UC Irvine

UC Irvine Previously Published Works

Title

Evidence for a threshold relationship between lactate efflux and intracellular PO2

Permalink

https://escholarship.org/uc/item/31w3q7t3

Journal

Journal of Applied Physiology, 62(3)

ISSN

8750-7587

Author

Cooper, DM

Publication Date

1987-03-01

DOI

10.1152/jappl.1987.62.3.1335

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

letters to the editor

Evidence for a threshold relationship between lactate efflux and intracellular Po_2

To the Editor: Recently, Connett, Gayeski, and Honig (2) presented the results of a study entitled "Lactate efflux is unrelated to intracellular Po_2 in a working red muscle in situ." Since the major thrust of their paper was a challenge to the concept that lactate accumulation is related to O_2 availability in mammalian cells, I was surprised that the authors did not plot the crucial relationship of lactate efflux as a function of muscle Po_2 . I performed this analysis from their data using the median values for intramuscular Po_2 (their Fig. 2B) and lactate efflux (their Fig. 2A). The resulting plot is shown on the right.

In striking contrast to the title and conclusions of the paper, their data demonstrate a threshold relationship between lactate efflux and intracellular PO_2 occurring at ~ 8 Torr. Moreover, this is remarkably similar to the work of Bylund-Fellenius et al. who demonstrated a threshold phenomenon for the intramuscular lactate-to-pyruvate ratio as a function of intramuscular PO_2 in exercising human subjects (1). I believe that the data presented by Connett and co-workers (2) are consistent with the existence of a threshold of lactate efflux from cells which is related to PO_2 ; their data, therefore, support the concept of the anaerobic threshold. Finally, the critical PO_2 below which O_2 -dependent processes cease is a function of the mitochondrial PO_2 (not measured in the article) and not solely dependent on the cytosolic PO_2 .

REFERENCES

- 1. BYLUND-FELLENIUS, A., P. M. WALKER, A. ELANDER, S. HOLM, J. HOLM, AND T. SCHERSTEN. Energy metabolism in relation to oxygen partial pressure in human skeletal muscle during exercise. *Biochem. J.* 200: 247-255, 1981.
- CONNETT, R. J., T. E. J. GAYESKI, AND C. R. HONIG. Lactate efflux is unrelated to intrace intracellular Po₂ in a working red muscle in situ. J. Appl. Physiol. 61: 402–407, 1986.

Dan M. Cooper
Division of Respiratory and Critical
Care Medicine
Department of Pediatrics
Harbor-UCLA Medical Center
Torrance, CA 90509