultiﬁg differential equations in turn
treated by the Laplace transformation method. We shall not, however,
’be concerned” with any but the constant flux case here.
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cross section of Ai in square centimeters for process k.
‘That is, ‘

b, = ;ixé_f,x‘z Lk

The dimensions of the a; and b; are reciprocal time.

The differential equations relatlng the amounts v of species Ai

present are:

dyl/dt = -byyy
'dyz/at = asy, - bsy,
dy,/dt = apyny - by, -

The following text will describe the derivations of the various
equations used in the subject problem, beginning with the sbove_rela-
tionships. The reader interested mainly in the practical applicstidn
of the equations for solving a specific problem may turn directly to
_ the.illustrative,eXample at the end of the paber. |

With the initial conditions at t =0,

= A
. y1—0,
for izl
the first equation above is readily integrated to give‘the_femiliar
exponential decay

-byt
¥y = Ae R

. The quantity y may be number of atoms, number of moles, or other
_ ¢onvenient: ‘measure- o} number of atoms.
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This expression can be substituted into the second equation and

another integration performed to give the growth- and decay-type yield:

oP1t _ bt

y =Aa °
2 2 by-b

This process could be done repéatedly to solve any suéh system, but
it soon becomes cumbersome. _It is thus much more convenient to apply
the methods of operational calculus to such a system of differential
equations. See Appendix I for the derivation.

For convenience and accﬁracy in the numerical calculations it
sgemed best to intfoducg dimensionless pérameters of magnitudes near
ﬁnity to replace the time, cross section, and flux variables. Wé let
qg = téi and C; = tby. ’

If,tNk is the number of atoms of the kth chain member at time t
and N, is the number of atoms of the first mémber at time zero, we

may write

N, = AN, H qi'[CI’C’ eoo 5C ]
e =01 A 2 n|

where [?1962, Q,O,Cn] is a quantity designated as the "C-bracket."

A few formulas for evaluating Cebfackets are listed below. The
derivations in the appéndices to this paper should suggest other means
of dealing with special cases that may bg encountered.

A sample of actual neutron pile transformation calculations is
given to illustrate our method of tabulation. The results of this
sample calculation are plotted on a log-log plot of yield versus _

integrated neutron flux.
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USEFUL FORMULAS FOR THE CALCULATION OF C-BRACKETS®

A. Exact Formulas

1. General, no repeated Cy:

[cl,cz,",-,, ,cn} - Z —n—9————

j—l
J#i
2. General, r-fold Cppt
r - . (r-k) _
Cy 5C o ] S +-‘sz¢ (-Cn)
[ w2t mimme et n] "2 3 ° (r-k) ! (k-1)!
,i=l [-[ (C "_Ci) k=l
S E] J

where ¢(r”k)(—0ﬁ) is the (r-k)th derivative with respect to a of the function

¢<¢) -i;__;_l_____

H (avCy)
i=]1 .
i#m

evaluated at a =-~Cy. For example, take the case of 2-fold Cy in a 3-C'd
bracket [01,C):C3]. The first term becomes

15-03'

'(CIQCB)(Cl—CB)'o

The second term is:

L o o , —. o
#a) = =0 a“d,¢(fcm) ¢(°Cl) _ c3 Cy

fﬁf(a) -1 and ¢i(écf) S S
T (a0g)? ()2



-8- ‘ . UCRL-1835

so the entire second term becomes

=C1 [ 1 - 1 ]
e ,
C1(€3-6)  (c3-¢y)?

efc3 + e-cl-[CB-Cl-l],

°

thence [01901303] =

2
3. r=-fold C,s no other factors:
r .
——— e‘Cm
[ NE fesr
_r
and the special case [Q,O,'.;,,O} = za—%jT
r=1)!

L. [cl,cz, ,,o,cn]_f B [(cl-Bj,(csz); .c,,(cn-B)]

B. Approximation Formulas

When some or all of the Cj's are very nearly the same (as in a
very shorﬁkbombardment), the numerical calculation by equation (A-1),
in the preceding section, becomes liable to error, there being a very -
small difference of large tefms.* A few infinite series expansions
found useful by us in such cases are sef dowh below. Their derivations

are to be found in Appendix II.

It is usually necessary in a numerical calculation of the C-bracket
by equation (A-1) to carry out the operations to several decimal places.
Even though the individual C's themselves may be very approx1mate, in
order to obtain a significant answer it is often necessary to use five-
place (or more) exponentials from tables and to carry out multiplication
and division with a calculating machine, retaining many decimal places.



- | UCRL-1835

n
| > G
| 1. 1 =l
lo [Cl’czy o oo gcn]— m n! + o e 0 o

~ or more rapidly converging by application of (A-4)with B = Caverage = Ci/n.

2. [cq,C PN ¢ = e . - LA
[1’ 22 e n] (n=1)!  \(n+1)! (m+2)! (2n-1)!

S 5,35 5,

3" ()t (wes)!

3
= (n+5)! 00 o900 00

£3 77 of F's, taken two at a time;

17]

 where 222 - }; FiFe, the sum of the products of all combinations

' }S = 22 FiFij, the sum of products of all combinations
3 13k , of F's, three at a time, etc., .
1# JkA ' -

and where we define F; =C; - C

average’ (See Appendix II for derivation

and general terms.)
3. When some of the Ci's are very large, it is often convenient.

to simplify the calculatiénvof the brackets by the following series:



[Cys e

[01902903, co ,_Cn:l - 'dlr'l'

m eoe 4+

~10-
Coq] - 51—2 [cl,.”,cn_l]' + CLB [cl,..,,cn_l]'
n- : n

(k) *

(1) [cl, ,cn_l] * oo

K+1
Cn

UCRL-1835

where we define the mth defivaiive of a C-bracket [01,02, oo ’Cn] by

the inverse transform:

[01,02,033 vee Bp|

(m) 1

tn-m~1

in the case of non-repeated Ci's, this is easily found as:

L —=

' C
1
l<ign s t

°
2

—’C,
' ' m n ~C3P : ' n C. e *
[ClgC29039 o o ogcn](m) = ;Bm ,n € = (-]_)m z _n-];——-—— .
-- -y : =Cs)
L1880 0 e
J#i J#

If Cp>>1;, we dftén, as a firét approximation; neglect‘all but the

first term in the series.

*See Appendix III. An interesting corollary to the differentiation

process for C-brackets is the following:

e

coe 30gs0] i [€1:C2s -e- 5Cy)s

or any number of zeros are removable, one for each differentiation.
This relation follows from the second of the series formulas developed

in Appendix IIT.

1
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EXAMPLE: CALCULATION OF YIELDS IN CHAINS OF SUCCESSIVE
NUCLEAR TRANSFORMATIONS ‘
As an example, consider the bombardment of a sample of Mo?? in
a pile and evalﬁaté yieids of M09, M097. and Mo98 in terms of ratio
of each to the .amount of parent Mo95 1n1t1ally present for the total
neutron fluxes chosen; make a log-log plot of y1eld ratio of each vs.

total flux. That is, letting Mo(o) represent the number of atoms of

parent Mb95 initially present, calculate

MO(t)/MO(O)s MO(t)/MO(o)s MO(t)/MO ), MO )/MO( )

wheére Mo?t) represents the number of atoms of Mo of atomic wéight N

at a specified time t, or, in this case;, at the total neutron fluxes

~specified.

21 22

Calculations will be made at total fluxes of L x. 10, 4 x 10

and 4 x 1022 neutrons/cm?.

As described early in the text, ﬁhe quantities or constants with
which we are concerned to give the désired yields or sﬁccgssivé products
were the a;'s and b;'s where |

(1) the a,'s control the creation of any isotope A; from its

1

.. parent; A:-=1, and, in this case;

%
ai=Ici,'
where' T = flux-rate in neutrons/cm? sec
and o; = capture cross section in cm2 for Ai—l,

and (2) the bs?s control the destruction of isotope Aj and, in this case,

‘ %
b; =Ios, whereI is the same as above and
o, = total capture cross section in em® for A .

i

*In the above example radioactive decay does not enter into the
picture; in cases where it is present; see text for including A4I into

the al's and b s,
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Then the a's and b's for the parent and successive isotopes in the

problem are as follows:

ISotope (varns) | a (x 1024) b (x‘lO2h)

wo?5 | 13.4 - by = 13.4 1

-
H
"

wo? | 1.0 | ap=13.41 - 101

1,01 b3 = 231

[

N
"
(o2

i)
I

= M7 '
Ay = Mo 2.3 ag

1]

0.4

o)
B
]

Mo?8 0.4 | a,= 231 |,

To put these constants into the form to use in the general solution,
namely,

Ai(t)/A1(°> = 2°H qi [01302’(:3’ 6 00 ’Cn]
. 2<ign

where q; = a; t and C4 = by t and

n eQCi
[pl,cz, ,,.,cn] =S 5
| i1 ] (C4-Cy)
L] |

J#i
we mst make a table of agt's and bit's, But, as stated above, we

are not concerned with t in this particular problem but only with I x t;'
or total neutron flux (nvt). Therefore; we could have immediately

written down the table of gq's and C's, which are simply

q; =04 xnvt and

Ci =03 X nvt.
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Hence, |prepare the following table:
Total 4 x 102 n/em? L x 1022 n/em? | 4 1023 n/em?
Flux o . C . : e-—C ¢ _ _C C - e_(l),”
¢, |13.4 x 10724 x 4 x 102 = 0.0536 | 0.94781 | 0.536 | 0.58508 | 5.36 | 0.0047
¢, | 1.0x1072% x 4 x10% = 0.0040 | 0.99601 | 0.04 | 0.96079 | 0.4 |0.67032
C3 | 2.3 x107% x 4 x 102 = 0.0092 | 0.99084 | 0.092 | 0.91211 | 0.92 | 0.39852
¢, | 0.4 x10°2% x 4 x 102 = 0.0016 | 0.99840 | 0,016 | 0.98413 | 0.16 | 0.85214
. _a
ay |13.4 x 1072 x 4-x 10 = 0.0536 0.536 5.36
a5 | 1.0x 10724 x 4, x 102 = 0.004 0.04 0.4
qy | 2.3 x207% x4 x 102 - 0.0092 0.092 0.92

L4

We are now ready to calculate the desired ylelds from the above general

solution at the three nvt's chosen, namely, calculate

M°<+,)/M°<o)

9_8_ 95_ T v..,_
_and Mo(t)/Mo(o) = q2q3qa[cl’02’CB’ChJ'°

" The remainder of the example is for the purpose of illustrating

_.C, 96 , N
l;. MO(t)/MO?g) = Q2[¢1SC ] MO(t)/MO( ) Q2q [13 2903]

the evaluating;of the'Cébreckets,‘beth‘by the genefal selution'and by

alternate equations when indicated.

for the purpose of illustrating the method’s-of handling which we have

found m.ost'practi.cal°

Arithmetic steps have been included
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Evaluation of C-brackets at nvt = 4 x 10°* n/cm®

. [Cl,Cz]é The evaluation of a 2~C'd bracket is obviously simply the
difference of the exponentials divided by the difference of the C's, so

[01’02] = o,qnsz/ocoa96 = 0.972

[01902903]3 ",

0.94781 . 0.99601 4+ 0.99084
-0.0496 x =0.044k  +0.0496 x +0.0052  +0.0444 x -0.0052

_ $0.94781 x 0.0052 + 0,9960L x 0.04kk - 0,9908k x 0.0496
0.0496 x 0.0khh x 0.0052

- 0.0000057 - 0.495
0.0496 x 0.044L x 0.0052 |

Note that this solution involved differences between very similar
numbers; due to C, and C3_being very close together. A check on .

the C-bracket by Approximation Formula (B-1) might be indicated:

[01,02,03] [a/3-1): - (0,6536 + 0,004 + 6;0092)/31] ‘

005 - 0.0111 = 0.4889, showing good agreement . -

[Cl’CZ’CS’Ch :I: ' Inspegztion‘ shows that 03 _ant_i Ch are even closer
together than the similar C's %n_the previous bracket, so the rapidly

converging fofm of the iﬁfinite series, equation (8—2), will be used.

Cy, = 0.0536 - | F] = +0.0365
C, = 0.0040 ' F, = -0.0131
C3 = 0.0092 Fy = =0.0079
C;, =-0.0016 F, = <0.0155

Cavg =.g%é8£ = 0o0171
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First term:: e 0-OL7L/31 = 0.983/6 = 0.164 °

Second term: establish > 's with.aid of the table below:

+0.0365  -0.0131 -0.0079 -0.0155

+0,0365 -0.000479  -0.000288  -0.000566
-o.0131| +0,0001035  +0.000203
~0.0079 | © +0.0001225
~0.0155 -

2.5 = =0.000904
| >3 = (=0.0L31 x -0.000288) + (-0.0131 x 0.000566)

+(~0.0079 x -0.000566) + (-0.0155 x +0,0001035)

+0,00000377 + 0.00000742 +.0.00000447 ~ 0.00000161

1.4 x 10~

The Z terms are obviously negligible (and were e\(a.luat.ed only

to show the method), thus
[615€2:03,C,, | = 0.164

Then, at nvt = 4 x 102 n/cm?,
Mo95/Mo?g) =eCl - 0.948
96 A 95 :
Mo /MO(O)

Mo97/M9?2)

0.0536 x 0.972 = 5.2 x 107

0.0536 x.0.004 x 0.495 = 1.06 x 1074

Mo”%/Mo{ 2y 0.0536 x 0.004 x 0.0092 x 0.164 = 3.23 x 1077
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Evaluation of C-brackets at remaining nvt'é'

‘In the same manner as illustrated above, the C-brackets for nvt of
4 x 1022 and h X lO23 n/cm would be calculated. For purposes of illus-
tration, the calculatlon of the [?1,02,03,04} bracket at 4 x 1023
. Shown below by two methods, a choice of which is indicated 1nasmuch as
4 is becomlng large
23
(1) [?1’02’03’04] at 4 x 102 n/cm? by the general solutlon A-1

(see table of C and e -C values at beginning of problem):

L0047 . 67032 . 39852 . 85214
~4.96 x=L . Ll x=-5.2 +4,,96 x +.52 x-.2, | +4 44 x 52 x =76 +5.2x .24 x +76

- —00h7x 2k X 52x 76 - 67032xa L x 5.2 76 + 39852 x 4.9 x 5.2 x 21, + . 852U X 1.90% b lx 52
4.96 x 4.4h x 5.2 x .24 x .52 x .76 '

¢

0427

(2) [Ci,CZ,CB,Ch]tét L x 1023 n/cmz‘by use of equation B-3, to be

used when some of the C's are large:

[C1:25C350,] = BT 0.4, 0.92, 0.26] - . ;62 [0-45 0.92, o,is]s

First bracket:

0.67032 _, __ 039852 , _ 0.852lk  _ o 00
+0.52 x -0.2,  =0.52 x =0.76 +0.24 x +0.76 )

Second bracket, illustrating use of the derivative of a bracket ,

first term only: ‘
o -

]
]
[ur}

0.4 =092 -0.16
[0.45 0.92, o,16]' O.4e , 0:-92e , _0.16e }

[+0.52 x -0.24 -0.52 x -0,76 +0.24 x +0,76

-O L3 ohhh
[0.52 x 0.24 x 0.76

fl
1
—

= +0.474
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Thus

C CV C.,C ‘ - 00308 O.A_?A
]9 2 3 ) = - = (),()lll

which giveé good agreement with the first method.
Below is a table of values which were calculated for each isotope

at each total flux,,following which is a log-log plot of same in Fig. 1,

Table of Ratios of Iéotopés to Parent M095 Initially Present

 Total flux or nvt (n/cm?)

Isotope .4 X 1021 4 ox 1022 L x 10<3
Mo95 0.948  0.585 4.7 x 1073
M9 521 x1002 0.4 0,72

Mo??  1.06 x 1074 8.5 x10> 0.9
w?®  3.23x107 2.78 x 107k 8.35 x 1072
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RATIOS OF ISOTOPES OF Mo
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Fig. 1. Yield of molybdenum isotopes in a
thermal neutron irradiation of Mo95.
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_ APPENDIX I
GENERAL SOLUTION OF THE EQUATION BY THE LAPLACE TRANSFORM METHOD_

The Laplace transform of a function y(t) is defined as

Y(s) =‘/Iﬂme'5ty(t) dt .

We multiply'_b'ot.h'sides of ihe differjébntial equations of pé."é‘é’ 5:by e".':f:st,t?t::and inte~

grate from zero to infinity. This step reduces the set of simultaneous

first.ordfr linear differential equations,into'é'seﬁ of similtaneous
first.order linear algebraic equations for the transforms. These can

| béisolved'by algébraic metﬁods‘for each transform as a function of the

variable s. With the éid of a taﬁle of Laplace transforms we can ob-

tain the desired solutions Yi(ﬁ);

With the initial conditions at t = O, as stated above,

Y1=A
.yi‘= 0,

we. apply the Laplace transformation to these equations to reduce them

to a series of n linear simultaneous equations in n unknowns.

8Y1=A==’b1Y1

® 0000060840000

s ¥y
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Rearranging,

A

(s+b)Y;

~
0]
+
o’
N
~
s
N
I

= azYl

0600060000

(S+bn)Yn = anYn-l .

Solving for Y,, we have

' (1) Y (s) - A anas e a, _ A o<i<n ay
n (s+by)(s+bs) ... (s+b ) II (s+b; )
1 2 n i

1<ign

The solution is obtained by taking the inverse transformation,

(2) 1,(8) = & i
2j;£n [] (S*bi)
: l<i<n

For convenience in calculation we separate the three factors

, , -1
A; gh-1 II aj; and 1'1> 1
2¢ign th= II (s+bi)
1gign :

multiplying the second and dividing the third factor by t81 in order
.to make them dimensionless. For convenience in calculation the

substitutions

=t a; and Ci =t by

are made to introduce the dimensionless parameters 9 and Cj .
The three factors are now
A,'the initial amount of isotope A at the head of the chainj

II qy » the product of the n~1 production parameters,
2<ign

and a quantity designated as the "C~bracket," a function of
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3*
the n Ci's, or

. 1. -1 1
[lec' , . ,cn} g i H (o) .
‘ lSiSn )
fhe ﬁainiproblem in the célculation lies ih the gvaluation of the
inverse transformldr C-bracket factor.
The inverse Laplacé_transform can always Ee_expressed in an exact
manner. by the method of splitting ﬁp |
i

[I (s+by)

1<i<n

into a sum of n-1 partial fractions and taking}the inverse transform
for each fraction. However, this general solution as a sum of simple
éxponenﬁial functions may not'bé praétigal for numerical calculation
in some acﬁual céses to be encountered in the experimental work. Good
series apprcximationS‘may'6ften'be used to avoid unnecessary gompli-
cation in numerical calculation of the C-bracket.

The inverse Laplace transform of

1

[T (s+bg)

1<isn

is more readily determined by contour integratioh in the complex plane
than by partial fractions.6 The generél contour integral7 for the

inverse transfbrm is as follows:(with a a positive real number) :

_ “ *Note that the’valué of the C-bracket is independent of the order
of the C;"s. This rearrangement property may be useful in simplifying
' éélbﬁiaﬁ%bﬁsw B A ol S S TR N ‘ o :
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" a+ic »
c;Zi_l . " < ds
_II (s+bi) 2ni II (s+by)
1<i<n g i
a-iow

The integrand has poies at s = -by. The integration may be carried out

over a closed contour'as shown in Fig. 2,'if R tends to infinity.

Fig. 2. Contour for integration of the
inverse Laplace transform integral.

The contour surrounds all the poles of the integrand, and assuming all

- 8 .

poles are simple, the theory of residues gives the value of the integral

as
a+iom ' ’
. ~bt
eSt e k (s+bk)
ds = 2ni z;
« [T (s%p9) i [] (s+by)
Q=310 i ' i

and the general solution for the inverse

- : ‘ byt
i-l l z e k (S+bk)
[T (svvy) 52 [T (swby)
€izn ¢ Sn e

" If the poles are not simple; the appropriate formulas for evaluating

residues of higher order poles must be applied.
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APPENDIX II

DERIVATION OF INFINITE SERIES EXPANSIONS USEFUL FOR SMALL C;'S

It can be readily seen that an expansion of a Laplace transform as
a power series in (1/s) will become on applicé.tion of the inverse merely
a power series in t.

Thus we take the transform of the typexvelncountered here

- £(s) = —= .
- ' , H (s+bg ) H (1+_l)
o i<l i=1
. n s =1
1 1
" ' n H (l+—s—
$  i=1
. Z -1
n b:b . n
] i
Z bj ij J H bi
=_1__. 1+ 1=I S 14 + i=1
v o A
But (I'-x)“l S lox+ xR exD ...+ (~=--l)kxk + .. '
1]
b.
bs b.b i=1 l
Let Q(s) = Z,1+214+ o= =1 3
' s ' S2_ sh
then £(s) = = (1 -Q+a2-Q3+ ...).

Introduce the notatidn'for the multiple summations taking all

combinations of bis:

i

Zbi 21;’ zbibj = 22, etc.
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zg:k means the sum of all the pfoducts 6f all possible combinations

of bi's taken k at a time. This is a sum of

products.

Applying the inverse transform to f(s)‘we have

C;Zinl £(s) =-(n—l

n'
k! (n-k)!

tn-l tn+l
y o Z1 n! 22(n+1)'
zz n+l ' 2 tn+3
+
1 (n+ l)' 2 (n+3)!

e Y

2 ,n+5

3 (ne5)1

42n-1
n (2n-1)!

In our definition of the C-bracket the powers of t will all be

replaced by unity and the bi's by dimensionless Ci's as

R

2. 2

(Cps vvvsCp) =

(n-1)! T
2 2
N
(n+1)! r,(h+3)!
Z 25
(n+2)' soo 9

B (n+1)!

where we understand the zg:k now as formed from the C; rather than the by .



~25- UCRL-1835

It is‘appafent, of courée; that tﬁe convergende of the series can
-:be hastened by the 31mp1e appllcatlon of transformatlon(A—h),selecting
some sort of average C value for the B.

The generalvexpression of the series can best be given as’

_Li f(s) = - 1.7 llil&-+ r}-l lQn o
gn=1 (n-l) ,' g0= gt ¢ s” ,

."Zi Zz Zﬁ

whé}e:Q(s)'=

‘Note that each term in the general expression will have in its
 denominator (n-l+i)! where i is the sum of the indices of the ziik
in the produCt. A |
If we introducé the notation, = . -
IR

(n-l+i+ j+k)!

J(isjsk) =
we can write

- {m=1
1nclud1ng

L=m

Z Z ZJ(kﬂ,m)+

=l m

(03,0 -+ 0] =gy = 53 90+ 3 9Um)
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APPENDIX IIT

DERIVATION OF INFINITE SERIES EXPANSIONS
RAPIDLY CONVERGENT FOR LARGE Cy'S

Taking the transform of the general type for the C-bracket:

O -

II (é#bi)

i=1

1

1
n=-1 "

(s+b,) [] (s+by)
, i=1

= 1 d(s) .
s+bn
Now we write:
1 = 1 =L(l+i)-l
S+'bn b (1+ .5 bn bn
. n b_n ’

Then
. L 2 g ‘(-=»1)'k *g(s)
f(S) = -B]-: ¢(S) j‘ b’% S¢(S) + -b—-§ S ¢(S) = oo bn;+1 = + ocee e

n n
‘Now the inverse of a transform ¢(s)'multiplied by sk is just the

kth derivative of the inverse of #(s). @(s) is just the transform

corresponding to the bracket with C, not present.

Applying the inverse transform to the above equation and dividing

by t*1, we get the following:
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' 7 1 . .
[01902, s ,Cn ] = C—- [01902’ . ’Cn_l] -

n 5—2' [Cl,Cz, °e o ,Cn-l]

+(-1)¢ |
+ ¢ 0 0 C LI J C + e 8 O
~ ‘.ani-]_v [ 1 2 n—l] ’ t
where the kth derivative is given by
' . .+ ok =Cs
| (k) |qk e~C1B = S
[01902, LI SCn__l} = 'd_' _—E—-_C'_)' = (—l) z L ——e
B H J Ui/ p=1 i= H (Cj-ci)
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