
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
The Impact of Information in Cooperative and Noncooperative Systems

Permalink
https://escholarship.org/uc/item/31x4039j

Author
Grimsman, David

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/31x4039j
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

The Impact of Information in Cooperative and

Noncooperative Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

David Randall Grimsman

Committee in charge:

Professor Jason R. Marden, Chair
Professor João P. Hespanha
Professor Francesco Bullo
Professor Ambuj K. Singh

June 2021



The Dissertation of David Randall Grimsman is approved.

Professor João P. Hespanha

Professor Francesco Bullo

Professor Ambuj K. Singh

Professor Jason R. Marden, Committee Chair

May 2021



The Impact of Information in Cooperative and Noncooperative Systems

Copyright c© 2021

by

David Randall Grimsman

iii



To Kalisha, Rose, Harvey, Elaine, and Walter

iv



Acknowledgements

I have felt incredibly supported in my journey as a graduate student, on so many

levels. First and foremost, thank you to my wife and best friend Kalisha. Without

your love and patience, this work doesn’t happen. We made a conscious decision to

somewhat abruptly change our family’s lifestyle so that I could pursue a PhD. I told you

many times that if balancing finances and family in this way ever became too much of a

burden, that I would quit and we would go do something else. While I’m sure this has

crossed your mind frequently, I have never felt anything but strength and support from

you throughout; truly you are the ultimate partner and teammate.

Thank you to my children. Entering the program, we had two twin babies: Rose and

Harvey. During this journey we have added two more children: Elaine and Walter. No

matter the frustrations of research or classes, I have always been able to count on fun,

laughter, and unconditional love as soon as I walk through the door. I hope you kids

remember this time with fondness, and that it serves as a reminder of the importance of

becoming the people that you’re meant to be.

Thank you to my advisor, Jason. You have truly been the epitome of patience

with me. There have been several times in research when we have disagreed, you have

convinced me that you’re right, then I go back and convince myself that you’re wrong,

only to have you convince me once again that you’re right. I appreciate your ability to

simplify complex ideas and ask insightful questions. I have also learned a great deal in

writing in such a way that is approachable and intuitive – I hope that this dissertation

lives up to that standard. I also appreciate your emphasis on building relationships

within our academic world, especially in reaching out to students. You’ve created a great

culture of comraderie and rigorous study in our lab. I mean, how many PhD students

can say that they’ve had a meaningful discussion with their advisor while surfing? Thank

v



you for all you’ve done to mentor and lift me!

Thank you also to the rest of my committee. João, thank you for always taking the

time to carefully consider my work and give insightful feedback. I’m constantly amazed

at how you seem to be an expert on so many topics; I’ve often found myself lost in the

details of a presentation during a seminar, only to have you ask a very pointed question

about an assumption from three slides ago. I admire your work ethic and humility and

hold you as an example of scholarship. Ambuj, thank you for your efforts in creating

the IGERT Network Science program, which has been a highly influential part of my

experience at UCSB. Thank you for your encouragement throughout the program and

helpful insights into new research directions. Francesco, thank you for being kind and

gracious in your feedback, and thank you for example of service at UCSB and in the

controls community.

Finally, thank you to my fellow students in the lab. You have made my time at UCSB

enjoyable, and I look up to each of you for your dedication to your work. I’m excited to

see the various important contributions that I know you all will make!

I hope that this work is a commensurate reflection of all the wonderful support that

I have received during my time as a graduate student.

vi



Curriculum Vitæ
David Randall Grimsman

Education

2021 Ph.D. in Electrical and Computer Engineering (Expected), Univer-
sity of California, Santa Barbara.

2016 M.S. in Computer Science, Brigham Young University.

2006 B.S in Electrical Engineering, Brigham Young University.

Publications

Journal Publications
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Abstract

The Impact of Information in Cooperative and Noncooperative Systems

by

David Randall Grimsman

Large-scale autonomous systems are systems comprised of many components, each

acting according to its own preferences, local information and capabilities. Such systems

are ubiquitous in our world and include automated warehouses, UAV swarms, traffic

systems, sensor networks, the internet of things, auctions, ridesharing systems, and social

networks. We focus on autonomous systems which are engineered: each component is

human-designed.

While such systems are attractive because they can process a high amount of data

and are generally robust against single points of failure, there are often many challenges

in their design. System designers must take into account that each component has its

own capabilities, model of the environment, data set, and local objective. Furthermore,

the system designer often cannot make decisions for each component at each time step,

rather, decision-making rules are assigned to allow components to react autonomously.

Small adjustments to such rules can often have cascading effects throughout the system.

Finally, the interconnected nature of the system opens doors to new kinds of system-wide

attacks and vulnerabilities.

In this work, we focus on the challenge of information sharing constraints: each

agent does not have access to all of the system information at every given time step.

These constraints often arise naturally (i.e., no router can access all available data on the

internet before making a routing decision), but they can also arise from privacy, trust or

political issues. Thus it is imperative for the system designer to understand the relevant
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information constraints on the system and their effects on the emergent behavior. In this

work we endeavor to answer the two following questions:

1. How do a set of information sharing constraints impact the resulting emergent

system-wide behavior?

2. How can a system designer strategically set decision-making rules for the compo-

nents to offset any negative effects caused by information sharing constraints?

We answer the first question by assuming that the emergent behavior is a system

equilibrium, and then comparing the value of the worst-case equilibrium to the value of

the optimal decision set, where value is based on the system designer objective. Different

types of information sharing constraints among the components are evaluated on this

basis. We answer the second question in certain settings by showing that small deviations

from standard decision-making rules can improve the system’s performance guarantees.

These questions are addressed in two settings: first in a cooperative setting, where the

system designer can design the decision-making rules for each agent. The system designer

objective function is assumed to be submodular, and this property is leveraged to show

closeness of equilibrium to optimal. The second is a noncooperative setting, where the

system design must operate in the presence of an attacker. Here, the constraints on

information sharing are related to how much knowledge about the attacker the other

players have.
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Chapter 1

Introduction

Large-scale autonomous systems are systems comprised of many components, each acting

according to its own preferences, local information and capabilities. Historically, such

systems have been purely social: each component is a human. These include political

systems, economic markets, and other systems of competition, culture, and customs.

Advancements in automation have caused the nature of these systems to change; some

or all components of an autonomous system are human-built and driven by data and

algorithms [1, 2, 3]. For instance, the modern business must understand how to blend

software and human decision-making in order to drive growth [4]. In many cases, such

as automated warehouses [5] or robot swarms [6], all components are technological. We

refer to such systems as engineered autonomous systems.

Engineered autonomous systems are often advantageous when solving problems that

involve a massive amount of data and cannot be solved centrally [7]. They can also offer

a robustness against failure of a single component in the face of an uncertain environment

or an attacker. However, the design of such systems is often challenging for the following

reasons:

1. Each component has its own set of capabilities, model of the environment, data
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Introduction Chapter 1

set, local objective, and time scale.

2. The system designer cannot (either for tractability or privacy reasons) directly

make decisions for each component. Rather, the designer can only design a set of

decision-making rules for each component.

3. Small adjustments to local behavior can have cascading effects.

4. The connected nature of the system introduces new vulnerabilities to system-wide

attacks [8].

The system designer, with its own objective, must account for these challenges. Thus

the overall goal of this research is to design systems that are distributed and subject to

time and information constraints to provide high performance guarantees.

In this work, our focus will be on understanding how information sharing constraints

within the system affect the overall system behavior. Information sharing constraints

arise from several causes. For instance, a common constraint in sensor networks is that

individual components may have low computational power, especially in cases where a

component may need to operate without access to a power source [9]. Components may

also be connected via networks of limited bandwidth, such as in disaster recovery, where

sharing all system information would take too long for the system to be responsive [10].

It could also be that the time scale on which decisions need to be made is such that

components can only receive or process a small amount of information, such as in a

UAV swarm [11]. Information sharing constraints can also arise for nontechnical reasons,

for instance, if two components do not fully trust one another, as in privacy-preserved

learning scenarios [12]. Lastly, the information sharing constraints could be the result of

an outside attacker seeking to disrupt the system [13].

Information sharing constraints in engineered systems give rise to two important

2
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questions:

1. How do a set of information sharing constraints impact the resulting emergent

system-wide behavior?

2. How can a system designer strategically set decision-making rules for the compo-

nents to offset any negative effects caused by information sharing constraints?

We address these questions in two settings: first in a cooperative setting, where the

system designer can design the decision-making rules for each agent, and second, in a

noncooperative setting, where the system designer must operate in the presence of an

attacker.

1.1 Model

Consider a set of N = {1, . . . , n} agents, where each agent i is endowed with a

set of actions Xi. Each action xi ∈ Xi is evaluated according to a utility function

Ui : X1 × · · · × Xn → R, which is dependent on the actions chosen by the other

agents. To highlight this dependence, we often use the notation Ui(xi, x−i), where

x−i := (x1, . . . , xi−1, xi+1, . . . , xn). In addition to the agents, we assume (following [14])

the presence of a system designer, who is able to assess the quality of a set of actions

using a global objective function f : X1×· · ·×Xn → R. The goal of the system designer

is for agents to choose an action profile xopt ∈ X = X1 × · · · ×Xn which satisfies

xopt ∈ arg max
x∈X

f(x) (1.1)

One challenge in finding xopt is that (1.1) is generally intractable, therefore even if the

system designer had the ability to explicitly assign actions to agents, it could not guar-

antee to find xopt in polynomial time. In most cases the system designer does not have

3
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this ability; therefore, assume that the system designer can only incentivize agents to

choose desirable actions by adjusting utility functions.

Under these constraints, one can define the emergent action profile xeq to be an

equilibrium, which satisfies

Ui(x
eq
i , x

eq
−i) ≥ Ui(xi, x

eq
−i), (1.2)

for all xi ∈ Xi and for all i ∈ N , i.e., given the actions of other agents, agent i has no

unilateral incentive to deviate from is choice xeq
i . Studying equilibria allows the system

designer abstract away the dynamics or algorithms of the system, and instead focus

on designing utility functions that are guaranteed to result in high-quality equilibria,

regardless of the choice of dynamics.

In this standard game theoretic model, it is generally assumed by the definition of

Ui that each agent can access the full actions of all other agents in the system. As

discussed, this may not be a realistic assumption in for many applications. Therefore,

one can consider two types of information sharing constraints, both of which are addressed

in this work

1. Type 1: Agents can only observe the actions of a subset of agents in the system.

2. Type 2: Agents can only observe the messages (which may or may not contain the

actions) of a subset of agents in the system.

We will precisely describe each.

1.1.1 Type 1 Information Sharing Constraints

The Type 1 information sharing constraint assumes that agent i only has access to

the actions of a subset Ni of other agents in the system. This is enforced by imposing

4
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that for any two action profiles x1, x2 ∈ X, all Ui have the following property:

x1
j = x2

j ∀j ∈ Ni =⇒ Ui(xi, x
1
−i) = Ui(xi, x

2
−i) ∀xi ∈ Xi. (1.3)

We use the notation Ui(xi, xNi), where xNi is the tuple of actions of agents in Ni. Thus

the Type 1 information sharing constraints are completely defined by the sets Ni. If

Ni = ∅ for all i, then each agent acts independently. On the other hand, if Ni = N \ {i}

for all i, then we recover the standard setting.

1.1.2 Type 2 Information Sharing Constraints

The Type 2 information sharing constraint assumes further that agent i does not

necessarily have access to the actions of agents in Ni, rather if j ∈ Ni, agent i has access

to a message mj. One way to model this is to consider a meta-action ai = (xi,mi), where

mi belongs to some message set Mi, and corresponding meta-utility function Vi(ai, a−i).

Again one can impose that for two meta-action profiles a1, a2, that Vi satisfies

m1
j = m2

j ∀j ∈ Ni =⇒ Vi(ai, a
1
Ni) = Vi(ai, a

2
Ni) ∀ai ∈ Xi ×Mi, (1.4)

i.e., Vi is not dependent on the action of any agent in Ni, only the message. Using

meta-actions allows one to therefore separate what each agent communicates to the

other agents from its contribution to the global objective function, which is still only

dependent on x. The Type 2 information sharing constraints are imposed by limiting the

sets Mi. For instance, if Mi = {0, 1} then agent i can share 1 bit with other agents, and

they must choose their actions without knowing xi. On the other hand, one could allow

more information by letting Mi = 2Xi ; here agent i could share its entire action set as a

message.

5
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For a system with Type 2 information sharing constraints, aeq = (xeq,meq) is consid-

ered an equilibrium if

Vi(a
eq
i , a

eq
−i) ≥ Vi(ai, a

eq
−i), (1.5)

for all ai ∈ Xi ×Mi and for all i ∈ N .

1.2 Illustrative Example

In this section, and several places throughout this work, we will leverage the Weighted

Set Cover (WSC) problem.

Example 1.1 (Weighted Set Cover Problem [15]) Consider a set of n agents and

a base set of resources S, where every s ∈ S has a value vs. Each agent’s action set is

a family of subsets of S, i.e., xi ⊆ S for all xi ∈ Xi, where Xi is not dependent on the

actions of other agents. The system designer objective is for the agents to select the most

valuable set of resources, i.e.,

f(x) =
∑
s∈∪ixi

vs. (1.6)

We first assume the presence of Type 1 information sharing constraints, in that agent i

has access to the actions of the agents inNi. Consider the problem instance in Figure 1.1a

with 3 agents and 4 resources. The black circles represent the agents, and the white

boxes represent the resources. The number next to each resource represents its value, for

instance resource s0 has value 1+ε for some small ε > 0. The blue lines (dashed and solid)

represent the action set Xi of each agent: Xi = {{s0}, {si}} for all i. The solid black lines

between agents represent the fact that Ni = N \{i} for all i. We will assume first that the

system designer endows each agent with a utility function Ui(xi, xNi) = f(xi, xNi). Thus

the value of an action compared to others in the action set is its added value relative to

the actions of the agents in Ni according to f .

6
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𝑠!
1 + 𝜀

𝑠" 𝜀

𝑠#
1

𝑠$
1

agent 1

agent 3agent 2

(a) In this system, all agents
share information with one an-
other. The equilibrium repre-
sented has value f(xeq) = 2 + 2ε,
or roughly 2/3 of the optimal
value.

𝑠!
1 + 𝜀

𝑠" 𝜀

𝑠#
1

𝑠$
1

agent 1

agent 3agent 2

(b) In this system, agents 2 and
3 share information with each
other. The equilibrium repre-
sented has value f(xeq) = 1 + 2ε,
or roughly 1/3 of the optimal
value.

𝑠!
1 + 𝜀

𝑠" 𝜀

𝑠#
1

𝑠$
1

agent 1

agent 3agent 2

(c) In this system, agent 1 shares
information with agents 2 and
3. The equilibrium represented
is the optimal allocation, despite
stricter information sharing con-
straints.

Figure 1.1: An example WSC problem with 3 different Type 1 information sharing
constraints. The black circles are the agents and the white squares are the resources.
Each action is a single resource, thus the blue lines between agents and resources
represent the various action spaces, for instance, X1 = {{s0}, {s1}}. The optimal
decision set is xopt = ({s0}, {s2}, {s3}), and f(xopt) = 3 + ε. The solid black lines
between agents represent the information sharing constraints on Ni: an edge exists
between i and j if and only if j ∈ Ni. Under these conditions, the dashed lines
represent a possible equilibrium of the system.
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In this setting, there are 3 possible equilibria: ({s1}, {s0}, {s3}), ({s1}, {s2}, {s0}),

and ({s0}, {s2}, {s3}) – the last one is also the optimal allocation, with value f(xeq) =

3 + ε. Figure 1.1a also shows the second listed equilibrium with the dashed blue lines.

In either non-optimal equilibrium, f(xeq) = 2 + 2ε, roughly 2/3 of the optimal, since ε is

small. In the literature it is well-known that with these utility functions and information

sharing constraints, the equilibrium for any resource allocation problem is guaranteed to

be within 1/2 of the optimal [16].

Figure 1.1b shows how different information sharing constraints can affect the possible

equilibria. The agents, action sets, utility functions, and objective function are the same,

however, here we impose that 2 /∈ N3 and 3 /∈ N2, i.e., agents 2 and 3 do not share

information with each other. In Figure 1.1b this is illustrated by the fact that there are no

solid black lines between agents 2 and 3. This new set of information sharing constraints

yields a different set of equilibria: ({s1}, {s0}, {s0}) and the optimal allocation. Since

agents 2 and 3 no longer consider each other’s actions in equilibrium, they both choose

s0 in the non-optimal equilibrium xeq, where f(xeq) = 1+2ε, roughly 1/3 of the optimal.

Therefore, we see in this instance that constraining information sharing has allowed for

a possibly-worse equilibrium – and a lower equilibrium guarantee than when all agents

share information with each other.

Figure 1.1c shows a problem instance where information sharing has been further

constrained: N1 = ∅ and N2 = N3 = {1}. Essentially, in equilibrium, agent 1 chooses

independently of the other agents, and agents 2 and 3 only consider the choice of agent 1.

Here, although these are tighter sharing constraints, the only equilibrium is the optimal

allocation. A more constrained setting has yielded a higher performance. While achieving

the optimal in this particular instance is an artifact of how the action sets intersect, it will

be shown in Chapter 5 that, like the full information setting, these information sharing

constraints recover the guarantee that any equilibrium will be within 1/2 of the optimal.

8
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Returning to the example in Figure 1.1b, one can find the optimal allocation if the

information sharing constraints are relaxed in a different way: suppose that we have

Type 2 information sharing constraints where Mi = 2Xi , i.e., each message can be some

subset of the action set. A possible meta-utility function is

Vi(ai, aNi) = |mi|+ max
xNi∈Πj∈Nimj

f(xi, xNi), (1.7)

recalling that ai = (xi,mi). In equilibrium, each agent is incentivized to choose mi = Xi

(the largest subset of Xi), and to choose the xi that maximizes f over all possible actions

of agents in Ni. For the example in Figure 1.1b, this causes agents 2 and 3 to recognize

that the best choice is {s2} and {s3}, respectively. Likewise, since agent 1 can see all

action sets, it knows that the best choice is {s0}, thus the optimal allocation is the

only equilibrium. Of course it will not hold that this choice of meta-utility will always

incentivize agents to choose an optimal decision set. The guarantees of such rules across

the set of WSC problems remains an open question.

1.3 Summary of Contributions

The example in the previous section illustrates that the study of how information

sharing constraints affect equilibria is nontrivial, and in some cases unintuitive. A rig-

orous understanding of the “value of information” is thus imperative to the efficiency

of these systems. Chapters 3–6 cover a cooperative setting, and Chapter 7 covers a

noncooperative setting.

Chapters 3–6 consider a class of problems where the system objective function is

submodular: it exhibits a “diminishing returns” property that will be defined precisely in

Chapter 2. Under these conditions, we are interested in the guarantees of any equilibrium,
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as compared to the optimal set of choices. Chapters 3–5 focus on Type 1 information

sharing constraints, whereas Chapter 6 focuses on Type 2.

Chapter 3 assumes the presence of an attacker, which has the capability to compro-

mise k agents in the system by either making them “blind” (they do not share informa-

tion) or isolated (they act independently of the other agents). We assume that the system

designer has chosen from a set of valid utilities that are related to the objective function

f . Under these conditions, we show how the worst-case equilibrium gets incrementally

worse as k increases. It is also shown that choosing a specific utility from within that set

can achieve a slightly higher guarantee.

Chapter 4 explores the slightly more general setting, where any Type 1 constraint is

allowed. The sets Ni can be modeled as a directed graph G = (V,E), where the vertices

are the agents and (i, j) ∈ E if and only if i ∈ Nj. It is well-known that if the graph is

complete, then the system designer can choose utilities within a set of valid utilities with

the guarantee that the resulting equilibrium will be valued within 1/2 of the optimal.

However, we show that this guarantee can degrade quickly when edges are removed from

the graph - in fact, for many graphs the guarantee is arbitrarily bad for large systems.

We propose constraining the set of utility functions further to those that additionally

have a consistency property, which mitigates this degradation.

Chapter 5 operates under many of the same assumptions as Chapter 4, however, it

is assumed that the graph G which represents the information sharing constraints, is a

directed acyclic graph (DAG). This particular set of graphs is important, because they

admit a simple greedy algorithm for arriving at an equilibrium. Given any DAG G, one

can sequence the nodes such that (i, j) ∈ E only if i < j. The algorithm proceeds as

follows: each agent sequentially chooses an action which maximizes its utility function

based on the actions of those agents which it can observe. Once each agent has chosen,

the resulting decision set is an equilibrium. Under these assumptions, the literature

10
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shows that a fully-connected graph will yield an equilibrium guaranteed to be within 1/2

of the optimal. We show that the performance guarantees degrade as the independence

number (the largest set of nodes among which there are no edges) of the DAG increases.

We then show, given a fixed number of edges, the graphs that provide the best efficiency

in this regard. Section 5.5 leverages Type 2 information sharing constraints, where the

message mi can either be xi, or the message mj from j ∈ Ni. For a particular set of

DAGs, we show the optimal set of meta-utility functions.

Type 2 constraints are also used in Chapter 6, where we assume G is a fully-connected

DAG. Here, agent i, in addition to sharing its chosen action, can augment the action sets

of future agents in the sequence by including some elements of its own action sets. This

could effectively offset a poor performance due to an agent not having access to any

valuable actions. We show bounds on how much this type of information increase could

boost performance and present a set of utilities and information sharing rules that are

near-optimal in this sense. Finally, we describe how performance is affected when these

near-optimal policies are intractable and can only be approximated.

Chapter 7 covers a noncooperative environment with 2 agents: a router (agent 1)

and an attacker (agent 2). The system designer cannot affect the utility function of the

attacker, only the router. The router is able to route some amount of traffic through a

network of links of limited capacity - each possible route is an action. The attacker has

a budget of traffic ra that it can use to flood traffic on some subset of links - each such

policy is an action. The information sharing constraints are Type 2 in that the router is

only aware of ra, i.e. m2 = ra and the attacker is aware of the router’s chosen action, i.e.

m1 = x1. Therefore, the equilibrium takes the form of the Stackelberg Equilibrium. The

system designer’s objective is to minimize the amount of traffic blocked, and it endows

the router with its utility function accordingly. We show that in this scenario, finding

the equilibrium policy is NP-Hard for both agents. However, for small networks, we give

11
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an analytical expression for the equilibrium and show how it is affected when the router

only knows that ra is on some interval, rather than its exact value. Finally, we show

that if N1 = ∅, i.e., the router knows nothing of the attacker’s capabilities, there exists

a tractable routing policy that offers robust guarantees against any value of ra.

12



Chapter 2

Technical Preliminaries

In this chapter, we will further discuss technical background that will be relevant to many

of the chapters in this work. Where specific sections deviate from the model presented

in Section 1.1 or the details presented in this chapter, it will be noted at the beginning

of the section.

2.1 Submodular Objective Functions

The focus of Chapters 3–6 is on system designer objective functions that are submodu-

lar. The optimization of such functions is a well-studied topic due to its wide application

space. Examples include sensor placement [17], maximizing and inferring influence in

a social network [18, 19], image segmentation in image processing [20], multiple object

detection in computer vision [21], document summarization [22], path planning of mul-

tiple robots [23], sensor placement [24], outbreak detection in networks [26], clustering

[27], assigning satellites to targets [28], path planning for multiple robots [23], and leader

selection and resource allocation in multiagent systems [29, 25]. The key thread in these

problems is that each exhibits some form of a “diminishing returns” property, e.g., adding

13
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more sensors to a sensor placement problem improves performance, but every additional

sensor marginally contributes less to the overall performance as the number of sensors in-

creases. Any problem exhibiting such behavior can likely be formulated as a submodular

optimization problem.

While polynomial algorithms exist to solve submodular minimization problems, [30,

31, 32], maximization has been shown to be NP-Hard for important subclasses of sub-

modular functions [33]. Therefore, even if the system designer could centrally assign

actions to agents, it would still not be computationally feasible to guarantee the optimal

set of actions.

Consider a system designer objective function of the form f(x) = g (∪ixi), where

g : 2S → R is:

1. submodular : g(A ∪ {s}) − g(A) ≥ g(B ∪ {s}) − g(B) for all A ⊆ B ⊆ S and

s ∈ S \B,

2. monotone: g(A) ≤ g(B) for all A ⊆ B ⊆ S,

3. normalized : g(∅) = 0.

For simplicity, we refer to f as being submodular, monotone, and normalized, without

referencing g. In doing so, we also abuse notation so that the input to f need not be

an action profile: rather, it can be the actions of a subset of agents, or it could be

multiple action profiles. For instance, f(xi, xj, xk) = g(xi ∪ xj ∪ xk) and f(xopt, xeq) =

g
(
xopt

1 · · · ∪ xopt
n ∪ x

eq
1 ∪ · · · ∪ xeq

n

)
.

Since the submodularity property is a statement about the marginal contribution of

an element to a set, and since this property is leveraged heavily thoughout this work, it

is convenient to define the marginal contribution of xA ∈ Πi∈AXi given xB ∈ Πi∈BXi,

according to f :

∆(xA|xB) := f(xA, xB)− f(xB). (2.1)

14
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Note that the following holds for two action profiles x, x′ ∈ X:

f(x, x′) = f(x′) +
∑
i∈N

∆(xi|x1, . . . , xi−1, x
′). (2.2)

2.2 The Price of Anarchy

Define a system to be the tuple H = (N,X, {Ui}i, I, f), where Ui is the utility func-

tion Ui for Type 1 constraints or the meta-utility function Vi for Type 2, and where I

represents the information sharing constraints. The set I = {Ni}i for Type 1 constraints

and I = ({Ni}i, {Mi}i) for Type 2. Denote H to be the set of all such systems. Here

we consider equilibria either of the form (1.2) for Type 1 constraints or (1.5) for Type

2 constraints. As mentioned, we assume in this work that such equilibria exist, and in

most of our contexts, we can prove that they do. One cannot assume, however, that

an equilibrium is unique. Since the system designer in our model cannot control which

equilibrium is reached, one way to evaluate a system H is by the value of its worst-case

equilibrium action profile compared to the value of the optimal action profile. Likewise,

when considering a set of possible utility functions or information sharing constraints,

one can evaluate the entire set H′ ⊆ H by finding the worst ratio between the worst-case

equilibrium and the optimal action profile. More formally, we define the price of anarchy

for a set of systems H′ as

PoA(H′) = min
H∈H′

xeq∈EQ(H)

f(xeq)

f(xopt(H))
∈ [0, 1], (2.3)

where EQ(H) is the set of all possible equilibria for system H, and xopt(H) is the optimal

action profile for system H. Note that the closer the price of anarchy is to 1, the more

desirable the resulting equilibrium performance.
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The price of anarchy has been well-studied in the literature [34, 35, 36], and has

been used in many applications, including job scheduling [37], congestion games [38],

and auctions [39]. We remark that many of our results endeavor to describe the price of

anarchy under various circumstances. The general approach to such proofs is to find a

lower bound on the PoA by leveraging the properties of submodular monotone functions

and other properties. Then one shows some form of tightness by designing a system or

set of systems such that f(xeq)/f(xopt) is close or meets that lower bound.

16



Chapter 3

Blind and Isolated Agents

In this chapter we begin with the assumption that f is submodular, and that information

sharing constraints are Type 1. This class of models offers a multitude of attractive

theoretical guarantees. For instance the submodularity of the objective function can be

leveraged in combination with a wide variety of utility function designs (yielding the class

of so-called valid utility games) to ensure that all equilibria are within a factor of 2 of the

optimal; i.e., the price of anarchy is 1/2 [16]. These types of results have a great deal of

synergy with the broader literature on submodular maximization.

Following from the initial successes of this game-theoretic model, recent work has

begun to critically investigate the robustness properties of this approach. For instance,

it has been shown that in general settings, slight changes to agent utility functions can

lead to dramatic changes in the quality of emergent behavior [40], and that faulty or

misbehaving agents can easily lead stochastic learning dynamics astray [41]. While a

comprehensive measure of robustness for such systems remains elusive, positive results

exist as well. In particular, for submodular maximization, it is known that performance

guarantees can be quite robust to discrepancies of information availability among the

agents when the agents are endowed with the specific marginal-contribution utility func-
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tion [42, 43]. Specifically, these papers show that the price of anarchy associated with

marginal-cost utility functions degrades gracefully as information is denied to agents —

this will be the topic of Chapter 5. While attractive, these preliminary positive robust-

ness results are limited in scope as they consider only the specific marginal-contribution

agent utility function, despite the fact that this is only one possible choice of utility

design and is not optimal in all settings [15, 44].

Accordingly, this chapter initiates a study on the robustness of performance guaran-

tees for the broad class of valid utility games - i.e., the system designer chooses utility

functions from within the set of valid utilities. We first study the effects of information

sharing constraints of a particular structure: a set of k agents is compromised either

by becoming blind (unable to observe the action choices of any other agent, but still

observable by others) or becoming isolated (unable to observe other agents or be ob-

served by other agents). Theorem 3.1 states that the price of anarchy when k agents

are compromised is 1/(2 + k), and that this bound is tight for any combination of blind

or isolated agents. This result is significant in at least two dimensions: first, it shows

for general valid utility games that, in line with the narrower characterization of earlier

work [42, 43], performance guarantees degrade gracefully as information is denied from

agents. Second, and perhaps more surprisingly, Theorem 3.1 illustrates that isolation is

no worse than blindness. Intuitively, this suggests that if an agent is blind, it might as

well be invisible also.

This raises the question: are blindness and isolation equivalent for all forms of utility

functions for the agents? Theorem 3.2 answers this in the negative, showing that if the

non-compromised agents are endowed with the marginal-contribution utility function,

isolation has a cost: the price of anarchy resulting when k agents are compromised

improves if some of the compromised agents are not isolated. Specifically, if at least 1 of

the k compromised agents is blind (but not isolated), then the price of anarchy improves
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to 1/(1 + k). Thus, Theorem 3.2 also demonstrates graceful degradation of performance

guarantees, and in addition shows that for some utility function designs, blindness can

indeed be strictly better than isolation.

3.1 Chapter Model

As stated, we assume that f is submodular and that the information sharing con-

straints are Type 1, i.e., they are defined by the sets Ni. One utility function that is of

note for this chapter and subsequent chapters is marginal contribution (MC), wherein

each agent maximizes its marginal contribution to the objective function f , with respect

to the remaining agents. More formally stated:

MCi(xi, xNi) := f(xi, xNi)− f(xNi). (3.1)

Of course, this class of problems admits many other utility functions as well. In this

work we consider those which satisfy the valid utility game assumptions of [16]:

Definition 3.1 A Valid Utility Game (VUG) is a system with no information sharing

constraints that satisfies the following three conditions:

1. f is submodular, nondecreasing, and normalized,1

2. Ui(xi, x−i) ≥ f(xi, x−i)− f (x−i)

3.
∑

i Ui(xi, x−i) ≤ f(xi, x−i)

Note that when f satisfies 1), MC is one possible choice of utility function that satisfies

2) and 3).

1The original defintion used in [16] did not require monotonicity or normalization, yet we impose that
as it suits our purposes here.
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3.1.1 Compromised Agents

We now describe additional information sharing constraints as compromised agents

of various forms. We begin with the assumption that H satisfies Definition 3.1, and then

some subset of agents is compromised in a way that fixes the sets Ni. We consider three

ways in which an agent can be compromised:

1. Blind agents : a blind agent does not know the actions of any other agents, i.e., if

agent i is blind, then Ni = ∅. We denote the set of blind agents as B ⊆ N .

2. Isolated agents : an isolated agent is blind, and the other agents are also blind to

it. In other words, if agent i is isolated, then Ni = ∅, and there is no j such that

i ∈ Nj We denote the set of isolated agents as I ⊆ N.

3. Disabled agents : a disabled agent i cannot contribute to system welfare and always

selects xi = ∅. The remaining agents are unaffected: Uj = Uj for j 6= i. We denote

the set of disabled agents as D ⊆ N .2

One way to model j /∈ Ni is to suppose that agent i assumes xj = ∅. We denote

K = B∪I∪D as the set of all compromised agents; i.e., K may contain any combination

of blind, isolated, and disabled agents. Note that a blind or isolated agent can still select

among its usual actions and its action choice still contributes to the system objective f

despite the denied observations. For an example of a VUG with compromised agents,

see Figure 3.1.

In this context, the equilibrium in (1.2) takes the form

U(xeq
i , x

eq
Ni) ≥ U(xi, x

eq
Ni), ∀ xi ∈ Xi, i ∈ N (3.2)

2Note that for the case of blind or isolated agents, if agent i cannot “see” the actions of agent j, agent
i effectively assumes that agent j is disabled. It should be noted that assuming disability is merely one
possibility and that optimal modeling of unobservable agents is an open area of research [43].
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5
Agent in 𝐾

Agent not in 𝐾

Available resource

1 3 2 4 6

𝑃! 𝑃" 𝑃# 𝑃$ 𝑃%

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠%

𝑠&

(a) A valid utility game (WSC problem) where some
agents have been compromised. The agents are rep-
resented by circles, with the black cross-hatch agents
being compromised. The action set for agent i is repre-
sented by the black lines to boxes, which are resources,
i.e., the action set for agent i is {{si}, {s6}}. Each agent
is endowed with the marginal contribution utility MCi.

Scenario 𝒙𝟏
𝐞𝐪 𝒙𝟐

𝐞𝐪 𝒙𝟑
𝐞𝐪 𝒙𝟒

𝐞𝐪 𝒙𝟓
𝐞𝐪 𝒇(𝒙)

Optimal 𝑠( 𝑠) 𝑠* 𝑠+ 𝑠, 20

No compromised agents 𝑠- 𝑠) 𝑠* 𝑠( 𝑠, 17

𝑃* , 𝑃+ , 𝑃, are blind 𝑠- 𝑠) 𝑠( 𝑠( 𝑠, 15

𝑃* , 𝑃+ , 𝑃, are isolated 𝑠- 𝑠( 𝑠( 𝑠( 𝑠, 12

𝑃* , 𝑃+ , 𝑃, are disabled 𝑠- 𝑠( ∅ ∅ ∅ 6

(b) Worst-case equilibria (and corresponding
evaluations) for five scenarios. The first two as-
sume that no agents have been compromised -
note that the optimal allocation is also an equi-
librium. The final three assume that agents
3, 4, 5 have been compromised in the same way.

Figure 3.1: A valid utility game (WSC problem) where some agents have been com-
promised. We see that making agents 3, 4, 5 blind causes agents 3 and 4 to both choose
s6. When 3, 4, 5 are blind and 1, 2 cannot see their actions (i.e., 3, 4, 5 are isolated),
this additionally causes agent 2 to choose s6. Finally, when 3, 4, 5 are disabled, we see
that they no longer contribute to the welfare of the system. While not every problem
instance would degrade in this manner, we shall see in the results of this paper that
this example is indicative of worst-case behavior.

In any VUG, such an equilibrium is not guaranteed to exist [16], although a mixed

equilibrium will [45]. Here we operate under the assumption that the equilibrium exists,

and leave the precise characterization of when this is true for future work. Again, we

focus on the solution concept of equilibrium so as to abstract away the mechanics of

specific learning rules and algorithms. Accordingly, we measure the effectiveness of a

given utility design by the price of anarchy.

3.2 Effects of Compromised Agents

In this section, we demonstrate guarantees about the price of anarchy in a complex

system when one or more agents in the system have been compromised. The effect this

has on the price of anarchy depends somewhat on whether the agents in the compromised
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set K are blind, isolated, or disabled.

3.2.1 Results

Theorem 3.1 Let HVUG(k) ⊆ H be the set of valid utility games satisfying Defini-

tion 3.1, where agents in K ⊆ N are subsequently compromised with |K| ≤ k. If at least

one agent is disabled, then PoA(HVUG(k)) = 0. Otherwise,

PoA(HVUG(k)) = max(1/(2 + k), 1/n) (3.3)

Before giving the formal proof, we give a brief overview and some discussion of the

significance of this result. It should be clear that having a disabled agent can be arbitrarily

bad, thus the PoA of 0 should not be surprising. In order to show the remaining cases, we

leverage the properties in Definition 3.1 and the definitions of blind and isolated agents

to give a lower bound on PoA(HVUG(k)). We then consider a subclass of VUGs where

agents are endowed with a Shapley value utility function [46] as an example to show that

the lower bound is tight.

Perhaps unintuitively, blind agents and isolated agents affect the PoA in the same

way; the information provided to the uncompromised agents by the actions of the blind

agents has no effect. The key deterrent to the PoA is that the compromised agents do not

consider the actions of others, not that others cannot see the actions of the compromised

agents.

Another way to look at this is to think about a directed graph (V,E), where each node

represents an agent and an edge (i, j) in the graph means that agent j’s utility function

depends on the action of agent i. In a general sense, one might expect that the more

“connected” the graph, the better the resulting PoA. Under the nominal setting, where
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no agent is compromised, the graph is complete, and we have PoA(HVUG(0)) = 1/2.

When a single agent i becomes blind, every edge (j, i) for j 6= i is removed from the

graph, but all edges (i, j) remain. According to Theorem 3.1, this results in a decrease

in the PoA to PoA(HVUG(1)) = 1/3. If agent i becomes isolated, this further removes

all edges (i, j) from the graph. However, Theorem 3.1 shows that the price of anarchy is

unchanged at PoA(HVUG(1)) = 1/3.

Proof: First we establish the case where agent i ∈ K is disabled. Then one could

construct an example with f and xi ∈ Xi such that f(xi, x−i) is arbitrarily large and

f(x−i) = 0 for any x−i. Since agent i is forced to choose ∅, we see that PoA(HVUG(k)) = 0.

For the remainder of the proof we assume that all agents in K are either blind or

isolated. In the first case we assume that |K| < n− 1. We show through the properties

of Definition 3.1 and the definition of blind and isolated agents that 1/(2+ |K|) is a lower

bound on PoA(HVUG(k)). Then we show that the bound is tight by choosing a particular

welfare function f and utility profile U such that f(xeq)/f(xopt) = 1/(2 + |K|).

Denote xj<i to mean x1, . . . xi−1, and denote Pi = N \ (I ∪D ∪ {i}), i.e., Pi is the set
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of agents whose actions agent i /∈ K “observes”. Then we see that

f(xopt) ≤ f(xopt, xeq) (3.4)

≤f(xeq) +
∑
i

f(xopt
i , xopt

j<i, x
eq)− f(xopt

j<i, x
eq) (3.5)

≤f(xeq) +
∑
i

f(xopt
i , xeq

Pi
)− f(xeq

Pi
) (3.6)

≤f(xeq) +
∑
i/∈K

Ui(x
opt
i , xeq

Pi
) +

∑
i∈K

f(xopt
i ) (3.7)

≤f(xeq) +
∑
i/∈K

Ui(x
eq
i , x

eq
Pi

) +
∑
i∈K

Ui(x
opt
i ) (3.8)

≤f(xeq) + f(xeq) +
∑
i∈K

Ui(x
eq
i ) (3.9)

≤f(xeq) + f(xeq) +
∑
i∈K

f(xeq
i ) (3.10)

≤(2 + |K|)f(xeq), (3.11)

where (3.4) is true since f is nondecreasing; (3.5) is true via (2.2); (3.6) is true by

submodularity of f ; (3.7) holds since the original Ui satisfy 2) in Definition 3.1 (2nd

term), and by submodularity of f (3rd term); (3.8) is true by defintion of equilibrium

(2nd term) and by the utlities of the blind and isolated agents (3rd term); (3.9) is true

since all Ui satisfy 3) in Definition 3.1 (2nd term) and by defintion of equilibrium (3rd

term); (3.10) is true by the defintion of Ui for agents in K; and (3.11) is true since f is

nondecreasing.

To see the upper bound, consider a scenario where f is of the form

f(x) =
∑
s∈S

fs(|x|s), (3.12)

where |x|s denotes the number of agents which have selected element s under action profile
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x. The functions fs : {1, . . . , N} → R are nonnegative, i.e., fs(i) ≥ 0; nondecreasing,

i.e., fs(i + 1) ≥ fs(i); and have decreasing marginal returns, i.e., fs(i + 1) − fs(i) ≥

fs(i + 2) − fs(i + 1). When f has this form, this represents a well-studied set of games

called distributed resource allocation games (see, for instance [47]).

We also assume that, before agents are compromised, all are endowed with the equal

share (ES) utility, wherein each agent chooses an action according to the following:

ESi(xi, x−i) =
∑

s∈S(xi)

1

|x|s
fs(|x|s), (3.13)

where S(xi) is the set of elements in action xi. Essentially, when multiple agents choose

the same resource, the agents divide the utility fs(|x|s) equally. We note that the ES

utility is an instance of the more general Shapley value utility, also a subject of much

study within the literature.

Based on the construction of fs and therefore f , it should be clear that f satisfies 1)

in Definition 3.1. Likewise, it should be immediately clear that when ES is employed, 3)

in Definition 3.1 is satisfied with equality. We can also see that 2) is satisfied since

f(x)− f(∅, x−i) =
∑

s∈S(xi)

fs(|x|s)
|x|s

− fs(|x−i|s)
|x−i|s

, (3.14)

≤
∑

s∈S(xi)

fs(|x|s)
|x|s

= ESi(x). (3.15)

Therefore, since f satisfies (3.12), the system is a VUG.

Assume that the example shown in Figure 3.2 is such a game, where now a subset of

agents K are all blind. The blind agents are represented by the black cross-hatch circles,

and the other agents as blue circles. Each agent has access to its own resource (the box

closest to it) and a central resource. The value vs of resource r is the value listed in the
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Figure 3.2: An example game used in the proof for Theorem 3.1, a WSC problem where
now a subset of agents K are all blind. Each agent has access to its own resource (the
box closest to it) and a central resource. The value vs of resource r is the value listed
in the box, where ε, δ > 0 are small, and f(x) =

∑
s∈S(x) vs. We see that the agents

in K will all choose the central resource, since they all act independently. Agents not
in K are endowed with ES, and therefore are also incentivized to choose the central
resource. This implies f(xeq) = 1 and as ε, δ → 0 and n→∞, f(xopt)→ 2 + |K|.

box, where ε, δ > 0 are small. Then fs = vs, i.e., f(x) =
∑

s∈S(x) vs. We see that the

agents in K will all choose the central resource, since they all act independently. We also

see that in any equilibrium, all agents not in K are also incentivized to choose the central

resource, since they are endowed with ESi. Therefore, f(xeq) = 1. The optimal allocation

is for one agent not in K to choose the central resource and the remaining agents to choose

their alternates, implying that f(xopt) = 1 + (n − |K| − 1)(1/n − δ) + |K|(1 − ε). As

ε, δ → 0, and n→∞, we see that

f(xeq)

f(xopt)
→ 1

2 + |K|
. (3.16)
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3.2.2 Marginal Contribution Utility

In this section, we consider the use of the marginal contribution utility and whether

using this specific utility function design can offset the decrease in PoA that we saw in

Theorem 3.1. We show that marginal contribution utility can give a higher PoA in the

presence of blind agents.

Theorem 3.2 Let HMC(k) ⊆ HVUG(k) be the of systems which where f is submodular

and which leverage MCi for all agents, where agents K ⊆ N are compromised such that

|K| ≤ k. If one agent is disabled, then PoA(HMC(k)) = 0. Otherwise

PoA(HMC(k)) =


1

1+|K| , if |B| > 0,

max
(

1
2+|K| ,

1
n

)
, if |B| = 0.

(3.17)

The proof is found in Appendix A.1.

3.3 Simulation

In this section we present empirical findings from the results of running a simulation

of stochastic learning dynamics applied to a VUG in which agents are endowed with

a marginal contribution utility function. We simulate the popular log-linear learning

dynamics [48, 49] to validate the results and explore the effect of “noisy” behavior on these

low-quality equilibria. Log-linear learning operates in discrete steps at times t = 0, 1, . . . ,

producing a sequence of joint actions x(0), x(1), . . . . We assume agents begin with an

arbitrary joint action x(0) ∈ X, and let x(t) = (xi, x−i) ∈ X. At time t ∈ N, agent i ∈ N

is selected uniformly at random to update its action for time t + 1; all other agents’

actions will remain fixed for time t + 1. At time t + 1, agent i chooses action xi ∈ Xi
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with probability

pxii (t+ 1) =
eUi(xi,x−i(t))/T∑

ãi∈Xi e
Ui(ãi,x−i(t))/T

. (3.18)

“Temperature” parameter T > 0 dictates an updating agent’s degree of rationality and

is identical for all agents i ∈ N . As T → 0, agents are increasingly likely to select utility-

maximizing actions, and as T → ∞, agents tend to choose their next actions uniformly

at random. The joint action at time t+ 1 is x(t+ 1) = (xi(t+ 1), x−i(t)).

(a) Simulations with temperatures ranging from
0.001 to 0.016.

(b) Simulations with temperatures ranging from
0.001 to 10.

Figure 3.3: Plots representing simulation results of the game shown in Figure 3.2,
with n = 10, |K| = 9, with the exceptions that the agent not in K has the MC utility
and its alternate resource has value ε = 0.05. For each trace, log-linear learning is run
for 200,000 iterations for each temperature value. The solid blue trace corresponds
to all agents in K being blind, and the dashed red trace corresponds to all agents
in K being isolated. Note that for very low temperatures (effectively the agents are
playing asynchronous best-response dynamics), blindness has a slight advantage over
isolation in accordance with Theorem 3.2.

We run log-linear learning on the game depicted in Figure 3.2 with the following

exceptions: there is only 1 agent not in K, it is endowed with the MC utility, and its

“alternate” resource option has value ε. We use n = 10, |K| = 9, and ε = 0.05, and for

each value of T , we report the average value of f(x) for 200,000 trials. The difference in
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a game in which all the compromised agents are isolated versus one in which at least one

of these agents is blind can be seen in Figure 3.3a. The compromised agents in K are all

blind in the first simulation (solid blue), and all are isolated in the second (dashed red).

For this game, since ε = 0.05, the optimal selection of resources yields a value of the

welfare function of 9.55. The equilibrium yields a value of 1 when all agents in K are

isolated, and 1.05 when at least one agent in K is blind. In the simulation, the game in

which all the agents were blind had a minimum average value of the welfare function of

1.050015, hence the price of anarchy is 0.10995. The game in which all the agents were

isolated had an minimum average value of welfare function of 1.000034, giving a price of

anarchy of 0.1047. These values of the price of anarchy differ slightly from those given

by Theorem 3.2 since ε 6= 0. As temperature increases, the instability of the equilibrium

becomes apparent, and the average of the welfare function increases with an increase in

temperature until this value is indistinguishable from that produced by a purely random

strategy as seen in Figure 3.3b.

An intriguing aspect of this example is that the equilibrium, representing a worst-

possible equilibrium in the class of games PoA(HMC(9)), is actually among the worst

action profiles in the game. Hence, a large value of T (i.e., agents selecting actions

uniformly at random) results in play that is of far higher quality than the equilibrium.
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Chapter 4

Graph Constraints

This chapter operates under much the same setting as Chapter 3: we consider the set

of systems which are valid utility games and are subsequently attacked or otherwise

constrained on information sharing. The set of constraints, however, is slightly more

general. Rather than an agent being blind to all other agents, this chapter examines the

scenario where an agent can be blind to some subset of other agents. In other words,

agent i has some subset of agents Ni whose messages it observes in equilibrium.

The sets Ni define a directed graph G = (V,E), where V = N and (j, i) ∈ E if

j ∈ Ni. We refer to such a graph as an information sharing constraint graph, as it

effectively represents the information sharing constraints on the system. Given a graph

G, two natural questions arise:

1. How does the structure of G affect the price of anarchy of the class of VUGs subject

to G?

2. What utility functions can provide a better price of anarchy?

Theorem 4.1 addresses the first question: essentially, the price of anarchy is tied to

the number of groups of agents who have access to the same information - for instance,
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1 2 3 4
(a) In this graph, there are 4 cliques of size 1 (one for each
node), 5 cliques of size 2 (one representing each edge), and 2
cliques of size 3 (the sets {1, 2, 3} and {1, 2, 4}). Thus ω(G) =
3. A minimum clique cover is {1, 3}, {2, 4}, so k(G) = 2. The
maximum independent set is {3, 4}, thus α(G) = 2. Since
α(G) = k(G) = 2, we know that α∗(G) = k∗(G) = 2. Ap-
pendix A.3 shows that the price of anarchy is 1/2, making
it a graph that meets the upper bound for Theorem 5.1 (see
Section 5.3.1). Lastly, it is also an example of a graph with-
out the Sibling Property (see Section 5.4.3), since no such w
exists from Definition 5.1.

1 2 3 4 5
(b) A graph where α(G) = 2, k(G) =
3, α∗(G) = k∗(G) = 2.5, and

z = [1/2, 1/2, 1/2, 1/2, 1/2]
T

maximizes
(4.3). As a note, this is the graph with
the fewest number of nodes and edges
such that α(G) 6= k(G). This is also
a graph with the Sibling Property (see
Section 5.4.3), since for maximum inde-
pendent set {2, 4}, 2 ∈ N3, so w = 3
from Definition 5.1.

Figure 4.1: Two example graphs showcasing the graph properties defined in Section
4.1. These graphs will be referred to throughout this to illustrate the tightness of
bounds in Theorem 5.1 and to illustrate the Sibling Property (see Section 5.4.3).

in the complete graph, this number is 1. As edges are removed, this number increases,

and it is shown that strategically removing n−1 edges from the complete graph degrades

the price of anarchy to 1/(n+ 1), arbitrarily bad for large systems.

Theorem 4.2 addresses the second question by introducing a subset of VUGs, where

the utility functions must all satisfy a certain consistency property. Among this smaller

set of systems, a lower bound on the price of anarchy is instead tied to the largest set

of nodes in G, among whom there are no reciprocal edges. This lower bound is at least

as high as the value of the price of anarchy for the general VUG setting, and is strictly

better for most graphs. Additionally, Proposition 4.1 provides an upper bound on the

price of anarchy for any fixed utility function. This bound is also given in terms of the

largest set of agents in G among whom there are not any edges.
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4.1 Review of Graph Theory Terms

For all definitions in this work, we assume that G = (V,E) is a simple directed graph.

We begin with cliques:1 a clique is a set of nodes C ⊆ V such that for every i, j ∈ C,

either (i, j) ∈ E or (j, i) ∈ E. The clique number ω(G) is the number of nodes in the

largest clique in G. We denote by K(G) the set of all cliques in G. A clique cover is a

partition on V such that the nodes in each set of the partition form a clique. The clique

cover number k(G) is the minimum number of sets needed to form a clique cover of G.

For an example, see Figure 4.1a.

Another important notion in graph theory is that of independence. An independent

set J ⊆ V is a set of vertices such that v1, v2 ∈ J implies (v1, v2), (v2, v1) /∈ E. A

maximum independent set is an independent set of G such that no other independent set

has more vertices. The independence number α(G) is the number of nodes in the largest

independent set in G. For an example, see Figure 4.1a.

The work in [50] equivalently characterizes the independence number as the solution

to an integer linear program 2. Let Q ∈ R|K(G)|×n be the binary matrix whose rows are

indicator vectors for the cliques in G. In other words, Qij = 1 if node j belongs to clique

i in G, and 0 otherwise. Note that Q also includes cliques of size 1 (the individual nodes).

Then α(G) is given by

max
z

zT1

subject to Qz ≤ 1

z ∈ Zn ≥ 0.

(4.1)

It is similarly shown that k(G) is characterized by the dual to this problem, implying

1The terms clique and independence set are traditionally defined only for undirected graphs, however,
we adapt those terms for our purposes here.

2It is actually the chromatic number and clique number that are defined this way in [50]. However,
using graph complementarity, it is an easy extension to show that the solution to the linear program in
(4.1) yields a maximum independent set.
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that α(G) ≤ k(G). As an example, for the graph in Figure 4.1a,

Q =

Node 1 Node 2 Node 3 Node 4



1 0 0 0 {1}

0 1 0 0 {2}

0 0 1 0 {3}

0 0 0 1 {4}

1 1 0 0 {1, 2}

1 0 1 0 {1, 3}

1 0 0 1 {1, 4}

0 1 1 0 {2, 3}

0 1 0 1 {2, 4}

1 1 1 0 {1, 2, 3}

1 1 0 1 {1, 2, 4}

(4.2)

Using this Q in (4.1), it is straightforward to show that the optimal solution is z =

[0, 0, 1, 1]T , i.e., α(G) = 2, and the maximum independent set is {3, 4}.

Note by defintion that α(G) and k(G) are always positive integers. However, in many

applications, it is helpful to consider a real-valued relaxation on these notions: this is the

motivation for fractional graph theory [50]. Here we leverage the fractional independence
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number α∗(G), which we define as the real-valued relaxation to (4.1): 3

α∗(G) := max
z

zT1

subject to Qz ≤ 1

z ≥ 0.

(4.3)

Likewise, k∗(G), the fractional clique cover number of G, can be defined by its dual

k∗(G) := min
y

yT1

subject to QTy ≥ 1

y ≥ 0.

(4.4)

In accordance with the Strong Duality of Linear Programming [52], it follows that:

α(G) ≤ α∗(G) = k∗(G) ≤ k(G). (4.5)

An example of a graph where the independence number differs from the fractional inde-

pendence number is found in Figure 4.1b.

In this work, we introduce the notion of an information group: a set of nodes which is

fully connected, and which have the same incoming neighbors. Formally stated, T ⊆ N is

an information group of G if for all i, j ∈ T , Ni∪{i} = Nj ∪{j}. An alternate definition

is that if A(G) is the adjacency matrix of G, then all rows of A(G) + I associated with

the nodes in T are the same. A maximal information group is an information group

that is not a subset of any other information group. We denote the set of all maximal

information groups of G as T (G), which is both unique and a partition on the nodes of

3Another defintion of fractional independence exists in the literature (see [51]), which was created to
preserve certain properties of graph independence (such as nested maximality), but has not been shown
to preserve α∗(G) = ω∗(Ḡ), where Ḡ is the complement graph of G and ω∗(G) is the fractional clique
number of G.
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1 2

43
𝜏 𝐺 = 1

1 2

43
𝜏 𝐺 = 2

1 2

43
𝜏 𝐺 = 3

1 2

43
𝜏 𝐺 = 4

Figure 4.2: An illustration of information groups. The first graph is a complete graph,
thus all nodes are in the only information group. The second graph has edge (1, 2) re-
moved, thus T (G) = ({1, 3, 4}, {2}), since 2 is the only node without an incoming edge
from 1. The third graph further has edge (3, 1) removed, and T (G) = {3, 4}, {1}, {2}.
Finally the last graph has edge (4, 3) removed, and each node is its own information
group.

G. Denote τ(G) = |T (G)|. See Figure 4.2 for an example.

4.2 Valid Utility Games with Graph Constraints

In this section, we endeavor to show how the structural properties of information

sharing constraint graph G are related to the set of possible resulting equilibria. As in

the previous chapter, we make this comparison in terms of the price of anarchy. Assume

that the system designer uses a set of utility functions that satisfy Definition 3.1, i.e., the

system is a valid utility game. Then we define HVUG(G) ⊆ H to be the set of all systems

which are valid utility games that are subsequently subjected to the information sharing

constraints graph G.

Theorem 4.1 For any G where G has at least one edge,

PoA(HVUG(G)) =
1

1 + τ(G)
≥ 1

n+ 1
. (4.6)

The full proof is given in Appendix A.2, but here we give an overview. Submodularity

and the properties from Definition 3.1 are used to establish that PoA(HVUG(G)) ≥ 1
1+τ(G)

.
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Tightness is shown by example, where one carefully constructs a problem instance and

set of utility functions that satisfy Definition 3.1 so that agents are incentivized into

making poor decisions.

This result effectively generalizes the results from Chapter 3, since each compromised

agent is its own information group, and the remaining agents form another. While these

results were somewhat positive: compromising one agent only increases the denominator

for the PoA by one, Theorem 4.1 effectively shows that the general class of valid utility

games is not robust against these types of information constraints. For instance, consider

the example set forth in Figure 4.2. In the leftmost graph, which is a complete graph,

we see that PoA(HVUG(G)) = 1/2, recovering the well-known result from [16]. However,

the rightmost graph only has 3 edges removed, yet τ(G) = 4, and PoA(HVUG(G)) = 1/5.

In fact, for any number of agents this example is instructive: there exist n− 1 edges that

can be removed form the complete graph such that PoA(HVUG(G)) moves from 1/2 to

1/(n + 1) — arbitrarily bad. For large systems, this implies that the system designer

cannot be content to simply choose utilities that satisfy Definition 3.1.

To this end, we introduce an additional utility function property called consistency.

A utility function is consistent if

Ui(xi, xA) ≥ Ui(xi, xB), (4.7)

for all A ⊆ B ⊆ N \ {i}, for all xi ∈ Xi, xA ∈ Πj∈Axi, xB ∈ Πj∈Bxj, and for all i ∈ N .

Here the sets A and B represent possible choices of incoming neighbors; the consistency

property simply states that an agent’s preference for any action decreases as the set of

agents that it can observe grows. Many common choices of utility functions, including

the marginal contribution utility function MCi, satisfy this property. Considering now

valid utility functions that are also consistent, we have the following result.
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Theorem 4.2 For any graph G,

PoA(Hc(G)) ≥ 1

1 + α∗(Ḡ)
, (4.8)

where Hc(G) ⊆ HVUG(G) is the set of all consistent valid utility games which are subse-

quently subjected to G, and Ḡ is the subgraph of G such that any “non-reciprocal” edges

from G are removed, i.e. if Ḡ = (V̄ , Ē), then V̄ = V , and (i, j) ∈ Ē iff (i, j), (j, i) ∈ E.

Proof: Begin with

f(xopt) ≤f(xeq) + ∆(xopt|xeq), (4.9)

=f(xeq) +
∑
i

∆(xopt
i |x

opt
1:i−1, x

eq), (4.10)

≤f(xeq) +
∑
i

∆(xopt
i |x

eq
Ni), (4.11)

≤f(xeq) +
∑
i

Ui(x
opt
i , xeq

Ni), (4.12)

≤f(xeq) +
∑
i

Ui(x
eq
i , x

eq
Ni), (4.13)

where (4.9) and (4.11) are true by submodularity of f , (4.12) is true from 2) of Defini-

tion 3.1, and (4.13) is true by definition of equilibrium. Now suppose that we have a set
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of scalars {yk}k∈K(Ḡ), such that yk ≥ 0 and
∑

k:i∈k yk ≥ 1 for all i. Then

∑
i

Ui(x
eq
i , x

eq
Ni) ≤

∑
i

Ui(x
eq
i , x

eq
Ni)

 ∑
k∈K(Ḡ):i∈k

yk

 (4.14)

=
∑
i

∑
k∈K(Ḡ):i∈k

ykUi(x
eq
i , x

eq
Ni) (4.15)

=
∑

k∈K(Ḡ)

∑
i∈k

ykUi(x
eq
i , x

eq
Ni) (4.16)

≤
∑

k∈K(Ḡ)

∑
i∈k

ykUi(x
eq
i , x

eq
k\{i}) (4.17)

≤
∑

k∈K(Ḡ)

yk
∑
i∈k

Ui(x
eq
i , x

eq
k\{i}) (4.18)

≤
∑

k∈K(Ḡ)

ykf(xeq
k ) (4.19)

≤f(xeq)
∑

k∈K(Ḡ)

yk, (4.20)

where (4.17) is true by the consistency property, (4.18) is true by 3) of Definition 3.1,

and (4.19) is true by the monotonicity of f . Combining this with (4.13) yields

f(xeq)

f(xopt)
≥ 1

1 +
∑

k∈K(Ḡ) yk
. (4.21)

The choice of {yk}k∈K(Ḡ) that minimizes
∑

k∈K(Ḡ) yk will therefore give the highest lower

bound. One can formulate this as

min{yk}k∈K(Ḡ)

∑
k∈K(Ḡ) yk

subject to
∑

k:i∈k yk ≥ 1, for all i

yk ≥ 0, for all k.

(4.22)

This is equivalent to the formulation of k∗(Ḡ) in (4.4). Since k∗(Ḡ) = α∗(Ḡ), this
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completes the proof.

The consistency property allows one to make a stronger guarantee about the set of

resulting equilibria. For instance, consider again the example in Figure 4.2. Of course,

the complete graph on the left is such that α∗(Ḡ) = α∗(G) = α(G) = 1. Therefore,

Theorem 4.2 gives the same bound as the more general case: that PoA(Hc(G)) ≥ 1/2.

The rightmost graph G is such that Ḡ is a line graph: edges (2, 1), (1, 3), and (3, 4)

are removed since they have no reciprocal. Here α∗(Ḡ) = α((̄G)) = 2, ensuring that

PoA(Hc(G)) ≥ 1/3, compared to 1/5 for the more general case. In fact, its trivial to

show that τ(G) ≥ α(Ḡ) for any G, since if 2 nodes are in the same information group

in G, they cannot be independent in Ḡ. Therefore, the system designer is better off (in

terms of equilibrium guarantees) implementing consistent utilities within the valid utility

framework.

4.3 A Bound on Optimal Utilities

In this section, we relax the assumption that the system is a valid utility game.

Instead, we consider the class of all admissible utility functions, and we show an upper

bound on the price of anarchy given the information sharing constraint graph G.

Proposition 4.1 For any admissible utility function profile U = (U1, . . . , Un) and any

graph G,

PoA(HU(G)) ≤ 1

α(G)
, (4.23)

where HU(G) ⊆ H is the set of systems that employ U and are subject to the information

sharing constraint graph G.

Proof: This proof is given by example. For ease of notation, denote α to mean

α(G) and let J ⊆ N to be a fixed maximum independent set. Consider a WSC problem
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Figure 4.3: An example for the proof of Proposition 4.1. The agents are labeled
{1, . . . , 5}, the solid lines represent the graph G, and the dashed lines represent the
actions available to each agent. G is a ring graph with 5 agents, and J = {1, 4} (the
green nodes). In a worst-case equilibrium, the green agents choose s0 and the rest
choose si. The optimal choices are for the green agents to choose si and one of the
blue agents choose s0.

with base set of resources S = {s0, . . . , sn}. Let f(s0) = 1, let f(si) = 1 for i ∈ J , and

let f(si) = ε for i /∈ J and for some small ε. For every agent i ∈ J , the action set is

Xi = {{s0}, {si}}. For every agent i /∈ J , the action set is Xi = {{si}}, in other words

these agents have only a single action to choose. See Figure 4.3 for an example.

Based on G agents in J cannot have a utility which directly accounts for the action of

any other agent in J at equilibrium. One can assume without loss of generality that for

i ∈ J , Ui(si) ≤ Ui(s0), since the two elements are indistinguishable except by indexing,

which could easily be switched. Therefore, a worst-case equilibrium decision set xeq

would be all agents in J choose {s0} and all other agents choose {si}. In this case

f(xeq) = 1 + (N − α)ε. On the other hand, the optimal action profile xopt is where all

agents choose si, implying that f(xopt) = α + 1 + ε+ (N − α− 1)ε. Then

lim
ε→0

f(xeq)

f(xopt)
= lim

ε→0

1 + (N − α)ε

α + (N − α)ε
=

1

α
. (4.24)

By definition, this is then an upper bound on PoA.
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For many graphs, there is still a large gap between the upper bound on PoA shown in

Proposition 4.1 and the lower bound for consistent valid utilities shown in Theorem 4.2.

For instance, if G is a fully-connected directed acyclic graph, then PoA(Hc(G)) ≥ 1/(n+

1). However, we will see in the next chapter that deploying the utility MC can guarantee

a PoA of 1/2 for this graph constraint. Thus utilities which are optimal in this sense are

a study of future work.
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The Greedy Algorithm

5.1 Introduction

The scope of this chapter is to consider Type 1 information sharing constraints that

take the form of a directed acyclic graph (DAG). DAGs are particularly noteworthy,

because they imply a sequencing of the agents, such that (i, j) ∈ E, then i comes before j

in the sequence; assume without loss of generality that the agents are numbered according

to such a sequence. This implies that at equilibrium, agent 1 has chosen independently

it’s best action without regard to the actions or messages of any other agents. Once

it has made such a choice, it has no reason to deviate. Likewise, once agent 1 has

made its choice and sent its messages, agent 2 makes its choice based (possibly) off that

information. After agent 1 has chosen, agent 2 has no incentive to deviate from its choice,

and so on through the sequence. This consequential behavior of an information sharing

constraint graph in the form of a DAG has two benefits:

1. an equilibrium always exists.

2. a simple greedy algorithm always exists for fniding such an equilibrium.

42



The Greedy Algorithm Chapter 5

Because of this, even if the problem doesn’t inherently have an information sharing

constraint graph G that is a DAG, one method of system design is to endow the agents

with utility functions Ui that artificially create a DAG by “ignoring” the information

that come from future agents in the sequence. Whether artifically imposed or not, all

graphs in this chapter are assumed to be DAGs. Therefore, we shift focus from equilibria

to greedy algorithms, keeping in mind that the result of such algorithms will also be an

equilibrium.

As discussed in Chapter 2, submodular maximization is an NP-Hard problem in

general. Thus a tremendous effort has been placed on developing fast algorithms that

approximate the solution to the submodular maximization problem [53, 54, 55, 56, 57,

58, 28]. A resounding message from this extensive research is that very simple algorithms

can provide strong guarantees on the quality of the approximation.

The seminal work in [54] demonstrates that a centralized greedy algorithm provides

a solution that is within 1/2 of the quality of the optimal solution. In fact, more sophis-

ticated algorithms can often be derived for certain classes of submodular maximization

problems that push these guarantees from 1/2 to 1 − 1/e [53, 59, 60]. Progress beyond

this level of suboptimality is not possible in general, because it was also shown that no

polynomial-time algorithm can achieve a higher guarantee than (1−1/e), unless P = NP

[61].

One appealing trait of the greedy algorithm is that it can be implemented in a dis-

tributed way while still maintaining the 1/2 performance guarantee: this is the case where

G is a fully connected DAG and Ui = MCi for all i. Other research has begun to explore

how limited information can impact the performance of this distributed algorithm. For

example, [25] focuses on the submodular resource allocation problem, modeled as a game

played among agents. The resulting Nash equilibria have the familiar 1/2 performance

guarantee, however it is shown that when information is limited to be local instead of
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global, the performance guarantee degrades to 1/n, where n is the number of agents. The

work in [62] formulates the problem of selecting representative data points from a large

corpus as a submodular maximization problem. In order to perform the optimization

in a distributed way, agents are partitioned into sets, where the full greedy algorithm is

performed among agents within a set, while no information is transferred between sets.

In this setting, the paper shows that the algorithm performance is worse than 1/2, even

when a preprocessing algorithm is used to intelligently assign decision sets to each agent.

Other work in [28] discusses the role of information in the task assignment problem.

It is shown that the distributed greedy algorithm can be implemented asynchronously,

with convergence in a finite number of steps. Additionally, when agent action sets are

based on spatial proximity, agents need only consider local information to achieve the

1/2 bound. Finally, the work in [42] studies the performance of the distributed greedy

algorithm when an agent can only observe a local subset of its predecessors. It is shown

that localizing information, particularly when agents are partitioned from each other,

leads to a degradation in performance. For instance, in the case where agents are par-

titioned into sets, performing the full greedy algorithm within the set and obtaining no

information outside the set, the performance degrades proportionally to the number of

sets in the partition.

This chapter studies system design under a few different scenarios. First, we assume

that Ui = MCi for all i, and show in Theorem 5.1, similar to the results in Chapter 4,

that the price of anarchy guarantees are related to the fractional independence number

α∗(G). Theorem 5.2 addresses the scenario where the system designer can design the

DAG, given the number of agents and the number of edges. We show that disconnected

cliques maximize the use of edges in terms of price of anarchy. Finally, we explore Type

2 information sharing constraints, where the message mi can either be xi or some other

message mj for j ∈ Ni. Under this scenario, we present the optimal utility functions Ui
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for a particular class of DAGs.

5.2 Examples

1 2 3 4

𝑣! = 2 𝑣" = 1 𝑣# = 	4 𝑣$ = 2 𝑣% = 1

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠%
(a) The setup of a WSC problem. The resources
are S = {s1, ..., s5}, each represented by a box,
and each with a corresponding value. The avail-
able choices to each agent are represented by the
black lines (both dotted and solid) - for instance
X1 = {{s1}, {s3}}, X2 = {{s2}, {s3}}, etc. The
dashed lines represent an optimal set of choices.
The goal for the agents is to maximize f(x) in (1.6).
Using the generalized distributed algorithm (i.e.,
agents choose according to (5.1)), agent 1 chooses
s3, since v3 > v1. Then, agent 2, who (accord-
ing to the graph) does not know that agent 1 has
chosen s3, also chooses s3, since s3 > v2. Agent 3
observes that agents 1 and 2 have both chosen s3,
so it chooses s4, since v4 > v5. Finally, agent 4,
observing that agent 1 has chosen s3 (but not that
agent 3 has chosen s4), chooses s4, since v4 > v5.
These results are summarized in the table below.

Algorithm xsol
1 xsol

2 xsol
3 xsol

4 f(xsol)

Optimal {s1} {s3} {s4} {s5} 9
Distributed Greedy {s3} {s2} {s4} {s5} 8

Generalized Distributed Greedy {s3} {s3} {s4} {s4} 6

(b) For the WSC problem outlined to the left, this
table shows the agents’ decisions in an optimal
case, the case where the distributed greedy algo-
rithm is used (G is a fully connected DAG)and
the case where the generalized distributed algo-
rithm is used (agents choose according to (5.1),
constrained to the graph shown above). The dif-
ference between the distributed greedy algorithm
and the generalized version can be seen in the
choices of agents 2 and 4. Agent 2 chooses s3
when it can observe that s4 has already been cho-
sen by agent 1, otherwise it chooses s4. Likewise,
agent 4 chooses s5 only when it knows that s4
has already been selected. Therefore, as the in-
formational constraints grow, the solution qual-
ity decreases. As a note, in this case we see that
f(xsol)/f(xopt) = 6/9.

Figure 5.1: An instance of the weighted set cover problem and the performance of the
greedy algorithm in solving it.

To start we assume that Ui = MCi for all i. Then the greedy algorithm proceeds as

follows: each agent sequentially chooses an action xsol
i that satisfies the following rule:

xsol
i ∈ arg max

xi∈Xi
MCi

(
xi, x

sol
Ni

)
= arg max

xi∈Xi
f(xi, x

sol
Ni)− f(xsol

Ni). (5.1)

In other words, each agent chooses the best action, according to f based on some subset

of previoius agents in the sequence Ni whose actions it can observe. See Figure 5.1 for
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an example.

We next present another relevant problem that can be modeled accordingly. This

serves to give a scope and relevance to the model, as well as provide an example that will

be leveraged later.

Example 5.1 (Vehicles target assignment problem [63]) Consider the classic ve-

hicles target assignment problem where there are a collection of targets T and each target

t ∈ T has an associated value vt ≥ 0. Further, there exists a collection of n agents,

and each agent i is associated with a success probability pi ∈ [0, 1] and a set of possible

assignments Xi ⊆ 2T . The agents make decisions to reach a feasible allocation of agents

to targets x = (x1, . . . , xn) ∈ X1 × · · · × Xn that optimizes a system-level performance

metric of the form:

f(x) =
∑

t∈∪ixi
vt

(
1−

∏
i:t∈xi

(1− pi)
)
. (5.2)

Note that the objective function given in (5.2) is submodular, as f can be expressed as a

function of the form f : 2S → R≥0 for an appropriate choice of the domain set S, i.e.,

S = N × 2T and the action sets can be expressed as disjoint sets in S.

5.3 Price of Anarchy Bounds

In this section we present bounds on the price of anarchy when G is a DAG and

when Ui = MCi for all i. We show that the performance degrades proportionally to the

fractional independence number of G 1.

1In comparison to the bounds shown in [42], the bounds shown in our work are tighter in all cases. In
fact, except in certain corner cases (for example, both bounds are the same on a full clique), our results
are strictly tighter.
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Theorem 5.1 For any graph DAG G,

1

α(G)
≥ PoA(HMC(G)) ≥ 1

α∗(G) + 1
. (5.3)

The upper bound shows that it is impossible to construct a graph G such that the greedy

algorithm’s performance is better than 1/α(G) for all possible H ∈ HMC(G). Likewise,

the lower bound means that no H ∈ HMC(G) can result in a performance lower than

1/(α∗(G) + 1).

The formal proof for this theorem is given in Appendix A.2.1, but here we give a brief

outline of the argument. The upper bound is simply a consequence of Proposition 4.1.

The lower bound is found by leveraging the properties of submodularity and monotonicity,

similar to the proof in Theorem 4.2.

We note that the lower bound in Theorem 4.2 leverages the fractional independence

number of the graph Ḡ, which is the graph G where all “non-reciprocal” edges are

removed. This means for a DAG G that Ḡ is the empty graph: the lower bound on price of

anarchy is 1/(n+1). Theorem 5.1 shows that the marginal contribution utility specifically

is well-suited to DAGs, as opposed to other utilities that are valid and consistent.

5.3.1 Examples

Theorem 5.1 shows lower and upper bounds on price of anarchy, but we have not

shown whether either of these bounds is tight. There exist graphs for which H can be

chosen appropriately to meet the lower bound, and there also exist graphs whose lower

bound can be proven to meet the upper bound. In this section, we provide an example

of each.

Example 5.2 The weighted set coverage problem presented in Figure 5.2 is an example
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1 2 3 4

	𝑣' = 1 	𝑣) = 1 	𝑣* = 1 	𝑣+ = 0

𝑡' 𝑡) 𝑡* 𝑡+

Figure 5.2: An example of a graph G where PoA(HMC(G)) = 1/(α∗(G) + 1), and an
instance of a weighted set cover problem using the same notation as in Figure 5.1.
Here α(G) = α∗(G) = 2, and we can see that f(xopt) = 3. The worst-case results from
the generalized distributed greedy algorithm occur when xsol

1 = xsol
2 = xsol

3 = {t2},
and therefore f(xsol) = 1. This means f(xsol)/f(xopt) = 1/(α∗(G) + 1) = 1/3, so the
lower bound in Theorem 5.1 is tight for this graph.

showing that the lower bound from Theorem 5.1 is tight. For this graph G, α(G) =

α∗(G) = 2. As shown, f(xsol)/f(xopt) = 1/(α(G) + 1), so the bound is tight for this

system.

Example 5.3 The graph G in Figure 4.1a is an example where the upper bound from

Theorem 5.1 is tight. Here α∗(G) = 2, and it is shown in Appendix A.3 for this graph

that no H ∈ HMC(G) can be constructed to give a worse efficiency than 1/2.

5.4 Optimal Structures

In this section, we describe how to build a graph G that yields the highest price of

anarchy subject to a constraint on the number of edges.

5.4.1 Preliminaries

We denote Gm,n := {G = (V,E) : |V | = n, |E| ≤ m,G is a DAG} and G∗m,n ∈

arg maxG∈Gm,n PoA(HMC(G)), i.e., G∗m,n is a graph in Gm,n that maximizes efficiency.

The complement Ḡ = (V̄ , Ē) of graph G = (V,E) is such that V̄ = V and (i, j) ∈ Ē if

and only if (i, j) /∈ E. It is straightforward to show that α(G) = ω(Ḡ).

In graph theory a Turán graph T (n, r) is a graph with n vertices created with the

following algorithm:
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1 2 3 4 5 6 7 8

(a) The Turán graph T (8, 3), where ω(G) = 3. No
other graph with 8 vertices can have more edges
without also having a clique of size 4 or higher.

1 2 3 4 5 6 7 8

(b) The complement Turán graph T (8, 3), where
α(G) = 3. No other graph with 8 vertices can have
fewer edges without also having an independent set
of size 4 or higher.

Figure 5.3: A Turán graph and its complement.
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Figure 5.4: The efficiency of G∗m,10 for all values of m, with example graphs for a few
values of m. Notice the “dead zones”, where adding more edges does not lead to any
higher efficiency guarantees.

1. Partition the vertices into r disjoint sets C1, ..., Cr such that |Ci| − |Cj| ≤ 1 for all

i, j ∈ {1, ..., r}.

2. Create edges between all nodes not within the same set.

A result known as Turán’s theorem states that T (n, r) is an n-node graph with the highest

number of edges that has clique number r or smaller [64]. Alternatively stated,

T (n, r) ∈ arg max
G=(V,E):ω(G)≤r

|E|. (5.4)

The complement of a Turán graph, denoted T (n, r), is created with the same proce-

dure as a Turán graph, except that in Step 2, edges are created among all nodes within

the same set. An example of a Turán graph and its complement is found in Figure 5.3.

49



The Greedy Algorithm Chapter 5

Thus we can also state, similar to (5.4), that

T (n, r) ∈ arg min
G=(V,E):α(G)≤r

|E|. (5.5)

In words T (n, r) is a graph with the fewest edges that has independence number r. It

should also be clear that

α
(
T (n, r)

)
= α∗

(
T (n, r)

)
= k

(
T (n, r)

)
= r. (5.6)

Lastly, we define the graph

T̂ (n,m) := arg min
{T (n,r):|E|≤m}

r, (5.7)

which is the complement n-node Turán graph with the lowest independence number

among all graphs with the number of edges less than or equal to m 2.

5.4.2 Result

The main result of this section regarding efficient graph structures is stated below

and later proved in Section 5.4.4.

Theorem 5.2 Consider two nonnegative integers n and m such that m ≤ 1
2
n(n− 1). If

m 6= 1
2
n(n − 1) − 1, then G∗m,n = T̂ (n,m). If m = 1

2
n(n − 1) − 1, then G∗m,n is the full

clique on n nodes, minus the edge (n− 1, n).

An illustration of PoA(HMC(G∗m,n)) as a function of the number of edges m is given

2Searching over the space of complement Turán graphs can be done simply. Adapting part of Turán’s
theorem, we see that r ≥ dn2/(2m+ n)e. Therefore, one can start by setting r to this minimum value,
and then determining whether m ≥ M(n, r), see Lemma 5.2 below. If the statement is not true, r can
be incremented until it is.
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in Figure 5.4. One item to note is that there may be extra edges not used in our design

of G∗m,n. For instance, in Figure 5.4, the efficiency is the same when 12 ≤ m ≤ 19. This

implies that G∗12,10 and G∗19,10 can be the same graph, and for any value of m in between.

Hence, there are “dead zones” seen in the graph in Figure 5.4.

5.4.3 The Sibling Property

Here we present a graph property, along with a corollary to Theorem 5.1. These

results are key to the proof for Theorem 5.2.

Definition 5.1 Let G ∈ G. Then G has the Sibling Property if for some maximum

independent set J , there exist w ∈ V \ J and i ∈ J such that i ∈ Nw (see Figure 4.1).

Lemma 5.1 If a graph G lacks the Sibling Property, then

1. There is a unique maximum independent set J .

2. The set J must include nodes n and n− 1.

3. The induced subgraph G′ created by removing the set J from G must be such that

α(G) > α(G′).

4. Every node outside the set J must have outgoing edges to at least 2 nodes in J 3.

Proof: We prove each Propoerty separately:

Property 1: Suppose there are 2 maximum independent sets J and J ′. Let i ∈ J ′ \ J

and j ∈ J \ J ′. By definition, all nodes in either set cannot have any outgoing edges.

This implies that (i, j), (j, i) /∈ E: in other words, i and j are independent from each

other, and neither J nor J ′ are maximum, a contradiction.

3In the literature, such a J is called a perfect independent set. We present a proof here that suits the
needs of this work, but it is also shown in [65] that every unique maximum independent set is perfect.
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Property 2: First, suppose that n is not included in J . Then there exists an edge (i, n)

for some i ∈ J . By defintion, this means G has the Sibling Property, a contradiction.

Now suppose that n− 1 is not in J . Since G does not have the Sibling Property, then by

definition (j, n−1) /∈ E for all j ∈ J \n. This means that another maximum independent

set is {n− 1} ∪ J \ n, which is a contradiction to statement 1.

Property 3: If this were not true, then J would not be a unique maximum independent

set.

Property 4: Let i /∈ J . By definition, i cannot have any incoming edges from J and if

there are no edges between i and J , then i must be part of J , a contradiction. Therefore,

we consider the case where (i, j) ∈ E for some j ∈ J , but no outgoing edges from i to

J \ j exist. This means that another maximum independent set is i∪ J \ j, and J is not

unique. By Property 1, this is a contradiction.

Corollary 5.1 For a DAG G with the Sibling Property,

PoA(HMC(G)) ≤ 1

1 + α(G)
, (5.8)

with equality when α(G) = k(G).

Proof: We provide an example which gives us the upper bound using a weighted

set cover problem. Let J be a maximum independent set of G and let w be defined as

in Definition 5.1. Then S = {s1, ..., sn}, where vi = 1 if i ∈ J or i = w, and vi = 0

otherwise. The action sets are

Xi =


{{sw}, {si}} if i ∈ J ,

{{sw}} if i = w

{{si}} otherwise.

(5.9)
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Each agent in J is equally incentivized to choose either option, since none of them

can access to the choice of the others. Therefore, the worst case in the greedy algorithm

is for every agent in J to choose sw, implying f(xsol) = vw = 1. Each agent makes

the other choice in the optimal, so f(xopt) = vw +
∑

i∈J vi = 1 + α(G). Therefore

f(xsol)/f(xopt) = 1/(1 + α(G)) is an upper bound on HMC(G).

In the case where α(G) = k(G), (4.5) shows that α∗(G) = α(G), which implies by

Theorem 5.1 that HMC(G) ≥ 1/(1 + α(G)).

5.4.4 Proof for Theorem 5.2

In this section we present the proof for Theorem 5.2, beginning with two lemmas.

The first characterizes the number of edges in a complement Turán graph (proof in

Appendix A.5), and the second characterizes the fewest number of edges in a graph

without the Sibling Property (proof in Appendix A.4).

Lemma 5.2 Let G = T (n, r). Then the number of edges in G is

M(n, r) :=
1

2
(n mod r)

⌈n
r

⌉(⌈n
r

⌉
− 1
)

+
1

2
(r − n mod r)

⌊n
r

⌋(⌊n
r

⌋
− 1
)
. (5.10)

Lemma 5.3 Let G ∈ G have n nodes, be without the Sibling Property, and such that

α(G) = r. Then the number of edges m in G satisfies

m ≥M(n− r, r − 1) + 2(n− r). (5.11)

Furthermore, for any values of n and r, such a G can be constructed so that (5.11) is at

equality.

We now commence with the proof for Theorem 5.2. The case m = 0 trivially holds,

so we assume that m > 0. Recall that the graph T̂ (n,m) is a set of disconnected cliques,
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which implies that any maximum independent set has one node from each clique, and

that no maximum independent set is unique. Therefore, by Lemma 5.1, Property 1,

T̂ (n,m) has the Sibling Property. In light of (5.6), It follows from Corollary 5.1 that

PoA(HMC(T̂ (n,m))) = 1/(1 + α(T̂ (n,m)). The statement in (5.5) also shows that no

other graph with ≤ m edges can have a smaller independence number. Combining this

with Corollary 5.1 implies that no other graph with the Sibling Property (and same

number of nodes and edges) can have a higher efficiency.

It remains to confirm that any graph without the Sibling Property cannot have a

higher efficiency than T̂ (n,m), given n nodes and m edges – with the exception when

m = 1
2
n(n− 1). Let G be a graph with n nodes, m edges, without the Sibling Property,

and with independence number r + 1. We assume that G has the fewest number of

edges (as dictated by Lemma 5.3), with the highest possible efficiency PoA(HMC(G)) =

1/(r + 1). By Corollary 5.1 and (5.6), this is the same efficiency as T̂ (n,m), thus we

seek to characterize when the number of edges in G is greater than or equal to that of

T̂ (n,m). In other words, G∗m,n = T̂ (n,m) only if

M(n, r) ≤ m = M(n− r − 1, r) + 2(n− r − 1). (5.12)

In order to show when this condition holds, we divide the remainder of the proof into

four cases, the union of which covers all possible values of n and r. In the first case, when

r = 1, we prove (5.12) is false for all values of n (which corresponds to the case in the

theorem statement when m = 1
2
n(n− 1)− 1). In the other cases, we show that (5.12) is

true, justifying that G∗m,n = T̂ (n,m).

Case 1: r = 1. Here, T̂ (n,m) is a clique, and has 1
2
n(n − 1) edges. The graph G is
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such that

m =M(n− 2, 1) + 2(n− 2) =
1

2
n(n− 1)− 1, (5.13)

which is one less edge than T̂ (n,m). Thus, for any value of n, there exists a G where

(5.12) is false. Such a G is shown for n = 4 in Figure 4.1a, and a trivial extension to the

proof in Appendix A.3 shows that PoA(HMC(G)) = PoA(HMC(T̂ (n,m))) = 1/2 for any

value of n. Since G is created with the fewest number of edges, it follows that (5.12) is

false only when m = 1
2
n(n− 1)− 1. By the construction in the proof of Lemma 5.3, such

a G is the full clique minus the edge (n− 1, n).

Case 2: r = n−1 ≥ 2. In this case, T̂ (n,m) is the graph with no edges and efficiency

1/n. Any graph with 1 or 0 edges must have this same efficiency, so (5.12) is true in this

case.

In the remaining cases, we assume that 2 ≤ r ≤ n− 2, which also implies that n ≥ 4.

In both cases, we show that (5.12) holds.

Case 3: n mod r ≥ 1. This condition implies the following:

• (n− r − 1) mod r = n mod r − 1

• dn/re = bn/rc+ 1

• b(n− r − 1)/rc = br/nc − 1

• d(n− r − 1)/re = br/nc

Leveraging the above statements, M(n, r) and M(n− r − 1, r) become:

M(n, r) =
1

2

⌊n
r

⌋(
2(n mod r) + r

⌊n
r

⌋
− r
)

(5.14)

M(n− r − 1, r) = (n mod r)
(⌊n

r

⌋
− 1
)

+
r

2

⌊n
r

⌋2

− 3
⌊n
r

⌋
(5.15)
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Using these expressions to evaluate (5.12) yields

⌊n
r

⌋
(r + 1) + n mod r ≤ 2n− r − 1. (5.16)

We can now use the identity n mod r = n− rbn/rc to change the requirement in (5.16)

to

⌊n
r

⌋
≤n− r − 1. (5.17)

Since bn/rc ≤ n/r, a sufficient statement for (5.16) to hold can be found by replacing

bn/rc with n/r, which can be simplified to

r2 + 1

r − 1
≤ n. (5.18)

The expression on the left side of the inequality is nondecreasing in r. Since r ≤ n− 2,

if the inequality is true for r = n− 2, then it is true for all relevant values of n, r. If we

let r = n− 2 in (5.18) and simplify, we conclude that (5.18) holds for all n ≥ 5. By the

premise that n ≥ 4, the only values of n, r that could make this false are n = 4, r = 2,

however, this would imply that n mod r = 0, not allowable by the condition for this case.

Thus, (5.18) is true and by extension so is (5.12).

Case 4: n mod r = 0. The condition implies the following:

• (n− r − 1) mod r = r − 1

• bn/rc = dn/re = n/r

• b(n− r − 1)/rc = br/nc − 2

• d(n− r − 1)/re = br/nc − 1
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Leveraging the above statements, M(n, r) and M(n− r − 1, r) become:

M(n, r) =
n

2

(n
r
− 1
)
, (5.19)

M(n− r − 1, r) =
n2

2r
− 3

2
n+ r − n

r
+ 2. (5.20)

Using these expressions to evaluate (5.12) yields

r2

r − 1
≤n. (5.21)

It is straightforward to see that if (5.18) holds, then so does (5.21). Case 3 shows that

(5.18) is true unless r = 2, n = 4. However, (5.21) is true for these values, which implies

(5.21) holds for all relevant values of n, r. Thus, in this case, (5.12) also holds. �

5.5 Strategic Information Sharing

Thus far a graph constraint G has meant that when (i, j) ∈ E, agent i shares its

action with agent j. However, this need not be the case, as in Type 2 information

sharing constraints. In this section we address the question of whether endowing agents

with a more strategic information sharing policy can increase performance guarantees

via the price of anarchy. We show what such a policy would look like for a certain class

of graphs.

5.5.1 Section Model

The previous sections show that when G is a DAG, the marginal contribution utility

can provide strong guarantees on the price of anarchy. Theorem 5.2 gives insight that if

the system designer can choose G given a number of edges, creating a set of disconnected
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Figure 5.5: An example of the model and notation used in this section. We assume
that each clique in C passes a single action from among its agents to all agents in
future cliques. This is equivalent to the graph on the right, where again we assume
that the last agent in the clique is charged with sharing the clique’s information. It
should be clear that for the graph on the right, α(G) = k(G) = |C|.

cliques is optimal. In light of this, assume that the agents are partitioned into a series

of disconnected cliques C = {C1, ..., Cm}. We denote Ci > Cj to mean that the agents of

Ci come before the agents in Cj in the sequence. As an example, for Figure 5.5, C1 =

{1, 2, 3}, C2 = {4, 5}, C3 = {7, 8}. We will henceforth in this section refer to a graph as C

when appropriate to avoid confusion. For such graph structures and utilities, Theorem 5.1

and Corollary 5.1 demonstrate that the resulting efficiency guarantees associated with

the greedy algorithm are precisely

PoA(HMC(C)) =
1

1 + |C|
, (5.22)

since α∗(C) = α(C) = |C|, and all C has the Sibling Property.

In this section we begin to explore Type 2 information sharing constraints, which will

relax the assumption that agents communicate their own actions to other agents. Recall

that a meta-action is the tuple (xi,mi), where mi is a message communicated to other

agents. Since G is a DAG, each agent sequentially chooses a meta-action choosing xi

and mi, which can be done independently - xi leveraging the utility function Ui and mi

similarly leveraging a function Wi. We will restrict information sharing by imposing that

Mi = {xi} ∪ {mj}j∈Ni , i.e., agent i can share its chosen action or the message that it

has received from a previous agent in the sequence. Thus, while each agent is still only

sharing a single action (either its own or one of its neighbors), what is different from
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previous sections in this chapter is that we are allowing agents to be more strategic with

what information is being shared.

For agent i which is not last in its clique, the optimal message choice is mi = xsol
i ,

since future agent j in the same clique will already have access to the same messages as

agent i – see Figure 5.5 for reference. Thus the only nontrivial message passing decisions

are made by the last agent in each clique. In this section, we refer to the message sent

by the last agent in clique C as mC , and will also refer to this as the message sent by

clique C.

Here we relax the requirement that Ui = MCi, rather we allow the system designer

to assign any feasible utility function to each agent. However, since MCi is part of

our analysis in this chapter, note that we adapt its definition to be MCi(xi,mNi) =

f(xi,mNi) − f(mNi), which is valid since mj ⊆ S. Clique C shares message mC with

agents in future cliques using the following rule

mC = WC(XC , {mC′}C′<C) ∈ {xsol
i }i∈C , (5.23)

where XC =
⋃
i∈C Xi. Note that unlike Ui, which provides a value to an action given

the messages of others, WC is a policy which deterministically chooses the message, a

property allowable due to the sequential nature of the system. We refer to WC as the

information sharing strategy for clique C and W = {WC}C∈C as the information strategy

profile for C. We likewise refer to HU,W (C) as the set of systems with information sharing

constraints represented by C which use utility profile U = (U1, . . . Un) and information

sharing strategy profile W = (WC1 , . . . ,WC|C |). We now give two examples of informa-

tion sharing strategies and show how they are utilized in conjunction with the graph

constraint. These will both be used heavily in our results. The first is a pre-committed
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1 2 3 4 5 6 7

	𝟑 𝟒 𝟐 𝟏 𝟑 𝟒 𝟐 1

𝐶- 𝐶. 𝐶/
{𝑰, 𝝅} Agent 1 

choice
Agent 2 
choice

Agent 3 
choice

Agent 4 
choice

Agent 5 
choice

Agent 6 
choice

Agent 7 
choice 𝒛𝑪𝟏 𝒛𝑪𝟐 Value

Optimal L L R L L R L - - 19
{𝐼9,𝜋;} R R L R R L L 𝑥-=>? 𝑥/=>? 13

{𝐼;, 𝜋;} R R L R R R R 𝑥-=>? 𝑥@=>? 16

Figure 5.6: An example WSC problem for the greedy algorithm including strategy.
The boxes along the bottom represent S, and f is simply the sum of the values in a
set of boxes. The blue circles are the agents, and the black lines represent X: each
agent can choose between two boxes. In the table, these choices are denoted L for left
and R for right. The partition C has 3 sets: C1, C2, C3, each forming clique among
the agents (blue edges) in its set. Results for two strategies are shown in the table.

strategy:

mC = xsol
i , (5.24)

where i ∈ C is determined a priori. The second is

mC = arg max
i∈C

∆(xsol
i |{xsol

j }j∈Ni , {mC′}C′<C), (5.25)

Essentially, this strategy shares the decision of the agent with the highest marginal con-

tribution. As we will be referring to these strategies often, denote W P as the profile

when WC is (5.24) and WM as the profile when WC is (5.25) for all C ∈ C. Figure 5.6

gives an example to show how these strategies work.

5.5.2 The Benefit of Strategy

In this section, we characterize the benefit of using strategic information sharing. To

begin, we show the efficiency of the greedy algorithm when a pre-committed information

strategy is used, again an application of Theorem 5.1 and Corollary 5.1.

Corollary 5.2 Let C be a partition of agents such that |C| > 1 for all C, and assume
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W = W P and U = MC. Then

PoA(HU,W (C)) =
1

1 + |C|
. (5.26)

We omit a formal proof here, but essentially this statement follows from the obser-

vation that utilizing W P and MC is equivalent to adding edges to the graph C between

the partitions. Since no clique is sharing the information of every agent, the clique cover

number remains the same, and the efficiency is the same as in (5.22).

Comparing Corollary 5.2 to the baseline in (5.22), we can glean that if W pre-commits

to sharing the decision of a set of agents, then this strategy offers no benefit to efficiency.

By pre-comitting, one is essentially removing the dependence ofW on f from (5.23). Even

in the case that one relaxes the restriction in (5.23) that only one piece of information

is shared, there is no benefit to price of anarchy, assuming that the decision of at least

one agent in every clique is not shared. Therefore, any strategy that increases PoA must

utilize f in some way.

Theorem 5.3 Let C = {C1, .., Cp} be a partition such that |Cj| > 1 for all j. Then for

any admissible U,W ,

PoA(HU,W (C)) ≤ 1

2 +
∑p−1

i=1

∏i
j=1(1− 1/|Cj|)

, (5.27)

with equality when W = WM and U = MC.

The proof for this theorem will be shown at the end of the section, in favor of some

discussion up front. First, given the current graph structure, Theorem 5.3 states that

an optimal choice for Ui for every agent is MCi. Not only is this convenient given the

simplicity of the rule, but it also allows one to leverage the intuition and insights from the

previous sections in a new setting. Given this, it should not be surprising that the action
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with the highest marginal contribution to its predecessors is the best information to send

to future agents in the sequence. If C is comprised of a single clique (i.e. C = {C1}),

then the sum in the denominator is 0, and the expression simplifies to the familiar 1/2

guarantee. This is also true for the expression in Corollary 5.2. For the rest of the

discussion we assume this is not the case.

Any term in the sum in (5.27) is strictly less than 1. The fact that there are |C| − 1

terms in the sum then confirms that PoA(HWM ,MC(C)) > PoA(HWP ,MC(C)). This is

significant, because as mentioned above it holds even when allowing many actions to be

shared from within the clique rather than just one. To further this point, if one restricted

information sharing to only be between two cliques C and C ′ (where C < C ′) then (5.27)

becomes

PoA(HU,W (C)) =
1

(1− 1/|C|) + |C|
, (5.28)

which still has a strictly higher efficiency than (5.26). In essence, one always sees a benefit

to strategic information sharing.

Another observation from Theorem 5.3 is that the order of the sizes of the different

cliques matters. For instance, consider the graph in Figure 5.5. According to Theo-

rem 5.3,

PoA(HWM ,MC(C)) =
1

2 + (2/3) + (2/3)(1/2) + (2/3)(1/2)(1/2)
(5.29)

≈ 0.3158. (5.30)

However, if one reordered the cliques so that the the clique of size 3 were last, then

PoA(HWM ,MC(C)) =
1

2 + (1/2) + (1/2)(1/2) + (1/2)(1/2)(2/3)
(5.31)

≈ 0.3429. (5.32)
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Intuitively, this makes sense since moving the larger clique to the end will require more

edges in the equivalent graph - see again Figure 5.5. Therefore, sequencing the smaller

cliques first is advantageous. We now proceed with the proof.

Proof: First we give an example which shows a universal upper bound on PoA(HU,W (C)).

Then we show that if W = WM and U = MC, there is a lower bound on PoA(HU,W (C))

which matches the upper bound. Thus the bound is tight and we know that {WM ,MC}

is the optimal strategy.

Upper Bound

1 2 3 4 5 6 7

𝐶( 𝐶) 𝐶*

	1/6 	1/6 	1/6 1/6 1/6 1/6

𝒖𝑪𝟏
𝒖𝑪𝟐
𝒖𝑪𝟑

𝒖

(a) The set of worst-case greedy choices as de-
scribed in the upper bound proof for Theorem
5.3. Notice that uC1 and uC2 are divided up into
2 and 3 parts, respectively, for each agent in the
cliques. Only the first agent in C3 chooses uC3

.

1 2 3 4 5 6 7

𝐶( 𝐶) 𝐶*

3/6 	3/6 	1/6 	1/6 	1/6 	2/6 	1

𝑣( 𝑣) 𝑣* 𝑢

(b) The set of optimal choices as described in the
upper bound for the Theorem 5.3 proof. Notice
that agent 7 chooses the full set of boxes chosen
in the greedy algorithm.

Figure 5.7: An example of the upper bound f,X for Theorem 5.3. As argued
in the proof, any I and π must value every decision and agent, respectively, the
same. In this case, f(xsol) = 1 and f(xopt) = 2 + 1/2 + 1/2(2/3) = 17/6, so
f(xsol)/f(xopt) = 6/17. Theorem 5.3 also states that this is the max possible effi-
ciency, i.e. PoA(HMC,WM (C)) = 6/17.

Here we give an example H to serve as an upper bound on PoA(HU,W (C)), and show

that it is the exact expression in (5.27). Assume to begin that WM and MC are used.

We introduce some new notation, for convenience. Let f(i) = f(xsol
i ) and let f(i∗) =

f(xopt
i ). For set of agents J , let f(J) = f

(⋃
i∈i x

sol
i

)
. For J = {a, a + 1, ..., b}, let

f(a : b) = f(J). Let ZC =
⋃
C′<CmC′ , i.e., ZC is the set of messages from prior cliques
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that are shared with the agents in clique C. Finally, let the clique that sequentially comes

before C be denoted as C − 1.

Assume that S is a set boxes, and that f is simply the area of the boxes covered by

the choices of the agents. Suppose there is a box u, where f(u) = 1, which will be chosen

by the agents in the worst case. There are also boxes v1, ..., vk, and the optimal choices

will allow agents to cover all boxes.

Each clique C will be able to choose between some portion of u, called uC , and vC ,

where f(uC) = f(vC). Additionally each uC and vC are divided up equally into |C| parts,

so that the value of each agent’s choice within the clique is the same. We define u1 = u,

and uC is the portion of uC−1 not covered by mC−1. Thus

f(uC) =
|C − 1| − 1

|C − 1|
f(uC−1). (5.33)

In the last clique, the first agent can choose between up and vp, and the second agent

can only choose u. All other agents in the last clique are ignored. See Figure 5.7 for an

example.

Agents are equally incentivized to choose their portion in u, so f(xsol) = 1. As stated,

the optimal choices yield the set {u, v1, ..., vk}. Each vC is such that

f(vC) =
∏
C′<C

|C ′| − 1

|C ′|
, (5.34)

where v1 = 1 by convention. Therefore, if C = {C1, .., CM}, then f(xopt) = f(u) +∑
C f(vC) = 2 +

∑p−1
i=1

∏i
j=1

|Cj |−1

|Cj | .

Although we intially assumed to use {WM ,MC}, we now make the claim that this

canonical example serves as an upper bound on PoA(HMC,WM (C)) for anyW and U . From

(5.23), it is clear that information sharing strategy WC can only leverage information from
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past cliques and the action sets of agents in C. Based on this information, all agents in

C are equivalent. Any choice of mC will yield the same efficiency guarantee (refer again

to Figure 5.7). Therefore PoA(HU,W (C)) is the same for any W . A similar argument is

made for U . We conclude that the upper bound found by this canonical example is an

upper bound on the efficiency for any strategy used.

Lower Bound

We assume that W = WM and U = MC. Let C = {C1, ..., Cp}, and we will use the

notation that mCk = mk, and likewise for Zk. For some Ck, let j be the agent whose

decision is mk. Then:

∆(Ck|Zk) =
∑
i∈Ck

∆(i|Ni ∪ Zk), (5.35)

by application of (2.2) and since WM uses (5.25) and j is chosen by WM . Leveraging

the definition of ∆, and the fact that Zk+1 = Zk ∪mk, we see that

f(Zk+1) ≥ 1

|Ck|
f(Ck, Zk) +

(
1− 1

|Ck|

)
f(Zk) (5.36)

For simplicity, let ak = 1− 1/|Ck|. Then (5.36) becomes

f(Zk+1) ≥ (1− ak)f(Kk, Zk) + akf(Zk) (5.37)

Begin with the following inequality (agent i is in clique Ck(i)):

f(xopt) ≤ 2f(xsol) +

p−1∑
k=1

f(Ck, Zk)−
p−1∑
k=1

f(Zk+1), (5.38)

which can be shown by leveraging submodularity, (2.2), our defined π, and the definition
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of ∆ and Zk+1.

Notice that the two sums have the same number of terms, and we can apply (5.37)

to each term in the second sum and get the following:

f(xopt) ≤(2 + ap−1)f(xsol)

+

p−2∑
k=1

akf(Ck, Zk)−
p−2∑
k=1

ak+1f(Zk+1) (5.39)

Again we see that both sums have the same number of terms and we apply (5.37) to get:

f(xopt) ≤ (2 + ap−2 + ap−1ap−2)f(xsol)+

p−3∑
k=1

ak − ak+1(1− ak)f(Ck, Zk)−
p−3∑
k=1

ak+2ak+1f(Zk+1) (5.40)

Notice that each application of (5.37) adds some positive term to the coefficient of f(xsol)

and drops a term from each of the sums. Let bj be the term added to the coefficient of

f(xsol) after applying (5.37) j times. In other words, b1 = ap−1, b2 = ap−2 + ap−1ap−2 −

ap−1, etc. After applying (5.37) p− 1 times, we see that

f(xopt) ≤
(

2 +

p−1∑
j=1

bj

)
f(xsol) (5.41)

Thus to find the lower bound on efficiency, we need to find
∑

j bj. Following the pattern,

each bj can be defined as follows:

bj =

p−1∑
i=p−j

i∏
d=p−j

ad −
k∑

i=p−j+1

i∏
d=p−j+1

ad (5.42)
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Notice that the second sum for bj is the negative of the first sum for bj−1. Thus

p−1∑
j=1

bj =

p−1∑
i=1

i∏
d=1

ad. (5.43)

Therefore, the lower bound meets the upper bound.
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Chapter 6

Augmenting Action Sets

The previous chapter has considered scenarios where information sharing has been lim-

ited compared to the nominal greedy algorithm given in (5.1), i.e., we have removed

edges from a fully-connected DAG and described how that affects the resulting perfor-

mance guarantees. This chapter, on the other hand, explores the scenario where more

information sharing is permitted via Type 2 information sharing constraints. We further

investigate the idea that information sharing need not be limited to an agent’s chosen

action. Here we allow agents to pass additional elements of S to future agents in the

sequence in an attempt to see how this type of element passing can be exploited to give

higher performance guarantees.

As an example, consider a scenario where two flying vehicles are trying to identify

the positions of a set of targets. Each vehicle captures many images, but can only send k

of them to a central satellite, which uses the sent measurements to estimate the location

of the targets. In this scenario, vehicle 1 can use the local communication network to

share with vehicle 2 the k images which it sent to the satellite, and can additionally send

p more. Vehicle 2 could then send to the satellite any combination of k images from its

original set as well as these new communicated measurements. In the extreme case where
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vehicle 2 was not able to capture any “valuable” images by itself, it could still send to the

fusion center the p that came from vehicle 1, thus offsetting a potentially poor system

performance.

Result Measure Lower bound Upper bound

Theorem 
6.1

AUG.GREEDY
NOMINAL	GREEDY

1

2	 −	
min 𝑝/𝑘, 1

!"#

∑ min 𝑝/𝑘, 1
$!"#

$%&

2 +min(𝑛 − 1, 𝑝/𝑘)

Theorem 
6.2

𝛽− APPROX. AUG. GREEDY
𝛽−	APPROX. NOM.GREEDY

1

1+ 1
𝛽 	−	

𝛽min 𝑝/𝑘, 1
!"#

𝛽∑ 𝛽min 𝑝/𝑘, 1
$!"#

$%&

2/𝛽 +𝑝/𝑘,	if	𝑝 ≤ 𝑘

1 + #
'
1 + min 𝑛 − 1, (

)
	 , if 𝑝 > 𝑘

Figure 6.1: A brief summary of the results from this paper, where an agent selects up
to k elements as its “action” and up to p elements to share. We explore how well an
augmented greedy algorithm, which includes element passing, performs. Theorem 6.1
provides a range as to how well the augmented greedy algorithm can perform versus
the nominal greedy algorithm. Theorem 6.2 describes the scenario where each agent
can only approximate the solution to its local problem within a factor of β.

Theorem 6.1 directly addresses the increased system efficiency by giving bounds on

how well an optimal element passing policy can perform compared to the nominal greedy

algorithm: it shows that there exist problem instances for high p where element passing

can outperform the greedy algorithm by a multiplicative factor of n + 1. For smaller

p, that factor reduces to 2 + p/k. Theorem 6.1 also shows that any element passing

algorithm can be outperformed by the greedy algorithm for carefully chosen problem

instances, but always by a factor less than 2, and as low as 2− 1/n for high p.

Theorem 6.2 addresses the practical issue that solving the “local” problem that each

agent must solve of (i) selecting the k “best” elements as its action (ii) selecting the p

“best” elements to forward to other sensors, can be by themselves intractable problems.

This is typically the case for the example scenario described above, when each of the

flying vehicles has available a large collection of local measurements. Realistically, the

optimal solution to the local problem must be approximated using some computationally-
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feasible algorithm. Assuming that agents can approximate the solution to the local

problem within a factor of β, Theorem 6.2 shows how these local approximations impact

the results of Theorem 6.1. Interestingly, these local approximations do not affect the

performance guarantees in a significant way. A summary of the theoretical results can

be found in Figure 6.1.

Finally, this chapter provides a numerical example of flying vehicles to show how

element passing can improve performance. We show that on average, element passing

helps the most with few vehicles (e.g., n = 3) and many targets (e.g., 10 targets).

However, even with a large number of vehicles and fewer targets (e.g., n = 10 and 4

targets), element passing improves performance in the vast majority of the cases (over

99%).

6.1 Chapter Model

Consider a system H ∈ H where f is submodular, monotone, and normalized. The

underlying set of elements S is partitioned into sets S1, . . . , Sn, and the initial action set

for agent i is (Si)
k := {S ′ ⊆ S : |S ′| ≤ k}, i.e., each action is a subset of elements of size

no larger than k. While the value of k is important to the system, we are interested in

system performance as k varies, thus each problem instance of this type can be defined

by the tuple I = (f, S1, . . . , Sn). We also assume for this chapter that the information

sharing constraint graph G is a fully-connected DAG.

Example 6.1 (Flying Vehicles [66]) Consider the scenario where the agents are cam-

eras carried on board n flying vehicles that capture images of ground targets and return

their pixel coordinates. Each vehicle i ∈ N has access to a large collection of pixel coor-

dinate measurements taken by its own camera, which comprise the local element set Si.

However, each vehicle i needs to select a much smaller subset of these measurements (no
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more than k) to send to a satellite for data fusion. The goal of the vehicles is to select

the best set of k measurements that each vehicle should send to the satellite so that an

optimal estimate θ̂ of the targets’ positions θ can be recovered by fusing the measurements

received from all the vehicles.

To facilitate this goal, one can employ the use of the Fisher Information Matrix

FIM(x) for a set of measurements x ⊆ S, which is defined as follows:

FIM(x) := Q0 +
∑
s∈x

Qs, (6.1)

where

Q0 :=
∂ log p(θ)

∂θ
· ∂ log p(θ)

∂θ

T

, (6.2)

Qs := Eθ

[
∂ log p(s|θ)

∂θ
· ∂ log p(s|θ)

∂θ

T
∣∣∣∣∣ θ
]
, (6.3)

and p(θ) is the a-priori probability density function of θ and p(s|θ) is the likelihood of

measurement s ∈ x. The positive semidefinite matrices Q0 and Qs encode the prior

information and the informative contribution of measurement s, respectively. The FIM

is helpful in the current setting, given the Cramér-Rao lower bound (CRLB), which states

that for an unbiased estimator,

E
[
(θ̂(x)− θ)(θ̂(x)− θ)T

]
≥ FIM(x)−1, (6.4)

where we use ≥ in the sense that if A ≥ B, then A−B is positive semidefinite. According

to (6.4), for any optimal estimator that achieves the CRLB, a set x of measurements

that “minimizes” FIM(x)−1 also minimizes the error covariance. A scalar metric that

is commonly used to measure the information content of a set of measurements is the
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D-optimality [67], which in our context can be defined by

f(x) := log
det(FIM(x))

det(FIM(∅))
, (6.5)

which has been shown to be submodular [17, 68].

6.1.1 Element Passing

This chapter explores element passing as an extension of the greedy algorithm, where

we relax the constraint that the k elements chosen by agent i are a subset of Si. Specif-

ically, we consider the case where agent i’s message is of the form mi = {xi, zi}, where

zi ∈ (Si)
p is a set of up to p ≥ 0 of the elements in Si which are sent to the forthcoming

agents j > i. The subsequent agents j > i can then select their choices from among

their original set Si, but also can include some of the shared elements z1∪ · · ·∪ zj−1 from

previous agents in the sequence. Element passing effectively generalizes the optimization

in (1.1) to allow solutions which are not in the original action set X = (S1)k×· · ·×(Sn)k.

This new optimization can be stated as

max
zi∈(Si)

p

xi∈(Si∪z1∪···∪zi−1)k

f(x) (6.6)

When p = 0, (6.6) is equivalent to (1.1), therefore it is also at least NP-Hard in

general. 1

In this chapter we consider decision-making algorithms of the form π = (π1, . . . , πn),

where πi is a rule employed by agent i to select k ≥ 0 elements and “communicate”

1Like (1.1) for submodular f , it can be shown that (6.6) is a submodular maximization problem
subject to a matroid constraint, for which there exist generic centralized algorithms that approximate
the solution [54, 59]. However, this particular subclass of matroid, which is sequentially constructed,
has not been explicitly studied as a submodular maximization constraint, as far as we know.
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p ≥ 0 elements. Such a policy πi can be informed by the meta-utility function Vi, yet

again it is convenient to view decisions as being made via a deterministic policy due to

the sequential nature of the system. Specifically, given the decisions of previous agents

xπ1 , . . . , x
π
i−1 and elements passed by previous agents zπ1 , · · · , zπi−1, πi specifies both action

and communication of appropriate dimension, i.e.,

{xπi , zπi } ∈ π
k,p
i (Si, x

π
1:i−1, z

π
1:i−1), (6.7)

subject to the constraint that xπi ∈ (Si ∪ zπ1 ∪ · · · ∪ zπi−1)k and zπi ∈ (Si)
p. This constraint

ensures that each agent i can only select elements either from its own set Si or elements

shared by previous agents j < i. We denote xπ(I) to be the resulting decision set for

policy π on problem instance I, and abuse notation so that f(xπ(I)) = f(xπ1 ∪ · · · ∪ xπn).

Here we give two example policies to illustrate.

Definition 6.1 (Extended Greedy Policy) A policy π ∈ Πk,p is an extended greedy

policy if each agent i ∈ {1, . . . , n} is associated with a selection rule πi of the form

xπi ∈ arg max
x̃∈(Si∪z1∪···∪zi−1)k

f(xπ1 ∪ · · · ∪ xπi−1 ∪ x̃) (6.8a)

zπi ∈ arg max
z̃∈(Si)p

f(xπ1 ∪ · · · ∪ xπi ∪ z̃). (6.8b)

Here each agent greedily selects the k best elements for xi based on what elements

have previously been selected, and then greedily selects the next best p elements to

share as zi. We note that like (5.1), the rules in (6.8a)–(6.8b) are not deterministic: the

arg max may be multivalued. Thus there are many extended greedy policies that satisfy

(6.8a)–(6.8b) in conjunction with some tiebreaking rule.

Definition 6.2 (Augmented Greedy Policy) A policy π ∈ Πk,p is an augmented
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greedy policy if each agent i ∈ {1, . . . , n} is associated with a selection rule πi of the

form

xπi ∈ arg max
x̃⊆(Si∪zπ1 ∪···∪zπi−1)k

f(xπ1 ∪ · · · ∪ xπi−1 ∪ x̃) (6.9a)

zπi = zki ∪ z
p−k
i , where (6.9b)

zki ∈ arg max
z̃∈(Si)min(p,k)

f(xπ1 ∪ · · · ∪ xπi ∪ z̃) (6.9c)

zp−ki ∈ arg max
z̃∈(Si)max(p−k,0)

f(xπ1 ∪ · · · ∪ xπi ∪ zki ∪ z̃) (6.9d)

Again, since the local optimizations in (6.9a), (6.9c), and (6.9d) are multi-valued,

there are many such policies. An augmented greedy policy can be seen as a modification

to the extended greedy algorithm; the difference is in how each zi is selected when p > k.

Here, rather than simply selecting the “next best” p elements, the augmented greedy

algorithm selects the “next best” k elements followed by the following “next best” p− k

elements. When p ≤ k, the two policies are equivalent. See Figure 6.2 for an example

problem instance where an augmented greedy policy is used.

6.2 Comparison to Greedy

In this section, we compare the nominal greedy policies to augmented greedy policies.

Since nominal greedy policies are equivalent to the subset of augmented greedy poli-

cies where p = 0, this comparison illustrates how element passing can improve system

performance.
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𝑠! 𝑠" 𝑠# 𝑠$ 𝑠%

𝑠! 𝑠$ 𝑠& 𝑠'

𝑠! 𝑠" 𝑠$ 𝑠( 𝑠)

𝑆!

𝑆"

𝑆#

𝑓 {𝑠!} = 4 𝑓 {𝑠"} = 3 𝑓 {𝑠$} = 2 𝑓 {𝑠%} = 2

𝑓 {𝑠(} = 2 𝑓 {𝑠)} = 2

(a) An example problem, where n = 3, k = 2, m = 1. Each
box represents an element of S, and each row represents Si
for each agent, i.e., the local elements to which the agent
has access. The function f is represented by the width
of each box, where the width of elements not specifically
labeled in the diagram is 1. For A ⊆ S, f(A) is the total
amount of horizontal space covered by the elements in A;
clearly f is submodular. For instance, f({s6, s8}) = 2 and
f({s5, s6, s8}) = 3. Here we assume that π is an augmented
greedy policy. The arrows indicate the element passing
dictated by π, for instance zπ1 = {s4}. The boxes with
the dashed outline indicate that s4 is not in S2 or S3,
but is included as part of the agents’ augmented decision
set, should they choose to use it. The boxes shaded in
blue indicate the elements xπi chosen by π, and the boxes
shaded in green are the optimal choices, where those differ.

Solution method 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒇(𝒙)
Optimal {𝑠$ , 𝑠%} {𝑠& , 𝑠'} {𝑠( , 𝑠)} 14

Greedy {𝑠& , 𝑠(} {𝑠' , 𝑠*} {𝑠+ , 𝑠)} 11

Augmented Greedy {𝑠& , 𝑠(} {𝑠$ , 𝑠'} {𝑠+ , 𝑠)} 13

(b) A table representing the performance
for 3 different solution methods. First,
the optimal solution to (6.6) is given.
Then, the nominal greedy algorithm,
where agents choose according to (5.1),
is shown. Finally, the last row assumes
agents choose according to an augmented
greedy policy.

Figure 6.2: An example problem illustrating element passing introduced in Section 6.1.1

6.2.1 Direct Comparison to Greedy

The first comparison we make between the two classes of policies is direct: we compare

the ratio between the two for any given problem instance. Given k, p, we denote Πk,p to

be the set of all admissible policies, i.e., all policies that satisfy (6.7). We also denote

Πk,p
ag to be the set of augmented greedy policies and denote Πk,p

ng to be the set of nominal

greedy policies that satisfy (5.1). Note that Πk,0
ag = Πk,0

ng .

Theorem 6.1 Consider the element selection problem with n agents. Then for any k ≥

1, p ≥ 0 the best-case gain in performance and worst-case loss in performance associated
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with the optimal element passing policy within Πk,p satisfies

max
π∈Πk,p

max
I∈I,ρ∈Πk,png

f(xπ(I))

f(xρ(I))
≤ 2 + min(p/k, n− 1), (6.10)

max
π∈Πk,p

min
I∈I,ρ∈Πk,png

f(xπ(I))

f(xρ(I))
≤ 1

2− min((n−1)p/k,1)
n−1+min((n−1)p/k,1)

, (6.11)

where I is the set of all system instances I = (f, S1, . . . , Sn). When restricting attention

to augmented greedy policies, the best-case gain in performance and worst-case loss in

performance associated with any π ∈ Πk,p
ag satisfies

max
I∈I,ρ∈Πk,png

f(xπ(I))

f(xρ(I))
≥ 2 + min(p/k, n− 1− 1/k), (6.12)

min
I∈I,ρ∈Πk,png

f(xπ(I))

f(xρ(I))
≥ 1

2− (min(p/k,1))n−1∑n−1
i=0 (min(p/k,1))i

(6.13)

where the bound in (6.12) becomes an equality of the form (6.10) when p ≤ nk − k − 1

and the bound in (6.13) becomes an equality of the form (6.11) when p ≥ k.

The theorem proof is given in the next subsection. The bounds given in Theorem 6.1

represent a range of possible values for f(xπ(I))/f(xρ(I)) when ρ ∈ Πk,p
ng , π ∈ Πk,p

ag and

for any problem instance I. If p = 0, i.e., π is equivalent to a nominal greedy policy,

then 2 ≥ f(xπ(I))/f(xρ(I)) ≥ 1/2, since there exist problem instances where there are

(at least) two possible outcomes for the greedy algorithm: the solution to (1.1), and the

other a worst-case outcome, which has 1/2 the value of the first outcome. Therefore, one

would hope that element passing can increase this upper bound above 2 and lower bound

above 1/2. Theorem 6.1 shows that this is the case.

Equation (6.10) gives the upper bound on f(xπ(I))/f(xρ(I)) for any π. As one

might expect, this upper bound increases with p: the more element passing is permitted,

the higher the possible performance increase. However, when p > k(n − 1), the upper
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bound remains constant: increasing p above this value no longer increases potential

improvement. Equation (6.12) shows that any augmented greedy policy is optimal in

this sense when p ≤ nk − k − 1. Furthermore, the expressions in (6.12) and (6.10) are

always within an additive factor of 1/k, so any augmented greedy policy is also at least

near-optimal in this sense.

Equation (6.11) shows that, regardless of policy, one can always carefully construct

problem instances where a nominal greedy policy will perform better. In fact, no policy

can guarantee that this worst-case performance loss is higher than the expression in

(6.11). Again, we see that increasing p increases this lower bound, although here one sees

no additional increase when p > k. Different from the upper bound is that the expression

in (6.11) decreases to 1/2 as n → ∞, regardless of the value of p. Theorem 6.1 states

that any augmented greedy policy is optimal in this sense when p ≥ k, it is also optimal

when n = 2 or as n→∞.

Figure 6.3 gives an illustration of Theorem 6.1 for the case where k = 8 and for

n = 3, 4, 5, 6. The solid colored lines indicate the “optimal” bounds given in (6.10)–

(6.11), and the dashed lines indicate the bounds for any augmented greedy algorithm as

given in (6.12)–(6.13). For instance, the shaded blue region represents, for n = 3, the

possible values of f(xπ(I))/f(xρ(I)) for any π ∈ Πk,p
ag , πk,png , and I ∈ I. The lowest solid

black line indicates what is described above: that when p = 0, the values of the ratio

range between 2 and 1/2. The middle solid black line represents the range of values when

p = k; note that in this region any augmented greedy policy is optimal in that no other

policy can provide a higher upper bound or a higher lower bound. Finally, the highest

black like represents the range of values when p = 4k, where the lower bound is still

optimal, but the upper bound is only guaranteed to be near-optimal.

While the performance increase that results from element passing is notable, there is

some tradeoff with runtime. Note that the nominal greedy policy rule in (5.1) does not
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(a) The bounds from Theorem 6.1 for different val-
ues of n. For any augmented greedy policy π, the
shaded blue region represents all possible values
of f(xπ(I))/f(xρ(I)) for the corresponding value
of p/k when n = 3. For instance, the middle of
the 3 black solid lines indicates that when p = k,
3 ≥ f(xπ(I))/f(xρ(I)) ≥ 0.6.
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𝑘
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(b) A zoomed-in view of the plot in (a) that shows
the lower bounds in (6.11) and (6.13).

Figure 6.3: The results of Theorem 6.1, illustrated for the case where k = 8 and for
n = 3, 4, 5, 6. The solid lines indicate the bounds for an optimal message passing policy
as given in (6.10) and (6.11) respectively, and the dashed lines indicate the proven
lower bounds for any augmented greedy algorithm as given in (6.12) and (6.13). The
plot in (b) is a close-up of the various values for in part (a).

prescribe how to solve the local optimization problem, which is intractable in general. A

full implementation of the nominal greedy algorithm will requireO
(
n ·
(

maxi |Si|
k

))
number

of calls to f . An augmented greedy policy, by comparison, will requireO
(
n ·
(
pn+maxi |Si|
max(k,p−k)

))
.

We address this intractability in Section 6.3.

Finally, we note that in the examples which serve to prove the bounds in (6.11) and

(6.12), there is some reliance on overlap among the local element sets S1, . . . , Sn. Clearly,

when Si = Sj for all i, j, then all agents have access to the same information, thus element

passing is futile. However, the extent to which this is the case is a topic of future work.
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6.2.2 Proof for Theorem 6.1

We begin with two lemmas that, that, given two policies π, ρ ∈ Πk,p, show how

marginal contributions for xπi , zπi , and xρi affects f(xπ)/f(xρ). Denote xa:b = ∪a≤i≤bxi,

and likewise for za:b.

Lemma 6.1 Assume that policies ρ ∈ Πk,p is applied to instance I ∈ I and that there

exists α ≥ 1 such that

α∆(xρi |x
ρ
1:i−1) ≥ max

x̃∈(Si)k
∆(x̃|xρ1:i−1), ∀i (6.14)

Then for any π ∈ Πk,p,

f(xπ(I))

f(xρ(I))
≤

 2α + p
k
, if p ≤ k

1 + α
(
1 + min

(
p
k
, n− 1

))
, if p > k.

(6.15)

Lemma 6.2 Assume that policy π ∈ Πk,p is applied to instance I ∈ I and that there

exist α1, α2 ≥ 1 such that

α1∆(xπi |xπ1:i−1) ≥ max
x̃∈(Si)k

∆(x̃|xπ1:i−1) (6.16a)

α2 · max
z̃∈(zπi )k

∆(z̃|xπ1:i) ≥ max
x̃∈(Si)k

∆(x̃|xπ1:i−1). (6.16b)

Then for any ρ ∈ Πk,p such that xρi ⊆ Si for all i,

f(xπ(I))

f(xρ(I))
≥ 1

1 + α1 − 1∑n−1
i=0 αi2

(6.17)

The proofs for Lemma 6.1 and Lemma 6.2 are given in Appendix-A.6 and Appendix-

A.7, respectively. We now prove each statement of the Theorem separately.
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Equation (6.10)

Here we invoke Lemma 6.1. Let π ∈ Πk,p and ρ ∈ Πk,p
ng . Using ρ, agents make choices

according to (5.1), therefore for any I, let α = 1. Then both expressions in (6.15) are

equivalent: f(xπ(I))/f(xρ(I)) ≤ 2 + min(p/k, n− 1).

Equation (6.11)

𝑆!	 𝑠!"# …

⋱

𝑘 elements 𝑚 elements 𝑘 elements

⋱

𝑆#

𝑆$

𝑆!%#	

⋮ ⋱

... ... ...

...

...

...

...

m(𝑛 −1) −1 elements

...

...

width k 𝑛− 1 + 1

(a) An example for proving (6.11) when p(n− 1) ≤
k. The key is that |Sn| ≤ k, and the orange ele-
ments offer no value beyond Sn. Each small box
has width 1 and sbig has width k(n− 1) + 1. Thus
f(xπ(I)) = k(n − 1) + p(n − 1) and f(xρ(I)) =
2k(n− 1) + p(n− 1).

𝑆!	 𝑠!"# …

⋱

𝑘 elements 𝑚 elements 𝑘 elements

⋱

𝑆#

𝑆$

𝑆!%#	

⋮ ⋱

... ... ...

...

...

...

...

...

...

𝑘 −1 elementswidth k 𝑛− 1 + 1

(b) An example for proving (6.11) when p(n− 1) ≥
k. Unlike the example above, here Sn consists of
exactly k elements, thus f(xπ(I)) = k(n − 1) + k
and f(xρ(I)) = 2k(n− 1) + k.

Figure 6.4: An example for proving (6.12). Here the greedy algorithm chooses
the green elements which are “covered” by sbig, thus f(xρ(I)) = k and
f(xπ(I)) = 2k + min(p, k(n− 1)− 1).

Fix π ∈ Πk,p and assume first that (n− 1)p ≤ k. Suppose that f and S1, . . . , Sn are

as represented in Figure 6.4a. Here the format of example is the same as in Figure 6.2.

We assume that all of the small rectangles are of width 1, and that the large rectangle

sbig is of length k(n− 1) + 1. Essentially, for agent i ∈ {1, . . . , n− 1}, all elements in Si

are identical according to f , since there is no horizontal overlap among them, and none

of these agents is aware of the elements in Sn.

Assume that πi selects the blue elements for xπi and the orange elements for zπi ,

i = 1, . . . , n − 1. Note that |Sn| = p(n − 1) ≤ k, so xπn = Sn is feasible, and an

optimal choice regardless of the previous agents’ decisions. This implies that f(xπ(I)) =

80



Augmenting Action Sets Chapter 6

k(n− 1) + p(n− 1).

On the other hand, consider the decision set of some ρ ∈ Πk,p
ng : the rectangles shaded

in green for i < n, and the blue rectangles for i = n. Thus f(xρ(I)) = 2k(n−1)+p(n−1),

and for this problem instance I,

f(xπ(I))

f(xρ(I))
=
k(n− 1) + p(n− 1)

2k(n− 1) + p(n− 1)

=
1

2− (n−1)p/k
n−1+(n−1)p/k

. (6.18)

In the case where p(n − 1) ≥ k, consider the example in Figure 6.4b. Here Si are

the same as in Figure 6.4a, for i = 1, . . . , n − 1, implying again without that a possible

choice for xπ1 , . . . , x
π
n−1 are the respective blue elements. In this case, however, |Sn| = k,

but note that f(xπ1 , . . . , x
π
n−1, xn) = kn for any xn ∈ (Sn)k, thus f(xπ(I)) = kn. The

green elements are again a possible greedy policy selection, where different from the blue,

showing that f(xρ(I)) = 2k(n− 1) + k. In this case we see that

f(xπ(I))

f(xρ(I))
=

kn

2k(n− 1) + k
=

1

2− 1/n
. (6.19)

Equations (6.18) and (6.19) establish (6.11) for all cases.

Equation (6.12)

We appeal to an example of the same style as in Figure 6.2, which is illustrated in

Figure 6.4. Here S1 is the union of a set of k green elements, a set of k blue elements,

and a set of p orange elements. The sets S2, . . . , Sn−1 are all empty, and Sn = {sbig}. All

elements have value 1, except sbig, which has value k. The element sbig “covers” the set

of green elements, i.e., if A is the set of green elements, then f(B, {sbig}) = k for any

B ⊆ A.
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Assume that using a nominal greedy policy ρ, agent 1 selects the k green elements.

Then f(xρ(I)) = k. However, there exists an augmented greedy policy π such that agent

1 selects the k blue elements as xπ1 and the p orange elements as zπ1 . Since the remaining

agents have no other alternatives, min{p, k(n − 1) − 1} orange elements are chosen for

xπ2 , . . . , x
π
n. This implies that f(xπ(I)) = 2k + min{p, k(n − 1) − 1}, and that for this

problem instance I

f(xπ(I))

f(xρ(I))
= 2 + min{p/k, n− 1− 1/k}. (6.20)

Equation (6.13)

We invoke Lemma 6.2 by finding acceptable values of α1, α2 which hold for any I.

For any π ∈ Πk,p
ag , (6.9a) implies that α1 = 1 is a valid parameter choice. When p ≥ k,

α2 = 1, since maxz̃∈(zπi )k ∆(z̃|xπ1:i) = zki from (6.9c). When p < k, the following holds:

max
z̃∈(zπi )k

∆(z̃|xπ1:i) = max
z̃∈(Si)p

∆(z̃|xπ1:i) (6.21a)

≥(p/k) · max
x̃∈(Si)k

∆(x̃|xπ1:i). (6.21b)

Therefore, α2 = 1/min(p/k, 1) is an acceptable value. Since ρ ∈ Πk,p
ng satisfies that

xρi ⊆ Si, one can use these values for α1, α2 (combined with some algebraic manipulation),

so that Lemma 6.2 implies (6.13).

�

6.2.3 Benchmark Comparison to Greedy

In this section we compare augmented greedy policies to nominal greedy policies

by comparing them each to a the optimal solution to (1.1), to see how measurement

sharing increases performance guarantees. When π is a nominal greedy policy, as has
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been stated, the resulting solution is within a factor of 1/2 of this benchmark. Therefore,

we are interested in how the ability to share measurements can increase the 1/2 bound:

Corollary 6.1 Consider the measurement selection problem with n sensors. Then for

any k ≥ 1, p ≥ 0, the worst-case performance guarantee associated with the optimal

measurement passing policy within Πk,p satisfies

max
π∈Πk,p

min
I∈I

f(xπ(I))

OPT(I, k)
≤ 1

2− min((n−1)p/k,1)
n−1+min((n−1)p/k,1)

, (6.22)

where OPT(I, k) is the value of the solution to (1.1). When restricting attention to

augmented greedy policies, the worst-case performance guarantee associated with any π ∈

Πk,p satisfies

max
π∈Πk,pag

min
I∈I

f(xπ(I))

OPT(I, k)
≥ 1

2− (min(p/k,1))n−1∑n−1
i=0 (min(p/k,1))i

. (6.23)

where the bound in (6.23) becomes an equality of the form (6.22) when p ≥ k.

This result follows from Theorem 5.1, since the defining example in Figures 6.4a and

6.4b can be altered so that the green measurements are the solution to (1.1), and since

f(xρ(I)) ≤ OPT(I, k) for ρ ∈ Πk,p
ng . The main takeaway from this corollary is that when

compared to the benchmark (assuming p > 0), an augmented greedy policy is strictly

better than any nominal greedy policy. In other words, measurement passing always

helps. For instance, when n = 2 and p ≥ k, f(xπ(I)) ≥ 2/3 · OPT(I, k) for any I and

π ∈ Πk,p
ag , as compared to 1/2 for any nominal greedy policy.

6.3 Suboptimal Selections

To implement an augmented greedy policy, each agent is required to solve the op-

timizations in (6.9a) and (6.9d), both of which are NP-Hard, in terms of k, assuming
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large |Si|. This means that, when k and |Si| are large, executing an augmented greedy

policy may become computationally infeasible—an observation which is well-known for

the nominal greedy algorithm [69]. Such scenarios are typical for the the motivating

example in Section 6.1, in which the flying vehicles may need to select a large number of

images from a much larger set of total images taken.

Real-world implementations of the augmented greedy algorithm must thus approx-

imate (6.9a)–(6.9d). We devote this section to understanding how approximating the

solution to such optimizations affects the message passing. The key observation from

the results in that follow is that while this approximation increases the range of possible

values for f(xπ(I))/f(xρ(I)) (as one might expect), the lower bound decreases (roughly)

linearly as a factor of the approximation error. The idea of using approximate maximiza-

tion for the nominal greedy algorithm has been used previously in the literature (see, for

instance [69, 70]) for analyzing approximations to the nominal greedy algorithm, which

model and results we extend here for augmented greedy policies.

Definition 6.3 (β-Greedy Policy) A policy π ∈ Πk,p is a β-greedy policy for some

β ≥ 1 if each agent i ∈ {1, . . . , n} is associated with a selection rule πi of the form

∆(xπi |xπ1:i−1) ≥ β · max
x̃∈(Si)k

∆(x̃|xπ1:i−1). (6.24)

Note that when β = 1, the nominal greedy policy defined by (5.1) is recovered.

An analogous approximation can be defined for the augmented greedy algorithm:

Definition 6.4 ((βk, βp)-Augmented Greedy Policy) A policy π ∈ Πk,p is a (βk, βp)-

greedy policy for some βk, βp ≥ 1 if each agent i ∈ {1, . . . , n} is associated with a selection
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rule πi of the form

∆(xπi |xπ1:i−1) ≥ βk · max
x̃∈(Si∪zπ1 ∪···∪zπi−1)k

∆(x̃|xπ1:i−1), (6.25a)

zπi = zki ∪ z
p−k
i , where (6.25b)

∆(zki |xπ1:i) ≥ βp · max
z̃∈(Si)min(m,k)

∆(z̃|xπ1:i), (6.25c)

∆(zp−ki |xπ1:i, z
k
i ) ≥ βp · max

z̃∈(Si)max(p−k,0)
∆(z̃|xπ1:i, z

k
i ) (6.25d)

In essence, a (βk, βp)-augmented greedy policy is a policy which approximates an aug-

mented greedy policy by finding a solution to (6.9a) and (6.9c) within a factor of βk and

βp, respectively, of the optimal. When βk = βp = 1, the original augmented greedy policy

is recovered.

Theorem 6.2 Consider a system I = (f, S1, . . . , Sn). Then for any (βk, βp)-augmented

greedy policy π, any βk-greedy policy ρ, and any problem instance I,

f(xπ(I))

f(xρ(I))
≤


2
βk

+ p
k
, if p ≤ k

1 + 1
βk

(
1 + min

(
p
k
, n− 1

))
, if p > k,

. (6.26)

f(xπ(I))

f(xρ(I))
≥ 1

1 + 1
βk
− (βp min(p/k,1))n−1∑n−1

i=0 (βp min(p/k,1))i

. (6.27)

Observe that when βk = βp = 1, the results are equivalent to (6.10) and (6.13) in

Theorem 6.1. Here we forgo analogous results to (6.11) and (6.12), since the emphasis

of this theorem is that while the approximations to the local optimization problems

increase the range of possible values for f(xπ(I))/f(xρ(I)), this range is still desirable.

For instance, if βk = βp = 1/2, regardless of the number of agents, Theorem 6.2 shows

that f(xπ(I))/f(xρ(I)) ≥ 1/3, as compared to the 1/2 bound from Theorem 6.1, i.e., the

potential loss in performance decreases only a moderate amount. On the other hand,
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𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5 𝑛 = 6
𝑚 upper lower upper lower upper lower upper lower upper lower

0 2.667 0.4286 2.667 0.4286 2.667 0.4286 2.667 0.4286 2.667 0.4286

2 3.667 0.5676 3.667 0.4978 3.667 0.4700 3.667 0.4556 3.667 0.4470

4 3.667 0.5580 5 0.4893 5 0.4628 5 0.4494 5 0.4419

6 3.667 0.5553 5 0.4870 6.333 0.4608 6.333 0.4479 6.333 0.4406

8 3.667 0.5540 5 0.4859 6.333 0.4600 7.667 0.4471 7.667 0.4400

Figure 6.5: Some examples that showcase the results of Theorem 6.2 for k = 2. It is
assumed that each algorithm is implemented with the sequential greedy rule in (6.28),
i.e., βk = 1− (1− 1/k)k and βp = 1− (1− 1/p)p.

f(xπ(I))/f(xρ(I)) ≤ 2n + 1, an increase over the n + 1 bound from Theorem 6.1. In

words, element passing can offer a potentially larger benefit without a much higher risk.

An example of a (βk, βp)-augmented greedy policy π is where agent i chooses xπi =

{s1, . . . , sk} by sequentially selecting element sl with the following method:

sl ∈ arg max
s̃∈Si∪zπ1 ∪···zπl−1

∆({s̃}, s1:l−1|xπ1:i−1). (6.28)

This is yet another variation of greedy algorithm, this time for choosing the k elements

of xπi . The guarantees for this algorithm are such that βk = 1 − (1 − 1/k)k [53]. Using

a similar method to choose zπi yields βp = 1 − (1 − 1/p)p, so that both βk and βp are

greater than 1−1/e ≈ 0.63. The (1−1/e, 1−1/e)-augmented greedy algorithm can now

be implemented using O(pn2 +
∑

i |Si|) calls to f , and the (1 − 1/e)-greedy algorithm

can be implemented using O(
∑

i |Si|) calls to f .

Figure 6.5 illustrates the upper bound shown in (6.26) and the lower bound shown

in (6.27) for various values of n and m when k = 2. Here we assume that (6.28) is used

to implement both algorithms, i.e., βk = 1 − (1 − 1/k)k and βp = 1 − (1 − 1/p)p. Since

βp decreases as m increases, the lower bound decreases when p > k. The upper bound,

however, continues to increase in a similar manner to that of Theorem 6.1.

We now give the proof for Theorem 6.2:
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Proof: We first show (6.27) by invoking Lemma 6.2: it suffices to show valid values

for α1, α2 in order to show the lower bound in (6.27). An immediate consequence of

(6.25a) is that α1 = 1/βk holds for all I. Likewise, one can use a similar argument to

(6.21a)–(6.21b) to show that α3 = 1/(βp min(p/k, 1)) holds for all I. Then by Lemma 6.2

(since again ρ is such that xρi ⊆ Si),

f(xπ(I))

f(xρ(I))
≥ 1

1 + 1
βk
− 1∑n−1

i=0 (βp min(p/k,1))i

=
1

1 + 1
βk
− (βp min(p/k,1))n−1∑n−1

i=0 (βp min(p/k,1))i

.

Equation (6.26) can be shown similarly using Lemma 6.1, where π is the (βk, βp)-

augmented greedy algorithm, ρ is the βk-greedy algorithm, and, by (6.24), α = 1/βk for

all I.

6.4 Numerical Example

In this section, we present results for instances of the flying vehicles problem in

Section 6.1, where n = 2 flying vehicles move on a curved path, each carrying a side-

looking camera with a 90◦ field of view, a 50 pixel focal length, and measurement noise

in the image plane with standard deviation σ = 1 pixel. There are two stationary ground

targets whose 2-D location we would like to estimate using the images collected by the

flying vehicles. A large number of instances were created with the two targets uniformly

randomly placed in the square [−100, 100] × [−100, 100]. The start position, direction,

and turn rate of the each flying vehicle’s path were also chosen uniformly randomly.

Each flying vehicle moves at a constant forward speed and collects 100 independent

measurements uniformly along its path. Details of how to construct the corresponding
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vehicle 1

vehicle 2

𝑠!
𝑠"
𝑠#
𝑠$
𝑠%

𝑠&

𝑠'

𝑠( 𝑠)

𝑠!*

measurement location

selection in 𝛽! -greedy algorithm
selection in (𝛽! , 𝛽")-greedy algorithm 

optimal measurement

target location

Figure 6.6: An instance of the flying vehicles problem where n = 2, k = 2, p = 1, and
|S1| = |S2| = 5. The black solid lines indicate each vehicle’s path, and the black dashed
lines indicate each vehicles field of view. The black ×’s are where measurements of the
red targets are taken; of course, both targets are not always in view of both vehicles.
The βk-greedy (orange dots) and (βk, βp)-augmented (blue dots) greedy policies are
used in conjunction with the sequential selection rule in (6.28). The green dots indicate
measurements that are optimal in the sense that they are a solution to (6.6).

matrices Q0 and Qs in (6.2) and (6.3) that quantify the information gain of camera

measurements are found in [66]. See Figure 6.6 for an example.

Figure 6.7 summarizes the results in terms of the ratio between the performance of a

(1−(1−1/k)k, 1−(1−1/p)p)-augmented greedy policy and a 1−(1−1/k)k-greedy policy,

where k = m = n = 2 and |S1| = |S2| = 100. Because the number of measurements

is very large, the optimizations in (6.9a), (6.9c), and (5.1) are all approximated by the

sequential algorithm in (6.28), where all ties are broken by the index of the measurement.

Additional trials were run for different combinations of the number of flying vehicles

and targets. Each combination was repeated 105 times with random position and paths.

The results are summarized in Figure 6.8. The setup is the same as above, with the
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0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

Metric % Sim

Performance increase 46.12%

Performance decrease 0.0003%

Performance increase at least 5% 35.10%

Performance increase at least 40% 20.36%

Performance increase at least 70% 16.05%

Average = 1.178

𝑓(𝑥!(𝐼))/𝑓(𝑥"(𝐼))

Figure 6.7: Histogram of the relative performance for 106 random simulations of the
2 vehicle measurement selection problem. A large number of samples fall at 1, which
is interpreted as the two policies performing the same. Instances where the value
is greater than one indicate the (βk, βp)-augmented greedy performed better than
the βk-greedy in the simulated scenario. The height of the bin corresponding to the
ratio of 1 has been cropped. The solid blue bars represent the range of values for
f(xπ(I))/f(xρ(I)) as determined by Theorem 6.2 and in Figure 6.5.

exception that, for the purposes of computation the flying vehicles gather 20 measure-

ments over the course of the simulation rather than 100. One can see that when there

are more sensors, the mean benefit of measurement passing decreases, since the measure-

ment passing is most useful when a large percentage of flying vehicles cannot observe

any targets. This is more likely to happen with fewer flying vehicles. However, one can

also observe from the column labeled “% > 1” that measurement passing is more likely

to give some benefit (although smaller) when there are more vehicles, simply because

more measurements are being passed, increasing the likelihood that some vehicle will use

another’s measurement. Likewise, it can be observed from the last column that systems

with many sensors are less likely to see a decrease in performance due to measurement

passing.

While measurement selection is based on the submodular function (6.5), it is worth
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# Vehicles # Targets Mean % > 1 % ≥ 1 
3 10 1.05 0.625 0.97
3 3 1.045 0.667 0.985
4 4 1.044 0.835 0.972
10 4 1.024 0.996 0.997
2 10 1.041 0.33 1
5 10 1.042 0.895 0.945

Trials Measuring 𝑓(𝑥!(𝐼))/𝑓(𝑥"(𝐼))

Figure 6.8: Results from many different types of trials comparing nominal greedy
to augmented greedy. Each row represents a different set of numbers of agents and
targets, and there were 105 trials run for each row. One can observe that measurement
passing helps on average more when there are fewer agents, however, many agents
ensure that measurement passing helps more frequently.

noting that the actual improvement in target estimation, such as that described by the

commonly used D-optimality estimation criterion of det
(
Q0 +

∑
s∈S Qs

)
(without the

log function), can be much greater than that shown in Figure 6.7.
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Chapter 7

Network Security

We now depart from the common assumptions of the previous chapters: that f is sub-

modular and that there exists some information sharing constraint graph. Instead, we

focus on a noncooperative scenario, where the system designer cannot assign the utility

function of one of the players. Specifically, we address a network routing game between

an agent that wants to route legitimate traffic from a source node to a destination node

and another agent that wants to block traffic by flooding the network with malicious

traffic. We refer to these players as the router and the attacker. Motivated by network

security problems, we are interested in scenarios of asymmetric information, where the

router knows only only the action space of the attacker, but must expose its action to the

attacker before the attacker needs to select its action. The problem formulation consid-

ered here is motivated by the so-called Crossfire attack in which an attacker persistently

degrades network connectivity by targeting a selected set of links within the network,

while adjusting to changes in routing policies [71]. The defense against such attacks has

been the subject of recent work [72, 73, 74, 75].

The Nash equilibrium is an attractive solution concept for noncooperative systems

because it leads to very strong notions of equilibria, in that neither player regrets its
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choice after the outcome of the game is revealed [45]. However, such equilibria often

do not exist in problems of asymmetric information. The Stackelberg equilibrium is an

alternative solution concept where one player (the leader) must select and reveal its policy

before the other player (the follower) makes a decision [76]. This type of equilibrium

specifically addresses the information asymmetry that we consider here and has been

applied to domains closely related to the problem considered in this paper, including

network routing [77], scheduling [78], and channel allocation for cognitive radios [79],

but also has application in supply chain and marketing channels [80] among other fields.

The Stackelberg equilibrium is a concept that is also well-suited for security of critical

infrastructure systems [81] and has been applied to surveillance problems that include

the ARMOR program at the Los Angeles International Airport [82], the IRIS program

used by the US Federal Air Marshals [83], power grid security [84], and defending oil

reserves [81]. These two types of equilibria have also been studied extensively for various

types of security games [85].

This chapter includes three main contributions:

1. Theorems 7.1 and 7.2 establish that finding the best policy, or action, is an NP-Hard

problem for both the router and the attacker.

2. Theorem 7.3 determines conditions on the network under which Stackelberg equi-

libria lead to no-regret policies (i.e., are also Nash).

3. Section 7.3 explores how uncertainty in knowledge about the capabilities of the

attacker translates into performance loss for the router. Theorem 7.4 provides a

closed-form expression which quantifies this for a two-link network.

We focus on a network consisting solely of p parallel links that directly connect source

and destination. Even within this simple set of networks, the computation of the optimal
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attack policy turns out to have higher complexity than one might expect. For any fixed

routing policy, we show in Section 7.2 that the computation of the “optimal” distribution

of a fixed budget of attack traffic among the parallel links is an NP-hard problem with

respect to the scaling parameter p. From the attacker’s perspective, “optimal” means

that the attacker can prevent as much traffic as possible from reaching the destination, by

flooding network links so that legitimate traffic in excess the links’ capacity is dropped.

As noted above, Nash equilibria have the desirable feature that they lead to no regret

by both players, a feature that is generally not shared by Stackelberg equilibria. It turns

out that in the network routing games considered here, Stackelberg equilibria only lead to

no-regret (i.e., are also Nash equilibria) in the extreme cases where the attacker controls a

very large or a very small amount of traffic. We show this to be true for parallel networks

in Section 7.3. For these two extreme cases, we actually provide explicit formulas for the

optimal Stackelberg/Nash routing policies. Not surprisingly in view of the NP-hardness

result, no explicit formulas are provided for intermediate levels of attack traffic.

Motivated by the nontrivial dependence of the Stackelberg policy on the total amount

of traffic ra controlled by the attacker, we also study how uncertainty in ra affects routing

performance. Previous work in this area has modeled this type of uncertainty as a

distribution over the possible values of ra, giving rise to routing policies that give an

optimal expected value on the cost function [86]. However, in this work, we define a

metric for the “value of information” about the power of the attacker that compares the

amount of traffic that the attacker could block if the router knew precisely ra versus

the amount of traffic it could block if the router had to select a policy without precise

knowledge of ra. The latter scenario generally leads to an increase in blocked traffic.

We show in Section 7.4 a closed-form expression for the value of information in two-link

networks.

Finally, we explore the scenario where the router knows nothing of ra. What route
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should should be chosen then? We define a notion of robustness and show in Theorem 7.5

that a simple policy maximizes this type of robustness.

7.1 Model

This chapter focuses on a two-player network routing game where the system designer

is tasked with deriving a routing policy to maximize the throughput of a given single

source / single destination parallel network in the presence of an adversary. The network

is comprised of a set of edges E, where each edge e ∈ E is associated with a given capacity

ce ≥ 0, and we denote C(E ′) as the sum of the capacities of all edges in E ′ ⊆ E. Agent

1, which we will henceforth refer to as the router, is controlled by the system designer,

therefore we consider them to be the same entity. The router must choose a routing

profile, or action, f = {fe}e∈E which routes r ≥ 0 units of traffic across this network.

A feasible routing profile satisfies
∑

e∈E fe = r and 0 ≤ fe ≤ ce for all edges e ∈ E.

We denote the convex set of all admissible routing profiles as F(c, r) where c = {ce}e∈E

denotes the capacities of all edges.

This work considers the existence of an attacker whose goal is to block as much routed

traffic as possible by reducing the capacities of the edges in the network through a cross-

fire style attack where the attacker can send up to ra ≥ 0 units of non-responsive traffic

on various edges in the network. An adversarial attack can be characterized by a routing

profile fa = {fae }e∈E which satisfies
∑

e∈E f
a
e = ra and 0 ≤ fae ≤ ce for all edges e ∈ E.

We denote the set of all admissible adversarial attack policies as Fa(c, ra). We will often

refer to ra as the attack budget of the adversary. Given an admissible routing profile, or

action, f ∈ F(c, r) and an adversarial attack fa ∈ Fa(c, ra), the amount of legitimate
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traffic blocked on any edge e ∈ E is defined as

Be(f, f
a, c) := max {fe + fae − ce, 0} , (7.1)

and the total blocked traffic in the system as B(f, fa, c) =
∑

e∈E Be(f, f
a, c). Since the

routing policy is non-responsive, the adversarial choice effectively reduces the capacity

on each edge e from ce to ce − fae . Lastly, we will often omit highlighting the functional

dependence on the parameters c, r, and ra for brevity, e.g., express Fa(c, ra) as merely

Fa, when this dependence is clear.

One focus of this paper is to characterize different forms of equilibria in this two-

player network routing game. In general, we will assume that a router is required to

choose the routing strategy first and the adversary can respond accordingly. The most

natural class of equilibria that captures this phenomena is that of Stackelberg equilibria

(SE), which consists of any pair of routing profiles (f, fa) such that

f ∈ arg inf
f̄∈F

sup
f̄a∈Fa

B(f̄ , f̄a, c), (7.2)

fa ∈ arg sup
f̄a∈Fa

B(f, f̄a, c). (7.3)

If fa satisfies (7.3), we refer to fa as a best response attack to f . A second class of

equilibria that we focus on is Nash equilibria (NE), which focuses on situations where

both the router and adversary are required to select their strategy without knowledge of

the other’s choice. A NE is defined as any pair of profiles (f, fa) such that

f ∈ arg inf
f̄∈F

B(f̄ , fa, c), (7.4)

fa ∈ arg sup
f̄a∈Fa

B(f, f̄a, c). (7.5)
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𝑐" = 2

𝑐% = 4
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𝑐) = 12

𝑐+ = 20
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(a) An example network. Suppose that
f = {1, 1, 5, 10, 8} and fa = {2, 4, 4, 4, 6}.
Then, for instance on edge 4, since the ca-
pacity is 12, 2 units of traffic are blocked.
In total we see that B1 = 1, B2 = 1,
B3 = 0, B4 = 2, and B5 = 0, which re-
sults in B(f, fa, c) = 4.
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(b) This figure showcases one of the contributions of this
paper: a characterization of where no NE exist (gray re-
gion) and when all SE are also NE (white regions) for the
network in (a). For any values (r, ra), one of those two
properties must hold. See Example 7.1 and Theorem 7.3
for more details.

Figure 7.1: An example network showcasing the model and regions of (r, ra) where NE exist.

We refer to SE(r, ra) as the set of all SE for values r, ra, and likewise NE(r, ra) for

NE. Note that given the definitions above, NE(r, ra) ⊆ SE(r, ra). In the event where

NE(r, ra) = SE(r, ra), this implies that the router is not strategically disadvantaged by

having to reveal its choice before the adversary selects its policy. However, while a SE

will always exist, the same does not hold true for NE. Furthermore, this chapter will

address how knowledge of the exact value of ra impacts the existence and efficacy of such

equilibria.

The set of systems described above can be mapped into our general model presented

in Section 1.1, where N = {1, 2}, X1 = F , X2 = Fa, U1 = −B, U2 = B, m1 = f , and

m2 = ra. However, the notation and language presented above is more natural for this

setting and its proofs and results.

Example 7.1 We begin with the following example highlighting the complexity of com-
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puting NE and SE in such a routing game. To that end, consider the example shown in

Figure 7.1a with r = 25 and ra = 20 and denote the edge set as E = {1, 2, . . . , 5} and

edge capacities as c = {2, 4, 9, 12, 20}. Given a routing profile f = {1, 1, 5, 10, 8} and an

attack profile fa = {2, 4, 4, 4, 6}, it follows from (7.1) that the traffic blocked on each edge

is 1, 1, 0, 2 and 0, respectively. Note that these strategy profiles (f, fa) neither capture

a NE or SE as there are numerous adversarial strategies that could increase the total

blocked traffic given the routing profile f , e.g., f̄a = {0, 0, 8, 12, 0}.

The plot in Figure 7.1b highlights the distinction between NE and SE for the considered

routing problem for all pairs (r, ra) satisfying 47 ≥ r, ra ≥ 0. For instance, when r = 20

and ra = 5 (see point P1 in Figure 7.1b), any SE is also a NE. One such routing profile is

f = {0, 0, 0, 5, 15}, as this does not allow the attacker to block any traffic. When r = 25

and ra = 45 (point P3), we see a similar phenomenon, where the attacker has much

more power. In fact, observe that the routing profile f = {2, 4, 6.3̄, 6.3̄, 6.3̄} and attack

profile fa = {0, 4, 9, 12, 20} constitute both a SE and NE. The router is able to design a

policy such that the attacker can only block
∑

e∈E ce − ra traffic, the best the router can

achieve given ra. Thus the router has no incentive to deviate, and clearly the attacker

cannot. Lastly, when r = 30 and ra = 20 (point P2) we begin to notice a discrepancy

between NE and SE in the sense that given any profiles (f, fa), if (7.5) is satisfied then

(7.4) is not satisfied. For example, consider the profiles f = {1.4, 4, 6.4, 6.4, 11.8} and

fa = {0, 0, 0, 0, 20} and note that fa satisfies (7.5). If the attacker implements this

policy, then (f, fa) is not a NE, since the router would benefit unilaterally by moving some

traffic from edge 5 to another unblocked edge. The forthcoming Theorem 7.3 provides the

characterization shown in Figure 7.1b.

97



Network Security Chapter 7

7.2 Problem Hardness

In this section, we show that finding the best response attack policy and finding the

optimal routing policy are both NP-Hard. We begin with the attacker:

Problem 7.1 Given a parallel network with edges E, corresponding capacities c, a rout-

ing policy f , and attack power ra, find fa which satisfies (7.3), i.e., a best response attack

policy.

Note that an instance of the problem can be defined by (E, c, f, ra), and we show how

the complexity of the problem scales with the number of edges in the parallel network.

Theorem 7.1 Problem 7.1 is NP-Hard on the scaling variable |E|.

The theorem is proved by reducing the 0-1 Knapsack Problem (KP), a known NP-

Hard problem, to Problem 7.1. We do this by showing that if all fe are “sufficiently

small”, then any best response attack must either block all traffic on an edge or block

none of it. Thus finding the best response attack is simply finding the set of edges to

fully block, corresponding to the discrete nature of the items in the 0-1 KP. This implies

any method for solving these instances of Problem 7.1 will also solve the 0-1 KP.

The following lemma defines “sufficiently small” in this context:

Lemma 7.1 Consider an instance of Problem 7.1 (E, c, f, ra), where

fe < min
E′⊆E:ra−C(E′)>0

ra − C(E ′), (7.6)

for some e ∈ E. Then Be(f, f
a) ∈ {0, fe} for any fa which is a solution to Problem 7.1.

Proof: We prove the contrapositive statement. Let e be such that Be(f, f
a) /∈ {0, fe}.

Define Eblock := {e′ ∈ E : fe′ + fae′ > ce}, and observe by definition that e ∈ Eblock. Then
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it must be true that fe > ra−C(Eblock \{e}) > 0, otherwise the attacker could block more

routed traffic by redistributing as much attack traffic as possible from e to the other edges

in Eblock. Therefore, (7.6) must be false.

Given this, we proceed with the proof of Theorem 7.1. The 0-1 KP can be defined as

follows: assume we have n items, where each item e has a cost we and a value ve. Given

a total cost constraint Q, find the combination of items with maximum total which does

not exceed W . More formally stated, determine

maximize
x

∑
e

vexe

subject to
∑
e

xe, we ≤ Q, xe ∈ {0, 1},
(7.7)

where x := [xe]. This problem is known to be NP-Hard in the number of items [87].

Mapping a 0-1 KP to Problem 7.1 can be done with the following method: let every

item be mapped to an edge in a parallel network, ra = Q, ce = we, and fe = εve, where

ε > 0 satisfies

εve < min
E′⊆E:ra−C(E′)>0

ra − C(E ′), (7.8)

for all e ∈ E. By Lemma 7.1, we know that any solution to this subset of instances of

Problem 7.1 has the property that every edge will either have all routed traffic blocked

or none. Therefore, the problem can be reformulated as

maximize
x

∑
e

fexe

subject to
∑
e

xece ≤ ra, xe ∈ {0, 1}.
(7.9)

This problem yields an equivalent solution to that in (7.7), since the constraints are the

same, and each objective function is a scaled version of the other. Thus solving this
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instance of Problem 7.1 will also solve 0-1 KP and shows that Problem 7.1 is NP-Hard.

�

Next we show that finding the SE route in (7.2) is also an NP-Hard problem. Although

we have shown above that finding the inner supremum in (7.2) is NP-Hard for the space of

all routing policies, it does not follow immediately that (7.2) is as difficult. The hardness

of (7.2) is shown by reducing the partition problem to it. The problem is formally defined

as follows:

Problem 7.2 Given a parallel network with edges E, corresponding capacities c, total

traffic to be routed r, attack power ra, find f which satisfies (7.2), i.e., a routing policy

which minimizes the amount of traffic that can be blocked by the attacker.

An instance of Problem 7.2 is defined by the tuple (E, c, r, ra), and we will again show

how the complexity of the problem scales with the number of edges in a parallel network.

Theorem 7.2 Problem 7.2 is NP-Hard on the scaling variable |E|.

In order to prove hardness, we will leverage the following two lemmas.

Lemma 7.2 Consider the even routing policy, which is defined as fe = cer/C(E) for

all e ∈ E. Then for any attack fa ∈ Fa

rar

C(E)
≥ B(f, fa) ≥ BSE(r, ra), (7.10)

where BSE(r, ra) is the amount of traffic blocked in the SE.

Lemma 7.3 Consider a parallel network where (f, fa) is a SE and denote E(fae ) = {e ∈

E : Be(f, f
a) > 0}. Then there exists another attack policy f̃a, where E(fa) 6= E(f̃a),

such that (f, f̃a) is also a SE.
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Lemma 7.2 provides an upper bound on how much traffic can be blocked when the

router employs the even routing policy in terms of system parameters r, ra, and C(E). Of

course, this is also an upper bound for BSE. Lemma 7.3 gives insight into optimal attack

policy: that there must be at least two such policies which block traffic on a different set

of edges. We now proceed with the proof for Theorem 7.2.

Proof: The partition problem, a known NP-complete problem, can be reduced to

Problem 7.2 in polynomial time. The partition problem is, given a multiset of positive

integers S = {s1, . . . , sn}, to determine whether there exists a partition S1, S2 on S such

that the sum of the integers in S1 equals the sum of the integers in S2. An instance of the

partition problem can thus be defined by the multiset S. Note that if such a partition

exists, then the sum of each partition is T/2, where T is the sum of all the integers in

S. If T/2 is non-integer, then immediately the answer to the partition problem is “no”,

therefore, we assume that T/2 is an integer.

An instance of the partition problem can be mapped to an instance of Problem 7.2

by letting r = 1, ra = T/2, and E be a set of edges such that |E| = |S|+ 1. Then ci = si

for i ≤ n and cn+1 = T/2. Note that this mapping is completed in a polynomial number

of steps with respect to the scaling variable. Also, since all capacities are integer and

r = 1, Lemma 7.1 implies that Be(f, f
a) ∈ {0, fe} for e, for all f , and for all fa which

satisfy (7.3).

We claim that for a solution f to the instance of Problem 7.2 described above, fn+1 =

1/3 if and only if the answer to the corresponding partition problem is “’yes”. Suppose

first that fn+1 = 1/3. One possible attack policy fa is fan+1 = T/2 and fae = 0 for e ≤ n,

which blocks 1/3 of the routed traffic; thus the optimal attack must block at least 1/3.

However, since rar/C(E) = 1/3, it follows from Lemma 7.2 that 1) BSE(r, ra) = 1/3

(i.e., fa is an optimal attack) and 2) the even policy is an optimal routing policy. Even

though f might not be the even policy, one can use the fact that the even policy is
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optimal to reason about the edge capacities: suppose that the router selected the even

policy, denoted f̃ . Lemma 7.3 implies that there must be another optimal attack f̃a that

excludes edge n+ 1, but still blocks 1/3. Partition the edges in E \ {n+ 1} into two sets

S1, S2, where S1 = {e ∈ E : B(f̃ , f̃a) = f̃e}. Since 1/3 is blocked,

1

3
=
∑
e∈S1

Be(f̃ , f̃
a) (7.11)

=
∑
e∈S1

f̃e (7.12)

=
∑
e∈S1

cer

C(E)
(7.13)

C(E)

3r
=
∑
e∈S1

ce (7.14)

T

2
=
∑
e∈S1

ce, (7.15)

therefore S1, S2 is a partition that satisfies the conditions of the partition problem.

The other direction can be proven by contradiction: suppose that fn+1 6= 1/3 and

that the answer to the partition problem is “yes”, with a partition S1, S2. By Lemma 7.2,

BSE(r, ra) ≤ 1/3, so it follows that fn+1 < 1/3. This implies that
∑

e∈S1∪S2
fe > 2/3,

so either
∑

e∈S1
fe > 1/3 or

∑
e∈S2

fe > 1/3. Then there exists an attack fa such that

B(f, fa) > 1/3, a contradiction.

7.3 Equilibria

In this section, we present results that describe precisely the relationship between SE

and NE in our model. We then give a two examples: one which illustrates this relationship

and one which showcases why generalizing these results to even slightly more complex
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networks is nontrivial.

Theorem 7.3 Consider a parallel network with capacities c, routing demand r, and

adversarial routing power ra. The set of Nash Equilibria NE(r, ra) is nonempty and

NE(r, ra) = SE(r, ra) if and only if one of the following is satisfied: 1

ra ≤ max
E′⊆E

C(E ′)− r
|E ′|

(7.16)

ra ≥ C(E)− max
E′⊆E

r − C(E \ E ′)
|E ′|

. (7.17)

The proof for Theorem 7.3 can be found in AppendixA.11. An implication of this

proof is that the following routing profiles are of some importance:

f lo
e := max

{
ce − max

E′⊆E

C(E ′)− r
|E ′|

, 0

}
(7.18)

fhi
e := min

{
ce,max

E′⊆E

r − C(E \ E ′)
|E ′|

}
, (7.19)

namely, that when (7.16) holds, then (7.18) is a SE (and NE) routing profile; and that

when (7.17) holds, (7.19) is a SE (and NE) routing profile.

Refer again to the network in Figure 7.1. At point P1, r = 20 and ra = 5. Here

we calculate maxE′⊆E(C(E ′) − r)/|E ′| = 7, which means that ra satisfies (7.16). Thus

the router can use the policy f lo = {0, 0, 2, 5, 13} to ensure that the attacker cannot

block any traffic. By Theorem 7.3, this also implies that (f, fa) is both a SE and a

NE for any fa ∈ Fa(c, r). At point P3, r = 25 and ra = 45. Here we calculate

C(E)−maxE′⊆E(r−C(E \E ′))/|E ′| = 40.6̄, which means that ra satisfies (7.17). Thus

1While finding the maxima in (7.16) and (7.17) may appear to be computationally intractable given
the number of edges in the network, it is true that the maximizing E′ for both (7.16) and (7.17) is of the
form {1, 2, . . . , k}, where the edges are ordered starting with highest capacity to the lowest. Therefore,
finding either maxima is equivalent to finding the best value of k, which can be completed in linear time.
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Figure 7.2: Two parallel networks in series. We use this example to illustrate the
complexities for finding SE and NE in more general networks than just parallel. For
instance, one cannot simply decompose the optimal attack problem into either attack-
ing the set of edges between s and m, and attacking the edges between m and t. Even
if we limited our scope to such attacks, which set of edges to attack depends on the
value of ra, not merely on f and c. See Example 7.2 for more details.

the router can use the policy fhi = {2, 4, 6.3̄, 6.3̄, 6.3̄}, and from Theorem 7.3, (f, fa) is

a NE and SE for any fa ∈ Fa(c, r). At point P2, r = 30 and ra = 20. We calculate

that maxE′⊆E(C(E ′) − r)/|E ′| = 3.75 and C(E) − maxE′⊆E(r − C(E \ E ′))/|E ′| = 59,

therefore ra does not satisfy (7.16) or (7.17). By Theorem 7.3, we know that no NE can

exist at this point.

Example 7.2 Consider now the example in Figure 7.2, a graph where two parallel net-

works are connected in series. We present this as a simple example to showcase the

complexities that arise when studying the SE of non-parallel networks. For more complex

networks, one might think that finding a best response attack could be limited to attacking

a minimal cut-set in the network. However, even in this very simple example, we show

that this is not the case, and in fact, a best response attack will often incorporate edges of

multiple cut-sets in the network. Thus investigating parallel networks in this paper gives

a natural simplification of the problem in order to address the questions of interest.

In Figure 7.2, denote Esm as the cut-set of edges between s and m and Emt as the

cut-set of edges between m and t. Observe that regardless of the attacker’s capability,

there always exists a SE route where all edges in Emt have the same amount of traffic

routed on them. We assume in the following cases that the router always uses such a

policy, and therefore, we need only focus on the routing strategy across Esm.
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Let r = 2 and ra = 5. If the attacker restricts its attacks to a single cut-set Esm or

Emt, then the router can choose its policy accordingly, for instance fe = 1 for e ∈ Esm,

and fe = 0.25 for e ∈ Emt. Note that across each cut-set, this route satisfies (7.2).

Attacking only Esm, the attacker can block 1 unit of traffic, but attacking only Emt, the

attacker can block 1.25 units of traffic. This may seem unintuitive, since the total capacity

of Esm is less than that of Emt. Furthermore, the best response for the attacker is to block

some traffic on Esm and some on Emt. For instance, the attacker could block the 1 unit

of traffic on edge 1, and then block all traffic on 3 of the edges in Emt. Assuming that

the router evenly distributes the remaining 1 unit of routed traffic that arrives at node m,

this attack would block 1.375 units of traffic. Therefore, solving for a SE must include

all attacks across multiple cut-sets.

Given these complexities with even very simple non-parallel networks, the character-

izations of SE and NE in Theorem 7.3 only apply to parallel networks. While this class

of networks is sufficiently rich to ask the questions and showcase the phenomena that are

relevant to this work, future work can ask similar questions in a broader setting.

7.4 The Value of Information

In this section, we present preliminary results about the value to the router of knowing

information about the attack power ra. In order to do this, we introduce some notation.

We define

B∗(f, ra) := max
fa∈Fa(ra)

B(f, fa), (7.20)

in other words, B∗(f, ra) measures how much traffic is blocked in the attacker’s best

response to f , given ra. We also define

BSE(r, ra) := B(f, fa), (7.21)
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where (f, fa) ∈ F(r)× Fa(ra) is a SE. Recall that for the pair (r, ra) the same amount

of traffic will be blocked by any SE (f, fa).

As an example of both these functions, consider the plot in Figure 7.3 for a three-link

parallel network where c = {2, 3, 5} and r = 5. For the fixed route f = {0.5, 2, 3.5},

the gray line represents how B∗(f, ra) changes as a function of ra. Likewise, the orange

line showcases BSE(r, ra) as a function of ra. Observe that B∗(f, ra) ≥ BSE(r, ra) for all

values of ra.

7.4.1 Limited information

We limit the router’s knowledge of ra by stating that the router only knows that ra

is in some interval πa = [πa, πa]. In light of this uncertainty, if the router chooses policy

f , then we can define the risk of f on interval πa as

R(f, πa) := max
ra∈πa

(
B∗(f, ra)−BSE(r, ra)

)
. (7.22)

Intuitively, the value B∗(f, ra)−BSE(r, ra) represents how much more traffic the attacker

is able to block because the router chose policy f instead of a SE policy for that value of

ra. Thus the risk R(f, πa) is the maximum such value across all ra ∈ πa. In other words,

this measurement of risk shows, in the worst case, the advantage that the attacker gains

by the router not knowing the true value of ra.

As an example, consider again the plot in Figure 7.3. If we assume that the router

has no knowledge of ra (i.e., πa = [0, 10]), then the risk associated with the route

f = {0.5, 2, 3.5} is the maximum difference between the gray and orange lines, which

is achieved at ra = 8. Therefore, in this case we see that R(f, πa) = 1.5.

It turns out that the maximization in (7.22) can be restricted to a finite set of points

in πa.
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Figure 7.3: A plot showing the amount of traffic blocked by an optimal attack for a
SE routing policy (orange) versus the traffic blocked when the router selects specific
routing policy f (regardless of the value of ra). Here c = {2, 3, 5}, and r = 5. The
fixed policy represented by the gray line is f = {0.5, 2, 3.5}. We show the values of
the risk R(f, πa) for πa = [0, 10].

Lemma 7.4 For a parallel network,

R(f, πa) = max
ra∈(α∩πa)∪{πa,πa}

B∗(f, ra)−BSE(r, ra), (7.23)

where α is the finite set {ra : ∃E ′ ⊆ E where ra = C(E ′)}, which has at most 2|E|

elements.

The full proof is given in AppendixA.10, however here we provide some intuition:

consider the plot in Figure 7.3. The orange line, BSE(r, ra), is piecewise linear, with

no line slope being greater than 1. The grey line, B∗(f, ra), is also a piecewise linear

function, with lines slopes either 0 or 1. The value of the risk R(f, πa) is incurred at

ra = C({2, 3}) = 8, where the attacker’s best response against f is to fully block edges

2 and 3. Because the two lines are piecewise linear, the largest distance must take place

at one of the points of discontinuity for the gray line inside the interval πa.

Finally, we define the value of information to the router for an interval πa as the
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minimum amount of risk that can be incurred for any routing policy. More formally

stated,

V (πa) := min
f∈F

R(f, πa) (7.24)

= min
f∈F

max
ra∈πa

(
B∗(f, ra)−BSE(r, ra)

)
(7.25)

We also denote the routing policy which minimizes (7.24) by fπ. This value of information

is meant to reflect how valuable (i.e., how much less traffic would be blocked) if the router

knew the exact value of ra. For instance, if V (πa) = 0, then there exists a route which

satisfies (7.2) for any value of ra ∈ πa, thus the router does not need to know the exact

value. However, when V (πa) is high, knowing ra would allow the router to ensure that

less traffic is blocked. Figure 7.4 shows V (πa) and fπ for a two-link network.

7.4.2 The Value of Information in Two-Link Networks

Lemma 7.4 provides a numerical procedure to compute the risk for a routing policy f

against an attack power interval πa for general parallel networks. For two-link networks,

this means there exists a closed-form solution for R(f, πa) and subsequently V (πa).

Theorem 7.4 Consider a two-link parallel network, where c1 ≤ c2. Suppose that the

router only knows that ra ∈ πa = [πa, πa]. Then the value of information is

V (πr) =

 0, if πa ∩ [c1, c2] = ∅
1
4
(min{πa, c2} −max{πa, c1}), otherwise.

(7.26)

The theorem proof is given in AppendixA.12, but here we give an example to provide

some intuition. Consider the plot in Figure 7.4. In this network, c = {3, 6}, and r = 5.

If the router knows the exact value of ra, it can choose a SE routing policy, which will
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Figure 7.4: A plot with an example two-link parallel network that shows a graphical
interpretation for V (πa). The edge capacities in the network are {3, 6}, and r = 5.
The orange line represents how much traffic is blocked at the SE for each value of ra,
and the gray line is how much is blocked by a best response attack against fπ = {2, 3}
for each value of ra. The interval πa = [4, 7] is the blue shaded region. The value of
information V (πa) is the maximum difference between the two lines within the blue
region.
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make the difference between the lines 0 at that value of ra. If we assume that the router

only knows that ra ∈ πa = [4, 7], then it must choose a policy to mitigate the risk

associated with that loss of information. In this scenario, the router’s best option is

to use fπ = {2, 3} (gray line), which minimizes the maximum difference between the

two lines on πa. The value of the router knowing ra is then this minimum maximum

difference, i.e., V (πa) = 0.5.

7.5 A Robust Policy

In this section, we assume that the router has access to even less information: the

attacker’s budget (or presence) is unknown. Under this assumption, the router must fix

its policy in the presence of high uncertainty. Of course, if the router takes an optimistic

view and assumes that ra is low, the routing policy f lo is a good choice. If the router

takes a pessimistic view and assumes that ra is high, then fhi is a good choice. However,

if the router is wrong about its view, i.e., thinking ra is low when it’s high, this could

lead to a big loss in traffic. Therefore, the router must choose a policy that is robust

in some sense to any possible value of ra ∈ [0, C(E)]. Here we measure robustness of a

routing policy T (f) as

T (f) = inf
ra∈(0,C(E)]

ra

B∗(f, ra)
≥ 1. (7.27)

A high value of T (f) ensures that a small percentage of the attack budget is actually

blocking traffic for any value of ra. On the other hand, if T (f) = 1, that means that

there exists some value of ra such that B∗(f, ra) = ra. The following result shows that

the even policy is uniquely the policy that maximizes T (f).

Theorem 7.5 Suppose that f is the even policy. Then T (f) = C(E)/r. Furthermore,

no routing policy can guarantee a higher value of T (f) for any network.
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Figure 7.5: An example network showing the robustness of the even policy, which
we denote as f even. In this network, c = {4, 9, 8, 1} and r = 13. The black dashed
line represents the line rar/C(E); notice that this is an upper bound on the blue
line BSE(r, ra). The red line, B∗(f r

a,even is always between the two, as explained in
Lemma 7.2. The lines associated with f lo and fhi go above the dashed black line for
certain values of ra. One way to interpret Theorem 7.5 is that any plot for f ′ 6= f even

will be above the black dashed line for some values of ra.

Proof: Assume that f is the even policy. Lemma 7.2 shows that T (f) ≥ C(E)/r.

To see that this inequality is tight, consider ra = C(E ′) for some E ′ ⊆ E. If the attacker

uses the policy fae = ce for e ∈ E ′ and fae = 0 otherwise, it will block all traffic on the

edges in E ′, which, by definition of the even policy, sums to B(f, fa) = C(E ′)r/C(E).

Thus ra/B(f, fa) = C(E)/r.

Now assume the existence of f ′ ∈ F such that T (f) > T (f). If ra = C(E ′) for some

E ′ ⊂ E, then we know from the above discussion that B∗(ra, f) = rar/C(E), based on

the attacker putting all its traffic on the edges in E ′. However, the B∗(ra, f ′) must be

strictly less than this, meaning that
∑

e∈E′ f
′
e <

∑
e∈E′ fe. If ra = C(E \ E ′), then again

B∗(ra, f) = rar/C(E). However, since
∑

e∈E\E′ f
′
e >

∑
e∈E\E′ , the attacker can attack

the edges in E \ E ′ and block strictly more than rar/C(E), a contradiction.

Aside from robustness, using the even routing policy has two advantages. First, it
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is easy to implement: the router simply portions the traffic according to the relative

capacity of a link. Second, when the router uses this policy, it can be inferred from the

proof of Theorem 7.2 that finding the optimal attack is NP-Hard. There is not guarantee

that the attacker can block the optimal amount of traffic. This is not the case with f lo,

where an optimal attack policy is to attack the higher-capacity edges first, or with fhi,

where an optimal attack policy is to attack the lower-capacity edges first.
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Conclusions

In this work, we have endeavored to understand the impact of information in large-scale

autonomous systems. Recall from Chapter 1 that we posed the following questions:

1. How do a set of information constraints impact the resulting emergent system-wide

behavior?

We studied this question extensively in a variety of settings. In Chapter 3, we studied

information sharing constraints that arose from the presence of an external attacker, who

had the ability to compromise k agents, showing that the price of anarchy was (roughly)

inversely proportional to k across the set of valid utilities. In Chapter 4, we considered

a more general scenario where the constraints come in the form of a graph. Across

the set of valid utilities, it was determined that the price of anarchy degrades quickly

to 1/(n + 1) as edges are removed from the graph. Furthermore, no choice of utility

can guarantee a price of anarchy above the inverse of the independence number of G.

Chapter 5 investigates the case where the graph is a DAG and the marginal contribution

utility is employed. Here the price of anarchy was shown to degrade with the fractional

independence number. In Chapter 6, we relax the assumption that agents share their

chosen action - instead they may pass along additional information to augment other
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agents’ action sets. We described how this increased sharing yields better performance

guarantees, as one might expect. Lastly, in Chapter 7, we studied a network security

problem modeled as a Stackelberg game. We showed how knowledge of the attacker’s

action set affects the rational decision of the router, and how valuable it is know the

attacker’s exact budget.

2. How can a system designer strategically set decision-making rules for the compo-

nents to offset the effects of information constraints?

This question was also addressed throughout this work. In Chapter 3, we showed

that in the presence of compromised agents, the marginal contribution utility provided

an increased guarantee in performance. Chapter 4 then showed that consistent utility

functions mitigate the loss in performance shown to be present across the set of valid

utilities. In Chapter 5 this is explored in several aspects. First, we show, if the system

designer is permitted to build the graph with number of edges, what structures will yield

the best price of anarchy. Second, we showed for a “clique of cliques” graph that marginal

contribution is the optimal utility, and can be used to calculate the optimal information

sharing policy. The augmented greedy algorithm presented in Chapter 6 is shown to be

optimal given the information sharing constraints in certain settings, and near-optimal

in others. Finally, Chapter 7 showcases the optimal routing policies to be used in the

presence of attacker uncertainty.

8.1 Future Work and Open Questions

The study of large-scale autonomous systems is of great import - fortunately there is

no shortage of interesting problems. First, we have only considered a small subset of the

types of information sharing constraints that are possible. For instance, what if agents

are allowed to send messages not within the set of actions? What information would be
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helpful?

In this work we have only considered the effect of information sharing constraints on

the resulting equilibria, however one could ask similar questions about system dynamics.

For instance, how do information sharing constraints affect the transient guarantees under

a common model of dynamics, such as best response?

Future work will of course focus on the elusive characterization of optimal utility

design. Is there a specific utility that works well for the types of information constraints

in our model? Is there a large set of utilities that could be considered optimal? For

instance, in the set of valid utility games, could one choose a utility (or set of utilities)

that increase the price of anarchy to 1− 1/e?
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Proofs for Selected Results

A.1 Proof for Theorem 3.2

We note that the values for PoA(HVUG(k)) shown in Theorem 3.1 are lower bounds

for PoA(HMC(k)). Therefore, we need only show that having one blind agent increases

the lower bound for PoA(HMC(k)), then show that all these lower bounds are tight.

As with Theorem 3.1, we use submodularity and monotonicity to show that when

|B| > 0, PoA(HMC(k)) ≥ 1
1+|K| , and then proceed to provide a canonical example to

show that this lower bound on PoA is tight. As a matter of notation, for a, b ∈ X, we

denote f(a, b) to mean f(c), where c = {ai ∪ bi}i. Futhermore, for some J ⊆ N , we use

xJ to mean {xi}i∈J .
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Figure A.1: An example game used in the proof for Theorem 3.2. As with the other
figures, compromised agents are the black cross-hatch circles and the agents not in
K are the blue circles. Each resource s has a value vs, where f(x) =

∑
s∈S(x) vs.

A equilibrium selection yields f(xeq) = 1 + ε, since the blue agents have no other
available resources, and the agents in K act independently. The optimal selection is
for the agents in K to choose their alternate resource, i.e., f(xopt) = |K| + 1 + ε.
Therefore, as ε→ 0, f(xopt)→ 1 + |K|.

To see the lower bound, suppose that B 6= ∅ and consider the following:

f(xopt) ≤f
(
xopt, xeq

B

)
, (A.1)

≤f
(
xopt
N\K , x

eq
B

)
+
∑
i∈K

f
(
xopt
i

)
, (A.2)

=f
(
xopt
N\K , x

eq
B

)
+
∑
i∈K

f (xeq
i ) , (A.3)

≤f
(
xopt
N\K , x

eq
B

)
+ f(xeq

B ) + (|K| − 1)f(xeq) (A.4)

where (A.1) is true by monotonicity, (A.2) is true by submodularity, (A.3) is true since

agents in K are either blind or isolated, and (A.4) is true by monotonicity.

Once an agent in K has chosen an action, that agent has no incentive to deviate, re-

gardless of how the other agents behave. Therefore, we can consider a “sub system”

H̄ = (N \K, X̄,MC, f) among only the non-compromised agents, assuming that the

blind and isolated agents have made their choices. In this sub game, the non-compromised
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agents seek to maximize the welfare function f : X̄i → R, where x̄ := Πi/∈KXi, such that

f(x̄) = f(x̄, xeq
B )− f(xeq

B ), (A.5)

for x̄ ∈ X̄i. Note that f is also submodular monotone, with f(∅) = 0. The agents are

endowed with the following utility function

MCi(x̄i, x̄−i) = f(x̄i, x̄−i)− f(x̄−i). (A.6)

It can be easily shown that is a VUG. Therefore, we know from [16] that 2f(x̄eq) ≥

f(x̄opt), where x̄opt ∈ arg maxx̄ f(a). It is also important to note that by design, x̄eq is

also a equilibrium profile of actions for agents not in K for the original game G, assuming

that agents in B choose xeq
B .

Returning to (A.4), we see that

f(xopt) ≤ f
(
xopt
N\K , x

eq
B

)
− f(xeq

B ) + 2f(xeq
B ) + (|K| − 1)f(xeq) (A.7)

=f
(
xopt
N\K

)
+ 2f(xeq

B ) + (|K| − 1)f(xeq) (A.8)

≤f
(
x̄opt

)
+ 2f(xeq

B ) + (|K| − 1)f(xeq) (A.9)

≤2f (x̄eq) + 2f(xeq
B ) + (|K| − 1)f(xeq) (A.10)

=2f
(
xeq
N\K , x

eq
B

)
+ (|K| − 1)f(xeq

K ) (A.11)

≤(1 + |K|)f(xeq), (A.12)

where (A.7) is trivially true, (A.8) is true by defintion of f , (A.9) is true by definition of

x̄opt, (A.10) is true since Ḡ is a VUG, (A.11) is true by definition of f , and (A.12) is true

by monotonicity. Thus for any G that meets the requirements of the theorem statement,
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1 1 𝜀

…

…

2 2 … 2 2

Agent in 𝐾

Agent not in 𝐾

1 + ε1 + ε

Equilibrium selection
Optimal selection, 
where different

Figure A.2: An example game used in the proof for Theorem 3.2, for the case where
K is only isolated agents. We use the same f and notation as Figure A.1, except
with different resource values and action sets. As with previous examples, agents in
K act independently, choosing the two 1 + ε resources. The agents not in K are not
informed of these decisions, so a worst-case equilibrium is where the two agents which
also have access to these two resources also select them. The remaining agents not
in K have only access to one ε resource. Therefore, in this case, f(xeq) = 2 + 3ε.
The optimal allocation, on the other hand, is for all resources to be selected. Thus as
ε→ 0, f(xeq)/f(xopt)→ 1/(2 + |K|).

and for any xeq, it follows that

f(xeq)

f(xopt)
≥ 1

1 + |K|
, (A.13)

implying that this is also a lower bound for PoA(HMC(k)).

We now show that the lower bounds established above are tight. First consider the

problem instance in Figure A.1. Again, compromised agents are the black cross-hatch

circles and the agents not in K are the blue circles. As with the other examples in this

paper, each resource r has a value vs, where f(a) =
∑

s∈S(x) vs. It should be clear that a

equilibrium selection yields f(xeq) = 1 + ε, since the blue agents have no other available

resources, and the agents in K act independently. The optimal selection is for the agents

in K to choose their alternate resource, i.e., f(xopt) = |K|+ 1 + ε. Therefore, as ε→ 0,
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we see that

f(xeq)

f(xopt)
→ 1

1 + |K|
. (A.14)

Note that this holds for any combination of isolated and blind agents in K, and as long

as |K| < n.

In the case where K = N , then in the example in Figure A.1 one agent will still

choose the 1 + ε resource. Here we see that as ε→ 0, f(xeq)/f(xopt)→ 1/n.

In the case where |K| < n − 1 and there are no blind agents in K, we invoke the

example in Figure A.2, which uses the same f and notation as Figure A.1, except with

different resource values and action sets. As with previous examples, agents in K act

independently, choosing the two 1 + ε resources. The agents not in K are not informed

of these decisions, so a worst-case equilibrium is where the two agents which also have

access to these two resources also select them. The remaining agents not in K have only

access to one ε resource. Therefore, in this case, f(xeq) = 2+3ε. The optimal allocation,

on the other hand, is for all resources to be selected. Thus as ε→ 0,

f(xeq)

f(xopt)
→ 1

2 + |K|
. (A.15)

A.2 Proof for Theorem 4.1

We first show that

f(xeq)

f(xopt)
≥ 1

1 + τ(G)
, (A.16)

and then show that for any G, there exists f, {Xi}i, {Ui}i which make the expression

tight. We denote NT to mean the set of incoming neighbors common to information
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group T . Begin with

f(xopt) ≤f(xeq) + ∆(xopt|xeq), (A.17)

=f(xeq) +
∑
i

∆(xopt
i |x

opt
1:i−1, x

eq), (A.18)

≤f(xeq) +
∑
i

∆(xopt
i |xeq), (A.19)

=f(xopt) +
∑

T∈T (G)

∑
i∈T

∆(xopt
i |xeq), (A.20)

≤f(xeq) +
∑

T∈T (G)

∑
i∈T

∆(xopt
i |x

eq
j∈NT ), (A.21)

≤f(xeq) +
∑

T∈T (G)

∑
i∈T

Ui(x
opt
i , xeq

j∈NT ), (A.22)

≤f(xeq) +
∑

T∈T (G)

∑
i∈T

Ui(x
eq
i , x

eq
j∈NT ), (A.23)

≤f(xeq) +
∑

T∈T (G)

f(xeq
T ), (A.24)

≤f(xeq)(1 + τ(G)), (A.25)

where (A.17) is true by monotonicity of f , (A.18) is true by definition of ∆(·), (A.19)

is true by submodularity of f , (A.20) is a reorganization of the sum, (A.21) is true by

submodularity, (A.22) is true by statement 2) in Definition 3.1, (A.23) is true by the

defintion of equilibrium, (A.24) is true by statement 3) in the Definition 3.1, and (A.25)

is true by monotonicity of f .

Next we construct an example worst-case f , {Xi}i, {Ui}i such that

f(xeq)

f(xopt)
=

1

1 + τ(G)
(A.26)

for any G. Let S = {sε, ssm, sbig, s2, . . . , sτ} be a set of (possibly overlapping) 2-D boxes,
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…

1 1 … 1

1 + ε Agent 𝑗$ for 𝑡 = 2,… , 𝜏

Agent 𝑗%

Equilibrium selection
Optimal selection, 
where different

2

Other agent

𝜀

…

𝑠( 𝑠) 𝑠* 𝑠+

𝑠,-

𝑠./0

Figure A.3: Example used in the proof for Theorem 4.1. While agent j1’s choice in
equilibrium may seem unintuitive, it is based on a carefully crafted utility function,
such that Defintion 3.1 is still satisfied for the system.

as shown in Figure 4.3. Let f(x) be the total area covered by the boxes in S(x): this

function is normalized, submodular, and monotone. For some small ε > 0, let f({sε}) =

ε, f({ssm}) = 1 + ε, f({sbig}) = 2, and f({s2}) = · · · = f({sτ}) = 1. The box sbig

“covers” the box ssm, i.e., f({ssm, sbig}) = 2. The remaining pairs of boxes are disjoint.

From each information group T1, . . . , Tτ choose a representative agent j1, . . . , jτ . Since

the label order is arbitrary, we assume without loss of generality that there exists incoming

edges from agent j2 to the agents in T1, i.e., j2 ∈ N (T1).1 The action sets are allocated

as

Xi =


{{sε}, {sbig}} if i = j1,

{{ssm}, {st}} if i = jt and t > 1,

{{sε}} otherwise.

(A.27)

Again, both f and {Xi}i are represented in Figure A.3.

1In the case where no such edges exists, i.e., G is a set of disconnected cliques, tightness can be shown
from Corollary 5.1.
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In order to define the utilities, we first define the action profile xeq:

xeq =

 {ssm} if i ∈ {j2, . . . , jτ},

{sε} if i /∈ {j2, . . . , jτ}.
(A.28)

As the notation implies, we will design the utilities so that this action profile is an

equilibrium. For every Tt ∈ T (G) define xt, where

xti =

 xeq
i if i ∈ Tt ∪N (Tt),

∅ if i /∈ Tt ∪N (Tt).
(A.29)

In other words, xt is the set of actions in xeq, with the exception that all agents not

in Tt choose the empty set. It is important to note that due to the graph constraints,

the utility of agent i ∈ Tt for action profile xeq is Ui(x
t). It can also be observed that

f(xt) = 1 + ε + ptε, where pt ∈ {0, 1} is an indicator: pt = 1 if j1 ∈ N (Tt) or |Tt| > 1

(i.e., sε is chosen by some agent in Tt ∪N (Tt)), and pt = 0 otherwise.

The utility functions are as follows:

Ui(xi, xNi) =

 1 + ε if x = xt and i = jt for some Tt ∈ T (G)

f(xi, x−i)− f(x−i) otherwise.
(A.30)

We claim that f, {Xi}, {Ui}i is a VUG. Since Ui = MCi for all action profiles except

when x = xt and i = jt, we need only prove that the statements 2) and 3) in the VUG

definition are satisfied for these exceptions. Statement 2) holds since f(xt)− f(xti 6=jt) ≤
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1 + ε = Ujt(x
t). Statement 3) holds, since:

∑
i

Ui(x
t) =Ujt(x

t) +
∑

i/∈{jt,j1}

Ui(x
t) (A.31)

≤1 + ε+ ptε (A.32)

=f(xt). (A.33)

Recall that agent j1’s action set is {{sbig}, {sε}}, implying that

Uj1(x1) =1 + ε (A.34)

>2 + ptε− (1 + ε+ ptε) (A.35)

=f({sbig}, x1
−j1)− f(x1

−j1) (A.36)

=Uj1({sbig}, x1
−j1) (A.37)

For agent jt, t > 1, the action set is {{ssm}, {st}}, implying that

Ujt(x
t) =1 + ε (A.38)

>1 + ptε− ptε (A.39)

=f({st}, xt−jt)− f(xt−jt) (A.40)

=Ujt({st}, xt−jt) (A.41)

Since all other agents have only a single action in their action sets, we conclude that

xeq is an equilibrium action profile. The optimal profile xopt is where j1 chooses {sbig},

jt chooses {st} for t > 1, and all other agents choose {sε}, implying that f(xopt) =
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2 + τ(G)− 1 + ε. Therefore,

f(xeq)

f(xopt)
=

1 + 2ε

1 + τ(G) + ε
. (A.42)

As ε→ 0, we see that (A.26) holds.

A.2.1 Proof for Theorem 5.1

The upper bound is a consequence of Proposition 4.1. For the lower bound, let

xi = xsol
i and x = xsol for ease of notation. Then consider the following:

f(xopt) ≤f(x, xopt) = f(x) +
∑
i

∆

(
xopt
i

∣∣∣∣∣⋃
j<i

xopt
j ∪ x

)
, (A.43)

≤f(x) +
∑
i

∆(xopt
i |xNi), (A.44)

≤f(x) +
∑
i

∆(xi|xNi), (A.45)

where (A.44) follows from submodularity and (A.45) follows from the decision-making

rule in (5.1).

Consider a set of scalars {yk}k∈K(G) such that yk ≥ 0 for all k and
∑

k:i∈k yk ≥ 1 for
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all i. Then

f(xopt) ≤f(x) +
∑
i

∆(xi|xNi)

(∑
k:i∈k

yk

)
(A.46)

=f(x) +
∑
i

∑
k:i∈k

yk∆(xi|xNi) (A.47)

=f(x) +
∑

k∈K(G)

∑
i∈k

yk∆(xi|xNi) (A.48)

=f(x) +
∑

k∈K(G)

yk
∑
i∈k

∆(xi|xNi) (A.49)

≤f(x) +
∑

k∈K(G)

yk
∑
i∈k

∆(xi|xj:j<i,j∈k) (A.50)

=f(x) +
∑

k∈K(G)

ykf(xk) (A.51)

≤f(x) + f(x)
∑

k∈K(G)

yk, (A.52)

where (A.50) holds by submodularity and (A.52) holds by monotonicity. Then

f(x)

f(xopt)
≥ 1

1 +
∑

k∈K(G) yk
. (A.53)

To make the bound in (A.53) as tight as possible, one can solve the following opti-

mization:

miny
∑

k∈K(G) yk

subject to
∑

k∈K(G):i∈k yk ≥ 1, ∀i

yk ≥ 0, ∀k

(A.54)

This is the same optimization problem as that in (4.4), the value of which is defined as

k∗(G), and by duality, k∗(G) = α∗(G). �
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A.3 Proof for Lower Bound in Example 5.3

We begin with the following inequality, where x1:2 = x1 ∪ x2:

f(xopt) ≤f(xopt, x1:2) (A.55)

=f(x1:2) + ∆(xopt
1 |x1:2) + ∆(xopt

2 |x
opt
1 , x1:2)

+ ∆(xopt
3 |x

opt
1:2 , x1:2) + ∆(xopt

4 |x
opt
1:3 , x1:2) (A.56)

≤f(x1:2) + f(xopt
1 ) + ∆(xopt

2 |x1) + ∆(xopt
3 |x1:2)

+ ∆(xopt
4 |x1:2) (A.57)

≤f(x1:2) + f(x1) + ∆(x2|x1) + ∆(x3|x1:2)

+ ∆(x4|x1:2) (A.58)

=f(x1:3) + f(x1:2, x4) ≤ 2f(x1:4), (A.59)

where (A.55) is true by submodularity, (A.56) is true by definition of ∆, (A.57) is true

by submodularity, (A.58) is true since agents choose according to (5.1), (A.59) is true by

definition of ∆ and submodularity. Therefore we see γ(G) = 1/2. �

A.4 Proof for Lemma 5.3

In this proof, we construct a G such that (5.11) is at equality, then reason that no

other graph with n nodes, independence number r, and without the Sibling Property

can have fewer edges. The proof also leverages the properties for a graph without the

Sibling Property, found in Lemma 5.1. Let J be the unique maximum independent set

(Property 1) in G, and let G′ be the induced subgraph of G created by removing the

nodes in J . Then we know that α(G′) < α(G) (Property 3). From (5.5) and Lemma

5.2, the minimum number of edges that such a G′ can have is M(n − r, r − 1). Finally,
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every node in G′ must have outgoing edges to at least two nodes in J , therefore, G must

have an additional 2(n − r) edges. Thus the minimum number of edges to construct G

is given in (5.11). �

A.5 Proof for Lemma 5.2

This can be shown by construction. Recall that T (n, r) is a set of disconnected cliques,

of as close to equal size as possible. Making purely equal-sized cliques would mean that

each clique is of size bn/rc, with n mod r nodes left over. If each of these remaining

nodes is added to a different clique, then G consists of n mod r cliques of size dn/re and

the rest of size bn/rc. Since a clique of size p contains 1
2
p(p− 1) edges, we can see that

the first line in (5.10) is the number of edges in all the larger cliques, and the second line

is the number of edges in all the smaller cliques. �
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A.6 Proof for Lemma 6.1

Begin with the following:

f(xπ) ≤ f(xρ) + ∆(xπ|xρ) (A.60a)

≤f(xρ) + ∆(zπ1:n−1 ∩ xπ|xρ) + ∆(xπ \ zπ1:n−1|xρ) (A.60b)

=f(xρ) + ∆(zπ1:n−1 ∩ xπ|xρ)

+
∑
i

∆(xπi \ zπ1:n−1|xρ, xπ1:i−1 \ zπ1:n−1) (A.60c)

≤f(xρ) + ∆(zπ1:n−1 ∩ xπ|xρ)

+
∑
i

∆(xπi \ zπ1:n−1|x
ρ
1:i−1) (A.60d)

≤f(xρ) + ∆(zπ1:n−1 ∩ xπ|xρ) +
∑
i

α∆(xρi |x
ρ
1:i−1) (A.60e)

=(1 + α)f(xρ) + ∆(zπ1:n−1 ∩ xπ|xρ) (A.60f)

where (A.60a), (A.60b), (A.60d) are true by submodularity of f , and (A.60e) is true by

(6.14).

We denote z̃πi to mean zπi ∩xπ, and suppose that there exists β such that ∆(z̃πi |x
ρ
1:i) ≤

β∆(xρi |x
ρ
1:i−1). Then the second term in (A.60f) can be upper bounded by the following:

∆(z̃1:n−1|xρ) ≤
n−1∑
i=1

∆(z̃πi |z̃π1:i−1, x
ρ) (A.61a)

≤
n−1∑
i=1

∆(z̃πi |x
ρ
1:i) (A.61b)

≤
n−1∑
i=1

β∆(xρi |x
ρ
1:i) (A.61c)

=βf(xρ1:n−1) ≤ βf(xρ), (A.61d)
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where (A.61b) and (A.61d) are true by the submodularity of f . Substituting this upper

bound back into (A.60f), we see that

f(xπ) ≤ (1 + α + β)f(xρ).

We now show that such a β exists and define it for two cases: when p ≤ k and when

p ≥ k. First suppose that p ≤ k. Denote xk−pi ∈ arg maxx̃∈(xρi )k−p ∆(x̃|xρ1:i−1). Then

∆(xρi |x
ρ
1:i−1) ≥ (1/α)∆(z̃πi ∪ x

k−p
i |x

ρ
1:i−1) (A.62a)

=(1/α)∆(z̃πi |x
ρ
1:i−1, x

k−p
i ) + (1/α)∆(xk−pi |x

ρ
1:i−1) (A.62b)

≥(1/α)∆(z̃πi |x
ρ
1:i) + (1/α)∆(xk−pi |x

ρ
1:i−1) =⇒ (A.62c)

∆(z̃πi |x
ρ
1:i) ≤ α∆(xρi |x

ρ
1:i−1)−∆(xk−pi |x

ρ
1:i−1) (A.62d)

≤α∆(xρi |x
ρ
1:i−1)− k − p

k
∆(xρi |x

ρ
1:i−1) (A.62e)

=(α− 1 + p/k)∆(xρi |x
ρ
1:i−1), (A.62f)

where (A.62a) is true by (6.14), (A.62c) is true by submodularity of f . We conclude that

when p ≤ k, β = (α− 1 + p/k), implying that for this case

f(xπ) ≤ (2α + p/k)f(xρ).

Next suppose that p ≥ k. Observe that |z̃πi | ≤ k(n−1), since using the approximated

augmented greedy policy, no more than k(n− 1) elements of zπi can be chosen by other
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agents. This implies the following:

∆(z̃πi |x
ρ
1:i) ≤ (1/min(k/|z̃πi |, 1)) · max

z∈(z̃πi )k
∆(z|xρ1:i) (A.63a)

≤max(|z̃πi |/k, 1) · max
z∈(z̃πi )k

∆(z|xρ1:i) (A.63b)

≤max(min(k(n− 1), p)/k, 1) · max
z∈(z̃πi )k

∆(z|xρ1:i) (A.63c)

= min(n− 1, p/k) · max
z∈(z̃πi )k

∆(z|xρ1:i) (A.63d)

≤α ·min(n− 1, p/k)∆(xρi |x
ρ
1:i−1) (A.63e)

We conclude that when p ≥ k, β = α ·min(n− 1, p/k), implying that for this case:

f(xπ) ≤ (1 + α(1 + min(n− 1, p/k)))f(xρ).

�

A.7 Proof for Lemma 6.2

We begin with

f(xρ) ≤f(xπ1:n−1) + ∆(xρ|xπ1:n−1) (A.64a)

=f(xπ1:n−1) + ∆(xρn|x
ρ
1:n−1, x

π
1:n−1) +

n−1∑
i=1

∆(xρi |x
ρ
1:i−1, x

π
1:n−1) (A.64b)

≤f(xπ1:n−1) + ∆(xρn|xπ1:n−1) +
n−1∑
i=1

∆(xρi |xπ1:i) (A.64c)

≤f(xπ1:n−1) + α1∆(xπn|xπ1:n−1) +
n−1∑
i=1

∆(xρi |xπ1:i) (A.64d)
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where (A.64a) and (A.64c) follow from submodularity of f , (A.64b) follows from the

definition of ∆(·), and (A.64d) follows from (6.16a). Focusing on the sum in (A.64d), for

any 0 ≤ ε1, . . . εn−1 ≤ 1 (and defining ε0 = 0), we see that

n−1∑
i=1

∆(xρi |xπ1:i) =
n−1∑
i=1

(1− εi)∆(xρi |xπ1:i) +
n−1∑
i=1

εi∆(xρi |xπ1:i) (A.65a)

≤
n−1∑
i=1

(1− εi)∆(xρi |xπ1:i−1) +
n−1∑
i=1

α2εi∆
k(zπi |xπ1:i) (A.65b)

≤
n−1∑
i=1

α1(1− εi)∆(xπi |xπ1:i−1) +
n−1∑
i=1

α1α2εi∆(xπi+1|xπ1:i) (A.65c)

=α1α2εn−1∆(xπn|xπ1:n−1) +
n−1∑
i=1

α1(1− εi + α2εi−1)∆(xπi |xπ1:i−1), (A.65d)

where (A.65b) is true by submodularity of f (1st term) and (6.16b) (2nd term), (A.65c)

is true by (6.16a), and (A.65d) is just a rearrangement of the terms. Applying this to

(A.64d) yields

f(xρ) ≤ f(xπ1:n−1) + (α1 + α1α2εn−1)∆(xπn|xπ1:n−1)

+
n−1∑
i=1

(α1 − α1εi + α1α2εi−1)∆(xπi |xπ1:i−1) (A.66a)

=(α1 + α1α2εn−1)∆(xπn|xπ1:n−1) +
n−1∑
i=1

(1 + α1 − α1εi + α1α2εi−1)∆(xπi |xπ1:i−1). (A.66b)

Suppose that for a particular choice of εi, we let

εi =
(1/α1)

∑i−1
j=0 α

j
2∑n−1

j=0 α
j
2

. (A.67)
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Since α1, α2 ≥ 1, this satisfies the requirement that 0 ≤ εi ≤ 1 for i ∈ {1, . . . , n − 1}.

Then

−α1εi + α1α2εi−1 =−
∑i−1

j=0 α
j
2∑n−1

j=0 α
j
2

+

∑i−1
j=1 α

j
2∑n−1

j=0 α
j
2

(A.68)

=− 1∑n−1
j=0 α

j
2

(A.69)

Likewise

α1α2εn−1 =
α2

∑n−2
j=0 α

j
2∑n−1

j=0 α
j
2

=

∑n−1
j=1 α

j
2∑n−1

j=0 α
j
2

(A.70)

=1− 1∑n−1
j=0 α

j
2

(A.71)

Applying (A.69) and (A.71) to (A.66b) yields

f(xρ) ≤

(
α1 + 1− 1∑n−1

j=0 α
j
2

)
∆(xπn|xπ1:n−1) +

n−1∑
i=1

(
1 + α1 −

1∑n−1
j=0 α

j
2

)
∆(xπi |xπ1:i−1)

(A.72)

=

(
1 + α1 −

1∑n−1
j=0 α

j
2

)
f(xπ) (A.73)

�
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A.8 Proof for Lemma 7.2

The right inequality is true by definition of SE, so we focus on the left. Denote

A = {e ∈ E : Be(f, f
a) > 0}

B(f, fa) =
∑
e∈A

Be(f, f
a) (A.74)

=
∑
e∈A

fe + fae − ce (A.75)

=
∑
e∈A

cer/C(E) + fae − ce (A.76)

=
∑
e∈A

ce(r/C(E)− 1) + fae (A.77)

≤
∑
e∈A

fae (r/C(E)− 1) + fae (A.78)

=
∑
e∈A

rfae /C(E) (A.79)

≤rra/C(E) (A.80)

�

A.9 Proof for Lemma 7.3

This can be proven by contradiction: suppose that fa is the unique optimal attack

against an optimal routing policy f which is a solution to (7.2). Let f̃a be a “next best”

attack, i.e.,

f̃a ∈ arg max
x∈Fa\fa

B(f, x). (A.81)
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For some very small ε > 0 , d ∈ E(f̃a) \ E(fa), and d′ ∈ E(f̃a) \ E(fa), construct the

following routing policy

f̃e =


fe + ε if e = d,

fe − ε if e = d′,

fe, if e ∈ E \ {d, d′}.

(A.82)

Since ε is small, fa remains the optimal attack: B(f̃ , fa) > B(f̃ , f̃a). However, B(f, fa) =

B(f̃ , fa) + ε, which implies that f is not a solution to (7.2), a contradiction.

�

A.10 Proof for Lemma 7.4

Fix r and f ∈ F(r). Since all parameters except ra are fixed, we use the notation

B∗(ra) and BSE(ra) to emphasize that we are considering how much traffic is blocked as

ra varies.

To prove this lemma, we claim the following to be true:

1. B∗(ra) is a continuous function.

2. Suppose ra is such that there exists a best response fa and e ∈ E where ce − fe ≤

fae < ce. Then there exists ε > 0 such that

B∗(ra + δ)−B∗(ra)
δ

= 1 for all 0 < δ < ε. (A.83)

Otherwise, if no such fa, e exist, then there is ε > 0 such that

B∗(ra + δ)−B∗(ra)
δ

= 0 for all 0 < δ < ε. (A.84)
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In words, ra is the lower boundary of a neighborhood where the derivative of B∗(ra)

is either 1 for all points in the neighborhood or 0 for all points in the neighborhood.

3. If there exists ε > 0 such that

B∗(ra + δ)−B∗(ra)
δ

= 0, and (A.85)

B∗(ra)−B∗(ra − δ)
δ

= 1, (A.86)

for all 0 < δ ≤ ε, then ra ∈ α.

4. On a plot of BSE(ra) vs ra, the slope of the line between any two points is in the

interval [0, 1].

Assuming the claims are true, claims 1 and 2 imply that B∗(ra) is a continuous

piecewise linear function, where the slope of each line is either 1 or 0. By claim 4,

B∗(ra) − BSE(ra) is increasing when the slope of B∗(ra) is 1, and decreasing when the

slope of B∗(ra) is 0. Therefore, the max of B∗(ra) − BSE(ra) must occur at some value

of ra where the slope of B∗(ra) changes from 1 to 0. By claim 3, all such values of ra are

contained in α. In the case where α \ πa is nonempty, we include the boundary points

πa and πa as possible values where the max on the interval πa can occur.

Now we prove each of the claims. First we show that B∗(ra) is continuous. Observe

that when ra increases (decreases) by ε > 0, B∗(ra) can increase (decrease) by no more

than ε. More formally,

|ra − r̂a| < ε =⇒ |B∗(ra)−B∗(r̂a)| < ε, (A.87)

and thus the function is continuous.

To show claim 2, suppose that ra is such that there exists a best response attack fa
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where ce − fe ≤ fae < ce for some e ∈ E. Increasing ra (and fae ) by δ allows the attacker

to increase B(f, fa) by δ. Therefore, B∗(ra + δ) = B∗(ra) + δ, which implies (A.83).

Now suppose that ra is such that no such fa, e exist, i.e., that for any best response

attack policy fa and for all e ∈ E, either

fae = ce or (A.88)

fae < ce − fe, (A.89)

If δ is small enough so that (A.89) can be replaced with fae < ce− fe− δ, then increasing

ra by δ cannot increase B∗(ra). This implies (A.84).

To prove claim 3, we state an implication of claim 2: if (A.85) is satisfied, then no

best response fa, e exist where ce − fe ≤ fae < ce. However, (A.86) implies that ra is

also an upper boundary of a neighborhood where such an fa and e exist. The only both

statements can be true is if fae ∈ {0, ce} for all e and for all optimal fa. This implies that

ra = C(E ′) for some E ′ ⊆ E, i.e., that ra ∈ πa.

We now prove claim 4. The function BSE(ra) must be nondecreasing, since any attack

policy that can be implemented with low ra can also be carried out with high ra. Equation

(A.87) also applies to BSE, so the slope of the line between any two points on BSE(ra) is

≤ 1. We thus conclude that the claim holds. �

A.11 Proof for Theorem 7.3

Note that since B(f, fa) =
∑

e max{fe + fae − ce, 0}, then a lower bound on B(f, fa)

is

B(f, fa) ≥ r + ra − C(E). (A.90)

We now begin with a few observations about router best responses:
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1. For a policy pair (f, fa), if fe + fae ≤ ce for all e, then B(f, fa) = 0, and the router

has no incentive to deviate. If fa satisfies (7.5), then (f, fa) is both a SE and a

NE.

2. For a policy pair (f, fa), if fe + fae ≥ ce for all e, then B(f, fa) = r + ra − C(E),

the lower bound in (A.90). Thus the router has no incentive to deviate. If fa also

satisfies (7.5), then (f, fa) is both a SE and a NE.

3. For a policy pair (f, fa), if there exist e, e′ ∈ E such that fe+fae > ce and fe′+f
a
e′ <

ce′ , then (7.4) is not satisfied. Therefore, (f, fa) is not a NE.

We now proceed with proving Theorem 7.3. To that end, consider the routing policy f lo,

where

f lo
e := max

{
ce − max

E′⊆E

C(E ′)− r
|E ′|

, 0

}
. (A.91)

We first show that f lo is feasible. Let E∗ ∈ arg maxE′⊆E(C(E ′)− r)/|E ′| be the highest-

cardinality set in that family. Then e ∈ E∗ if and only if

C(E∗)− r
|E∗|

≥C(E∗ \ {e})− r
|E∗ \ {e}|

. (A.92)

=
C(E∗)− ce − r
|E∗| − 1

=⇒ (A.93)

ce ≥
C(E∗)− r
|E∗|

, (A.94)
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where we define r/0 =∞, thus the capacity constraint is always respected. Since this is

true, it follows that

∑
e∈E

f lo
e =

∑
e∈E∗

f lo
e (A.95)

=
∑
e∈E∗

ce −
C(E∗)− r
|E∗|

(A.96)

=C(E∗)− |E∗|C(E∗)− r
|E∗|

= r, (A.97)

and thus f lo is feasible.

Note that if ra satisfies (7.16), then for any allowable attack fa, f lo
e + fae ≤ ce for all

e. Hence by observation 1, (f, fa) is a SE and a NE. Since B(f, fa) = 0 must hold for

any SE, we conclude that SE(r, ra) = NE(r, ra).

We now turn our attention the case in (7.17). To this end, consider the routing policy

fhi, where

fhi
e := min

{
ce,max

E′⊆E

r − C(E \ E ′)
|E ′|

}
. (A.98)

This policy is feasible, which can be shown using a similar argument as that given

above for the feasibility of f lo. If ra satisfies (7.17), then for any allowable attack fa,

fhi
e + fae ≥ ce for all e. By observation 2, (fhi, fa) is a SE and a NE. Since B(f, fa) =

r + ra − C(E) for any SE, we conclude that NE(r, ra) = SE(r, ra).

Suppose that ra does not satisfy (7.16). Let f ∈ F(c, r) and denote Eflow = {e : fe >

0}. Then

ra >max
E′⊆E

C(E ′)− r
|E ′|

≥ C(Eflow)− r
|Eflow|

≥ min
e∈Eflow

ce − fe. (A.99)

If e′ minimizes the expression in the righthand side of (A.99), then there exists an fa

such that fe′ + fae′ > ce′ , implying that B(f, fa) > 0. It must then be true that for any
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SE (f, fa), there exists an edge e where fe + fae > ce.

Suppose that ra does not satisfy (7.17). Let f ∈ F(c, r) and denote Epart = {e : fe <

ce}. Then

ra <C(E)− max
E′⊆E

r − C(E ⊆ E ′)

|E ′|
≤ C(E)− min

e∈Epart
fe, (A.100)

If e′ minimizes the rightmost expression in (A.100), then there must exist an attack policy

fa where fe′ + fae′ < ce′ . Since B(f, fa) > r + ra − c, it must be true that for any SE

(f, fa), there must be an edge e where fe + fae < ce. Therefore, by observation 3 we

conclude that when ra satisfies neither (7.16) nor (7.17), no NE can exist. �

A.12 Proof for Theorem 7.4

To prove Theorem 7.4, we first show that we need only consider two attacks as best

response.

Lemma A.1 Consider a two-link network. For any f ,

B∗(f, ra) = max
fa∈{fa1(ra),fa2(ra)}

B(f, fa), (A.101)

where

fa1(ra) := (min{ra, c1},max{ra − c1, 0}) , (A.102)

fa2(ra) := (max{ra − c2, 0},min{ra, c2}) . (A.103)

In other words, there always exists a best response attack policy where either (1) the

attacker puts as much attack traffic as possible on edge 1 and the reminder on edge 2

(i.e., fa1(ra)); or (2) vice versa (i.e., fa2(ra)).
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Proof: Let fa be a best response attack policy to f . If B(f, fa) = 0, then the lemma

is trivially true. Therefore, let e be an edge where Be(f, f
a) > 0, then one can create a

new attack policy f̂a by redistributing as much attack traffic as possible from the other

edge e′ to e. Let this amount be δ, so f̂ae = fae + δ. Then Be(f, f̂
a) = Be(f, f

a) + δ and

Be′(f, f̂
a) ≥ Be′(f, f

a) − δ. This implies B(f, f̂a) ≥ B(f, fa), which is at equality since

fa is a best response. Since f̂a ∈ {fa1, fa2}, we conclude the proof.

Lemma A.1 allows us to only consider two attack policies when solving for the best

response, but it also gives us a simple way to solve for a SE. In the two-link case, f is a

SE routing policy if

f ∈ arg min
f∈F

max
(
B(f, fa1(ra)), B(f, fa2(ra))

)
. (A.104)

Observe that if B(f, fa1(ra)) = B(f, fa2(ra)) then f satisfies (A.104), since moving traffic

between the edges can only increase B(f, fa1(ra)) or B(f, fa2(ra)). We will leverage this

observation to find BSE(r, ra) in the following proof.

Now we prove Theorem 7.4, beginning with the case when πa ∩ [c1, c2] = ∅. First let

ra < c1, and denote g as the value of the maximization in (7.16). When ra ≤ g, we know

from the proof of Theorem 7.3 that B∗(f lo, ra) = BSE(ra) = 0. When g < ra < c1, then

B(f lo, fa1(ra)) = B(f lo, fa2(ra)) = ra− g, therefore by the observation above, f lo is a SE

routing policy, and B∗(f lo, ra) = BSE(ra).

We now let ra > c2 - the other possible scenario when πa∩ [c1, c2] = ∅. Here we denote

h as the value of the maximization in (7.17). When ra ≥ C(E) − h, we know from the

proof of Theorem 7.3 that B∗(fhi, ra) = BSE(ra) = r + ra − C(E). When c2 < ra < h,

then Theorem 7.3 also informs that there must always be an edge e where Be = 0, in

the two-link case, one edge is fully blocked and the other has no routed traffic blocked.

It follows then that B(fhi, fa1(ra)) = B(fhi, fa2(ra)) = h, and fhi is a SE routing policy.
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We conclude that when πa ∩ [c1, c2] = ∅, then V (πa) = 0.

For the remainder of the proof, we consider the case where πa ∩ [c1, c2] is nonempty.

We leverage the following lemma which simplifies the expression for B∗(f, ra)−BSE(ra).

Lemma A.2 For a two-link network, if ra ∈ [c1, c2], then for any f ,

B∗(f, ra)−BSE(ra) = |f1 − (r + ra − c2)/2| (A.105)

Proof: When ra ∈ [c1, c2], then we know from Lemma A.1 that for any f ,

B∗(f, ra) = max{B(f, fa1(ra), B(f, fa2(ra))} (A.106)

= max{f1 + max{f2 + γ̃i − c1 − c2, 0},

max{f2 + γ̃i − c2, 0}}, (A.107)

= max{f1, r + γ̃i − c1 − c2, f2 + γ̃i − c2} (A.108)

= max{f1, r − f1 + ra − c2} (A.109)

From the observation made above, a SE routing policy is therefore one where f1 = r −

f1 + ra − c2, i.e., f such that

f1 = (r + ra − c2)/2, f2 = (r − ra + c2)/2 (A.110)

satisfies (A.104). It follows then for any f that

B∗(f, ra)−BSE(ra) = max{f1, r − f1 + ra − c2}

− (r + ra − c2)/2, (A.111)

= |f1 − (r + ra − c2)/2|. (A.112)
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As argued in the proof of Lemma 7.4, πa need not be included in the maximization

in (7.23) if πa ≤ c1 and πa need not be included if πa ≥ c2. Therefore, our calculation of

V (πa) can be further simplified:

V (πa) = min
f∈F

max{B∗(f, ra)−BSE(ra),

B∗(f, ra)−BSE(ra)}, (A.113)

= min
f∈F

max{|f1 − (r + ra − c2)/2|,

|f1 − (r + ra − c2)/2|}, (A.114)

where ra := max{c1, π
a} and ra := min{c2, π

a}. This implies that the minimizing value

of f1 in (A.114) is halfway between (r + ra − c2)/2 and (r + ra − c2)/2, i.e.,

f1 = (2r + ra + ra − 2c2)/4, (A.115)

which implies that V (πa) = (ra − ra)/4. �
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