UC Irvine
UC Irvine Previously Published Works

Title
Nonconforming Virtual Element Method for 2 m 2m th Order Partial Differential Equations in
R n\mathbb {R}"™n

Permalink
https://escholarship.org/uc/item/31v449z1|
Journal

Mathematics of Computation, 89(324)

ISSN
0025-5718

Authors

Chen, Long
Huang, Xuehai

Publication Date
2019-12-26

DOI
10.1090/mcom/3498

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/31v449z1
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

arXiv:1811.03295v4 [math.NA] 16 Oct 2019

NONCONFORMING VIRTUAL ELEMENT METHOD FOR 2m-TH
ORDER PARTIAL DIFFERENTIAL EQUATIONS IN R"

LONG CHEN AND XUEHAI HUANG

ABSTRACT. A unified construction of the H™-nonconforming virtual elements
of any order k is developed on any shape of polytope in R™ with constraints
m < n and k > m. As a vital tool in the construction, a generalized Green’s
identity for H™ inner product is derived. The H™-nonconforming virtual
element methods are then used to approximate solutions of the m-harmonic
equation. After establishing a bound on the jump related to the weak conti-
nuity, the optimal error estimate of the canonical interpolation, and the norm
equivalence of the stabilization term, the optimal error estimates are derived
for the H™-nonconforming virtual element methods.

1. INTRODUCTION

We intend to construct H™-nonconforming virtual elements of order £ € N on
a very general polytope K C R™ in any dimension and any order with constraints
m < nand k > m. Since an mth order derivative of polynomial degree m —1 or less
would be zero, the constraint £ > m is required in constructing H™-nonconforming
or conforming virtual elements to ensure that the virtual element spaces possess
meaningful approximation in H™-seminorm. Due to a technical reason, we will
restrict to the case m < n in this paper and postpone the case m > n in future
works. The virtual element was described as a generalization of the finite element
on a general polytope in [12, 13], thus it is helpful to recall the definition of the
finite element first.

A finite element on K was defined as a triple (K, Vi, N ) in [23], where Vi is the
finite-dimensional space of shape functions, and Nk the set of degrees of freedom
(d.o.f.). The set Nk forms a basis of (Vi)' the dual space of the space of shape
functions. The shape functions of the finite element are usually polynomials, and
their basis functions being dual to the degrees of freedom Ny have to be explicitly
constructed for the implementation, which is painful for high order cases (either
k,m, or n is large).

We can also represent the virtual element as a triple (K, Nk, Vk). Here we
reorder Vi and Nk to emphasize that the set of the degrees of freedom Ny is
crucial in the construction of the virtual element, and the space of shape functions
Vi is virtual. Indeed after having the degrees of freedom Ny, we may attach
different spaces. The space of shape functions Vi is only required to include all
polynomials of the total degree up to k for the approximation property. Different
from the finite element, one advantage of the virtual element is that the basis
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2 LONG CHEN AND XUEHAI HUANG

functions of Vj, are not explicitly required in the implementation. When forming
the linear system of the virtual element method, the computation of all the to-
be-required quantities can be transferred to the computation using the degrees of
freedom.

Construction of H™-conforming or nonconforming elements is an active topic
in the field of the finite element methods in recent years. Some H"*-conforming
finite elements with polynomial shape functions were designed on the simplices
in [7, 34, 15, 4, 40] and on the hyperrectangles in [41, 29, 27]. Recently an H™-
conforming virtual element for polyharmonic problems with arbitrary m in two
dimensions was introduced and studied in [6]. For general m, nonconforming ele-
ments on the simplices are easier to construct than conforming ones. In [36, 35],
Wang and Xu constructed the minimal H™-nonconforming elements in any di-
mension with constraint m < n. Recently Wu and Xu extended these minimal
H™-nonconforming elements to m = n + 1 by enriching the space of shape func-
tions with bubble functions in [39], and to arbitrary m and n by using the interior
penalty technique in [38]. In two dimensions, Hu and Zhang designed the H™-
nonconforming elements on the triangle for any m in [30]. On the other hand, the
H?-conforming virtual element, the C%-type H2-nonconforming virtual element and
the fully H2-nonconforming virtual element on the polygon with any shape in two
dimensions were developed in [19], [42] and [5, 43], respectively. In [37], a noncon-
forming Crouzeix-Raviart type, i.e, H'-nonconforming finite element was advanced
on the polygon.

Although the H™-conforming virtual element has been devised for n = 2 in [6]
for arbitrary m, generalization to dimension n > 2 seems nontrivial. While the
H™-nonconforming virtual element can be constructed in a universal way for all
n > m and allows unified error analysis.

We shall construct the H™-nonconforming virtual element in any order on the
polytope with any shape in any dimension (with constraints ¥ > m and m < n).
The vital tool is the following generalized Green’s identity for the H™ space

(V"™u, V™) g =((—A)"u,v) g
< 2m—j—|a |oz\,U
(1) £ Y Y (o ),

J=1FeFi(K) <«€4;

laf<m—j

which is proved by the mathematical induction and integration by parts. Here
FI(K) is the set of all (n — j)-dimensional faces of the polytope K, A; the set
consisting of all n-dimensional multi-indexes o = (v, -+, ) With aj1 = -+ =

an =0, D?f;gilal(u) some (2m — j — |«|)-th order derivatives of v on F', and %‘Z(f’
the multi-indexed normal derivatives on F'. "

Imagining v in the Green’s identity (1.1) as a polynomial of degree k temporarily,
we acquire the degrees of freedom Ny (K) from the right hand side of the Green’s
identity (1.1). And the space Vj(K) of shape functions is defined inherently by
requiring the first terms in the inner product to be in polynomial spaces. Namely
the right hand side of (1.1) provides a natural duality of V4 (K) and Ni(K). As a
result we construct the fully H™-nonconforming virtual element (K, N (K), Vi (K))
completely based on the Green’s identity (1.1). If K is a simplex and k& = m, the
virtual element (K, N (K), Vi (K)) is reduced to the nonconforming finite element
in [36], hence we generalize the nonconforming finite element in [36] to high order
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k > m and arbitrary polytopes. In two dimensions, we also recover the fully H?2-
nonconforming virtual element in [5, 43].

After introducing the local H™ projection II¥ and a stabilization term using
d.o.f., we propose H™-nonconforming virtual element methods for solving the m-
harmonic equation. We assume the mesh 7; admits a virtual quasi-uniform trian-
gulation, and each element in 7}, is star-shaped. A bound on the jump [Viv,] is
derived using the weak continuity and the trace inequality, with which we show the
discrete Poincaré inequality for the global virtual element space. The optimal error
estimate of the canonical interpolation I, u is achieved after establishing a Galerkin
orthogonality of u — Iu. By employing the bubble function technique which was
frequently used in proving the efficiency of the a posteriori error estimators, the
inverse inequality for polynomials, the generalized Green’s identity and the trace
inequality, we acquire the norm equivalence of the standard stabilization using {2
inner products of degree of freedoms on ker(IT¥). The optimal error estimates are
derived for the H™-nonconforming virtual element methods by further estimate the
consistency error.

The shape functions of the virtual element spaces are not explicitly known; in
particular, the output of the method is a vector of degrees of freedom and not an
explicit function. In order to represent explicitly the solution, one employs some
suitable polynomial projector, which is typically piecewise defined and discontin-
uous over the polytopal decomposition. However, since the degrees of freedom in
the interior of each element for the virtual elements can be eliminated by the static
condensation, similarly as the hybridizable discontinuous Galerkin methods, the
virtual element methods possess fewer globally decoupled degrees of freedom than
the usual discontinuous Galerkin methods. Furthermore, the nonconforming virtual
element can be constructed in a universal way which allows unified error analysis
and is employed for theoretical purposes, independently of the way one wants to
represent the solution.

The rest of this paper is organized as follows. In Section 2, we present some
notations and the construction of the fully H'- and H?2-nonconforming virtual ele-
ments. The general fully H™-nonconforming virtual element is designed in Section
3. The corresponding H™-nonconforming virtual element method and its error es-
timate are shown in Section 4 and Section 5 respectively. A conclusion is given in
Section 6. In the Appendix, we prove the norm equivalence and give a remark on
the implementation.

2. PRELIMINARIES

2.1. Notation. Assume that @ C R™ (n > 2) is a bounded polytope. For any
nonnegative integer r and 1 < ¢ < n, denote the set of r-tensor spaces over R
by Te(r) = (RY)" = H;:1 Rf. Given a bounded domain K C R" and a non-
negative integer k, let H*(K;T,(r)) be the usual Sobolev space of functions over K
taking values in the tensor space Ty(r). The corresponding norm and semi-norm are
denoted respectively by || -||x.x and |- | rc. It is customary to rewrite H*(K;T,(0))
as H¥(K). For any F' C 9K, denote by vi ¢ the unit outward normal to OK.
Without causing any confusion, we will abbreviate vx r as v for simplicity. Define
HE(K) as the closure of C§°(K) with respect to the norm | - ||k, ie. (cf. [L,
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Theorem 5.37]),

Ov 91y

H(I)C(K):{UEH]C(K):U@V”.QVH

=0 ondK } ,
and define H (K; Ty(r)) in a similar way. Let (-,-)x be the standard inner product
on L?(K;T,(r)). If K is Q, we abbreviate || - ||k.x, | - [k.x and (-, )k by || Ik, | - |«
and (-,-), respectively. Notation Py (K) stands for the set of all polynomials over
K with the total degree no more than k. And denote by Py (K; T¢(r)) the tensorial
version space of P (K). Let Q¥ be the L?-orthogonal projection onto Py (K; Ty (r)).
For an n-dimensional multi-index o = (a, -+ , ) with a; € ZT U {0}, define
la| == 3" a;. For 0 < ¢ < n,let Ay be the set consisting of all multi-indexes «
with Z:‘L:é-&-l a; = 0, i.e., non-zero index only exists for 1 < ¢ < [. For any non-
negative integer k, define the scaled monomial My (K) on an ¢-dimensional domain

K

— (03

M, (K) = {("” wK) € Aglal < k}

hx
where hg is the diameter of K and xf is the centroid of K. And M (K) :=
whenever k£ < 0.

Let {7} be a regular family of partitions of 2 into nonoverlapping simple poly-

topal elements with h := maxge7, hix. Let F] be the set of all (n —r)-dimensional
faces of the partition 73 for r = 1,2,--- ,n, and its boundary part

FrP={FeF, : Fcoy,

and interior part f;*i = .7-',2\.7-";;’8. Moreover, we set for each K € Tj,
F(K):={FeF :FCOK}.

The supscript r in Fj represents the co-dimension of an (n — r)-dimensional face
F as we shall show later the degree of freedom will be associated to the r-normal
vectors of F. Similarly, for F' € 7} and j =0,1,--- ,n—r withr =1,2,--- ,n, we
define

FI(F):={ec F, " e CF}.

Here j is the co-dimension relative to the face F. Apparently F°(F) = F.
For any I' € F}, let vp1,--- ,vF, be its mutually perpendicular unit normal
vectors, and define the surface gradient on F' as

0
(2.1) Vpv = vaziv.wu,
namely the projection of Vo to the face F', which is independent of the choice of the

normal vectors. When v is a tensor, the surface gradient Vgv is defined element-
wisely in convention, which is a one-order higher tensor. And denote by divg the

corresponding surface divergence. For any F' € 7] and a € A, forr =1,--- ,m,
set

glely olely

vg T Ovgy - ovg

For any (n — 2)-dimensional face e € F7, denote

0 le:={F € Fj :eCOF}.
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Similarly for any (n — 1)-dimensional face F' € F}l, let
O 'F={KeT,:FeF(K)}
For non-negative integers m and k, let
H™(Ty) := {v € L*(Q) : v|x € H™(K) for each K € Tp,},
Pi(Th) := {v € L*(Q) : v|x € Pr(K) for each K € Tp,}.
For a function v € H™(T},), equip the usual broken H™-type norm and semi-norm

1/2 1/2
el = (3 Iol2k) s Tolmn = (D l2k)

KeT, KeTn

We introduce jumps on (n—1)-dimensional faces. Consider two adjacent elements
K™ and K~ sharing an interior (n — 1)-dimensional face F. Denote by v and v~
the unit outward normals to the common face F of the elements KT and K—,
respectively. For a scalar-valued or tensor-valued function v, write v := v|g+ and
v~ :=v|g-. Then define the jump on F as follows:

[v] =vTvpy vt v vp v,
On a face F lying on the boundary 0, the above term is defined by [v] := vvp 1 -v.

Throughout this paper, we also use “< ---” to mean that “< C'---”, where C
is a generic positive constant independent of mesh size h, but may depend on the
chunkiness parameter of the polytope, the degree of polynomials k, the order of
differentiation m and the dimension of space n, which may take different values at
different appearances. And A <~ B means A < B and B < A. Hereafter, we always
assume k > m.

We summarize important notation in the following tables.

TABLE 1. Notation of the mesh, elements, and faces.

m | order of differentiation H™ n dimension of space R” | m <n,k>m
k degree of polynomial Py r co-dimension of a face 0<r<n
Th a mesh of Q) K a polytope element KeT,
T (n — r)-dimensional face F a typical face FeFy
0 le all faces surrounding e O~ 'F | elements containing F | e € .7-',%, F e ]—',1

TABLE 2. Notation for differentiation

a=(a,as,...,q,) an n-dimensional multi-index
A, set of multi-index a=(ag,...,a.,0,...,0) for a € A,
VE1, " ,VF,r r linearly independent unit normal vectors for F' € Fj
T
v
Vv :=Vou— Z ——VF, surface gradient on F
= Ovri
D7, (v) a j-th order derivative of v on F
glely olely
— = a7 o a multi-indexed normal derivative on F

ovg Qvgh - vy,
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2.2. H'-nonconforming virtual element. To drive the H™-nonconforming vir-
tual element in a unified framework, we first revisit the simplest case for the purpose
of discovering the underlying mechanism. Taking any K € Ty, let u € H?(K) and
v € HY(K). Applying the integration by parts, it holds

ou

(’91/K,F’

(2.2) (Vu, Vo) = —(Aw,0)g + Y |
FeFl(K)

V)F

Imaging u € Pr(K), we are inspired by the Green’s identity (2.2) to advance the
following local degrees of freedom (dofs) Ny (K) of the H! nonconforming virtual
element:

1

(2.3) m(v,q)p ¥ ¢ € My_1(F) on each F € F'(K),
(2.4) %(%@K Vg € My (K).

The local space of the H'-nonconforming virtual element is

ou

Vi(K) == {u € H'(K) : Au € Pp_»(K), Ok, F

lFr€PrL_1(F) VFe¢ fl(K)}

for k > 1. This is the H!'-nonconforming virtual element constructed in [8]; see
also [31].

2.3. H?-nonconforming virtual element. Then we consider the case m = 2.
For each F € F!(K) and any function v € H*(K), set

M,,(v) := V}’l(V%)VK,F,
M, (v) := (VQ’U)I/KJ? - M, (v)vE1,
Qu(v) =i p div(V2v) + dive M, (v).
In two dimensions, M, (v), M,:(v) and Q,(v) are called normal bending moment,

twisting moment and effective transverse shear force respectively when v is the
deflection of a thin plate in the context of elastic mechanics [25, 33].

Lemma 2.1. For any u € H*(K) and v € H*(K), it holds

ov

(V2u, VQ’U)K = (A2u, V)i + Z {(M,,l, (u), aViFl

FeF'(K)

)i = (Qu(w),v)r

(2.5) + ) Y (WEMu(u),v)e.

e€F?(K) FEF (K)Nd—'e
Proof. Using integration by parts, we get

(div(VZu), Vo) = —(A%u,v)k + Y (v pdiv(VZu),v)p,
FeF1(K)

and for each F € F1(K),

(Myi(u), Vo) p = —(dive My (w),v)r + Y (V] My(u), v)e.
e€EF1(F)
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Then we acquire from the last two identities and splitting the gradient into the
tangential and normal components

(V2u, V20) g = —(div(V3u), Vo) i + Z (V*u)vk p, Vo)

FeF'(K)
= —(le(v2U)7V'U)K + Z (Muu(u)7 8& F
FEFL(K) V1
+ Z (My(u), VEv)p
FeF(K)
= ATk Y (M. 5 ) s~ (@Qulu).v)r]
5 vy ’aVFJ v ’

FeF'(K)
+ Z Z (VI?)EMV,:(U),U)Q,
FeF'(K)ecF1(F)
which ends the proof. O
Inspired by the Green’s identity (2.5), for any element K € T, and integer k > 2,

the local degrees of freedom Ny (K) of the H? nonconforming virtual element are
given as follows:

1
(26) ﬁ(qh q)K v q € Mk74(K)7
1
(2.7) m(’u,q)p Y q € M_3(F) on each F € FY(K),
1 Ov 1
(2.8) D7D (BVR1 ,q)F YV g €My_o(F) on each F € F (K),
1
(2.9) —(v,q)e Y q € Mj_s(e) on each e € F*(K).

le]
The local space of the H? nonconforming virtual element is

Vi(K) = {u € H*(K) : A*u € P,_4(K), M, (u)|r € Px_o(F),Q,(u)|r € Pr_3(F),

> VL Mu(u)le € Pros(e) VF e F(K)ee F(K)}
FeFl'(K)nd—'e
Remark 2.2. In two dimensions, the degrees of freedom (2.9) will be reduced to the

function values on the vertices of K. Then the virtual element (K, Ny (K), Vi(K))
is the same as that in [5, 43].

Remark 2.3. If the element K € 7T, is a simplex and k = 2, the degrees of
freedom (2.6)-(2.7) disappear, and the degrees of freedom (2.8)-(2.9) are the same
as the Morley-Wang-Xu element’s degrees of freedom in [35]. Indeed the virtual
element (K, N;(K),Vi(K)) coincides with the Morley-Wang-Xu element in [35]
when k£ = 2 and K is a simplex.

3. H™-NONCONFORMING VIRTUAL ELEMENT WITH 1 <m <n

In this section, we will construct the H™-nonconforming virtual element. It has
been illustrated in Sections 2.2-2.3 that the Green’s identity plays a vital role in
deriving the H' and H? nonconforming virtual elements. To this end, we shall
derive a generalized Green’s identity for the H™ space first.
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3.1. Generalized Green’s identity. For any scalar or tensor-valued smooth func-
tion v, nonnegative integer j, F' € F} with 1 <r <n, and o € A,, we use D%’a (v)
to denote some j-th order derivative of v restrict on F, which may take different
expressions at different appearances.

Lemma 3.1. Let K € T, F € F"(K) with1 <r < n—1, and s be a positive integer
satisfying s < n —r. There exist differential operators Dg;jfla‘ forj=0,--- s,
e € FI(F) and o € A,y with |a| < s —j such that for any 7 € H*(F;T,(s)) and
(Vev)|p € L3(F;T,(s)), it holds

(3.1) V0= Y Y (D). %yl>

J=0eeFi(F) O‘GATJrJ
—J

Proof. We adopt the mathematical induction to prove the identity (3.1). When
s =1, we get from (2.1) and integration by parts

T

(r,Vu)p = Z( aajizypz)p + (1, Vru)p

=1
T

0
= Z(y} T, v Vrp— (divpT,0)p + Z (VT Ty 0)e.
; "t OvE, “
i=1 ’ c€F1(F)
Thus the identity (3.1) holds for s = 1.
Next assume the identity (3.1) is true for s = ¢ — 1 with 2 < ¢ < n — r, then let
us prove it is also true for s = ¢. We get from (2.1) and integration by parts

I

ov _
(r, V) p =Y (rvp:, V! . ——)p + (1, VeV lo)p
i=1 ¢
. 4 Ov . _ _
:Z(TVF7Z',VZ 1V)F—(d1VFT,VZ Y)p + Z (vpe, VI 10)...
i=1 i c€F\(F)

Applying the assumption with s = £ — 1 to the right hand side of the last equation
term by term, we have

(Tvpa, VO 1 Z Z Z (Dﬁ L=i=lel (ryp ), g;;(aiiz));

J=0 ec Fi(F) aEArH
la|<e—1-3j

£—1 o
@iven Ve =30 S 3 (e ), )

J=0eeFi(F) °€Ar+y
a|<e—

N a
eV =S TS (P . ).

. . e
Jj=0eécFi(e) *€EAr+1+4;
la|<e—1—j

Finally we conclude (3.1) for s = £ by combining the last fourth equations and the
fact that v ; is a linear combination of ve 1, -+ ,Verqj if € € FI(F). O

For each term in the right hand side of (3.1), the total number of differentiation
of the integrand is s — j. In view of Stokes theorem, e € F7(F) can be thought
as e € §/(F) so that the total number of differentiation is s which matches that
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of the left hand side. The bounds on s in Lemma 3.1 imply » + s < n, then
F5(F) C Frt5(K) is well-defined for F' € F"(K). Hence we can recursively apply
the Stokes theorem till there is no derivative of v on the lowest dimensional faces.

We give two examples of identity (3.1). Whenn >2,s=1,and 1 <r <n—1,
the explicit expression of (3.1) is that for any F € F"(K), 7 € H'(F;R") and
(Vo)|lr € L*(F;R™),

. - ov
(1, Vo)p = —(divp 7, v)p + Z(V},iﬂ ﬁ)p + Z (VETsV)e-

i=1 o e€EF(F)

If n =3 and s = 2, then » = 1. And the explicit expression of (3.1) is that for any
F e FYK), T € H*(F;T3(2)) and (V?v)|r € L?(F; T3(2)),

v
8VF’1

0%v ) .
+ (WE Tve, Erealae > Wl (dive 1) + dive(Tvme), v)e
F,1 eefl(F)

)F

(7, V*0)p = (divp dive 7,v)p — (V};,l(diVF 7) +divp(Tves),

T ov
+ E g v ’ZTI/Fe (v ’Z‘I/FJ)I/F’ITVF&, o _)e
Ve K2

e€FL(F) =1 ’

+ Z Z V! sTVRe)(0)v(0).

ecFL(F)&eF1(e)

Theorem 3.2. Let 1 < m < n. There exist differential operators Dy 2m—j—|a for
j=1--,m, F € FI(K) and a € A; with |a] < m — j such that zt holds for
any u € H™(K) satisfying (—A)™u € L?*(K) and Difz_j_‘alu € L*(F), and any
ve H"(K) ’

(V™u, V™) g =((—A)"u,v) g

(3.2) +Z >y (o ’?;:;)F'

Jj=1FeFi(K) ocA;
\além—j

Proof. By the density argument, we can assume u € H?™(K). We still use the
mathematical induction to prove the identity (3.2). The identity (3.2) for m = 1 and
m = 2 is just the identities (2.2) and (2.5) respectively. Assume the identity (3.2)
is true for m = ¢ — 1 with 3 < £ < n, then let us prove the identity (3.2) is also
true for m = /.

Applying the integration by parts,

(V'u, V)i = —(div V'u, V)i 3 (Vuvier, V7o)
FeFI(K)

= (V7 (=Au), Vi )k + Y (Vg e, Vo) p.
FeF'(K)
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Since the identity (3.2) holds for m = ¢ — 1, we have

(Ve_l(—Au),Ve_lv)
-1

; leely,
:((_A)Z vk + Z Z (D%f;l)ﬂ"‘ll(_Au)’ %V )F.

(6%
JSLFEFI(K) | acd; F

Taking 7 = (Viu)vg r, s=¢—1and r = 1 in (3.1), we get

-1 , ||
((Veu)VK,F,Ve_lv)FZZ Z Z (Dﬁ;lﬂ_w((V%)umF)v 861/;>e

j=0ecFi(F) «€A14j
la|<e—1=3j

S Y Y (), O

j=lecFi—1(F) ac4;
Ia\Slfj

Therefore we finish the proof by combining the last three equations. O

Examples for m = 1,2,n > m and m = n = 3 can be found in Appendix B.

3.2. Virtual element space. Inspired by identity (3.2), for any element K € Ty,
and integer k > m, the local degrees of freedom Ny (K) are given as follows:

1
(3.3) |K‘(v )k Y q € Myp_on(K),
1 olely
(34) |F|(n—j—\a|)/(n—j)( v a 7Q)F Vqe M (2m—j— \ocI)( )
on each F € F/(K), where j =1,--- ,m, a € A; and |a| <m — j.

We present an heuristic explanation of the scaling factor in (3.4). Let K = {& €
R*: & = ﬁ(wfa:;() V & € K}, and an affine mapping ¥ : & € R" — ¥(z) =
hx& +xg € R". Then hy ~ 1 and U(K) = K. For any function v(z) defined on
K, let #(&) := v(¥(&)), which is defined on K. By the scaling argument, we have

glely n—j—|al gl
(wﬂl)F—hK (5' a;qF

By the mesh conditions (A1)-(A2) in Section 4.2, it holds |F| = h}’(_j, thus there
exists a constant C' > 0 being independent of hx such that |F|(®—7=leD/(r=5) —
Ch?{yila‘. Then

1 ooy 1 gy 1 1 ol*lo .
[F[0=i=TaD /=) g P T ¢ v VE T ¢y Fmimlah /=) ave VE

where C; = C/|F|("=i=1eD/("=7) is independent of hr. Hence all the degrees of
freedom in (3.3)-(3.4) share the same order of magnitude.

Again due to the first terms in the inner products of the right hand side of (3.2),
and the degrees of freedom (3.3)-(3.4), it is inherent to define the local space of the
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H™-nonconforming virtual element as
Vi(K) :={u € H™"(K) :(—A)"u € Pr_am(K),
DI (W) g € P tom—j—japy (F) V¥ F € FI(K),

e
j=1,---,m,a€ A, and |a] <m —j},

where the differential operators D2m I=lel are introduced in Theorem 3.2.

In the following we shall prove that (K,N(K),Vi(K)) forms a finite element
triple in the sense of Ciarlet [23]. Unlike the traditional finite element, in virtual
element, only the set of the degrees of freedom Ny (K) needs to be explicitly known.
The ‘virtual’ space Vi (K) is only needed for the purpose of analysis and the specific
formulation for D7 2m=7=1el ig not needed in the definition of Vie(K).

The following property is the direct result of (3.1) and the definition of the
degrees of freedom (3.4).

Lemma 3.3. Let K € Ty, F € F'(K) with 1 < r < m, nonnegative integer
s < m —r satisfying k > 2m — (r +s). For any 7 € P_(9m—r—s)(F; Tp(s)) and
(VSv)|p € L3(F;T,(s)), the term

(7’7 VSU)F

is uniquely determined by the degrees of freedom (%‘ I;ﬂq) for all 0 < j < s,
e€ FI(F), a€ Aryy with |a| <s—j, and ¢ € My_(2m—r—j—|a))(€)-
Lemma 3.4. We have Pi(K) C Vi (K) and
(3.5) dim Vi (K) = dim Ny (K).
Proof. For any q € Py (K), it is obvious that
(—2)"q € Pr_om(K), Di'e ™ "lg|p € Piam—j—jap) (F).

Hence it holds P (K) C Vi (K). Since all the differential operators in the definition
of Vi (K) are linear, then V},(K) is a vector space.
Next we count the dimension of Vi (K). Consider the local polyharmonic equa-
tion with the Neumann boundary condition
(7A)mu = fl in K7
(3.6) D?,’ZL_]’_‘“I(U) = gf’o‘ on each F € F/(K)
with j=1,--- ,m, a € Aj and |a| < m — j,

where f1 € Pr_om(K), gj “ € Pi_2m—j—|a))(F). Applying the generalized Green’s
identity (3.2), the weak formulation of (3.6) is:

m

oy
B7) (VU V)r = (o) +F Y. Y D (Faa )F

Jj=l1FeFi(K) «€4;

ol <m—j

for any v € H™(K). If taking v = ¢ € P,,,—1(K) in (3.7), we have the compatibility
condition of the data

(38)  (fi.q K+Z > (o

j=1FeFi(K) oc4;
= \SM—J

)F =0 VqeP, i(K).
F
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On the other hand, given f; € Pp_o,,(K), gf’a € Pr_2m—j—|a)) (F) satisfying
the compatibility condition (3.8), the weak formulation of the Neumann problem
of the local polyharmonic equation (3.6) is: find u € H™(K)/P,,—1(K) such that

(V™u, V") g = (f1,v) +Z Z Z (Fa > lU)F

J=1 FEFIi(K) «CA;
lo \<m j

for all v € H™(K)/Py,—1(K). The well-posedness of this variational formulation is

guaranteed by the Lax-Milgram lemma [9, 23] and specifically the well-posedness of

polyharmonic equations with various boundary conditions can be found in [26, 2].
Therefore dim(Vy(K)/Pp,—1(K)) equals

dmProom(K)+ Y > Y dimPh_amejjap (F) — dim Py (K),

J=1FeFi(K) «€4;
lal<m—j

where the dimension of the constraint for the data is subtracted. When count-
ing dim Vi (K), we should add back the dimension of the kernel space, i.e., solu-
tion spaces of (V™u, V™) = 0 which implies dim V4 (K) = dimPy_o, (K) +

Z Z Z dimPk7(2m7j7|a|)(F) = dlme(K> ([l
Jj=1FeFi(K) ‘Q‘Tfiy;j

Lemma 3.5. The degrees of freedom (3.3)-(3.4) are unisolvent for the local virtual
element space Vi, (K).

Proof. Let v € Vi, (K) and suppose all the degrees of freedom (3.3)-(3.4) vanish.
We get from (3.7)

IV™0[[§ & = 0.
Thus v € P,,,—1(K). By Lemma 3.3 with s = m — r, we have for any F € F"(K)
with 1 <r<m

(3.9) (1, Vo0)p =0 V71 ePy(F;T,(s)).

Due to (3.9) with » = 1 and the fact v € P,,_1(K), it follows v € P,,_2(K).
Recursively applying (3.9) with » = 2,--- ,m gives v = 0. This ends the proof. O

Remark 3.6. If the element K € T is a simplex and k& = m, the degrees of
freedom (3.3) disappear, and the degrees of freedom (3.4) are same as those of the
nonconforming finite element in [36]. Since P,,(K) C V4 (K), the virtual element
(K, N(K), Vi (K)) coincides with the nonconforming finite element in [36] when K
is a simplex and k& = m, which is the minimal finite element for the 2m-th order par-
tial differential equations in R™. In other words, we generalize the nonconforming
finite element in [36] to high order k¥ > m and arbitrary polytopes.

3.3. Local projections. For each K € T, define a local H™ projection II¥X :
H™(K) — Pi(K) as follows: given v € H™(K), let IIXv € P(K) be the solution
of the problem

(3.10) (V'IE0, V) = (V™0,V™q)k Y q € Pp(K),
(3.11) YUV v = Y QI(VTTT), r=1,--,m.

FeFr(K) FeFr(K)
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The number of equations in (3.11) is

m

Zcr?—i-rln 1—r — Cﬁ+m 1= dim(Pm—l(K))'
r=1

Then the well-posedness of (3.10)-(3.11) can be shown by the similar argument as
in the proof of Lemma 3.5. To simplify the notation, we will write as IT¥.
Obviously we have

(3.12) 50| i < [Vlmx ¥V ve HY(K).

We show the projection IT* u is computable using the degrees of freedom (3.3)-(3.4).
Lemma 3.7. The operator IX : H™(K) — Py (K) is a projector, i.e.

(3.13) ¥y =v VovePL(K),

and the projector II can be computed using only the degrees of freedom (3.3)-(3.4).

Proof. We first show that 11X is a projector. Let p = I1¥v — v € Py (K). Taking
¢ =pin (3.10), we get V"p =0, i.e. p € P,,_1(K). By (3.11),

Z QE(V™Tp) =0, r=1,---,m.
FeFr(K)

Therefore p = 0, which means II¥ is a projector.
Next by applying the identity (3.2), the right hand side of (3.10)

Il'U 2m—j—a
TR TN SR Sl (G- PEe )

J=1FEFi(K) ac4;
Jox| <m j

Hence we conclude from the degrees of freedom (3.3)-(3.4) and Lemma 3.3 with
s =m — r that the right hand sides of (3.10)-(3.11) are computable. O

Remark 3.8. Difz_j_lal is needed in the computation of II*. But since ¢ €
Pr(K), V™q € Py_n(K) and few terms are left for moderate k.

Let Wi(K) := Vi(K) for k > 3m —1 or m < k < 2m — 1. To compute the L?
projection onto Py,_1(K) for 2m < k < 3m — 1, following [3], define

Vi(K) :={ve H"(K): (=A)™v € P,,_1(K), Di{’;—f—‘a'(vMF € Pr_2m—j—|al)(F),
VFeFI(K),j=1,---,m,a€A;and |a| <m —j},

Wi(K) :={veVi(K): (v-—TT"0,q)x =0 VqePi,, (K)},

where Pi_,, (K) C Py,—1(K) is the orthogonal complement space of Pg_op, (K) of
P,,—1(K) with respect to the inner product (-,-)g. It is apparent that Pr(K) C
Wi (K) and the local space Wy (K) shares the same degrees of freedom as Vi (K).
That is for the same N (K), we can associate different ‘virtual’ spaces and thus
have different interpretation.

Lemma 3.9. The degrees of freedom (3.3)-(3.4) are unisolvent for the local virtual
element space Wy (K).
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Proof. Tt is enough to only consider the case 2m < k < 3m—1. Take any v € Wy (K)
all of whose degrees of freedom (3.3)-(3.4) disappear. Then II¥v = 0. By the
definition of Wy, (K), we have

(0, Q)x =0 ¥ q€Pi,,(K),
which together with (3.3) implies
(U7Q)K =0 Vg€ mel(K)

Applying the argument in Lemma 3.5 to the space Vi, (K) with vanishing degrees
of freedom (3.4) and the last equation, we know that v = 0. O

In the original space Vi (K), the volume moment, cf. (3.3), is only defined up
to degree k — 2m which cannot compute the L?-projection to P,,_; when k is
small. For 2m < k < 3m — 1, a desirable property of the local virtual element
space Wi (K) is that the L? projection QK | is computable if all the degrees of
freedom (3.3)-(3.4) are known. Indeed it follows from the definition of Wy, (K)

(Qh 1 = QF g, (v —TT%0) = QF (I — Qi s, (v —TTFv) =0 Vv e Wi(K),
which provides a way to compute the L? projection
(3.14) QE v=0QK, v+QE ¥y —-QK, "y VuvecWi(K).

Denote by Iy : H™(K) — Wy (K) the canonical interpolation operator based on
the degrees of freedom in (3.3)-(3.4). Namely given a u € H™(K), Ixu € Wy (K)
so that x(u) = x(Ixw) for all x € Ni(K). As a direct corollary of Lemma 3.7, we
have the following identity.

Corollary 3.10. For any v € H™(K), it holds
(3.15) T (v) = X (Igw).

4. DISCRETE METHOD

We will present the virtual element method for the polyharmonic equation based
on the virtual element (K, N (K), Vi.(K)) or (K, N3 (K), Wi(K)) when L2-projection
is needed.

4.1. Discretization. Consider the polyharmonic equation with homogeneous Dirich-
let boundary condition

(=A)"u = f in £,
(4~1) _ au _ _ awn—lu _
u=94r=--=%5--=0 ondQ,

where f € L%(Q2) and Q@ C R™ with 1 < m < n. The weak formulation of the
polyharmonic equation (4.1) is to find u € HJ*(2) such that

(4.2) (V™u, V™) = (f,v) Vwve HQ).
Since
IV™0llo = [[vllm and  (f,v) S I fllolollm Vv e Hg" (),

it follows from the Lax-Milgram lemma that the variational formulation (4.2) is
well-posed.
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Define the global virtual element space as
Vi := {v, € L3(Q) op|x € Wi(K) for each K € Ty,; the degrees of freedom

olel
Yh ,q)F are continuous through F for all
ovg
q € Po_@m—jjap(F), o € Aj with |a] <m — j, F € F/(K),

a\alvh

g

Define the local bilinear form ap g (-, -) : Wi(K) x Wi(K) - R as
an.x (w,v) := (V™IT¥w, V' ITE ) ¢ + S (w — T w, v — T¥0),

where the stabilization term

and j=1,--- ,m; ( Jrp =0 if F C0Q}.

Nk
(4.3) Sk (w,v) =™ xi(w)xi(v) VY w,v € Wi(K),
i=1

where x; is the ith local degree of freedom in (3.3)-(3.4) for ¢ = 1,---, Ng. The
global bilinear form ap(-,-) : Vi x Vj, = R is

ap(wp, vg) == Z ap, k (Wh, vp).
KeTy,

Remark 4.1. The stabilization (4.3) resembles the original recipe in [12, 13].
This classical stabilization is easy to implement, and used to develop the discrete
Galerkin orthogonality (5.1) and the stability bounds in the Appendix A. How-
ever, the stabilization (4.3) usually suffers from conditioning and stability issues,
especially for high-order k and differential problems with large m. Instead, several
other stabilizations have been devised and investigated in [14, 11, 10, 32, 24] to
cure these issues. The numerical results in [32] show that these stabilizations have
almost the same effect on the condition number of the stiffness matrix for n = 2.
The classical stabilization, the D-recipe stabilization in [11] and the D-recipe sta-
bilization with only boundary dofs were compared in three dimensions in [24], as a
result the D-recipe stabilization outperforms the other two.

Define ITj, : Vj, — Py (T1) as (IIyv)|x := ¥ (v|x) for each K € Ty, and let Qﬁl :
L?(Q)) — P,(T1) be the L?-orthogonal projection onto P;(73): for any v € L?(Q),
(@Qh0)lx = Qi (v|k) VK €Ty
We compute the right hand side according to the following cases
(f, Tpon), m<k<2m-—1,
(4.4) (fron) =% (f,Q7 'vp), 2m <k <3m-2,
(£, QF2™uy), 3m—1<k.

We will need this definition of the right hand side in order to get an optimal order
of convergence, see Lemma 5.7.

Remark 4.2. When m < k < 2m — 1, which is an important range for large m as
high order methods are harder to implement, there is no need to compute a new
projection and no need to modify the local virtual element space. For k > 2m,
however, an L2?-projection to higher degree polynomial space is needed to control
the consistency error; see §5.2.
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With previous preparations, we propose the nonconforming virtual element method
for the polyharmonic equation (4.1) in any dimension: find u, € V}, such that

(4.5) ah(uh,vh) = <f7 Uh> Yo, € Vy.

In the rest of this section, we shall prove the well-posedness of the discretization
(4.5) by establishing the coercivity and continuity of the bilinear form ay (-, -).

4.2. Mesh conditions. We impose the following conditions on the mesh 7j,.

(Al) Each element K € 7T, and each face F' € F} for 1 <r < n—1 is star-shaped
with a uniformly bounded star-shaped constant.

(A2) There exists a quasi-uniform simplicial mesh 7, such that each K € 7y, is
a union of some simplexes in 7,*.

Notice that (Al) and (A2) imply diam(F) ~ diam(K) for all FF € F"(K),1 <
r<n-—1.

For a star-shaped domain D, there exists a ball Bp C D with radius pphp
and a Lipschitz isomorphism ® : Bp — D such that |®|; « 5, and |21 .p
are bounded by a constant depending only on the chunkiness parameter pp. Then
several trace inequalities of H!(D) can be established with a constant depending
only on pp [17, (2.18)]. In particular, we shall use

(4.6) loll§ op < hp' 10113 o + hplvlt p Vv € HY (D).

The condition (A2) is inspired by the virtual triangulation condition used in [22,
18]. The simplicial mesh 7, will serve as a bridge to transfer the results from finite
element methods to virtual element methods.

Very recently, some geometric assumptions being the relaxation of conditions
(A1)-(A2) were suggested in [20, 21] under which a refined error analysis was de-
veloped for the linear conforming and nonconforming virtual element methods of
the Poisson equation, i.e. H' case. For high order H™,m > 1 elements, we will
investigate such relaxation in future works.

4.3. Weak continuity. Based on Lemma 3.3, the space V}, has the weak continu-
ity, that is for any I’ € .7-'}“ vy, € V3, and nonnegative integer s < m — 1

(47) ([[Vzvh]]’T)F =0 V7€ Hchf(melfs) (F§ Tn(s))a
(4.8) Qi([Viunllp) =0 Vee F"7H(F),

where Vj, is the elementwise gradient with respect to the partition 7. We shall
derive some bound on the jump [V;vy] using the weak continuity and the trace
inequality.

By the weak continuity (4.7), the mean value of V3 v, over F is continuous only
when s > 2m — 1 — k. For s < 2m — 1 — k, the mean value of Vjuvy is merely
continuous over some low-dimensional face of F', cf. (4.8). As a concrete example,
consider the Morley element in three dimensions. The mean value of Vv, over
faces is continuous, but the mean value of vy is only continuous on edges rather
than over faces.

Recall the following error estimates of the L? projection.
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Lemma 4.3. Let { € N. For each K € T;, and F'(K), we have for any v €
H2+1(K)

(4.9) o = QFvllo,x S A vlest ks

(4.10) v = QFvllo.r S B

[vlet1,k-
Then recall the Bramble-Hilbert Lemma (cf. [16, Lemma 4.3.8]).

Lemma 4.4. Let ¢ € N and K € T, UT;. There exists a linear operator T/ :
LY(K) — Py(K) such that for any v € H'TY(K),
(4.11) o — Tf|jx SPE ol g for 0<j<L+1.

Notice that the constants in (4.9)-(4.11) depend on the star-shaped constant, i.e.
the chunkiness parameter pg, and also depend on the degree /.
Similarly, define T}, : L?(Q) — Py (7) as

(Tho)|x == TF (v|g) VK ETh.

Lemma 4.5. Given F € F} and positive integer s < m. Assume for anye € F"(F)
withr =0,1,---,m—1—s

(4.12) V500l S > B 2ol ¥ on € Vi
" Keo1F

Then we have for any e € F"(F) withr =0,1,--- ,m —s

(413) ||[[fo1vh]]||0 e s Z h7£757(ril)/2|’l}h|m’[{ v Vp € Vh.
7 Keo—'F

Proof. We use the mathematical induction on r to prove (4.13). First consider
r = 0. Take some ¢; € F!(F) for i = 1,--- ,m — s such that e; € F'(e;_1) with
eo = F. In the following we shall use Q¢ the L%-orthogonal projection onto the
constant tensor space on e which can be understood as a tensor defined on the whole
space. Employing the trace inequality (4.6), we get from (4.12) with r =i —1

WA ] = @8 (Vi oD,
ShE VP onl = QF A3 onD) e, + RS2 19500,

i—1)/2 s— s— m— 1/2
ShEV2 IV o] = QE UV onD g+ D BT onlm k-
Keo—'F

By this recursive inequality and the approximation properties of the L? projection,
it holds

W2 195 enl = QE AV e,

SV ol = QEAV oD o+ D Akl
Keo—1F

Shel|Vaonlllo m+ Do BT P onlm
Keo—1F
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On the other side, we have from (4.8)
V5 ondlly - = ITV5 onl = Q6™ (IV5 oD o
= (|15 on] = QE (V5 unl) — Q5 (V5 onl = QF (V5 vn]) .
<[V on] — Q(})?([[V;Sl_lvh]])ﬂof +1|Q6™ " (IV5 o] — Qg([[vi_lvh]]))ﬂof
Shel[[Vaonllly e+ 52 1Q6 (1V5 on] = QF (V3 o))y,
<hp|[[Viunllly » + 252 1V5 ol = QEAVE oDl

Hence (4.13) with r = 0 follows from the last two inequalities and (4.12) with r = 0.
Assume (4.13) holds with » = j < m —s. Let e € F/TY(F). Take some
e; € FI(F) satisfying e € F*(e;). Using the trace inequality (4.6) again, we know

IEV5 ondllo o S B ZIEVE ondllo o, + Be I IVienD o,
which combined with the assumptions means (4.13) is true with r = j + 1. O

Again consider the Morley-Wang-Xu element in three dimensions [35], i.e. m = 2
and s = 1. The inequality (4.12) is just

1/2
H[[vhvh]]HO,F S Z hil®|vnloe ¥ vn € Vi,
Ked—1F
for each face F' € F!. Then by Lemma 4.5 we will get from (4.8)
[Tendllg o+ 2 NEendllo, S D KR lenlac ¥ vn € Vi
Kedo—'F
for any face F' € F} and any edge e € F7. We refer to [35, Lemma 5] for these

estimates on tetrahedra.

Lemma 4.6. For each F € }',1 and nonnegative integer s < m, it holds
(4.14) H[[Vflvh]]HO,F ,S Z h$7871/2|vh|m,;{ v vV € Vh.
Ked-1F
Proof. Tt is sufficient to prove that for s =m —1,m —2,--- ;0 and any e € F"(F)
withr=0,1,--- ,m —1—s, it hold
v5ondlle. S D W T R e Y o € V.
Ked—1F
According to Lemma 4.5 and the mathematical induction, we only need to show
Hﬂvhm_l”h]]HO,F N Z h;(/2|vh|m,K Voup € Vi
Ked—1F
In fact, due to (4.8) and (4.10), we get
m— m— m— 1/2
||[[vh lvh]]HQF = H[[vh lvh]] _Qg([[vh lvh]])HO,F S Z h‘K/ VR, K-
Ked-'F
This ends the proof. O

Given the virtual triangulation 7", for each nonnegative integer r < m, define
the tensorial (m — r)-th order Lagrange element space associated with 7"

ST =, € Hy (G To(r) : Thlk € Prer (G5 To(r) ¥V K € Ty}
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Lemma 4.7. Let r =0,1,--- ,m — 1. For any vy, € V},, there exists 7. = 1.(vp,) €
Sy such that
(4.15) IVion — Trlin S hm_r_j|vh|m,h for 7=0,1,--- ,m—r.

Proof. Let wy, € L*(Q; T,,(r)) be defined as

whlk =T (V' (on|x)) ¥ K €Ty
Since wy, is a piecewise tensorial polynomial, by Lemma 3.1 in [36], there exists
7, € S;"" such that

1-2j
lwn —=mlin S D ke NTwallly ey
FeF Ty
where F} (7;) is the set of all (n — 1)-dimensional faces of the partition 7,*. Then
it follows from (4.11) and (4.14)
lwn =730 S D he lwn = Viedlg e+ Y e CIIVAealllE ¢
FeFL(T;) FeF}
ST g2

Here we have used the fact that the jump [V} v] is zero on F € FL(T;7) \ FL(Th)-
Applying (4.11) again gives

IVivn = wnljn S B [V mon-

Finally combining the last two inequalities indicate (4.15). ]
Lemma 4.8. We have the discrete Poincaré inequality

(4.16) [vallmn S [Oalmn ¥ vn € Vi

Proof. By picking 7. € Hg(Q;T,(r)) as in Lemma 4.7, due to (4.15) and the
Poincaré inequality, we have for r =0,1,--- ,m — 1,

IVivnllo < IViow = 7ello + I7ello S [onlm.n + 71
< Nonlm,n + [Vion = Tol1n + [Vivn|in
< [onlmn + [1V5  on o,
which leads to (4.16). O
The discrete Poincaré inequality (4.16) means
lvallm,n = [Vnlmpn ¥ vn € Vi,
ie. |- |m.p is a norm on the space V},.

4.4. Norm equivalence and well-posedness of the discretization. Denote by
ker(ITX) € W, (K) the kernel space of the operator ITI*. By (3.13) and Lemma 3.9,
both |- |, x and S;(/Z(-, -) are norms on the finite dimensional space ker(IT¥). Then
we have the following norm equivalence.

Theorem 4.9. Assume the mesh Ty, satisfies conditions (A1) and (A2). For any
K €Ty, the following norm equivalence holds

(4.17) Sg(wv) = vk g Vve ker(IT15),

where the constant is independent of hx , but may depend on the chunkiness param-
eter pg, the degree of polynomials k, the order of differentiation m, the dimension
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of space n, and the shape reqularity and quasi-uniform constants of the virtual tri-
angulation T, .

Using the generalized scaling argument, i.e., applying an affine map & = (x —
xi)/hK, it is easy to show the norm equivalence constant is independent of the
diameter of K.

The constant in (4.17), however, could still depend on the geometry of K and
a clear dependence is not easy to characterize. For finite element space defined on
simplexes, the shape functions are usually polynomials and there exists an affine
map to the reference element A. The norm equivalence on the reference element
can be used. Since the Jacobi matrix is constant, the norm H™(K) and H™(K)
can be clearly characterized using the geometry of the simplex, e.g., the angles of
a triangle in 2D.

Now for a general polytope K, there does not exist an affine-equivalent reference
polytope K. For star-shaped and Lipschitz continuous domain, one can use the
isomorphism ® : K — By but ® € W1>(Bg) only. One can apply the norm
equivalence on Bk but how the norm H™(K) related to H™(Bk), for m > 1, is
not clear.

We shall prove the norm equivalence (4.17) with mesh conditions (A1)-(A2) in
Appendix A.

By the Cauchy-Schwarz inequality and the norm equivalence (4.17), we have

(4.18) Sk (w,v) < W g |V|mrx ¥V w,v € ker(ITX).

which implies the continuity of ap(-, )

(419) ah(wh, ’Uh) 5 |wh|m,h vhlm,h A Wp, U, € Vi + ]P)k('ﬁl)
Next we verify the coercivity of ap (-, ).
Lemma 4.10. For any v, € Vi, + Pr(Tr), it holds
(4.20) |2, S an(vn, vn).
Proof. Since IT¥ is the H™-orthogonal projection,
2 2
e = [T @l + Jon ~ Tl -
Applying (4.17), we have
2
[onlm.rc S [ (onlr)|,, 5 + S (on = 11 (vn] ), v — I (vn] )

(421) = CLh’K(’Uh,’Uh)7
which implies (4.20). O

Therefore the nonconforming virtual element method (4.5) is uniquely solvable

by the Lax-Milgram lemma.

5. ERROR ANALYSIS

In this section, we will develop the error analysis of the nonconforming virtual
element method (4.5) for H™-problem.
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5.1. Interpolation error estimate. We first explore a discrete Galerkin orthog-
onality of u— I u for the nonconforming element, where I, defined on H™ () is the
global canonical interpolation operator based on the degrees of freedom in (3.3)-
(3.4), i.e., (Inv)|x = Ix(v|k) for any v € H™(Q) and K € Tj,. A similar result
was given in [28, (3.3)].
Lemma 5.1. For each K € Ty, anyv € H™(Q) and w € H™(K), it holds
(5.1) ap, k(v — Iv,w) = 0.
Proof. Tt follows from (3.15) and the definition of Sk (-, -)
an.x (v — Iyv,w) = (VI (v — ), VTR w) g
+ Sk (v — Iw — ¥ (v — L), w — T¥w)
= Sk (v — Iyv,w—TT¥w) =0,

in the last step we use the fact that v and Iv share the same degrees of freedom,
and thus the stabilization Sg (v — I,v, w — ¥ w) using d.o.f. vanishes, cf. (4.3). O

Remark 5.2. Lemma 5.1 holds true in virtue of the choice (4.3); indeed, any
stabilization equivalent to (4.3) which annihilates if all the degrees of freedom are
zero would be fine.

With the help of the discrete Galerkin orthogonality, we present the following
interpolation error estimate.

Lemma 5.3. For each K € Tj, and any v € H**1(K), we have
(5.2) v — In0|m ke S BEFT™ 0l ke
Proof. Applying (4.21) and (5.1) with w = (Thv — Iyv)|k, we have
|Thv — Ihv\?mK S an g (Thv — I, Thv — Iv) = ap x (Thy — v, Ty — IHv)
< v = Thvlm, k[ Tho — Inv|m i,

which indicates

|Thv — Inv|mx S0 — Thvlm k-
Hence

[v = Invlm g < |v—=Tholm.x + |Tho — InV|mx S0 — Tht|m k-

Therefore (5.2) follows from (4.11). O

5.2. Consistency error estimate. Due to (3.13) and (3.10), we have the following
k-consistency.

Lemma 5.4. For any p € Px(K) and any v € WK it holds
(5.3) an,k (p,v) = (V"'p, V") k.

To estimate the consistency error of the discretization, we split it into two cases,
ie. k>2m—1and m < k < 2m — 1. For the first case, the weak continuity
(4.7), that is the projection in(mﬂ)(vzn*(wl)vh) is continuous across F € F} for
1=20,---,m — 1, is sufficient to derive the optimal consistency error estimate.

Lemma 5.5. Let u € H'(Q) N H*1(Q) be the solution of the polyharmonic equa-
tion (4.1). Assume k > 2m — 1. Then it holds

(5.4) (V™u, Virop) = (foon) S Bl |vnlmn Y vn € Vi
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Proof. First we notice that

(V™u, Vitvp) = (f, vn)
m—1

(5.5) =3 (- (dw V7, VI )+ (div ! vmu,v;"‘““)vh)).
1=0

For each term in the right hand side of (5.5), applying integration by parts, (4.7)
with s =m — (i + 1), (4.10) and (4.14), we get

(—1)i((divivmu,v;7—iv) + (divi v, v l)vh))
=(=1)" Y (@' V™ u)y, Vi) ok

KeTh

=(-1)" Y ((div' V™ u)vp,, [V Vo)
FeF}

=(-1) Z ((div' V™ u)vp — in(mﬂ)((divi V™), [V —(+ vh]])p
Fer,

SEE Y g1 [ O s

as required. O

When the order k is not high enough, the mean value of V; vy, is only continuous
over some low-dimensional face of F' for s < 2m — 1 — k. In this case, we divide
the consistency error into two parts. The first part is estimated by using the weak
continuity (4.7) as in the proof of (5.4), while the second part is estimated by
using the weak continuity (4.8) through employing the Lagrange element space as
a bridge.

Lemma 5.6. Let u € HJ' () N H?>™~1(Q) be the solution of the polyharmonic
equation (4.1). Assume m <k < 2m — 1. Then it holds

(5.6) (V™u, Vo) — (f,0n) < ( Z Wi lulmss + h™ fllo )\vh|mh Y o, € V.
i=k+1—m

Proof. Similarly as (5.5), we have

(57) (vmu’ V;anh) - (fv Uh) = El + EQ + E37
where
kim . . . . .
Bro= S (-1) ((div’ V™, VI ) A+ (div ! VT, v;”‘““)vh)),
i=0
m—2 ‘ )
E, = ( le V", Vi “op) + (div*T? Vmu,V?7(1+1)vh)),
i=k— m+1

By = ((— div)™ V"™, Viyor) — (f, vn).
By the same argument as in the proof of Lemma 5.5, we have

(5.8) By ST g1 [n -
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Next let us estimate Fy and E5. By (4.15), for each k — m + 1 <i < m — 1, there
exists 7, _(i41) € S,T’m_(zﬂ) such that

(5.9) IV g sl S A ol for 5 =0, 1.
Since Tp—(i11) € Hy (4 Tp(m — (i + 1)), we get for i =k —m+1,--- ,m—2

(5.10) (div' V™ u, V7 i41y) + (divT V™0, 7 41)) = 0,

(5.11) ((—= div)™'V™u, V7o) — (f, 70) = 0.
Fori=k—m+1,--- ,m— 2, it follows from (5.9)-(5.10)
(—1)i ((div” V7, V) + (div T v, v %h))
= (=1)¥(div’ V™u, Vh(VZH(iH)Uh — Tm—(i+1)))
+ (—1)1'(divi+1 V™u, VZ%(Hl)Uh — Trn—(i+1))
S utlmrilonlm,n A B i1 [O8 |-
Thus we obtain
m—1 .
(5.12) ByS Y Wfulmilvnlmon-
i=k+1—m
Similarly, employing (5.11) and (5.9), we get
E3 ((— diV)m_lvmu, Vh’l}h) - (f, Uh)
((=div)™ 'V u, Vi (v = 70)) = (f,vn — T0)

Wl om—1 [0k lmn + B lo|vn mns

N

which together with (5.7)-(5.8) and (5.12) ends the proof. O

We then consider the perturbation of the right hand side. Namely replace the
L?-inner product (f,v;) by an approximated one (f,vy) defined in (4.4).

Lemma 5.7. Letu € HJ'(Q)NH"(Q) with r = max{k+1,2m—1} be the solution of
the polyharmonic equation (4.1). Assume f € H*(Tp,) with £ = max{0,k+1—2m}.
Then it holds for any vy, € Vj

(V™u, Vi'on) = (f; vn)
(5.13) S (alle + Rl fllo + RO ET £ ) o -

Proof. It follows from (5.4) and (5.6)
(V™u, Viton) = (fron) S B (lully + 21 ll0) [vnlm.p-
For m < k < 2m — 1, we get from the local Poincaré inequality (A.11)

(fsvn) = (fyon) = (f;on = pon) S R fllolvn|m,h-
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For k > 2m, it holds from (4.9)
(f, Uh f, Uh ( max{m 1,k—2m} h)
— ( me, v — Zlax{m 1,k—2m} h)

<|\f- Q’Z 2 fllollvn — Q7 unllo
SR i1 om b | Vn s

Thus we conclude (5.13) from the last three inequalities. ]

5.3. Error estimate. Now we are in a position to present the optimal order con-
vergence of our nonconforming virtual element method.

Theorem 5.8. Let u € HJ"(2) N H"(Q) with r = max{k + 1,2m — 1} be the
solution of the polyharmonic equation (4.1), and up € V}, be the nonconforming

virtual element method (4.5). Assume the mesh Ty satisfies conditions (A1) and
(A2). Assume f € H*(Ty,) with £ = max{0,k + 1 —2m}. Then it holds

(5.14) [u = unlmn S B (ulle + Bl fllo + RPPOEMTE £ ).
Proof. Let vy, = Inu — up. From (4.19), (5.2) and (4.11), it holds
an(Inu — Thu,vp) + (Vi (Thu — u), Vi'vy)
SHrw = Thtelim,n|Vn]m,n + [w — Thttlm,nlvn]m,n
(5.15) Sl = Intlm,n + [ = Totln,n) [onlm,n S B kg [0 -
Employing (4.20), (4.5) and (5.3), we have
| Tpu — uh\?nﬁ < ap(Ipu — up,vp) = ap(Ipu,vy) — (f,vn)
= ap(Tpu — Thu,vg) + ap(Thu, vp) — (f, vn)
= an(Ihu — Thu,vp) + (Vi Thu, Vi'vn) — (f, vn)
= ap(ITpu — Thu,vp) + (Vi (Thu — u), Vitop)
+ (V™u, Vitop) — (f,vn).
Then we get from (5.15) and (5.13)
I = wnlmn S R (ully £ Bl fllo + RPOOEMET £l ).
Finally we derive (5.14) by combining the last inequality and (5.2). d

6. CONCLUSION

In view of a generalized Green’s identity for H" inner product, we construct
the H™-nonconforming virtual elements of any order £ on any shape of polytope
in R™ with constraints m < n and k& > m in a unified way in this paper. A rigorous
and detailed convergence analysis is developed for the H™-nonconforming virtual
element methods, and the optimal error estimates are achieved. When m > n,
the generalized Green’s identity for H™ inner product, the key tool in this paper,
will involve the derivative terms on zero-dimensional subsurfaces, i.e., nodes of the
mesh. We will postpone the case m > n in future works.

This paper is motivated by the theoretical purposes. The numerical investigation
of the virtual element method proposed in this paper is postponed to future works.
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APPENDIX A. NORM EQUIVALENCE

As mentioned before, it is difficult to derive the norm equivalence (4.17) directly
from the norm equivalence of the finite-dimensional space due to the absence of an
affine-equivalent reference polytope. We shall prove the norm equivalence (4.17)
in this appendix by assuming that the mesh 7}, satisfies conditions (A1) and (A2).
For m = 1, proofs on the norm equivalence for H! conforming VEM can be found
in [14, 17, 22].

With the help of the virtual triangulation 7;", we can prove the inverse inequality
of polynomial spaces on K following the proof in [22, Lemma 3.1]

(A'l) HgHO,K 5 h&i”g”*i,K Vyge Pk(K)7 1=1,2,...,m,

where the constant depends only on the degree of polynomials k, the order of
differentiation m, the dimension of space n, and the shape regularity and quasi-
uniformity of the virtual triangulation 7,*(K).

On the polynomial space, we have the normal equivalence of the L2-norm of g
and [?>-norm of its d.o.f. Let g = Y, g;m; be a polynomial on F, where F € F/(K)
with j > 1. Denote by g = (g;) the coefficient vector. Then the following norm
equivalence holds (cf. [22, Lemma 4.1])

n—j)/2 n— 2
(A.2) R gl S llgllor S BE D7 glle-

Take an element K € Tp,. For any F € F/(K) with j > 1, let erffj be the (n—j)-
dimensional affine space passing through F, FL(K) := {e € F/(K) : e ¢ R/},
and
rr— g

hx
Apparently Ap;|r = 0, i.e. the (n—1)-dimensional face Ar; = 0 passes through F'.
If K is a simplex and F € F1(K), Ag1 is just the barycenter coordinate when hp
represents the height of K corresponding to the base F. And F(K) = {F} if K is
strictly convex. For any F € F/(K) with j > 1, and F' € F/(K)\FiL(K), let vp p
be some unit normal vector of F’ such that the hyperplane 1/},7F,(a: —axp) =0 does
not pass through F'. Define bubble functions

bi == H AF1s

FeF'(K)

LU L (U R )

F'eFi(K)\FL(K) F'eFL(K)e€F (F')

T . .
)\Fi.—UFJ- i=1,---,7.

)

for each F' € F7(K) with 1 < j < n. Notice that both bg and br are polynomials.
Lemma A.1. Let K € Ty. It holds
(A.3) KI(=A)"vllox S V™ 0llox Vv e Vi(K)UWi(K).
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Proof. Let ¢ = b3 (—A)™v € HJ'(K), then | (=A)"™vlo,x. Us-
ing the scaling argument, the integration by parts and the inverse inequality for
polynomials (A.1), we get

I(=2)"0l[§ x S (A)™v,¢K)x = (V"0, V7KK
< [IV™0llox V™ bxllo.x < hi™ V™ 0llo,x |¢x 0,5
S b IV 0llor [ (=4)™

which induces the required inequality. (Il

Lemma A.2. Let K € Tp,. For any positive integer j < m, F € FI(K), and
a € Aj with |a| <m — j, we have

m—|a|—35/2 2m—j—|a
o n R D W) o
F'eFL.(K)
<IIvaHo K +RE[(=A)"o,

+Z Z Z 18l 4/2HD2m =18l ’

(=1 ceFt(K) Fehe 0
|B|<m —f
—18]—¢/2]|| n2m—j—
(A4) + R 12 O] N

F ]:j K BEA;
€7l )\a|<|ﬁ|§m—j

for all v € Vi,(K) U Wi(K).

Proof. Since D?ﬁf;jf‘al(vﬂpr is a polynomial for each F’ € FJ,(K), we can regard
Dif,n - ‘al( )| as the function on the (n— j)-dimensional affine space Ry 7. Then
we extend the polynomlal D o J |O“( )| to R™. For any € R", let X be the

projection of @ on R} 7. Deﬁne
2m—j—|a 2m—j—|a
Ex (DF!y" ™ ) (@) == D7 ) ().
Let R%, :={z € R": 2k € F'}, and ¢ be a piecewise polynomial defined as

J .
Loz e (D2 771 0) T A% L, @ € R, FY € Fh(K),
i—1 I

xT) = “ v
or® =1, xR |J R%,
F'eFl(K)

where a! = ;! - - a;!, then we have

«@ 1/2 2m—j—|a
(A5) lorlox S D DR W)
F'eFL(K)

J a|a\ A%
= —h'“'bf;:ﬂE (Dpr 7™ ‘al(v))HM
Fr i=1
by Bxe (D7, (0).

[e3

0l

ovg,

o,

Hence

m— o« m—j—|a 8‘04
(A.6) D371 (w >||8,FIZ<D%/,J (), ¢F) :
F/

o,
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For each e € FY(K) with £ = j +1,--- ,m, it follows from the fact bz/|, = 0 that

BIEl
qu =0 VpBeA, with |[8]|<m—¢.
ove e
Similarly we have for each e € fj(K)\}';;(K)
918l
r) —0 Ve with 8 <m— ).
Ove e
J o8l
For any 8 € A, |5| < |e], since ‘95( IT A% l) = 0, it yields ,?F =0
aVF" i=1 ’ jal 81/F, jol
For any S € Aj, || = |a|, but f # «, noting that mF' * = 0 for i # ¢, we also
918l
have or

= 0. Based on the previous discussion, we obtain from (A.6), the
Vpr R
generalized Green’s identity (3.2) and the density argument

> IDE T = (V0 VT R) e — (-8) ™0, 6r) K

F'eFI(K)

1
= p2m—t-18] Pl pp
YT (ot Ly
(=1 eeFU(K) At Ve
> x5
Fl?B 5 8V/B F/.
F’E]—‘%(K) BEA; F’

lal<|Bl<m—j

Employing the Cauchy-Schwarz inequality and the inverse inequality for polynomi-

als, it follows
DR 2 Ol
F'eFL(K)

<h*mHV’"vllo kll¢rllox +[[(=A)™

Y w ”QHDQ’” 1ol H Nl

L=1ecFt(K) BEAy
1B <m—¢

+ Z Z hK\B\ i/ HD;’,ﬁJ \5\@)” I érllo.x

- 0,F’
F'eFl (K) BeAj
F lal<|BI<m—j

which combined with (A.5) implies (A.4). O
Lemma A.3. For any K € Ty, it holds
(A7) (=A™, 0)k S BRI(=A) )0,k S (v,v) ¥ v € ker(TTK).

Proof. It m < k < 2m — 1, by the definition of Wy (K) = Vi (K), (—A)™v = 0, thus
(A.7) is obvious. Now let us prove (A.7) for k > 2m. When 2m < k < 3m — 1,
since v € ker(IT%), it follows from (3.14)

(=8)"v, )k = (=)™, Qp_1v)K
= ((=8)"0, Qt_amv) K = (Qi—2m((=2)"0),v) .
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If Kk > 3m — 1, then Wy (K) = V;(K), and we also have

((_A)mv7 U)K = (Qi{—Qm((_A)mv)a U)K .
Therefore, to derive (A.7) for k > 2m, it is sufficient to prove

(A8)  (Qfam((=A)™0),0) o S HRI(=A)™0llo.xc S (v,0) ¥ v € ker(ITX).

Let N be the dimension of the space Px_o,,(K). Then there exist constants ¢;,
i=1,---, N such that

Qk 2m Zcz%v

where My, _om (K) :={q1,- -+ ,qn}, thus

N
(Q o (=A)™0),0) . = |K]| ZCiXi(U)

Applying the norm equivalence on the polynomial space Py_o., (K), cf. (A.2), we
get

||Q£<72m(<_A) Ho K ~hk ZC
Hence
N 1/2
(QF 5 (=28)™0),v) o S B2 NQE 5 (=)™ )0,k (Z X?(v)>
i=1

S IQE 5 (—A)™0) o, 53 (v, 0),
which implies (A.8). O

Lemma A.4. For any K € Ty, it holds
(A.9) V™8 S Sk(v,v) Vv € ker(ITF).
Proof. By the generalized Green’s identity (3.2),

ol
(A10) [0l i = (Aot Y S (D ). 5,

j=1 FeFi K) a€A;
| \<m J

Since v € Wy (K), we have D2m - la‘( ) F € Pr—@m—j—|a))(F) for any F € FI(K).
Let Ng be the dimension of the space Pr_(2m—j—|a|) (F). Then there exist constants
¢, i =1,---, Ng such that

_ lal N
2m—j—lal, \ 00\ nojal .
(i ). v )F = I ;:1: cixi(v)

Applying the norm equivalence on the polynomial space Py_(am—;j—|a|)(F), cf.
(A.2), we get

Np
1D )2 = h T S 2
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Hence

jaf, .y 0% (n—3)/2-]0] o . v
2m—j—|a n—yj)/2—|a 2m—j—|a 2
(PR G ) S0 103 @) o r (; % <v>>

m—|a|—7/2 2m—j—|a 1/2
< PO W) lo.p S (v, 0).
Applying (A.4) recursively, it follows

m—j—|a 8|o¢\v
(DEn 71 w), S ) S UV ™ vlloue + BRI (=2)"0llo.1)S 3 (v, ).
’ Vp / F

Then we derive from (A.10), (A.7) and (A.3)
IV 702 5 S (IV™0llo,x + BEI(=A)0l0.5)SK > (0,0) S V™00, S (v, v),
which induce (A.9). 0

We then prove another side of the norm equivalence (4.17).

Lemma A.5. For any K € Ty, and nonnegative integer s < m, we have the local
Poincaré inequality

(A.11) mz_:s SR ve

j=0 FeFi(K)

0. SHEIV™llox Vv € ker(ITX).

Proof. Tt is sufficient to prove

1

A12) SN BEPIVlers Y YD BRIV o e,

j=0 FeFi(K) =0 ecF¢(K)

m

for s =0,1,--- ,m — 1. Thanks to (3.11), it follows

; ; 1
hJK/QHVSUHO,F = hJK/Q Voo — m Z Q5(V*v)
eeFm—s(K)

0,F

SN V= @5V,

ecFm—s(K)
=0 30 V= Q) = Qe = QE (V)
eeFm—s(K)
SV o= QE (V) ot DD BTG - QF (V)

c€Fm—s(K)

< BV = QF(V)ly e+ D ATV = QE (V)
ecFm—s(K)
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On the other hand, applying the trace inequality (4.6) recursively, we get from (4.9)

S R WD SRS LR T

eeFm—s5(K)
m—s—1
SV =QF V) o+ Do D h IV ufloe
(=0 ceF{(K)
m—s—1
5 Z Z h1+£/2Hvs+1 ||

=0 ecFL(K)

Combining the last two inequalities yields

m—s—1
/21w 14£/2 o
W v > > IV el
=0 eeF!(K)
which indicates (A.12). Thus the Poincaré inequality (A.11) holds. O

Lemma A.6. For any K € Ty, it holds
(A.13) Sk (v,v) S ”va”g,K Y v € ker(ITF).

Proof. Due to the definition of the degrees of freedom, we have

<Z Z Z h2\a| 2m+j

J=0FeFi(K) «€A;

Qk— 2m—j— mb(@jv)H

|a\<m j
DI IS I S )
8V
]—'J K) aEA;
lal<m—j
m
S0 oD o LR
]—'J K) aEA;
lal<m—j
which together with the Poincaré inequality (A.11) implies (A.13). O

At last, combining (A.9) and (A.13) gives the norm equivalence (4.17), cf. The-
orem 4.9.

APPENDIX B. EXAMPLES OF GREEN’S FORMULA

Take K € Tp. The explicit expression of (3.2) for m = 1 with n > m is no more
than (2.2), i.e.,
ou

6'1/K7F

(Vu, Vo)g = —(Au,v) i + Z (
FeF(K)

) p Yue€ HY(K), ve HY(K).
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And the explicit expression of (3.2) for m = 2 with n > m is exactly (2.5), i.e., for
any u € H*(K) and v € H?(K), it holds

ov

(V2u, VQ’U)K = (AQU, ’U)K + Z [(MVU(U), aTFl

FeF'(K)

+ ) S R M), v)..

e€F?(K) FEFI(K)Nd— e

)F — (QV(U)aU)F}

When m = n = 3, the explicit expression of (3.2) is that for any u € H°(K) and
v e H3(K),
(V3u, V30) i + (A3u,v) g
- Z (I/}(F divz(V3u) + divF(div(V3u)yK’F) +divp divF((V?’u)uK,F), v)

FeF'(K)

- (v},1<divF<<v3u>uK,F>>+divF<<<v3u>uK,F>uF,1>, 8"’)
F

ov
FeFY(K) F.1

. v
_ Z <I/}71 le(vS’LL)VK,F, 81/F1>
) F

FeFl(K)

8%v
+ ) (V};,l((vgu)VK7F)VF7176V2>
1) g

FeFY(K)

F

Z Z ( (dive( (V?’u)uK,F)) + diVe(((V3U>VK7F)VF,e)7U)E

FeF1(K)eeFI(F)

Z Z (VE, div( VU)K F,0)e

FeF1(K)eeF1(F)

P YT Z((V“ VJVFJ)V;’I)((vsm,,KF)yF,e,aaj)

FeFY(K)ecF!(F)i=1

+ Z Z Z <e5 ((Vu) VKF)VF6> (0)v(9).

FeFl(K)ecF(F)dcFi(e)
Consider the lowest order case k = m = 3. The last identity will be reduced to
(VP0, VPq)k

82
= Z <2’U’V;‘,1((VSQ)VK,F)VF,1>

ov
FeFl(K) 1 F

D SN0 S ol (L CRRNEFARE B TS

FeFl(K)ecFi(F)i=1

LD D DI D ( e V‘I)VKF)VFe) (9)

FeF'(K)ecF(F)scF(e)

€
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for any v € H3(K) and ¢ € P3(K), which will be used to compute the projector

HK

: H3(K) — P3(K). And the degrees of freedom are

02v ov ov
—,1 — 1 — 1 )
8V12:*717 F7 <31/e,1’ >e7 (61/@72, )ea 'U( )

on each F € FY(K), e € F?(K), and 6 € F3(K).
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