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Inferring evolutionary relationships based on comparative analysis of genomic data re-

mains a fundamental question in biology. Conventionally, these analyses involve cumbersome

and computationally expensive steps such as assembly, gene annotation, and multiple sequence

alignment. Alternatively, phylogenomic analyses can be conducted using alignment-free ap-

proaches, often using k-mers to compute the evolutionary distance. However, despite being fast

and accurate, k-mer-based methods have their own challenges. Crucially, this approach can be

used with low-coverage sequencing of samples (i.e., genome skims), which can reduce costs.

A major challenge in analyzing genome skims is the presence of extraneous sequences
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in genomic data. We show that contaminants reoccurring in multiple samples can impact k-

mer-based distance estimation and thus phylogenetic inference. To combat this problem, we

introduce CONSULT, an algorithm for efficiently removing extraneous reads from sequencing

samples. We demonstrate that CONSULT has higher accuracy for contamination detection

than leading methods such as Kraken-II and improves distance calculation for genome skims.

Additionally, we show that CONSULT can be used to distinguish organelle reads from nuclear

reads, improving the quality of skims-based mitochondrial assemblies.

Another challenge in using k-mer-based phylogenetic methods is the absence of a solid

statistical procedure to estimate uncertainty, limiting the use of these methods in practice. To

address this problem, we developed an algorithm for quantifying the uncertainty of alignment-

free phylogenies using subsampling and relying on sound statistical principles. We demonstrate

that our method is reasonably fast and can correctly identify uncertain branches on phylogenies

constructed using real and simulated datasets.

As a final challenge, we tackle the problem of updating phylogenies with new genomes

while avoiding alignment or even assembly. As sequencing data becomes readily available, de

novo tree reconstruction becomes infeasible. However, placement into an existing tree provides

an efficient alternative. Attempts in alignment-free phylogenetic placement have both scalability

and accuracy limitations. We approach this problem by representing each genome as a vector of

k-mer frequencies and leveraging machine learning to estimate distances between such vectors.

We demonstrate that our method, kf2d, outperforms existing k-mer-based approaches in distance

calculation and allows placing new samples on phylogenies constructed from heterogeneous data

types.
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Introduction

Molecular sequence comparison is one of the most basic and fundamental problems

in computational biology, and has been widely used to study the evolution of whole genome

sequences and gene regulatory regions, gene function prediction, sequence assembly, and finding

the relationships among microbial communities [193]. The most widely used methods for

molecular sequence comparison are alignment-based including the Smith-Waterman algorithm

[219], BLAST [4], BLAT[103], etc. Although alignment-based approaches are most accurate

and powerful for sequence comparison when they are feasible, their applications are limited in

some situations.

First, alignment-producing programs assume that homologous sequences comprise a se-

ries of linearly arranged and more or less conserved sequence stretches. However, this assumption

is often violated for a wide range of data types [259]. Thus due to duplications, translocations,

large insertions/deletions, and horizontal gene transfers each genome becomes a mosaic of

unique lineage-specific segments (i.e., regions shared with a subset of other genomes) [193].

This situation makes it difficult to use alignment-based methods to investigate the relationship

among these whole genome sequences. Second, alignment-based approaches are generally

memory-consuming and time-consuming and thus are of limited use with multigenome-scale

sequence data. Even for more mathematically optimal dynamic programming solutions time

complexity is in the order of the product of the lengths of the input sequences [62]. Therefore,

despite the wealth of tools and more than 15 years of research [7, 48, 49, 104, 179, 210] the

problem of long sequence alignment is not fully resolved [61]. Finally, a somewhat arbitrary se-

lection of various alignment parameters (e.g., substitution matrices, gap penalties, and threshold
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values for statistical parameters) which varies between applications can greatly affect the quality

of downstream results [249]. For all these scenarios, alignment-free methods for genome and

metagenome comparison provide promising alternative approaches.

Alignment-free sequence comparison is defined as any method of quantifying sequence

similarity or dissimilarity that does not use or produce alignment (assignment of residue–residue

correspondence) at any step of algorithm application [259]. Alignment-free approaches are

computationally less expensive (as they generally have linear complexity depending only on

the length of the query sequence [31]) and therefore suitable for efficient whole genome com-

parisons [25, 101, 118, 217]. Alignment-free methods might also be resistant to shuffling and

recombination events and are applicable when low sequence conservation cannot be handled

reliably by alignment [241].

Among the many types of alignment-free sequence comparison approaches, word-count-

based approaches are most popular due to their easy adaption to NGS data [221]. These methods

first count the number of occurrences of word patterns (e.g., k-mers; subsequences of length

k) along a sequence or in a NGS sample using different algorithms such as Jellyfish [139],

DSK [195], and KMC 2 [54]. Secondly, similarity/dissimilarity measures such as Hamming dis-

tance or Jaccard index are defined between any pair of sequences based on the k-mer frequencies.

Constructed distance matrices after being phylogenetically corrected by various evolutionary

models (typically Jukes and Cantor 1969) are utilized in a variety of downstream analyses. All

things considered, given their ease of use and abundance of choices (more than 100 techniques

to consider [241]) alignment-free sequence approaches have been successfully applied to a

variety of different problems including the study of evolutionary relationships of whole genome

sequences and gene regulatory regions, comparison of metagenomes and metatranscriptomes,

binning of contigs, detection of horizontal gene transfer, and virus-host infectious associations

based on next generation sequencing (NGS) data [193].

Our interest in alignment-free sequence analysis is also due to their extended ability

to efficiently handle low coverage (1-2×) sequencing data, that are collectively referred to as
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genome skims [45, 225, 244]. The term ‘genome skimming’ was first coined by Straub et al.

[225] as a way of ‘navigating the tip of the genomic iceberg’; that is, shallow sequencing of

DNA that results in comparatively deep sequencing of the high-copy fraction of the genome

(plastome, mitogenome, and repetitive elements) [59]. This is understood since traditionally

genome-skimming data were used primarily for assembling the over-represented organelle

genome using one of several approaches that have been developed [1, 3, 8, 41, 57, 77, 97].

However, when genome skimming approaches discard the majority of nuclear reads (as much as

99% of the sequence data) it is not only wasteful, but can also limit the power of discrimination

at, or below, the species level [30]. We believe that the application of alignment-free methods

to the analysis of the full shotgun skimming samples (we refer to them as bags of unassembled

reads) will allow us to extract biological knowledge from these data to the full extent. This vision

has already been pursued by several methods that enable computing distances among skims

[64, 112, 204, 231, 258] and using those distances for phylogenetic placement [14, 18].

In our current work, we aim to build upon existing methodologies to develop scalable

approaches for the analysis of big genomic low-coverage datasets in order to answer questions

in areas of biodiversity, including sample identification, population genetics, and derivation of

more accurate phylogenomic relationships.
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Chapter 1

On the impact of contaminants on the
accuracy of genome skimming and the
effectiveness of exclusion read filters

The ability to detect the identity of a sample obtained from its environment is a cor-

nerstone of molecular ecological research. Thanks to the falling price of shotgun sequencing,

genome skimming, the acquisition of short reads spread across the genome at low coverage, is

emerging as an alternative to traditional barcoding. By obtaining far more data across the whole

genome, skimming has the promise to increase the precision of sample identification beyond

traditional barcoding while keeping the costs manageable. While methods for assembly-free

sample identification based on genome skims are now available, little is known about how these

methods react to the presence of DNA from organisms other than the target species. In this paper,

we show that the accuracy of distances computed between a pair of genome skims based on k-mer

similarity can degrade dramatically if the skims include contaminant reads; i.e., any reads origi-

nating from other organisms. We establish a theoretical model of the impact of contamination.

We then suggest and evaluate a solution to the contamination problem: Query reads in a genome

skim against an extensive database of possible contaminants (e.g., all microbial organisms) and

filter out any read that matches. We evaluate the effectiveness of this strategy when implemented

using Kraken-II, in detailed analyses. Our results show substantial improvements in accuracy as

a result of filtering but also point to limitations, including a need for relatively close matches in
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the contaminant database.

1.1 Introduction

Anthropogenic pressure and other natural causes have resulted in severe disruption of

the global ecosystems in recent years, including loss of biodiversity and invasion of non-native

flora and fauna. Conservationists, struggling with an unprecedented rate of extinction, are using

innovative approaches to measure the changing biodiversity of the planet. Genome sequencing

provides an attractive alternative to physical sampling and cataloging, as falling costs have

made it possible to shotgun sequence a reference specimen sample for at most $10 per Gb (with

another $60 for sample prep). However, the analysis typically requires assembling and finishing

a reference genome, which can still be prohibitively costly. It could be many decades before

the biodiversity of our planet is represented in the form of finished genomes (and cataloged

genomic variants) and before biodiversity measurements for each population can be acquired on

an ongoing basis.

The standard molecular technique for measuring biodiversity at the organismal level is

barcoding [80, 205, 229], which involves DNA sequencing of taxonomically informative and

group-specific marker genes (e.g., mtDNA COI [80, 213], 12S/16S [240], plastid genes [87],

and ITS [208]). Existing reference databases and computational methods enable measurements

of biodiversity using barcodes [192, 224, 229]. However, since barcodes are short regions, their

phylogenetic signal is limited [81]. For example, 896 of the 4,174 species of wasps could not be

distinguished from other species using COI barcodes [186].

As an alternative, a genome skim is a low-coverage acquisition of short reads from a

sample, typically around 1-5 Gbp [45, 59], providing 0.1-10× coverage, and usually insuffi-

cient for assembling nuclear contigs. Falling sequencing costs have made genome-skimming

cost-effective while providing richer data than barcoding, but the data is harder to analyze.
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Skimming applications often rely on assembling organelle genomes [e.g., 136, 244] from their

over-represented reads. This approach throws away the vast majority of the reads, potentially

limiting the resolution. Moreover, organelle genomes may not represent the rest of the genome

and are not always easy to assemble. Ideally, we should use both reads from both nuclear and

organelle genomes. However, methods that seek to mine all information from genome skims

must be assembly-free and map-free and face additional challenges.

Recently, Sarmashghi et al. [204] developed a method, Skmer, that accurately computes

the genomic distance between genome skims by simply analyzing k-mers (short substrings of

length k) in both genome skims. Skmer is based on three principles. First, as observed by

[168], the Jaccard index, J (the size of the intersection of two sets divided by the size of their

union) between k-mer sets of the two genomes can be computed efficiently. Second, J can be

used to estimate the genomic distance (D) between two species by carefully accounting for

dependence on coverage, sequencing error, and genome length. Third, both coverage and error

rate can be computed from genome skim data by modeling histograms of k-mer frequencies. By

combining these three principles, Skmer provides excellent accuracy in estimating distances

between genome skims. These distances can then be used for taxonomic identification and

phylogenetic placement [18] of query genome skims with respect to a set of reference genome

skims. Previous results have shown high accuracy and increased resolution compared to barcodes

when using genome skims for taxonomic identification [18, 204].

The Skmer methodology, however, completely ignores the very real possibility that a

genome skim includes extraneous reads originating from other species, often bacteria, viruses, or

fungi, that cohabit inside the biological organism. With a slight abuse of terminology, we refer to

all reads originating from species other than the target species being identified as contamination.

Contamination of genome skims is unavoidable in many cases as microorganisms that co-exist

with a species are often hard or impossible to separate from the original sample. To make

matters worse, lab protocols used for genome skimming also can add human and other forms of

contamination. The standard organelle-based analyses of skims manages to deal with sequencing
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Figure 1.1. Model. (a) Definition of terms. Contaminating k-mers change the estimated Jaccard
in a complex manner. (b) Assuming equal lengths for the two genomes, all quantities are
measured as a fraction of the number of k-mers in each genome: 1−ρ of the k-mers are shared
between the base genomes; additionally, out of a total of a = c1

1−c1
+ c2

1−c2
contaminants, aH

1+H
are shared, making the total number of shared k-mers equal to (1− ρ)+ aH

1+H and the total
number of distinct k-mers in the union equal (1+ρ)+ a

1+H . See A.1 for details. (c) Impact of
false positives and negatives in contaminant removal in the disjoint contaminant scenario. We
keep (1− cl)(1− fp)+ cl fn of the k-mers in each set, with the intersection proportion being
(1− cl)(1− fp)(1−ρ).

errors and contamination by focusing on and assembling a small portion of the reads. These

contaminates have the potential to mislead the Jaccard-based calculation of distance using

methods such as Skmer. Thus, to take advantage of all reads across the genome, contaminants

will have to be dealt with.

In this paper, we study the impact of contamination on Skmer estimates of the genomic

distance. We then study whether the negative impact of contamination can be reduced using

“exclusion filters”: search every read of a skim against a library of all known contaminants

(e.g., bacterial, fungal, and viral genomes), filter out reads that map to the library, and use the

remaining reads to compute the distance. The efficacy of this exclusion filtering approach is

unclear and can depend on several factors, which we thoroughly explore here. We study these

effects both based on a theoretical model and in careful simulation and empirical analyses using

a leading read matching tool called Kraken-II [250].
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1.2 Material and methods

1.2.1 Theoretical Exposition

Consider two genomes of equal length and separated by genomic distance D, defined

as the portion of positions that do not match in a perfect alignment of the two genomes. Let ρ

denote the proportion of k-mers in one species that are absent in the other. The Jaccard-index of

k-mers is given by (Fig. 1.1a):

J =
Intersection of k-mer sets

Union of k-mer sets
=

1−ρ

2− (1−ρ)
=

1−ρ

1+ρ
.

We model the evolutionary process producing the two genomes as follows. Starting from one

genome, mutate each position independently with probability D to get the second genome. With

this model, ρ becomes a random variable. Ignoring the dependency between adjacent k-mers

and assuming k-mer independence, we get E(ρ) = 1− (1−D)k. As [64] show, we can estimate:

D̂ = 1−
(

2J
1+ J

) 1
k

(1.1)

Skmer further models coverage and sequencing error and uses

D̂ = 1−
( 2(ζ1L1 +ζ2L2)J

η1η2(L1 +L2)(1+ J)

)1/k
(1.2)

where ηi, ζi, and Li are parameters related to coverage, error, and genome length, all automatically

estimated by Skmer from k-mer profiles. As the simpler equation is easier to manipulate, we use

(1.1) in our theoretical exposition. However, our empirical results will use the Skmer software,

which uses (1.2). Throughout the paper, we use the relative error to quantify any error in

estimating D:

relative error of D̂ =
D̂−D

D
(1.3)
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where D is the true genomic distance and D̂ is the estimated genomic distance.

Impact of contamination

Contamination can clearly alter Jaccard and hence the estimated genomic distance

(Fig. 1.1a). The impact of contamination depends on factors such as the amount and exact

composition of contaminants. For exposition purposes, let us assume that an identical proportion

of k-mers (denoted by cl) of both skims are contaminated, and contaminant k-mers are entirely

disjoint between the two genome skims. Then, J becomes a function of cl:

J =
(1− cl)(1−ρ)

2− (1− cl)(1−ρ)
≈ (1− cl)(1−D)k

2− (1− cl)(1−D)k

where the approximation is achieved by replacing ρ with its expectation.

Under these assumptions, Jaccard reduces under contamination and extent of reduction

depends on cl and to a lesser degree on D (Fig. B.1a). If the impact of contamination on Jaccard

is ignored, distance will be overestimated at a level that strongly depends on the true distance

(Fig. B.1b). When D is sufficiently high, substantial levels of contamination result in relatively

low errors. However, with smaller distances, contamination can drastically increase the relative

error. At D = 0.1% (e.g., within species differentiation), 3% contamination is enough to cause

100% relative error. Thus, under the simple disjoint contamination model, contamination has a

large negative impacts only when the distance between base genomes is small.

Disjoint contamination assumption, however, is quite strong. When both samples are

contaminated with the same species (say, human), the assumption of disjoint contaminant k-mers

can mislead. To generalize, consider two genomes with an equal number of k-mers L. Let

c1 denote the fraction of the k-mers from sample 1 that are contaminated. Then, the ratio

of contaminated k-mers to true k-mers in genome 1 is given by c1
1−c1

(A.1). Define c2 in an

analogous fashion for genome 2, and let a = c1
1−c1

+ c2
1−c2

(Fig. 1.1a). Removing the disjoint

contamination assumption, define the Jaccard index between the k-mers of the contaminants of

9



the two samples as H. Then, as shown in A.1 and Figure 1.1b,

J =
(1−ρ)(1+H)+aH
(1+ρ)(1+H)+a

. (1.4)

Plotting this formula shows that depending on H, the estimated Jaccard may over-estimate or

under-estimate the true Jaccard, and converting the Jaccard to distance without any consideration

of contaminants can lead to over or under-estimate the true distance (Fig. 1.2a). Once again,

error depends on the true distance D, where most dramatic error happens when distance is low

and H is also low. Introduction of H shows that contamination can result in both over and under-

estimation of error. In particular, for larger values of D, if contaminants are similar between

the two samples, relatively low levels of contamination can lead to severe under-estimation of

distance. For example, with D = 0.18%, if the samples are contaminated at 5% with somewhat

similar species with H = 0.5, the estimated distance will be under-estimated by 43%.

Impact of exclusion filtering

One approach to deal with contamination is using exclusion filters: search all reads in

a genome skim against a (potentially incomplete) library of known contaminants and filter out

reads that match the library. This approach will impose a trade-off between two types of possible

errors. A false positive (FP) occurs when we incorrectly filter out a read that belongs to the

target genome. A false negative (FN) occurs when we fail to filter out a read that belongs to

contaminants, perhaps due to an insufficient similarity between the read and genomes included

in the exclusion library. The exact choice of the method and parameters used for mapping reads

to reference contaminant libraries, in addition to the composition of the reference library, create

a trade-off between FP and FN error. The trade-off poses an important question: which type of

error, FP or FN, is more damaging? Falling back on the disjoint contaminant k-mer assumption,

we can approximate impact of FP and FN on J given one more assumption: A k-mer shared

between the two genome skims is either kept or removed from both skims.

10



a) D: 0.002 D: 0.007 D: 0.02 D: 0.06 D: 0.18

0% 25% 50% 75% 100%0% 25% 50% 75% 100%0% 25% 50% 75% 100%0% 25% 50% 75% 100%0% 25% 50% 75% 100%
−100%

0%

100%

400%

900%

Contaminant Jaccard (H)

es
tim

at
ed

−
tr

ue

tr
ue

 D

cl
50%

40%

30%

20%

10%

5%

2%

1%

b) D: 0.002 D: 0.007 D: 0.02 D: 0.06 D: 0.18

0% 20% 40% 0% 20% 40% 0% 20% 40% 0% 20% 40% 0% 20% 40%

10%

1%

100%

300%

FN rate ( fn )

es
tim

at
ed

−
tr

ue

tr
ue

 D

30%

20%

10%

0%

fp cl

2%

20%

Figure 1.2. Theoretical modeling. (a) Impact of contamination on the genomic distance
estimated from Jaccard according to theoretical expectation assuming contaminant k-mers of the
two skims have a Jaccard of H (1.4). For several D and varying H, relative error is shown for
eight contamination levels cl = c1 = c2. (b) Error in Skmer distance (computed using (1.1), with
Jaccard approximated using (1.5)) in the presence of filtering and with the disjoint contaminant
k-mer assumption for various levels of FP portion ( fp), FN ( fn) rate, and cl . Red lines show the
error in the absence of filtering. y-axis is in square root scale and k = 31.

Let fp be the portion of all k-mers that we remove by mistake (FP) and fn be the

portion of the contaminant k-mers that we fail to remove (FN). The proportion of k-mers

shared between genome skims after filtering is (1− cl)(1− fp)(1−ρ) (Fig. 1.1c). Additionally,

(1− cl)(1− fp)+ cl fn of the k-mers in each set are retained after filtering for the total number

of unique k-mers to be 2((1− cl)(1− fp)+ cl fn)− (1− cl)(1−ρ)(1− fp). Thus,

J =
(1− cl)(1−ρ)(1− fp)

(1− cl)(1+ρ)(1− fp)+2 fnc
(1.5)

By plotting this equation as we vary the four parameters (D, cl , fp, and fn), we observe

that filtering can successfully reduce the impact of contamination under many but not all

conditions (Figs. 1.2b and B.2). Filtering can be very effective in making Jaccard index close

to what we would obtain without contamination, and overall, Jaccard is more sensitive to FN
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errors than it is to FP errors. Impact of filtering on genomic distance depends on the level of

contamination, false negatives, and most of all, the true genomic distance. Reassuringly, in

this model, the estimated accuracy of distance after filtering is reasonably high in most cases

(Figs. B.2 and B.3). Nevertheless, in the most challenging cases, filtering cannot sufficiently

reduce the error. With D = 0.2%, unless fn is low or cl is moderate, error can be very high.

Overall, fp errors are less damaging than fn. Practically, it seems that with fn ≤ 0.2, highly

accurate estimates of distance are possible unless contamination levels are very high and the

genomic distance is very low.

1.2.2 Empirical analyses using Kraken-II

Our empirical experiments validate the effectiveness of exclusion filtering, focusing on a

leading k-mer-based read mapping tool called Kraken-II, originally designed for metagenomics

and adopted here for contamination filtering. We start by describing Kraken-II and then detail

the setup for the four experiments performed.

Kraken

Kraken-II works by mapping all k-mers of a read to k-mers in a reference library and

calls a read a match if the number of k-mers matching is strictly larger than a user-provided

threshold called the confidence level (α). Kraken-II uses LCA-mapping to find lowest taxonomic

level at which the read can be confidently matched. It also uses wild-carding s random positions

of each k-mer [36] to increase the sensitivity of matches. We will explore both k and α settings

but fix other parameters. We set minimizer length l = k or use the maximum allowed l value

(31) for reference databases built with k ¿ 31. We set s, the number of wild-card positions, to

its maximum allowable value, l/4. We design our reference Kraken-II libraries to include a set

of potential contaminants and as query, we use the bag of all reads in a genome skim (details

described below). We will use microbial genomes to simulate contamination, and thus, all

reference libraries we use are microbial. In contrast, our base genomes are Eukaryotic (plants or
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insects).

Experiments

We present four experiments that explore the impact of D (equivalently, ρ), cl , fp, and

fn. In addition, we test the running time of Kraken-II. Below, we describe the setup used in each

experiment.

Exploring FN and FP of Kraken-II. We start by examining the sensitivity of Kraken-II to

two parameters: k and α . We also consider completeness of the reference library, which is

expected to have a direct effect on fp and fn rates. A lack of sufficiently close genomes to the

contaminant can prevent Kraken-II from finding a match, and presence of genomes similar to

non-contaminant genomes can cause FP matches. Thus, we define a third variable, M, as the

genomic distance between a query and its closest match in the library. We control M by carefully

selecting species included in the reference library and those used as query.

To control M, we use an available reference phylogeny of 10,575 bacterial and ar-

chaeal genomes [257]. Five genomes from this set had IDs that did not exist in NCBI any-

more. We assigned remaining genomes to the reference library (10,460 genomes), the query

set (100), or both (10). Based on the available phylogeny, we select 10 sets of 10 query

genomes such that all genomes in a set have similar patristic (tree) distance to their clos-

est leaf in the tree, not counting the query genomes. These sets had mean tree distance of

{0.01,0.02,0.04,0.06,0.09,0.10,0.18,0.23,0.57,1.20} and at most 25% divergence from the

mean. We also randomly chose 10 genomes to be added to both reference and query sets. Then,

for each of the 110 query genomes, we used Mash to compute M: its minimum distance to

any of the 10,470 reference genomes. We then binned the 110 queries into 10 bins based on M

(Table C.11). Finally, we added 10 plant genomes (Table C.12) to the set of query genomes in

every bin. Plant species are from a different domain of life compared to the reference set and

should not match the library; thus, they allow us to measure FP and TN rates.
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We built Kraken-II reference libraries for selected k values (ranging from 23 to 35) using

the 10,470 bacterial and archael reference genomes. Kraken-II only allows adding additional

custom genomes of interest to its existing standard reference libraries. We used Kraken-II RefSeq

viral genome database as a base library. All custom reference libraries were constructed without

masking low complexity sequences.

We used the ART simulation tool [88] with HiSeq 2500 single read profile, 150bp read

length with 10bp standard deviation to generate ≈1.4GB of synthetic reads (1000× coverage for

each genome) for all query genomes. Every query genome was then downsampled to 1G for

normalization purposes.

Reads in each query bin were queried against every constructed reference library for each

k using several confidence levels (0 – 0.3). We then calculated TP, FP, FN, TN for every bin. TP

is the count of bacterial/archael reads matched to Bacterial or Archaeal domains; FP is the count

of plant reads matched to Bacterial or Archaeal domains; TN is the number of plant reads that

are left unclassified by Kraken; FN is the number of unclassified bacterial/archaeal sequences.

We use standard definitions of FPR=(FP)/(FP+TN) and Recall=TP/(TP+FN) and construct ROC

curves in the standard fashion for every tested condition.

Skmer distances (simulation). We next study the impact of contamination on distances com-

puted from pairs of genome skims simulated from Drosophila assemblies. We first emulate

the disjoint contaminant scenario by contaminating one of the two genome skims at a level cl .

We used D. simulans w501 to simulate the contaminated genome skim and used D. simulans

WXD1, D. sechellia, or D. yakuba to simulate the uncontaminated skim. Based on assemblies,

the distances between D. simulans w501 and the three other species are 0.2%, 2.1%, and 6.3%,

respectively, and we treat these as true distances. To add contamination, we use the same 110

query genomes described earlier but bin M into four ranges: [0,0], (0,0.05], (0.05,0.15], and

(0.15,0.25], which include 10, 43, 19, and 17 species, respectively, corresponding to a total size

of 37Mb, 76Mb, 37Mb, and 35Mb. Since our base Drosophila genomes are roughly 150Mb in

14



size, we can add up to 25% contaminant reads for all bins, except for the (0,0.05] bin, where

we can add up to 60%. We concatenated all the genomes in each bin and used ART with the

same settings indicated above to generate contaminant reads, which we then mixed with reads

simulated from the main genome at levels varying from 0% to 60% (for the second bin) or to

25% (for all other bins) for a total of 0.1Gb per skim (thus, no more than 1× coverage). These

read contamination levels translate to similar k-mer contamination levels (Table C.3). We report

the relative error in estimated distances as we increase the contamination level, both with and

without Kraken-II filtering. Kraken is run with the same reference library used in the previous

analysis.

We then simulate a scenario where both genome skims are contaminated with overlapping

sets of species. Here, we only use the M ∈ (0,0.05] bin and fix read contamination level to

15%. To control H, we randomly split bacterial reads into three parts: two unique parts and

one part that served as an overlap. Every sample was generated by mixing unique and overlap

contaminant portions with Drosophila genome skims at controlled ratios, with overlap set to 0%

– 50%. Since unique parts can have evolutionary similar species, even the case of 0% overlap

results in some k-mer overlap. Thus, we estimated contamination overlap (H) empirically using

Jellyfish [139] and saw it varied between 11% and 41% (Table C.4). Finally, to have H = 0%,

we added the disjoint set experiment with M ∈ (0,0.05] and cl = 15% to this set as well.

Skmer distances on real data. To move beyond simulations, we also evaluate effectiveness on

real data with real contaminants. To do so, we utilized data from recent Drosophila assembly

study by Miller et al. [155]. We subsampled available short read sequencing data (e.g., SRA files)

to obtain 100Mb genome skims for 14 Drosophila species. We removed adapters, deduplicated

and merged paired end reads using BBtools [40]. Then, we determined distances for all pairs of

genomes before and after filtering them with Kraken-II. Distance error for every pair of genomes

was estimated relative to the true distance defined to be the value computed by running Skmer

on corresponding assemblies. In this experiment, we used a standard reference library available
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from Kraken-II distribution. This database includes RefSeq assemblies of all available bacterial,

archaeal, viral and human (GRCh38) genomes as well as the UniVec Core subset of the UniVec

database (a total of 168483 genomes, as of July, 2019). We used default Kraken-II settings.

Impact of filtering on phylogeny. On the real Drosophila data, we also infer phylogenetic trees

from distances and measure phylogenetic error. To estimate the phylogeny, we use FastME 2.0

software [115] with JC69+Γ [98] model of evolution. Alpha parameter of JC69+Γ model is set

equal to 1, which is the default value in FastME. We infer phylogenies from distance matrices

obtained from assemblies and from genome skims before and after filtering. As the gold standard

reference tree used for error calculations, we use the tree obtained from Open Tree of Life

(OTL) [84](Fig. B.4). We estimated branch lengths of the true tree using OTL tree topology and

assembly distances under JC69+Γ model. We measure phylogenetic error using three metrics. (1)

Normalized Robinson and Foulds [197] (RF) distance is total number of branches not matching.

(2) Normalized weighted RF (wRF) distance is similar but each present or absent branch in each

tree is weighted by the absolute difference between its lengths in the two trees, and then the total

sum is normalized by the sum of branch lengths of the two trees. (3) Fitch-Margoliash [69] is

the weighted least squares error (FME) for species i, given as: Q(i) = ∑i ̸= j (Di j/di j−1)2 where

Di j is the (corrected) distance between species i and j, and di j is sum of the branch lengths on

the path connecting i and j on the phylogeny inferred using D. We also report cumulative FME

of a phylogeny, which is Q = ∑
N
i=1 Q(i). Denoting FME error on true and estimated phylogenies

with Q(i) and Q̂(i) respectively, relative FME error is defined similarly to (1.3).

1.3 Results

1.3.1 Sensitivity of Kraken-II (FN and FP analysis)

The ability of the default version of Kraken-II (k = 35,α = 0) to find a match in the

database is a direct function of M, the distance of the query to the closest match (Figs B.5
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Figure 1.3. Sensitivity analysis of Kraken-II. (a) For three selected values of k and two
selected values of α , the lines show recall for different bins of M (x-axis). Each line is labelled
with its associated FPR. Note that FPR is a function of the plant genomes, which are identical
across bins; thus, FPR is not a function of the match parameter M. (b) ROC curves for all k and
α values across different bins of M, reduced to 5 ranges for ease of visualization (boxes). All k
were tested with α {0.0, 0.05, 0.1, 0.15, 0.2, 0.3}. Additionally, k=28 was tested with α {0.01,
0.02, 0.03, 0.04}. See Figure B.7 for all 10 bins.

and 1.3a). When the query has a close match in the library (e.g., D < 0.05), Kraken-II is able

to match 80% – 100% of reads, which would result in tolerable fn rates of 20% or less. As M

increases, the ability of Kraken-II to classify degrades linearly with M up until around M ≈ 0.3

where Kraken-II fails to classify almost all reads (Fig. B.5). Interestingly, when Kraken-II finds

a match, it is often able to classify the read all the way down to the species level (Fig. B.6).

Consistent with these results, when mixed plant/microbe skims are queried using the

default Kraken, the recall of the filtering step is reasonably high (e.g., > 85%) and the FP is low

(4.5%) for M ≤ 0.05 (Fig. 1.3a). When 0.05 < M ≤ 0.1 or 0.1 < M ≤ 0.15, there is a substantial

reduction in the recall to 67% and 56%, respectively; for 0.15 < M, recall is less than 33%, and

thus filtering is not effective in those conditions.

Given the low recall in some conditions and our expectation that FP error is less damaging

than FN, one may aspire to increase the sensitivity of Kraken-II by adjusting its parameters k and

α . However, our careful analysis of FP versus FN shows very limited ability to control the rates
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in a reasonable range (Figs. 1.3ab and B.7). Many settings of k and α result in FP error above

50% and often close to 100%. Many of the settings also have high FP without improving recall

compared to default settings (Figs. 1.3b). The only settings that seem to provide a reasonable

trade-off between FPR and recall are k ∈ {35,32,28} and α ≤ 0.05. Focusing on these settings

(Fig. 1.3a), we observe that setting k = 28 and α = 0 provides a substantial increase in recall

but increases FPR to unacceptable levels (55%). k = 32 improves recall compared to the default

setting for M ≥ 0.05 bins by a consistent but relatively small margins (5–8%), but also increases

the FPR to 8.5%. Overall, changing parameters do not result in substantial improvements over

the default settings.

1.3.2 Impact of filtering on Skmer distances (simulated contaminants)

Disjoint contaminants. Focusing on simulated contamination between pairs of Drosophila

genome skims, when only one species is contaminated, increasing the contamination level results

in increasing error in estimated Skmer distances, going up to 90% error for D = 2% and 1000%

for D = 0.2% when cl = 60% (Fig. 1.4a). As theory suggested, here, the strongest detrimental

effect appears for D = 0.2%.

Filtering using default Kraken-II dramatically reduces the error when the contaminant

has an exact or close match in the reference library (Fig. 1.4a). For M ≤ 0.05, remarkably

high levels of contamination are tolerated after filtering. For example, for 0 < M ≤ 0.05 and

D = 2.1%, even with high cl in 25% – 50%, distances have only 0.3% – 4% relative error after

filtering. For D = 6.3%, error after filtering is never more than 5% for M ≤ 0.05. Even in the

most challenging case of D = 0.2%, cl = 25% leads to only 6% error after filtering in contrast

to 206% error before filtering. Despite the improved accuracy overall, in some cases, filtering

can increase the error slightly but noticeably, perhaps due to FP filtering of correct reads. For

M = 0 and D = 6.3%, if contamination is below 5%, no filtering is better than filtering, which

always results in ≈0.6% relative error regardless of the level of contamination. Interestingly, in

some cases, filtering can result in underestimation of distances (e.g., up to 1% for D = 2.1% and
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Figure 1.4. Filtering on simulated Drosophila genome skims. Relative error of Skmer
distances without (dashed) and with (solid) Kraken-II filtering. Three pairs of Drosophila are
chosen to be at true distance D = 0.2%, D = 2.1%, or D = 6.3% (rows). Contaminants are
selected such that they are at distance M from their closest match in the reference contaminant
library. (a) Simulating contaminants in only one of the two species (disjoint contaminants) for
four ranges of M (columns) and various levels of contamination (x-axis). (b) Contaminating
both genomes such that the overlap between contaminants measured by Jaccard similarity is
0%≤ H ≤ 41%. Here, cl = 15% per species and M ∈ (0,0.05]. Y-axis is on square root scale;
see B.8 for normal scale and a range of k and α values.

M = 0).

In contrast, for contaminants without a close match with M > 0.05, filtering fails to fully

remove contaminants. Nevertheless, for 0.5 < M ≤ 0.15, filtering has substantial benefits. For

example, error is reduced from 180% and 16% with no filtering to 65% and 6%, respectively

for D = 0.2% and D = 2.1%. These reductions, while substantial, may not be sufficient. Even

worse, for M > 0.15, filtering has very little or no ability to reduce the error and decreases or

increases the error by very small margins.

Finally, changing k,α settings of Kraken-II does not consistently improve the accuracy
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above and beyond the default setting (Fig. B.8). Using α = 0.05 can very slightly reduce the

error for the D = 6.3% case but is not dramatically different. Thus, we will exclusively use the

defaults in the next experiments.

Overlapping contaminants. When both skims are contaminated with overlapping species, as

theory suggested, we see under-estimation of distances (Fig. 1.4b). These under-estimations can

be dramatic, going all the way down to −100% (i.e., the estimated distance is 0). Once again,

filtering using Kraken is able to improve results dramatically, resulting in relative error that does

not exceed 23% for D = 0.2% and is at most 6% in the remaining cases.

1.3.3 Impact of filtering on Skmer distances (real contaminants)

In the experiment on real unassembled Drosophila sequences, absent any filtering, Skmer

often under-estimates distances (Fig. 1.5a). The under-estimation of distances is consistent with

our theory assuming H > 0 (Fig. 1.2). Kraken-II run on these data identifies between 5.5%

and 15.1% of the reads as belonging to human or microbes (Fig. 1.5b). Interestingly, for most

Drosophila species, Kraken-II assigns ∼40–50% of the matched reads to one of three genera

(Homo, Acetobacter, and Clostridium), indicating that many pairs of genome skims have similar

contaminants (i.e., H > 0). Therefore, the under-estimations of distances matches the theory.

Consistent with this explanation, we observe that the error in computed distances is associated

with the percentage of the reads found by Kraken-II to be of human or microbial origin (Fig. B.9).

Filtering reads using Kraken-II dramatically reduces the errors in Skmer distances

(Fig. 1.5c). Over all pairs, the mean absolute relative error reduce from 9.1% before filter-

ing to 3.4% after filtering. In some cases, reductions are dramatic. For example, the relative error

in pairwise distances between D. virilis and D. bipectinata, D. eugracilis and D. mauritiana,

decreased from 46.2%, 36.9% and 35.9% before filtering to 1.3%, 0.8%, and 1.0% after filtering.

In a minority of cases, error increased after filtering but the increase in error never exceeded 8%

(D. mauritiana vs. D. mojavensis) while reductions in error could be as high as 45% (D. virilis
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Figure 1.5. Filtering of real contaminants. (a) Relative distance error before (upper triangle)
and after (lower triangle) filtering per pair of Drosophila species. Numeric lables on y-axis
represent percentage of reads filtered per species. (b) Percent of reads classified by Kraken-II
to different groups. “Other” corresponds “cellular organisms” (shared between domains). (c)
Change in the relative distance error after filtering. Positive values indicate a reduction in error.
Highlighted dots correspond to Drosophila pairs mentioned in the text. (d) Change in relative
FME error per species after filtering. Solid red line: a trend line fitted to the points.

vs. D. bipectinata) (Fig. 1.5c). The wide range of error reductions is unsurprising given that

the actual level of contamination in original sample can vary substantially. The magnitude of

improvement in distance estimates is positively correlated with the percentage of reads filtered

(Fig. 1.5c), the genomic distance (Fig. B.10a), and the magnitude of the error before filtering

(Fig. B.10b).

When there is error after Kraken-II filtering, it tends to be due to over-estimation of
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distance, as opposed to under-estimation observed before filtering, suggesting that Kraken-

II perhaps over-filters reads. Most extreme cases of over-filtering involve distance estimates

between a single species, D. mojavensis, and other species such as D. bipectinata, D. mauritiana

and D. virilis. The D. mojavensis is the only species with high levels of Kraken-II filtering but

low error rates in pairwise comparisons. Interestingly, D. mojavensis also includes the highest

levels of contamination from unknown sources.

1.3.4 Impact on phylogenetic reconstruction

The phylogeny inferred from Skmer distances computed from the assembly and modeled

using JC69+Γ is topologically identical to the gold standard OTL phylogeny, and its total FME

error is only 0.03 (Fig. B.4). However, the phylogeny estimated using the same method but using

genome skims has two wrong branches (RF = 4), and a FME of 1.26. Thus, absent filtering,

genome skims produce trees with substantial error.

Improvements in estimated genomic distances due to filtering translate to improved

phylogenetic trees. The tree topology improves only slightly and has one incorrect branch (RF =

2) after filtering. However, the improvements in estimated branch lengths, as reflected in wRF

and total FME error, are dramatic. Filtering leads to nearly 70% decrease in total FME metric,

from 1.26 to 0.38, and a similar level of reduction is observed for wRF (Table C.5). Examining

individual branch lengths, the phylogeny using filtered data is much more similar to the true tree

(Fig. B.4).

When we use FME to measure the impact of filtering on the phylogenetic error of

individual species, we observe patterns consistent with reductions in distance error (Fig. 1.5d).

Individually, majority of species have reduced FME after filtering, with the most extreme FME

reduction happening for D. virilis by nearly %350. Consistent with previous results, we observe

that the FME error of D. mojavensis does not decrease (but it also does not increase). As

expected, gains in phylogenetic error measured by FME correlate with the amount of filtering

performed by Kraken (Fig. 1.5d). However the correlation disappears when the species D. virilis
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is excluded from the analysis (Fig. B.11).

1.3.5 Running time

We assessed running time performance of Kraken-II on skims of five randomly selected

species from different domains of life (Table C.6) using both single-threaded and multi-threaded

(24 threads) modes of operation. Run time was found to linearly increase with the skim size,

regardless of the number of threads used (Fig. B.12). With 1Gb of reads, the running time of

the single-threaded version was below 100 seconds on an Intel Xeon CPU in all cases we tested.

Running Kraken-II with 24 threads reduced the speed by a factor of 10, offering a significant

improvement. The main limitation with Kraken-II is its significant memory requirement during

queries, which requires between 100Gb and 120Gb for our reference libraries.

1.4 Discussion

The use of genome skimming in the literature has mostly relied on assembled organelle

genomes [e.g., 45, 59, 136, 244]. These approaches rely on assembly construction pipelines [e.g.,

96] to remove contaminants (i.e., to avoid mis-assembly or to filter out mis-assembled contigs).

Elsewhere, we have advocated going beyond organelle genomes and using all reads in an

assembly-free fashion to increase the resolution of taxonomic identification [18, 204]. However,

this goal has been hampered by the presence of contaminants. This study showed a relatively

effective way of dealing with contamination, hence bringing genome skimming based on nuclar

reads one step closer to a reality.

Our study showed that Kraken-II is able to find contaminants that are within 5–10%

genomic distance to the closest match in a reference library in a computationally efficient manner.

Our modeling showed that FP errors were perhaps less detrimental to distance calculations than

FN. Analysis of different k and α parameters did not reveal parameter combinations that could

improve upon the using default settings of Kraken-II (k = 35,α = 0). Analyses of real data

demonstrated that contamination removal can dramatically improve Skmer distance estimates in
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the presence of contaminants. These more accurate distance metrics computed after filtering can

lead to reduced phylogenetic branch length error by up to 70% and can also improve the tree

topology.

1.4.1 Usefulness of Theoretical Models

Simplified assumptions allowed us to establish theoretical models of the impact of

contamination on estimated distance. The theory predicted that even small levels of similarity

between contaminants (H) can lead to substantial under-estimation of distance when distance

is large. Consistently, on the real data, where distances are often > 0.10, we observe under-

estimation by 5% or more in 47 out of 91 pairs. Our results also showed high levels of

similarity between contaminants of Drosophila genomes (where three genera made up 40–50%

of contaminants). Thus, there is a reassuring match between the theoretical model and the

observed data.

Kraken filtering improved accuracy on simulated and real data. On real data, it occasion-

ally over-corrected errors, leading to over-estimation of the distance. These may be due to FP

filtering, reduced coverage after filtering, or other factors not fully understood here. In our runs

of Kraken-II on real data, we observed 5%–15% filtering. The lower value can be explained by

∼5% Kraken-II FP rate when run under its default setting. The upper value is consistent with

∼10% contamination level, a scenario that can happen in real sequencing projects [149, 203].

Another potential use of the theory could have been developing filter-free methods of

dealing with contamination. Just as impact of coverage and error on Jaccard can be modelled,

we can compute the Jaccard index with no filtering but correct for the modelled impact of

contamination on Jaccard. Given reliable estimates of H, c1, and c2, we can manipulate (1.4) to

update (1.1) and obtain:

D̂ = 1−
((2+a)J

1+ J
− aH

1+H

)1/k
.
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Adding coverage and error models, we can update (1.2) to:

D̂ = 1−
((2+a)(ζ1L1 +ζ2L2)J

η1η2(L1 +L2)(1+ J)
− aH

1+H

)1/k
(1.6)

This equation allows for filter-free contamination-aware distance calculation. Unfor-

tunately, however, this equation is extremely sensitive to correct estimation of all parameters,

including H, c1, and c2 (Fig. B.13). Even small mistakes (1-5% relative error) in the estimated

contamination level or Jaccard can lead to dramatic errors in the estimated distance computed

using (1.6). Since computation of these parameters is noisy, we do not advocate this filter-free

method despite its theoretical elegance.

1.4.2 Filtering methods

Filtering requires a tool to answer queries of the following type: “Does this particular

read belong to one of the genomes in a given reference library?”. We chose Kraken-II for

answering these queries because of its high accuracy and reasonable scalability, as established

in several bench-marking studies from the metagenomics field [146, 151, 211, 254]. It is also

one of the most widely-used tools, with an active user support and stable and robust software

development. Further, we explored three parameters of Kraken-II: k-mer length, confidence score

and database content. Other parameters such as minimizer length (mostly relevant to storage and

not accuracy) and minimizer space count are not explored here [36]. In our experiments we kept

the number of wild-carding positions at its recommended upper limit and turned masking off but

there might be a set of settings which in combination with masking can produce a more optimal

sensitivity. We note that results from Wood et al. [250] have indicated that Kraken-II is not very

sensitive to particular parameter settings.

Alternatives to Kraken-II exist, and future studies can compare them to Kraken-II for

genome skimming. BLAST [4] and MegaBLAST [159] are the obvious alternatives but are an

overkill for our problem. These tools perform alignment and can yield higher sensitivity than
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Kraken-II but are orders of magnitude slower [251, 254]. However, they produce more precise

results (maps to individual species) than what we need.

Beyond alignment tools, most alternatives to Kraken-II are also k-mer-based, but differ in

the way reference library is constructed and how the query is run. k-mer-based methods inculde

LMAT [5], and CLARK(-S) [171, 172]. Benchmarking studies [e.g., 146, 151, 211, 254] do not

indicate any consistent advantage in using these methods over Kraken-II, and many of them are

slower. Among sufficiently fast tools are KrakenUniq [34], Bracken [127], and Centrifuge [105].

KrakenUniq is recommended for use in cases where FP can be detrimental (e.g. in pathogen

identification/diagnoses), but our theory and empirical data suggest FP is less important and FN

in our application. Bracken [127], an extension of Kraken-II, is focused on improving aggregated

abundance profiles, a feature that is irrelevant to our usage. Centrifuge [105] uses FM-index

lookups and within-species compression for mapping a read to one or more species. Compared

to Kraken-II, Centrifuge is slower and needs more time for building its reference database. We

leave its comparison to Kraken for future work.

A separate set of k-mer-based methods have been developed for finding RNAseq exper-

iments that include a specific k-mer. [220] introduced Sequence Bloom Tree (SBT) to allow

very fast queries of a k-mer versus a reference set of experiments by creating a hierarchy of

compressed bloom filters that store k-mers. Mantis [174] is an alternative to Bloom filters based

on counting quotient filters and is reported to be more memory efficient and faster that SBT-based

methods. While these tools have been developed mainly for RNASeq analyses, in the future, they

can perhaps be adopted for mapping reads to genomes with minimal changes to the algorithm. In

fact, Kraken might implement counting quotient filter data structure in its future releases [250].

Beyond these tools, many other metagenomic methods have been designed for finding

the taxonomic composition of a mixed sample [e.g., 125, 154, 165, 212]. However, these tools

do not seek to classify every read from anywhere in the genome; they are either marker-based or

use composition data. Thus, these tools are irrelevant to our queries.
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1.4.3 Remaining gaps

In our study, we focused solely on prokaryotic and human contamination. Real contami-

nation is more complex and can include eukaryotic microorganisms, traces of endosymbionts

and diet, and various forms of lab contamination. Thus, many applications will benefit from

more inclusive Kraken-II contaminant libraries. At a minimum, fungi need to be considered,

especially for plants. Moreover, removing reads from organelle genomes, which are expected to

be over-represented, may further improve accuracy.

Luckily, Kraken-II enables a straightforward mechanism for extending reference libraries.

Our future efforts will include building a larger library of potential contaminants that includes

fungi and perhaps expected sources of diet. However, such libraries will have to be group specific;

for example, for skimming insects, we can treat plants as contaminants whereas in skimming

plants, we should treat insects as contaminants. Ideally, individual genome skimming reference

libraries for a target group (e.g., all insects) should be furnished with a relevant contaminant

library especially designed for that group based on the knowledge of taxonomic groups expected

to be present in its diet and its endosymbiont. Clearly, this approach runs into its limitations

when endosymbionts or the diet happen to be from species with similar genomes to the target

species.

The fundamental limitation of our exclusion filtering approach is that we need to know

what broad group of species is expected to contaminate. This limitation is a result of our

implicit assumption that a read is correct unless we find evidence to the contrary. Even when

such biological knowledge is available – it may not be – this approach can fail to capture lab-

introduced contamination (e.g., a plant species that was contaminated with fish due to failures in

sample preparation or sequencing on the same lane).

Another issue is the inclusion of the human genome in the reference libraries to find

human contamination. When the target species is a mammalian species, reads that belong to the

target may incorrectly map to the human (false positive). For example, in a test analysis, we
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observed that Kraken-II maps roughly 20% of reads from rhinos to human. Luckily, this problem

has a simple solution. We can require a higher α when mapping to human. Thus, all reads can

be searched against the library with the default α = 0, and those reads that map to human can be

mapped again with a high α ; reads are classified as human contamination if they continue to map

at the higher α . We tested this approach on the rhino genome and observed that with α = 0.5,

only 2% of reads map to human. We have provided a script for performing this two-step filtering.

Inclusion filtering is an attractive alternative to exclusion filters. Given a reference

database of purified (perhaps using exclusion filters) genome skims, we can build a Kraken

reference library from species in the skimming reference library. Then, for every new query

genome skim, we can use that library to find reads that seem to match the broad taxonomic group

of interest and only include those reads in the calculation of Jaccard. Our results indicate that

this method would work only if the skimming reference database is so dense that each new query

skim is expected to have a close match (e.g., <5%) to one of the reference skims. Moreover,

this approach is predicated on the reference library being free of contaminants. Despite these

shortcomings, we believe this approach should be further explored in the future.

Finally, better algorithms for read matching seem necessary. Our results showed that

Kraken-II provides a reasonable solution. Nevertheless, the method remains incapable of finding

domain level matches when the closest match is moderately distant from the query. We believe it

is possible to design more sensitive read mapping techniques that can match a species even when

its closest match is > 10% distance. Note that in genome skimming, we are only interested to

know whether a read belongs to a large taxonomic group, as opposed to metagenomics, when

abundances and exact matches are desired. Given the less demanding needs of the skimming

application, we anticipate that better algorithms can be developed in future to increase recall

with little or no loss of specificity and speed.
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1.5 Availability of data and materials

Scripts and summary data tables are publicly available on https://github.com/noraracht/

kraken scripts.git. Raw data used in the manuscript is deposited in https://github.com/noraracht/

kraken raw data.git. Additionally, data repositories are stored in zenodo https://doi.org/10.

5281/zenodo.3588625 [188] and https://doi.org/10.5281/zenodo.3588569 [189]. The detailed

description of genomic datasets used in our experiments, accession numbers of the assemblies

and the exact commands used to simulate genome skims are provided in Supplemental Material.

Chapter 1, in full, is a reprint of the material as it appears in The impact of contaminants

on the accuracy of genome skimming and the effectiveness of exclusion read filters. Rachtman,

E.; Balaban, M.; Bafna, V., & Mirarab, S., Molecular Ecology Resources, 2020. The dissertation

author was the primary investigator and author of this paper.
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Chapter 2

CONSULT: Accurate contamination re-
moval using locality-sensitive hashing

A fundamental question appears in many bioinformatics applications: Does a sequencing

read belong to a large dataset of genomes from some broad taxonomic group, even when

the closest match in the set is evolutionarily divergent from the query? For example, low-

coverage genome sequencing (skimming) projects either assemble the organelle genome or

compute genomic distances directly from unassembled reads. Using unassembled reads needs

contamination detection because samples often include reads from unintended groups of species.

Similarly, assembling the organelle genome needs distinguishing organelle and nuclear reads.

While k-mer-based methods have shown promise in read-matching, prior studies have shown

that existing methods are insufficiently sensitive for contamination detection. Here, we introduce

a new read-matching tool called CONSULT that tests whether k-mers from a query fall within a

user-specified distance of the reference dataset using locality-sensitive hashing. Taking advantage

of large memory machines available nowadays, CONSULT libraries accommodate tens of

thousands of microbial species. Our results show that CONSULT has higher true-positive and

lower false-positive rates of contamination detection than leading methods such as Kraken-II

and improves distance calculation from genome skims. We also demonstrate that CONSULT can

distinguish organelle reads from nuclear reads, leading to dramatic improvements in skims-based

mitochondrial assemblies.
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2.1 Introduction

Despite the decreased cost of whole-genome sequencing, carrying out large-scale cohort

studies of non-human species using assembled genomes is still daunting [198]. Low-cost

sequencing projects remain an attractive alternative in biodiversity and ecological research

[59, 237]. Such studies can include a large number of samples sequenced at 1-2× read coverage,

often called genome skims [45, 225, 244]. Traditionally, genome-skimming data were used for

assembling the over-represented organelle genome using one of several approaches that have

been developed [1, 3, 8, 41, 57, 77, 97]. More recently, noting that skimming also produces a

large number of unassembled reads from the nuclear genome, researchers have been inspired to

use those unassembled reads to answer questions of interest in area of biodiversity, including

sample identification and population genetics [30]. This vision can be realized using assembly-

free and alignment-free methods where bags of unassembled reads represent both the labeled

species (i.e., reference) and the new sample that need to be identified (i.e., query), and these

bags of reads are directly compared. This vision has been pursued by several methods that

enable computing distances among skims [64, 112, 204, 231, 258] and using those distances for

phylogenetic placement [14, 18].

The broad use of skimming data for biodiversity is within reach, but a significant hurdle

remains: contamination. Analyzing raw unassembled reads without mapping to reference

genomes is particularly vulnerable to the presence of extraneous sequencing reads that do not

belong to the species of interest [53, 163]. Foreign DNA originating from parasites, symbionts,

diet, bacteria, and human are often mixed in with supposedly single-species genome skims

with the sequencing step further contributing to the contamination [10, 46, 201]. With a slight

abuse of terminology, we broadly refer to all external DNA outside of the genomes of interest as

contaminants. Such contamination has the potential to reduce accuracy of distances estimated

from genome skims. Using theoretical modeling and experimental studies, [189] have shown

that contamination can lead to over and underestimation of distances between genome skims
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using assembly-free methods such as Skmer.

Examination of raw reads for contamination detection is not a new challenge. Early filter-

ing techniques that relied on k-mer-coverage or GC content [145, 207, 234] missed contaminants

frequently and were replaced by methods that use sequence similarity to search against libraries

of potential contaminants [58]. The current practice is to re-purpose classification methods

used in the taxonomic characterization of microbial metagenomes to identify extraneous reads

in genomic datasets [58]. Metagenome classifiers use a variety of approaches, including read

alignment as nucleotide or protein, k-mer mapping, and alignment of marker genes [28, 178, 252].

Among these, marker-based and protein-based methods cannot be used for contamination re-

moval as they will only detect reads from markers or coding sequence (CDS) regions. Among

the remaining methods, k-mer-based methods [e.g., 5, 171, 172, 250, 251] are widely-used and

present a reasonable compromise between speed and sensitivity. In particular, thanks to its speed,

accuracy, and user-friendly implementation, Kraken-II [250] is widely used.

For contamination removal, unlike taxonomic classification, we are interested in detecting

the broad taxonomic group of a read. For example, given a skim from an insect, we seek to

find reads that can be rejected as belonging to Arthropoda. Thus, reads clearly belonging to

prokaryotes, fungi, or plants would be judged as contamination. Metagenomic classification

tools do classify reads at high levels but have not necessarily been optimized for higher level

classification. Instead, their goal has been increasing specificity (e.g., detecting species). While

detecting higher levels should be easier in principle, methods remain inadequate.

A shortcoming of metagenomic tools is their reduced ability to match reads when

evolutionary close species are not available in the reference set [124, 162, 173, 242]. Much

of the microbial diversity on earth is not reflected with close representatives in the reference

datasets [44, 60]. Thus, contamination removal tools should ideally identify the broad group of

species generating a read even when the reference is sparse. Current methods are not sensitive

enough. For instance, the phylum level classification lacks sensitivity when tested on novel

data [173]. We recently showed [189] that even at the domain-level, the sensitivity of the
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leading method Kraken-II [250] degrades dramatically as the distance to the closest match in

the database increases above ≈8% demonstrating that even leading metagenomic methods have

serious limitations for contamination removal. The limited sensitivity of methods has spurred

the development of many reference sets [55, 135, 185, 214], including recent whole-genome

databases with up to 25000 genomes [11, 175, 257]. However, despite their substantial size,

these databases (or close to a million prokaryotic genomes available on RefSeq and GenBank

databases) include only a fraction of the estimated 1012 extant microbial species [126]. Thus,

better reference datasets are not enough; we need more sensitive sequence matching methods.

Sensitive read matching tools can also help the organelle-based use of genome skims.

Assembling organelle genomes needs some way of telling apart nuclear and organelle reads.

Existing methods rely on either a seed-and-extend method where a seed (e.g., COI barcodes,

available for millions of species) is used to find a part of the organelle genome and seek

neighbouring regions in the assembly graphs [57, 77]. An alternative is to rely on differential

coverage of organelle and nuclear genomes to distinguish the two [1, 8]. Finally, when a close

reference genome is available, using that genome and read mapping can be used [e.g., 41].

However, given that more than 10,000 organelle genomes from across the tree of life are already

available in RefSeq, an alternative approach seems fruitful. We can build a database of all

existing organelle genomes and use a sensitive read matching tool to find which reads look like

they belong to the organelle genome. The assembly can then proceed simply using reads that

match the database at some distance.

In this paper, we introduce a read matching method and apply it to both contamination

removal and organelle read detection. Our method, called CONSULT (CONtamination Spotting

Using Locality-sensitive hashing Techniques), uses k-mers in a query sequence to search a

reference database and detects whether any of the k-mers match any sequence in the database

allowing for inexact matches up to a user-defined threshold. The general strategy is similar to

Kraken-II, except CONSULT allows mismatches using the Locality-sensitive hashing (LSH)

technique; however, unlike Kraken-II, CONSULT does not currently produce taxonomic assign-
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ments. We compare CONSULT to leading methods both as a contamination removal tool and as

a pre-processing step to help organelle assembly and show its superior accuracy in both settings.

2.2 Materials and Methods

2.2.1 CONSULT

Background: LSH and the motivation to use it

Exact k-mer matching is not sufficient for matching reads to a database when the closest

species in the reference set is evolutionary distant. Here, we always chose k > 20 so that k-mers

are expected to be unique except when they derive from a common ancestor (e.g., repeats). Let

us examine an example. Consider a case where the query genome is at distance d = 0.15 to its

closest match M in the reference set. While due to lack of independence among adjacent k-mers,

the probability of shared k-mers is hard to compute, we can still compute the expected number of

k-mers shared between a read of length L = 150 and M, which is only (L− k+1)(1−d)k = 0.4

for k = 35 (default in Kraken-II). Thus, most reads would not match the reference dataset.

Existing methods have recognized the need for inexact k-mer matching. For example, Kraken-II

masks 7 positions from each k-mer to increase the expected number of matches (1.3 in the

previous scenario), allowing many but not all reads to match. Note that most methods avoid

keeping all k-mers of reference genomes in the reference set, further reducing the expected

number of matches per read.

We approach inexact matching using LSH, which is a widely-used hashing technique

for clustering similar items or finding neighbors of a data points within a distance threshold

[78]. LSH uses a family of functions that hash data points into buckets so that data points near

each other, and only such data points, are located in the same buckets with high probability.

An LSH requires hashing functions that guarantee the probability of two items with distance

below a desired threshold p falling in the same bucket is higher than that of two items with

distances greater than a · p for some approximation factor a > 1. LSH schemes are known for
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many distances [6, 37, 50, 76, 108, 138, 161]. Among these, Hamming distance (HD) allows a

straight-forward hashing scheme, described below, that is also fast to compute. Moreover, HD

has a natural interpretation in terms of evolutionary distances and is readily defined between two

k-mers. With more complex schemes such as MinHash (corresponding to Jaccard index) and

edit distance, the interpretation of distances for k-mer is not immediately clear. Thus, here, we

focus on HD.

To designing LSH for HD, we hash a k-mer by simply picking a random (but fixed)

position in that k-mer, which would put two sequences of Hamming distance d in the same

bucket with probability 1− d
k . While this probability decreases with d (thus, forms a valid LSH),

the probability reduces only linearly with d and is not expected to be effective. However, this

simple hash function can be amplified using AND and OR constructions. Given two k-mers

represented by l hash functions each constructed using h randomly-positioned bits (i.e., AND

construction), the probability that at least one of the hash functions (i.e., OR construction) fall in

the same bucket is:

ρ(d) = 1− (1− (1− d
k
)h)l (2.1)

By varying k, l, and h, we can control ρ(d). Note that l = 1 and h = k−s reproduces the masking

strategy used by Kraken-II (s is the number of masked bits). Ideally, ρ(d) should be close to 1

for d ≤ p and should quickly drop close to zero for d≫ p. As shown in Figure B.14, ρ(d) can

produce an inverted S-shaped figure, and fixing k, many settings of l and h can lead to high ρ(d)

for low distances (e.g., d ≤ p = 3) and much lower ρ(d) for higher distances (e.g., d > 6).

CONSULT Algorithm

The inputs to CONSULT is set of reference genomes, represented as a set of k-mers, one

or more query reads, and two adjustable parameter: c and p. It seeks to address the following

problem: Are there at least c k-mers in a given read that each have at most distance p to some

k-mer in the reference library? While the naive solution to this problem requires comparing
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each k-mer in each query read to each k-mer in the library, CONSULT uses LSH to circumvent

that need. To build its library, CONSULT saves reference k-mers in a LSH-based lookup table

(Fig. 2.1a), further described below. At the query time, the lookup table enables CONSULT to

compare a given k-mer to a small (bounded) number of reference library k-mers to compute the

HD between the query and the reference k-mers. A read is called a match as soon as at least c

reference k-mers are found that match the query k-mer, meaning that their HD is no larger than

p (Algorithm 1).

Encoding k-mers. Let’s assume we have up to 2g k-mers in the reference set. Every reference k-

mer is encoded in a 2k-bit number and is kept in an encoding array of maximum size 2g (Fig. 2.1a).

We use a specific Left/Right encoding that allows very fast calculation of HD using a native

popcount instruction, an XOR, an OR, and a shift (see procedures LeftRightEncode and

HD in Alg. 1).

Lookup Table. To find a constant-size subset of k-mers for computing HD, we use LSH. Hash

values are generated by randomly selecting h 2-bits at randomly-chosen (but fixed) positions

from the 2k-bit encodings, repeating the process l times to produce l signatures. When building

the reference library, we save l one-to-many mappings from each k-mer signature to at most b

encodings, implemented as a lookup table (Fig. 2.1a). When a k-mer is added to the encoding

array, each of the l lookup tables is updated to point to its position, skipping a table if the

corresponding row is full. The lookup tables should ideally allow around 2g elements to

accommodate all encodings, which can be achieved by setting b ≈ 2g−2h. At the query time,

for each k-mer of a read and its reverse complement, we generate its l signatures (using a

trick enabled by x86 instruction “extended shift” (shld); see Signature in Algorithm 3,

supplementary material), which we use as index to a row of the lookup table; thus, the constant

number of k-mers we will test equals b× l.

Note that there is no guarantee that signatures will appear uniformly in the reference set
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Figure 2.1. Architecture. (a) A set-associative lookup table is indexed by h randomly-selected
LSH signatures extracted from each k-mer and points to the encoding array. (b) We show
(L− k+1)ρ(d): the expected number of k-mers that match a k-mer in a reference genome at
distance d from the read for various h, l settings; k = 32. Black line: k = 35, h = 35−7 and
l = 1, similar to default Kraken-II.

Algorithm 1. CONSULT algorithm. Here, we omit the set-associative design and tags and the
fast SHLD-based computation of signatures for simplicity; for the more complete pseudocode,
see Algorithm 3 in supplementary material. Notations: S : all reference sequences. Defaults:
m = 35,k = 32,h = 15, l = 2,b = 7, p = 3,c = 1, g = 33. [a] denotes {0, . . . ,a−1}.

procedure BUILDLIBRARY(S )
E← array of ≤ 2g elements, each 2k bits
for each i ∈ [l] do

Mi← h unique random numbers in [k]
Si← 22h array of lists of size at most b with

g-bit elements
K ← /0
for each a in {all m-mers of S } do ▷

Minimization
Append min{all k-mers of a} to K

j←−1 ▷ Pointer to E
for each k-mer a ∈K in pseudo-random order do

e←LEFTRIGHTENCODE(a)
Included← False
for each i ∈ [l] do

s← SIGNATURE(Mi,e)
if Si[s] is not full then

if not Included then
j← j+1
E[ j]← e
Included← True

Append j to Si[s]
save DB = (E,M,S) to disk

procedure SIGNATURE(M,e) ▷ Extract Signature
return 2h-bit number with bits i, i+ 32 of e for

i ∈M
procedure LEFTRIGHTENCODE(a) ▷ Encoding

R← 2k-bit zeros
for letter ai in a do

Ri = 1 if ai ∈ {G,T}
Ri+32 = 1 if ai ∈ {C,T}

return R
procedure HD(a,b) ▷ Hamming Distance

zlow,zup← lower and upper k-bits of a⊕b
return popcount(zup∨ zlow)

procedure QUERYREAD(r,DB) ▷ Query a read
l← 0
for k-mer a in r and its reverse complement do

e←LEFTRIGHTENCODE(a)
for each i ∈ [l] do

s← SIGNATURE(Mi,e)
for h ∈ Si[s] do

if HD(E[h],e)≤ p then
l← l +1
if l ≥ c then

return r is a match
return e is not a match
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(Fig. B.15) and so some rows can fill up sooner than others. To avoid losing k-mers to imbalances

(Table C.9), we use a set-associative lookup: The most significant t bits (default=2) of a signature

are used as a tag and the remaining 2h− t bits as the index to the lookup table. Thus, the table

has 22h−t rows, and each signature can have between 0 and b×2t entries. This design improves

utilization of the table (Figs. B.15, B.16). We sort elements in each row by the tag and save tag

boundaries.

HD calculation. Given that we use LSH, one may wonder why computing HD explicitly is

necessary. LSH can only provide probabilistic guarantees: k-mers from very distant genomes

have small but non-negligible chances of matching. Modern reference libraries for prokaryotes

include > 10,000 representatives genomes [175, 257], leading to 8 to 20 billion unique k-mers

after minimization (Table 2.1). Against such huge reference libraries, small probabilities of

incorrect matches blow up. To guard against false positives, CONSULT makes sure a k-mer is

called a match only if its actual hamming distance to a k-mer in the library is below p. Thus,

LSH is not the final arbitrator of distance; it only helps reduce hamming distance calculations. A

side-effect of computing HD is that it requires keeping reference library k-mers in memory. For

example, to keep 8 billion 32-mers in memory (our target in this study), we need 8×233 = 64G

bytes for encodings. Luckily, modern server nodes have upwards of 128GB RAM, allowing this

high memory usage.

Parameter settings. We will explore the parameters c and p in our experiments and will select

default values. The choice of k, l, and h presents intricate trade-offs between memory, running

time, recall, and precision. The total memory usage is roughly 2g−3× (2k+g× l) bytes. Fixing

g = 33, to fit the entire library in a 128GB memory machine, we need 2k+33× l ≤ 128. Since

k > 20 is needed for uniqueness of k-mers, we find l < 3. When the true distance of a read from

a species in the database is d, the expected number of k-mers matching is Ed = (L− k+1)ρ(d).

Despite dependencies, the number of k-mer matches is distributed around the mean. To avoid
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false positive matches, we want Ed to be far below 1 for high distances (e.g., d > 40%) and to

be high for small distances (e.g., d < 15%). As Figure 2.1b suggests, both l = 1 or l = 2 allow

this goal in theory. The expected number of matching k-mers is substantially lower for l = 1

than l = 2; for example, with k = 32, h = 15, and d = 3, we expect 48 and 27 k-mers matches,

respectively. Since CONSULT stops looking for matches as soon c k-mers match, fewer expected

matches translate to longer running times. Moreover, the equation shown in Figure 2.1b is an

over-estimate because not all k-mers in the reference library are in the memory. In preliminary

experiments, we observed that l = 1 could reduce sensitivity (Table C.10). Thus, we set l = 2 by

default.

We set k = 32 to reduce the chances of non-homologous k-mer matches. As Figure 2.1b

shows, h = 11 and h = 13 lead to many matches at a high distance, which would increase

the running time. We found that h = 15 balances memory usage, running time, and accuracy

well (Table C.10). Given this choice, since our goal is to allow g = 33, we should ideally set

b = 233−2h = 8, which unfortunately leads the library to be slightly larger than 128GB. Instead,

we set b = 7, making our total memory usage close to 122GB for 8 billion k-mers (Table C.10).

Note that indices of the encoding array become 33-bits, but using a simple trick (keeping two

encoding arrays along with an indicator bit), we can keep them as words.

Library construction. To build CONSULT databases, we first find all canonical 35-mers from

all genomes in the reference set using Jellyfish [139] and then minimize [196] them down to

32-mers; this step reduced the k-mer count to include in a reference library (Table 2.1). We

skip the minimization step for small reference datasets with < 1030 32-mers. Since the Jellyfish

output is pseudo-randomly ordered [137], further randomization is not needed.

2.2.2 Experimental validation

We test CONSULT in two applications: 1) as an exclusion-filtering method that seeks to

find and remove contaminants among nuclear reads, and 2) as an inclusion-filtering method that
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Table 2.1. k-mer counts (in billions) for reference datasets before and after minimization.
Number of k-mers corresponds to CONSULT databases constructed with default settings of
the tool. Number of 35-mers indicated for Kraken before minimization computed as a sum of
unique canonical k-mers extracted for Bacterial (20 billion) and Archaeal (0.5 billion) portion of
the database. Subsequently Bacterial and Archaeal Kraken k-mer lists were concatenated and
minimized. Mitochondrial k-mer set included all canonical 32-bp k-mers that were extracted
without minization. TOL [257] and GTDB [175] databases are from previous publications.

Dataset Species
count

35-bp k-mer
count(bln)

32-bp
minimizer
count(bln)

k-mers
included in
database

Bacteria/Archaea Kraken 159509 20.562188135 8.173628125 6.210280798
Tree of Life (TOL) [257] 10470 26.634996609 14.026601864 7.999975120

Genome Taxonomy Database
(GTDB) [175]

31910 22.840757178 19.376574640 7.999986111

Mitochondrial RefSeq 11138 NA 0.201551248 0.194863421

seeks to detect mitochondrial reads in a genome skim to facilitate better mitochondrial assembly.

Exclusion Filtering of contaminants

Reference libraries. For software validation and contamination removal testing we constructed

reference libraries from three available microbial genomic datasets: Tree of Life (TOL) [257],

Genome Taxonomy Database (GTDB) R05-RS95 [175] and bacterial and archaeal species

present in standard Kraken-II [250, 251] (Table 2.1). TOL was composed of 10,575 microbial

species and a reference phylogeny. Five genomes had IDs that did not exist in NCBI and were

excluded from this set. The remaining genomes were assigned to the reference set (10,460

genomes), the query set (100) or both (10). GTDB included 30,238 bacterial and 1,672 archaeal

genomes, that were selected to represent 194,600 samples clustered at 95% nucleotide identity.

The Kraken library consisted of 158,627 Bacterial and 882 Archaeal samples available in RefSeq

(as of July 2019). Kraken reference sets were used without modification. When building the

reference library for the TOL and GTDB libraries, Kraken-II removes genomes that can’t be

assigned a taxonomic ID using its automatic detection methods [250]. We have taken care to add

these genomes to the library by assigning the to the root of the taxonomic tree (but also show
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results without them).

Experiments. We performed three experiments to test exclusion filtering of contaminants.

(i) Controlled distances. Similar to [189], we first evaluated the ability of CONSULT to

find a match when the query is within a range of phylogenetic distances to the closest species

present in a database. To control the proximity of the query to its closest match in the reference

library, we selected 100 genomes from TOL such that their distances to their closest species in

the tree uniformly covered a broad range of [0.0-0.3). These queries were removed from the

reference set and remaining TOL genomes were used to construct CONSULT database. We also

randomly selected 10 genomes to keep in both the query set and reference set which allowed us

to evaluate TP and FN. Subsequently, all queries were divided into bins based on their distances

to the closest match in a reference database (Table C.11) and 10 plant genomes (Table C.12)

were added to the set of queries in every bin. Plant species are from a different domain of life

compared to the TOL reference set and should not match the library; thus, they allowed us to

measure FP and TN. All distance values in this experiment were computed using Mash [167].

Reads for the TOL query set were simulated at 10MB using ART [89] (see Appendix D).

(ii) Novel genomes. We next assessed the ability of CONSULT to match genomic reads

that belonged to novel microorganisms not observed in reference sets. To generate queries we

used samples from Global Ocean Reference Genomes (GORG), a collection of 12,715 marine

Bacterial and Archaeal single-cell assembled organisms [173]. Marine microbial species are

known to be poorly represented in public repositories [227]. Since very few reads from these

samples are expected to map to the reference genomes, they represent a particularly challenging

classification case for databases with standard compositions and provide a suitable test case.

To generate queries, we obtained GORG assemblies from NCBI (project PRJEB33281; five
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assemblies were missing) and simulated query reads for every sample at 1x coverage using ART

with the same settings as TOL (see Appendix D). We also included the same 10 plant species as

TOL to compute the FP rates.

(iii) Real skims. We tested ability of CONSULT to remove contaminants from real

genomic sequencing reads. For studying real genome skims, we obtained high-coverage raw

SRA’s of 14 Drosophila species (Table C.13) from NCBI (PRJNA427774) and subsampled

them down to 200 MB using seqtk [122]. We removed adapters, deduplicated these samples

and merged paired-end reads using BBTools [40] (see Appendix D). To filter out human reads,

we queried Drosophila samples against the Kraken database that included only the human

reference genome, and subsequently extracted unclassified reads to use in contamination removal

experiment. Drosophila reference assemblies available from [155] were used to compute true

distances.

Tools compared. We compared performance of CONSULT with Kraken-II [250, 251], CLARK

[172], CLARK-S [171] and Bowtie2 [109, 111]. These are among leading identification tools

based on recent benchmarking studies [146, 151, 211, 254]. Kraken-II is a taxonomic sequence

classifier that maps k-mers of the query to the lowest common ancestor (LCA) of all genomes

known to contain a given k-mer. We constructed Kraken reference libraries for genomes that

belonged to TOL, GTDB, and Bacterial/Archaeal portion of the standard Kraken database.

Kraken reference libraries were built without masking low-complexity sequences, but using

default settings otherwise. We note that [189] found defaults were the most effective setting for

contamination removal.

CLARK, CLARK-S, and Bowtie2 are tested only in the experiment (i), and thus, their

reference databases were built using the TOL dataset. CLARK is a method that does supervised

sequence classification based on discriminative k-mers. We constructed the CLARK database
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using standard parameters (e.g., k=31 default classification mode). We set taxonomy rank

to phylum (default is species) to achieve better sensitivity for contamination removal (see

Appendix D for details). CLARK-S is a CLARK version that exploits multiple spaced k-mers

and offers higher sensitivity at the expense of more RAM and slower classification speed.

CLARK-S database was constructed on top of the custom CLARK database described above and

querying was performed using default full mode of classification (see Appendix D). Bowtie2 is a

standard general-purpose alignment tool. We built the Bowtie index reference for TOL genomes

and performed local alignment of the queries using highest sensitivity setting (see Appendix D).

Evaluation. In experiments (i) and (ii) we report the recall and false positive rate: matched

(unmatched) prokaryotic reads are TPs (FNs) and matched (unmatched) plant read are FPs (TNs).

On the TOL dataset, we also compared running time and memory consumption of all tools for

running a randomly sampled set of 30 small 10Mb queries from the TOL query set (Table C.15).

To reduce the impacts of database loading on running time, we report results when the query is a

single file concatenating 15 Drosophila skims sampled at 2G bp (Table C.16). In experiment (ii),

we also report the percentage of reads from each microbial genome that match.

In experiment (iii), based on the results of the first two experiments, Drosophila genome

skims were filtered against GTDB database, and Skmer was used to compute distances between

all pairs of samples before and after filtering. Distance values obtained from Drosophila assem-

blies were considered the ground truth. We computed relative distance error for every sample

before and after filtering in order to identify whether contamination removal improved distance

estimates.

Inclusion-filtering of mitochondrial reads to help organelle assembly

We test whether CONSULT can help improve the quality of mitochondrial assembly by

finding mitochondrial reads in a genome skim without a need for the standard seed-and-extend

approach, the use of a very close reference genome, or reliance on coverage differences. To do
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so, we constructed a CONSULT reference database out of all 11,138 mitochondrial genomes

available in NCBI (RefSeq release 204), which included ≈ 200 million 32-mers (Table 2.1). We

then asked whether CONSULT can use this broadly sampled database to identify mitochondrial

reads in SRA files, including from species not present in the reference set.

We base our experiment on data from the DNAMark project that skimmed 210 vertebrate

species (NCBI project PRJNA607895) and attempted to assemble their mitochondrial genomes

[141]. We selected 42 (Table C.14) out of 210 samples as follows. We included all 18 samples

where the original study failed to assemble mitochondrial genomes, all 6 samples that produced

poor quality short contigs (3–10.5 kbp), and 18 randomly selected good samples with contig

length >12 kbp, used as a positive control. Our SRAs include 24 species not present in the

CONSULT reference dataset and 14 species not represented at the genus level (Table C.14).

We compare three assembly pipelines. a) We include assemblies generated using Novo-

plasty [57] made available by Margaryan et al. [141]. b) For each of the 42 samples, we

preprocessed the raw SRA files by removing adapters using AdapterRemoval [209] and merging

paired-end reads with BBTools [40] (see Appendix D). We assembled these unfiltered reads using

plasmidSPAdes [8], which relies on read coverage to distinguish nuclear and organelle genomes.

c) We first used CONSULT to search preprocessed reads against the reference mitochondrial

database and then used only the matching reads as input to SPAdes with default settings [20] to

obtain the assembly.

To assess the completeness of the assemblies, we first annotated all three assemblies

(original, unfiltered, and filtered) using MITOS [26] to find the known mitochondrial genes. We

report the total length of the largest mitochondrial contig, gene counts for different gene groups

(protein coding genes (PCG), rRNA, tRNA), and identities of annotated genes for PCG and

rRNA. The length of mitochondrial genomes should be approximately ∼16 kbp in size and the

number of genes should be close to 37 [32].

Finally, note that we select one contig as the final mitochondrial assembly for each of the

three methods. For original assemblies, only a single contig is available. For new assemblies,
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Figure 2.2. Results on the data simulated based on the TOL dataset. (a) Lines show recall for
different query bins for five tools run in default settings (see Methods). Each line is labeled with
its associated FPR, computed using plant genomes added to the query set, which are identical
across bins; thus, FPR is identical in all bins. (b) Processing speed and memory consumption for
different tools searched against the TOL library using the same settings as part (a). Drosophila
benchmark set included a single 30G Drosophila query. TOL set was composed of 30 10MB
microbial queries. Computation on a machine with Intel Xeon 2.2 GHz CPU using 24 threads
and 350G of RAM.

we mostly take the the longest contig (as long as it is ≥200 bp) as the assembly. However, in

assemblies produced from unfiltered reads, the largest contigs sometimes had nuclear origin. In

such cases, we instead use the longest annotated contig with at least one annotated mitochondrial

PCG or rRNA gene. The identity of mitochondrial contigs was additionally verified by MitoZ

[148]. If no PCG or rRNA genes were assigned to any contigs in assembly, the generated

reference is considered as having failed annotation.

2.3 Results

2.3.1 Exclusion filtering of contamination from nuclear reads

(i) Controlled distances. In the controlled distance experiment, CONSULT has the best

recall among the methods that are able to control the FP rate (Fig. 2.2a). CLARK-S, which

is specifically designed to match species absent from a reference database, has the highest

sensitivity but FP rates close to 62%, making it ineffective for contamination removal. CLARK
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has very low FP rates (0.5%) but also much lower recall than other methods. Overall, Bowtie has

a similar recall to Kraken-II with a substantially lower FP rate (1.2% versus 4.9%). CONSULT

is slightly better than Kraken-II in terms of FP (4.3%) but improves recall over Kraken-II and

all other tools substantially. All the tools are able to match almost all prokaryotic reads to the

database when the query has an exact match in the database, and all tools have at least 91% recall

when the closest match in the reference library is up to 5% distant from the query. Substantial

differences between methods appear when the closest match is > 5% distant to its closest match.

For example, for queries at 5–15% distance to the reference set, CONSULT matches 78% of

reads while Bowtie and Kraken-II match 66% and 61%, respectively.

The running time of CONSULT on the TOL DB is comparable to Bowtie but slower than

CLARK and Kraken-II when tested on large query files (Fig. 2.2b). With multiple small query

files, while CONSULT is the fastest, timing is hard to interpret because CONSULT analyzes all

inputs in a run, amortizing the DB load time, while others need to be run per query file (a simple

issue to fix). Bowtie and Kraken-II have the lowest memory footprint, followed by CONSULT,

which uses 120GB.

(ii) Novel genomes. Next, we turn to the GORG dataset, where CONSULT matches a far larger

number of microbial reads to the reference libraries compared to Kraken-II, regardless of the

reference database (Fig. 2.3). Not only does CONSULT match more reads (has higher recall), it

has fewer false positives, especially for GTDB (Fig. 2.3a). We thus tested both methods with

several settings that had reduced false positive rates compared to their defaults, achieved for

CONSULT by changing the (c, p) settings and for Kraken-II by increasing its α (i.e., percentage

of k-mers in query sequence required for classification). For all levels of FP rate, CONSULT had

better recall than Kraken-II for all databases tested (Figs. 2.3a). In default settings, CONSULT

controls the FP rate at 7.0% on the large GTDB dataset, whereas Kraken-II has 13.5% FP. Recall

that Kraken-II removed genomes without taxonomic assignment, and we added those back. If

these genomes are not added to the library, the recall of Kraken degrades substantially but its
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Figure 2.3. CONSULT vs Kraken-II on the GORG dataset. (a) The ROC curve showing the
mean of recall vs FP rate (i.e., plant queries matched to a DB) with various settings for each
method and searching against three libraries (GTDB, TOL, and the default Bac/Arch Kraken
DB). Kraken-II was run with confidence level α ∈ {0.00, 0.02, 0.05}. Additionally, α = 0.04
was included on the GTDB database to better control FP rate. CONSULT libraries were searched
using p ∈ {3, 4, 5, 6} and c ∈ {1, 2, 3, 4}; see Figure B.19 for all combinations. (b) The
empirical cumulative distribution of the percentage of reads in each microbial GORG genome
matched to each of the three reference databases; a point (x%,y%) means for y% of GORG
genomes, ≥ x% of the reads matched the DB. Here, we show default settings for CONSULT and
Kraken-II on TOL and Bac/Arch databases, but α = 0.04 for Kraken-II GTDB to control its FP
rate.

precision improves (Fig. B.17). To enable a better comparison between Kraken-II and CONSULT,

we chose the α = 0.04 setting of Kraken-II that had 8% FP rate, which is only slightly higher

than CONSULT. With these settings, CONSULT matched more reads than Kraken-II for 95%

of the microbial species when searched against GTDB (Fig. B.18). CONSULT and Kraken-II

match at least 3/4 of reads for 61% and 44% of genomes, respectively. Comparing the three

databases, GTDB results in the most matches for both methods, followed by TOL and Kraken.

Adjusting the (c, p) setting of CONSULT trades off recall and FP rate (Fig. B.19).

For example, allowing up to 4 mismatches between k-mers in query and reference library

produces more liberal (c = 1) or more conservative (c = 2) settings compared to the default

where 3 mismatches are allowed. These combinations of parameters might be recommended for

situations where a stricter FP control is required (c = 2) or when FP is less damaging (c = 1).
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Figure 2.4. CONSULT on Drosophila skimming data. (a) Relative distance error before
(upper triangle) and after (lower triangle) filtering per pair of Drosophila species. Numeric labels
on y-axis represent percentage of bacterial/archaeal reads filtered per sample. (b) Change in the
distance error after filtering compared to the error before filtering versus amount filtered (mean
of both species); positive values indicate reduction in error. Each dot represents a pair of species.

All p≥ 5 and c≤ 2 lead to very high FP; e.g., p = 6,c = 1 leads to 100% recall but also 90%

FP rate (Fig. B.19).

Kraken takes around 3 minutes to load 166GB GTDB database (on a machine with

350GB of RAM), which is substantially larger than the load time of 45G TOL database (half a

minute). CONSULT loads databases once for all query genomes and the loading time doesn’t

exceed 3 minutes. Recall that CONSULT keeps the library size fixed at 128GB while Kraken-II

keeps all k-mers; thus, when the number of species added to the database grows, CONSULT

becomes more memory-efficient. Once the library is loaded, Kraken-II takes 0.18 seconds on

average per query genome and CONSULT takes 0.09 seconds.

(iii) Real skims. Testing CONSULT on real genome skims from Drosophila demonstrates that

Skmer distance calculation can improve dramatically as a result of filtering (Fig. 2.4a). Errors

are reduced by as much as 44% between pairs of species (Fig. 2.4b). While distances tend to be

underestimated before filtering, they tend to be slightly overestimated after filtering (Fig. 2.4a).
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CONSULT removes between 3.9% and 10.2% of reads from these Drosophila genomes, and

there is a positive correlation between the amount of data removed and the improvement in the

estimated distances (Fig. 2.4b). In the most extreme case, distances are improved by more than

40% when less than 9% of reads are removed.

2.3.2 Inclusion-filtering of organelle reads

Using CONSULT to find organelle reads before assembly dramatically improves the

quality of the assembly, both compared to the unfiltered approach that relies on coverage and

seed-and-extend method used in the original study (Fig. 2.5).

When using raw reads we obtained complete or partial mitochondrial assemblies for 25

out of 39 assembled samples. Three samples didn’t generate any contigs. Remaining 14 samples

produced contigs of variable size but failed in annotation since estimated length of PCG and

rRNA genes appeared shorter than expected. In contrast, when preceded by CONSULT filtering,

reads were successfully assembled for all 42 samples, including the 18 samples that were left

unassembled in the original study and 6 that had poor assemblies.

Assemblies produced by filtered reads were in all but one case either longer or comparable

in size in comparison to assemblies generated by unfiltered reads (Fig. 2.5a). Similarly, they had

a higher number of mitochondrial genes annotated in all but one case (Fig. 2.5b). The exception

is the sample SRR12432391 that leads to a 35,920 bp contig when assembled from raw reads.

This length is almost twice the average length of the mitochondrial genomes, which indicates a

possible mis-assembly or chimeric contig. After filtering, 29 of the 42 samples had at least 27

out of 37 genes and 12 out of 15 non-tRNA genes annotated.

The completeness of an assembly after CONSULT filtering was not impacted by the

presence of the corresponding species or genus in the RefSeq reference set (Fig. 2.5a, b). Cases

where assemblies after filtering remain incomplete include both novel and observed samples.

For example, of the 13 assemblies with less than 12 non-tRNA genes, four were represented

exactly in the database, five had genomes from the same genus and four were not present at
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Figure 2.5. Mitochondrial assembly results. (a) Comparison of contig length between filtered
and unfiltered samples. Dot shapes indicate whether any assembly from the same species or
the same genus was a part of the RefSeq reference set that was used to construct CONSULT
database. From left to right: sample that belonged to previously unassembled, poorly assembled,
or good quality assemblies (boundaries indicated by vertical dots). The horizontal line is at
expected lengths: 16 Kbp. (b) Total mitochondrial gene count for filtered and not filtered samples
(counting unique PCG, rRNA and tRNA genes). Vertical line at expected number of genes: 37.
(c) Mitochondrial genes identified in assemblies for filtered, unfiltered and original references.
Light blue color highlights COI (COX1) gene that was used as a seed sequence for assemblies
generated by the DNAMark project. In the unfiltered case, three samples (SRR12432370,
SRR12432371 and SRR12432397) did not generate any contigs while 14 others generated
contigs but did not have any genes annotated.
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either level. Among the nine samples with no representation from the same genus, in five cases,

CONSULT filtering improved gene recovery between 11 to 33 genes, made no difference in one

case with an incomplete assembly, and recovered full assemblies in three remaining cases. Thus,

effective filtering did not require representation from the same species or genus in the CONSULT

reference library.

Comparison of gene annotations between newly generated and original assemblies

(Fig. 2.5c) demonstrated that filtering enabled successful assembly for the most challenging low

coverage samples. Thus, for samples that failed in the original study, we generated complete

or nearly complete assemblies with up to 10 PCG identified and contig length ≥ 8719 bp for

eight samples. Six samples produced partial assemblies and only four samples had contig

length ≤ 3003 bp; even for them, we had some mitochondrial genes identified. For poorly

preserved samples, we generated near-complete references for five out of six samples. In one

case (SRR11679474), the main contig had only three PCGs and rRNAs genes, but even this

sample contained all remaining genes scattered across five smaller contigs that the assembler did

not merge with the longest contig (Fig. B.22). More generally, any gene found in the original

assembly not found in the main contig of the filtered assembly was found in one of the smaller

contigs (Fig. B.22). Unsurprisingly, the original seed-and-extend approach is biased toward the

region including COX1, which is the seed, whereas filtered and unfiltered assemblies show no

such bias. For the set of good quality samples, filtering improved gene recovery in three cases

compared to unfiltered ones and five samples compared to the original assemblies; only one gene

was recovered by one of original assemblies but not the filtered ones.

Additionally, since filtering reduced the number of sequencing reads that are being

assembled, we observed ≈ 7× running time improvement with filtered versus unfiltered reads

(estimate includes CONSULT time), going from ≈ 65 min to ≈ 9.7 min per sample. This

speed-up was calculated for 24 SRR that belonged to poor and good assembly groups (120G of

RAM, 24 threads).
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2.4 Discussion

We introduced CONSULT, a general purpose k-mer based read matching tool that might

help in a variety of applications where there is a need to separate sequencing reads of interest

from extraneous reads outside of the group. By careful engineering of the software, we have made

it possible to run CONSULT on large reference datasets (e.g., tens of thousands of prokaryotic

species) and large numbers of queries (e.g., hundreds of millions; see Table C.18). Our results on

contamination removal showed that when the closest species in the reference set was substantially

distant (≈15–20%) from the query, CONSULT improved upon existing methods such as Kraken,

CLARK(-S), and Bowtie2 both in terms of sensitivity and specificity.

The use of LSH paired with hamming distance or other distances is not novel to CON-

SULT. Several methods in various domains of sequence analysis have used LSH [24, 38, 39, 130,

150, 190, 191]. These earlier uses all boil down to finding the nearest neighbors of a sequence

without actually computing distances but accepting that some matches will not be within the

desired radius. CONSULT uses LSH in a different way. Unlike earlier methods, CONSULT

actually computes distances from each k-mer to a fixed-size number of potential matches. In

doing so, it takes advantage of the large memory available on modern machines, which were

traditionally not available; nowadays, we can easily afford to keep billions of 32-mers in memory.

Thus, we use LSH only to find a small set of k-mers for which we compute distances exactly.

As such, CONSULT does not have false positives (in the sense that it guarantees every match is

below the desired threshold). It only can have false negatives. However, missing some k-mer

matches is tolerable because if a read truly belongs, its other k-mers can match. Consistent with

this observation, our data show that even when we include half or one-third of k-mers from a

reference dataset in the memory (e.g., for the GTDB database; Table 2.1), the accuracy remains

high.

Beyond algorithmic design, our application is quite different from these earlier adoptions

of LSH. We use LSH to test whether reads belongs to a large taxonomic group allowing
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substantial number of mismatches to the nearest neighbour. The past work has used LSH for

guiding assembly [24], near-duplicate sequence removal [150], phylogenetic placement [38],

homology detection between two genomes [39], and sequence clustering for OTU binning [190,

191] and metagenomic binning [130]. Many of these existing applications deal with far fewer

and less diverse sets of sequences. In contrast, our methodology works on databases that span

across entire domains of life and contain many billions of k-mers. Among methods designed for

our application, Kraken adopts an approach that can be considered LSH due to its masking step.

CONSULT is more effective than existing methods such as Kraken and Bowtie when

the queries are phylogenetically distant from their closest match in the reference dataset. While

one may hope that denser reference sets will diminish the need for such distant matching, our

results on the GORG dataset demonstrate that state-of-the-art microbial datasets are far from

capturing the diversity of life with the ≈ 8% distant where existing methods are accurate. Note

that every genome in GORG is a single-cell assembled bacterial genome sampled randomly from

the ocean; thus, these data are not exotic species put together just to challenge methods. Our

results indicate that detecting even the domain of a read will require allowing many mismatches

for the foreseeable future.

While we tested contamination in the context of genome skimming, we note that con-

tamination in sequencing reads is a pervasive problem that can impact other analyses as well

[71, 128, 223]. It can lead to inaccurate characterization of gene content and metabolic functions

[35, 107], improper inference of phylogenetic relationships [113, 215], and biases in genotype

calling and population genomics [19, 246]. Contamination is also known to infiltrate reference

genomes stored in public databases [149] and is particularly problematic when endogenous DNA

is scarce [75, 131, 194, 200]. Thus, CONSULT may find applications outside the settings tested

here.

Our results showed that inclusion filtering of mitochondrial reads using CONSULT

enabled generating complete and accurate assemblies for very poorly preserved samples where

read coverage is not sufficient to use other methods. Our workflow is an example of what has
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been called a “hybrid assembly method” for taking advantage of references [239]. By searching

reads against all available organelle genomes and allowing mismatches, it eliminates the bias

associated with template based assembly using a single reference; at the same time, it permits

flexibility of de novo assembly. Using CONSULT for this application is reference agnostic and

thus can be utilized on mislabelled samples or samples of unknown identity. Importantly, our

data clearly show that there is no need to have the same species or even any representative from

the same genus in the reference set for the filtering to work successfully. These strong results

lead one to ask whether the assembly of the more complex plastid genomes is similarly improved

by pre-filtering.

While we leave a full exploration of plastome applications to the future work, our

preliminary results are encouraging (Table C.17). We built a reference database from 6537

plastid genomes available from NCBI (RefSeq release 206) and reanalyzed 60 samples obtained

from a recent chloroplast assembly benchmark study [72]. These results suggest that filtering

reads with CONSULT before assembly is as effective for chloroplast as it was for mitochondria

(Table C.17). Using GetOrganelle [97] as the assembler, we produced complete or nearly

complete chloroplast assemblies for eight samples that failed to be assembled fully without

filtering (similar to the original study [72], an assembly with a contig of length at least 130

kbp was considered successful). Annotation of these assemblies showed that these complete

assemblies capture many more of the expected plastid genes than the assemblies from unfiltered

reads (Fig. B.20). Overall, contig length of assemblies produced from CONSULT-filtered reads

was either comparable or longer (Table C.17) in comparison to unfiltered ones (increase in total

genome length: 29% for successfully assembled samples). In a handful of cases, assemblies

from unfiltered reads were substantially longer than those from filtered sequences. However,

gene annotation using GeSeq [235] identified very few chloroplast genes in the long unfiltered

assemblies, indicating that they were most likely spurious (Fig. B.21).

In all applications we explored, sequences from very diverse groups were included in

the reference library. As a result, these reference sets included hundreds of millions to tens of
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billions of 32-mers, of which, up to 8 billion were kept in the final library (Table 2.1). While the

results clearly show that not every k-mer in the reference set has to be in the library to achieve

high accuracy, there must be limits to the amount of subsampling tolerated. For example, if we

consider a large and diverse set of vertebrate genomes, the number of k-mers may grow by orders

of magnitude. Accommodating much larger databases will either require machines with larger

memory, or more smart techniques for deciding which k-mers make it into the library.

Finally, at its core, CONSULT is simply a read matching method. Thus, while we focused

on contamination detection and organelle read detection, our algorithm can also be adopted

for other applications such as metagenomic profiling, OTU picking, and any question where

inexact read matching is needed. Moreover, here, we performed contamination filtering using

an exclusion-filter; however, a tantalizing opportunity that CONSULT may enable by allowing

distant matches is inclusion filtering: find reads that seem to belong to the group of interest

if assembled genomes from that phylogenetic group are available. Our results on organelle

genomes, which used CONSULT as an inclusion filter, support the viability of this approach.

Applying inclusion filters to nuclear genomes will have to contend with contamination in the

reference assemblies, perhaps using further algorithmic innovations. We leave the exploration of

such applications to future work.

2.5 Availability of data and materials

CONSULT is implemented in C++11 with some x86 assembly code; it is (trivially) parallelized

using OpenMP [169] to read the library and perform the search. The software is available

publicly at https://github.com/noraracht/CONSULT. Scripts and summary data tables are pub-

licly available on https://github.com/noraracht/lsh scripts. Raw data used in the manuscript is

deposited in https://github.com/noraracht/lsh raw data. The detailed description of genomic

datasets used in our experiments, accession numbers of the assemblies and the exact commands

used to simulate genome skims and analyze data are provided in Supplemental Material.
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Chapter 2, in full, is a reprint of the material as it appears in CONSULT: accurate

contamination removal using locality-sensitive hashing. Rachtman, E.; Bafna, V., & Mirarab, S.,

NAR Genomics and Bioinformatics, 2021. The dissertation author was the primary investigator

and author of this paper.
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Chapter 3

Quantifying the uncertainty of assembly-
free genome-wide distance estimates and
phylogenetic relationships using subsam-
pling

Computing distance between two genomes without alignments or even access to as-

semblies has many downstream analyses. However, alignment-free methods, including in the

fast-growing field of genome skimming, are hampered by a significant methodological gap.

While accurate methods (many k-mer-based) for assembly-free distance calculation exist, mea-

suring the uncertainty of estimated distances has not been sufficiently studied. In this paper, we

show that bootstrapping, the standard non-parametric method of measuring estimator uncertainty,

is not accurate for k-mer-based methods that rely on k-mer frequency profiles. Instead, we

propose using subsampling (with no replacement) in combination with a correction step to

reduce the variance of the inferred distribution. We show that the distribution of distances using

our procedure matches the true uncertainty of the estimator. The resulting phylogenetic support

values effectively differentiate between correct and incorrect branches and identify controversial

branches that change across alignment-free and alignment-based phylogenies reported in the

literature.
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3.1 Introduction

Phylogenetic and population genetic analyses using assembly-free and alignment-free

methods have enjoyed renewed interest in recent years. Alignment-based methods using or-

thologous loci have traditionally been considered more accurate than alignment-free methods

for phylogenetics [29, 85], and this perception has not changed (justifiably, in our judgment).

However, the main driver of recent interest in assembly-free and alignment-free methods is the

increased use of data types that do not avail themselves to assembly, in particular, the study of

biodiversity at high precision [30]. Biologists now routinely use low-coverage shotgun sequenc-

ing data, called genome skims [45, 244], obtained across a large number of samples to study

biodiversity and ecology at high levels of taxonomic resolution accurately and relatively cheaply.

A simple search of the term “genome skimming” reveals that more than 950 papers have been

written on the subject since 2020. While the traditional use of skims relied on the assembly of

organelle genomes (a tiny fraction of the reads), there has been an increasing recognition that

better accuracy can be obtained using assembly-free and alignment-free fashion by analysis of

nuclear data [204]. Assembly has to be avoided because of the low coverage (e.g., 1x), and

alignment is impossible when genome skims are compared to a reference library of other genome

skims (and not closely related genomes).

Alignment-free phylogenetics has a long history of method development [29, 79, 101,

117, 118, 253] and benchmarking [85, 258]. Many of these methods require the assembly of

sequences instead of working with bags of reads. However, assembly-free methods have been

developed for inferring phylogenies [2, 64, 255] and for estimating genomic distances between

two bags of reads [e.g., 112, 167, 204, 231], which can then be used with standard distance-based

phylogenetic estimation methods to infer a tree or to place a sample on an existing phylogeny

[16, 18]. In particular, some of these methods, such as Skmer [204] and Afann [231], are

specifically designed for datasets with shallow sequencing depth.

A major obstacle to the widespread adoption of assembly-free methods for downstream
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analyses such as phylogenetics is the lack of reliable ways to measure the statistical support of

inferred trees. The method of [247] automatically assigns a weight to each split it infers; however,

these weights are not interpretable as the probability of correctness and can only be used for a

specific distance estimation method. Lack of support makes it hard to interpret phylogenetic trees

as the (inevitable) differences between inferred trees cannot be put in context without knowing if

those differences have high support. Moreover, many downstream applications attempt to sum

over tree uncertainty [86], or at least, contract low support branches of the tree into polytomies

[216, 256]. Finally, in some applications (such as interrogating polytomies, within-species

diversification, and delimitation of subspecies), whether one can resolve a relationship or not is

the question of the interest [133, 236], and that question cannot be answered without statistical

support.

While a robust set of tools for support estimation exist for alignment-based distance

calculation and phylogenetics, much less is known about statistical support for assembly-free

methods. Outside Bayesian methods, bootstrapping (i.e., resampling – sampling with replace-

ment) of alignment sites is the main method used for uncertainty quantification, including in

phylogenetics, where it has been long used [66] and debated [e.g., 67, 83, 199, 228]. While

many biologists interpret support as the probability of correctness, bootstrap is more precisely

interpreted as a way to measure the variance around an estimator. Regardless of the precise

meaning, in the alignment-free settings, it is unclear what needs to be resampled. We can

resample reads or smaller units such as k-mers or spaced words used by most distance estimators.

However, assumptions of independently and identically distributed (i.i.d) data units, which are

somewhat reasonable for sites in an alignment, may not apply to such units of data. Moreover,

assembly-free methods often make assumptions about a random sampling of reads across the

genome, and resampling can invalidate those assumptions.

The non-parametric statistics literature has established that subsampling can provide a

powerful alternative to resampling, with fewer strong assumptions and better generalizations

[183]. Because a subsample of a shotgun sequenced set of reads follows the same distribution as
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the original sample, albeit with lower coverage, it provides an attractive alternative to bootstrap-

ping. The lower coverage samples obtained with subsampling will clearly lead to more variable

distances than the original data. This bias, however, can be corrected using methods known in

the non-parametric statistics literature [183].

In this paper, we introduce and carefully validate methods for estimating uncertainty

around distances computed directly from genomes and genome skims using assembly/alignment-

free methods. We propose using subsampling combined with a correction for increased variance

instead of resampling. This procedure computes a distribution of distances for each pair of

genomes or genome skims, as opposed to a single distance. From there, computing branch

support for phylogenetic trees using distance-based methods follows the standard approach. To

be more precise about the input and output, let us define them more formally.

Given are genome skims (i.e., two bags of reads), generated at low coverage (e.g., 2X),

from two genomes. The two genomes have evolved from a shared common ancestor through an

evolutionary process parameterized by the true genomic distance d. The simplest such model

is applying substitutions according to the [100] (JC) model along two branches of total length

4
3 log(1− 4

3d). The two genomes are then subsampled at random positions using short reads

with sequencing errors. Thus, starting from a fixed common ancestor, there are two sources of

randomness: the evolutionary process (e.g., substitutions) and the genome sequencing procedure

(e.g., random sampling of reads and sequencing errors). The input can also be two assemblies,

where only the first source of randomness exists.

We have access to an estimator d̂ of d given two genomes or genome skims. If the

estimator were to be applied to (unavailable) data generated by a procedure identical to what

generated our data (e.g., in a simulation), it would be draws from some unknown distribution

D . Our goal is to estimate the uncertainty of the estimate d̂ by generating m estimates d̂1 . . . d̂m

drawn (approximately) from D . Thus, while we have one pair of genome skims, we seek to

approximate the distribution of estimates had we access to an infinite number of genome skim

pairs generated identically from the same common ancestor.
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For the estimator of d, in this paper, we focus on a leading assembly-free distance

calculation method, Skmer, noting that our procedure is general and is applicable to any estimator.

Skmer has two components: estimating sequencing parameters for each input skim and estimating

shared k-mers between two given skims (see STAR Methods). The sequencing parameters are

estimated by matching the k-mer frequencies against the Poisson distribution distorted by

sequencing errors (see (3.3) in STAR Methods). Then the portion of shared k-mers, the Jaccard

index, is computed using the min-hash technique of Mash [167] (k = 31 in both components).

These results are then combined to a final estimate using the analytical equation (3.4) given in

STAR Methods.

In simulations and on a set of real datasets, we show that our subsampling procedure

paired with Skmer produces reliable support values from both genome and genome skims. We

evaluate the method under conditions with model misspecification and show that while support

is not always fully calibrated, it is predictive in distinguishing correct and incorrect branches.

3.2 Results

3.2.1 Subsampling Procedure

Subsampling: justification and theory

Why not bootstrapping? While the bootstrapping method of [63] provides a statistically

consistent approximation of D , some of its assumptions, such as independence of data points,

are violated in our setting. Moreover, bootstrapping breaks the assumptions of the estimator. The

most poignant problem is non-random coverage. Many assembly-free methods, including Skmer,

assume that reads are distributed randomly throughout the genome and thus, model the number

of times each position is sampled using a Poisson distribution. Once observed reads or k-mers

are resampled again, this Poisson assumption is broken (Fig. 3.1A). [64] attempted to extend the

bootstrapping procedure to account for some of the dependencies in assembly-free settings by

using block bootstrapping. However, their method uses resampling and is not appropriate for
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Figure 3.1. Problems with resampling. A) Theoretical model. Consider a set S of N = 105

objects (e.g., k-mers of a genome). We show the empirical distribution of the number of times
an object is observed (i.e., k-mer frequencies) if S is sampled uniformly at random N times
with replacement to get R; this process is similar to sequencing a genome at 1X coverage. The
distribution closely matches Poisson with λ = 1. Next, we again resample R (with replacement)
N times, which is equivalent to the bootstrapping reads or k-mers, getting a distribution that
strongly deviates from Poisson (e.g., too many 0 counts, too few 1 counts). PMF denotes the
probability mass function. B) Comparisons on a 200MB Drosophila skimming dataset between
subsampling n9/10 reads or bootstrapping n reads where n ≈ 106 is the number of reads. In
both cases, 100 replicates were generated, and distances were computed using Skmer. Graph
shows all pairwise distance values between Drosophila ananassae and other Drosophila species.
Subsampling corrected distances are using our method, as discussed in the text.

estimators that rely on random coverage of the genome. In empirical analyses, we can establish

that bootstrapping leads to widely inaccurate and biased estimates (Fig. 3.1B).

Why Subsampling? An alternative to bootstrapping is subsampling without replacement: Given

a set of data points, subsample them at random, apply the estimator to the subsample, and repeat

to get a distribution of estimates. As detailed by [183], subsampling is a sound way of measuring

estimator uncertainty and crucially depends on fewer assumptions than bootstrapping while often

providing comparable power. A subsample of the reads (or k-mers) is equivalent to another

genome skim with lower coverage and does not violate the assumptions of Skmer, designed

explicitly for low coverages. Thus, subsampling will generate unbiased estimates (Fig. 3.1B).

However, despite being unbiased, subsampling leads to incorrect variance. Thus, the distribution
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of estimates from subsamples needs to be corrected so that it asymptotically matches the correct

distribution, D . To see the need for this correction, note that the variance of the estimator

increases as the amount of data decreases. Thus, the subsampled estimates will have a higher

variance than D , and the overestimation of variance will depend on the size of the subsamples. If

not appropriately corrected, the arbitrary size of subsamples will determine the variance, which

is clearly undesirable.

We base our method on what we call subsampling theorem for short [Theorem 2.2.1 in

183]. Let θ̂n be a statistically consistent estimate of a parameter θ based on n data points (no

assumption of independence is necessary). Assume that there exist some sequence of numbers τ

such that τn(θ̂n−θ) weakly converges to some distribution as n→ ∞ [assumption 2.2.1 of 183].

The τn factor can be informally considered the rate of convergence of the estimator. Similarly, let

θ̂b be the estimate from a subsample of b data points sampled from the original n. To paraphrase

informally, according to the subsampling theorem, under very general regularity conditions, the

empirical cumulative distribution function of many τb(θ̂b−θn) estimates converges to cumulative

distribution function (CDF) of τn(θ̂n−θ) as n→ ∞ assuming that b→ ∞ and b/n→ 0. In other

words, to approximate the distribution of (unobtainable) estimates centered by the true value,

we can examine the observable distribution of subsampled estimates centered around the main

estimate, scaled by τb/τn.

Subsampling Procedure

We use reads (for a genome skim) or k-mers (for an assembly) as the atomic data units

that are subsampled, and let n denote the number of such units. To use the sub-sampling theorem,

we need the appropriate choice of τn. By the central limit theorem (CLT), given i.i.d random

samples drawn from a population with mean µ and variance σ2, the limit limn→∞

√
n((X̄n−µ)/σ)

converges to a standard normal distribution where X̄n is the sample mean. Therefore, for any

estimator θ̂ that can be written as the mean of some random variables,
√

n(θ̂ −θ) converges to a

Gaussian distribution making τn =
√

n the correct normalizing factor.
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Algorithm 2. Subsampling procedure. Input: a set of skims {S1 . . .SN} with n1 . . .nN reads, a
fixed parameter α < 1, and a tool (e.g., Skmer) f ({S1 . . .SN}) to compute all pairwise distances.

d̂i j← f ({S1 . . .SN}) ▷ Run a method like Skmer to compute all pairwise distance
for r ∈ 1 . . .m do

for i ∈ 1 . . .N do
bi← (ni)

α

Sr
i ← a random subsample of size bi of Si.

dr
i j← f ({Sr

1 . . .S
r
N}) ▷ Compute distances from subsamples

yr
i j =

√
bi+b j
ni+n j

(dr
i j−di j)+ d̂i j ▷ First correction: using main estimate

xr
i j =

√
bi+b j
ni+n j

(dr
i j−di j)+di j ▷ Second correction: using mean estimate

for r ∈ 1 . . .m do
tr
c , t

r
m← Distance-based trees inferred using xr

i j and yr
i j, respectively ▷ Using tools such as

FastME
tc← Extended majority consensus of t1

c . . . t
m
c

tm← A distance-based tree inferred using d̂ distances
Assign to each branch e of tm and tc support 1

m ∑
m
1 [e ∈ t i

m] and 1
m ∑

m
1 [e ∈ t i

c], respectively

While the coverage computation step of Skmer uses a complex estimator that cannot

easily be described as a mean of random variables, the Jaccard calculation can be approximately

described as such. For each k-mer, consider a binary random variable Xi indicating whether it

is shared between the two genomes, and note Pr[Xi = 1] = J. Every k-mer can be considered a

random sample from this distribution. Then, the Jaccard computed from L k-mers is J = ∑i Xi/L.

Thus, ignoring dependence of k-mers, our Jaccard estimates do follow the CLT and admits

the τ =
√

n correction. We will use τ =
√

n, admittedly ignoring the first part of the Skmer

procedure in deriving this correction factor (more on this later).

We propose the following procedure (Fig. 3.2A). Given is a set of N genome skims Si

each with n reads (see Algorithm 2 for a relaxation where each sample has a different number of

reads). We choose a constant α < 1 (default α = 9/10) to set b = nα noting b→ ∞ and b/n→ 0

as n→∞. We perform m (user-provided) rounds of subsampling. In each round r, we subsample

b reads uniformly at random for each skim i and compute distances between these subsampled

skims, giving us an estimate dr
i j for each pair i, j of skims. These distances need to be next

corrected and used for estimating a tree per replicate. For getting the final tree, we can use either
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A) B)

Figure 3.2. Workflow diagrams. A) Subsampling workflow. Every sample with n reads is
subsampled m times to generate replicate data with b = nα reads. Obtained pairwise distances
dr

i j are corrected with τb/τn centered by either mean (di j) or main estimates (d̂i j). B) Workflow of
Felsenstein zone simulations.

the main estimates with no sub-sampling, d̂i j, or the related quantity di j, defined as the average

distance (mean estimate) across all m sub-sample replicates. From the subsampling theorem,

we can infer that
√

nα/n(dr
i j− d̂i j),

√
nα/n(dr

i j−di j), (d̂i j−di j), and (di j−di j) all asymptotically

converge to the same distribution. Accordingly, we consider two expressions for correcting

distance. First, when the final tree is inferred from main estimates, we center all the subsampled

distances around zero, apply the correction, and then center them back around the main estimate:

yr
i j =

√
nα

n
(dr

i j−di j)+ d̂i j (3.1)

The alternative is to use the extended majority rule (i.e., greedy) consensus of the m replicate
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trees as the final tree. Since this final tree does not refer to the main distances, we have no reason

to use d̂i j in the correction and instead use:

xr
i j =

√
nα

n
(dr

i j−di j)+di j (3.2)

Finally, when given two assemblies, we apply the subsampling procedure at the k-mer

level. Because Skmer computes Jaccard using the min-hash technique (see STAR Methods),

which boils down to subsampling k-mers to a sketch size K, we simply repeat the sketching

process m times, with sketch sizes smaller than the original (i.e., Kα ), to get a distribution of

distances.

3.2.2 Simulation results

We start by benchmarking our method on several simulated datasets (see STAR Methods

for details).

Distance variance when simulating genome pairs

We first test whether subsampling accurately captures variance in distance estimates.

Recall that the definition of correct support is to match the distance distribution D when sequence

evolution is repeated. In simulations, we can estimate D by repeating the simulation procedure.

Thus, we compare the distribution from subsampling a single run with the distribution obtained

across simulation replicates.

The subsampling procedure, with the square root correction, manages to obtain distance

distributions close to the ideal distribution D obtained from simulations (Fig. 3.3A). Note that the

change in the center of the distribution is expected, as the subsampled distribution is obtained for

one simulation replicate and is centered around its main estimate, d̂i j. Notably, the variance of the

subsampled procedure closely matches the simulated distribution D as long as the true distance

is within the 0.02–0.15 range (Fig. 3.3B). For small distances (d = 0.01), subsampling noticeably

overestimates the variance, and conversely, for large distances, it slightly underestimates variance.
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Figure 3.3. Genome pair analyses. A) Distance distributions scaled by true distance obtained
across 100 simulations or 100 subsampling rounds in one simulated replicate, with and without
correction using equ. (3.1). B) Variance in distance estimates in simulations (e.g., the ideal
distribution D) versus subsampled data. C) Impact of distance correction versus α . The x-axis
label denotes α on top and the corresponding coverage on the bottom. The original sample had
2x coverage. ∗ shows the default α . Values on top panels correspond to the true distance between
pairs of samples in the simulated tree.

Importantly, the correction is essential for getting reasonable results; when distance values were

left uncorrected (i.e., eliminating
√

b/n), the variance produced by subsampling was dramatically

larger than D (Fig. 3.3B).

The distribution of distances should ideally not depend on α (thus, b), and we observe

67



that correction dramatically reduces the dependence of distributions on α (Fig. 3.3C). For typical

distances (e.g., 0.05), the variance of the distances shrinks very slightly as α increases. The

(slightly underestimated) variance of large distances (0.25) does not seem to depend on α . Only

in the case of a small distance (d = 0.01), where variance is slightly estimated with default α ,

do we observe a noticeable impact as the number of subsampled reads varies. Results indicate

that for small distances, while the
√

b/n correction is effective in dramatically decreasing the

gap between ideal and observed variance, it is not exact. When we start with 16x coverage,

similar patterns are observed; however, the variance does substantially reduce when subsampled

coverage goes above 4x (Fig. B.23), a point we further discuss later. Overall, the corrections

seem effective, if imperfect, in eliminating the effect of subsampling on the variance of the

estimator.

Simulation under Felsenstein-zone quartet trees with long branch attraction

We next evaluate the calibration of branch support values drawn on final trees obtained

using either consensus (3.1) or the main (3.2) estimates on a challenging dataset that simulates

conditions prone to long branch attraction using the Felsenstein-zone quartet trees (see STAR

Methods). We say that supports are fully calibrated if they perfectly correspond to the probability

of correctness. Support values produced by both correction methods tend to be underestimated

(Fig. 3.4A). For example, branches with 70-80% support are correct 86% of the times using the

main estimates and 100% using consensus. While support underestimation is more severe for

consensus, we observe an unusually high percentage of correct trees with support < 50% with

the main estimate. Overall, these support values are conservative.

Beyond calibration, we interrogate the predictive power of support values (see STAR

Methods) and observe that support values are predictive of accuracy (Fig. 3.4BC). There is a

large gap between the support distribution of correct and incorrect branches, and the gap is

more prominent for consensus than the main-estimate approach (Fig. 3.4B). Moreover, with the

consensus method, increased support perfectly correlates with increased accuracy (Fig. 3.4A) so
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Figure 3.4. Support accuracy on simulated Felsenstein-zone phylogenies. Results are across
1000 replicates. A) Percentage of correctly inferred topologies (y-axis) for each of seven bins of
branch support (x-axis). The percentage of correct branches in each bin should ideally match the
median of that bin (dotted line). B) Empirical cumulative distribution function (ECDF) of support
values divided between correct and incorrect branches. C) Receiver operating characteristic
(ROC) curve built by considering branches with support below thresholds 0-100%, with 1%
increments (see Fig. 3.2B for the definition of the confusion matrix). Selected thresholds are
shown on the graph. D) Effect of branch length on estimated support.

69



that all incorrect topologies have support below 75%, and more than 50% of correct branches

have support above 75%. Constructed ROC curves (obtained from confusion matrices built using

thresholds of support; see Fig. 3.2B) show that very low false positive rates and high recall can

be obtained by examining branches with > 70% support (Fig. 3.4C). Moreover, consensus is

substantially more powerful in discerning correct and incorrect branches than the main estimate.

Finally, note that, as expected, the value of support depends on the ratio between long and short

branches (Fig. 3.4D). Support is invariably low when long branches are two to three orders of

magnitude bigger than small branches.

Simulations on 8-taxon trees with model misspecification

We next assess the branch support on a simulated 8-taxon dataset meant to challenge

our approach by simulating genomes that deviate from the assumptions of the models used for

inference. In these simulations (see STAR Methods), model misspecification can make the Skmer

estimator biased; thus, the errors in these trees are not just due to variance (of the estimator) but

also bias, and there is no theory to suggest that the subsampling procedure can overcome bias.

Nevertheless, we evaluate the impact of bias empirically.

With model misspecification, higher support >50% tends to be overestimated while

support values ≤50% are underestimated (Fig. 3.5A). Despite the tendency of the method to

overestimate support for much of its range, the highest support values are reasonably reliable.

In particular, among branches with 100% support, 95% are correct. Thus, unlike the previous

simulations with an unbiased estimator, when the estimator is biased, a small but considerable

portion of branches with 100% support are incorrect.

There appears to be a weak dependency between rate variation and the accuracy of the

tree and its support value (Fig. B.24A). The portion of incorrect branches with 100% support

are noticeably higher for trees with the highest rate variation parameters for the main estimates

(though not for consensus). Also, all trees with three or more incorrect branches out of five were

among replicates with higher rate variation parameters (Fig. B.24B). However, beyond these
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Figure 3.5. Support accuracy on the eight-taxon dataset. Results are across 120 replicates
under Jukes and Cantor 1969 (JC69) and Felsenstein’s 1981 (F81) models, and figures are
identically set up to Figure 3.4.
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extreme cases, no strong correlation between rate variation and accuracy was observed.

Despite being imperfect, the support values do have the predictive power to distinguish

branch correctness (Fig. 3.5BC). We observe a large separation between the distributions of

support values of correct and incorrect branches (Fig. 3.5B). As expected, incorrect branches have

a wide range and seem uniformly distributed, except for an overabundance of roughly a quarter

of incorrect branches that have support close to 100%. Thus, in contrast to previous simulations,

the introduction of bias makes false positive rate (FPR) values below 0.25 unavailable; however,

the recall does not seem to have been negatively impacted (compare Figs. 3.4C and 3.5C). All

three ways of evaluation show similar trends regardless of the type of correction used, with the

main-estimate correction performing slightly better.

When separating our replicates into those based on fully balanced and fully unbalanced

trees (see STAR Methods), we observe only minor differences in overall support patterns (Fig.

B.24C). Balanced trees tend to have somewhat higher FPR at 100% support but also higher

recall, indicating that support overestimation is slightly more severe for balanced trees. The

same pattern emerges when we examine branch lengths. Just as in previous simulations, the

lower estimated support values tend to be mostly among short branches; however, balanced trees

have higher support than caterpillar trees for branches of the same length (Fig. B.24D).

3.2.3 Results on Real datasets

Cetaceans: low resolution within species. We use two cetacean datasets (see STAR Methods)

to contrast support for relationships within species (presumably uncertain) versus across species

(presumably, highly confident). We see vastly different support patterns for trees inferred within

or across species (Figs. 3.6AB, B.25B). The tree inferred for samples of the Mesoplodon grayi

species has low support assigned to the majority of its branches, while the tree inferred across

species has full support for every branch. This result is in line with expectations since the

signal of tree-like evolution between individuals of the same species should be weak (or non-

existent) and the signal across species should be strong given the use of assembled genomes.
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Thus, our support values show that most of the inferred relationships between individuals of the

Mesoplodon grayi are biologically unreliable, and these individuals should be considered part of

a freely mixing population. This result is in line with the conclusions of [245] which used a host

of analyses that revealed little to no population structure. The assembly-free tree inferred across

cetacean species (obtained in less than an hour, including the time to download the genomes) is

highly congruent with the alignment-based trees inferred using a much more complex pipeline

by [144]; thus, the full support across all branches is reasonable.

Low support for conflicting results. We next use three insect datasets (lice, bee, and drosophila;

see STAR Methods) to investigate whether the lack of support corresponds to the difficulty of

resolving branches. On all three datasets, we consistently observe that branches with low support

in Skmer-based trees are those that conflict with alignment-based trees published in the literature.

On the lice dataset, the phylogeny inferred from genome skims using the main correction

has five branches with support below 100% (Fig. B.25C), and these are the only branches that

differ from the ASTRAL [156] tree reported by [33] (after removing five outgroup species with

no skims). Using consensus-based trees also produces support below 100% for all branches

disagreeing with the ASTRAL tree but has two extra branches with low support (Fig. B.25D).

On the bee dataset, where we have both assemblies and simulated genome skims, we

obtain identical tree topologies from both data types (Fig. 3.6CD). As one would expect, support

values are higher for assembly-based trees (all branches 100%, except for three, which are

above 92% when computed using main-estimate) than genome skims (four branches below 90%

with the main estimate). Interestingly, all branches that deviated from the alignment-based tree

reported by [226] have support below 100% in both of our trees. One of the two conflicting

branches, the placement of B. breviceps is the only branch without full bootstrap support in the

Sun et al. study, the only branch where ASTRAL and concatenation disagreed, and also, one

of the only two branches without full support in the ASTRAL tree by [226]. These results are

robust if we keep the number of replicates between 50 to 1000 (Fig. B.26AB).
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Figure 3.6. Phylogenies constructed using biological datasets. Branches with no values
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On Drosophila dataset, we also have both trees based on assembly and genome skims

(Fig. 3.6EF). The tree generated by genome skims aligned perfectly with the alignment-based

tree reported by [155], and all of its branches had 99% or 100% support with both ways of

computing support. The tree based on assemblies and using the main correction, however, had

two branches with low support (64% and 45%), and one of the two branches (uniting D. sechellia

and D. simulans) was different from the [155] tree. Interestingly, the Skmer-based resolution

matches what [238] had proposed earlier based on 13 marker genes but better taxon sampling.

The second difference is the position of D. biarmipes, which matches between Miller and our

tree, but also differs from the Vanderlinde tree. Interestingly, the consensus correction produces

the Vanderlinde resolution using our data, albeit with only 94% support. In summary, both

branches without full support in consensus-based and main-based trees show conflicting results

within the literature.

Impact of coverage. Next, to test how the coverage level of a genome skim impacts its power to

resolve phylogenetic relationships, we reused the bee dataset but with varying coverage levels

(Fig. B.26CD). As expected, with higher coverage of the genome skim (i.e, before subsampling),

reported support values increase. However, even with coverage as high as 8x, the branch that

showed signs of conflict in the literature (i.e., placement of B. breviceps) did not reach full

support. The results indicate that the lack of support for this branch was not simply due to lack

of coverage.

Support versus length. Examining the branch length versus support across all datasets with

genome skims, we observe an interesting pattern (Fig. B.25A). While shorter branches, especially

those smaller than 0.001, are frequently associated with lower support, the association is not

perfect. For example, among branches with length in the 0.0005 – 0.001 range, support ranges

between 50% and 100%. Thus, while short branches are clearly more uncertain than longer ones,

not all short branches are equally uncertain.

75



3.3 Discussion

We have shown that subsampling, unlike resampling, represents a reliable approach to

derive statistical support for distances and phylogenies estimated using assembly/alignment-free

methods. On real data, we observed that lower support values were associated with controversial

branches. On the simulated datasets, we saw that while branch support is not always calibrated

with the probability of correctness (tends to be underestimated when there is no model violation

and overestimated when there is), it is powerful (i.e., distinguishes correct and incorrect branches).

Note that a method of support estimation can be very powerful and yet not be calibrated (e.g.,

consider a case where the estimated support is always half the probability of correctness). The

lack of calibration is not unique to our subsampling procedure. Bootstrapping has long been

believed to underestimate support [83], leading many biologists to use 75% support as a threshold

of high support. It appears that our subsampling method has similar tendencies to underestimate

support, at least in the absence of model violations.

We observed that the variance of subsampled distances is slightly over and underestimated

for very small and long distances, respectively. This apparent bias is likely related to the rate of

convergence formula we used; i.e., τn =
√

n. Recall that our choice of τ had a justification only

for the Jaccard estimation step and not the coverage estimation step. We can empirically assert

that our choice was an appropriate choice for most distance ranges but not all (Fig. 3.3B). It is

possible that the rate of convergence of Skmer is higher than
√

n for small distances and slightly

lower for large distances. While a more accurate choice of τn requires further theoretical work,

we note that the current choice produces reasonable results.

Just like any other method of support estimation, our method has theoretical guarantees

only for statistically unbiased estimators. It has been long appreciated in studying evolution that

systematic bias leads to support overestimation, as manifested by the confident incongruence

between competing phylogenies [91, 181, 182, 202] or increased support of genome-wide data

compared to single genes [233]. Our method is not an exception. When we simulated data
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with model misspecification, we also observed some strongly supported incorrect branches.

In particular, about 5% of branches with 100% seemed to be incorrect and 25% of incorrect

branches had 100% support. Thus, the interpretation of biological results should keep the

possibility of model violation in mind. Note that the bias is coming from the estimator (here,

Skmer+JC model), not the subsampling procedure; thus, the only principled solution is to design

improved estimators under more complex models. Such estimators have been suggested in

the past [64, 180] and are being actively developed [12, 47]. However, it should be noted that

more complex models do not always increase accuracy. As a proof of concept, we reanalyzed

three datasets (8-taxon simulations, Drosophila, and Bee real datasets) under the F81 model

of evolution, which accounts for variable base frequencies. This more complex model did not

substantially change our results in any of the datasets (Figs. 3.5, B.27A-D).

A more subtle form of model violation is the presence of repeats in the genome, which

the Skmer approach mostly ignores. To test the impact of repeated regions on reported support

estimates, we removed repeats from Drosophila and Bee assemblies using RepeatMasker [218]

and recomputed phylogenies and support values. The set of uncertain relationships (i.e., those

with less than 100% support) do not change after repeat filtering (Fig. B.27EF). For Bee genomes

(Fig. B.27E), where repeat content did not exceed 2.88% (Table C.19), computed tree topology

remained unchanged and was identical for main and consensus approaches. However, the support

values for one branch did change from high (94%) to low (66%). For Drosophila (Fig. B.27F),

identified repeat content was higher and more varied, ranging between 2.8–10.3% (Table C.20).

On these data, both types of correction result in the same tree topologies, which was not the case

before repeat masking. The support for the only branch that changed after masking went from

low (45%) with one resolution to moderate (70%) with another resolution. Thus, our findings

suggest that the repeat content may affect phylogeny estimation and support. Luckily, these

changes seem to be mostly around branches with low support, as identified by our measure.

Thus, our support values give users ways to identify unreliable branches.

Like bootstrapping, subsampling requires running the procedure many times and can
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increase the running time. Using a machine with AMD EPYC 7742 2.25 GHz CPU using 24

threads and 120G of RAM, our running times were manageable (m = 100 in our case). For

example, for the lice dataset with 61 samples, each 400MB, the entire process took 7 hours.

Drosophila and bee datasets with fewer species and smaller sketches each took around 49 minutes.

Thus, subsampling, while not fast, requires reasonable time. We also did not detect any benefit

from further increasing m and hence the running time (Fig. B.26AB). We note that our tool

allows embarrassing parallelization through -i and -b options, which we did not use here.

The subsampling procedure is integrated within the Skmer software and produces both

main and consensus estimates. The simulations showed the consensus to be more accurate only

when the model was not violated. Since the main estimates have been found to be more accurate

elsewhere in phylogenetics [157] and here on data with model misspecification, they should

still be considered a better choice. On our real datasets, in all cases, except the beaked whale

genome dataset with no resolution, the two methods produced similar trees. In practice, we

advise the users to try both methods and consider any branch with low support in either analysis

as suspicious.

Our study has several limitations that future work should address. Most of our tests were

on genome skims with low coverage, which is the most challenging case. However, testing the

simpler case of genomes with low coverage is also important. We note that Skmer changes how

it computes coverage when the coverage seems to be above 4x. This change in the algorithm

makes the use of subsampling tricky, as the subsampled data may use a somewhat different

estimator than the main. This observation may explain the pattern observed for 16x coverage

analyses (Fig. B.23). Note that the use of the consensus method can ameliorate this problem as it

ensures all estimates are using the same method. Thus, we suggest using the consensus method

and selecting α carefully for datasets with high coverage to ensure that the (estimated) coverage

is either consistently above 4x or always below it.

We conclude with a note about the generalizability of the method. The resampling method

tested here can be used without much change for other distance-based assembly-free methods.
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Beyond assembly-free methods, any distance-based method, including alignment-based methods,

can also take advantage of this approach. In fact, deep learning methods of distance estimation

have already started to adopt our proposed approach [92]. For example, alignment-based methods

could compute distances based on subsets of sites and correct distances using the equations we

noted. We leave it to future work to compare the accuracy of bootstrapping and subsampling in

such conditions where both methods are applicable.
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3.4 STAR Methods

3.4.1 Key Resources Table

Table 3.1. Key Resources Table.

REAGENT or RESOURCE SOURCE IDENTIFIER
Biological samples
Whale sequencing reads 245 Table C.22
Bee sequencing reads 226 Table C.23
Drosophila sequencing reads 155 Table C.13
Lice sequencing reads 33 Table C.24
Software and algorithms
Skmer code This paper https://github.com/shahab-sarmashghi/Skmer

ART 89
https://www.niehs.nih.gov/research/
resources/software/biostatistics/art/

Seqtk N/A https://github.com/lh3/seqtk
Kraken2 250 https://github.com/DerrickWood/kraken2

Bowtie2 111
https://sourceforge.net/projects/bowtie-bio/
files/bowtie2/

CONSULT 187 https://github.com/noraracht/CONSULT
BBTools 40 https://sourceforge.net/projects/bbmap/files/

INDELible 70
http://abacus.gene.ucl.ac.uk/software/
indelible/

FastME 116 http://www.atgc-montpellier.fr/fastme/

RAxML 222
https://github.com/stamatak/
standard-RAxML

RepeatMasker N/A http://www.repeatmasker.org/
Other

Data and summary of analyses This paper
https://github.com/noraracht/subsample
support scripts; https://doi.org/10.5281/
zenodo.6473473

3.4.2 Resource availability

Data and code availability

• This paper analyzes existing, publicly available data. All original studies are referenced in

the main text. Accession numbers for the datasets are available in this paper’s supplemental

information.
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• The software is available publicly at https://github.com/shahab-sarmashghi/Skmer. Raw data

and summary of results are deposited in https://github.com/noraracht/subsample support scripts.

The DOI is https://doi.org/10.5281/zenodo.6473473.

• Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

3.4.3 Method details

Skmer

Because we focus on Skmer as the estimator, we review the essential aspects of this

estimator. Skmer has two stages and a final calculation.

Stage 1: Skmer uses k-mer frequency profiles (computed using JellyFish [140]) to

estimate the amount of sequencing error and the coverage (neither of which is known). Let Mi be

the number of k-mers observed i times in the genome-skim and assign h = argmaxi≥2 Mi. Also,

let ξ =
Mh+1
Mh

(h+1). Skmer estimates:

λ =
M1

Mh

ξ h

h!
e−ξ +ξ (1− e−ξ )

ε = 1− (ξ/λ )1/k
(3.3)

as the k-mer coverage and sequencing error rate, respectively. Then, for i ∈ {1,2}, let ηi =

1− e−λi(1−εi)
k

and ζi = ηi +λi(1− (1− εi)
k) (for high coverage, it defines ζi and ηi differently;

see the original paper). Also, let Li be the estimated genome length (total sequencing amount

divided by coverage). By default, Skmer sets k = 31, which we keep. [14] have shown that

a reduced k can improve accuracy for assemblies, but we used a fixed value since measuring

inaccuracies, not increasing the accuracy, is our focus.

Stage 2: Skmer uses Mash to compute the Jaccard index J between two skims.

Final calculation: Skmer computes the genomic distance between two genome skims
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with Jaccard similarity J and genomic parameters estimated above using

d̂ = 1−
(

2(ζ1L1 +ζ2L2)J
η1η2(L1 +L2)(1+ J)

)1/k

. (3.4)

Skmer can also handle input assemblies by dividing them into k-mers, and omitting the correction

for low coverage and sequencing error by setting ζi = 2 and ηi = 1.

Once the hamming distance is estimated, the phylogenetic analyses use the corrected dis-

tance obtained using the standard [100] correction: t = 4
3 log(1− 4

3 d̂). We use t for phylogenetic

inference.

Subsampling

Unless otherwise specified, we used Algorithm 2 with α = 9/10 and m = 100, estimated

distances using Skmer (default settings, but increasing sketch size to 106 for simulated data),

corrected distances using the JC model, and used FastMe [116] with default settings to compute

trees. We used RAxML [222] to draw support and compute extended majority rule consensus

trees (Appendix D). Note that this approach is counting bipartitions in a binary fashion and can

be sensitive to rouge taxa; alternatives exist and can be adopted in the future [119].

3.4.4 Datasets

We evaluated the performance on three simulated and several real biological data.

Genome pairs. We used genome pairs to test the validity of distance distributions. We simulated

100Mbp genome pairs at phylogenetic distance t ∈ {0.01,0.02,0.05,0.10,0.15,0.25}, repeating

the procedure 100 times (so 700 genome pairs), and simulated at 2x and 16x coverage genome

skims (Appendix D). Note that these distances are in the unit of the expected number of

substitutions per site. Next, for each distance t, we arbitrary selected the 7th sample and

used the subsampling procedure to generate a distance distribution, which we then compared

against D obtained across 100 simulation runs. Note that the choice of α should ideally

not change the distance distribution (if the correction factor
√

b/n is correct). To empirically
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test this assumption, we performed extra experiments for true distances at {0.01,0.05,0.25}.

We repeated the subsampling procedure with α ∈ {4/5, 6/7, 9/10, 13/14, 20/21} leading to coverage

{0.11,0.25,0.47,0.71,1.00} when starting from 2x and {0.58,1.50,3.05,4.89,7.26} starting

from 16x. Skmer failed to estimate coverage and genome length in rare cases, and these replicates

were excluded from the analysis.

We used INDELible [70] to generate long sequences (representing genomes) under the

[65] (F81) model with uneven base frequencies 0.26, 0.21, 0.24, 0.29 for T, C, A and G and no

indels. Note that the F81 model with base frequencies so close to 1/4 is extremely similar to the

JC model used for phylogenetic distance inference by Skmer. We used ART [89] with its default

short-read error profile to produce low-coverage error-prone reads that simulate genome skims

(Appendix D).

Felsenstein-zone quartet trees. We simulated a challenging dataset meant to create conditions

prone to long branch attraction. First, we generated 1000 quartet trees with branch lengths close

to the Felsenstein zone; i.e., three short branches and two separate long branches (Fig. 3.2B). For

each replicate, we draw short lengths from log-uniform distribution spaced between 0.0001 and

0.001 and draw the long lengths from a uniform distribution between 0.05 and 0.12 (Fig. B.28AB).

Once the trees were available, we used INDELible, the F81 model with, and ART with settings

identical to the genome pairs experiments.

8-taxon simulations with model misspecification. We simulated an 8-taxon dataset with a

procedure similar to the previous datasets, with two changes to the model: 1) we used the GTR

model of [232], which can greatly violate the assumptions of the JC model used for estimation,

2) we added (unmodelled) rate variation across sites using the standard Gamma model of rate

variation [98]. In addition, this dataset included 8-taxa, necessitating the choice of a topology:

we used both fully balanced and fully unbalanced (i.e., caterpillar) topologies and simulated 120

replicates for each. Branch lengths were randomly selected from the log-uniform distribution
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spaced between 0.00001 and 0.12 (Fig. B.28C). We used Dirichlet (19, 14, 14, 19) to draw the

base frequencies for A, C, G, and T. Entries of the GTR matrices were drawn from Dirichlet

(50,7,12,12,14,50) for C↔T, A↔T, G↔T, A↔C, G↔C, G↔A. To set rates across-sites, the

1-centered Gamma model was used with α drawn from a log-normal distribution with log mean

2.55 and log standard deviation 0.18. Note that α is the inverse of the variance of the Gamma

distribution of rate multipliers. All these hyperparameters were estimated using maximum

likelihood estimation from a collection of published gene trees from the ruminant genomes

project [42].

Measuring accuracy on simulated datasets

To evaluate the accuracy, after computing support using Algorithm 2, we bin all 1000

replicates into seven groups based on the support value of their only internal branch and compute

how often trees in each bin are correctly inferred (Fig. 3.2B). If supports values are calibrated, the

percentage of correct replicates in each bin should be close to the midpoint of that bin. However,

even when support values are not calibrated, they can still be predictive (i.e., informative in

separating correct and incorrect branches). We evaluate the power of support in distinguishing

correct/incorrect branches using ROC curves (Fig. 3.2B) and drawing the support distribution for

correct/incorrect trees. We also show the empirical cumulative distribution function (ECDF) of

the support of correct and incorrect branches.

Real biological datasets.

We use five biological datasets, including those with assemblies, raw reads, and simulated

genome skims.

Cetaceans. We used two cetaceans datasets, one for within species and one for cross-species

relationships. We used all 27 cetacean assemblies from NCBI (Table C.21) to create the across-

species dataset. For within-species, we used the dataset of 20 low-coverage genome skims of

Gray’s beaked whale Mesoplodon grayi (Table C.22) published by [245]. We removed adapters,
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deduplicated these samples, and merged paired-end reads using BBTools [40] (Appendix D).

Since contaminates can impact distances [189], we filtered reads that do not align to a reference

genome Mesoplodon bidens using Bowtie2 [109, 111] (sensitive setting ; see Appendix D). For

genome skims, we used α = 20/21 instead of the default 9/10 to accommodate the low coverage of

these samples before subsampling (0.78–0.96x).

Insect datasets. We used 19 bee reference genomes [226] (Table C.23) and simulated genome

skims at 1x, 2x, 4x, and 8x coverage using ART. We also used 14 Drosophila assemblies as

well as their corresponding high-coverage SRAs (Table C.13), which we downsampled to 200

MB using seqtk [122] to get real genome skims. Assemblies were used without preliminary

processing. For real skims, we used a pipeline similar to beaked whales to remove adapters,

deduplicated reads, and merge paired-end (Appendix D). We filtered out human reads using

Kraken [250] and filtered out microbial contaminants by querying them against the GTDB

database using CONSULT [187]. The rest of the procedure was identical to beaked whale

genome skims, but we used the default α = 9/10.

We also used a real Lice by [33] where the original paper provides an alignment-based

tree to test whether our support values can identify questionable branches. We collected 61 high

coverage lice SRAs (Table C.24) and downsampled them to 400 Mbp to emulate genome skims.

We removed adapters, deduplicated these samples, and merged paired-end reads (Appendix D)

but no filtering of contaminants was performed.

Chapter 3, in full, is a reprint of the material as it appears in Quantifying the uncertainty of

assembly-free genome-wide distance estimates and phylogenetic relationships using subsampling.

Rachtman, E.; Sarmashghi, S.; Bafna, V., & Mirarab, S., Cell Systems, 2022. The dissertation

author was the primary investigator and author of this paper.
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Chapter 4

Alignment-free phylogenetic placement
using machine learning

Continuous increase in size of the available sequencing datasets makes de novo phy-

logenetic tree reconstruction a challenging problem. As a result, updating phylogeny through

phylogenetic placement becomes an important alternative. Placement can be used to add newly

sequenced samples to the reference tree obviating the need of reconstructing phyogeny from

scratch as well as can be helpful in uncovering identify of unknown query samples obtained

through metabarcoding, skimming, or metagenomic data. However, attempts in alignment-free

phylogenetic placement have both scalability and accuracy limitations. In this paper we try to

overcome challenges of conventional distance based phylogenetic placement methods by lever-

aging machine learning. Thus we represent each input genome as a vector of k-mer frequencies

and train machine learning method to estimate distances between such vectors. Once pairwise

distance matrices are computed they are used for phylogenetic placement. We demonstrate that

our method, kf2d, outperforms existing k-mer-based approaches in distance calculation and

allows accrutate placement new samples on phylogenies constructed from heterogeneous data

types.
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4.1 Introduction

The cost of DNA sequencing has reduced dramatically over the past years [143]. As

size of size of the available genomic datasets grows de novo phylogenetic tree reconstruction

becomes a challenging problem. Therefore, finding a way to update phylogeny without re-

computing original tree becomes an attractive alternative [17]. As previous studies showed for

high-throughput applications, phylogenetic placement—adding a new sequence to the existing

reference tree—is often sufficient and in some cases even more accurate than more laborious de

novo tree reestimation [90].

The problem of phylogenetic placement is not new and there is a number of methods that

have been developed to address this question [17, 21, 23, 56, 65, 93, 142, 158]. Placement algo-

rithms are either gene trees based or distance based and both groups have their own challenges.

Thus gene tree based solutions are designed to add sequences from a single gene family to the tree

showing its evolutionary history (i.e., the gene tree). However phylogenetic relationships change

across the genome [52, 134] due to horizontal gene transfer (HGT) [166] and such discordance

should be taken into account [243]. Gene tree based methods place on gene trees. Therefore they

assume that gene trees are similar to species trees and hope that their differences are unimportant.

Additionally, even prior to placement the process involves identification of marker genes and

their multiple sequence alignment, steps that are very computationally laborious and might be

infeasible for a number of applications [110, 120, 121]. Since alignment methods are typically

computationally too slow, more recent compositional alignment free k-mer based approaches

with more competitive performance have gained popularity. However, compositional distance

based phylogenetic placement methods are suffering scalability and sometimes accuracy issues.

Taking these points into account we suggest that this problem should be approached

differently. We believe that the key would be to use k-mer based composition of the sequence

as input for distance computation and at the same time leverage machine learning methods as a

way to capture more complex phylogenetic relationships between the species along the tree. The
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purpose of machine learning in this application is to learn a low dimensional representation (an

embedding) of the entry sequence such that distances between embeddings correspond to the

phylogenetic distance between the species on reference tree.

We note that in recent years, distributed representations of words in a vector space has

been increasingly used in Natural Language Processing (NLP) to improve the performance of

learning algorithms [153]. These representations, called embeddings, are projection of words in

a low dimensional numerical vector space capturing semantic and lexical information learned

from contexts of words. These vectors can be used as features for many applications like

sentiment analysis [132], translation [184] or even speech recognition [22], outperforming

standard word count representation. DNA sequences have been treated in a similar fashion with

some prepocessing [99, 147, 164]. Evidently there are some important distinctions between

metagenomic and NLP data. Thus when sequencing read is split into possible k-mers there is no

notion of delimiter and some contextual information might be less important. Nevertheless vector

representation of DNA k-mers might serve as input to machine learning models and produced

embeddings of sequencing reads might be successfully utilized in downstream phylogenetic

analysis.

So far there have been only a few attempts to learn machine learning k-mer embeddings

directly from raw metagenomic data. Most of them address the task of predicting the origin of

reads (taxonomic profiling) at a certain taxonomy level or to perform phenotype classification.

To assign taxonomic information to each read, FastDNA [147] uses embeddings of k-mers and

claims to achieve performances comparable to the state-of-the-art. In the first step of their

approach they define the length k of the k-mers that describe the DNA sequences. Then they

run the fastText algorithm [99] to learn low-dimensional embeddings (dimension from 10 up

to 1000). All k-mers in a sequence are replaced by their corresponding vector and summed

to get an embedding of the read they belong to. Then this new vector is passed to a linear

classifier, which computes the softmax function and minimizes the cross-entropy loss by gradient

descent. The k-mer embeddings are directly learned from the read classification considering the
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result of the loss function. The authors demonstrated that significant results of prediction appear

with k-mer size > 9 bp. With a similar objective, Liang et al. [124] propose DeepMicrobes, a

neural network with an architecture composed of an embedding of k-mers, a bidirectional long

short-term memory (LSTM), and a self-attention layer to predict the species or the genus of a

read. The authors show that performance increases with k up to k = 12, the largest possible that

allows to fit the model in the memory of the hardware needed to train the model. Georgiou et al.

[74] manage to reduce the memory footprint of the model by using a locality-sensitive hashing

(LSH) of k-mers, allowing them to test models up to k = 13.

In the work of Woloszynek et al. [248], the objective is to add, in addition to taxonomic

profiling, a method to retrieve the source environment of a metagenome (phenotype prediction).

A Skip-gram word2vec algorithm [153] is trained for k-mer embeddings and a SIF algorithm [9]

is used to create reads and samples embeddings. They demonstrate the usefulness of such an

approach for clustering and classification tasks. Moreover, they show that such embeddings

allow models to be trainable using k-mers with big k (greater than 9), which is not possible when

relying on simpler representation such as one-hot encoding because of their size exponentially

growing.

In this study we have developed a machine learning approach kf2d that uses as input k-mer

frequency information and allows distance computation between query and reference genomes

for purposes of phylogenetic placement. Our approach requires minimal data preprocessing.

Method is agnostic to the origin of the reference tree and can be applied to a variety of different

sequencing data types. In number of validation experiments we demonstrated that our method,

kf2d, outperformed existing k-mer-based approaches in distance calculation and allowed placing

new samples on phylogenies constructed from heterogeneous data types.

4.2 Results

We evaluated performance of kf2d on multiple datasets.
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4.2.1 Benchmark datasets

Tree of Life. Tree of Life (TOL) [13] dataset was composed of 199330 microbial

metagenomic assemblies and a reference phylogeny build using 381 marker genes. In our study

we utilized 11,075 species. As a backbone tree we used original TOL phylogeny of 10575

species reported by Zhu et al. [257] and arbitrarily selected 500 queries with variable distance to

the closest species from the larger tree. We note that for algorithm development and validation

experiments we used original smaller TOL phylogeny with a set of 500 randomly selected

queries.

Fungal dataset. We used publicly available fungal dataset [123] that included 1,672

genome assemblies and reference phylogeny generated using 290 gene trees. To select more

challenging queries we picked 80 genomes with the largest distance to the backbone phylogeny.

We trained kf2d on 1592 species with 28 outgroup taxa excluded.

Insect phylogeny. To test performance of kf2d further we used insect phylogeny of

49358 species [43]. Original study only reported phylogeny. For purposes of our experiment we

utilized 1178 insect species for which full genomes were available for download from NCBI

[206]. From available assemblies we selected 60 species with largest distance to the backbone to

construct a query set.

Lichen metagenomes. Finally, to test performance kf2d on sequencing reads we utilized

publicly available lichen dataset [230] that included 413 lichen metagenomes. For our analysis

we selected 50 lichen samples based on species names of the fungal component reported in

annotations. We picked samples for which assemblies with the corresponding genus were present

on a fungal phylogeny analized above. Prior to computing k-mer frequencies for placement

analysis lichen samples were filtered against Genome Taxonomy Database (GTDB) R05-RS95

database [175] using CONSULT [187] in order to remove bacterial reads. GTDB included

30,238 bacterial and 1,672 archaeal genomes, that were selected to represent 194,600 samples

clustered at 95% nucleotide identity.
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4.2.2 Experiments
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Figure 4.1. Method workflow. A) Training step. For every input backbone sequence k-mer
frequency vectors are generated and summarized in feature table. The output of the model is
embedding vectors that corresponds to each input sequence. Euclidean norm is computed for
all pairs of embedding vectors to construct inferred distance matrix. True distance matrix is
pairwise distance matrix obtained from the backbone phylogeny. Weighted mean squared error
(MSE) is used to evaluate loss. B) Query step. Trained model is applied to the k-mer frequency
vectors of the query sequences. Once embeddings are obtained, all pairwise distances between
query and backbone embedding are computed to produce pairwise distance matrix. Pairwise
distance matrix is used to perform placement.
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Figure 4.2. Performance of kf2d on TOL phylogeny. A) Distance comparison between kf2d
and D2Star metric from CAFE on TOL phylogeny. Inset shows pearson correlation between
true and estimated distance values produced by kf2d vs D2Star. B) Placement error for different
CAFE metrics in comparison to kf2d. Placement errors for Co-phylog and JS metrics were
22.910 and 12.106, respectively and not shown on the diagram. C) Per clade placement error
for global vs local model when samples are placed in true clades. D) Variable conditions of
placement. Development TOL query set was used for all experiments on the panel.

Accuracy of distance estimation

We have compared accuracy of distance estimation between kf2d and multiple phyloge-

netically relevant distance metrics from CAFE suite (Fig. 4.2AB). D2Star, D2Shepp and Cosine

distances most accurately represented phylogenetic relationships between bacterial species

on TOL phylogeny with placement error of 2.674, 2.88 and 2.872 edges away from correct
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Figure 4.3. Variable conditions for placement of experimental queries on TOL phylogeny.
A) kf2d is compared to DEPP with 16S rRNA gene and set of 381 markers. B) Effect of
contig length. C) Distribution of placement error with variable distance from query to closest
species on a reference phylogeny D) Effect multiple quality metrics obtained from GUNC [170],
CheckM [176] and QUAST [152] ranked based on p value of the adjusted t-test performed for
each metric individually. Detailed defintion of each quality metrics is provided in Tables C.25,
C.26, C.27.

placement position (Fig. 4.2B). At the same time kf2d had placement error of 1.432 that was

substantially better than values from any of the CAFE distance measures.

Direct comparison of estimated distances between kf2d and D2Star revealed that for both

conditions either within reference species or between query and references kf2d produced much

more accurate and most importantly unbiased phylogenetic distance estimations (Fig. 4.2A and

Fig. B.29).
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Figure 4.4. Lichen metagenomes placed on fungal phylogeny. Lichen metagenomic reads
were placced on fungal phylogeny after filtering out bacterial reads. Dashed branches correspond
to lichen queries. Colors signify the same genus for lichen samples as well as fungal species on
a phylogeny. We extracted a subtree of 387 species rooted at the LCA of placed lichen queries.

Parameter testing

We learned that parameter selection for our model was quite robust. Thus changes

such as shorter k-mer size (k = 6) for the input sequences or presence of extra linear layer

in a model produced minimal change to the placement error. (Fig. 4.2D). Since our solution

involves two steps: classification step that produces global model and per clade training that

94



generates individual clade models we evaluated possible effects of the model selection as well as

placement using model combinations (Fig. 4.2D). We demonstrated that for larger phylogenies

combinatorial solution worked the best. Thus queries for which classifier reported ambiguous

clade identity should be placed using global model. At the same time query sequence where

clade can be determined with high confidence should be placed using corresponding clade model

(Fig. 4.2D). We also showed that different in placement error between clades is most likely

guided by the presence of more challenging outlier queries in some clusters(Fig. 4.2C).

Optimal contig length

One of the main questions we aimed to answer is the recommended length of the bacterial

assembly contig that can still be places correctly. Experiment revealed that optimal contig length

should be around 300K(Fig. 4.3A). Additionally we showed that shorter contigs might be placed

correctly but larger distribution of placement error values was observed (Fig. 4.3A). We also

observed that when contig length increases beyond 300K placement error want up. This is most

likely due to the the fact that these extra long contigs have chimeric origin and therefore placing

them might not be trivial.

DEPP results

DEPP is the method that is uses machine learning to learn genome embeddings from

marker genes. In this experiment we tested effect of different number of marker genes used

as a DEPP input and compared it’s performance to kf2d. Our comparison showed that DEPP

performance is guided primarily by number of input marker genes used in multiple sequence

alignment. Therefore when number of marker genes is low kf2d produced comparable or slighly

better performacence in terms of placement error (Fig. 4.3B). As number of gene trees increases

placement DEPP performance becomes more accurate.
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Fungal and insect placements

We assessed ability of kf2d to estimates distances for challenging queries(Table 4.1). We

performed their placement and compared result to the phylogenies reported in a literature. In

both cases kf2d was very accurate producing nearly perfect placements for the queries. Thus

while placing queries on insects phylogeny only two species Nesidiocoris tenuis and Bemisia

tabaci were placed incorrectly with mean placement error of 0.13 edges away. Fungal tree

had 0.05 placement error with only three species Middelhovenomyces tepae, Magnusiomyces

tetraspermus, Acaulopage tetraceros being misplaced.

Lichen metagenome placement

Quality of lichen metagenomic placement after filtering out bacterial reads was reasonable.

Thus species from genuses Ramalina, Pseudevernia, Lasallia, Umbilicaria were placed together

with the other representatives from the corresponding genuse (Fig. 4.4). Almost all Cladonia

species clustered together and around C. uncialis, C. macilenta and C. meracorallifera species

present on the phylogeny. Out of all lichen samples that we analyzed we observed three outliers

C. polycarpoides and C. ziziformis Evernia prunasti that was placed quite far from corresponding

representatives on fungal tree.

.

4.3 Methods

4.3.1 Data preparation

We used JellyFish [139] to extract counts of canonical k-mers (k = 7) from all input

sequences that were either assemblies or SRAs (Fig. 4.1A). To account for differences in genome

length each vector was normalizes such that k-mer counts would add up to 1.0. If particular

k-mer was not present in a genome zero count values were added to the frequency vector. Next,

we summarized computed k-mer frequency profiles into input feature table where k-mers were
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organized in alphabetical order. We used Newick Utilities[102] to obtain ground truth distance

matrix for a corresponding backbone phylogeny.

For larger phylogenies such as TOL single model might not be able to efficiently capture

complexity of the input data. In such cases we recommend to use procedure similar to the one

described in [95]. In particular we set branch length for all the branches on backbone phylogeny

to 1.0 and split backbone into individual relatively similar size clades using TreeCluster [15].

In this set up for each input training sequence we have clade identity as well as distances to

backbone species and training for every clade is handled independently. We note that this

configurations also requires an additional step of training a classifier since clade identity needs

to be determined upfront.

4.3.2 Algorithm

Input and output

Input into the software is a feature table S where number of rows corresponds to the

number of backbone sequences and each entry is represented as 8192 feature vector. Output of

the software is the pairwise distance matrix that represents relationships between queries and

backbone sequences. Output matrix can be directly used as an input into placement software

such as APPLES [17] in order to construct placement phylogeny (Fig. 4.1A).

Objective function

To compute pairwise distances between training examples we first use neural network

model to generate embeddings for each entry sequence in Rm space, where m = 1024. Use of

embeddings has a theoretical justification [94]. Thus according to [51, 114] for any tree T there

exist a collection of points P = {Φ(ti)}n
i=1 in the Rn−1 Euclidean space such as the distance

between the points Φ(ti) and Φ(t j) corresponds to
√

di j. Since we treat k-mer frequency vectors

as a function of the tree there must exist their embedding that corresponds to the tree. In this

context machine learning is used as a way to compute a function that minimizes divergence
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between computed sequence embeddings and the square root of the distances between species

on a given backbone phylogeny.

In other words the goal of the training process is to recover a model that maximizes

a match between Eucledian norm of all pairwise distances between embedding vectors and a

square root of phylogenetic distances in the reference tree in Eucledian Space. To train the model

we defined mean squared error (MSE) loss as (4.1)

argmax
Φ

∑
i, j
(∥Φ(si)−Φ(s j)∥2−

√
di j)

2 (4.1)

where Φ is a model function that is applied to input k-mer frequency vectors to generate

embedding Rm in the Euclidean space and
√

di j identifies pairwise distances in the reference tree

T . Estimated distance between i and j is (∥Φ(si)−Φ(s j)∥2)
2. However it is known that long

distances in distance-based phylogenomics might substantially contribute to the error [68] but

remain relatively unimportant with regards to placement [17, 27, 56, 73]. Therefore to facilitate

accuracy they should be downweighted. As a result in practice we use weighted version of the

mean squared loss (4.2)

argmax
Φ

∑
i, j

1
di j

(∥Φ(si)−Φ(s j)∥2−
√

di j)
2 (4.2)

where 1
di j

is a weight computed to each pair of distances. We also note that similar version of

loss function was successfully utilized in [93].

To accomodate a case where larger phylogeny split into multiple smaller clades in addition

to training an embedder we need to train a classifier so that clade identity of the query can be

determined before distance to the backbone is computed. In such case to train the model we use

a combination of MSE and negative log-likelihood (NLL) losses. NLL version is generalized to

the multiclass classification setting
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l(Φ) =−
i=b

∑
i=1

(xilog(x̂i)) (4.3)

where b is a batch size, xi and x̂i are probability vectors for corrected vs predicted clades,

respectively.

Query time

We note that kf2d allows to use as a query any type of sequencing data such as assemblies,

SRAs, etc. Each query sample is represented as frequency vector of canonical k-mers. To

determine clade identity of the query (if backbone tree is relatively large) we first apply a

classifier to the vector to learn which clade model should be used for distance computation. To

construct pairwise distance matrix model for a corresponding clade is run to generate embedding

of the query sequences. Next Eucledian norm of embedding vectors is computed between all

pairs of reference sequences from the particular clade and a query (Fig. 4.1B). Once distance

matrix is constructed placement is performed.

Placement

Model is applied to the input queries we obtain a distance matrix which represents a

relationships between query sequence q and a vector of reference sequences D1...Dn. We use

these distances to place q onto T using distance-based placement tool APPLES developed by

Balaban et al. [17]. This software uses dynamic programming algorithm to find the placement

with the minimum ∑
n
i=1 D−2

i (Di−dqi((T ))
2, where where dqi(T ) represents the tree-based

distance between the query and each taxon i (Fig. 4.1B).

Implementation details

We implemented and trained our model using PyTorch[177]. Model is composed of two

feed forward linear layers separated by rectified linear unit (ReLU) activation function. We use

Adam optimizer [106] which is a version of stochastic gradient descent that uses estimations of
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the first and second moments of the gradient to adapt the learning rate for each weight of the

neural network. We recommend to train for no more than 4000 epochs. Value was determined

empirically based on accuracy of the placement but can be modified by the user. Batch size is

equal to 16.

For classifier step we have implemented a ”forked” model architecture. In this configura-

tion output of the first fully connected layer is used as an input into both second linear layer and

as well as classification layer followed by softmax function. Other details are the same as in two

layer model. Such configuration allows us to simultaneously train to obtain classifier model and

global embedding model as well as a set of probability values for every clade. Empirically we

determined that global model produced higher placement error than more refined local models

trained on every clade separately. However in cases where clade identity of the query could not

be determined with high probability we found that using global model for distance computation

improves accuracy.

Model selection

To choose the best architecture, we performed a search over several hyperparameters:

lengths of k-mers, number of neural network layers and the number of epochs (Fig. 4.2C,D). We

used placement accuracy to compare performance of the models.

4.3.3 Experimental details

We evaluated performance of kf2d in multiple experiments.

Comparison with CAFE

We compared accuracy of distance estimation between kf2d and aCcelerated Alignment-

FrEe sequence analysis (CAFE) [129]. CAFE is a modern state-of-the-art tool that allows to

compute 28 different alignment-free dissimilarity measures using k-mer frequency statistics

extracted from genome assemblies. In our experiment we computed 8 distance measures

(CVTree, D2Star (d∗2), D2Shepp (dS
2 ), Cosine (d2), Co-phylog, Euclidean (Eu), Jensen-Shannon
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divergence(JS) and Manhattan (Ma)) that prior were shown to closely correspond to phylogenetic

distances. We used smaller TOL reference phylogeny and development set of query sequences.

Since recomputing entire distance matrix would be too time consuming we performed this

experiment at the clade level. First we split reference phylogeny into 15 clades and computed

all pairwise distances within every clade separately. Next we used these distance matrices to

perform query placement on entire backbone tree using APPLES and compared constructed

phylogeny with the original one. Results were evaluated based on error in distance estimation

(comparing to the true distances from original phylogeny) as well as placement accuracy.

Comparison of kf2d to DEPP

We compared performance of our alignment free method with conventional alignment

based approach DEPP [93]. DEPP [93] is a machine learning tool that takes an a input multiple

sequence alignment of marker genes for references and query genomes and generates embeddings

for all entry samples. Once embedding are produced all pairwise distances between them are

computed. Inferred distance matrices can be used for phylogenetic placement. For our study

we performed comparison on larger TOL phylogeny using a set of 500 experimental queries

that were different from development queries used for kf2d testing. DEPP pretrained model

were applied to different number of randomly selected marker genes. Once distances were

obtained, query placement was performed using APPLES. Accuracy of placement was evaluated

by comparing topologies of newly inferred phylogeny with the structure of the original tree.

Contig length evaluation

We aimed to address a question of recommended contig length for assembly to ensure

accurate placement using kf2d. We used TOL phylogeny with experimental queries. For every

genome we extracted k-mer frequency vectors for individual contigs of 500 query sequences

using JellyFish [139]. All settings were unchanged. In total we obtained 76079 entries. Contigs

shorter than 40000 were deemed too short to provide necessary k-mer information and were
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filtered out. Contig count was reduced down to 7051 entries. Next we subdivided feature table

based on clade composition and apply corresponding models. Once distance matrices were

computed we performaned phylogenetic placement of individual contigs on reference tree using

APPLES. Since species identity of each contig is known accuracy of placement was evaluated

based on location of inserted branch. Each contig was placed and evaluated individually.

Placement on fungal and insect phylogenies

Both fungal and insect phylogenies were processed in similar fashion. In this experiment

we treated species in both trees as single clade. Input samples were split into backbone and

query sets. We trained kf2d using backbone reference species. Once models were trained we

computed all pairwise distances between obtained embeddings of the queries and a backbone

species. Placement was performed with APPLES and accuracy of placement error was assessed

based on comparison with phylogenies reported in original studies.

Lichen placement

A lichen is a symbiotic organism of fungus with algae or cyanobacteria. Lichen has a

very different morphology, physiology, and biochemistry than any of the constituent species

growing separately [230]. The algae or cyanobacteria benefit their fungal partner by producing

organic carbon compounds through photosynthesis. In return, the fungal partner benefits the

algae or cyanobacteria by protecting them from the environment by its filaments, which also

gather moisture and nutrients from the environment, and (usually) provide an anchor to it [82].

A number of lichen related studies focus on uncovering of the details of symbiotic relationships

and less on characterization of diversity and exact composition of the lichen samples [230]. This

trend is mostly due to challenging metagenomic nature of the lichen shotgun DNA-sequencing

samples.

For our experiment we aimed to perform fungal species identification through placement.

First removed bacterial reads from input lichen samples [230]. Then we obtained k-mer frequency
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Table 4.1. Placement with good quality assemblies.

Dataset Species
count

Query
count Method Placement

error
Correctly

placed (%)
Fungi 1601 73 kf2d 0.0547945 0.958904
Fungi 1601 73 EPA-ng 0.0958904 0.972603
Insects 1178 60 kf2d 0.133333 0.966667
Insects 1178 60 Skmer 0.216667 0.966667

counts using JellyFish [139]. Next we computed distances from lichens to the reference genomes

in fungal phylogeny using kf2d. Placement was performed with APPLES [17]. Finally, we

evaluated whether fungal samples were placed in proximity to the fungal species from the same

genus on larger phylogeny.

Chapter 4, in full, is currently being prepared for submission for publication of the

material. Rachtman, E.; Jiang Y.; Mirarab, S. Alignment-free phylogenetic placement using

machine learning. The dissertation author was the primary investigator and author of this

material.
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Appendix A

Derivations

A.1 Derivation of (1.4)

Definitions
• Let L be the number of unique k-mers in the base genomes of species of interest, which

for each of calculation, we assume is the same between genomes.

• ρ is the fraction of L k-mers that are different between the two base genomes.

• Y1 and Y2 are the total number of unique k-mers from each of the two contaminants.

• c1, c2 are the fraction of k-mers in sample one and sample two that come from contaminants.
Thus, c1 =

Y1
Y1+L and c2 =

Y2
Y2+L .

• a = c1
1−c1

+ c2
1−c2

= Y1
L + Y2

L = Y1+Y2
L . Thus, Y1 +Y2 = aL.

• X is the total number of k-mers shared between the two contaminant sets, and H is the
Jaccard similarity between k-mers of the contaminants of the two skims. Thus,

H =
X

Y1 +Y2−X
=⇒ X =

H(Y1 +Y2)

1+H
=

H(aL)
1+H

Goal. We want to derive

J =
(1−ρ)(1+H)+aH
(1+ρ)(1+H)+a

.

Derivation. We assume coverage is high enough that all L k-mers from each genome are in the
skim. Then,

J =
L(1−ρ)+X

2L−L(1−ρ)+Y1 +Y2−H

where the numerator counts the number of shared k-mers from the two base genomes plus the
number of shared k-mers from the contaminants, and the denominator counts the total number of
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k-mers. Results are obtained as follows.

J =
L(1−ρ)+X

2L−L(1−ρ)+Y1 +Y2−H

= H
L(1−ρ)+X

L(1+ρ)H +(Y1 +Y2−H)(H)

= H
L(1−ρ)+X

L(1+ρ)H +X

= H
L(1−ρ)+ H(aL)

1+H

L(1+ρ)H + H(aL)
1+H

=
(1−ρ)+ aH

1+H

(1+ρ)+ a
1+H

=
(1−ρ)(1+H)+aH
(1+ρ)(1+H)+a
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Appendix B

Supplementary Figures
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Figure B.1. Theoretical modeling. Impact of contamination on Jaccard (a) and the genomic
distance estimated from Jaccard (b) according to theoretical expectation under the disjoint con-
taminant k-mer assumption. For various genomic distance (D ∈ {0.001}∪{0.01,0.02, . . . ,0.2})
corresponding to 0.03 < ρ < 0.99 and contamination levels 0.01≤ cl ≤ 0.5, the relative error of
the Jaccard index (a) and the estimated Skmer distance (b) as a result of ignoring contamination
are shown. k = 31.
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Figure B.2. Theoretical impact of filtering on Jaccard (top) and Skmer distance (bottom).
Two genomes with D between 0.001 and 0.05 are both contaminated at 0.01≤ cl ≤ 0.32. Skmer
distances are approximated using (1.1), with Jaccard approximated using (1.5). Results are for
various levels of FP portion ( fp), and FN ( fn) rate. Solid lines show the relative error in Skmer
distance after filtering, normalized by the true uncontaminated value, expressed as percentage.
The error in the absence of filtering is shown as a horizontal dashed red line. See Figure B.3 for
a tabular view.
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28.6%24.2%19.3%13.8%7.4%0.0%

29.7%25.3%20.3%14.5%7.8%0.0%

31.0%26.5%21.2%15.2%8.3%0.0%

32.4%27.7%22.3%16.1%8.8%0.0%

33.9%29.1%23.6%17.1%9.3%0.0%
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19%15%12%8%4%0%
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Figure B.3. Approximate impact on Jaccard (top) and distance (bottom). Two genomes
with portion 0.05≤ ρ ≤ 0.75 of their k-mers not matching (corresponding to D between 0.002
and 0.044) are both contaminated at 0.02 ≤ cl ≤ 0.32. Approximation of Jaccard using (1.5)
Skmer distance D using (1.1) for various levels of FP portion ( fp), defined as the percentage of
each genome skim that is filtered out by mistake, and FN Rate ( fn), defined as the proportion of
the contaminating k-mers that have not been removed. Each box shows the error in Jaccard or
distance estimation after filtering, normalized by the true value (i.e., value with no contamination),
expressed as percentage. The error in the absence of filtering is shown as a single number below
each box.
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Figure B.4. Drosophila phylogenies. Drosophila phylogeny inferred from distances computed
without filtering (top, left), and after filtering with Kraken-II (bottom, left) on 100Mb genome
skims. Gold standard Drosophila phylogeny obtained from Open Tree of Life, whose branch
lengths are computed using assembly distances, is shown twice (top and bottom, right). All trees
are based on Jukes-Cantor model of evolution accounting for rate variation across sites using Γ

model with α = 1 and are inferred using FastME. Branches that do not match the gold standard
phylogeny are indicated with red.
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Figure B.5. Sensitivity analysis of Kraken-II. (a) For each query genome, dots show the
percentage of reads classified (i.e., 1− fn) by the default Kraken-II at the domain level or lower
versus the distance of a query to the best match in the reference library (M), measured using
Skmer. Default Skmer is not accurate for M > 0.3 and thus we show M ≤ 0.3. (b) Similar to
part (a), except, here, on the left, we measure M using either a phylogeny inferred from 381
marker genes and applying the inverse of the JC69 correction or by applying Skmer to the base
assemblies. Using phylogenetic distances allows us to measure M > 0.3.
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Figure B.6. Sensitivity analysis of Kraken-II. For each query genome, dots show the percentage
of reads classified by Kraken-II vs percentage of reads classified at the species level.
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Figure B.8. Relative error of Skmer distances without (None) and with (colored) Kraken-II
filtering with different confidence levels α and k. Contaminants are added based on sequences
that are at distance range M from the sequences in the reference library, for four ranges of M
(boxes). The pairs of Drosophilas are chosen to be at true distance D = 0.2%, D = 2.1%, or
D = 6.3%. top: normal scale; bottom: squre root scale.
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Figure B.9. Filtering with Kraken. (a) Proportion of reads filtered by Kraken-II from one
of the two species being compared versus the error before Kraken-II in the genomic distance.
(b) For each pair of species, colors show the relative distance error before Kraken-II versus the
proportion of reads filtered from each of the two genomes. Error is associated strongly, but
imperfectly, with high levels of filtering.
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Figure B.10. Relative distance error. Change in relative distance error after filtering with
Kraken-II for 100Mb Drosophila dataset versus (a) gold standard (assembly) genomic distance
D, and (b) error before Kraken-II filtering.
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Figure B.12. Running time. Kraken-II processing speed (s per query) with respect to different
genome skim sizes. Sequences were simulated using ART [88] (same settings as before) to reach
at least 1.4GB of synthetic reads and subsequently downsampled to generate 1GB, 0.7GB, 0.4GB
and 0.1GB genome skim benchmark set. The dataset was queried using Kraken-II default settings
and standard reference library. Kraken-II was run on a machine with Intel Xeon E5-2680v3 2.5
GHz CPU and 120GB of RAM running CentOS Linux release-6-10.
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Figure B.13. The sensitivity of filter-free correction using theoretical modelling. For six
values of D (boxes) and varying H, relative error is shown for various contamination levels
(setting cl = c1 = c2) when the estimated distance is corrected using (1.6) when cl is miscalculated
by small margins (1% or 5% over or under-estimated). Missing values indicate cases where (1.6)
gives undefined values. k = 31 in all cases.
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Figure B.14. Controlling true positive rate. Assuming we want a fraction ρ of k-mers in
a read to match to sequences with p hamming distance to the read, we need l hashes and

h = log(1−(1−ρ)
1
l )

log(1− p
k )

bits per hash to achieve the desired level. Figures show probability of a

32-mers matching another 32-mer (p(d)) if their distance d is the value shown on x-axis, for
various choices of l, setting h such that ρ(3) = 0.10 (on the right) or ρ(3) = 0.95 (on the left)
(p = 3 and ρ(3) shown with dotted lines).
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Figure B.15. Dynamics of filling out lookup tables during database construction. Each bar
shows the percentage of rows where the x-axis is the number of columns that are populated with
pointers to the encoding table. Row panels show counts after a number of k-mers were added to
the database while column panels show tag size (0 or 2). Experiment represents a construction
of TOL database. With tag 0, many rows starts to fill up around 3 billion k-mers, showing that
row usage is not uniform. For most levels between 1 billion and 6 billion k-mers, fewer rows are
full with tag 2 than tag 0. This pattern is the motivation for using t = 2 as the default.
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Figure B.16. Effect of tag size on efficiency of k-mer inclusion during database construction.
x-axis shows the number of k-mers that were read during database construction at given point of
time. y-axis represents (a) total number of encodings that were added to encoding array, and (b)
total number of signatures that were added to lookup table. Experiment indicates that with t = 0,
we have less efficient utilization of map capacity. Experiment was performed on TOL database
constructed with default settings and t ∈ {0,1,2,3}.
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Figure B.17. Kraken-II comparing databases built with modified vs original taxonomy
on GORG queries. The ROC curve showing the mean of recall vs FP rate (i.e., plant queries
matched to a DB) for both custom libraries with two settings. Kraken-II was run with confidence
level ∈ {0.00, 0.02, 0.05}. Since genomes without associated taxonomy IDs are not processed by
Kraken-II [250] such genomes were added to the map at the cellular organisms level manually.
This addition increased both recall and false positive rates for GTDB but did not have a substantial
impact on the TOL database.
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Figure B.18. Difference in percentage of classified reads between CONSULT and Kraken.
The x-axis shows the difference between the percentage of reads in each genome that are
classified using CONSULT and Kraken. Thus, positive difference indicates that CONSULT
classifies more reads for a given sample than Kraken. The histogram is shown over all > 12,000
GORG samples queried against the GTDB reference library with default settings for CONSULT
and α = 0.04 for Kraken (bin size=0.1%).
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GTDB library was constructed with default settings.
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a) SRR7685402, unfiltered

b) SRR7685402, filtered

c) SRR2531285, unfiltered

d) SRR2531285, filtered

Figure B.20. Example annotations for generated chloroplast assemblies where filtering
leads to complete assemblies. For two example samples, SRR7685402 (a,b) and SRR2531285
(c,d) with complete assemblies with CONSULT filtering but not without it, we show gene
annotations performed using GeSeq [235]. Annotations are shown for (a,c) unfiltered and (b,d)
filtered reads, demonstrating that the increased length of filtered assemblies is not spurious, as
evident from the increased number of annotated genes.
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(a) ERR2114804, unfiltered

b) ERR2114804, filtered

c) SRR5500897, unfiltered

(d) SRR5500897, filtered

Figure B.21. Example annotations for generated chloroplast assemblies where filtering
decreases assembly length. We show two example cases, ERR2114804 (a,b) and SRR5500897
(c,d), where CONSULT filtering reduces the length of the longest contig. Gene annotations are
performed using GeSeq [235]. In both cases, the long (97kbp for ERR2114804 and 213kbp for
SRR5500897) contigs produced by assembling the unfiltered reads are clearly spurious: In one
case (a) only two genes that are supposed to be adjacent are found and are far apart; in the other
case (c) no gene is found in the entire 213kbp. In both cases, filtering leads to very small contigs
(b,d), which appropriately, have one or two genes annotated. Thus, filtering reduces spurious
assembly.
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Figure B.22. Mitochondrial genes annotated in 20 largest contigs of the assemblies for
filtered, unfiltered and original references. Plot demonstrates that genes missing from the
largest contig of the assemblies produced by filtered reads can be found in smaller contigs of the
the same assembly. Values indicate contig number in which gene was annotated.
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Figure B.23. Impact of distance correction versus α using samples at variable original
coverage with two types of correction. A) Samples at 16x original coverage with main
correction. B) Samples at 16x original coverage with consensus. C) 2x original coverage with
consensus. Top portion of each subplots shows true distance. Y axis corresponds to estimated
distance. Top part of x-axis label denotes α value; * signifies a suggested default. Bottom of
the label is corresponding coverage. Values on top panels of the graphs correspond to the true
distance between pairs of samples in simulated tree. Dashed line points to the coverage at which
Skmer changes algorithm for distance computation.
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Figure B.24. Supplementary results for the 8-taxon experiment. A, B: Effect of heterogeneity
rate on estimated support for eight taxa simulations. A) Plot shows heterogeneity rate vs estimated
support with both types of correction for eight taxa trees. B) Diagram shows heterogeneity
rate vs number of correct branches computed with both types of correction for eight taxa trees.
Heterogeneity rate corresponds to α which is the shape parameter for the gamma distribution.
See Section “Datasets” for exact definition. C: Receiver operating characteristic (ROC) for eight
taxa simulations comparing balanced and unbalanced tree topologies. FPR denotes false positive
rate. D: Effect of branch length on estimated support for the 8-taxon experiment. Diagram shows
estimated branch length vs support computed for both types of correction.
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Figure B.25. Supplementary results for biological datasets. A: Comparison of branch length
vs support for biological data. Only sequencing read samples are included. Support values
are from phylogenies generated with main correction. B: Whale consensus phylogeny. Whale
tree computed for multiple organisms of the same species of Gray’s beaked whale Mesoplodon
grayi using consensus. Thickness of the branch corresponds to magnitude of associated support.
Tree topology is different from main tree shown in Figure 3.6B with only three shared branches
highlighted in orange. None of the branches have 100% support which confirms lack of structure
that we expect to see for the phylogeny built using samples of the same species. C, D: Constructed
Lice phylogeny. Branches with no values assigned signify 100% support. Thickness of the
branch corresponds to magnitude of associated support value. Red denotes conflicting branches
as compared to ASTRAL reference phylogeny reported in original study. C) Main correction. D)
Consensus.
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Figure B.26. Stability of analyses on biological dataset using both Main correction (A,C)
and Consensus correction (B,D). A, B: Number of subsample replicates vs estimated support.
Phylogenies are obtained from Bee sequencing reads simulated at 1x. C, D: Original sample
coverage vs support values for Bee dataset. Values that are not displayed correspond to 100%
support.
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Figure B.27. Phylogenies constructed for bee (A, B, E) and Drosophila (C, D, F) biological
datasets. A-D: Estimates under Felsenstein’s 1981 (F81) model built from assemblies (A, C)
or simulated reads at 1x (B), or real short-read SRAs (D). E, F: Phylogenies constructed after
removing repeats from the assemblies. The branch thickness: the magnitude of associated
support. Red: controversial branches as compared to reference phylogenies. Blue: alternative
topology between main and consensus trees. Branches with no values assigned: 100% support.
Left/Right values:support for tree corrected with main/consensus estimates.
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Figure B.31. Distribution of placement error for kf2d vs DEPP. kf2d was compared to DEPP
with 1 gene and all 381 genes. A) Randomly selected gene was used. 30 species did not have
gene present and were excluded from comparison. B) Best marker gene was used. 3 species that
didn’t contain the gene were excluded from comparison.
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Appendix C

Supplementary Tables

Table C.1. Bin assignment based on Mash distances.

Bin
Number of
genomes in

bin

Minimum
distance

encountered
within bin

Maximum
distance

encountered
within bin

Mean distance for
all species within

bin

0 10 0.000 0.000 0.000
(0 - 1] 17 0.000 0.009 0.004
(1 - 2] 10 0.010 0.018 0.013
(2 - 3] 8 0.020 0.030 0.025
(3 - 5] 8 0.031 0.049 0.038
(5 - 10] 8 0.058 0.099 0.084
(10 - 15] 11 0.109 0.146 0.124
(15 - 20] 6 0.157 0.197 0.176
(20 - 25] 11 0.211 0.244 0.229
>25 21 0.263 1.000 0.729
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Table C.2. Plant species used as query sequences. Plants were selected to represent a wide
range of genome sizes.

Species name Genome size (M)
Arabidopsis thaliana 119.167
Arabidopsis lyrata 202.97
Carya illinoinensis 649.75
Carya cathayensis 721.33

Nicotiana sylvestris 2221.99
Zea mays 2182.61

Oryza sativa 382.63
Coffee arabica 1094.45
Prunus persica 212.77

Bathycoccus prasinos 15.07
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Table C.3. Contamination level (cl) with the corresponding number of unique k-mers for base
(D. simulans w501) and contaminant (bacteria) in mixture samples.

Bin
Contamina-

tion level
(% reads

cl (%): Unique
contaminant

k-mers in sample
(%)

Unique base
k-mers in sample

(%)

Common k-mers
between base and
contaminant (%)

0-5 60 53.728625 46.271364 0.000011
0-5 50 46.000931 53.999065 0.000004
0-5 40 38.455505 61.544490 0.000005
0-5 30 30.730685 69.269315 0.000000
0-5 25 26.630857 73.369142 0.000001
0-5 20 22.286244 77.713750 0.000007
0-5 15 17.595401 82.404592 0.000007
0-5 10 12.408705 87.591295 0.000000
0-5 5 6.630852 93.369148 0.000000
0-5 2 2.769620 97.230380 0.000000
0-5 1 1.406449 98.593551 0.000000
0-5 0 0.000000 100.000000 0.000000
0-0 25 24.707830 75.292146 0.000024
0-0 20 20.899131 79.100838 0.000031
0-0 15 16.686621 83.313353 0.000026
0-0 10 11.968806 88.031170 0.000023
0-0 5 6.494518 93.505472 0.000010
0-0 2 2.742933 97.257067 0.000000
0-0 1 1.395767 98.604233 0.000000
0-0 0 0.000000 100.000000 0.000000
5-15 25 24.797418 75.202570 0.000012
5-15 20 20.977979 79.021978 0.000043
5-15 15 16.738171 83.261791 0.000038
5-15 10 12.010540 87.989451 0.000010
5-15 5 6.502650 93.497350 0.000000
5-15 2 2.745543 97.254457 0.000000
5-15 1 1.402008 98.597992 0.000000
5-15 0 0.000000 100.000000 0.000000
15-25 25 24.514304 75.485614 0.000082
15-25 20 20.760153 79.239792 0.000055
15-25 15 16.620725 83.379207 0.000068
15-25 10 11.916805 88.083179 0.000016
15-25 5 6.484925 93.515047 0.000028
15-25 2 2.738899 97.261078 0.000023
15-25 1 1.398807 98.601185 0.000009
15-25 0 0.000000 100.000000 0.000000
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Table C.4. Actual amount of non-unique k-mers (%) in contaminant reads used to generate
simulated Drosophila skims with H overlap.

Expected overlap (%) 0.00 1.00 5.00 10.00 25.00 50.00
Actual k-mer overlap

(%) 11.12 11.54 13.31 15.83 23.82 40.78

Table C.5. The effect of filtering on the quality of phylogenies inferred from genomic skims.

Skim size (Mb) Filtering status RF wRF total FME
100 Pre-filtering 4 0.147 1.257
100 Post-filtering 2 0.043 0.381
200 Pre-filtering 4 0.141 1.140
200 Post-filtering 2 0.037 0.371

Table C.6. Species used as query sequences for assessing Kraken-II running time. Genomes
were arbitrarily selected but represent a diverse set of both eukaryotic and prokaryotic species.

Species name Genome size (M)
Arabidopsis thaliana 119.167
Anopheles gambiae 250.715

Drosophila melanogaster 137.688
Capnocytophaga sputigena 2.998

Euryarchaeota archaeon 1.504

Table C.7. List of accession numbers and URLs for Drosophila species used in contamination
simulation experiment.

Species Assembly accession URL

Drosophila simulans w501 GCF 000754195.2
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000754195.2

Drosophila simulans WXD1 GCA 004382185.1
https://www.ncbi.nlm.nih.gov/assembly/

GCA 004382185.1

Drosophila sechellia GCF 000005215.3
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000005215.3

Drosophila yakuba GCF 000005975.2
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000005975.2
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Table C.8. List of accession numbers and URLs for plant species added to query set.

Species Assembly accession URL

Arabidopsis thaliana GCF 000001735.4
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000001735.4

Arabidopsis lyrata GCF 000004255.2
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000004255.2

Carya illinoinensis Cil.genome.fa.gz
ftp://parrot.genomics.cn/gigadb/pub/10.5524/

100001 101000/100571/Cil.genome.fa.gz

Carya cathayensis Cca.genome.fa.gz
ftp://parrot.genomics.cn/gigadb/pub/10.5524/
100001 101000/100571/Cca.genome.fa.gz

Nicotiana sylvestris GCF 000393655.1
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000393655.1

Zea mays GCF 000005005.2
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000005005.2

Oryza sativa GCF 001433935.1
https://www.ncbi.nlm.nih.gov/assembly/

GCF 001433935.1

Coffee arabica GCF 003713225.1
https://www.ncbi.nlm.nih.gov/assembly/

GCF 003713225.1

Prunus persica GCF 000346465.2
https://www.ncbi.nlm.nih.gov/assembly/

GCF 000346465.2

Bathycoccus prasinos GCF 002220235.1
https://www.ncbi.nlm.nih.gov/assembly/

GCF 002220235.1
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Table C.9. k-mer counts in CONSULT database constructed with variable t. Databases were
built with default settings using genomes from Bacterial and Archaeal Kraken. Data demonstrate
that larger tag facilitates more uniform distribution of signatures within lookup table which leads
to better utilization of signature array space and ultimately allows to populate database more
efficiently.

Tag (bits) k-mers count in database
(billion)

Count of fully
populated rows(%), l

= 0

Count of fully
populated rows(%), l

= 1
0 5.838554966 0.354 0.364
2 6.210280798 0.330 0.339
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Table C.10. Experiments on settings of CONSULT, namely number of hash bits (h), number
of hash functions (l), number of k-mers per has-value (b), and tag size in bits (t). All tests
were performed on TOL query set that was searched against TOL database. To avoid biases
we fixed positions of the k-mer bits that were selected to generate signatures. For each setting,
we show size of the library on the disk, recall for TOL queries searched against TOL database,
and percentage of all k-mers among 14.026601864 billion minimized k-mers that fit the library.
Parameter selection was mainly driven by our desire to maximize weighted recall and intention
to keep database footprint under 128G.

h l b t Disk (GB)† Recall % k-mer Notes
Changing l and b

15 1 7 2 78 0.672 0.474 Reduced recall compared to default
15 2 7 2 114 0.696 0.570 Default
15 3 7 2 135 0.705 0.570 Memory exceeds 128GB
15 1 10 2 95 0.680 0.570 Reduced recall compared to default
15 2 10 2 120 0.700 0.570 Memory exceeds 128GB†

15 3 10 2 148 0.707 0.570 Memory exceeds 128GB
Changing b

15 2 4 2 76 0.678 0.394 Reduced recall
15 2 7 2 114 0.696 0.570 Default
15 2 10 2 120 0.700 0.570 Increased memory with no benefit
15 2 13 2 125 0.702 0.570 Increased memory with no benefit
15 2 16 2 128 0.704 0.570 Increased memory with no benefit

Changing h
15 2 7 2 114 0.696 0.570 Default
14 2 16 2 73 0.689 0.379 Reduced recall and k-mer representation

†: Disk space used to keep the library, as computed using the du command without the �--apparent-
size option. Note that the actual space used (in RAM) is slightly higher and is closer to what du
--apparent-size -h would produce. For example, for the default settings, the memory
usage in RAM is 120GB, whereas du -h produces 114GB on and du --apparent-size
-h produces 120GB.
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Table C.11. Bin assignment based on Mash [167] distances.

Bin Number of
genomes in bin

Minimum
distance

encountered
within bin

Maximum
distance

encountered
within bin

Mean distance for
all species within

bin

0 10 0.000 0.000 0.000
(0 - 5] 43 0.000 0.049 0.016

(5 - 15] 19 0.058 0.146 0.107
(15 - 25] 17 0.157 0.244 0.210
>25 21 0.263 1.000 0.729

Table C.12. List of plant species added to TOL query set.

Species Genome size
(M)

Assembly
accession URL

Arabidopsis
thaliana

119.167 GCF 000001735.4
https://www.ncbi.nlm.nih.gov/
assembly/GCF 000001735.4

Arabidopsis
lyrata

202.97 GCF 000004255.2
https://www.ncbi.nlm.nih.gov/
assembly/GCF 000004255.2

Carya
illinoinensis

649.75 GCA 011037805.1
ftp://parrot.genomics.cn/gigadb/pub/
10.5524/100001 101000/100571/Cil.

genome.fa.gz

Carya
cathayensis

721.33 GCA 011037825.1
ftp://parrot.genomics.cn/gigadb/pub/

10.5524/100001 101000/100571/Cca.
genome.fa.gz

Nicotiana
sylvestris

2221.99 GCF 000393655.1
https://www.ncbi.nlm.nih.gov/
assembly/GCF 000393655.1

Zea mays 2182.61 GCF 000005005.2
https://www.ncbi.nlm.nih.gov/
assembly/GCF 000005005.2

Oryza sativa 382.63 GCF 001433935.1
https://www.ncbi.nlm.nih.gov/
assembly/GCF 001433935.1

Coffee arabica 1094.45 GCF 003713225.1
https://www.ncbi.nlm.nih.gov/
assembly/GCF 003713225.1

Prunus persica 212.77 GCF 000346465.2
https://www.ncbi.nlm.nih.gov/
assembly/GCF 000346465.2

Bathycoccus
prasinos

15.07 GCF 002220235.1
https://www.ncbi.nlm.nih.gov/
assembly/GCF 002220235.1

140

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001735.4
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001735.4
https://www.ncbi.nlm.nih.gov/assembly/GCF_000004255.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_000004255.2
ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100571/Cil.genome.fa.gz
ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100571/Cil.genome.fa.gz
ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100571/Cil.genome.fa.gz
ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100571/Cca.genome.fa.gz
ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100571/Cca.genome.fa.gz
ftp://parrot.genomics.cn/gigadb/pub/10.5524/100001_101000/100571/Cca.genome.fa.gz
https://www.ncbi.nlm.nih.gov/assembly/GCF_000393655.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000393655.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000005005.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_000005005.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_001433935.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_001433935.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_003713225.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_003713225.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000346465.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_000346465.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_002220235.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_002220235.1


Table C.13. List of SRRs and URLs for Drosophila species used in real data experiment [155]
downloaded from NCBI (PRJNA427774). Note that data from D. grimshawi used in the original
publication was not provided in this bioproject, and thus, we do not have this species included in
our analyses.

Species Run URL
Drosophila bipectinata SRR6425989 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425989

Drosophila erecta SRR6425990 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425990
Drosophila ananassae SRR6425991 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425991
Drosophila biarmipes SRR6425992 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425992
Drosophila mauritiana SRR6425993 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425993
Drosophila eugracilis SRR6425995 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425995
Drosophila mojavensis SRR6425997 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425997
Drosophila persimilis SRR6425998 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425998
Drosophila simulans SRR6425999 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6425999

Drosophila virilis SRR6426000 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426000
Drosophila

pseudoobscura
SRR6426001 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426001

Drosophila sechellia SRR6426002 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426002
Drosophila willistoni SRR6426003 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426003
Drosophila yakuba SRR6426004 https://www.ncbi.nlm.nih.gov/sra/?term=SRR6426004
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Table C.14. Samples from Denmark sequencing project [141] used in mitochondrial assembly
experiment. Unassembled subset (n=18) represents species that failed mitochondrial assembly in
Denmark study. Poor quality group (n=6) was assembled with short contigs of 3–10.5 kbp. Good
quality assemblies (n=18) were randomly selected samples with relatively long contig length.
Genus count and species count represent count of samples of the same genus or species present
in RefSeq release used to construct mitochondrial CONSULT library.

Run Species Contig
length
(bp)

mtDNA
(%)

GenBank ID Avail-
able

genus

Avail-
able
spe-
cies

Unassembled samples
SRR12432370 Apodemus sylvaticus N/A N/A N/A 6 1
SRR12432443 Argyropelecus olfersii N/A N/A N/A 0 0
SRR12432479 Branta leucopsis N/A N/A N/A 1 0
SRR12432364 Chelon ramada N/A N/A N/A 1 0
SRR12432468 Corvus cornix N/A N/A N/A 12 1
SRR12432397 Cygnus olor N/A N/A N/A 4 1
SRR12432591 Emberiza citrinella N/A N/A N/A 12 0
SRR12432369 Eptesicus serotinus N/A N/A N/A 0 0
SRR12432332 Gallinago gallinago N/A N/A N/A 1 0
SRR12432390 Ichthyosaura alpestris N/A N/A N/A 0 0
SRR12432365 Maurolicus muelleri N/A N/A N/A 0 0
SRR12432368 Megaptera novaeangliae N/A N/A N/A 0 1
SRR12432371 Microtus arvalis N/A N/A N/A 7 1
SRR12432366 Myotis mystacinus N/A N/A N/A 29 0
SRR12432391 Pipistrellus pygmaeus N/A N/A N/A 2 0
SRR12432352 Raniceps raninus N/A N/A N/A 0 0
SRR12432355 Sicista betulina N/A N/A N/A 1 0
SRR12432363 Trachipterus arcticus N/A N/A N/A 1 0

Poor quality assemblies
SRR11679515 Tamias sibiricus 3746 0.0049 MT410867 7 1
SRR11679527 Lullula arborea 3018 0.0114 MT410892 0 0
SRR11679474 Callionymus reticulatus 4644 0.0138 MT410925 2 0
SRR11537214 Asio flammeus 10466 0.0279 MN122899 1 1
SRR11537185 Calidris alpina 9562 0.0393 MN122893 3 0
SRR11537153 Lycodes vahlii 8147 0.2552 MT410895 5 0

Good quality assemblies (positive control)
SRR11679529 Luscinia luscinia 14276 0.0164 MT410894 2 0
SRR11679531 Phasianus colchicus 16773 0.0219 MT410882 1 1
SRR11537201 Merlangius merlangus 16660 0.0298 MN122861 0 1
SRR11537177 Merops apiaster 13884 0.0406 MN122929 1 0
SRR11679575 Oncorhynchus mykiss 16759 0.0820 MT410879 11 1

(continued on next page)
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Table C.14. Samples from Denmark sequencing project [141] used in mitochondrial assembly
experiment. Unassembled subset (n=18) represents species that failed mitochondrial assembly in
Denmark study. Poor quality group (n=6) was assembled with short contigs of 3–10.5 kbp. Good
quality assemblies (n=18) were randomly selected samples with relatively long contig length.
Genus count and species count represent count of samples of the same genus or species present
in RefSeq release used to construct mitochondrial CONSULT library.

(continued from previous page)

Run Species Contig
length
(bp)

mtDNA
(%)

GenBank ID Avail-
able

genus

Avail-
able
spe-
cies

SRR11537188 Buteo buteo 13998 0.1356 MN122916 2 1
SRR11679510 Physeter catodon 16491 0.3210 MT410874 0 1
SRR11679507 Taurulus bubalis 16854 0.4018 MT410868 0 0
SRR11679528 Arvicola amphibius 16356 0.5788 MN122828 0 0
SRR11679539 Sciurus vulgaris 16511 0.8176 MN122875 11 1
SRR11537162 Arnoglossus laterna 15958 1.0269 MN122822 2 0
SRR11679545 Vipera berus 12733 1.2580 MN122848 0 1
SRR11537150 Centrolabrus exoletus 16494 1.6414 MT410926 0 0

SRR11679513
Lagenorhynchus al-
birostris

16393 2.0310 MT410901 2 1

SRR11679516 Delphinus delphis 16386 2.8277 MT410915 1 1
SRR11537206 Vipera berus 12733 4.0683 MN122824 0 1
SRR11537189 Milvus milvus 17883 4.7909 MN122837 1 0

SRR11679555
Chroicocephalus ridibun-
dus

16768 5.6225 MN122820 1 1
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Table C.15. Subset of TOL samples used in running time analysis. Samples were selected
randomly.

Genome Assembly
accession Bioproject Species

G000019605 GCF 000019605.1 PRJNA224116 Candidatus Korarchaeum cryptofilum
G000231015 GCF 000231015.2 PRJNA224116 Desulfurococcus fermentans
G000816105 GCF 000816105.1 PRJNA224116 Thermococcus guaymasensis
G001510295 GCA 001510295.1 PRJNA279271 Thaumarchaeota archaeon
G001674955 GCA 001674955.1 PRJNA289040 Candidatus Nitrosopumilus sp.
G000007185 GCA 000007185.1 PRJNA294 Methanopyrus kandleri
G000204585 GCA 000204585.1 PRJNA52465 Candidatus Nitrosoarchaeum limnia
G000421185 GCF 000421185.1 PRJNA224116 Ornithinimicrobium pekingense
G001315825 GCA 001315825.1 PRJDB782 Metallosphaera hakonensis
G001577775 GCF 001577775.1 PRJNA224116 Pyrococcus kukulkanii

G001940645 GCA 001940645.1 PRJNA319486
Candidatus Heimdallarchaeota

archaeon
G000011125 GCA 000011125.1 PRJNA211 Aeropyrum pernix
G000221185 GCF 000221185.1 PRJNA224116 Thermococcus sp.
G000770635 GCF 000770635.1 PRJNA224116 Pontibacillus yanchengensis
G001316265 GCF 001316265.1 PRJNA224116 Vulcanisaeta sp.
G001628455 GCA 001628455.1 PRJNA289734 Marine group II euryarchaeote
G001940655 GCA 001940655.1 PRJNA288027 Candidatus Lokiarchaeota archaeon
G000022365 GCF 000022365.1 PRJNA224116 Thermococcus gammatolerans
G000307305 GCF 000307305.1 PRJNA224116 Enterobacteriaceae bacterium
G000955905 GCF 000955905.1 PRJNA224116 Candidatus Nitrosotenuis cloacae
G001515215 GCA 001515215.1 PRJNA298487 Hadesarchaea archaeon
G001679155 GCF 001679155.1 PRJNA224116 Moraxella nonliquefaciens
G000145295 GCF 000145295.1 PRJNA224116 Methanothermobacter marburgensis
G000375685 GCA 000375685.1 PRJNA165545 crenarchaeote SCGC
G001189275 GCA 001189275.1 PRJNA258558 Pyrobaculum sp.
G001560165 GCF 001560165.1 PRJNA224116 Sulfolobus acidocaldarius
G001919175 GCA 001919175.1 PRJNA297196 Crenarchaeota archaeon

Cca.genome.fa.gz
GCA 011037825.1 PRJNA435846 Carya cathayensis

Cil.genome.fa.gz GCA 011037805.1 PRJNA435846 Carya illinoinensis
TAIR10.1 GCF 000001735.4 PRJNA10719 Arabidopsis thaliana
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Table C.16. Drosophila species used as query sequences in running time analysis.

Run Bioproject Species
SRR6425989 PRJNA427774 Drosophila bipectinata
SRR6425990 PRJNA427774 Drosophila erecta
SRR6425991 PRJNA427774 Drosophila ananassae
SRR6425992 PRJNA427774 Drosophila biarmipes
SRR6425993 PRJNA427774 Drosophila mauritiana
SRR6425995 PRJNA427774 Drosophila eugracilis
SRR6425997 PRJNA427774 Drosophila mojavensis
SRR6425998 PRJNA427774 Drosophila persimilis
SRR6425999 PRJNA427774 Drosophila simulans
SRR6426000 PRJNA427774 Drosophila virilis
SRR6426001 PRJNA427774 Drosophila pseudoobscura
SRR6426002 PRJNA427774 Drosophila sechellia
SRR6426003 PRJNA427774 Drosophila willistoni
SRR6426004 PRJNA427774 Drosophila yakuba
SRR12129012 PRJNA643549 Drosophila melanogaster
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Table C.17. Samples used for chloroplast genome assembly experiment. 60 SRRs were obtained
from recent chloroplast assembly benchmark study by Freudenthal et al. [72]. We examined
56 SRRs that failed to be assembled by any of the tools compared in the original study and 4
positive control samples (denoted as *) that were selected randomly from a group of successfully
assembled novel genomes. ptDNA column represents the proportion of sequencing reads retained
after filtering using CONSULT. GetOrganelle [97] was identified as the best performing plastid
assembler by Freudenthal et al. so we choose to use it in this experiment. Before and after
filtering columns show the length of the largest contig from assemblies produced by GetOrganelle.
CONSULT reference database was constructed using genomes from plastid RefSeq release 206
that included 6537 plant species. Dataset was composed of 200,661,586 32bp canonical k-mers
from which 194,117,165 were included in a reference library. Sample preprocessing was identical
to mitochondrial assembly experiment.

Run Species ptDNA Before
filtering

After filtering

SRR2531285 Cucurbita ficifolia 0.1293 48392 165053
SRR8784098 Arachis valida 0.0614 160254 160254
SRR7221532 Malania oleifera 0.5869 158252 158160
SRR2531276* Cucurbita andreana 0.0942 48217 157475
SRR7685402 Cucurbita argyrosperma 0.1851 82278 157298
SRR5513237 Cucurbita maxima 0.0824 66700 157286
SRR6425049* Stylosanthes hamata 0.0788 156503 156503
SRR6425616 Willughbeia edulis 0.0953 155275 155275
SRR6425651* Pachypodium baronii 0.1181 154768 154768
SRR6425646* Allamanda schottii 0.1833 154537 154553
SRR2154060 Fulcaldea stuessyi 0.0392 152889 152889
SRR4457829 Pityopsis graminifolia 0.0804 136239 136185
SRR2401798 Iodes perrieri 0.1958 109063 109063
SRR2401805 Mappianthus iodoides 0.0252 61664 95815
SRR5851367 Cuscuta australis 0.0676 85263 85263
SRR1393892 Intsia bijuga 0.0384 24517 77980
SRR2401818 Platea parviflora 0.0767 76108 76108
SRR629604 Leea guineensis 0.0461 116554 64689
SRR2531274 Cucurbita argyrosperma 0.0863 63319 63319
SRR2531272 Cucurbita argyrosperma 0.1159 61852 61852
SRR8718117 Malpighia glabra 0.0377 29722 55578
SRR6425638 Orthanthera albida 0.2167 29915 48885
SRR8690427 Lycium barbarum 0.1528 25779 46430
SRR1401591 Intsia palembanica 0.0318 24499 45343
SRR6163099 Castanospermum australe 0.9618 42596 42596
SRR4099903 Striga hermonthica 0.0444 59497 42041
SRR6425652 Malouetia tamaquarina 0.1186 40312 40318
SRR2401834 Cassinopsis madagascariensis 0.0444 32550 32550
SRR2401864 Emmotum nitens 0.0318 30945 30945
SRR2401814 Ottoschulzia rhodoxylon 0.0528 56839 29703
SRR2531294 Cucurbita pepo 0.1301 12430 26825

(continued on next page)
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Table C.17. Samples used for chloroplast genome assembly experiment. 60 SRRs were obtained
from recent chloroplast assembly benchmark study by Freudenthal et al. [72]. We examined
56 SRRs that failed to be assembled by any of the tools compared in the original study and 4
positive control samples (denoted as *) that were selected randomly from a group of successfully
assembled novel genomes. ptDNA column represents the proportion of sequencing reads retained
after filtering using CONSULT. GetOrganelle [97] was identified as the best performing plastid
assembler by Freudenthal et al. so we choose to use it in this experiment. Before and after
filtering columns show the length of the largest contig from assemblies produced by GetOrganelle.
CONSULT reference database was constructed using genomes from plastid RefSeq release 206
that included 6537 plant species. Dataset was composed of 200,661,586 32bp canonical k-mers
from which 194,117,165 were included in a reference library. Sample preprocessing was identical
to mitochondrial assembly experiment.

(continued from previous page)

Run Species ptDNA Before
filtering

After filtering

SRR1592654 Linum lewisii 0.0620 14637 22427
SRR2401804 Mappia mexicana 0.1819 22328 22328
SRR8082592 Linum stelleroides 0.0371 26175 18979
SRR7995544 Rhopalocnemis phalloides 0.0785 NA 18793
SRR5500905 Cladophora albida 0.0581 77409 17882
SRR5500898 Valonia utricularis 0.0153 77409 14022
ERR921729 Rhynchospora pubera 0.0997 13026 13461
SRR2401792 Hosiea japonica 0.0775 16051 12785
SRR3732558 Ruellia speciosa 0.0934 11431 11635
SRR2531293 Cucurbita pepo 0.1246 10215 10481
SRR6425612 Plectaneia stenophylla 0.0500 9937 9879
SRR2401799 Iodes scandens 0.0440 9513 9513
SRR2531295 Cucurbita pepo 0.1194 5182 8830
ERR2114804 Azolla filiculoides 0.0161 97935 5018
ERR2799486 Calycadenia mollis 0.0068 1579 3252
ERR2799490 Calycadenia spicata 0.0065 1706 2980
ERR2799488 Calycadenia oppositifolia 0.0075 2282 2920
SRR5500903 Cladophora vadorum 0.0122 281 2711
ERR2799491 Calycadenia truncata 0.0068 1620 2665
ERR2799521 Euphorbia marginata 0.0067 2368 2398
ERR2799538 Limnanthes douglasii 0.0073 2153 2290
ERR2799494 Osmadenia tenella 0.0078 2153 2186
SRR5500897 Ventricaria ventricosa 0.0020 213016 1840
ERR2799487 Calycadenia multiglandulosa 0.0070 1569 1569
SRR518945 Rafflesia cantleyi 0.0574 14801 1421
SRR629600 Rafflesia tuan-mudae 0.1038 14793 1392
SRR5500900 Siphonocladus tropicus 0.0063 2637 1236
SRR5500899 Struvea elegans 0.0055 517 769
ERR2799493 Hemizonia perennis 0.0067 NA NA
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Table C.18. Running time of CONSULT vs total number of query reads. Sample sets were
selected randomly from a group of chloroplast samples. Computation on a machine with AMD
EPYC 7742 2.25 GHz CPU using 24 threads and 120G of RAM.

Samples Set1 Set2 Set3
Read count 51,393,381 190,221,848 198,400,443

Running time (min) 16.9813 49.8804 62.7144
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Table C.19. Summary of repeat content identified in Bee assemblies.

Species Contigs Total length, M GC, % Bases masked,
M

Repeats,
%

Bombus impatiens 5460 246.856484 37.76 5.960747 2.41
Bombus terrestris 5609 248.654244 37.51 5.439655 2.19
Bombus polaris 5848 245.790074 37.64 5.479267 2.23

Bombus skorikovi 3042 242.038170 37.62 6.472741 2.67
Bombus soroeensis 5476 243.573539 37.56 5.682580 2.33
Bombus superbus 1458 230.139620 39.43 6.031274 2.62
Bombus waltoni 2240 231.149577 39.40 6.310819 2.73

Bombus opulentus 4394 242.353651 37.39 5.778336 2.38
Bombus consobrinus 7194 249.068899 37.76 7.174060 2.88

Bombus confusus 4639 239.101172 38.83 5.559645 2.33
Bombus picipes 7282 253.987937 37.92 6.101125 2.40

Bombus sibiricus 14183 262.420024 37.16 6.586067 2.51
Bombus difficillimus 4473 243.560081 37.78 5.919934 2.43
Bombus cullumanus 5480 246.986414 38.02 5.452328 2.21

Bombus turneri 3015 243.111512 37.48 6.141349 2.53
Bombus pyrosoma 4727 254.804690 37.44 6.316902 2.48

Bombus ignitus 748 242.565149 37.55 5.684718 2.34
Bombus breviceps 1317 248.124274 37.72 5.864471 2.36

Bombus
haemorrhoidalis

1614 240.538686 37.68 6.295373 2.62
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Table C.20. Summary of repeat content identified in Drosophila assemblies.

Species Contigs Total length, M GC, % Bases masked,
M

Repeats,
%

Drosophila ananassae 371 189.221946 41.75 6.847882 3.62
Drosophila biarmipes 661 182.453935 41.48 5.095512 2.79
Drosophila bipectinata 570 163.165444 41.45 5.721482 3.51

Drosophila erecta 58 130.293209 42.90 4.765988 3.66
Drosophila eugracilis 546 159.429531 40.46 6.003497 3.77
Drosophila mauritiana 266 134.165749 42.64 4.734488 3.53
Drosophila mojavensis 122 168.142858 39.68 17.336546 10.31
Drosophila persimilis 415 163.933157 44.83 8.968285 5.47

Drosophila
pseudoobscura

361 159.031139 45.01 8.805636 5.54

Drosophila sechellia 109 138.120607 42.33 4.216694 3.05
Drosophila simulans 76 133.725236 42.58 4.594273 3.44

Drosophila virilis 141 169.714588 40.44 11.747065 6.92
Drosophila willistoni 489 194.955081 36.96 12.430612 6.38
Drosophila yakuba 111 143.252825 42.53 5.293281 3.70
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Table C.21. Whale assemblies used to evaluate across species support.

Assembly accession Bioproject Species
taxonomy ID Species

GCA 000331955.2 PRJNA167475 9733 Orcinus orca
GCA 000442215.1 PRJNA174066 118797 Lipotes vexillifer
GCA 000493695.1 PRJNA72723 9767 Balaenoptera acutorostrata
GCA 000978805.1 PRJDB1465 33556 Balaenoptera bonaerensis
GCA 002189225.1 PRJNA384396 9764 Eschrichtius robustus
GCA 002288925.3 PRJNA360851 9749 Delphinapterus leucas
GCA 002837175.2 PRJNA411766 9755 Physeter catodon
GCA 003031525.2 PRJNA343136 189058 Neophocaena asiaeorientalis
GCA 003227395.1 PRJNA369596 79784 Tursiops aduncus
GCA 003676395.1 PRJNA475306 90247 Lagenorhynchus obliquidens
GCA 004027085.1 PRJNA399476 48745 Mesoplodon bidens
GCA 004329385.1 PRJNA509641 9773 Megaptera novaeangliae
GCA 004363435.1 PRJNA399467 48752 Platanista minor
GCA 004363455.1 PRJNA399464 302098 Eubalaena japonica
GCA 004363495.1 PRJNA399454 9742 Phocoena phocoena
GCA 004363515.1 PRJNA399465 9725 Inia geoffrensis
GCA 004363705.1 PRJNA399466 27615 Kogia breviceps
GCA 004364475.1 PRJNA399469 9760 Ziphius cavirostris
GCA 005190385.2 PRJNA520934 40151 Monodon monoceros
GCA 006547405.1 PRJNA525909 9731 Globicephala melas
GCA 007760645.1 PRJNA508467 103600 Sousa chinensis
GCA 008692025.1 PRJNA557831 42100 Phocoena sinus
GCA 008795845.1 PRJNA72723 9770 Balaenoptera physalus
GCA 009873245.3 PRJNA554522 9771 Balaenoptera musculus
GCA 011754075.1 PRJNA239019 48723 Pontoporia blainvillei
GCA 011762595.1 PRJNA608726 9739 Tursiops truncatus
GCA 017311385.1 PRJNA675309 118798 Platanista gangetica
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Table C.22. Raw sequencing samples of Gray’s beaked whale Mesoplodon grayi used to compute
within species support obtained from NCBI project PRJNA702760 [245]. Two isolates with very
low coverage (PEMN3299 and MGRTM15) were excluded. SRA files with the same sample
names were combined.

Run Bases, G Biosample Sample name
SRR13736956 2.65 SAMN17977870 M15813
SRR13736985 0.76 SAMN17977870 M15813
SRR13736955 1.68 SAMN17977871 M18082
SRR13736984 0.49 SAMN17977871 M18082
SRR13736983 0.48 SAMN17977872 M22364
SRR13736988 1.67 SAMN17977872 M22364
SRR13736977 1.52 SAMN17977873 M22390
SRR13736982 0.43 SAMN17977873 M22390
SRR13736966 2.34 SAMN17977874 MGR127
SRR13736981 0.65 SAMN17977874 MGR127
SRR13736980 0.65 SAMN17977875 MGR135
SRR13736961 2.30 SAMN17977875 MGR135
SRR13736979 0.58 SAMN17977876 MGR136
SRR13736960 2.06 SAMN17977876 MGR136
SRR13736959 2.04 SAMN17977877 MGR137
SRR13736978 0.58 SAMN17977877 MGR137
SRR13736976 0.63 SAMN17977878 MGR138
SRR13736958 2.21 SAMN17977878 MGR138
SRR13736957 1.86 SAMN17977879 MGR139
SRR13736975 0.53 SAMN17977879 MGR139
SRR13736954 1.94 SAMN17977880 MGR141
SRR13736974 0.55 SAMN17977880 MGR141
SRR13736953 1.71 SAMN17977881 MGR159
SRR13736973 0.48 SAMN17977881 MGR159
SRR13736996 2.07 SAMN17977882 MGR161
SRR13736972 0.58 SAMN17977882 MGR161
SRR13736995 1.65 SAMN17977883 MGR164
SRR13736971 0.45 SAMN17977883 MGR164
SRR13736970 0.52 SAMN17977884 MGR165
SRR13736994 1.83 SAMN17977884 MGR165
SRR13736969 0.67 SAMN17977885 MGRM49873
SRR13736993 2.39 SAMN17977885 MGRM49873
SRR13736992 1.49 SAMN17977886 MGRM49874
SRR13736968 0.40 SAMN17977886 MGRM49874
SRR13736990 2.41 SAMN17977888 MGRTM16
SRR13736965 0.69 SAMN17977888 MGRTM16
SRR13736989 2.16 SAMN17977889 MRGWA04
SRR13736964 0.63 SAMN17977889 MRGWA04
SRR13736962 0.55 SAMN17977891 PEMN3300
SRR13736986 1.88 SAMN17977891 PEMN3300
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Table C.23. Bee assemblies used in real data analysis [226].

Assembly accession Bioproject Species
taxonomy ID Species

GCA 000188095.4 PRJNA61101 132113 Bombus impatiens
GCA 000214255.1 PRJNA45869 30195 Bombus terrestris
GCA 014737335.1 PRJNA659133 130708 Bombus polaris
GCA 014737355.1 PRJNA659133 395565 Bombus skorikovi
GCA 014737365.1 PRJNA659133 184059 Bombus soroeensis
GCA 014737385.1 PRJNA659133 1869276 Bombus superbus
GCA 014737395.1 PRJNA659133 395577 Bombus waltoni
GCA 014737405.1 PRJNA659133 2024865 Bombus opulentus
GCA 014737455.1 PRJNA659133 130686 Bombus consobrinus
GCA 014737475.1 PRJNA659133 217217 Bombus confusus
GCA 014737485.1 PRJNA659133 309970 Bombus picipes
GCA 014737505.1 PRJNA659133 421273 Bombus sibiricus
GCA 014737525.1 PRJNA659133 395520 Bombus difficillimus
GCA 014737535.1 PRJNA659133 2562068 Bombus cullumanus
GCA 014825825.1 PRJNA659133 686820 Bombus turneri
GCA 014825855.1 PRJNA659133 396416 Bombus pyrosoma
GCA 014825875.1 PRJNA659133 130704 Bombus ignitus
GCA 014825925.1 PRJNA659133 395515 Bombus breviceps
GCA 014825975.1 PRJNA659133 207636 Bombus haemorrhoidalis
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Table C.24. Samples of Lice used for evaluation of subsampling on real data [33] from the
NCBI project PRJNA296666.

Run Bases, G Biosample Species
SRR3161912 7.94 SAMN04103756 Columbicola adamsi
SRR3161913 13.50 SAMN04103757 Columbicola gracilicapitis
SRR3161914 9.61 SAMN04103758 Columbicola macrourae
SRR3161915 11.19 SAMN04103759 Columbicola theresae
SRR3161916 12.77 SAMN04103760 Columbicola claytoni
SRR3161917 7.21 SAMN04103761 Columbicola columbae
SRR3161918 12.47 SAMN04103762 Columbicola rodmani
SRR3161919 14.09 SAMN04103763 Columbicola veigasimoni
SRR3161920 10.04 SAMN04103764 Columbicola claviformis
SRR3161921 9.05 SAMN04103765 Columbicola altamimiae
SRR3161922 10.08 SAMN04103766 Columbicola drowni
SRR3161923 7.12 SAMN04103767 Columbicola gymnopeliae
SRR3161924 9.43 SAMN04103768 Columbicola extinctus
SRR3161925 16.13 SAMN04103769 Columbicola fortis
SRR3161926 7.97 SAMN04103770 Columbicola wecksteini
SRR3161927 11.52 SAMN04103771 Columbicola guimaraesi
SRR3161928 9.75 SAMN04103772 Columbicola taschenbergi
SRR3161929 9.64 SAMN04103773 Columbicola mckeani
SRR3161930 9.96 SAMN04103774 Columbicola passerinae
SRR3161931 8.38 SAMN04103775 Columbicola passerinae
SRR3161932 4.01 SAMN04103776 Columbicola palmai
SRR3161933 11.02 SAMN04103777 Columbicola waltheri
SRR3161934 7.35 SAMN04103778 Columbicola clayae
SRR3161935 9.30 SAMN04103779 Columbicola meinertzhageni
SRR3161936 9.81 SAMN04103780 Columbicola smithae
SRR3161937 17.60 SAMN04103781 Columbicola masoni
SRR3161938 5.70 SAMN04103782 Columbicola wolffhuegeli
SRR3161939 16.00 SAMN04103783 Columbicola exilicornis
SRR3161940 12.32 SAMN04103784 Columbicola waiteae
SRR3161941 10.36 SAMN04103785 Columbicola beccarii
SRR3161942 16.56 SAMN04103786 Columbicola mjoebergi
SRR3161943 8.43 SAMN04103787 Columbicola wombeyi
SRR3161944 7.58 SAMN04103788 Columbicola paradoxus
SRR3161945 14.74 SAMN04103789 Columbicola exilicornis
SRR3161946 9.33 SAMN04103790 Columbicola masoni
SRR3161947 13.38 SAMN04103791 Columbicola angustus
SRR3161948 21.20 SAMN04103792 Columbicola tasmaniensis
SRR3161949 13.85 SAMN04103793 Columbicola harbisoni
SRR3161950 12.87 SAMN04103794 Columbicola bacillus

(continued on next page)
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Table C.24. Samples of Lice used for evaluation of subsampling on real data [33] from the
NCBI project PRJNA296666.

(continued from previous page)

Run Bases, G Biosample Species
SRR3161951 11.67 SAMN04103795 Columbicola sp. CospStori
SRR3161952 14.65 SAMN04103796 Columbicola macrourae
SRR3161953 12.19 SAMN04103797 Columbicola macrourae
SRR3161954 10.57 SAMN04103798 Columbicola sp. CospAplar
SRR3161955 8.41 SAMN04103799 Columbicola guimaraesi
SRR3161956 14.87 SAMN04103800 Columbicola malenkeae
SRR3161957 19.06 SAMN04103801 Columbicola mjoebergi
SRR3161958 17.47 SAMN04103802 Columbicola koopae
SRR3161959 8.74 SAMN04103803 Columbicola tschulyschman
SRR3161960 14.22 SAMN04103804 Columbicola eowilsoni
SRR3161961 15.72 SAMN04103805 Columbicola arnoldi
SRR3161962 6.31 SAMN04103806 Columbicola exilicornis
SRR3161963 21.42 SAMN04103807 Columbicola sp. CospPaoen
SRR3161964 19.47 SAMN04103808 Columbicola triangularis
SRR3161965 16.23 SAMN04103809 Columbicola timmermanni
SRR3161966 10.01 SAMN04103810 Columbicola elbeli
SRR3161967 15.24 SAMN04103811 Columbicola bacillus
SRR3161968 11.42 SAMN04103812 Columbicola hoogstraali
SRR3161969 19.28 SAMN04103813 Columbicola sp. CospTutym
SRR3161970 11.74 SAMN04103814 Columbicola sp. CospTucha
SRR3161971 15.80 SAMN04103815 Columbicola sp. CospZemel
SRR3161972 14.43 SAMN04103816 Columbicola sp. CospStlug
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Table C.25. GUNC quality metrics [170].

Metric Definition
Genome name of input genome.
Number of genes called number of genes called by prodigal or directly provided

by the user.
Number of genes mapped number of genes mapped by diamond into GUNC refDB.
Number of contigs with mapped genes number of contigs containing mapped genes.
Taxonomic level taxonomic clade labels at this taxonomic level were used

to calculate values in all following columns. For each
genome, all scores at six levels (species level can be
added using a command-line option) are calculated.

Proportion of genes retained in major
clades

only major clades that have >2% of all mapped
genes assigned to them are retained to calcu-
late other scores. Value of this column is
n genes retained/n genes mapped.

Genes retained index portion of all called genes retained in major clades.
Clade separation score a result of applying a formula explained in GUNC pa-

per to taxonomy and contig labels of genes retained in
major clades. Ranges from 0 to 1 and is set to 0 when
genes retained index is <0.4 because that is too few
genes left.

Contamination portion a portion of genes retained in major clades assigned to all
clades except the one clade with the highest proportion
of genes assigned to it.

Number of effective surplus clades an Inverse Simpson Index of fractions of all clades - 1
(as 1 genome is expected). It is a score describing the
extent of chimerism, i.e. the effective number of surplus
clades represented at a taxlevel.

Mean hit identity the mean identity with which genes in abundant lineages
(>2%) hit genes in the reference.

Reference representation score estimates how well a genome is represented in the
GUNC DB.

pass.GUNC If a genome passes GUNC analysis it means it is likely
to not be chimeric (or that chimerism cannot be detected
especially when its reference representation (RRS) is
low). A genome passes if clade separation score≤ 0.45,
a cutoff benchmarked using simulated genomes.

156



Table C.26. CheckM quality metrics [176].

Metric Definition
Bin Id unique identifier of genome bin (derived from input fasta file).
Marker lineage indicates the taxonomic rank of the lineage-specific marker set used to

estimated genome completeness, contamination, and strain heterogeneity.
Count of genomes number of reference genomes used to infer the lineage-specific marker

set.
Count of markers number of marker genes within the inferred lineage-specific marker set.
Count of marker sets number of co-located marker sets within the inferred lineage-specific

marker set.
Completeness estimated completeness of genome as determined from the pres-

ence/absence of marker genes and the expected collocalization of these
genes.

Contamination estimated contamination of genome as determined by the presence of
multi-copy marker genes and the expected collocalization of these genes.

Strain heterogeneity estimated strain heterogeneity as determined from the number of multi-
copy marker pairs which exceed a specified amino acid identity threshold
(default = 90%). High strain heterogeneity suggests the majority of
reported contamination is from one or more closely related organisms (i.e.
potentially the same species), while low strain heterogeneity suggests the
majority of contamination is from more phylogenetically diverse sources.

Genome size number of nucleotides (including unknowns specified by N’s) in the
genome.

Count of ambiguous bases number of ambiguous (N’s) bases in the genome.
Count of scaffolds number of scaffolds within the genome.
Count of contigs x number of contigs within the genome as determined by splitting scaffolds

at any position consisting of more than 10 consecutive ambiguous bases.
N50 (scaffolds) N50 statistics as calculated over all scaffolds.
N50 (contigs) N50 statistics as calculated over all contigs
Mean scaffold length mean length as calculated over all scaffolds.
Mean contig length mean length as calculated over all contigs.
Longest scaffold the longest scaffold within the genome.
Longest contig the longest contig within the genome.
GC number of G/C nucleotides relative to all A,C,G, and T nucleotides in

the genome.
GC for scaffolds above
1kbp

number of G/C nucleotides relative to A,C,G, and T nucleotides in scaf-
folds >1kbp.

Coding density the number of nucleotides within a coding sequence (CDS) relative to all
nucleotides in the genome.

Translation table indicates which genetic code was used to translate nucleotides into amino
acids.

Count of predicted genes number of predicted coding sequences (CDS) within the genome as
determined using Prodigal.

qa0-qa5+ number of times each marker gene is identified.
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Table C.27. QUAST quality metrics [152].

Metric Definition
Assembly name.
Number of contigs of x bp or longer total number of contigs of length ≥ x bp.
Total length at x bp or above total number of bases in contigs of length ≥ x bp.
Count of contigs in assembly total number of contigs in the assembly.
Largest contig in assembly length of the longest contig in the assembly.
Total length of assembly total number of bases in the assembly.
G and C in assembly (%) total number of G and C nucleotides in the assembly,

divided by the total length of the assembly.
N50 length for which the collection of all contigs of that

length or longer covers at least half an assembly.
N75 length for which the collection of all contigs of that

length or longer covers at least 75% of an assembly.
L50 is the number of contigs equal to or longer than N50. In

other words, L50, for example, is the minimal number
of contigs that cover half the assembly.

L75 is the number of contigs equal to or longer than N75. In
other words, L75, for example, is the minimal number
of contigs that cover 75% of the assembly.

Count of N per 100 kbp average number of uncalled bases (N’s) per 100,000
assembly bases.
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Appendix D

Supplementary method details and com-
mands

Here we provide the exact procedures and commands that we used to run external
software throughout our experiments.

Genome skim simulation
We simulated short reads with length l = 100 and coverage c, in single read mode with

default error and quality profiles of Illumina HiSeq 2500 using ART version 2.5.8 with command

art illumina -ss HS25 -i FASTA FILE -l 100 -f c -na -s 10
-o FASTQ FILE

Downsampling reads
To subsample reads down a specified number of reads n we used seqtk version 1.3r106

with command

seqtk sample -s150 INPUT FASTQ FILE n > OUTPUT FASTQ FILE

Kraken reference library construction
In this study we used Kraken version 2.

• To construct standard Kraken reference library we used default command

kraken2-build −−standard −−no-masking −−use-ftp
−−db DATABASE NAME

• To build custom Kraken reference library we used a set of commands below:

1. Download taxonomy
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kraken2-build −−download-taxonomy −−no-masking −−use-ftp
−−db DATABASE NAME

2. Rename file extensions to .fa

find . -name "*.fna" -exec sh -c ’mv "$1" "${1%.fna}.fa"’
{} \;

3. Add custom genomes to the reference library

find genomes/ -name ’*.fa’ -print0 | xargs -0 -I
-n1 kraken2-build −−no-masking −−add-to-library {}
−−db DATABASE NAME

4. To build database with specified k-mer length k, minimizer length l and number of
wind-carding positions s we used

kraken2-build −−build −−no-masking −−kmer-len k
−−minimizer-len l −−minimizer-spaces s −−use-ftp
−−db DATABASE NAME

Kraken reference library querying
To query Kraken reference library at variable confidence level α we used

kraken2 −−use-names −−threads 24
−−report REPORT FILE NAME −−db DATABASE NAME −−confidence α

−−classified-out CLASSIFIED FASTQ FILE
−−unclassified-out UNCLASSIFIED FASTQ FILE QUERY FASTQ FILE >
KRAKEN OUTPUT FILE

Computing k-mer frequencies
To estimate k-mer frequencies we used Jellyfish version 2.3.0.

• Computing k-mer profile

jellyfish count -m 31 -s 100M -t 18 -C INPUT FASTQ FILE
-o COUNT FASTQ FILE

• Extracting k-mer statistics

jellyfish stats COUNT FASTQ FILE

CLARK(-S) reference library construction and querying
We used CLARK version 1.2.6.1.
During database construction, CLARK was able to set target IDs for 9976 genomes out

of 10470 sample that we aimed to include. Remaining TOL genomes were added manually by
setting taxonomic rank for a given sample to Proteobacteria phylum and specifying taxonomy
ID as 1224.
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• Custom CLARK database of discriminative k-mers was built in <DIR DB/> the following
way:

1. We created the directory "Custom" inside <DIR DB/>

2. We copied the sequences of interest (in our case
reference TOL fasta files with accession numbers) in
the "Custom"

3. We ran

./set target.ssh <DIR DB/> custom −−phylum
We note we set taxonomy rank to phylum.
The default taxonomy rank is species.

• CLARK database was queried at default mode of classification (i.e., ”-m 1”) with script

./classify metagenome.sh -O SAMPLE FASTQ FILE -R RESULT CSV
-n 24

• CLARK-S databases of discriminative spaced k-mers was created on top of custom
CLARK database using script

./buildSpacedDB.sh

• CLARK-S classification was ran with ”full” mode (”-m 0” identifier) using script

./classify metagenome.sh -O SAMPLE FASTQ FILE -R RESULT CSV
-n 24 −−spaced -m 0

Bowtie2 reference index construction and alignment
We used Bowtie2 version 2.4.1.

• To index reference genomes we used command

bowtie2-build <reference in> <bt2 base> --threads 24

• To run alignment we used sensitive setting

bowtie2 -x <bt2 base> -U INPUT FASTQ FILE −−local
−−sensitive -p 24 -S RESULT SAM FILE

• For whale analyses, we used (GCA 004027085.1) as the reference.

Manipulation and post-processing of read alignments
We used SAMtools version 1.9.

• To obtain alignment statistics

samtools stats INPUT ALN SAM > OUTPUT STATS TXT

samtools flagstat INPUT ALN SAM > OUTPUT STATS TXT
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CONSULT reference library construction and querying
• To build CONSULT reference libraries we used version 17.1 of mapping software

1. We compiled script using
g++ main map.cpp -std=c++11 -O3 -o main map

2. To construct reference database with default settings we ran
./main map -i INPUT FASTA FILE -o DB FOLDER NAME

To avoid biases during testing we fixed positions of bits that are selected during signature
generation. In released version positions are selected randomly.

For h=15 we used l = 0 bits ∈ {30,28,25,24,22,21,20,17,14,13,11,5,3,2,1}
l = 1 bits ∈ {30,29,26,24,20,19,16,14,13,12,10,7,3,1,0}
l = 2 bits ∈ {30,29,26,23,21,20,19,18,15,11,9,7,5,3,2}

• CONSULT database was queried using version 17.4 of search software

1. To compile
g++ main search.cpp -std=c++11 -fopenmp -O3
-o main search

2. To query sequence reads against reference database we ran
./main search -i DB FOLDER NAME -c 1 -t 24
-q QUERY FOLDER NAME

where arguments are:
-i - name of the reference database

-c - the lowest number of k-mers that is required to
mark sequencing read as classified. For instance, if
at least one k-mer match is enough to classify a read,
"c" should be set to 1. If at least two k-mer matches
are required to call read a match, "c" should be set
to 2.

-t - number of threads

-q - name of the folder where queries are located

For measuring running time of CONSULT, we split query file using Linux split -n
l/48 and provided a folder containing all the files to the tool; we added split time to the
total running time.
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Generation of k-mer sets
To estimate k-mer frequencies we used Jellyfish version 2.3.0.

• To compute 35bp and 32bp canonical k-mer profiles of fasta genomic references we used

jellyfish count -m 35 -s 100M -t 24 -C INPUT FASTA FILE
-o COUNT JF FILE

jellyfish count -m 32 -s 100M -t 24 -C INPUT FASTA FILE
-o COUNT JF FILE

• To output a list of all the k-mers in the file associated with their counts

jellyfish dump COUNT JF FILE > OUTPUT FASTA FILE

k-mer minimization
Minimization was performed using custom c++ minimization script version 3.0 which

is available for public use. This script accepts as an input Jellyfish fasta file containing 35 bp
canonical k-mers extracted from reference genomes and outputs their 32 bp minimizers in fasta
format.

• To compile the script we used

g++ minimization v3.0.cpp -std=c++11 -o main minimization

• We ran minimization with the command

./main minimization -i INPUT FASTA FILE
-o MIN OUTPUT FASTA FILE

Computing genomic distances with Mash
To estimate genomic distances we used Mash version 2.3.

• To compute genomic distance using Mash we used

mash dist FASTQ FILE ONE FASTQ FILE TWO

Computation of genomic distances
To estimate genomic distances we used Skmer 3.0.2.

• To compute genomic distance with Skmer we used

skmer reference FASTQ DIRECTORY -p 24 -t
-o REF DISTANCE MATRIX
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Computation of subsampling replicates and distance matrix correction
To estimate genomic distances we used Skmer 3.1.0.

• To generate subsampling replicates

skmer subsample -b 100 FASTQ DIRECTORY -s 100000 -S 42
-p 24 -t -i 0

• To correct distance matrices

skmer correct -main FASTQ DIRECTORY/REF DISTANCE MATRIX
-sub SUBSAMPLE DIRECTORY

Preprocessing of real sequencing files
We used BBTools version 38.59 to preprocess real data sequencing reads.

• To decontaminate .fastq files we used

bbduk.sh in1=FASTQ READ1 in2=FASTQ READ2 out1=FASTQ READ1
out2=FASTQ READ2 ref=adapters,phix ktrim=r k=23 mink=11
hdist=1 tpe tbo

• To deduplicate reads we used

dedupe.sh in1=FASTQ READ1 in2=FASTQ READ2
out=DEDUP OUTPUT FASTQ FILE

• To reformat deduplicated output files we used

reformat.sh in=DEDUP OUTPUT FASTQ FILE out1=FASTQ READ1
out2=FASTQ READ2

• To merge paired-end reads .fastq we used

bbmerge.sh in1=FASTQ READ1 in2=FASTQ READ2
out1=OUTPUT FASTQ FILE

Preprocessing of mitochondrial sequencing files
• We used AdapterRemoval version 2.3.1 to remove adapters from raw sequencing data

AdapterRemoval --file1 FASTQ READ1 --file2 FASTQ READ2
--basename FASTQ trmd

• We used BBTools version 38.59 to merge paired-end reads

bbmerge.sh in1=FASTQ READ1 in2=FASTQ READ2 out=merged.fastq
outu1=read1 unmerged.fastq outu2=read2 unmerged.fastq

• Subsequently we concatenated merged and unmerged outputs

cat merged.fastq read1 unmerged.fastq read2 unmerged.fastq
> OUTPUT FILE

164



To collect classified reads from CONSULT we used
• We used BBTools version 38.59

filterbyname.sh in=INIT FILE names=UCSEQ FILE out=CSEQ FILE
include=f int=f overwrite=true

Assembling mitochondrial reads
To assemble mitochondrail reads we used SPAdes genome assembler version 3.15.0.

• On unfiltered reads we ran

spades.py --plasmid --only-assembler -s INPUT FASTQ -t 24
-m 120 -o OUTPUT DIR

• To assemble filtered reads we ran

spades.py --only-assembler -s INPUT FASTQ -t 24 -m 120
-o OUTPUT DIR

Mitochondrial annotation
Annotation of mitochondrial assemblies was done with MITOS version 2.0.8 using

RefSeq89 Metazoa reference and vertebrate mitochondrial code 2.

• runmitos.py -i INPUT FASTA -c 2 -o OUTPUT DIR --linear
-r REFSEQVER -R REFDIR

• To confirm identity of largest mitochondrial contigs for unfiltered assemblies we used
MitoZ version 2.4

python MitoZ.py annotate --genetic code auto
--clade Chordata --outprefix test --thread number 8
--fastafile INPUT FASTA

Assembling chloroplast reads
Chloroplast assembly was performed using GetOrganelle version 1.6.4. Annotations

were done using web-based annotation tool GeSeq v2.03. Sequence source option was set to
plastid (land plants).

• get organelle from reads.py -u INPUT FASTQ -t 24
-o OUTPUT DIR
-F embplant pt
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Simulation of reference sequences
To generate sequences for phylogenetic trees we used INDELible v1.03. Software was

ran using

indelible CONTROL FILE

Control files used in this study are archived with corresponding datasets that were
generated by them and are available at https://github.com/noraracht/subsample support scripts.

Phylogeny inference
We note that distance matrices need to be converted from standard square matrix to

phylip formated matrix before phylogeny estimation can be performed. Tree topologies were
inferred from distance matrices using FastMe version 2.1.5 and support was computed using
RAxML version 8.2.12.

• To compute backbone we used

fastme -i INPUT FILE -t 24 -o OUTPUT BACKBONE

• To get a tree with support values from mean/main corrected matrices

raxmlHPC -f b -m GTRCAT -z bootstrapTrees -t referenceTree
-n TEST

• To compute a majority rule consensus tree out of the subsampled mean/mean corrected
replicates

raxmlHPC -J MRE -z RaxML bootstrap.All -p 4424 -m GTRCAT
-n MRE CONS

Removing repeat content
We screened DNA sequences for interspersed repeats and low complexity DNA sequences

using RepeatMasker version 4.1.2-p1. Dependencies included Tandem Repeats Finder v4.09.1,
sequence search engine rmblastn version 2.11.0+ and complete (with curated and uncurated
families) repeat database FamDB: CONS-Dfam.h5 version 3.5 (from December 22, 2021).
Software was ran using

RepeatMasker INPUT FILE -pa 24
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Generation of k-mer sets for short k-mers
To estimate k-mer frequencies we used Jellyfish version 2.3.0.

• To compute 7bp and 6bp canonical k-mer profiles of fasta genomic references we used

jellyfish count -m 7 -s 100M -t 24 -C INPUT FASTA FILE
-o COUNT JF FILE

jellyfish count -m 6 -s 100M -t 24 -C INPUT FASTA FILE
-o COUNT JF FILE

• To output a list of all the k-mers in the file associated with their counts in a column format

jellyfish dump -c COUNT JF FILE > OUTPUT FASTA FILE

Computation CAFE distances
To compute multiple CAFE distances we used CAFE version 1.0.0.

• To compute genomic distance with CAFE we used

cafe -F fna dir -D Cosine,Co-phylog,Eu,JS,CVtree,D2star,
D2shepp,Ma -K 7 -J jellyfish exe path -O results
-S model dir

Alignment based placement
To place genomes that went thorough multiple sequence alignment we use EPA-ng and

RAxML.

• To compute model parameters we used RAxML-NG version 1.2.0.

raxml-ng --evaluate --msa $REF MSA --model LG+R10
--tree $TREE --brlen scaled --threads 1 --prefix info
--redo --force

• To perform placement we used EPA-ng version 0.3.8.

epa-ng --ref-msa $REF MSA --tree $TREE --query $QUERY MSA
--model prefix RAxML.bestModel --redo

Computing pairwise distance matrices using kf2d
To estimate genomic distances using our approach version 1.0.1.

• To train global model and classify sequences into clades

python main.py -f input feature table.csv
-t true pairiwise.di mtrx -q query labels.txt
-d target clades.txt
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• To compute local models per clade

python main v2.py -f input feature table.csv
-t true pairiwise.di mtrx -q query labels.txt
-c classes.csv

• To query sequences

python query.py -f input feature table.csv
-q query labels.txt -c classes.csv

where arguments are:
-i - k-mer frequency vectors for all samples organized
as input feature table

-t - ground truth distance matrix from reference phylogeny

-q - list of query IDs

-d - input information about true target clades

-c - classes information, obtained from global training

To obtain placement results from pairwise distance comparisons
To place genomes using pairwise distance matrices we used following commands

• We performed placement we used APPLES version 2.0.9.

run apples.py -d dist.mat -t backbone tree.nwk
-o output tree.jplace -f 0 -b 5

• To convert output tree from jplace to newick format we used GAPPA version 0.8.0.

gappa examine graft --jplace-path output tree.jplace
--out-dir ./result --allow-file-overwriting

• To compute placement error we used custom script

bash evaluate placement.sh true tree.newick
result placement tree.newick query list.txt
backbone tree.nwk > output.pl error

Phylogenetic tree processing
To perform tree manipulations we used Newick utilities [102] version 1.6.

• To removes branches based on labels

nw prune -f input tree.nwk query to remove.list
> prunned tree.nwk
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• To extracts branch lengths for leaf taxa and output distance matrix

nw distance -mm -n -sf input tree.newick > output.dist mtrx

• To get a list of leaf labels in a tree

nw labels -I input tree.nwk > output labels.list

To split phylogenetic tree into clades or subclades
We first set length for all branches on phylogeny to 1.0 using TreeSwift [160] version

1.1.26. Then we performed tree clading using TreeCluster [15] version 1.0.3.

• To generate larger clades we used

TreeCluster.py -i input tree.newick -o output clades.txt
-m sum branch -t 1700

• To generate smaller subclades we used

TreeCluster.py -i input tree.newick -o output clades.txt
-m sum branch -t 65

169



Appendix E

Algorithms

170



Algorithm 3. CONSULT algorithm. Notations: S : all reference sequences. Defaults: m = 35,k =
32,h = 15, l = 2, t = 2,b = 7, p = 3,c = 1, g = 33. [a] denotes {0, . . . ,a− 1}. I(s) returns 2h− t least
significant bits of s and T (s) returns the rest. SHIFTS returns the number of runs of 0s and 1s in its input
as tuples. SHLD is the x86 instruction of the same name (Double Precision Shift Left, or extended shift).
Details are omitted.

procedure BUILDLIBRARY(S )
E← array of ≤ 2g elements, each 2k bits
for each i ∈ [l] do

Mi← h unique random numbers in [k−1]
Si← 22h−t × (2tb) array of g-bit elements
Ti← 22h−t × (2t) array of 1-byte elements
S′i← 22h−t × (2tb) array of (t,g)-bit tuples

K ← MINIMIZE({all m-mers of S },k)
j←−1
for each k-mer a ∈K do

e←LEFTRIGHTENCODE(a)
Included← False
for each i ∈ [l] do

s← SIGNATURE(Mi,e)
if S′i[I(s)] is not full then

if not Included then
j← j+1
E[ j]← e
Included← True

Append (T (s), j) to S′i[I(s)]
for each row s of each S′i do

sort values of s, note boundaries of tags
save 2nd elements of s to Si[I(s)]
save boundaries of tags in Ti[I(s)]

save DB = (E,M,S,T ) to disk
procedure MINIMIZE(K ′,k) ▷ Minimization

R← /0
for each a in K ′ do

Append min{all k-mers of a} to R

return R ordered pseudo-randomly
procedure LEFTRIGHTENCODE(a) ▷ Encoding

R← 2k-bit zeros
for letter ai in a do

Ri = 1 if ai ∈ {G,T}
Ri+32 = 1 if ai ∈ {C,T}

return R
procedure SIGNATURE(M,e) ▷ Extract signature
from e

r← 2h-bit zeros
for (shskip,shkeep) ∈ SHIFTS(M) do

e← Shift e left by shskip
r←SHLD (shkeep,e,r)

return r
procedure QUERYREAD(r,DB)

l← 0
for k-mer a in r and its reverse complement do

e←LEFTRIGHTENCODE(a)
for each i ∈ [l] do

s← SIGNATURE(Mi,e)
for Ti[T (s)]≤ f < [Ti[T (s)+1]] do

if HD(E[Si[I(s)][ f ]],e)≤ p then
l← l +1
if l ≥ c then

return r is a match
return e is not a match

procedure HD(a,b) ▷ Hamming Distance
zup,zlow← lower and upper k-bits of a⊕b
return popcount(zup∨ zlow)
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A. A. (2008). Database indexing for production MegaBLAST searches. Bioinformatics,
24(16):1757–1764.

[160] Moshiri, N. (2020). TreeSwift: A massively scalable Python tree package. SoftwareX,
11:100436.

[161] Narayanan, M. and Karp, R. M. (2004). Gapped Local Similarity Search with Provable
Guarantees. pages 74–86.

[162] Nasko, D. J., Koren, S., Phillippy, A. M., and Treangen, T. J. (2018). RefSeq database
growth influences the accuracy of k-mer-based lowest common ancestor species identification.
Genome Biology, 19(1):165.

[163] Nevill, P. G., Zhong, X., Tonti-Filippini, J., Byrne, M., Hislop, M., Thiele, K., van
Leeuwen, S., Boykin, L. M., and Small, I. (2020). Large scale genome skimming from
herbarium material for accurate plant identification and phylogenomics. Plant Methods,
16(1):1.

[164] Ng, P. (2017). dna2vec: Consistent vector representations of variable-length k-mers.
ArXiv, abs/1701.0.

185



[165] Nguyen, N.-p., Mirarab, S., Liu, B., Pop, M., and Warnow, T. (2014). TIPP: taxonomic
identification and phylogenetic profiling. Bioinformatics, 30(24):3548–3555.

[166] Ochman, H., Lawrence, J. G., and Groisman, E. A. (2000). Lateral gene transfer and the
nature of bacterial innovation. Nature, 405(6784):299–304.

[167] Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S.,
and Phillippy, A. M. (2016a). Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biology, 17(1):132.

[168] Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S.,
and Phillippy, A. M. (2016b). Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biology, 17(1):132.

[169] OpenMP (2018). OpenMP Application Programming Interface Version 5.0.

[170] Orakov, A., Fullam, A., Coelho, L. P., Khedkar, S., Szklarczyk, D., Mende, D. R., Schmidt,
T. S. B., and Bork, P. (2021). GUNC: detection of chimerism and contamination in prokaryotic
genomes. Genome Biology, 22(1):178.

[171] Ounit, R. and Lonardi, S. (2016). Higher classification sensitivity of short metagenomic
reads with CLARK-S. Bioinformatics (Oxford, England), 32(24):3823–3825.

[172] Ounit, R., Wanamaker, S., Close, T. J., and Lonardi, S. (2015). CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative k-mers. BMC
Genomics, 16(1):236.

[173] Pachiadaki, M. G., Brown, J. M., Brown, J., Bezuidt, O., Berube, P. M., Biller, S. J.,
Poulton, N. J., Burkart, M. D., La Clair, J. J., Chisholm, S. W., and Stepanauskas, R. (2019).
Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. Cell,
179(7):1623–1635.e11.

[174] Pandey, P., Almodaresi, F., Bender, M. A., Ferdman, M., Johnson, R., and Patro, R.
(2018). Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index. Cell Systems,
7(2):201–207.e4.

[175] Parks, D. H., Chuvochina, M., Chaumeil, P.-A., Rinke, C., Mussig, A. J., and Hugenholtz,
P. (2020). A complete domain-to-species taxonomy for Bacteria and Archaea. Nature
Biotechnology, 38(9):1079–1086.

[176] Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015).
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells,
and metagenomes. Genome Research, 25(7):1043–1055.

186



[177] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Wallach, H., Larochelle, H.,
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B. K. H., Denis, B., Froula, J. L., Wang, Z., Egan, R., Don Kang, D., Cook, J. J., Deltel, C.,
Beckstette, M., Lemaitre, C., Peterlongo, P., Rizk, G., Lavenier, D., Wu, Y.-W., Singer, S. W.,
Jain, C., Strous, M., Klingenberg, H., Meinicke, P., Barton, M. D., Lingner, T., Lin, H.-H.,
Liao, Y.-C., Silva, G. G. Z., Cuevas, D. A., Edwards, R. A., Saha, S., Piro, V. C., Renard, B. Y.,
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