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Abstract

The ubiquitous power-law of practice has been u touch=tone of cognitive model-. It predicts
that the speed of performance of a task will improve us the power of the number of times that
the task i~ performed. In this paper we derive the power-luw from a graph dyvnamical theory of
learning by considering chunues in problem-space graph topology due to the addition of operators.
and alterations in the decision-procedure used to decide which operator to apply at a particulur
step. The general approach of upplving dvnamical principles to cognitive problems holds much
promise in unifving other areas ot learning and intelligent activity.

Keywords: Learning, Chunking. Macro Operator Formation, Power-Law Speedup, Problem-Solving,
Practice.

1 Introduction

The power-law of practice ti.e.. Crossman, 1956. and many others) predicts that the speed of per-
formance of a task will improve as the power of the number of times that the task is performed.
This appears to be a ubiquitous property of human learning, and has heen a touchstone of cognitive
models such as SOAR (e.g., Laird, Rosenbloom. & Newell, 19861 and ACT" t.Anderson. 1983). In
this paper we derive the power-law of learning from a graph dynamical theory tHuberman & Hogg.
1987). This law results from changes in problem-space graph topology due to the addition of opera-
tors, and alterations in the decision-procedure used to decide which operator to apply at a particular
step.

We begin by describing a simple "Bit Game™ which will be used in our experiments. We then
sketch the derivation of the power-law for operator addition and decision-procedure improvement.
Next, we verify our approach by computer simulations of the Bit Game which isolate the relevant
features of the theory. Finallv. we discuss the importance of this approach to modeling learning,
and brieflv contrast it with existing accounts of power-law improvement.

2 The Bit Game

Miuny tasks can be viewed as the search for a path through a problem-space graph, where nodes
represent states of the problem and links represent operators that move between states ( Newell &
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Simon. 19721, [n order to illustrate the processes of learning. and verifv the theory, we consider a
simple problem called the "Bit Game” which ix analogous to many well-defined problems<. hut hus a
simple problem-space. .\ problem state in the Bit Game i< a B-bit binary vector tas: 010100 We wall
generallv use a five-bit vector in these examples. A “trial”™ bewins from an arbitrary initial ~tate.
sav: 00000, and the goal 15 to change that state to some other arbitrary vector, say: 11111,

Each operator is composed of from 1 to B elements indicating a particular bit in the vector which
should be flipped if it matches in the current state. Operators only specify the bits in the state which
actually change. Operators can be written as “pattern - result” pairs, with question-marks ™%
where the operator pattern savs nothing about a particular bit position. The operator 21717 -2070?"
will take the state: 11010 to 10000, or the state: 11111 to 10101, but will not apply to the state:
00000 because the indicated bits are not ones.

Operators vary in their generality. The one-element operators. such as: "07777 - 177777 apply
to 16 states: 100000. 00001. D0010. ... 011111 and so connect together 32 nodes in the space of all
states. We begin playing the Bit Game with all the 1241 one-bit operators 110, in the case of a 5-bit
game). This set forms the B-dimensional hvpercube and completelv connects the space.

The number of links traversed on a trial ii.c.. the number of steps required to find the goal state
from the initial stater measures performance. .\ =series of trials. beginning with a common initial
problem-space and with learning between each trial. will be called a problem-solving “run™ When
there are several applicable operators per step, a decision-procedure is used to choose one. There
are many reasonable ways to decide among different operators. For certain organizations of opera-
tors and choices of initial and goal states, some of these decision-procedures are more effective than
others.

2.1 Adding Operators

After a trial is completed. learning may take place in one of the two wavs: either by changing the
problem-space by adding operators 1links). or by changing the decision-procedure. For example.
SOAR (Laird, et al.. 1986 adds new operators which summarize the results of sub-problem-solving.
[n the Bit Game we add the operator that most generally summurizes the solution of the game just
played. That is, suppose we begin with this game: 01110 - >10101. and find o solution. \We can gain
the effect of summarizing the “subproblem-solving” for that game by forming the operator that will
solve this game in one step. That is. for this case we add the operator: "01710 . 10701" because it is
the most general operator that will solve this game in one step. Notice that the "?" element of this
operator appears because the third bit did not change between the initial and voal state in this trial.
and so this new operator connects together two pairs of states in the problem-space.

2.2 Improving the Decision-Procedure

Decision-procedures can be arbitrarilv complicated algorithms. and can be changed in complex and
arbitrarv wavs. leading to entirelv different problem-solving behavior. Generally. however. a decision-
procedure is only radicallv changed in the face of some new insight into the problem structure. With-
out such an extreme change it only makes sense to either slowly vary the parameters controlling the
decision-procedure in order to trv to hill-climb into a best-solution mode. or to vary them randomlyv.
hoping to discover a good decision-procedure serendipitiously We consider changing between a very
bad ("poor™i decision procedure. and a very good “optimal” one.

The optimal” decision-procedure finds the fastest wuav to the goal. For each operator that can
apply in the current state one can ask how muanv of the goul bits will be correctly set it that rule
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were applied. We then randomly choose un operator from among the ones that score highest on this
measure.

The “poor” decision-procedure 1s a random walk with a L-ply lookahead: We search at random
until we are one-step awayv from the goal. and then take that one step diveetly to the goal. Since
as operators are added to the problem-space it becomes more connected. one has to do less random
search in order to run into a path leading to the goal, but it is wlso easier to get off the path.

3 Analysis

In this section we derive the behavior to be expected from the addition of new operators and improve-
ments in local decision-procedure. A\ problem space consists of a connected graph. ¢, with n nodes
representing various problem states. and links representing instances of possible operators. We
now show that learning due to the addition of links in the graph. or improvements in the decision-
procedure. lead to a gradual reduction in path lengths with a corresponding gradual improvement
in performance which is an power-law of the number of trials,

We are interested in learning behavior for situations involving a large number of states and
tvpical problem spaces rather than any specific one. This can be elucidated by assuming that the
initial set of operators are distributed at random. and that new links are added independentlv of
one another. Alternatively, instead of a specific number of links, we can assume that the links be-
tween each pair of states each exist with independent probability p. Although such a probabilistic
description appears to differ from the case of a fixed number of operators, the resulting properties
are known to be the same when large graphs are involved (Bollobas, 19351, Moreover. this approach
simplifies the mathematical derivations. As new operators are learned during the trials. p will cor-
respondingly increase. Notice that p must be greater than (Inn)/n for the graph to be completely
connected.

Similarly. to explore the range of decision-procedures that lie between the optimal decision-
procedure and the random walk we use a simple descriptive model of the effectiveness of the decision-
procedure in which. at any node during the search for the goal. each unproductive link is eliminated
with probability | - p. Improvements in the decision-procedure corresponds to a decrease in p and
change the problem from an exponential random walk to a linear drift toward the goul tHuberman
& Hogg, 1987). This probabilistic model describes the behuvior of the algorithm when applied to
many decisions. but does not necessarily require that choices be made randomly. Note that p 0
corresponds to a perfect decision-procedure 1n which search and backtracking are never required.
while p = | corresponds to a random walk on the graph. We assume that p(T) and p(T) are given
functions of the number of completed trials T and investigate the consequences of their changes.
That is, we want to obtain an expression. s(T), relating the expected number of steps. s. required to
obtain a solution to the number of trials (T

To obtain an explicit expression for s in terms of p and p. we consider a simplified model which
incorporates the essential features of problem-solving. First, we assume that all nodes of the graph
have the average number of links ¢ (n 1)p. Thus, we are left with a regular graph of n nodes
and uniform branching ratio g. Second. we assume that the cveles in the graph are long so that. in
general. at any node there will be one link rone step) to a node closer to the goal while the others are
one step farther away. In this limit the behavier will be <imilar to a walk on a tree, Because of the
initially exponential growth in the number of nodes with distunce. the initial and goal nodes will
typically be separated by the diameter of the craph. which can be approximated as 2 Inn In . the
maximum distance between points in the tree corresponding to the wraph. From most nodes. there 15
only one choice which gets closer to the voul <tiute and i 1 chowees which move farther from the woul
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However. the decision procedure climinates each incorrect choice with probability 1 p so there are
ron average effectively onlv (1 |)p incorrect choices at cach node. Thus s will be approximated by
the average number of steps required to reach the goal using this process.

This analvsis gives the vxpected behavior of s s a function of piie.. the topology! and p iie.. the
decision effectiveness). For instance. when the decision-procedure 1s weak (p near L. steps toward
the voal will be relativelv rare frecall that . is at least as large as lnni. Thus the svstem’s behavior
will be exponential. When pp is much larger than one, one obtainx:

Inn/lnp lnrm/lnu

s = 2pp) 2np

[n this case. when p - | (50 that the decision-procedure is no better than making random choices,
increasing the number of links has no effect on the time to solve the problem. More generally (1e..
p < 11, increasing the number of links will result in a gradual increase in s. the expected number of
steps required to solve the problem. because the smaller diameter of the graph is more than balanced
by the increased difficulty of choosing the correct operator from among the larger number of choices.
Notice, however. that when connectivity becomes large, many paths will become equally good, re-
sulting in an effective decrease in p. Recalling that g can range from lnn to n — L. we illustrate this
behavior for p = 0.9 and n 100 in Figure 1 ta),

To obtain the benefit of added links, the decision-procedure must improve as new links are added.
For example, if it improves fast enough to keep up constant as links are added, the corresponding
decay 1s illustrated for n = 100 and pp - 51in Figure 1 (b

Conversely. when the decision-procedure is strong (p near 01, the svstem’s behavior is given bv:

s = (lnn)/(Inp)

Thus. as long as the decision-procedure improves as fust as new links are added, one obtains a power-
law decay in Iln g as shown in the case of n -~ 100 in Figure 1 tc),

4 Experimental Verification

[n order to validate our approach in actual problem-solving, we simulated operator addition and
decision-procedure improvement in the Bit Game.

[n our simulations. we alwavs randomly choose a start and goal state. solve the problem uc-
cording to some decision-procedure, and record the performance. The possible cames are uniformly
distributed among the 2?8 bit conficurations.

Figure 2 plots the average (over 100 runsi search path length over 500 trials for the 7-bit Bit
Game. In this instance we used the optimal decision-procedure. The path length decreases accord-
ing to a power-law, as predicted. confirming that we have achieved at least first-order analogy to
Rosenbloom's (19861 model in which the power-law is accounted for in terms of chunking of subgoal
hierarchies. However. this analvsis is more vencral than Rosenbloom's theory in the sense that we
incorporate both improvements due to adding operators and due to improvements in the decision-
procedure. Furthermore we predict a power-law for any sort of link addition. whereas Rosenbloom
predicted power-laws only in the case of subgoal chunking. Furthermore, our theorv is able to predict
the precise exponents (if we know the properties of the particular problem-spuace graph and decision-
procedure) whereas normally there are two free parameters in psychological power-law models.

[n order to simulate improving the decision-procedure we explicitly incorporated the deseriptive
parameters of our model. Specifically. we found all applicable operators from the current state and
then selected one from the ~et according to a function of the number of trials: p(r) Thus. pbesins at
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1.0 and moves to 0.0 hinearly throughout the run. Inorder to do this we first order the operators as for
the optimal decision-procedure. We then separated these into the best ones tie.. ones with the sume
hivhest goodness rating) and all the rest (e ones that do not have that particular highest rating).
Next we deleted each of the non-optimal operators from the set with probability | p. Finallv, we
chose one operator at random from the union of the remainder of the non-optimal set. and all the
optimal operators. When p =0.0 all of the non-optimal vperators will be deleted. leaving only the
optimal ones. This results in optimal problem-solving. When p 1.0, all of the non-optimal operators
are left in the set. making the decision-procedure into a random walk.

Figure 3 shows the results of the 7-bit Bit Giime. with the above modifications. averaged over
365 runs and tracked through 200 trials. p decreases linearly along the independent axis in steps of
0.05. Again we observe the predicted power-law decrease in path lenuth as the decision-procedure
improves.

5 Discussion

Shepard (19871 raised the call tor a law-like science of psvchologyv. with the power of the laws of
physics. In this paper we have taken a step toward Shepard’s goal by presenting the outline of
a unified theory of problem-solving learninyg phenomena based upon the mathematics of graph dy-
namics. Although some researchers have approached a unified model of phenomena and mechanisms
te.g., Anderson. 1983: Rosenbloom & Newell. 19511 these theories contain ad hoc or overly specific
processes and assumptions. Anderson. for instance, obtains the power-law by a rule strengthen-
ing mechanism which operates according to a power-law. Rosenbloom’s account of the source of the
power-law is restricted to addition of operators resulting from the chunking of problem-solving sub-
goals. Thinking of a problem-space as a graph is a commonplace interpretation of problem-solving
tdating from Newell & Simon. 1972). but to our knowledge. no one has tried to understand the rela-
tionship between graph dvnamics and problem-solving learning phenomena.

The psvchological mechanisms involved in learning by doing can include method selection (Cross-
man. 19591, method optimization (Cheng, 19851, and changes in the mechanisms that choose which
operator to apply in a given situation the decision-procedurer. \ll sorts of changes in method and
operators can he modeled as changes in the topology of the problem-space sraph due to either restruc-
turing ie.g., Shrager, 1987) or the construction of new operators + Korf. 1955: Rosenbloom. 19861, [n
many tasks. the svnergy of mechanisms results in the well documented power-law of practice + An-
derson. 1983: Fitts. 1964: Rosenbloom & Newell. 19811 in which the speed of performance increases
rapidly at first. and then more slowlv as performance becomes highly skilled.

We have shown that by applying the theory of graph-dvnamics to the view of a problem-space as
a graph. we can capture, explain, and experimentallv demonstrate the power-law 1n a general way
without recourse to explicit power functions. The power-law was found in two different cases. First.
in the case of adding new operators to the problem space. This 1s a more general result than the
results of Rosenbloom 11986 in that he studied one kind of new operator — the memory of the results
of subproblem-solving. Second. we predicted and found a power-law in the improvements of decision
procedures.

Several additional points are worth mentioning. First, merely adding links to a problem-space
graph without an already relatively good decision-procedure will simply make things slower because
there will be more ways of getting lost. This 1s the prediction seen in Figure 1 ta, and accords with
another well-known psvchological result: interference (e.g.. Smith, Adams. and Schorr, 19781. Pre-
sumably either one starts out with a moderately good decision-procedure. or else as learning takes
place. the person is hoth improving his decision-procedure in addition to learning new problem-space
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links. The combination of effects — 1.e., adding together two power-laws of different cxponent. inter-
cept. and out of phase with one another. can lead to complex phenomena ranging from power-laws.
to steep jumps (up or downi superimposed on smooth performance. and. interestinglyv. to the pre-
cise behavior generally accorded to the paradox of the expert (Smith. Adams. and Schorr, 19751
This is the phenomenon in which the learner becomes worse until he knows a lot about the domain.
and then performance improves dramatically. This suggests looking to decision-procedure improve-
ment as a possible account for this paradox. Finally, although not discussed here. we have also
uncovered another sort of phenomenon: 1e.. sudden performance improvements in certain kinds of
concept acquisition tasks (such as the tasks analyzed in Bourne & Restle. 19591 (these results are in
preparation).

In sum. we feel that the general approach of applving dvnamical principles (Huberman & Hogg.
1987, Shrager, Hogg, & Huberman. 1987) to cognitive problems holds much promise in unifying
other areas of learning and intelligent activity,
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