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Optical mapping of action potentials or calcium transients in contracting cardiac tissues

are challenging because of the severe sensitivity of the measurements to motion. The

measurements rely on the accurate numerical tracking and analysis of fluorescence

changes emitted by the tissue as it moves, and inaccurate or no tracking can produce

motion artifacts and lead to imprecise measurements that can prohibit the analysis

of the data. Recently, it was demonstrated that numerical motion-tracking and -

stabilization can effectively inhibit motion artifacts, allowing highly detailed simultaneous

measurements of electrophysiological phenomena and tissue mechanics. However, the

field of electromechanical optical mapping is still young and under development. To

date, the technique is only used by a few laboratories, the processing of the video

data is time-consuming and performed offline post-acquisition as it is associated with

a considerable demand for computing power. In addition, a systematic review of

numerical motion tracking algorithms applicable to optical mapping data is lacking.

To address these issues, we evaluated 5 open-source numerical motion-tracking

algorithms implemented on a graphics processing unit (GPU) and compared their

performance when tracking and compensating motion and measuring optical traces

in voltage- or calcium-sensitive optical mapping videos of contracting cardiac tissues.

Using GPU-accelerated numerical motion tracking, the processing times necessary to

analyze optical mapping videos become substantially reduced. We demonstrate that it is

possible to track and stabilize motion and create motion-compensated optical maps in

real-time with low-resolution (128 x 128 pixels) and high resolution (800 x 800 pixels)

optical mapping videos acquired at 500 and 40 fps, respectively. We evaluated the

tracking accuracies and motion-stabilization capabilities of the GPU-based algorithms

on synthetic optical mapping videos, determined their sensitivity to fluorescence signals

and noise, and demonstrate the efficacy of the Farnebäck algorithm with recordings

of contracting human cardiac cell cultures and beating hearts from 3 different species

(mouse, rabbit, pig) imaged with 4 different high-speed cameras. GPU-accelerated
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processing provides a substantial increase in processing speed, which could open the

path for more widespread use of numerical motion tracking and stabilization algorithms

during routine optical mapping studies.

Keywords: computer vision, GPU, optical mapping, cardiac electrophysiology, motion tracking, high-throughput,

cell culture

1. INTRODUCTION

Voltage- or calcium-sensitive optical mapping can resolve
electrophysiological wave phenomena in cardiac tissue at
high spatial and temporal resolutions (1–6), and can be
performed across various spatial scales: in hearts as small as
a zebrafish’s heart (7–9), in single cardiomyocytes and cell
cultures (10–13), and large hearts including human hearts
(14). Optical mapping supersedes other imaging techniques
in terms of spatial resolution and provides the advantage of
non-contact measurement.

However, to date, there are two major technical challenges
associated with optical mapping which have so far inhibited
exploiting the technique’s full potential: First, due to its severe
sensitivity to motion, optical mapping is yet widely performed in
contraction-inhibited tissues to avoid so-called motion artifacts
using pharmacological excitation-contraction uncoupling agents.
Motion artifacts arise quickly during optical mapping even with
the slightest motion if the measurements are performed in an
ordinary fashion: extracting and analyzing the optical signals
pixel by pixel without numerical motion tracking (15, 16). As
a result, over the past 30 years, the motion has been avoided
at all costs in optical mapping studies (17). To overcome this
limitation, optical mapping has more recently been combined
with numerical motion tracking and stabilization techniques to
track and measure fluorescence on the deforming tissue surface
in a co-moving reference frame, which effectively inhibits motion
artifacts (6, 16, 18–20). Second, the high data rates associated with
the fast acquisition rates and high spatial resolutions provided
by modern high-speed CCD or CMOS cameras lead to large
amounts of data, and the handling, processing, and analysis of
the data pose a significant challenge, particularly when numerical
motion tracking and stabilization is performed. At present,
optical mapping is typically performed at imaging speeds of about
200 to 2,000 frames per second (fps) with video image sizes of
100×100, 128×128, or 256×256 pixels, and in some applications
even with video image sizes greater than 1, 000×1, 000 pixels.
Accordingly, a single recording results in tens of thousands
to millions of parallel optical measurements with data rates
ranging in the order of 10–100 million samples per second.
With advances in camera sensor technology, the adoption of
low-cost high-resolution CMOS cameras (21, 22), and multi-
camera imaging systems (23, 24), the data rates will continue to

increase, generating large amounts of imaging data that need to

be processed.
Myocardial tissue is an electrically excitable tissue, which

contracts and deforms in response to electrical excitation, and
it is, therefore, crucial to develop measurement tools, with
which it is possible to observe electrical wave phenomena and

tissue mechanics simultaneously at high spatial and temporal
resolutions. Optical mapping combined with computer vision is
ideally suited to perform these measurements. The adaptation
of computer vision techniques, such as numerical motion
tracking, will expand the list of possible applications for optical
mapping and provide novel opportunities in cardiovascular
research. However, this development also poses a significant
challenge in terms of data processing and data handling, which
needs to be addressed before the techniques can find more
widespread applications.

In this study, we evaluated 5 numerical motion tracking
algorithms, which are implemented on a graphics processing
unit (GPU), and we applied these algorithms to numerically
inhibit motion artifacts in optical mapping recordings. GPU-
based algorithms can provide substantial accelerations in terms
of processing speed. We evaluated the performance and
applicability of these algorithms to various optical mapping
data and explored whether their use would allow the numerical
tracking and compensation of motion artifacts in real-time. All
tested algorithms are open-source and freely available as they
are implemented in the open-source computer vision library
OpenCV (25). As OpenCV is actively maintained, supported, and
available on all major operating systems, it should be possible
for other optical mapping practitioners to test and replicate our
results or use our findings as guidance for their data analysis.

1.1. Tracking Motion in Fluorescence
Imaging Videos
Tracking motion in optical mapping videos is different from
tracking motion in most other applications. The particular
properties of optical mapping videos can adversely affect the
motion tracking process and add significant error to the
tracking results (16). Motion tracking algorithms can be broadly
distinguished into two categories: either optical flow or feature
tracking techniques. Optical flow algorithms are “dense” motion
tracking algorithms in that they track motion in every pixel.
Feature tracking algorithms track individual points of interest
(landmarks, features, etc.) identifiable in an image. Due to the
higher resolution of optical flow algorithms, they are better
suited to stabilize motion and inhibit motion artifacts in optical
mapping videos, because even the slightest sub-pixel shifts can
cause severe motion artifacts. The algorithms we tested are all
dense optical flow estimation algorithms, which track optical
flow automatically pixel-by-pixel in a two-dimensional scene.
For a survey of various numerical motion tracking techniques
refer to (26–28). The term optical flow, or image motion, is
used in computer vision to refer to the apparent motion or
deformation between two images. This two-dimensional image
motion is the projection of the three-dimensional motion or
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FIGURE 1 | Optical mapping combined with numerical motion tracking for

measurement of an action potential or calcium waves in moving and

deforming cardiac tissues, such as an isolated heart during voltage-sensitive

optical mapping. (A) Two-dimensional in-plane displacements on the camera

sensor depict the motion of the tissue between two video frames from time ti
to time tref . (B) Optical flow field describing the deformation of the imaged

tissue pixel-by-pixel. In Figure 10 and Supplementary Figures S1, S2, the

displacement vector fields are HSV color-coded: the orientation and

magnitude of the displacements are depicted by hue (color) and saturation,

respectively. (C) Numerical motion tracking in a sequence of video images with

a calculation of the displacements with respect to a reference frame (first frame

or any arbitrary frame).

deformation of objects relative to a camera sensor onto its image
plane, refer to Figure 1. An optical flow field is a two-dimensional
vector field describing the displacements of brightness patterns
from one image to another. Optical flow can be caused relative
motion as well as the deformation of objects. Relative motion is
either movement of objects with respect to a static viewpoint or
movement of the viewpoint or both.

One key assumption commonly made by optical flow
algorithms is brightness constancy, which means that the
intensity of objects in a scene does not change over time (29,
30). With optical mapping, however, this assumption is violated
because the fluorescent signals, which are caused by (voltage- or
calcium-sensitive) fluorescent markers, can change significantly
over time. Consequently, the visual appearance of fluorescing
tissue can change from video frame to video frame, which
makes determining the optical flow and tracking motion between
frames challenging. While brightness constancy is almost never
perfectly fulfilled in most other real-life scenarios as well, during
optical mapping the brightness changes can become particularly
severe as they are an intended feature and central part of the
measurement: the stronger the brightness changes, the better the

measured signal. In previous studies, refer to review by Nesmith
et al. (31), the numerical tracking was either facilitated by
attaching physical markers to the tissue (18, 32, 33) or performed
entirely without markers solely tracking the tissue’s natural
features (6, 15, 16, 19, 20, 34–36). Particularly in the latter case,
when solely the fluorescing tissue is imaged, brightness changes
can lead to tracking artifacts (16), and it is, therefore, critical to
carefully consider these brightness changes when assessing the
performance of numerical motion tracking algorithms. In this
study, we tested the GPU algorithm’s sensitivity to noise and
fluorescence-induced brightness changes.

2. METHODS

We evaluated 5 dense optical flow algorithms, refer to Section
2.2, which are part of the popular, freely available, open-
source computer vision library OpenCV (25): 1) Lucas and
Kanade (37) with OpenCV modifications, 2) Farnebäck (38), 3)
Brox (39), 4) TV-L1 (40), and 5) the ‘NVIDIA Optical Flow
SDK’. All algorithms are executed on a GPU. We applied the
algorithms to track and stabilize motion and deformation in
voltage- and calcium-sensitive optical mapping videos recorded
with 4 different high-speed cameras, as well as in synthetic
optical mapping videos which we generated in computer
simulations. In particular, the synthetic data provides ground-
truth displacement data, which allows a precise evaluation
of the results of the tracking algorithms. We evaluated and
compared the performance of the algorithms with regard to
processing speed and accuracy on video data with different
noise levels and fluorescence intensities. We also compared
the processing speeds of two GPU-based algorithms with their
corresponding CPU implementations. Processing was performed
on a workstation with Ryzen Threadripper 3970X 3.7GHz CPU
(AMD Inc., USA) equipped with 32 cores and a Geforce RTX
3070 GPU (NVIDIA Corp. USA). The backbone of numerical
motion tracking methods is dense optical flow motion tracking
algorithms, which estimate motion or displacements in every
pixel of an image, from one image to another, in a fully automatic
fashion. All numerical routines were implemented in Python
and/or C++.

2.1. Imaging Data
2.1.1. Synthetic Data
To evaluate the tracking accuracy of the motion tracking
algorithms, we generated synthetic optical mapping videos as
described in Christoph and Luther (16). In short, the synthetic
imaging data was created by deforming grayscale video still
frames showing a heart during an optical mapping experiment
using an electromechanical computer simulation. The video
frame was not only deformed but the simulated action potential
wave patterns were superimposed as intensity decreases over the
parts of the images showing the heart tissue, refer to Figure 10A).
Furthermore, the images were deformed as if the tissue was
deforming in response to the action potential wave patterns.
The deformed images were subsequently resampled. Because the
deformations are simulated, the actual displacements are known
in every pixel as ground-truth displacement data. Accordingly,
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FIGURE 2 | Flow diagram depicting the sequential order of the fully automatic

numerical pre- and post-processing and tracking of optical mapping data.

Raw videos are smoothed simultaneously in space and time and then

contrast-enhanced [also refer to Christoph and Luther (16)] before performing

the optical flow estimation. The displacement vectors resulting from the optical

flow estimation are smoothed in space and time before being used to warp the

original raw video frames to obtain a motion-compensated video.

we created a dataset consisting of synthetic image pairs showing
the tissue in one and another deformed state at times t1 and t2
and the ground-truth deformation vector field between the two
images. We denote the electrical excitation of the simulation at
time t as v(x, y, t) and the deformation with respect to the initial

mechanical configuration as Ed(x, y, t). A synthetic image Ĩ(x, y, t)
for a given fluorescence strength f , which denotes the fractional
change in fluorescence 1F/F exhibited by fluorescent probes in
optical mapping experiments, is generated as follows:

Ĩ(x, y, t) = (1+ f · v(x, y, t)) · Itexture(x, y) (1)

To generate an image pair, we choose the experimental
image Itexture(x, y), onto which the action potential wave
patterns are superimposed, and two simulation time points
t1 and t2 at random. The first image of an evaluation
image pair is Ĩ(x, y, t1), the second image is the image
Ĩ(x, y, t2) deformed by the displacement vectors Eu(x, y) =
Ed(x, y, t2) − Ed(x, y, t1). Here, the displacement vector field
Eu(x, y) is used to warp one image into the other. The central
step in the motion-compensation algorithm is the estimation
of the deformation vector field Eu(x, y) between the first
and second image using an optical flow algorithm, refer to
Figure 2.

2.1.2. Experimental Data
The experimental imaging data processed and analyzed in this
study consists of voltage-sensitive optical mapping videos of a
mouse and a rabbit heart imaged ex vivo with a Basler acA720-
520um camera (720×540 pixels full resolution), voltage-sensitive
optical mapping videos of a rabbit heart imaged ex vivo with
a Brainvision Scimedia MiCAM N256 camera (256×256 pixels
full resolution) and an IDS µEye UI-3060CP-M-GL camera
(1, 936×1, 216 pixels full resolution), voltage-sensitive optical
mapping videos of a pig heart imaged ex vivowith a Photometrics
Teledyne Evolve 128 camera (128×128 pixels full resolution),
and calcium- and voltage-sensitive optical mapping videos of
a cardiomyocyte culture, differentiated from human induced
pluripotent stem cells (iPSCs), imaged in vitro with an IDS µEye
UI-3060CP-M-GL camera (1, 936×1, 216 pixels full resolution).
In addition, we discuss calcium-sensitive optical mapping data
of an isolated stomach strip imaged in vitro with an Oxford
Instruments Andor camera (1, 280×1, 080 pixels full resolution)
which we analyzed in another study with our methodology
(36). All tissues contract and deform strongly as they were
imaged in the absence of pharmacological excitation-contraction
uncoupling agents.

2.2. Optical Flow Estimation Motion
Tracking Algorithms
We tested 5 different GPU-based dense optical flow estimation
algorithms implemented in the popular open-source OpenCV
computer vision library (25), version 4.4.0. The estimation
of optical flow between two images is an ill-posed inverse
problem, and a solution, a vector field describing the affine
transformation of one image into another, can be approximated
with optimization techniques. To find the appropriate flow
field between two images, optical flow algorithms employ
a variety of assumptions on both the data, such as the
brightness constancy assumption, as well as the solution, such
as smoothness constraints. The choice of assumptions and
optimization techniques is an important degree of freedom in
designing optical flow algorithms and has led to a wide range of
methods over the past several decades (26).

Lucas and Kanade (37) and Horn and Schunck (41) are
seminal works in the development of optical flowmethods, which
broadly represent two different categories of motion tracking
algorithms upon whichmost modern algorithms are based. Lucas
and Kanade (37) is a so-called local method: it computes the flow
vectors for all pixels separately. It assumes that all pixel intensity
changes between the two images are caused by the movement
of the underlying objects and that the flow is constant within
a local neighborhood of each pixel. Horn and Schunck (41) is
a variational method for optical flow estimation: it is a global
method that estimates the optical flow for all pixels jointly. It
computes the optical flow as the solution to a minimization
problem using regularization, relying on the assumption that the
brightness of a pixel is constant over time.

• Lucas-Kanade: We used the ‘DensePyrLKOpticalFlow’
implementation in OpenCV, which extends the Lucas and
Kanade (37) algorithm to give dense optical flow estimates,
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using an iterative coarse-to-fine scheme (42). This coarse-to-
fine approach is a commonly used concept in optical flow
estimation to address large displacements: by repeatedly
reducing the resolution of the images over several steps,
and starting from the smallest image resolution. The Lucas-
Kanade algorithm is applied at each resolution and then
successively refines the estimated optical flow by applying the
Lucas-Kanade algorithm to the higher resolution images.

• Farnebäck: The algorithm introduced in Farnebäck (38)
is a local method similar to Lucas-Kanade. Among other
differences, it assumes an affine flow, as opposed to a constant
flow, in the local pixel neighborhood.

• Brox: Brox et al. (39) proposed a variational method for optical
flow estimation, which aims to allow larger displacements
compared to Horn and Schunck (41).

• TV-L1: There exist several variational algorithms which are
based on total variation (TV) regularization using the L1 norm
to preserve discontinuities in the optical flow field. Here,
we use the algorithm introduced in Zach et al. (40), whose
implementation is described in Sánchez Párez et al. (43).

• NVIDIA: In 2019, the NVIDIA Corporation introduced the
‘NVIDIA Optical Flow SDK’1, a software library for the
estimation of the relativemotion of pixels between images. The
library relies on dedicated hardware capabilities of NVIDIA
Turing and Ampere GPUs for the optical flow computation.
The library requires a minimum image size of approximately
160×160 pixels, we scale images sized 128×128 pixels to
256×256 pixels to overcome this limitation. NVIDIA has not
detailed how the optical flow algorithmworks but provides the
source code upon request.2

With all optical flow algorithms, we used the default parameters
in OpenCV. The OpenCV implementations of all algorithms
except the Brox algorithm require 8-bit images as input. The
Brox algorithm also supports 16-bit images. Optical mapping
recordings are usually captured using 12-bit (pixel intensity
values between 0 and 4,095), 14-bit (pixel intensity values
between 0 and 16,383), or 16-bit (pixel intensity values between
0 and 65,535) camera sensors. The synthetic camera images we
generated are 16-bit images. With the exception of the Brox
optical flow algorithm, we reduced the generated images to the 8-
bit range (values between 0 and 255) for optical flow estimation.
However, there is no loss in image precision for the motion-
compensated (warped) videos as the resulting 32-bit floating-
point tracking data is then applied to the original data.

2.3. Tracking Accuracy
The tracking accuracy or tracking error of the algorithms
was determined by calculating the average end-to-end point
error (EPE), which is the average Euclidean distance between
the displacement vectors estimated by the motion tracking
algorithms and the ground-truth or reference displacement
vectors being the output of simulations or a reference algorithm,
respectively. The EPE is averaged over all pixel locations for every

1https://developer.nvidia.com/opticalflow-sdk
2https://developer.nvidia.com/optical-flow-sdk-source-code

displacement vector and then averaged over all vectors in 20,000
video images correspondingly. In this study, the displacement
vector fields are shown as color-coded HSV maps instead of
vector fields, the hue (color) indicating the orientation and
the saturation showing the magnitude of the displacements,
respectively, refer to Figure 1.

2.4. Pre- and Post-processing
Accurate motion tracking and motion artifact compensation
of optical mapping data typically require pre-processing
of the imaging data and post-processing of computed
displacement vector fields. Figure 2 depicts a flow diagram of
the computational steps for computing a motion-compensated
video of a raw optical mapping video. The diagram follows the
procedure detailed in Christoph and Luther (16). In short, the
pre-processing of experimental data consists of i) smoothing the
video data in both space and time (for further details refer to
results section) and ii) computing a locally contrast-enhanced
version of the original video. The contrast-enhanced video
Ic(x, y, t) is obtained by renormalizing each pixel’s intensity value
I(x, y, t) using the maximal and minimal pixel intensities within
a small circular region S(x, y, t) around the pixel:

Ic(x, y, t) =
I(x, y, t)−min(S(x, y, t))

max(S(x, y, t))−min(S(x, y, t))
(2)

As a result, local grayvalue patterns representing the tissue
become amplified yielding videos with maximal spatial contrast,
refer to Figure 13. At the same time, time-varying signals caused
by fluorescent reporters are inhibited in contrast-enhanced
videos, refer to Christoph and Luther (16). This can reduce
tracking artifacts caused by the violation of the brightness
constancy assumption in the optical flow estimation, refer to
Figure 10. The necessity of contrast-enhancement and the effect
on different optical flow algorithms is analyzed in Section 3.2.
The optical flow algorithm then estimates the displacement
vector field Eu(x, y, t) of the contrast-enhanced video with respect
to a reference frame as shown in Figure 1. The displacement
vector fields Eu(x, y, t) are then spatio-temporally smoothed (for
further details refer to results section) to further reduce tracking
artifacts and enforce temporal smoothness. Finally, the motion-
compensation video is computed by warping the original raw
video with the smoothed displacement vector fields. EPEs were
computed on displacement vector fields that were not smoothed.

3. RESULTS

Figure 3 shows typical examples of optical mapping data
acquired with 4 different high-speed cameras, the µEye UI-
3060CP-M-GL camera by IDS, the acA720-520um camera by
Basler, the MicamN256 camera by Brainvision Scimedia, and the
Evolve 128 camera by Teledyne Photometrics. The 4 cameras,
among others, are commonly used in optical mapping studies
in basic cardiovascular research. The images show to scale
and illustrate the spatial and temporal resolutions that can
be achieved with most modern high-speed cameras used in
optical mapping studies (although the Micam N256 camera
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achieves higher imaging speeds than shown). The images are
shown in Figure 3A a human iPSC-derived cardiomyocyte
monolayer culture, in Figures 3B–D rabbit hearts, in Figure 3E

a mouse heart, and in Figure 3F a pig heart. All hearts
were stained with the voltage-sensitive fluorescent dye Di-4-
ANEPPS. We processed all videos using the Farnebäck motion
tracking algorithm, which we determined to be best suited
for processing optical mapping data, refer to Figures 4–7,
Supplementary Videos 1–9, and Supplementary Material. With
the high processing speeds provided by GPU-based motion
tracking algorithms, we were able to process the video data
from low-cost CMOS cameras (the ones by IDS and Basler),
which produce larger video images, at high (near real-time)
speeds, refer to Figures 4–7. Furthermore, we were able to
process the low-resolution video data (128×128 pixels, acquired
at 500 fps) shown in Figure 3F on the right, as well as the
high-resolution video data (800×800 pixels, acquired at 40 fps)
shown in Figure 3A on the left in real-time (using an NVIDIA
RTX 3070 GPU, approximately $500), refer to also Section 3.1
and Figures 8, 9 for more details on processing speeds. Overall,
the GPU-accelerated processing makes the analysis of high-
resolution video data and real-time analysis feasible.

Figure 4 and Supplementary Video 1 show the performance
of the Farnebäck GPU algorithm with sinus rhythm data imaged
in an isolated, contracting rabbit heart. The optical maps in
Figures 4C,D show the effect of the numerical tracking and
motion artifact inhibition, while an action potential wave (black:
voltage-sensitive staining with Di-4-ANEPPS) propagates across
the left ventricle. While motion artifacts are suppressed in
Figure 4C due to the motion tracking, Figure 4D shows the
same but non-stabilized data that was not tracked. The non-
stabilized optical maps contain strong motion artifacts. Note
that the optical maps were pixel-wise normalized (with a
sliding window length of 10 frames or 20ms), also refer to
Section 2.4. Figure 4E shows the optical traces measured in
the two locations shown in Figures 4A,B before (black) and
after (blue and green) numerical motion tracking and motion
artifact inhibition. The uncorrected optical traces reflect in large
parts motion of the tissue (aside from the rapid downstrokes)
and correspond almost solely to motion artifacts, also refer
to Figure 7. The corrected, motion-compensated optical traces
exhibit an action potential-like shape. While motion artifacts are
significantly reduced in the motion-compensated optical traces,
they yet contain residual illumination-related motion artifacts,
which cannot be compensated with numerical motion tracking
and stabilization alone, also refer to Kappadan et al. (20) and
Section 4.1. Illumination-related motion artifacts are suppressed
in Figure 4C due to the short sliding window used with the pixel-
wise normalization, c.f. Figure 7 and Supplementary Figure S4

for a comparison with a longer window.
Figure 5 and Supplementary Videos 2, 3 demonstrate the

performance of the numerical motion tracking and motion-
stabilization procedure on optical mapping data showing a
rabbit heart during ventricular fibrillation. During ventricular
fibrillation, the contractile and translational motion of the
heart is significantly reduced and illumination-related motion
artifacts play less of a role than during sinus rhythm. Figure 5A

shows the original video image. Figure 5B shows the pixel-wise
normalized (0.5 s sliding window) but otherwise unprocessed
non-tracked video image. Due to the motion, action potential
waves are not visible and the pixel-wise normalized optical maps
are dominated by motion artifacts (motion artifacts are also
stronger due to the longer sliding window than in Figure 4).
Figures 5C,D show the optical traces measured in the two
locations in Figure 5A before (black) and after (blue and
green) numerical motion tracking and stabilization. Without
numerical motion compensation, the fluctuations of the signal
are much larger (approximately 3–5x) andmore erratic than with
motion compensation. By contrast, with motion compensation,
the signals are more regular with more clearly defined action
potential upstrokes and a more uniform amplitude across action
potentials. Figure 11A and Supplementary Figure S5A show
other examples of optical traces measured during ventricular
fibrillation on the contracting heart surface (of a pig heart
recorded with the Photometrics camera). Residual baseline drifts
in the tracked motion-corrected signals are caused by residual
illumination-related motion artifacts and by the relatively long
sliding window during the (temporal) pixel-wise normalization.
Figure 5E shows motion-corrected optical maps, which we
retrieved with the 5 different GPU motion tracking algorithms:
Farnebäck, Lucas-Kanade, Brox, NVIDIA, and TV-L1 (from left
to right and sorted by robustness/accuracy). We obtained good
results with the Farnebäck and the Lucas-Kanade algorithm, also
refer to Supplementary Video 2.

Figure 6 and Supplementary Videos 5, 8 show the
effectiveness of the numerical motion tracking and motion-
stabilization procedure using the Farnebäck motion tracking
algorithm with cell culture data. The human iPSC-derived
cardiomyocyte culture deforms very strongly. It was stained with
the fluorescent dye FluoVolt (resulting in a positive fractional
change in fluorescence) and was imaged at 40 fps with 800×800
pixel resolution using the IDS camera. Figure 6A shows the
original video image. Figure 6B shows the pixel-wise normalized
(6 s sliding window) but otherwise unprocessed non-tracked
video image. Due to the motion, the pixel-wise normalized
optical maps are superimposed by motion artifacts and the
action potential wave is barely visible. Figure 6C shows the
tracked and motion-stabilized pixel-wise normalized (6 s sliding
window) optical maps without motion artifacts. The action
potential is clearly visible as it propagates from the top right to
the bottom left corner. Supplementary Video 8 demonstrates
how the different motion tracking algorithms perform on the
data. Figure 6D shows the optical traces measured in the two
locations in Figure 6A before (black) and after (blue and green)
numerical motion tracking and stabilization.

Figure 7, Supplementary Figure S4, and
Supplementary Videos 7, 9 show other examples of sinus
rhythm in a contracting mouse and rabbit heart, respectively. As
in Figures 4–6, the motion was tracked and the effectiveness of
the tracking can be evaluated by comparing original and motion-
stabilized videos and the respective optical maps. It is important
to note that, while numerical motion tracking can effectively
inhibit motion, it cannot entirely eliminate motion artifacts with
strong motion. The baseline in between two action potentials in
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FIGURE 3 | Comparison (to scale) of video data obtained with different cameras in calcium- and voltage-sensitive optical mapping experiments. All hearts were

stained with voltage-sensitive fluorescent dye Di-4-ANEPPS. (A) Human iPSC-derived cardiomyocyte monolayer expressing the genetically encoded calcium indicator

GCaMP-X imaged at 40 fps with 800×800 pixel resolution (0.74mm field of view) using an IDS µEye UI-3060CP-M-GL camera (refer to Supplementary Video 6).

(B) Rabbit heart imaged at 447 fps with 320×500 pixel resolution using an IDS µEye UI-3060CP-M-GL camera (refer to Supplementary Video 3). (C) Rabbit heart

imaged at 500 fps with 320×440 pixel resolution using a Basler acA720-520um camera (refer to Supplementary Videos 1, 2). (D) Rabbit heart imaged at 500 fps

with 256×256 pixel resolution using a Brainvision Scimedia MiCAM N256 camera (refer to Supplementary Video 9). (E) Mouse heart imaged at 500 fps with

200×200 pixel resolution (cropped from original video imaged with 720×320 pixels) using a Basler acA720–520 um camera (refer to Supplementary Video 4). (F)

Porcine heart imaged at 500 fps with 128×128 pixel resolution using a Teledyne Photometrics Evolve 128 camera. The video data in (A,F) can be processed in

real-time, faster than the acquisition speeds at 40 and 500 fps, respectively, using GPU-accelerated processing, refer to Figures 8, 9.

the corrected (blue and green) optical traces in Figure 7E and
Supplementary Figure S4E exhibit residual fluctuations. These
(often sinusoidally shaped) fluctuations are residual motion
artifacts, which are caused by relative motion between the heart
and the light sources in the experimental setup. The relative
motion persists even after numerical motion tracking and can
principally not be removed with numerical motion tracking
and stabilization alone, also refer to Kappadan et al. (20) and
Section 4.1. To overcome these residual motion artifacts, it is
either necessary to combine numerical motion tracking with
ratiometric imaging, refer to Bachtel et al. (44), Zhang et al. (18),
and Kappadan et al. (20), or to estimate and correct for the three-
dimensional light-field within which the heart moves, refer to
Christoph et al. (19).

Comparing the 5 different motion tracking algorithms, we
found that the Lucas-Kanade algorithm is very sensitive to
fluorescence brightness changes, and the TV-L1 and Farnebäck
algorithms are fairly sensitive to these signals, refer to Figures 10,
12. Therefore, it is very likely that these 3 algorithms
unintentionally track action potential waves rather than motion
with larger fluorescent signal strengths. However, we confirmed
that numerical contrast-enhancement as introduced in Christoph
and Luther (16) can alleviate these issues. Contrast-enhancement
ensures that the algorithms can be used safely with optical
mapping videos in conditions with violated brightness constancy
caused by fluorescence. Furthermore, we found that both
the NVIDIA and Lucas-Kanade algorithms exhibit a severe

sensitivity to noise, which likely prohibits their use in most
fluorescence imaging applications, refer to Figure 12. Overall,
we found that it is possible to perform optical mapping
experiments with numerical motion tracking and motion artifact
compensation on various optical mapping data, and that GPU-
acceleration drastically shortens processing times, which allows
real-time or high-throughput processing, see next section.

3.1. Processing Speed
One of the major practical limitations which we faced in
previous optical mapping studies with contracting tissues was
the long processing times required for the numerical tracking
of the data when using conventional algorithms implemented
on the CPU. For example, we used a single-core CPU algorithm
implemented in Matlab (45) in Christoph et al. (19), Christoph
et al. (6), and Christoph and Luther (16) to track motion and
the algorithm required about 10 s per 128×128 pixel video frame
to compute a motion-compensated version of that frame. By
contrast, here, we show that GPU-based implementations in
OpenCV can achieve a 5,000-fold increase in processing speed
and can process more than 500 frames per second on the
same data. Figures 8, 9 show comparisons of the processing
speeds achieved with the TV-L1, Brox, Lucas-Kanade, NVIDIA,
and Farnebäck GPU algorithms and the Lucas-Kanade CPU
(Matlab) and TV-L1 and Farnebäck CPU (both OpenCV with
Python) algorithms when applied to different optical mapping
data. All processing speeds were obtained with the NVIDIA
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FIGURE 4 | Contracting rabbit heart imaged during sinus rhythm using voltage-sensitive optical mapping (staining with Di-4-ANEPPS), refer to

Supplementary Video 1. Motion artifacts were inhibited using GPU-accelerated numerical motion tracking and motion compensation. (A) Video image from original

recording (500 fps, 320×440 pixels, Basler acA720-520um camera). ROI (green and blue, 6×6 pixels) used to extract optical traces shown in (E). (B) Motion and

deformation of heart surface around ROIs shown in (A) during diastole and systole (region 100×100 pixels), the movement is about 25 pixels (13% of the total image

width). (C) Series of pixel-wise normalized (20ms sliding window) optical maps obtained after numerical motion tracking and motion compensation using the

GPU-accelerated Farnebäck algorithm. Action potential wave (black: depolarized tissue) propagating from bottom left to top right across the left ventricle. (D) Series of

pixel-wise normalized (20ms sliding window) optical maps without numerical motion tracking and motion compensation. Without motion compensation, the optical

maps are distorted by motion artifacts. The action potential wave is yet visible due to the short sliding-window normalization and a relatively strong signal

(|1F/F| ≈ 7%). (E) Optical traces averaged from ROIs in (A) before (black) and after (blue and green) numerical motion compensation using Farnebäck GPU-based

motion tracking algorithm. Motion artifacts become significantly reduced after numerical tracking and stabilization. However, residual illumination-related motion

artifacts cannot be overcome with numerical motion tracking alone, refer to Kappadan et al. (20).

RTX 3070 GPU (approx. $500). Figure 8 shows a comparison
of the processing speeds with low-resolution (128×128 pixels)
voltage-sensitive optical mapping data, as is also shown on
the very right in Figure 3. Figure 8A shows a comparison
of the processing speeds of the two slower TV-L1 and Brox
algorithms with the reference Matlab CPU implementation of
the Lucas-Kanade motion tracking algorithm. While we found
that the reference algorithm provides high tracking accuracies
(16), it only provided in its particular Matlab implementation
processing speeds of about 0.1 fps. By comparison, the OpenCV
implementation of the TV-L1 algorithm achieves 1.6 fps on the
CPU (running on 1 core) or 4.56 fps on the GPU, respectively,
and is, therefore, about 15 times faster on the CPU and about
50 times faster on the GPU than the reference algorithm on the
low resolution video data. The Brox motion tracking algorithm
achieves processing speeds of 51 fps on the GPU, which is
almost 500 times faster than the reference CPU algorithm. The
processing speeds of the Brox algorithm and all other faster
GPU algorithms cannot be displayed using the same scale on
the y-axis as in Figure 8A. They are therefore shown in a
separate Figure 8B. The processing times shown in Figures 8A,B

include the time required for the pre- (blue) and post-processing
(green) of the video data (smoothing, contrast-enhancement, and

warping). The processing times were calculated and are stated
in milliseconds per frame pair for 128×128 pixel video images
averaged over 10,000 video image pairs. The processing speeds of
the other faster GPU motion tracking algorithms in Figure 8B

are several orders of magnitudes faster than both the TV-L1
and the reference CPU algorithm. Even the Brox algorithm,
which is much faster than both the reference and the TV-L1
algorithms and can be barely seen in Figure 8A, is significantly
slower than the other algorithms shown in Figure 8B. The GPU-
based Lucas-Kanade, Farnebäck, and NVIDIA motion tracking
algorithms achieve processing speeds of 795, 852, and 1,000 fps,
respectively, when tracking only motion. Together with pre- and
post-processing, the effective processing speeds reduce to 489 fps,
510 fps, and 560 fps on 128×128 pixel video data, respectively.
Since the video data was recorded at 500 fps, the processing
can be performed in real-time with the NVIDIA and Farnebäck
algorithms. The fast GPU algorithms are about 5, 000 times faster
than the CPU reference algorithm used in Christoph et al. (6, 19),
Christoph and Luther (16), and Kappadan et al. (20). While the
pre- and post-processing significantly contributes to the overall
processing times with the fast algorithms shown in Figure 8B, it
does not significantly affect the overall processing speeds with
the slower tracking algorithms in Figures 8A,B. In Figure 8A
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FIGURE 5 | Contracting rabbit heart imaged during ventricular fibrillation (VF) using voltage-sensitive optical mapping (staining with Di-4-ANEPPS). Motion artifacts

were inhibited using GPU-accelerated numerical motion tracking and motion compensation. (A) Video image from original recording (500 fps, 320×440 pixels, Basler

acA720–520 um camera). ROI (green and blue, 6×6 pixels) used to extract optical traces shown in (C). (B) Pixel-wise normalized (0.5 s sliding window) optical map

without numerical motion tracking and motion compensation. Without motion compensation, the optical maps are dominated by motion artifacts. Action potential

waves are not visible. (C) Optical traces measured from two sites shown in (A) before (black) and after (blue and green) numerical motion compensation using

Farnebäck GPU-based motion tracking algorithm. Motion artifacts become significantly reduced. Traces averaged over the two rectangular regions shown in (A). (D)

Close-up of motion-corrected optical traces in (C) showing a series of action potentials (downstrokes correspond to action potential upstrokes due to staining). During

VF, residual illumination-related motion artifacts are small due to the minimal motion of the heart, refer to Kappadan et al. (20). (E) Motion-compensated, pixel-wise

normalized optical maps derived with 5 different motion tracking algorithms (Farnebäck, Lucas-Kanade, Brox, NVIDIA, TV-L1; all GPU, sorted from left to right by

robustness/accuracy) show vortex-like action potential waves (dark) on the fibrillating ventricular surface, refer to Supplementary Video 2.

the processing time is dominated by the motion tracking, and
the pre- and post-processing is negligible in comparison to the
time it takes to compute the optical flow fields. Accordingly, with
the Brox algorithm, the overall effective processing speed only
slightly decreases from 53 fps to 51 fps when taking into account
pre- and post-processing. The pre- and post-processing steps are
described in more detail in Section 2.4. In Figures 8, 9, we used a
kernel diameter size of kx = ky = 3 pixels and kt = 3 time steps
for the spatio-temporal smoothing and a kernel diameter size of
kx = ky = 7 for the contrast-enhancement.

Correspondingly, Figure 9 shows a comparison of the
processing speeds with 128×128, 256×256, 512×512, and
1, 024×1, 024 pixel video images, respectively. The data shows
that GPU-based processing [particularly the 3 fastest algorithms
NVIDIA (GPU), Farnebäck (GPU), and Lucas-Kanade (GPU)]
provides substantial increases in processing speed, particularly
with larger video images. The required processing time scales
linearly with the video image size. Figure 9A shows the
effective processing speeds including pre- and post-processing
and Figure 9B without pre- and post-processing. Figures 8,
9 show that with small video images the Farnebäck CPU
algorithm (running on 1 core) is competitive with the GPU-based

algorithms (approximately 3x slower). When computing the
processing times for the GPU algorithms, the spatio-temporal
smoothing was executed on the CPU, while the warping was
executed on the GPU. When computing the processing times for
the CPU algorithms, all pre- and post-processing was executed
on the CPU. Pre- and post-processing on the CPU vs. on the
GPU (partially CPU) is about 30% slower and does not lead to a
substantial overall reduction in processing speed (for videos with
128×128 pixels), also refer to caption in Figure 8. We did not
observe a substantial acceleration with the more expensive and
more performant RTX 3080 or 3090 GPU models over the RTX
3070 GPU.

In our laboratory, we routinely use numerical motion
tracking and motion-stabilization during optical mapping
experiments. The high processing speeds allow us to immediately
assess the quality of the videos in between recordings. We
previously used the Farnebäck GPU algorithm to track motion
and compensate for motion artifacts in calcium imaging
data of isolated stomach strips (36). The high-resolution
calcium imaging data was acquired at a spatial resolution of
1, 280×1, 080 pixels and acquisition speeds of 50 fps using
a Zyla camera (Andor, Oxford Instruments, UK). With the
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FIGURE 6 | Numerical motion tracking and motion artifact compensation performed with Farnebäck GPU-based motion tracking algorithm with optical mapping video

of strongly contracting and deforming human iPSC-derived cardiomyocyte culture stained with voltage sensitive dye (FluoVolt), refer to Supplementary Videos 5, 8.

(A) Cropped video image (400×400 pixels, scalebar 1mm) from original recording (40fps, 800×800 pixels, IDS µEye UI-3060CP-M-GL camera). ROI (green and blue,

10×10 pixels) used to extract optical traces shown in (D). (B) Pixel-wise normalized (with 4 s sliding window) video without motion compensation with motion

artifacts. (C) Pixel-wise normalized video after motion compensation without motion artifacts. The action potential wave is visible as a bright wave. (D) Optical traces

averaged from ROIs in (A) obtained from videos before (black) and after (red and blue) motion tracking and artifact compensation (y-axis: intensity counts).

GPU-based Farnebäck algorithm it became possible to screen
and analyze a large number of 15 s long videos containing
750 high-resolution video images, and to effectively reduce
motion artifacts and measure calcium transients at high
spatial resolutions across large fields of view. Without the
high processing speeds, the data analysis would not have
been feasible.

3.2. Motion Tracking Accuracy
The tracking accuracy of numerical motion tracking algorithms
depends on various factors, such as scene and video image
properties, as well as the type, magnitude, and complexity of the
motion, among other factors. Here, we determined the effect of
fluorescence signal strength, measured as the fractional change
in fluorescence intensity 1F/F, and image noise σ onto the
tracking accuracy using the synthetic video data described in
Section 2.1, refer to Figures 10, 12. We found that all tested GPU
algorithms are more or less sensitive to and adversely affected by
fluorescence and noise. The tracking accuracy deteriorates with
increasing fluorescent signal strengths and noise levels, refer to
Figures 10A,C, 12A,B and Supplementary Material. However,
the first issue related to fluorescent signal strength can be resolved
using numerical contrast-enhancement, refer to Figures 10A,
11, 12C. Overall, the Farnebäck algorithm provides the best
performance in terms of accuracy and robustness.

When tracking motion in videos of fluorescing and
contracting tissue, it is crucial to carefully disentangle motion
from physiological phenomena encoded within the fluorescence
during the processing. The results are otherwise likely to include
both motion and tracking artifacts, as described previously in
Christoph et al. (16) and already introduced in Section 1.1. In
the absence of any fluorescent signals or vanishing fractional
change in fluorescence (1F/F = 0%), refer to top row in
Figure 10A, tissue motion simply corresponds to movements
of grayvalue patterns (or optical flow) in the image plane. Most
tracking algorithms require or assume brightness constancy
when computing displacements of tissue regions in between
two grayvalue images. However, because fluorescent indicators
produce brightness changes when reporting physiological
phenomena, brightness constancy is not fulfilled during
optical mapping, see second and third row in Figure 10A.
For example, during the depolarization phase of the action
potential the fluorescent dye Di-4-ANEPPS produces a decrease
in fluorescence measured behind a near-infrared long-pass
filter (because the emission spectrum shifts toward shorter
wavelengths during the depolarization). Therefore, action
potential waves correspond to grayvalue patterns moving across
another moving and deforming grayvalue pattern representing
the movements of the tissue, refer to the two left video images
in the third row in Figure 10A with 1F/F = −10%. In other
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FIGURE 7 | Numerical motion tracking and motion artifact compensation performed with Farnebäck GPU-based motion tracking algorithm with optical mapping

video of mouse heart during sinus rhythm with voltage sensitive-staining (Di-4-ANEPPS), refer to Supplementary Videos 4, 7. (A) Cropped video image (200×200

pixels) from the original recording (500fps, 720×320 pixels, Basler acA720-520um camera). ROI (green and blue, 6×6 pixels) used to extract optical traces shown in

(E). (B) Motion and deformation of heart surface around ROIs shown in (A) over time (40×40 pixels). (C) Pixel-wise normalized video without motion compensation

with motion artifacts. (D) Pixel-wise normalized video after motion tracking and compensation without motion artifacts. The action potential wave is visible as a dark

wave. (E) Optical traces averaged from ROIs in (A) obtained from videos before (black) and after (green and blue) motion tracking and artifact compensation.

words, action potential, or calcium waves produce optical flow
just as much as movements of the tissue. As a result, tracking
algorithms can inadvertently track either or a mix of the two
phenomena. This effect was previously described in Christoph
and Luther (16) and can be observed when examining the
tracking outcome with the TV-L1, Farnebäck, and Lucas-Kanade
algorithms in the second and third rows in Figure 10A. Without
any fluorescent signal (|1F/F| = 0%), all algorithms track
the ground truth flow fields sufficiently accurate, refer to
the first row in Figure 10A and the left region in the graph
shown in Figure 12B, which shows the average EPE of each
algorithm plotted over fluorescence strength from 0 to 20%
absolute fractional change in fluorescence |1F/F|. The EPE was
determined over a dataset containing 20, 000 image pairs. All
algorithms exhibit small, sub-pixel tracking errors close to zero
at 0% fractional change in fluorescence. However, the EPEs grow
quickly with increasing fluorescent strengths: the Lucas-Kanade,
TV-L1, and Farnebäck algorithms exceed EPEs larger than 1 pixel
with fluorescence strengths above 5, 10, and 20%, respectively.
Correspondingly, the 2nd and 3rd rows in Figure 10A show
how the tracked flow fields become less accurate or deteriorate
entirely with 3 and 10% fluorescent signal strengths. With the
TV-L1 algorithm, the resulting displacement vectors correlate
with the shape of the action potential conduction pathway,
suggesting that the algorithm inadvertently tracks the action
potential. The Brox algorithm is an exception, as it does not
appear to be affected by strong fluorescent signals. However, the

Brox algorithm produces (too small) displacements, which do
not seem to describe the motion of the tissue accurately.

The accidental tracking of action potential or calcium waves
can be minimized by generating contrast-enhanced versions of
the original videos, as described in Section 2 and previously
in Christoph and Luther (16) and shown in Figures 10B,
11B. In short, the contrast-enhanced videos are calculated by
computing the maximal and minimal pixel intensities within a
small circular region around each pixel and normalizing that
pixel by these two values. As a result, local grayvalue patterns
representing the tissue become amplified yielding videos with
maximal spatial contrast (contrast-enhancement acts as a spatial
high-pass filter while it suppresses temporal fluctuations). At the
same time, time-varying signals caused by fluorescent reporters
are inhibited in contrast-enhanced videos. The video images
in Figure 10B were calculated using kernels with a diameter
of kx = ky = 11 pixels, also refer to Figure 13 for a
comparison of contrast-enhanced videos with different kernel
sizes. As Figure 10B and the plots in Figure 12C show, all GPU
algorithms produce more reliable tracking results with contrast-
enhancement, and the overall EPE becomes substantially reduced
with strong fluorescent signals. Mismatches between tracked and
ground-truth displacement vectors stay below sub-pixel levels
for all algorithms and all fluorescence strengths with contrast-
enhancement. In particular, the Farnebäck and Lucas-Kanade
algorithms achieve tracking accuracies comparable to when
tracking the original videos without fluorescent signals (|1F/F =
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FIGURE 8 | Comparison of processing speeds for tracking motion in optical mapping recordings using different CPU- and GPU-based optical flow estimation

algorithms. We compared processing times measured in milliseconds per frame pair for 128×128 pixel video images (averaged over 10,000 video image pairs)

including pre- and post-processing to obtain motion-stabilized videos. Processing was performed on a workstation with AMD Ryzen Threadripper 3970X 3.7GHz

CPU and an NVIDIA Geforce RTX 3070 GPU. (A) Comparison of a single-core CPU-based Lucas-Kanade reference algorithm (used in Christoph et al. (6) and

Christoph and Luther (16)) implemented in Matlab (0.1 fps) with TV-L1 (1.6 fps on CPU, 4.6 fps on GPU, both implemented in Python with OpenCV). (B) The

remaining algorithms provide even higher processing speeds with up to a 5,000-fold increase in processing speed: Brox 51 fps (53 fps), Lucas-Kanade 489 fps

(795 fps), Farnebäck 148 fps (176 fps) on CPU and 510 fps (852 fps) on GPU, NVIDIA SDK 560 fps (1,000 fps), stated as effective frames per second (fps) with (and

without) pre- and post-processing. Preprocessing: contrast-enhancement and spatiotemporal data smoothing as described in Christoph and Luther (16).

Post-processing: spatiotemporal smoothing of the computed flow fields and using the flow fields to obtain motion-compensated images (warping). The pre- (0.14 ms

per framepair) and post-prossing (0.65 ms per framepair when using GPU-based warping, 0.88 ms when using CPU-based warping) time is the same for all

algorithms and is performed on the CPU with parallelization.

FIGURE 9 | Comparison of processing speeds achieved with 5 different motion tracking algorithms (5 GPU + 1 CPU version): Farnebäck (GPU), NVIDIA SDK (GPU),

Lucas-Kanade (GPU), Farnebäck (CPU), Brox (GPU), and TV-L1 (GPU). Processing speeds for video images with 128×128, 256×256, 512×512, and 1024×1024

pixels, respectively. Results were obtained with an NVIDIA Gefore RTX 3070 GPU (approx. $500). (A) Processing speeds (frames per second) with pre- and

post-processing (contrast-enhancement, spatio-temporal smoothing, motion tracking, spatio-temporal smoothing of displacement vector fields, and warping of

videos) to obtain motion-stabilized videos. Motion-stabilized videos can be produced in real-timeat 500fps with the Farnebäck, NVIDIA, and Lucas-Kanade GPU

algorithms with small videos with 128×128 pixels. (B) Processing speeds (frames per second) without pre- and post-processing tracking only motion. The Farnebäck

CPU algorithm (running on 1 core) is competitive with the GPU-based algorithms with small video images (approximately 3x slower).
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FIGURE 10 | Accuracy of GPU-based motion tracking algorithms applied to synthetic voltage-sensitive optical mapping data. The synthetic data consists of video

image pairs showing the tissue in two different deformed states (I0 and I1), and dense 2D displacements (hsv-color-code depicts orientation and magnitude, refer to

Figure 11) describing the deformation between the two images. In addition, the synthetic video images include action potential wave patterns, which cause a local

decrease in fluorescence (−1F/F ). The ground truth displacements and tracking outcomes are shown next to each other. (A) Tracking accuracy with original video

with 0, –3, and –10% fluorescence signal strength, respectively. The increasing fluorescent signal causes tracking artifacts, particularly with the TV-L1 and

Lucas-Kanade algorithms. (B) Tracking accuracy with contrast-enhanced video images with –3% fluorescence signal strength. The contrast-enhancement reduces

tracking artifacts with all algorithms. However, with the TV-L1 and Brox algorithms, the contrast-enhancement generates noisy tracking results (the

contrast-enhancement also amplifies noise). (C) Tracking accuracy with original video images with 3% noise and –3% fluorescence signal strength. All tracking

algorithms are very sensitive to noise: the tracking accuracy deteriorates quickly with noise, refer to Figure 12A.

0%|), c.f. row 1 in Figure 12A. Overall, it appears that contrast-
enhancement is a viable approach that works with many
different numerical motion tracking algorithms. However, we
found that contrast-enhancement can cause noisier tracking
outcomes, particularly with the TV-L1 and Brox algorithms, refer
to Figures 10B, 11B,C. We accordingly smoothed the tracked
displacement vector fields when applying the algorithms to
contrast-enhanced video data.

The sensitivity of the motion tracking algorithms to noise
is shown in Figures 10C, 12A. The Gaussian noise with zero
mean and standard deviation σ was added to each pixel of
each synthetic video image individually. The amount of noise

strength of 3% shown in Figure 10C corresponds to noise with
a standard deviation of σ = 0.03 intensity counts added or
subtracted on average to or from each pixel. Note that the
videos are normalized and contain only pixels with intensity
values I(x, y) ∈ [0, 1]. The plots in Figure 12A show how
the tracking accuracy of the Lucas-Kanade, TV-L1, Farnebäck,
NVIDIA, and Brox algorithms deteriorates with increasing noise
strengths. The EPE was determined over a dataset containing
20, 000 image pairs. The NVIDIA and Lucas-Kanade algorithms
are the most sensitive to noise: their mean EPE increases
steeply with noise levels σ > 0.02 − 0.04. The TV-L1, Brox,
and Farnebäck algorithms are more robust, but their accuracy
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FIGURE 11 | Optical traces obtained from contracting heart surface during ventricular fibrillation (VF) in voltage-sensitive optical mapping recordings before and after

numerical motion tracking with 5 different GPU-accelerated motion tracking algorithms (Lucas-Kanade, TV-L1, Farnebäck, NVIDIA, Brox). (A) Left: Raw optical trace

(black) obtained without numerical motion tracking exhibiting substantial motion artifacts. Right: Optical trace (green) after numerical motion tracking using Farnebäck

GPU algorithm and motion-stabilization. The optical trace exhibits a series of action potentials (downstrokes correspond to action potential upstrokes). (B)

Comparison of numerical motion-stabilization using different GPU algorithms. Left: without contrast-enhancement. Right: with contrast-enhancement. Most of the

algorithms are less accurate without contrast-enhancement. With contrast-enhancement, all algorithms behave very similarly and provide similar, sufficiently accurate

results. (C) Individual comparison of algorithms used with contrast-enhancement (color) and without (black).

also degrades significantly with noise. Overall, the Farnebäck
algorithm performed best with noise, particularly with noise
levels below σ < 0.06, and provides sub-pixel accuracies up to
noise levels of σ = 0.08.

4. DISCUSSION

The ability to image electrophysiological and mechanical
phenomena in contracting tissues simultaneously at high speeds

and spatial resolutions is a highly sought-after methodology
in physiological research. Optical techniques, such as optical
mapping, are in principle ideally suited for this task. However,
performing optical mapping with moving tissues is still
challenging. In this study, we addressed one of the key hurdles
in the application of numerical motion tracking to optical
mapping data: identifying motion tracking algorithms that i) are
applicable to optical mapping data and ii) provide sufficiently
high processing speeds. We demonstrated that freely-available,
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FIGURE 12 | Comparison of motion tracking error of 5 different GPU-accelerated motion tracking algorithms (Lucas-Kanade, TV-L1, Farnebäck, NVIDIA, and Brox).

The error was determined using synthetically generated optical mapping recordings with ground truth displacement data obtained in simulations. The error is

measured as the average end-to-end point error (EPE) between the estimated (tracked) optical flow vector field and the ground-truth optical flow vector field. (A)

Tracking error (EPE) increases with noise standard deviation σ . While all algorithms are sensitive to noise, the NVIDIA algorithm is very sensitive to noise and quickly

produces larger (than sub-pixel) errors, even at relatively low noise levels. The Farnebäck algorithm is the most robust algorithm against noise. (B) Increase in tracking

error (EPE error) with increasing fluorescence strength 1F/F [%]. (C) Compensation for steep increase in tracking (EPE) error with increasing fluorescence strength

1F/F [%] when tracking contrast-enhanced versions of the original videos shown in (B).

open-source motion tracking algorithms implemented on a GPU
can be used to track motion in various types of optical mapping
data while they also provide substantial increases in processing
speeds. High processing speeds are necessary as they open the
path for the routine, day-to-day application of numerical motion
tracking in optical mapping experiments, open the path for real-
time applications, and will allow the high-throughput offline
analysis of large video data sets as demonstrated in Vogt et
al. (36). In previous studies (6, 16, 19), computations were
so time consuming that they prohibited a more systematic
and streamlined analysis of optical mapping videos. Now we
routinely compensate motion artifacts fully automatically and
are able to analyze motion-compensated optical maps on the
fly during an optical mapping experiment in our laboratory.
The data in this study represent typical use cases, for which
we show that numerical motion artifact compensation can be
performed efficiently suggesting that the methodology could be
used routinely by other laboratories. Real-time processing could
be utilized to measure and monitor both electrophysiological

and mechanical quantities instantaneously, to eventually control
experimental parameters in response to the real-timemonitoring.
It could, furthermore, obviate time-consuming post-processing
and the storing of the video data for post-processing. In
summary, we demonstrated that with GPU-based numerical
motion artifact compensation it is now possible to perform
optical mapping with contracting cardiac tissue with any video
camera (with low-cost high-resolution cameras such as the
IDS or Basler cameras or more expensive medium- to high-
resolution cameras such as the Micam N256 or the Andor
Zyla cameras, respectively). The high processing rates can be
achieved with consumer GPU hardware that costs about $500
(e.g., NVIDIA Geforce RTX 3070 GPU), which could facilitate
the more widespread adoption of numerical motion tracking and

motion stabilization in basic cardiovascular research.
Overall, the Farnebäck GPU algorithm is a suitable candidate

for tracking motion in optical mapping videos. It provides high
processing speeds while being only mildly sensitive to noise
and fluorescence artifacts, refer to Figure 12. Among the tested
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FIGURE 13 | Contrast-enhancement with different kernel diameters k for three different optical mapping recordings. The kernel size is an important input parameter,

which needs to be adjusted to match the properties of the video image. (A) Contrast-enhancement with 320×440 video images shown in Figure 4: the ideal kernel

diameter for the contrast-enhancement is about 9 or 11 pixels. (B) Contrast-enhancement with 256×256 video image: the ideal kernel diameter is about 7 pixels. (C)

Contrast-enhancement with 128×128 video image: the ideal kernel diameter is about 3 or 5 pixels. A too small kernel creates noise, whereas a too large kernel

reduces the local contrast, enhances large scale gradients, and/or produces too large features.

algorithms, we found it to be the most robust algorithm able to
handle also large deformations during sinus rhythm. It should
be applicable and provide sufficient tracking accuracies in a
wide range of optical mapping applications. While the GPU
implementations of the Lucas-Kanade and NVIDIA motion
tracking algorithms provide similarly high processing rates, they
are extremely sensitive to noise, which may limit them to low-
noise applications. Furthermore, the Lucas-Kanade algorithm
is very sensitive to the fluorescent signal. The Brox algorithm,
by comparison, behaves very differently: it is much slower, is
robust against fluorescence artifacts, but produces noisy vector
fields when tracking contrast-enhanced videos and consistently
underestimates motion in the 128×128 pixel video images.
Surprisingly, the Lucas-Kanade algorithm is the least robust,
most sensitive algorithm of the 5 GPU algorithms. In previous
studies (6, 16, 19), we used a CPU variant of the Lucas-Kanade
algorithm (45) and achieved high tracking accuracies, which we
validated in the sameway as in this study with synthetic data. This
discrepancy may be related to differences in the implementations
of the algorithm ((45) vs. OpenCV). Furthermore, we used low-
light optics and cameras (Teledyne Photometrics Evolve camera)
and paid much attention to properly staining and illuminating
the tissue to achieve high signal-to-noise ratios. Additionally,
we smoothed the video data (using small kernels in the order

of 3–5 pixels in diameter) before tracking to suppress residual
noise. Therefore, with 5–10% fluorescent signal strength (1F/F)
and contrast-enhancement, we operated in a regime shown on
the left in Figure 12C, where the Lucas-Kanade algorithm still
provides high accuracies. Our study highlights the importance
of the pre-processing (spatio-temporal smoothing) of the video
data and confirms the effectiveness of contrast-enhancement to
increase the robustness of the tracking. The severe sensitivity of
some of the GPU motion tracking algorithms to noise is yet a
major limitation, which needs to be addressed in future research.

While there is an abundance of other numerical motion
tracking algorithms, we focused on some of the most popular
and freely available motion tracking algorithms to establish
an overview of the applicability of these ’classical’ algorithms
to optical mapping data. The 5 motion tracking algorithms
we tested are part of OpenCV, an open-source computer
vision library, which is freely available on all major operating
systems. Therefore, it should be possible to reproduce our
findings and use them as a reference and guidance when
developing our own motion tracking software. We tested all
algorithms with their default parameters and there may be other
parameter regimes that may yet improve the performance of
the algorithms. In future research, we aim to research other
motion tracking techniques and develop custommotion tracking
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algorithms, which are specifically designed to be used in optical
mapping studies.

4.1. Limitation: Numerical Motion
Compensation Alone Does Not Abolish
Motion Artifacts
In this study, we focused on assessing the performance of
different motion tracking algorithms and showed that motion
tracking can track and stabilize motion in optical mapping
videos accurately and can significantly reduce motion artifacts.
However, motion tracking alone cannot entirely remove motion
artifacts per se. With motion tracking, the optical measurement
can be performed in a co-moving frame of reference. This
means that the frame of reference is changed from the static
laboratory coordinate-based frame measuring the activity pixel-
by-pixel to the co-moving frame, in which the motion of
the heart is apparently non-existent. However, the relative
motion between the (moving) heart and the (static) light
sources illuminating the heart is not physically removed by
the tracking. Even though the heart’s motion is no longer
visible in the motion-compensated optical maps, the relative
motion persists after motion compensation. Therefore, as the
frame of reference changes from static to co-moving, the
heart appears to stop moving and instead there is apparent
movement in the light sources, refer to Supplementary Videos 1,
3, 4. The continuing movement of the heart relative to the
light sources causes motion artifact. These residual motion
artifacts can be seen in Figures 4E, 7E and, most intuitively,
in Supplementary Figure S4E: the green sinusoidally shaped
baseline reflects the back and forth motion of the heart between
brighter and darker illuminated areas. Illumination-related
motion artifacts can only be inhibited by combining numerical
motion tracking with either i) ratiometric imaging (18, 20, 44),
or ii) estimating the motion of the heart in a three-dimensional
inhomogeneous light-field and correcting the optical signals for
this change in illumination (19). Illumination-related motion
artifacts are most critical during sinus rhythm, refer to Figures 4,
7, and less critical during fibrillation, as the illumination varies
more strongly with larger amplitudes of motion, also refer to
Figure 12 in Kappadan et al. (20). There are other potential
sources for motion artifacts including absorption and reflection
changes due to the orientation and compression state of the
tissue. However, such effects have never been described in detail.

To date, we must conclude that optical mapping with
contracting cardiac tissues remains challenging. Not all
measurements which can be performed with pharmacologically
contraction-inhibited hearts can equally be performed as
easily with contracting hearts. For instance, while it is fair to
compute activation maps from sinus rhythm data as shown
in Figure 4C using only numerical motion compensation, or
compute dominant frequencies or phase maps from ventricular
fibrillation data as shown in Figure 5E (with the Farnebäck
algorithm) using only numerical motion compensation, it
may be necessary to combine numerical motion compensation
with ratiometry or numerical light-field correction in order
to measure action potential durations accurately from a

strongly contracting heart. The future of electromechanical
optical mapping is bright. However, further study is necessary
until it becomes a widely applicable and easy-to-use imaging
technique.

5. CONCLUSION

We demonstrated that it is possible to perform optical
mapping with contracting cardiac tissues in real-time and
with large video images using GPU-accelerated numerical
motion tracking and motion compensation algorithms. We
tested 5 different motion tracking algorithms on optical
mapping data of contracting rabbit, mouse, and pig hearts
and cardiac cell cultures imaged with 4 different high-
speed cameras as well as on synthetic optical mapping data.
We found that the different motion tracking algorithms
can behave very differently. Among the tested algorithms,
the Farnebäck GPU algorithm is one of the fastest and
best suited algorithms for optical mapping data providing
sufficiently high tracking accuracies and very high processing
speeds. We achieved real-time processing speeds with small
videos (128×128 pixels) acquired at 500 fps and with
large videos (800×800 pixels) acquired at 40 fps. The high
processing speeds provided by GPU-based algorithms could
make electromechanical optical mapping more attractive for
routine, day-to-day use and open the path for real-time or high-
throughput applications.
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