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REVIEW

Evolutionary trajectory of SARS-CoV-2 
and emerging variants
Jalen Singh1, Pranav Pandit2, Andrew G. McArthur3,4, Arinjay Banerjee5,6,7* and Karen Mossman4,8,9*  

Abstract 

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more 
recently, the independent evolution of multiple SARS-CoV-2 variants has generated renewed interest in virus evolu-
tion and cross-species transmission. While all known human coronaviruses (HCoVs) are speculated to have originated 
in animals, very little is known about their evolutionary history and factors that enable some CoVs to co-exist with 
humans as low pathogenic and endemic infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1), while others, 
such as SARS-CoV, MERS-CoV and SARS-CoV-2 have evolved to cause severe disease. In this review, we highlight the 
origins of all known HCoVs and map positively selected for mutations within HCoV proteins to discuss the evolution-
ary trajectory of SARS-CoV-2. Furthermore, we discuss emerging mutations within SARS-CoV-2 and variants of con-
cern (VOC), along with highlighting the demonstrated or speculated impact of these mutations on virus transmission, 
pathogenicity, and neutralization by natural or vaccine-mediated immunity.
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Background
Coronaviruses (CoVs) can infect humans and animals to 
cause mild to severe disease, including death [1]. CoVs 
are divided into four genera: alpha- and beta-CoVs pre-
dominantly originate in bats and infect other mammals, 
while gamma- and delta-CoVs originate in and largely 
infect avian species [2]. CoV infection in animals is gen-
erally associated with gastric symptoms [3], such as acute 
diarrhea in young pigs that are infected with porcine 
epidemic diarrhea virus (PEDV) and swine acute diar-
rhea syndrome coronavirus (SADS-CoV) [4, 5]. While 
CoVs mainly circulate in animals, such as pigs, camels, 
cats, and bats [6], there have been at least seven docu-
mented instances where these viruses have spilled over 
into humans [7]. These events have led to the emergence 

of human coronaviruses (HCoVs) that are low and high 
pathogenic. The origin of the most recently emerged 
human coronavirus, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is speculated to be associ-
ated with Rhinolophus bats, but the zoonotic transmis-
sion pathway remains unknown.

HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-
HKU1 represent endemic and low pathogenic HCoVs, 
and are responsible for one-third of common cold symp-
toms [8]. High pathogenic HCoVs such as severe acute 
respiratory syndrome coronavirus (SARS-CoV), Middle 
East respiratory syndrome coronavirus (MERS-CoV), 
and SARS-CoV-2 cause or have caused severe disease 
in humans with case-fatality rates of 10.9%, 34.3%, and 
2.1%, respectively [9–11]. SARS-CoV, MERS-CoV and 
SARS-CoV-2 are beta-CoVs [12, 13]. MERS-CoV belongs 
to the Merbecovirus subgenus, while SARS-CoV and 
SARS-CoV-2 belong to the SARS-related coronavirus 
(SARSr-CoV) species within the Sarbecovirus subge-
nus [14]. It remains unclear why most HCoVs evolved to 
largely cause minor illness while MERS-CoV continues 
to cause severe disease [15–17]. In this review, we have 
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highlighted the origins of HCoVs and mapped positively 
selected for mutations within HCoV proteins to discuss 
the evolutionary trajectory of SARS-CoV-2. We have also 
discussed emerging mutations within SARS-CoV-2 and 
variants of concern (VOC), along with highlighting the 
demonstrated or speculated impact of these mutations 
on virus transmission, pathogenicity, and neutralization 
by natural or vaccine-mediated immunity.

Origin of human coronaviruses
All known HCoVs are speculated to have an evolution-
ary origin in bats or rodents [1, 3, 18] (Fig. 1), with five of 
seven HCoVs originating in bats [3, 19–21] (Table 1). Bats 
are speculated to be primordial hosts for all CoV lineages 
due to ubiquitous detection of diverse CoVs and constant 
CoV population growth, which contrasts epidemic-like 
growths observed in other animals [22]. Although bats 
and alpacas can serve as MERS-CoV reservoirs [23, 24], 

dromedary camels are the major reservoir host and pri-
mary contributor to human infections [25–28] (Fig.  1). 
The full extent of wildlife or intermediate animal reser-
voirs of SARS-CoV-2 is currently unknown.

SARS-CoV-2 is believed to have originated in a seafood 
market in Wuhan, Hubei Province, China [29], although 
limited contact-tracing at the beginning of the pandemic 
does not allow for definitive characterization of the exact 
events that led to the first human-to-human transmis-
sion, including the index patient or initial animal contact. 
Nonetheless, it is speculated that the natural reservoirs of 
SARS-CoV-2 are Rhinolophus bats (Table 1) since diverse 
SARSr-CoVs have been detected in multiple Rhinolo-
phus species [22, 30, 31], including RaTG13 in R. affinis 
[32]. RaTG13 is 96.2% identical to SARS-CoV-2 at the 
whole genome level [32]. Moreover, SARS-CoV-2 con-
tains a polybasic furin-like cleavage site between S1 and 
S2 spike (S) protein subunits, similar to Rhinolophus CoV 

Fig. 1 Speculated animal origins of known human coronaviruses. HCoV species are organized chronologically (top to bottom) by their speculated 
dates of spill over into humans. Intermediate hosts (top to bottom) shown are alpacas, cattle, civet cats, dromedary camels, pangolins, and 
unknown (denoted as a question mark). Genome similarity to humans (A) indicates percentage similarity of CoV genomes detected in reservoir 
species with corresponding human CoV. Genome similarity to humans (B) indicates percentage similarity of CoV genomes detected in intermediate 
species with corresponding human CoV. Non-human CoVs that are highly pathogenic in animals, such as PEDV and SADS-CoV, are not shown here. 
Genomic percentage similarities were extracted from existing primary studies [20, 21, 32, 56, 60, 277–283]
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RmYN02 [33, 34], which shares 93.3% whole genome 
nucleotide identity with SARS-CoV-2 [34]. However, 
the receptor binding domain (RBD) of SARS-CoV-2 is 
only 85% and 61.3% identical to those of RaTG13 and 
RmYN02, respectively [34–36]. RaTG13 and RmYN02 
were discovered in bats of China’s Yunnan province, over 
1500 km away from Wuhan [34, 35]; however, this does 
not preclude the possibility of virus spill over as bats 
can fly long distances. Virus transmission and transport 
by susceptible intermediate reservoirs or humans is also 
possible.

Phylogenetic analyses have identified a possible recom-
bination-mediated origin for SARS-CoV-2 [37–39]. 
Neutralizing antibodies to SARS-CoV and SARS-CoV-2 
have been detected in Malayan pangolins (Manis javan-
ica), suggesting that SARSr-CoVs have been circulating 
in pangolins since 2003 [40]. Recombination of CoVs 
within Malayan pangolins has been suggested given the 
97.4% amino acid similarity within the RBDs of pangolin 
SARSr-CoVs and SARS-CoV-2 [35, 41], including con-
servation of all critical residues required for successful 
human ACE2 (hACE2)-mediated cellular entry [35, 39, 
41, 42] and the detection of pangolin SARSr-CoVs that 
bind to hACE2 [43]. Additionally, bats and pangolins 
may share underground caves [44], facilitating ecological 
contact in high density areas. However, the lack of robust 
evidence of direct SARS-CoV-2 emergence from a pan-
golin CoV precursor [45], along with the reported high 
pathogenicity of SARSr-CoVs in infected pangolins [41, 
42, 45] makes it unlikely that pangolins are intermediate 
reservoirs of SARSr-CoVs.

The nucleotide percentage similarity of CoVs detected 
in reservoir species is generally lower than CoVs 
detected in intermediate species. Adaptive evolution of 
CoVs in intermediate species facilitates successful spill 
over into humans (Fig.  1). Since SARS-CoV-2 is more 
closely related to bat SARSr-CoVs than to pangolin 

SARSr-CoVs (Fig.  1), it seems unlikely that pangolins 
are intermediate hosts, unless we haven’t yet detected 
the full range of SARSr-CoVs in pangolins. It is uncer-
tain whether an unknown intermediate host provided 
an opportunistic amplifying role or a stable reservoir 
for the zoonotic transmission of SARS-CoV-2.

While direct human infection with bat SARSr-CoVs 
has not been reported [46], it is possible that the major-
ity of adaptive evolution of SARSr-CoVs occurs in bats, 
prior to spill over into humans [47]. Some notable 
adaptations include carrying the lowest level of CpG 
dinucleotides among known beta-CoV genomes [48], 
similar to a mechanism of escaping innate immunity 
observed in camel MERS-related CoVs strains [49, 50]. 
The relatively few SARSr-CoVs detected in the Hubei 
Province [35] are phylogenetically distant from SARS-
CoV-2 [51]. Indeed, if SARS-CoV-2 did transmit from 
animals to humans, further sampling in Hubei Prov-
ince may identify more closely related SARSr-CoVs 
in archived animal specimens. Investigating the pos-
sibility of an infected person travelling to Wuhan and 
unwittingly spreading the virus will be more difficult in 
the absence of archived samples and records of travel 
history.

Despite the abundance of SARSr-CoVs and beta-
CoVs in bat species [52, 53], it is likely that additional 
reservoirs and intermediate hosts remain undetected 
[54]. Pigs, alpacas, and dromedary camels also main-
tain a variety of CoVs with the potential to transmit 
to humans [3, 12, 20, 55–57]. Independent insertions 
within RBDs of SARS-CoV, MERS-CoV, and SARS-
CoV-2 suggest convergent evolution, which will likely 
lead to emergence of more pathogenic HCoVs [58]. 
Further sampling of bats, pangolins, and other spe-
cies that share an ecological niche with bats may help 
piece together the puzzle surrounding the spill over of 

Table 1 Speculated timelines for evolutionary origins of known human coronaviruses from bats

Species Discovery 
in humans

Speculated timeline of divergence for human strain Speculated bat reservoir References

SARS-CoV-2 2019 Human strain likely diverged from most closely related bat virus in 1969 Rhinolophus spp. [32, 294, 295]

SARS-CoV 2003 Human strain likely diverged from bat strain in 1986 Rhinolophus spp. [22, 53, 280, 296–298]

MERS-CoV 2012 Human strain likely diverged from bat strain before 1990 Taphozous perforates, Pip-
istrellus spp., Neoromecia 
spp.

[282, 299–305]

HCoV-OC43 1967 Human strain likely diverged from bovine strain in 1890 N/A [276, 306]

HCoV-HKU1 2004 No supported dates of divergence have been established N/A [279]

HCoV-229E 1965 Human strain likely diverged from alpaca strain before 1960 and from 
bat strain between 1686 and 1800 CE

Hipposideros caffer ruber [21, 56, 307]

HCoV-NL63 2004 Human strain likely diverged from bat strain between 1190 and 1449 CE Triaenops afer [20, 308–310]
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SARS-CoV-2 into humans [59] and also help discover 
other CoVs with potential to infect humans.

Aside from consistent spill over of MERS-CoV from 
camels [60], HCoVs have emerged through limited spill 
over events, followed by human-to-human transmission 
[3, 61]. While challenging to predict, future spill over 
events are likely, due to the long history of CoV host shift-
ing [62–65]. Anthropogenic factors such as urbanization 
and deforestation increase habitat overlap of humans 
and animals, providing increased zoonotic transmission 
opportunities [57, 66]. Areas of high contact between 
humans, wildlife, and domesticated animals, such as live 
animal wet markets provide opportunity for viral recom-
bination and adaptation to a broader range of animal 
species prior to transmission to humans [57]. Identify-
ing existing CoV diversity in such areas will enhance our 
understanding of ecological opportunities for zoonosis 
and will help us better predict and prevent the emergence 
of future HCoVs.

Evolution of SARS‑CoV‑2 and its variants
Co-evolution of CoVs with their hosts is driven by genetic 
diversity that is selected through evolutionary pressures. 
CoV genetic diversity is made possible by a large genome 
(26.4–31.7 kb) [67], high mutation rate due to a low fidel-
ity viral polymerase (~  10–4 substitutions per site per 
year) [68, 69], and high recombination frequency (up to 
25% for the entire genome in  vivo) [70, 71]. Mutations 
that confer greater fitness are selected for, leading to anti-
genic drift. Ratios of the rates of non-synonymous/syn-
onymous mutations (dN/dS) greater than one, less than 
one and equal to one indicate positive selection, negative 
(purifying) selection and neutral evolution, respectively 
[72]. SARS-CoV-2 genomes are currently under purify-
ing selection [73, 74]. Despite observing little viral diver-
sity at the beginning of the COVID-19 pandemic [75, 
76], positive selection with presumed advantages such as 
increased transmission rates has now been documented 
[77–79] (Fig. 2, Table 2). However, functional characteri-
zation of these mutations remains under-investigated.

Antigenic drift is most frequently observed in viral 
surface proteins that are highly exposed to selection 
pressures of the immune system, such as neutralizing 
antibodies [80]. Indeed, CoV spike genes, particularly the 
S1 and RBD coding regions, have the highest detected 
non-synonymous mutation rates [81, 82], a trend 
observed across the majority of HCoVs (Fig. 2). For low 
pathogenic and endemic HCoVs, multiple positively 
selected for residues and polymorphic sites are found in 
the N-terminal domain (NTD) of S [83–88]. A notable 
exception is HCoV-HKU1, for which there is a shortage 
of sequencing data outside of the hemagglutinin ester-
ase (HE) gene. Emerging data suggest that positively 

selected for and homoplastic sites have been observed 
within the SARS-CoV-2 NTD as well [78, 89–91]. Given 
the observations with other HCoVs (Fig. 2) and the detec-
tion of neutralizing epitopes within the SARS-CoV-2 
NTD [91, 92], we speculate that with continued circula-
tion, vaccination and convalescent sera therapy, further 
positively selected for mutations in the NTD are likely to 
occur. Further retrospective research on the evolution of 
endemic HCoVs may help predict the likely evolutionary 
trajectory of SARS-CoV-2.

CoV genomic mutations give rise to virus variants, and 
closely related variants are grouped into clades. SARS-
CoV-2 variants have been clustered into nine clades: L, V, 
S, G, GH, GR, GV, GRY and O [93, 94] (Table 3), named 
after their most representative mutations [95]. Clade L 
dominated the beginning of the pandemic [38], prior to 
the appearances of clade S and the less defined clade O in 
early January, 2020 [73, 93, 96]. Clades V and G appeared 
in mid-January, followed by clades GH and GR at the 
end of February, clade GV at the end of June, and clade 
GRY in September, 2020 [94, 97, 98]. Clades L and V are 
likely extinct, while clades G, GH, GR, and GRY comprise 
the majority of global SARS-CoV-2 sequences currently 
[97, 98]. Clade S has also been declining since the emer-
gence of clade G [93]. Following rapid dissemination of 
clade G and its derivatives, such as B.1.1.7, B.1.351, P.1, 
and B.1.617.2 variants (Table  5), we may see the rise of 
other variants, selected by mounting population-level 
immunity and other yet unidentified factors [89, 99–101], 
highlighting the need for international genome surveil-
lance efforts and global data sharing via the established 
GISAID resource [102].

Clade G is characterized in part by the single nucleo-
tide polymorphism (SNP) A23403G within subdomain 2 
of the S1 gene, resulting in amino acid mutation D614G 
[103, 104] (Fig. 2, Table 2). D614G is now detected glob-
ally in B.1.1.7, B,1,351, P.1, B.1.617.2 and other variants 
[97, 104, 105] and increases the infectivity of SARS-
CoV-2 by increasing respiratory viral load [106, 107], 
possibly due to increased S openness [108, 109] or cleav-
ability [110], causing this mutation to become dominant 
upon emergence [93, 111, 112]. There is also an epide-
miological correlation between D614G and anosmia (loss 
of smell) [109], potentially due to greater viral loads in 
the olfactory epithelium. Preliminary evidence suggests 
that D614G increases viral susceptibility to neutralization 
[113], with uncertain impacts on disease severity [104, 
114, 115].

D614G is usually accompanied by three other muta-
tions which represent clade G [104, 116, 117] (Table 3). 
Of these mutations, P323L in the RNA-dependent RNA 
polymerase (RdRp), encoded by Nsp12 (Fig.  2, Table  2), 
is particularly interesting as CoV RdRp tends to be highly 
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Fig. 2 Mutations identified in human coronaviruses. Red dots within the genomes correspond to specific amino acid residues that have been 
strongly positively selected for such that a specific mutation has become dominant in the region where it emerged [74, 78, 83–91, 94–96, 99–101, 
104, 111, 116, 117, 121, 123–125, 129, 131, 132, 135, 138–140, 146, 151–154, 158, 162, 278, 284–293]. Genomic regions highlighted by red bars 
correspond to deletions that have been selected for, while purple bars correspond to regions with significant polymorphisms within a CoV species. 
Beta-CoV Lineage B (Sarbecovirus) is represented within the blue shaded area, beta-CoV Lineage C (Merbecovirus) is represented within the yellow 
shaded area, beta-CoV Lineage A (Embecovirus) is represented within the red shaded area, and alpha-CoVs are represented within the green shaded 
area. Genome length in kilobases (kb) is noted on top. See Table 2 for more details
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Table 2 Selection sites across various human coronaviruses

Protein SARS-CoV-2 SARS-CoV MERS-CoV HCoV-OC43 HCoV-HKU1 HCoV-229E HCoV-NL63
Nsp1
Nsp2 aa85
Nsp3 nt8441 R911C, aa981, 

aa1099, aa1255, 
aa1375, aa2119

~nt4000

Nsp4
Nsp5 nt10384, 

nt10793
Nsp6 L37F, nt11083 nt11631
Nsp7
Nsp8 nt12257
Nsp9 nt12814
Nsp10
Nsp11 nt13402
Nsp12 P323L
Nsp13 nt16887 nt16177, 

E466D
aa5551

Nsp14 aa6030
Nsp15
Nsp16
ORF2
HE T114N, T115R, 

R177P, E178Q, 
F181S, F247L, 
H250Y

169-176del, 
181-182del, 
188-194del, 
215del, 221-
223del

S1 nt21575, S13I,
H69del, 
V70del, 
Y144del, 

D77G, L239S, 
T244I, 
R311G, 
F360S, 

D510G, I529T, 
nt23722

N33D, K90L, 
T93K, D120H, 
K184N, L195S, 
Y521H

Y26H, Y35H, 
L88S, D111N, 
L113S, L121I, 
T223N, 

aa1-200, 50I, 
120S, 295A, 
310V, 370V, 
435K, E471D, 

W152L, 
A222V, D253G, 
K417N/T, 
N439K, N440K, 
L452R, S477N,
T478K,
E484K/Q,
F490S, N501Y, 
D614G, 
Q677P/H, 
P681H/R

L472P, 
D480G, 
T487S, 
nt22797

D228del, 
S229V, D248A, 
V288A/M/E, 
aa308-325,
K314V/P, 
G321R, D324V, 
aa352-359,
V353del, 
Y354del, 
Y404L, aa404-
408, D430K, 
V444N, K488N

I507L, E572A

S2 A701V, F888L D778Y Q1020R/H, 
G1224S, 
L1267S

R642M, 
N714K, V765A, 
T871I, I937L

ORF3 aa85, aa86
ORF3a Q57H, G251V
ORF3b
ORF4
ORF4a aa102
ORF4b
ORF5
ORF5a

E
M nt26428

ORF6
ORF7a
ORF7b R17C
ORF8 Q27stop, L84S nt27969-

27897del
ORF8b

N R203K, G204R aa178, aa300
ORF9b
ORF9c
ORF10

References (74,78,94,99,10
0,121,123,129,1
35,150,158,196,
205,216–
218,227,229,231
,311)

(74,138,153,28
6,312–316)

(74,131,152,220
,287–291,317)

(84,278) (292) (83,151,293,318
)

(85–88)
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conserved by purifying selection given its critical role in 
viral genome replication [118, 119] (Table  4). P323 falls 
outside of the RdRp catalytic site and within a relatively 
uncharacterized interface domain that may interact 
with proteins that regulate viral polymerase function 
[120]. The correlation of this mutation with increased 
point mutations [121] elsewhere in the genome raises 
an intriguing hypothesis that P323L diminishes RdRp 
proofreading ability, leading to increased mutation 

rates. Moreover, P323L downregulates the associa-
tion of Nsp12 with the Nsp8 primase subunit (Table 4), 
reducing polymerase activity and viral replication [122]. 
Decreased replication could decrease symptomology, 
leading to reduced COVID-19 detection and greater 
population-level spread. It is important to characterize 
the cumulative effect of all mutations, as any reduction 
in transmission due to P323L could be compensated for 
by the co-existing D614G mutation. Multiple factors may 
contribute to the success of clade G and its derivatives via 
rapid spread with low detection in human populations 
[104].

Positively selected for residues within SARS-CoV-2 
Nsp6 [74, 123–126] are intriguing since Nsp6 is rela-
tively conserved in other coronaviruses [126] (Fig.  2, 
Table  2). SARS-CoV-2 Nsp6 inhibits IFN-1 responses 
[127] and may reduce delivery of viral factors to host lys-
osomes similar to its SARS-CoV ortholog [128] (Table 4). 
The Nsp6 L37F mutation may impair Nsp6 function 
[129], decreasing viral replication and causing increased 
asymptomatic infections [130]. A similar homoplasy 
occurs in MERS-CoV Nsp6 [74, 131] (Fig.  2), although 
the outcome of this mutation is unknown. The associated 
clade V mutation (Table  3) in ORF3a (G251V) reduces 
viral replication through decreased SARS-CoV-2 intravi-
ral ORF3a-S and ORF3a-membrane protein (M) binding 
affinity [132]. Nsp6 (L37F) and ORF3a (G251V) muta-
tions were likely selected to decrease pathogenicity and 
disease severity. A separate positively selected ORF3a 
mutation (Q57H) [111] characteristic of clade GH vari-
ants (Table  3) is speculated to increase ORF3a-S and 
ORF3a-M binding affinity, promoting virus replication 
[132]. The ORF3a viroporin is essential for SARS-CoV-2 
pathogenesis [133] and limits apoptosis in infected cells 
relative to its SARS-CoV ortholog [134], potentially con-
tributing to less severe disease outcomes.

Another mutation of interest (L84S) lies within ORF8 
[123, 124, 135], a protein implicated in evasion of host 
immune responses [136, 137] (Table 4). ORF8 was under 
strong directional selection at the beginning of both 
SARS-CoV-2 [124] and SARS-CoV outbreaks [138], 
supporting the theory that it facilitates zoonotic trans-
mission and adaptation in alternate hosts [139, 140]. 
However, the over-representation of ORF8 deletions 
in SARS-CoV with no apparent effect on viral survival 
[138] suggests that ORF8 may be dispensable in humans 
[139], and L84S mutations may not be significant. While 

This table illustrates positively selected for residues across multiple human coronaviruses. Shaded boxes represent proteins not encoded by the specific CoV species. 
Text in bold highlight mutations and deletions that were positively selected for and showed population-level expansion, while non-bolded text represents highly 
polymorphic sites. Sites are indicated as nucleotide (nt) position or amino acid (aa) position. Empty cells in the table represent lack of evidence for positive selection or 
lack of publications on positive selection within these regions

Table 2 (continued)

Table 3 Characteristic mutations detected in circulating SARS-
CoV-2 clades

Characteristic mutations for SARS-CoV-2 clades at the amino acid or nucleotide 
(*) levels

Clade Characteristic mutations References

L Reference Genome NC_045512.2 [94, 319]

V Nsp6: L37F
ORF3a: G251V

[95, 123, 129, 284]

S Nsp4: S76S
ORF8: L84S

[96, 285]

G 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: D614G

[104, 116, 117]

GH 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: D614G
ORF3a: Q57H

[121, 146]

GR 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: D614G
N: R203K
N: G204R

[123]

GV 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: A222V
S: D614G

[97, 150]

GRY 5’ UTR: C241T *
Nsp3: F106F
Nsp12: P323L
S: H69del
S: V70del
S: Y144del
S: N501Y
S: D614G
N: R203K
N: G204R

[89, 146]

O Variants without mutations characteris-
tic of other clades

[93, 94]
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L84S may be important in SARS-CoV-2 virulence and 
pathogenesis given ORF8’s role in attenuation of host 
immunity (Table  4), the continued decline of L84S 

representation among global SARS-CoV-2 sequences 
[93] suggests otherwise.

Mutations RG203KR within SARS-CoV-2 nucleopro-
tein (N) have become dominant and characteristic of 

Table 4 Putative functions of SARS-CoV-2 proteins

Findings are based on studies with SARS-CoV-2 proteins or SARS-CoV orthologs

Gene Protein Putative function References

Nsp1 Leader protein/host translation inhibitor Inhibits translation of host mRNAs and promotes expression of viral 
genes

[320]

Nsp2 Non-structural protein 2 Modulates host cell survival signalling pathways [321]

Nsp3 Papain-like protease Proteolytic cleavage of polyprotein to generate Nsps 1–3, and inhibi-
tion of host IFN responses

[322, 323]

Nsp4 Non-structural protein 4 Interacts with Nsp3 and host proteins to induce cytoplasmic 
autophagosomes for viral replication

[324, 325]

Nsp5 Chymotrypsin-like protease Proteolytic cleavage of polyprotein to generate Nsps 4–16 and media-
tion of Nsp maturation

[326, 327]

Nsp6 Non-structural protein 6 Interferes with delivery of viral factors to host lysosomes and inhibits 
IFN-1 responses

[127, 128]

Nsp7 Primase complex Forms a complex with Nsp8 which interacts with RdRp (Nsp12) to 
transcribe viral genome

[120]

Nsp8 Primase complex Forms a complex with Nsp7 which interacts with RdRp (Nsp12) to 
transcribe viral genome

[120]

Nsp9 ssRNA-binding protein Binds to viral ssRNA and promotes replication [328]

Nsp10 Non-structural protein 10 Interacts with 3′–5′ exoribonuclease (Nsp14) and 2′ O-ribose methyl-
transferase (Nsp16) and promotes methylation of viral mRNA caps

[328]

Nsp11 Non-structural protein 11 Released from cleavage of pp1a and forms N-terminal sequence of 
Nsp12 in pp1ab frameshift product. No known function

[328]

Nsp12 RNA-dependent RNA polymerase (RdRp) Replicates and transcribes viral genome [326]

Nsp13 Helicase Unwinds dsRNA and dsDNA in viral replication [326, 329]

Nsp14 3′–5′ exoribonuclease/N7-guanine methyltransferase Proofreading during RNA replication (exoribonuclease) and viral mRNA 
capping (methyltransferase). Interacts with Nsp10

[330]

Nsp15 Nidoviral uridylate-specific endoribonuclease RNA processing and inhibition of host IFN responses [331]

Nsp16 2′ O-ribose methyltransferase Activated by Nsp10 for methylation of viral mRNA caps [332]

S Spike glycoprotein Cleaved into S1 and S2 subunits. S1 binds host receptor (ACE2) while 
S2 mediates viral and host membrane fusion

[333]

ORF3a Orf3a viroporin Activates NF-kB and NLRP3 inflammasome to contribute to cytokine 
storm. Promotes viral release and may induce necrotic cell death

[334–336]

ORF3b Accessory protein ORF3b IFN-1 antagonist [337]

E Envelope protein A viroporin involved in viral assembly, budding, and pathogenesis. 
Forms CoV envelope

[338, 339]

M Membrane protein Forms viral membrane and induces N and S localization to the ER-
Golgi-Intermediate compartment for virion assembly and budding

[340]

ORF6 Accessory protein ORF6 IFN-1 antagonist [144]

ORF7a Accessory protein ORF7a SARS-CoV ortholog inhibits bone marrow stromal antigen 2 mediated 
tethering of virions to host plasma membrane

[341]

ORF7b Accessory protein ORF7b SARS-CoV ortholog attenuates viral replication [342]

ORF8 Accessory protein ORF8 Inhibits IFN-1 activity and downregulates MHC-1 expression to evade 
host immunity

[136, 137, 144]

N Nucleocapsid Involved in immune evasion through IFN-1 antagonism, nucleocapsid 
formation, viral RNA replication, and virion assembly

[144, 145]

ORF9b Accessory protein ORF9b Suppresses IFN-1 responses through inhibition of TOM70 [343]

ORF9c Accessory protein ORF9c Interferes with IFN signalling, antigen presentation, and complement 
signalling. Induces IL-6 signalling

[344]

ORF10 Accessory protein ORF10 Interacts with a Cullin 2 RING E3 ligase complex to potentially modu-
late ubiquitination

[345]



Page 9 of 21Singh et al. Virol J          (2021) 18:166  

clade GR [123]. RG203KR alters N protein morphology, 
resulting in increased intraviral protein binding affin-
ity [132]. N-M interactions are necessary for CoV viral 
assembly [141, 142], while N-envelope (E) interactions 
potentially increase production of virus-like particles 
[143]. Therefore, increased intraviral N protein binding 
affinities could contribute to increased viral replication. 
RG203KR may also confer immune evasion properties 
to SARS-CoV-2 considering the rapid expansion of clade 
GR and the role of N protein in antagonizing human anti-
viral immune responses [144, 145] (Table 4). The global 
prevalence of variant B.1.1.7 has generated clade GRY 
from clade GR [146].

Clade GV is associated with the European variant 20A.
EU1 containing spike NTD mutation A222V [105, 147]. 
A222 is located within a speculated B lymphocyte epitope 
[148] that may impact neutralization by human antibod-
ies, consistent with observed SARS-CoV-2 re-infection 
with a clade GV variant [149]. The rise in prevalence of 
variant 20A.EU1 and clade GV is most likely associated 
with the relaxing of travel-associated restrictions across 
Europe near the end of the summer of 2020 consider-
ing the rapid decline in prevalence of global clade GV 
sequences in 2021 [97, 150].

Ongoing SARS‑CoV‑2 evolution and the rise 
of variants of concern
An aforementioned trend across HCoVs is positively 
selected residues within RBD [84, 85, 88, 138, 139, 151–
154] (Fig. 2, Table 2), which facilitates interactions with 

host cellular proteins, providing a crucial target for the 
host immune response [155]. Accordingly, SARS-CoV-2 
RBD is rapidly evolving, leading to novel variants [156, 
157] (Fig.  2, Table  2). SARS-CoV-2 variants associated 
with greater transmissibility, altered virulence, or the 
ability to escape natural infection- and vaccine-mediated 
immunity or current diagnostic tests are called Variants 
of Concern (VOC; Table 5).

Early data suggest that RBD mutation N501Y emerged 
recurrently in multiple regions due to increased trans-
missibility, and is associated with multiple VOCs [89, 99, 
100, 158] (Table 5). SARS-CoV-2 N501 serves as one of 
six critical S residues required for binding to ACE2 [159] 
and N501Y increases viral infectivity through greater 
S-hACE2 binding affinity, likely due to stronger inter-
actions with ACE2 residues Y41 and K353 [160]. Other 
critical residues within the SARS-CoV-2 RBD (L455, 
F486, Q493, S494, Y505) [73] should be closely moni-
tored as mutations may increase SARS-CoV-2 transmis-
sion in humans and facilitate zooanthroponotic transfer 
to other species.

Early studies of the highly transmissible B.1.1.7 variant 
[77, 161] originating in the United Kingdom described 
17 co-occurring non-synonymous mutations or dele-
tions [89], which are more than expected since the muta-
tion rate of SARS-CoV-2 is estimated to be around 
2.4 ×  10–3 per site per year [135]. In addition to N501Y, 
spike 69-70del, Y144del, and P681H mutations are specu-
lated to be of functional significance [78, 162] (Table 5). 
Spike NTD 69-70del variants have shown significant 

Table 5 SARS-CoV-2 variants of concern (as of July 22, 2021)

Variant names are based on Rambaut et al.’s classification [347]. Other commonly used names are mentioned in brackets. Mutations mentioned here are non-
synonymous mutations that are speculated to confer some functional significance. These variants contain other mutations that may also contribute to viral 
advantages [89, 99–101]. Updated information about SARS-CoV-2 VOCs can be accessed through the GISAID resource (https:// www. gisaid. org). Dates of emergence 
are based on retrospective analyses. S, spike. del, deletion

Variant Mutations of interest Clade Date of emergence First detection in 
human population

Country of likely origin References

B.1.1.7 (VOC2020 
12/01, 501.V1, 
Alpha)

S: 69-70del
S: Y144del
S: N501Y
S: D614G
S: P681H

GRY September, 2020 December, 2020 United Kingdom [89, 99, 190]

B.1.351 (501.V2, Beta) S: K417N
S: E484K
S: N501Y
S: D614G
S: A701V

GH October, 2020 December, 2020 South Africa [100, 101, 190]

P.1 (501.V3, Gamma) S: K417T
S: E484K
S: N501Y
S: D614G

GR July, 2020 January, 2021 Brazil [101, 190, 194]

B.1.617.2 (Delta) S: L452R
S: T478K
S: D614G
S: P681R

G October, 2020 December, 2020 India [196, 201, 202, 346]

https://www.gisaid.org
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transmission expansion, with speculated increased resist-
ance to antibody-mediated neutralization [92] likely 
associated with sequestration of a protruding spike 
loop [78]. Y144del confers antibody resistance due to 
loss of a negative surface charge [163, 164]. Spike P681 
is located in a known CoV mutational hotspot [83, 101] 
directly adjacent to the SARS-CoV-2 S1/S2 furin cleav-
age site (aa 681–684) [89, 165, 166] which promotes virus 
entry into host cells [167]; mutation in this region may 
increase cleavability and membrane fusion to enhance 
infectivity. P681 is also within an antigenic epitope recog-
nized by B and T lymphocytes, implicating host immune 
response alterations [168]. P681H may therefore repre-
sent adaptive evolution to evade host immunity, although 
confirmatory studies are required. Another speculated 
B.1.1.7 mutation at ORF8 (Q27stop) causes early protein 
termination [89]. Truncated ORF8 has been associated 
with milder symptoms [169], although increased mor-
tality is also associated with the B.1.1.7 variant [79, 170]. 
Emerging mutations in B.1.1.7 must be monitored and 
investigated, such as the sub-lineage VOC202102/02 that 
contains the RBD mutation E484K, which is associated 
with antibody resistance [171–173].

Another variant containing N501Y is B.1.351, which 
was first detected in South Africa in December, 2020 
[100], but likely originated in October, 2020 [101]. This 
variant contains eight non-synonymous mutations in S, 
including three within the RBD (K417N, E484K, N501Y) 
and three in the NTD that may contribute to increased 
transmissibility [100, 101]. Both N501Y and E484K are 
located within the receptor binding motif (RBM) of the 
RBD. E484 interacts with residue K31 on hACE2 [174], 
one of two critical hACE2 RBD-interacting residues 
[159, 175], suggesting that E484K may affect the binding 
affinity of SARS-CoV-2 with hACE2. However, prelimi-
nary studies demonstrate contradictory binding affinity 
observations [176, 177]; further studies are required. In 
addition, E484K confers some resistance to antibody-
mediated neutralization of SARS-CoV-2 in vitro [91, 154, 
178–181], consistent with the observation that E484 is 
an important recognition site for neutralizing antibod-
ies [181, 182], and raising concerns about E484K being 
an immune escape mutation appearing in multiple inde-
pendent SARS-CoV-2 lineages [172, 183–186]. Similarly, 
spike K417 is within a neutralizing antibody epitope 
[100]. Preliminary evidence suggests K417N reduces rec-
ognition by human antibodies [187]. K417N may impact 
RBD-hACE2 binding affinity and stabilize E484K, though 
these effects remain uncertain [91, 177, 187, 188].

Mutations within the RBD (K417T, E484K, N501Y) 
have also been observed in the P.1 variant (Table 5) that 
likely originated in Brazil and has since spread to other 
countries [101, 189–191]. In contrast, the P.2 variant only 

contains E484K, likely acquired through convergent evo-
lution with P.1 [186, 192]. Little is known about the P.1 
variant, but based on emerging data [193], we speculate 
that the RBD mutations likely affect antibody-mediated 
neutralization and contribute to increased transmission 
as observed with B.1.351. Mutations shared between the 
B.1.1.7, B.1.351, and P.1 variants are speculated to have 
arisen independently, indicating convergent evolution 
[194] (Table  5). These variants also share Nsp6 3675-
3677del, with unknown functional significance [194, 
195].

VOC B.1.617.2 was first identified in India in late 2020 
and contains positively selected for mutations within the 
spike protein, namely, L452R, T478K, and P681R, along 
with the D614G mutation [196] (Table  5). Mutation of 
the uncharged and hydrophobic leucine (L) residue into 
the positively charged and hydrophilic arginine (R) resi-
due at spike position 452 allows for an increased electro-
static interaction with negatively charged ACE2 residues 
E35, E37, and D38, likely leading to the observed increase 
in S-hACE2 complex stability, viral infectivity, and virus 
replication [196, 197]. Furthermore, abolition of the 
hydrophobic surface patch through the L452R mutation 
led to reduced antibody-mediated neutralization and 
cellular immune recognition [196–198]. Spike muta-
tion T478K has also been shown to increase electrostatic 
interactions in the S-hACE2 complex and may increase 
binding affinity similar to the S477N mutation [199]. The 
mutation T478K is within a neutralizing epitope close to 
the immune evasion mutation E484K/Q that is present 
in multiple SARS-CoV-2 variants, including the ances-
tral B.1.617 lineage and current sub-lineages B.1.617.1 
and B.1.617.2 [181, 200, 201]. T478K in combination with 
L452R may contribute to increased resistance to neutrali-
zation by monoclonal antibodies, convalescent sera, and 
vaccinated sera [201, 202]. B.1.617.2 has increased repli-
cation efficiency in human airway systems relative to the 
B.1.1.7 lineage due to enhanced spike cleavability, which 
is likely augmented by the P681R mutation [201, 203]. 
P681R is known to increase cell-to-cell fusion in the res-
piratory tract, potentially increasing transmissibility and 
pathogenicity in infected individuals [201, 203]. B.1.617.2 
may thus represent a VOC with similar resistance to 
antibody neutralization as B.1.351 and transmissibil-
ity beyond B.1.1.7 [200]. Recently discovered B.1.617.2 
sequences containing the K417N mutation (AY.1/AY.2 
lineages) must be monitored for altered antibody resist-
ance and increased transmissibility [204].

Circulating variants containing an N439K mutation 
(e.g. B.1.141 and B.1.258) also show some degree of neu-
tralization evasion [91, 198, 205], raising speculations 
about SARS-CoV-2 variants escaping vaccine-mediated 
immunity. Emerging data suggest that antibodies elicited 
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by mRNA vaccines (BNT162b2 and mRNA-1273) have 
20% and 16.7% reduced neutralization capacity, respec-
tively, against the B.1.1.7 variant [206, 207] and 67% and 
84% reduced neutralization capacity, respectively, against 
the B.1.351 variant [208, 209]. Neutralization capacity of 
sera from BNT162b2 and mRNA-1273 vaccinated indi-
viduals have 87% and 52% reduced neutralization capac-
ity, respectively, against the B.1.617.2 variant [200, 201, 
210]. The emergence of B.1.1.7 sub-lineages containing 
the E484K RBD mutation (e.g. VOC202102/02) pose 
additional challenges for vaccine-mediated immunity 
[171, 173, 183]. While complete vaccine failure is unlikely 
[206, 207, 211–215], immune escape variants may create 
a need to update current SARS-CoV-2 vaccines. Moni-
toring the emergence of novel SARS-CoV-2 variants 
is especially important as vaccine-mediated immunity 
provides stronger selective pressure for SARS-CoV-2 
evolution.

Other variants of interest
Multiple emerging SARS-CoV-2 lineages are not con-
sidered VOCs but are still of interest and may become 
VOCs in the future. One variant, B.1.525, was first 
detected in December, 2020, in the United Kingdom 
and Nigeria and has since spread internationally. B.1.525 
contains spike mutations 69-70del, E484K, Q677H, and 
F888L. Q677P/H has emerged in disparate variants and 
may affect spike cleavability similar to P681H [158, 216–
218]. F888L lies between the fusion peptide and heptad 
repeat region of the S2 subunit [219] and may impact 
host cellular entry, similar to the impact of heptad repeat 
mutations in MERS-CoV [139, 220].

Variant B.1.526 from New York contains spike muta-
tions D253G, D614G, and A701V, along with either 
E484K or S477N, creating two major B.1.526 sub-line-
ages. NTD mutation D253G reduces antibody-mediated 
neutralization [163]. A701V, shared by variant B.1.351 
[100], is in the S2 subunit adjacent to the furin cleav-
age site [219] and may impact SARS-CoV-2 cleavability 
and infectivity. S477N, also found in variant 20A.EU2, 
increases binding to hACE2 [221, 222] and reduces anti-
body-mediated neutralization [178, 223], likely due to its 
position within a neutralizing epitope [224]. D614G and 
E484K are shared with multiple other variants (Table 5) 
and likely play a role in B.1.526 expansion.

P681H found in variant B.1.1.207 from Nigeria [162] 
may enhance infectivity and modulate host immunity as 
speculated for B.1.1.7. Similar effects are expected for 
P681R in variant A.23.1 that emerged in Uganda [183, 
225]. The UK A.23.1 sub-lineage VUI-202102/01 also 
contains immune escape mutation E484K [171, 183]. 
Preliminary data show increased ACE2 binding affinity 
and reduced antibody-mediated neutralization for the 

P.3 variant from Brazil, which contains the spike muta-
tions E484K, N501Y, and P681H [164]. Data also suggest 
increased ACE2 binding affinity and reduced neutraliza-
tion profile for the B.1.620 variant from Central Africa, 
which contains spike mutations E484K, S477N, D614G, 
and P681H [226]. Other notable variants include N440K 
variants from India [227] that have increased transmis-
sibility, and the R.1 variant from Japan which contains 
potential immune escape mutations W152L and E484K 
[228].

B.1.427/B.1.429 are two emerging lineages that origi-
nated in California in May 2020 [229], however, circulat-
ing B.1.427/B.1.429 variants are now being replaced by 
more transmissible variants, such as B.1.1.7 and B.1.617.2 
[97, 230]. B.1.427/B.1.429 contains multiple positively 
selected for mutations within the S protein, such as S13I, 
W152C, and L452R, all of which contribute to some 
degree of resistance to antibody-mediated neutraliza-
tion [229]. L452R has convergently evolved in the B.1.617 
lineage and contributed to enhanced SARS-CoV-2 infec-
tivity [196–198] (Table  5). Spike mutation L452Q was 
detected in the recently emerged C.37 lineage from Peru 
and is expected to have similar impacts on virus infectiv-
ity as the L452R mutation [231]. C.37 also shares Nsp6 
3675-3677del with B.1.1.7, B.1.351. and P.1 variants [231], 
and contains the spike RBD mutation F490S that has 
been associated with reduced antibody-mediated neu-
tralization [91, 178]. These variants need to be monitored 
for transmission expansion and convergent evolution.

Multiple factors will determine the evolutionary 
trajectory of SARS‑CoV‑2 and the COVID‑19 
pandemic
The future of SARS-CoV-2 and COVID-19 remains 
uncertain. Many virological, immunological, and 
social factors will influence the epidemiological trajec-
tory of this virus. One particularly intriguing question 
that remains unanswered is whether SARS-CoV-2 will 
become endemic in the human population, like HCoVs 
NL63, OC43, HKU1, and 229E [232–234].

Currently, endemic HCoVs cause seasonal outbreaks 
[235], with increased circulation observed in the win-
ter in temperate regions [232]. Cold temperatures are 
favourable for enveloped viruses [236], as lower tem-
peratures enhance lipid ordering of the viral envelope, 
allowing the virus to remain protected outside the host 
for longer periods of time [237, 238]. Low temperatures 
also enhance aerosol transmission of respiratory viruses 
by allowing virions to remain suspended in the air for a 
longer duration [239]. Furthermore, cold and dry envi-
ronments can have immunosuppressive effects on a 
potential host, further increasing the chances of infection 
[240–242]. Evidence suggests decreased transmission of 
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SARS-CoV-2 in warmer climates [243–246], likely due to 
degeneration of viral structural stability with increasing 
temperatures [247]. Decreased transmission of SARS-
CoV-2 was not observed during the summer of 2020 
[11, 248] likely because of the sheer number of cases 
and an immunologically naïve population. For seasonal-
ity to have an observable impact on SARS-CoV-2 trans-
mission, the basic reproduction number  (R0) must drop 
from its current estimate of around 2.5 to less than 1 
[249]. In theory, SARS-CoV-2  R0 should drop substan-
tially when population herd immunity is reached through 
natural infection and vaccination, allowing for meteoro-
logical factors to influence viral transmission, leading to 
seasonal fluctuations. Other intervention mechanisms 
such as effective social distancing, quarantine, and con-
tact-tracing will contribute towards reducing the  R0 for 
SARS-CoV-2 [250, 251].

Multiple studies have demonstrated short-lasting 
immunity to endemic HCoVs, with waning of protective 
immunity and re-infections common within 80 days [85] 
to one year [252–255]. There is no observable associa-
tion between endemic HCoV re-infection and infection 
severity [254]. Waning of humoral immunity within a 
year [256–260] and re-infection of immunocompetent 
patients [149] have been demonstrated for SARS-CoV-2, 
suggesting the possibility of annual outbreaks [233, 261]. 
A weaker initial immune response and sharper decline 
of antibody levels have been reported in individuals with 
asymptomatic SARS-CoV-2 infections [257, 258]. Thus, 
multiple exposures to SARS-CoV-2 may be required to 
develop sufficient immunity to prevent future re-infec-
tions, which may also be influenced by adaptive evolution 
of SARS-CoV-2 in the human population (Table 5). The 
duration of protection through vaccination and natural 
exposures is being closely monitored, along with anti-
genic evolution of SARS-CoV-2 that may lead to immune 
escape. Indeed, the evolutionary trajectories of endemic 
HCoVs suggest that SARS-CoV-2 will evolve to co-exist 
with the human population. However, with roll-out of the 
first ever HCoV vaccines, predicting the evolutionary tra-
jectory of SARS-CoV-2 remains challenging.

An important factor that may influence ongoing SARS-
CoV-2 transmission is the potential for cross-protection 
by humoral and cellular immune responses induced by 
related endemic HCoVs. There is evidence of cross-pro-
tection within the same genera of HCoVs [233, 262, 263], 
but not between genera [264]. Thus, immunity against 
beta-CoVs HCoV-OC43 and HCoV-HKU1 may provide 
some protection against COVID-19 [265–268], while 
immunity against alpha-CoVs HCoV-229E and HCoV-
NL63 will likely provide little to no protection. Anti-
body-dependent enhancement has not been observed 
for SARS-CoV-2 [269, 270], ruling out the possibility of 

increased disease severity by cross-reactive antibodies 
generated against endemic HCoVs. The high frequency of 
CoV recombination during co-infections raises the addi-
tional concern that SARS-CoV-2 recombination with sea-
sonal HCoVs could generate novel CoVs [131, 271, 272]. 
The role of HCoV co-infection has not been reported or 
extensively studied and will be especially important for 
immunocompromised and elderly individuals.

Conclusions
SARS-CoV-2 continues to evolve and adapt to the human 
population as highlighted by the emergence of novel vari-
ants. Mutations within the spike protein of SARS-CoV-2 
variants confer increased transmissibility and some 
degree of resistance to antibody-mediated neutraliza-
tion. However, recurrent attenuating mutations, such as 
P323L, L37F, G251V, and Q27stop have also been iden-
tified and are speculated to reduce disease severity. The 
appearance of attenuating mutations suggests that SARS-
CoV-2 is evolving to become less pathogenic in humans. 
The current SARS-CoV-2 pandemic is driven by asymp-
tomatic, pre-symptomatic, or otherwise unrecognized 
cases [273–275]. Reduced pathogenicity of SARS-CoV-2 
combined with mounting population-level immunity will 
likely cause a reduction of severe cases of COVID-19, 
leading to an apparent abatement of the pandemic, fol-
lowed by endemic circulation of low pathogenic SARS-
CoV-2 variants. A similar evolutionary trajectory may 
have led to the establishment of current low-pathogenic 
endemic HCoVs [276].

Monitoring future emerging variants of SARS-
CoV-2 is critical to determine control measures for the 
COVID-19 pandemic. Mutations speculated to reduce 
immune recognition, such as within the spike protein 
(S13I, 69-70del, W152L, A222V, K417N, N439K, S477N, 
T478K, E484K/Q, F490S, P681H/R) and nucleoprotein 
(RG203KR) should be studied for reduced sensitivity to 
natural or vaccine-induced immunity. Other factors, 
such as zoonotic and zooanthroponotic transmission of 
SARS-CoV-2, cross-protection through immunity against 
endemic HCoVs, and the possible creation of novel ani-
mal reservoirs through zooanthroponosis should con-
tinue to be investigated as they may have significant 
implications on the evolutionary trajectory of SARS-
CoV-2 and the COVID-19 pandemic.
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