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Root-TT̄ deformed boundary conditions in holography
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3Department of Physics, University of California, San Diego, California 92093, USA

(Received 24 April 2023; accepted 6 June 2023; published 22 June 2023)

We develop the holographic dictionary for pure AdS3 gravity where the Lagrangian of the dual 2D
conformal field theory has been deformed by an arbitrary function of the energy-momentum tensor. In
addition to the TT̄ deformation, examples of such functions include a class of marginal stress tensor
deformations which are special because they leave the generating functional of connected correlators
unchanged up to a redefinition of the source and expectation value. Within this marginal class, we identify
the unique deformation that commutes with the TT̄ flow, which is the root-TT̄ operator, and write down the
modified boundary conditions corresponding to this root-TT̄ deformation. We also identify the unique
marginal stress tensor flow for the cylinder spectrum of the dual CFT which commutes with the inviscid
Burgers’ flow driven by TT̄, and we propose this unique flow as a candidate root-TT̄ deformation of the
energy levels. We study BTZ black holes in AdS3 subject to root-TT̄ deformed boundary conditions, and
find that their masses flow in a way which is identical to that of our candidate root-TT̄ energy flow
equation, which offers evidence that this flow is the correct one. Finally, we also obtain the root-TT̄
deformed boundary conditions for the gauge field in the Chern-Simons formulation of AdS3 gravity.

DOI: 10.1103/PhysRevD.107.126022

I. INTRODUCTION

A promising strategy for learning more about hologra-
phy is to begin with a relatively well-understood holo-
graphic correspondence and then to deform it in some
controlled way. We will focus on the case of an asymp-
totically AdS3 bulk which is dual to a two-dimensional
conformal field theory. Given such a holographic boundary
theory, we can view the CFT2 as essentially defining the 3D
gravitational theory. More precisely, the CFT2 defines the
boundary conditions which the fields of the bulk gravity
theory should obey at infinity.
To take a concrete example, we recall that every

translation-invariant quantum field theory admits a con-
served stress tensor operator Tαβ. In the holographic
dictionary, this boundary stress tensor operator is dual to
the asymptotic bulk metric. One way to see this is to vary
the action S of the 3D gravitational theory, including
both the Einstein-Hilbert term and appropriate boundary
terms, and put this varied quantity on-shell using the bulk

equations of motion. The resulting expression can be
written as a boundary integral

δSjon-shell ¼
1

2

Z
∂M

d2x
ffiffiffi
γ

p
Tαβδγ

αβ; ð1:1Þ

where M is the 3D spacetime manifold, ∂M is its 2D
boundary, and γαβ is the metric on ∂M. In order for the on-
shell variation of the action to vanish, we require δγαβ ¼ 0
on ∂M, which means that we impose Dirichlet boundary
conditions on the metric near infinity. The quantity Tαβ

which appears in (1.1) is then identified with the expect-
ation value of the stress tensor operator of the boundary
theory; the procedure described above furnishes an explicit
expression for Tαβ in terms of functions appearing in the
Fefferman-Graham expansion of the metric near infinity.
We interpret this by saying that the asymptotic metric γαβ is
a source for the stress tensor operator of the dual CFT2.
Now consider a deformation of the boundary conformal

field theory. One familiar way to perform such a deforma-
tion is to add an integrated local operator to the action
defining the 2D theory, so that

S0 → S0 þ δS ¼ S0 þ μ

Z
d2x

ffiffiffi
γ

p
OðxÞ; ð1:2Þ
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where OðxÞ is a local operator and μ is a real parameter.
Because the CFT2 defines the boundary conditions which
the bulk fields obey at infinity, it is natural to expect that
such a deformation would change these boundary con-
ditions. This has been shown to be the case for many such
multitrace deformations [1], at least subject to the usual
caveats that one should restrict attention to the effects on
light single-trace operators at large N.
For instance, one much-studied example is a double-

trace deformation, where the objectOðxÞ appearing in (1.2)
is the square of an operator which is dual to a fundamental
field in the gravity theory. In this work, we will focus on
deformations constructed from the stress-energy tensor
Tαβ; because this operator is present in any translation-
invariant quantum field theory, such deformations are in a
sense universal. An operator OðxÞ which is constructed
from products of components Tαβ is a double-trace oper-
ator, by the definition given above, because the stress-
energy tensor is dual to the bulk metric, which is a
fundamental field of the gravity theory. One particularly
nice Lorentz-invariant double-trace combination of
components Tαβ is

OTT̄ ¼ TαβTαβ − ðTα
αÞ2: ð1:3Þ

This combination defines the so-called TT̄ operator, which
has generated considerable research interest in recent years.
For the moment, let us focus on the properties of this
operator purely as an object in the 2D boundary theory (and
postponing its bulk interpretation). By infinitesimally add-
ing this operator OTT̄ at each step along a flow, one can
define a one-parameter family of theories which obeys the
differential equation

∂SðλÞ

∂λ
¼ −

1

2

Z
d2x

ffiffiffi
γ

p
OðλÞ

TT̄ðxÞ; ð1:4Þ

where the superscript λ is meant to emphasize that we must

recompute the operator OðλÞ
TT̄ using the deformed stress

tensor TðλÞ
αβ at each point along the flow.1

We make three sets of observations.
(I) First note that OTT̄ is a dimension-four operator,

which means that it is irrelevant in the Wilsonian
sense. As a consequence the flow equation (1.4) is
quite unusual, from the perspective of the renorm-
alization group. Ordinarily one imagines beginning
with a conformal field theory and then adding an
integrated relevant operator in the spectrum of the

theory, which triggers a flow to the infrared. In a
loose sense, the TT̄ flow is the inverse of this
familiar paradigm, as we add an integrated irrelevant
operator which modifies the definition of the theory
in the ultraviolet.

(II) The quantity OTT̄ defined in (1.3) involves products
of stress tensor operators. As products of coincident
local operators are generally divergent in quantum
field theory, it is far from obvious that the combi-
nation OTT̄ actually defines a local operator at all.
However, it has been shown that one can begin with
a point-split quantity

OTT̄ðx; yÞ ¼ TαβðxÞTαβðyÞ − Tα
αðxÞTβ

βðyÞ; ð1:5Þ

and then take a coincident point-limit
limy→x OTT̄ðx; yÞ. Surprisingly, this procedure does
define a sensible local operator, up to certain total
derivative ambiguities which can be ignored [2,3].

(III) This deformation is “nice” in the sense that it
preserves many desirable properties of the unde-
formed theory, such as integrability [3–6] and super-
symmetry [7–13]. Relatedly, observables in the
deformed theory can often be described with simple
closed-form expressions; a few examples include the
finite-volume spectrum [3,4], S-matrix [14], and torus
partition function [15–17].

Because the operator OTT̄ appears to be rather special
from the field theory perspective, one might suspect that
this deformation corresponds to some fairly natural modi-
fication of the asymptotic boundary conditions for the
bulk fields in the holographic dual. This turns out to be the
case [18]. To see this, one first defines the λ-dependent
quantities

γðλÞαβ ¼ γð0Þαβ − 2λT̂ð0Þ
αβ þ λ2T̂ð0Þ

αρ T̂
ð0Þ
σβ γ

ð0Þρσ;

T̂ðλÞ
αβ ¼ T̂ð0Þ

αβ − λT̂ð0Þ
αρ T̂

ð0Þ
σβ γ

ð0Þρσ; ð1:6Þ

where T̂αβ ¼ Tαβ − γαβTρ
ρ is the trace-reversed stress

tensor. In terms of these quantities, the boundary action
which solves the TT̄ flow equation (1.4) has the property
that its variation can be written as

δS ¼ 1

2

Z
d2x

ffiffiffiffiffiffiffi
γðλÞ

q
TðλÞ
αβ δγ

ðλÞαβ: ð1:7Þ

This is exactly of the same form as the usual on-shell
bulk variation, Eq. (1.1), except written in terms of the
λ-dependent metric and stress tensor. In order for the
variation of the action to vanish, we now require that
δγðλÞαβ ¼ 0, which means that we impose Dirichlet boun-
dary conditions on the deformed metric γðλÞαβ at infinity. In
terms of the original variables, this looks like a certain
choice of mixed boundary conditions on the metric at

1Throughout this work, we always use the symbol λ to denote
the parameter of a TT̄ flow, while we use the symbol μ either for
the parameter of a generic deformation of a boundary field theory,
or for the parameter of the root-TT̄ flow, which we introduce
shortly. Note that μ is never a spacetime index.
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infinity, since we now hold fixed a combination of

the original metric γð0Þαβ and its radial derivative, which is

related to Tð0Þ
αβ .

One might ask whether there are other universal defor-
mations constructed from stress tensors which admit
interpretations as particularly simple modified boundary
conditions. Another candidate is the recently proposed
root-TT̄ operator [19], which is defined as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TαβTαβ −

1

4
ðTα

αÞ2
r

: ð1:8Þ

By way of comparison, let us revisit the three points
(I)–(III) which we made concerning the TT̄ operator and
consider the analogous statements for root-TT̄.

ðĨÞ Whereas TT̄ is an irrelevant operator, the root-TT̄
operator is classically marginal. For instance, it
has been checked in a large class of examples that
the stress tensor of a root-TT̄ deformed CFT still
has vanishing trace. As a consequence, the cou-
pling constant μ parametrizing the root-TT̄ flow is
dimensionless.

ðeIIÞ Although TT̄ is quantum-mechanically well defined,
it is not known whether the root-TT̄ operator can be
defined at the quantum level by point-splitting.
Understanding the quantum properties of this oper-
ator remains an important open problem.

ð eIIIÞ The root-TT̄ deformation shares some of the
“niceness” properties of the ordinary TT̄ deforma-
tion. For instance, flow equations for the root-TT̄-
deformed Lagrangian can often be solved in closed
form [19], and the root-TT̄ deformation preserves
classical integrability in many examples [20].
However, formulas for root-TT̄ deformed spectra,
S-matrices, and partition functions have not been
obtained.

Although much less is known about the root-TT̄ oper-
ator, there are many hints that this deformation might lead
to an interesting class of models. One is the relation to the
ModMax theory [21–24] in four dimensions. This theory
and its Born-Infeld extension obey 4d analogues of the
root-TT̄ and TT̄ flow equations, respectively [5,25], and
both flows can be supersymmetrized [26,27]. The root-TT̄
operator also appears in a flow equation which generates
the 3D Born-Infeld Lagrangian or its supersymmetric
extension [28]. Further, the dimensional reduction of the
ModMax theory is identical to the theory obtained by root-
TT̄ deforming a collection of 2D free scalars [29,30]. A
(0þ 1)-dimensional version of the root-TT̄ deformation
was studied in [31], which also preserves integrability. This
operator has been connected to ultra/nonrelativistic limits
and the BMS group in three dimensions [32,33], and to
nonlinear automorphisms of the conformal algebra [34].

See also [35] for an analysis of TT̄ and root-TT̄-like
deformations using characteristic flows.
Given the interest in the root-TT̄ operator from the field

theory perspective, it is natural to ask whether there are
modified boundary conditions for the bulk metric which
implement this deformation, as (1.6) do in the TT̄ case. In
this work, we will argue that the answer to this question is
yes, and the analogous expressions are

γðμÞαβ ¼ coshðμÞγð0Þαβ þ sinhðμÞ
Rð0Þ T̃ð0Þ

αβ ;

T̃ðμÞ
αβ ¼ coshðμÞT̃ð0Þ

αβ þ sinhðμÞRð0Þγð0Þαβ ; ð1:9Þ

where we have defined T̃αβ ¼ Tαβ − 1
2
γαβTρ

ρ, which is the
traceless part of the stress tensor (not to be confused with
the trace-reversed stress tensor T̂αβ), and

Rð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Tð0ÞαβTð0Þ

αβ −
1

4
ðTð0Þα

αÞ2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðT̃ð0Þ

αβ Þ
q

; ð1:10Þ

is the root-TT̄ operator as before.
This means that—from the viewpoint of holography—

the root-TT̄ deformation plays a similar role as the TT̄
deformation (or other fðTÞ deformations), insofar as it
imposes certain mixed boundary conditions where some
function of the metric γαβ and stress tensor Tαβ is held
fixed. However, the mixed boundary conditions which
appear in the root-TT̄ case are considerably more exotic
because they involve the expression Rð0Þ which is

nonanalytic in the stress tensor Tð0Þ
αβ . Despite this unusual

feature, we will show that the root-TT̄ deformed boun-
dary conditions have several surprisingly nice properties:
for instance, various combinations of deformed quan-

tities, like TðμÞ
αβ δγ

ðμÞαβ and detðγðμÞαβ Þ, are equal to their
undeformed values, and the root-TT̄ deformed boundary
conditions commute with the TT̄-deformed boundary
conditions, in a sense which we will make precise below.
These unexpectedly simple relations, along with the
pressing need to more deeply understand theories of
root-TT̄ type, motivates us to undertake a detailed study
of the boundary conditions (1.9) in the remainder of the
present work.
The layout of this paper is as follows. In Sec. II, we

review the holographic dictionary under general multitrace
deformations and apply these results to stress tensor
deformations of AdS3=CFT2. In Sec. III, we use consis-
tency conditions, such as commutativity between TT̄
and root-TT̄, to identify the root-TT̄ deformed boundary
conditions and the flow equation for the finite-volume
spectrum of the field theory under a root-TT̄ deformation.
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In Sec. IV, we study AdS3 gravity with these root-TT̄
deformed boundary conditions in both the metric and
Chern-Simons formalisms and perform a holographic
computation of the deformed spacetime mass which
agrees with our flow equation for the root-TT̄ deformed
spectrum. In Sec. V, we conclude and identify directions
for future research.

II. HOLOGRAPHIC DICTIONARY FOR STRESS
TENSOR DEFORMATIONS

The connection between deformations of a field
theory by local operators and modified boundary con-
ditions for the gravity dual was pointed out in the early
days of AdS=CFT. For double-trace deformations, the
effect on the CFT partition function was discussed
in [36] and its relation to modified boundary conditions
was explored in [1,37–42]. A generalization to multi-
trace deformations, which we will follow in Sec. II A,
was laid out in [43]. Although earlier work focused
on relevant or marginal deformations, the analysis of
irrelevant TT̄ and JT̄ deformations is described in
[18,44] and the lecture notes [45]. See also [46] for a
recent discussion of the generating functional of con-
nected stress tensor correlators in holography (without
TT̄-like deformations).
In this section we will review some of this well-known

material with the goal of applying it to more general stress
tensor deformations in AdS3=CFT2. An arbitrary scalar
constructed from the stress tensor Tαβ for a two dimen-
sional field theory can be written as a function of two
independent invariants,

fðTαβÞ ¼ fðTα
α; TαβTαβÞ; ð2:1Þ

since all higher traces of Tαβ are related to these two by
trace identities. At the classical level, any such function
can be used to generate a deformation of a quantum field
theory. The usual TT̄ deformation corresponds to

f ¼ TαβTαβ − ðTα
αÞ2 ¼ OTT̄ ; ð2:2Þ

whereas the root-TT̄ deformation is

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TαβTαβ −

1

4
ðTα

αÞ2
r

¼ R: ð2:3Þ

As we will explain, for any operator f which is chosen
as a deformation of the two-dimensional field theory,
one can find the modified generating functional in the
large-N limit by a path integral argument. For certain
choices of f, it is then possible to explicitly solve for the
modified boundary conditions in the 3D bulk gravity
theory.

The surprising feature of a deformation by a marginal
combination of stress tensors, such as the root-TT̄ operator,
is that the additive shift in the generating functional of
connected CFT correlators vanishes to leading order in 1

N.
Although such a deformation still has nontrivial effects on
observables, this feature means that we will not be able to
find the corresponding modified boundary conditions in the
usual way. We will instead need to use a different argument
which will be the subject of Sec. III.

A. Multitrace deformations

We first review the reasoning which is used to find the
change in the generating functional under a general multi-
trace deformation of the CFT. We follow [43] except for the
mild generalization that we allow deformations by general
scalar quantities constructed from operators carrying arbi-
trary indices, which allows us to include the case of stress
tensor deformations. The analysis of this subsection applies
in any dimension, so we will temporarily work in general
spacetime dimension d before specializing to d ¼ 3 in later
subsections. In this section we will also explicitly retain
factors of N in order to make the role of the large-N limit
more transparent. Although in later sections we will always
implicitly work in a large-N or large-c limit in order to have
a classical bulk gravity dual, we will typically not empha-
size the central charge dependence of quantities appearing
in path integrals.
Consider a CFTd dual to a bulk AdSdþ1 gravity theory. Let

OA be a collection of local operators in the conformal field
theorywhich are single trace in the sense that each is dual to a
fundamental field of the bulk gravity theory. For instance,
one can imagine eachOA as being dual to a light scalar field in
the 3D bulk, in which case A is an internal index. When we
specialize to stress tensor deformations in AdS3=CFT2, we
will instead think of OA as some component Tαβ of the
energy-momentum tensor, in which case A is a multi-index
of spacetime indices. For now, we will treat both cases
uniformly by using an abstract index A which may transform
under the action of some unspecified Lie group G.
We will deform the action by adding N2μ

R
ddx

ffiffiffi
γ

p
fðOÞ.

Here f is a scalar function of OA, in the sense that it is
invariant under the action of G, μ is a coupling constant
with the appropriate dimension, and γαβ is the boundary
metric. We will assume that fð0Þ ¼ 0 but make no further
assumptions about the function f. For simplicity, in the
remainder of this subsection we will assume γαβ ¼ ηαβ and
thus omit factors of

ffiffiffi
γ

p
. Quantities in the deformed theory

will be decorated by a μ superscript or subscript, whereas
quantities in the undeformed theory will carry a (0) label.
Our goal will be to find a relationship between the
generating functionals of connected OA correlators in the
deformed and undeformed theories, which we write as
WðμÞ½JðμÞ� and Wð0Þ½Jð0Þ�, respectively, and which are
defined by the path integrals
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e−W
ð0Þ½Jð0Þ� ¼

Z
Dψ exp

�
−S0 − N2

Z
ddxJð0ÞAðxÞOAðxÞ

�
;

e−W
ðμÞ½JðμÞ� ¼

Z
Dψ exp

�
−S0 − N2

Z
ddx
�
μfðOÞ þ JðμÞAðxÞOAðxÞ

��
: ð2:4Þ

Here Jð0ÞA and JðμÞA are sources which are linearly coupled
to the operators OA in the undeformed and deformed
theories, respectively. For simplicity, we suppress the A
indices on the sources Jð0ÞA, JðμÞA when they appear as
arguments in generating functionals. Correlators of the
operators OA are obtained from functional derivatives with
respect to the source; for instance, the one-point function in
the undeformed theory is given by

hOAi0 ¼
1

N2

δW½Jð0Þ�
δJð0ÞA

≡ σAðxÞ; ð2:5Þ

where we introduce the shorthand σA for convenience.
In the large-N limit, all multipoint functions of operators

OA factorize into products of one-point functions of the

form (2.5). This fact implies a simple relation between
the two generating functionals in Eq. (2.4). To see this, we
begin by changing variables in the path integral expression
for exp ð−WðμÞ½JðμÞ�Þ, defining

J̃A ¼ JðμÞA þ μ
∂fðOÞ
∂OA : ð2:6Þ

This shift is performed because a general function fðOÞ
will have a term linear in O in its Taylor series expansion.
Such a linear term in the effective action obstructs us from
directly applying the results of large-N factorization.2 After
implementing this shift to remove the linear term, the
generating functional becomes

exp ð−WðμÞðJðμÞÞÞ ¼
Z

Dψ exp

�
−S0 − N2

Z
ddx
�
μfðOÞ þ J̃AOA − μOA∂

Af
��

; ð2:7Þ

where we introduce the shorthand ∂Af ¼ ∂fðOÞ
∂OA

. We may now relate this expression to the undeformed generating functional

evaluated on J̃ as

exp ð−WðμÞ½JðμÞ�Þ ¼
Z

Dψ exp

�
−S0 − N2

Z
ddxðJ̃AOAÞ

�
exp

�
−μN2

Z
d2xðfðOÞ −OA∂

AfÞ
�

¼ e−W
ð0Þ½J̃� exp

�
−μN2

Z
ddxðfðσÞ − σA∂

AfðσÞÞ
�
þO

�
1

N

�
: ð2:8Þ

The key observation is that the path integral on the second
line of (2.8) defines a certain expectation value, namely of
the second exponential factor, but in the large N limit we
may use factorization to evaluate this expectation value by
replacing all instances ofOA with its one-point function σA.
When μ ¼ 0, the argument of the second exponential factor
vanishes and the two generating functions are equal, as
expected.

The upshot of this manipulation is that, by taking
logarithms of the first and last expressions of (2.8) and
discarding subleading terms as N → ∞, we conclude

−WðμÞ½JðμÞ� ¼ −Wð0Þ½J̃� − μN2

Z
ddxðfðσÞ − σA∂

afðσÞÞ;

ð2:9Þ

or in terms of the rescaled generating functionals
w½J� ¼ 1

N2 W½J�,

wðμÞ½JðμÞ�¼wð0Þ½J̃�þμ

Z
ddxðfðσÞ−σA∂

AfðσÞÞ; ð2:10Þ

where now σðxÞ ¼ δwð0Þ½J̃�
δJ̃ðxÞ .

2One way of understanding this, which is nicely explained in
chapter 8 of [47], is to consider diagrammatics. For an effective
action with a term linear in O, there are infinitely many tree
graphs that can be constructed with two external lines, since any
lines may end on linear vertices. This complicates the large N
analysis, which usually proceeds by noting that the leading
contribution at large N comes from tree graphs with a minimal
number of external lines (of which there should be finitely many).
Performing the shift (2.6) removes the linear vertex and repairs
this undesirable feature.
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Equation (2.10) is the main result which allows us to find
the change in the generating functional under an arbitrary
multitrace deformation, including by nonanalytic operators
like root-TT̄. The deformation by any such operator has
two separate effects. First, the generating functional wðμÞ is
shifted by a term involving an integral of fðσÞ − σA∂

AfðσÞ.
Second, the effective source JðμÞA which is used for
computing one-point functions is shifted by a term propor-
tional to the derivative of f, as in Eq. (2.6).
It will sometimes be convenient to use a varied form of

Eq. (2.10). The variations of the two generating functionals
are defined by varying the sources and holding the
corresponding one-point functions fixed:

δWð0Þ½Jð0Þ� ¼
Z

ddxhOAi0δJð0ÞA;

δWðμÞ½JðμÞ� ¼
Z

ddxhOAiμδJðμÞA: ð2:11Þ

Varying equation (2.10) and substituting for δwð0Þ then
gives

δwðμÞ½JðμÞ� ¼ δwð0Þ½J̃� þ μ

Z
ddxδðfðσÞ − σA∂

AfðσÞÞ

¼
Z

ddx
�
hOAi0δJ̃A þ μδðfðσÞ − σA∂

AfðσÞÞ
�
:

ð2:12Þ

Finally, equating this result with the expression for δwðμÞ in
terms of δJðμÞA givesZ

ddxhOAiμδJðμÞA

¼
Z

ddx
�
hOAi0δJ̃AþμδðfðσÞ−σA∂

AfðσÞÞ
�
: ð2:13Þ

Equation (2.13) will be useful for finding the modified
boundary conditions for bulk fields after deforming the
boundary field theory by some operator f. In particular,
for a given deformation, one can match the coefficients of
independent variations in (2.13) to obtain differential equa-
tions whose solution gives the deformed boundary condi-
tions. This is especially helpful for studying more general
deforming operators f which depend both on the operators
OA and their sources JA. Deformations by scalars constructed
from the stress tensor Tαβ are of this more complicated form,
since they involve contractions with the boundary metric γαβ

which plays the role of the source for Tαβ. It is shown in [43]
that an analysis of thevaried equation (2.13) yields the correct
modification to the stress tensor Tαβ after a multitrace
deformation, which is convenient because this analysis is
more straightforward than a direct computation from the
deformed generating functional.

As a sanity check, it is useful to consider the case of a
double-trace deformation,

μfðσÞ ¼ 1

2
μABσAσB; ð2:14Þ

where μAB is a field-independent symmetric tensor.
In this case,

μ∂Af ¼ μABσB; ð2:15Þ

This means that the source JðAÞμ satisfies

JðμÞA ¼ J̃A − μABσB; ð2:16Þ
and thus the source has been shifted by a termwhich is linear
in the corresponding expectation value. The deformed and
undeformed generating functionals are related by

wðμÞ½JðμÞ� ¼ wð0Þ½J̃� − 1

2

Z
ddxμABσAσB: ð2:17Þ

Therefore, we see that a double-trace deformation is espe-
cially simple: although we deformed the action by adding an
integrated quantity proportional to

R
ddxμABσAσB, the gen-

erating functional has been deformed by subtracting such a
quantity.

B. Compatibility with Hubbard-Stratonovich

In the case of a double-trace deformation, the general
analysis of Sec. II A is equivalent to another common
technique for deriving the modified holographic dictionary,
namely the Hubbard-Stratonovich transformation. This
method exploits the fact that a double-trace deformation
is quadratic in fields and therefore can be decoupled by
integrating in an appropriate auxiliary field. The Hubard-
Stratonovich technique has a long history and was already
used in [36] to study the effect of a double-trace deforma-
tion on the dual CFT, which is nicely reviewed in [18,44].
We note that a similar strategy was used in [15] in order to
replace the TT̄ operator with a coupling to a metric-like
field hαβ and interpret the deformation as random geometry.
However, this decoupling procedure does not straightfor-
wardly apply to more general multitrace deformations, such
as the square-root-type deformation by R. For complete-
ness, we now briefly review this alternative derivation and
confirm that the resulting modification to the generating
functional is identical.
We again work in general spacetime dimension d and

focus on a deformation of the CFT action which takes
the form

S0 → S0 þ
N2

2

Z
ddxμABOAOB; ð2:18Þ
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where the OA are single-trace operators as before, and consider the deformed generating functional defined in Eq. (2.4),

e−W
ðμÞ½JðμÞ� ¼

Z
Dψ exp

�
−S0 − N2

Z
ddx

�
μAB

2
OAOB þ JðμÞAðxÞOAðxÞ

��
: ð2:19Þ

We now integrate in an auxiliary field. To emphasize the
similarity with the random geometry analysis of [15], we
will use the notation hA for this Hubbard-Stratonovich
field. One has the path integral identity

1 ¼ N
Z

Dh exp

�
N2

2

Z
d2xhAðμ−1ÞABhB

�
: ð2:20Þ

Here the quantity N is a normalization factor which is
defined by the property that it normalizes the path integral
on the right side of (2.20) to one. It can also be formally
written as N ¼ 1ffiffiffiffiffiffiffiffiffiffi

detð μ

N2Þ
p , although we will use the shorter

expression N to avoid cluttering formulas. Inserting this
identity into the expression (2.19) for the generating
functional,

exp
�
−WðμÞðJðμÞÞ

�
¼ N

Z
DψDh exp

�
−S0 − N2

Z
ddx

�
JðμÞAOA þ μAB

2
OAOB −

1

2
hAðμ−1ÞABhB

��
¼ N

Z
DψDh exp

�
−S0 − N2

Z
ddxðJðμÞA þ ĥAÞOA −

1

2
ĥAμ−1ABĥ

B

�
; ð2:21Þ

where in the last step we have completed the square in the integrand by writing quantities in terms of a shifted auxiliary field

ĥA ¼ hA þ μABOB: ð2:22Þ

Seeing that the combination ĥA þ JðμÞA now acts as the source for OA, we perform a second change of variables to

h̃A ¼ ĥA þ JðμÞA ð2:23Þ

to find

exp
�
−WðμÞðJðμÞÞ

�
¼ N

Z
DψDh exp

�
−S0 − N2

Z
ddx

�
h̃AOA þ 1

2

�
h̃A − JðμÞA

�
μ−1AB

�
h̃B − JðμÞB

���
¼ N

Z
Dhe−W

ð0Þ½h̃� exp
�
−N2

Z
ddx

�
1

2

�
h̃A − JðμÞA

�
μ−1AB

�
h̃B − JðμÞB

���
: ð2:24Þ

In the second step we have noted that performing the path
integral including the first two terms in the exponential, S0
and the coupling h̃AOA, defines the undeformed generating
functional exp ð−Wð0Þ½h̃�Þ, since h̃A acts as the source for
OA. We have also implicitly used large-N factorization,
since the third term in the exponential also depends on the
operatorsOA. In the last line of (2.24), all implicit instances
of such operators are understood to be replaced with the
corresponding one-point functions.
In the large N limit, the remaining path integral over h

can be performed using the saddle point approximation.
The saddle occurs at the point h̃A which satisfies

−
δWð0Þ½h̃�
δh̃A

− μ−1ABðh̃B − JðμÞBÞ ¼ 0: ð2:25Þ

On the other hand, the quantity − δWð0Þ½h̃�
δhA defines the

one-point function hOAi0 ≡ σA, where we again introduce
the shorthand σA for the undeformed expectation value
of OA.
Because we are modifying the field theory, the local

operatorOð0Þ
A in the undeformed theory could correspond to

some different operator OðμÞ
A in the deformed theory.

Therefore, in principle we should distinguish between
deformed and undeformed operators, in addition to dis-
tinguishing between deformed and undeformed expectation
values which we have written as h·iμ and h·i0, and which
differ in that they are computed using path integrals
weighted by different actions. However, we will see that
for both the TT̄ deformation and the root-TT̄ deformation,
the deformed and undeformed operators agree:
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Oð0Þ
A ¼ OðμÞ

A : ð2:26Þ

More precisely, we will see that the derivatives of the

operatorsOðλÞ
TT̄ andR

ðμÞ with respect to the appropriate flow
parameters λ and μ, respectively, both vanish. Thus we will
simply assume that (2.26) holds in the present analysis; one
can view this as an extra condition one might impose in
order to single out a preferred class of deforming operators.
Solving Eq. (2.25) then yields h̃A ¼ JðμÞB þ μABσB. We

therefore find that

exp ð−WðμÞ½JðμÞ�Þ ∼ exp

�
−Wð0Þ½JðμÞB þ μABσB�

−
N2

2

Z
ddxμABσAσB

�
: ð2:27Þ

Here we write ∼ to indicate both overall proportionality,
since the saddle point integral introduces an additional
prefactor which we will not track, and also the approxi-
mation to leading order in 1

N. Taking logarithms and
discarding the normalization, we conclude

WðμÞ½JðμÞ� ¼ Wð0Þ½J̃� − N2

2

Z
ddxμABσAσB;

J̃A ¼ JðμÞA þ μABσB: ð2:28Þ

We see that this exactly reproduces Eqs. (2.16) and (2.17),
after shifting to the rescaled generating functionals w by
dividing through by N2.
Therefore, the two approaches that we have described

are equivalent for the case of double-trace deformations.
Both computations use the assumption of large N in a key
way. In the first method we used large N factorization in
Eq. (2.8), and in the Hubbard-Stratonovich approach we
used both large-N factorization in Eq. (2.24) and a saddle-
point approximation in Eq. (2.27).
However, it is important to emphasize that the first

method is more general since it applies to arbitrary multi-
trace deformations. The Hubbard-Stratonovich technique
crucially relies on the path integral identity (2.20), which is
a Gaussian integral and can therefore only introduce a
quadratic dependence on hA. Such a quadratic auxiliary
field term is sufficient to decouple a double-trace defor-
mation like the usual TT̄, but for more general operators
such as root-TT̄, we will instead resort to the multitrace
analysis.

C. Stress tensor deformations of AdS3=CFT2

In the remainder of this work, we will focus on deforma-
tions which are constructed from the energy-momentum
tensor rather than from general operators OA. It is worth
pointing out that such deformations are qualitatively differ-
ent in three bulk spacetime dimensions, which is our primary

case of interest. In AdS3, the bulk metric has no local
propagating degrees of freedom. As a result, we do not need
to impose the usual restrictions that a deforming operator
built from OA be relevant or marginal in order to retain
analytic control.
An irrelevant deformation built from an operator OA

which is dual to a dynamical field, such as a light scalar,
would generically backreact on the metric and therefore
become difficult to study. In contrast, an irrelevant defor-
mation constructed from the 2D stress tensor Tαβ, such as
the TT̄ deformation, does not lead to any backreaction
because the dual field is the (nondynamical) bulk metric
gαβ. This means that we are free to consider deformations
by any scalar function fðTÞ of the stress tensor, even those
with arbitrarily large dimension, and study the resulting
mixed boundary conditions in the AdS3 bulk.
As we mentioned around Eq. (2.1), the most general

Lorentz scalar which can be constructed from a 2D stress
tensor Tαβ is

fðTαβÞ¼fðx1;x2Þ; x1¼Tα
α; x2¼TαβTαβ; ð2:29Þ

where we introduce x1 ¼ TrðTÞ and x2 ¼ TrðT2Þ.
In the notation of Section II A, this corresponds to

OA ¼ Tαβ and σA ¼ hTαβi0, where A is a multi-index of
two boundary spacetime indices. We note that

∂f
∂Tαβ

¼ ∂f
∂x1

γαβ þ 2
∂f
∂x2

Tαβ; ð2:30Þ

where γαβ is the 2D metric.
We may now import the general results for the shift in

the generating functional under a multitrace deformation
defined by

∂SðμÞ

∂μ
¼
Z

d2x
ffiffiffi
γ

p
fðx1; x2Þ: ð2:31Þ

Because the boundary metric γαβ now plays a more
important role, we restore factors of

ffiffiffi
γ

p
in integrals, which

were omitted in Secs. II A and II B.
Using Eq. (2.10), we find

wðμÞ½JðμÞ�

¼wð0Þ½J̃�þμ

Z
d2x

ffiffiffi
γ

p �
fðx1;x2Þ−

�
x1

∂f
∂x1

þ2x2
∂f
∂x2

��
;

ð2:32Þ

where now we use x1, x2 interchangeably for the operators
Tα

α, TαβTαβ and the expectation values hTα
αi, hTαβihTαβi,

as justified by large-N factorization.
In these formulas, the source JðμÞ which couples to

the deformed stress tensor TðμÞ
αβ is the deformed metric γðμÞαβ .
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This means that the deformation by f involves both
single-trace operators and their sources, which makes
the behavior of this deformation more complicated. While
a deformation by a function which depends only on
operators OA (but not their sources JA) shifts the sources
and leaves the expectation values hOAi unchanged, a
deformation which depends on both OA and JA will shift

both the sources and the one-point functions. In this case,
as we discussed above, it is more convenient to use the
varied equation (2.13), which allows us (in principle, at
least) to find expressions for both the deformed sources
and the deformed expectation values. In this context,
the appropriate varied equation for a stress tensor defor-
mation is

Z
ddx

ffiffiffiffiffiffiffi
γðμÞ

q
TðμÞ
αβ δγ

ðμÞαβ ¼
Z

ddx
ffiffiffiffiffiffiffi
γðμÞ

q �
Tð0Þ
αβ δγ

ð0Þαβ þ μδ

�
fðx1; x2Þ −

�
x1

∂f
∂x1

þ 2x2
∂f
∂x2

���
; ð2:33Þ

or after taking the limit as μ → 0 to obtain a differential equation,

∂

∂μ

Z
ddx

ffiffiffiffiffiffiffi
γðμÞ

q
TðμÞ
αβ δγ

ðμÞαβ ¼
Z

ddx
ffiffiffiffiffiffiffi
γðμÞ

q
δ

�
fðx1; x2Þ −

�
x1

∂f
∂x1

þ 2x2
∂f
∂x2

��
: ð2:34Þ

The operator δ appearing on the right side acts on both Tαβ

and γαβ. Given a particular choice of deformation fðx1; x2Þ,
one can then attempt to match the δγαβ and δTαβ terms on
both sides of (2.34) and solve the resulting coupled
differential equations in μ to obtain solutions for the

deformed quantities TðμÞ
αβ and γðμÞαβ .

The known results for the TT̄ deformation can be
recovered by setting

fðx1; x2Þ ¼ −
1

2
ðx2 − x21Þ ¼ −

1

2
OTT̄ ; ð2:35Þ

where the factor of − 1
2
is a choice of normalization for the

operator. Substituting this deformation f into (2.34) and
stripping off the integrals gives the condition

∂λ

� ffiffiffiffiffiffiffi
γðλÞ

q
TðλÞ
αβ δγ

ðλÞαβ
�

¼ δ

� ffiffiffiffiffiffiffi
γðλÞ

q �
TðλÞαβTðλÞ

αβ − ðTðλÞα
αÞ2
��

; ð2:36Þ

where we have changed the label for the deformation
parameter from μ to λ to emphasize that this flow is
associated to the TT̄ deformation (see footnote 1). The
indices in Eq. (2.36) are raised and lowered with the
deformed metric γðλÞαβ . One can solve this equation with

the initial conditions γðλÞαβ → γð0Þαβ , T
ðλÞ
αβ → Tð0Þ

αβ as λ → 0, as
described in [18] and reviewed in Appendix A 1.
The solution to this differential equation can be
expressed in terms of the trace-reversed stress tensor,
T̂αβ ¼ Tαβ − γαβTρ

ρ, in terms of which one finds

γðλÞαβ ¼ γð0Þαβ − 2λT̂ð0Þ
αβ þ λ2T̂ð0Þ

αρ T̂
ð0Þ
σβ γ

ð0Þρσ;

T̂ðλÞ
αβ ¼ T̂ð0Þ

αβ − λT̂ð0Þ
αρ T̂

ð0Þ
σβ γ

ð0Þρσ; ð2:37Þ

which reproduces Eq. (1.6) for the TT̄-deformed boundary
conditions which we quoted in the introduction.
One might ask whether there are other choices for the

deforming operator f which are distinguished in some
sense. For instance, it is natural to ask whether there is any
choice of f for which the shift in the generating functional
appearing in Eq. (2.32) vanishes. Such a function f satisfies
the differential equation

fðx1; x2Þ ¼ x1
∂f
∂x1

þ 2x2
∂f
∂x2

; ð2:38Þ

which has the general solution

fðx1; x2Þ ¼ x1g

�
x2
x21

�
ð2:39Þ

where g is an arbitrary function. We demand that this
deformation is well-defined if the seed theory is a CFT, for
which x1 ¼ Tα

α ¼ 0. The only way for the argument of the
function g to remain finite when x1 ¼ 0 is if gðyÞ ¼ ffiffiffiffiffiffiffi

c1y
p

,
in which case

fðx1; x2Þ ¼ x1

ffiffiffiffiffiffiffiffiffiffi
c1

x2
x21

r
¼ ffiffiffiffiffiffiffiffiffi

c1x2
p

: ð2:40Þ

Choosing the normalization factor c1 ¼ 1
2
, we find

fðx1; x2Þ ¼
ffiffiffiffiffiffiffiffi
1

2
x2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TαβTαβ

r
¼ RjTα

α¼0: ð2:41Þ

Therefore, the only physical sensible stress tensor defor-
mation of a CFT with a vanishing shift in (2.32) is, up to
proportionality, the root-TT̄ operator R defined in (1.8).
Note that this argument fixes the dependence of f on x2
but not on x1, since we have restricted to the case of a
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conformal theory for which x1 ¼ 0. We will determine the
dependence on x1 by demanding that this deformation
commute with the TT̄ deformation in Sec. III.
Suppose that we wish to identify the deformed metric

γðμÞαβ and stress tensor TðμÞ
αβ associated with a deformation by

this operator R. One immediately encounters the subtlety
that the differential equation (2.34) reduces to

∂

∂μ

� ffiffiffiffiffiffiffi
γðμÞ

q
TðμÞ
αβ δγ

ðμÞαβ
�

¼ 0: ð2:42Þ

This means that the operator R is in the kernel of the map
which sends deformations to sources on the right side of the
differential equation (2.34). There are multiple solutions to
Eq. (2.42). The most obvious one is the trivial solution

γðμÞαβ ¼ γð0Þαβ and TðμÞ
αβ ¼ Tð0Þ

αβ . Another, less obvious, solution
can be conveniently written in terms of the traceless part of
the stress tensor, T̃αβ ¼ Tαβ − 1

2
γαβTρ

ρ. That solution is

γðμÞαβ ¼ coshðμÞγð0Þαβ þ sinhðμÞ
Rð0Þ T̃ð0Þ

αβ ;

T̃ðμÞ
αβ ¼ coshðμÞT̃ð0Þ

αβ þ sinhðμÞRð0Þγð0Þαβ ; ð2:43Þ

where Rð0Þ is the root-TT̄ operator constructed from the
undeformed metric and stress tensor. One can verify that the
expressions (2.43) solve the differential equation (2.42).
In fact, several quantities of interest remain individually
undeformed along this flow:

det
�
γðμÞαβ

�
¼ det

�
γð0Þαβ

�
;

TðμÞ
αβ δγ

ðμÞαβ ¼ Tð0Þ
αβ δγ

ð0Þαβ; RðμÞ ¼ Rð0Þ: ð2:44Þ

If the only condition we impose is that our deformed metric
and stress tensor satisfy (2.42), then there is no way to
distinguish between the trivial solution and the μ-dependent
solution (2.43). Furthermore, it is not immediately obvious

whether there are other solutions γðμÞαβ , TðμÞ
αβ which also

satisfy this flow. For this reason, from the perspective of the
deformed generating functional, we cannot uniquely iden-
tify a single solution for the deformed metric and stress
tensor which corresponds to the root-TT̄ deformation.
In order to circumvent this ambiguity, we will pursue a

complementary analysis which does not rely on the
deformed generating functional. Instead, we will stipulate
a set of consistency conditions which we expect the root-
TT̄ deformed metric and stress tensor to satisfy, and
demonstrate that (2.43) is the only solution with these
properties. This gives an independent piece of evidence that
these deformed boundary conditions are the correct ones
which correspond to a root-TT̄ deformation of the boun-
dary theory. We turn to this argument in the next section.

III. ROOT-TT̄ FROM CONSISTENCY
CONDITIONS

We have seen that the root-TT̄ deformation is subtle to
treat holographically because it belongs to a class of
deformations for which the combinationZ

d2x
ffiffiffiffiffiffiffi
γðμÞ

q
TðμÞ
αβ δγ

ðμÞαβ ð3:1Þ

is independent of μ. This class also includes trivial
deformations, such as boundary diffeomorphisms or scale
transformations, which leave the theory unchanged.
However, we expect that the root-TT̄ deformation is not

such a trivial deformation, and should modify the behavior
of the theory in some way. One piece of evidence for this is
that the 2D root-TT̄ deformation of a collection of bosons
is the dimensional reduction of the 4d root-TT̄ deformation
of the free Maxwell theory [30], which gives rise to the
ModMax theory. This ModMax theory represents a genu-
ine modification of the Maxwell theory, in that physical
observables are modified; one example is that the ModMax
theory exhibits birefringence whereas the Maxwell theory
does not.
We would therefore like to distinguish the root-TT̄

deformed theory from other deformations in the same class
which obey (3.1). To do this, we will enumerate a list of
properties which we expect the root-TT̄ deformed theory to
obey and search for the most general deformation which
satisfies these properties. This will allow us to identify both

a candidate set of deformed boundary conditions γðμÞαβ , T
ðμÞ
αβ

and a proposal for the deformed finite-volume spectrum of
a root-TT̄ deformed CFT on a cylinder.
An important ingredient in this analysis is the assumption

that the root-TT̄ deformation commutes with the ordinary
TT̄ deformation, in a sense which we will make precise.
This expectation is motivated by the observation that
classical TT̄ and root-TT̄ flows for the Lagrangian exhibit
this property in many examples [19,20]. The property of
commuting with TT̄ is not shared by generic marginal stress
tensor deformations. A simple example is the marginal
deformation generated by the trace of the stress tensor,

∂S
∂μ

¼
Z

d2x
ffiffiffi
γ

p
Ta

a: ð3:2Þ

The flow (3.2) simply generates scale transformations, so a
conformal field theory is invariant under such a deformation.
However, a TT̄-deformed field theory is not scale-invariant
because the theory has a dimensionful scale set by λ. Thus,
scale transformations do not commute with TT̄. Deforming a
CFT first by (3.2) and then TT̄-deforming with parameter λ
is the same as only performing the TT̄ step, whereas first
deforming the CFT by TT̄ and then performing the scale
transformation (3.2) is not the same as TT̄-deforming by λ.
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A. Derivation of deformed boundary conditions

We aim to find a one-parameter family of modified

boundary conditions γðμÞαβ , T
ðμÞ
αβ with the following properties:

(i) The deformed boundary conditions should corre-
spond to a classically marginal deformation of the
dual field theory. This means that the parameter μ is
dimensionless and that, if the undeformed stress
tensor is traceless so that

γð0ÞαβTð0Þ
αβ ¼ 0; ð3:3Þ

then the deformed stress tensor is also traceless with
respect to the deformed metric,

γðμÞαβTðμÞ
αβ ¼ 0: ð3:4Þ

(ii) The deformations of the metric and stress tensor
form a group. In particular, deformations compose.
If we deform an initial configuration by μ1,

γð0Þαβ ; T
ð0Þ
αβ !μ1 γðμ1Þαβ ; Tðμ1Þ

αβ ; ð3:5Þ

and then use these quantities as the initial condition
for a second deformation by μ2,

γðμ1Þαβ ; Tðμ1Þ
αβ !μ2 γðμ1þμ2Þ

αβ ; Tðμ1þμ2Þ
αβ ; ð3:6Þ

then the doubly deformed quantities are identical to
those obtained from doing a single deformation by
the total parameter μ1 þ μ2,

γð0Þαβ ; Tð0Þ
αβ !μ1þμ2 γðμ1þμ2Þ

αβ ; Tðμ1þμ2Þ
αβ : ð3:7Þ

Here we assume that μ ¼ 0 is the identity element,
so that the deformed boundary conditions reduce to
the undeformed boundary conditions as the defor-
mation parameter is taken to zero. We further
assume the group to be nontrivial, so a deformation
by μ ≠ 0 must be different from the identity.

(iii) The root-TT deformation commutes with the ordi-
nary TT̄ deformation, in the following sense. If we
first deform the metric and stress tensor using the
TT̄ deformed boundary conditions and flow by
parameter λ, and then use these deformed quantities
as the initial condition for a root-TT̄ flow by
parameter μ, then the result is identical to first
deforming by root-TT̄ with parameter μ and then by
TT̄ with parameter λ.

We will first use assumptions (i) and (ii) to determine the
nature of the modified boundary conditions when the seed
theory is conformal, and then use the third assumption to
extend this procedure to the case when the undeformed
theory is nonconformal.

1. Conformal seed theory

For a conformal seed theory satisfying γð0ÞαβTð0Þ
αβ ¼ 0,

the only independent dimensionful Lorentz scalar quantity

in the problem is Tð0ÞαβTð0Þ
αβ . Ordinarily, there are two

independent scalars that can be constructed from a general
2 × 2 matrix M—for instance, trðMÞ and trðM2Þ—but we
have assumed that the trace of the stress tensor vanishes.
We can equivalently say that any Lorentz scalar built from a
traceless stress tensor is a function of

Rð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Tð0ÞαβTð0Þ

αβ

r
: ð3:8Þ

On the other hand, there are also only two functionally
independent symmetric 2-tensors available in this problem,

namely γð0Þαβ and Tð0Þ
αβ . Again, one could attempt to form a

new independent 2-tensor by taking products of the form

ðT2Þαβ ¼ Tð0Þ
αγ Tð0Þγ

β; ð3:9Þ
but because of the tracelessness condition, one has the
identity

ðT2Þαβ ¼ ðRð0ÞÞ2γαβ; ð3:10Þ
so this combination does not actually give an independent
tensor structure. Obviously, all higher powers of the stress

tensor will also be proportional to either γð0Þαβ or Tð0Þ
αβ with

coefficients that are functions of Rð0Þ.
We therefore find that the most general ansatz for

deformed symmetric tensors γðμÞαβ and TðμÞ
αβ with the correct

scaling dimensions is

γðμÞαβ ¼ f1ðμÞγð0Þαβ þ f2ðμÞ
Rð0Þ Tð0Þ

αβ ; ð3:11Þ

TðμÞ
αβ ¼ f3ðμÞTð0Þ

αβ þ f4ðμÞRð0Þγð0Þαβ : ð3:12Þ
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All that remains is to fix the four functions fiðμÞ. First we
will use the assumption that the deformed stress tensor
remains traceless with respect to the deformed metric,
so that

γðμÞαβTðμÞ
αβ ¼ 0: ð3:13Þ

This condition is satisfied if and only if

f4ðμÞ ¼
f2ðμÞf3ðμÞ

f1ðμÞ
; ð3:14Þ

which fixes one of the functions.
Next we impose that subsequent deformations form a

group, which is listed as assumption (ii) above. One the one
hand, we can first deform the metric and stress tensor by
parameter μ1 to obtain

γðμ1Þαβ ¼ f1ðμ1Þγð0Þαβ þ f2ðμ1Þ
Rð0Þ Tð0Þ

αβ ; ð3:15Þ

Tðμ1Þ
αβ ¼ f3ðμ1ÞTð0Þ

αβ þ f2ðμ1Þf3ðμ1Þ
f1ðμ1Þ

Rð0Þγð0Þαβ ; ð3:16Þ

where we have used (3.14), and then use (3.15) as the initial
condition for a second deformation by parameter μ2. This

gives one set of deformed quantities, γðμ1þμ2Þ
αβ and Tðμ1þμ2Þ

αβ .
On the other hand, we can deform all at once by a combined
parameter μ1 þ μ2, to yield

γ0ðμ1þμ2Þ
αβ ¼ f1ðμ1 þ μ2Þγð0Þαβ þ f2ðμ1 þ μ2Þ

Rð0Þ Tð0Þ
αβ ;

T 0ðμ1þμ2Þ
αβ ¼ f3ðμ1 þ μ2ÞTð0Þ

αβ

þ f2ðμ1 þ μ2Þf3ðμ1 þ μ2Þ
f1ðμ1 þ μ2Þ

Rð0Þγð0Þαβ : ð3:17Þ

We have decorated the quantities in (3.17) with primes to

emphasize that they may differ from the results γðμ1þμ2Þ
αβ and

Tðμ1þμ2Þ
αβ of performing the two deformations sequentially.

We then impose the constraints

γðμ1þμ2Þ
αβ ¼ γ0ðμ1þμ2Þ

αβ ; Tðμ1þμ2Þ
αβ ¼ T 0ðμ1þμ2Þ

αβ : ð3:18Þ

In performing the algebra to find the implications of
Eqs. (3.18), we will assume that f1 > 0 and f3 > 0, which
is convenient for simplifying expressions like

ffiffiffiffiffi
f21

p
which appear in intermediate steps. This sign choice is
reasonable because we are interested in deformations for
which f1ð0Þ ¼ f3ð0Þ ¼ 1, so these functions should
remain positive at least for sufficiently small deformation
parameter.

After making this assumption, one finds that these
equations hold if and only if

f1ðμ1þμ2Þ ¼ f1ðμ1Þf1ðμ2Þþf2ðμ1Þf2ðμ2Þ;
f2ðμ1þμ2Þ ¼ f1ðμ2Þf2ðμ1Þþf1ðμ1Þf2ðμ2Þ;

f3ðμ1þμ2Þ ¼ f3ðμ1Þf3ðμ2Þ
�
1þf2ðμ1Þf2ðμ2Þ

f1ðμ1Þf1ðμ2Þ
�
: ð3:19Þ

We can turn the first two conditions in (3.19) into differ-
ential equations for f1 and f2 with the initial condition that
f1ð0Þ ¼ 1 and f2ð0Þ ¼ 0, which is required so that the
deformation reproduces the undeformed theory as μ → 0.
For instance, taking a derivative of the first line of (3.19)
with respect to μ2 and then taking μ2 ¼ 0 yields

f01ðμ1Þ ¼ f01ð0Þf1ðμ1Þ þ f02ð0Þf2ðμ1Þ: ð3:20Þ

To ease notation, let f01ð0Þ ¼ a and f02ð0Þ ¼ b.
Differentiating the second line of (3.19) with respect to
μ1 and then taking μ1 to zero gives f02ðμ2Þ ¼ bf1ðμ2Þ þ
af2ðμ2Þ. Thus we have a system of differential equations

f01ðxÞ ¼ af1ðxÞ þ bf2ðxÞ; f02ðxÞ ¼ bf1ðxÞ þ af2ðxÞ;
ð3:21Þ

whose general solution with the initial conditions f1ð0Þ¼1,
f2ð0Þ ¼ 0 is

f1ðxÞ ¼ eax coshðbxÞ; f2ðxÞ ¼ eax sinhðbxÞ: ð3:22Þ

For this class of solutions, the constraint in the third line of
equation (3.19) then imposes

f3ðμ1 þ μ2Þ ¼ f3ðμ1Þf3ðμ2Þð1þ tanhðbμ1Þ tanhðbμ2ÞÞ;
ð3:23Þ

which can be turned into a differential equation with the
initial condition f3ð0Þ ¼ 1 as above. The result of this
procedure is f3ðxÞ ¼ ecx coshðbxÞ, where c is another
constant.
Therefore, the most general μ-dependent deformation

of the metric and stress tensor consistent with our assump-
tions is

γðμÞαβ ¼ eaμ
�
coshðbμÞγð0Þαβ þ sinhðbμÞ

Rð0Þ Tð0Þ
αβ

�
;

TðμÞ
αβ ¼ ecμðcoshðbμÞTð0Þ

αβ þ sinhðbμÞRð0Þγð0Þαβ Þ; ð3:24Þ

where a, b, c are arbitrary constants.
Some comments are in order. First, the deformations

associated with the parameters a and c are simply the
freedom to re-scale the metric or stress tensor by a constant
μ-dependent factor, which is expected since such a scaling
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respects conformal symmetry and forms a group. However,
any such change in coordinates can be undone by a
diffeomorphism along with a redefinition of the stress
tensor by a multiplicative factor (which does not affect
conservation). Therefore we will set a ¼ c ¼ 0 in what
follows.
Second, the choice of the parameter b corresponds to the

scaling of the dimensionless flow parameter μ, or equiv-
alently to our choice of normalization for the operator R.
If b ¼ 0, then there is no change in the metric or stress
tensor (up to diffeomorphisms) for any value of μ, and the
group structure of our deformation is the trivial group. This
violates our assumption (ii), where we demand that the
deformations form a nontrivial group, so b ¼ 0 is for-
bidden. For simplicity, we will choose b ¼ 1. With these
choices, our modified boundary conditions for the case of a
conformal seed theory are

γðμÞαβ ¼ coshðμÞγð0Þαβ þ sinhðμÞ
Rð0Þ Tð0Þ

αβ ;

TðμÞ
αβ ¼ coshðμÞTð0Þ

αβ þ sinhðμÞRð0Þγð0Þαβ : ð3:25Þ

We conclude that, up to diffeomorphisms and normaliza-
tion, the unique choice of modified AdS3 boundary con-
ditions which implement a marginal deformation of a CFT2

satisfying our assumptions are (3.25). This is perhaps not
too surprising, since there is only a single Lorentz invariant
that be constructed from a traceless stress tensor, so we had
only one choice of scalar Rð0Þ which could appear in the
modified boundary conditions. However, when both
TαβTαβ and Tα

α are nonzero, there is more freedom in
the deformation and we will require additional input to
uniquely identify the appropriate analog of (3.25).

2. Nonconformal seed theory

Typically one would not be interested in seed theories
for which Tð0Þα

α ≠ 0, since a generic nonconformal 2D
QFT will not have any AdS3 dual. An important
exception is if the seed theory itself was obtained
through applying an irrelevant stress tensor deformation,
such as the TT̄ deformation, to a conformal seed theory.
Such a TT̄-deformed CFT has a stress tensor with a
nonvanishing trace,3 and yet it is dual to an AdS3 bulk
with modified boundary conditions as we have
described. One might therefore ask what happens if
we use such a TT̄-deformed theory as the input for a
second deformation by root-TT̄.
First we consider the most general expression for the

modified boundary conditions γðμÞαβ and TðμÞ
αβ , which depend

both on μ and on the undeformed quantities γð0Þαβ and Tð0Þ
αβ ,

with the property that these expressions reduce to (3.25) in

the special case where Tð0Þα
α ¼ 0. Because the stress tensor

is no longer traceless, its square will not be proportional to
the metric. As a result, one might believe that there are now
three independent tensor structures in the problem, namely

γð0Þαβ ; Tð0Þ
αβ ; and ðTð0ÞÞ2αβ ¼ Tð0Þ

αρ γð0ÞρσT
ð0Þ
σβ ; ð3:26Þ

and that the most general deformed metric γðμÞαβ and stress

tensor TðμÞ
αβ will each be a linear combination of three

different tensor structures, with appropriate coefficients.
However, this is not the case and there are in fact still

only two tensor structures. One can see this by writing
quantities in terms of the traceless part of the stress tensor,

T̃αβ ¼ Tαβ −
1

2
Tρ

ργαβ: ð3:27Þ

Then Tαβ ¼ T̃αβ þ 1
2
γαβT, where we write T ¼ Tα

α for the
trace of the stress tensor to lighten notation. We also
suppress the (0) superscripts for the moment. Then the
putative new tensor structure arising from the square of the
stress tensor is

T2
αβ ¼ Tασγ

σρTρβ

¼
�
T̃ασ þ

1

2
γασT

�
γσρ
�
T̃ρβ þ

1

2
γρβT

�
¼ T̃2

αβ þ T̃αβT þ 1

4
T2γαβ: ð3:28Þ

We have already seen in Eq. (3.10) that T̃2
αβ ¼ R2γαβ. We

conclude that there are still only two independent tensor
structures γαβ and T̃αβ, and that a generic candidate

expression for a deformed symmetric tensor like γðμÞαβ or

TðμÞ
αβ must still be a linear combination of these two

structures with appropriate scalar coefficients.
However, what has changed is that there are now two

Lorentz scalars that can be constructed from Tð0Þ
αβ rather

than just one. One way of parametrizing the two function-

ally independent scalars is x1 ¼ Tð0Þα
α, x2 ¼ Tð0ÞαβTð0Þ

αβ , as
we have done above. It will be more useful to instead use x1

andRð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
x2 − 1

4
x21

q
. Clearly any function of x1 and x2

can also be expressed as a function of x1 and Rð0Þ.
A convenient way to write most general deformed

boundary conditions is

γðμÞαβ ¼ f1ðμ; yÞ coshðμÞγð0Þαβ þ f2ðμ; yÞ
sinhðμÞ
Rð0Þ T̃ð0Þ

αβ ;

T̃ðμÞ
αβ ¼ f3ðμ; yÞ coshðμÞT̃ð0Þ

αβ þ f4ðμ; yÞ sinhðμÞRð0Þγð0Þαβ :

ð3:29Þ3Towit, the trace satisfies the trace flow equationTα
α¼−2λOTT̄ .
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The functions fi may depend on μ and on the dimension-
less combination

y≡ x1
Rð0Þ : ð3:30Þ

The expressions (3.29) give the most general deformed
boundary conditions that can be constructed from a non-
conformal seed theory. In order to reduce to the earlier
results (3.25) in the case of a CFT seed, we impose

fiðμ; 0Þ ¼ 1: ð3:31Þ

We now expect that there should be many solutions for the
functions fi which correspond to boundary deformations
by different marginal operators. For instance, one could
deform by some operator of the form

O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1Tð0ÞαβTð0Þ

αβ þ c2ðTð0Þα
αÞ2

q
þ c3Tð0Þα

α; ð3:32Þ

for any choice of ci. There should exist some choice of
modified boundary conditions corresponding to any such
operator, and we expect that any such deformation will
satisfy the group property described in assumption
(ii) above.
Rather than perform a systematic investigation of all

such allowed deformed boundary conditions, we will
attempt to single out a unique deformation within this
family by imposing our assumption (iii), namely that this
deformation commute with TT̄. More precisely, we can first

substitute a metric γð0Þαβ and traceless stress tensor Tð0Þ
αβ into

the expressions (2.37) to obtain the TT̄-deformed boundary

conditions γðλÞαβ and TðλÞ
αβ , and then substitute these two

expressions into (3.29) to obtain

γðλ;μÞαβ ; Tðλ;μÞ
αβ : ð3:33Þ

On the other hand, we could instead first substitute γð0Þαβ , T
ð0Þ
αβ

into (2.37) to obtain γðμÞαβ and TðμÞ
αβ , and then plug these

into (2.37) to find

γðμ;λÞαβ ; Tðμ;λÞ
αβ : ð3:34Þ

We then impose the two constraints

γðμ;λÞαβ ¼ γðλ;μÞαβ ; Tðμ;λÞ
αβ ¼ Tðλ;μÞ

αβ : ð3:35Þ

This equation can be analyzed explicitly in components,
by beginning with a general metric with entries γzz, γz̄ z̄,
γzz̄ ¼ γz̄z and a general stress tensor compatible with the
tracelessness constraints, and then evaluating both sides
of (3.35). We will omit the general expressions resulting
from this procedure, which are not especially enlightening,

and proceed to the implications of (3.35). The constraint

arising from demanding that γðμ;λÞzz̄ ¼ γðλ;μÞzz̄ is

f2ðμ; yÞ ¼ 1þ 4þ y2

4y
cothðμÞð1 − f1Þ: ð3:36Þ

Substituting this result and demanding that γðμ;λÞzz ¼ γðλ;μÞzz

then yields

f1 ¼ 1: ð3:37Þ

Therefore f1 ¼ f2 ¼ 1. Using these constraints and requir-

ing that Tðμ;λÞ
zz̄ ¼ Tðλ;μÞ

zz̄ gives

f4 ¼ 1þ 4y cothðμÞ
4þ y2

ð1 − f3Þ; ð3:38Þ

and substituting this back into the equation Tðμ;λÞ
zz ¼ Tðλ;μÞ

zz

yields

f3 ¼ 1: ð3:39Þ

Therefore all four of the undetermined functions must
satisfy fi ¼ 1 in order to commute with TT̄. We conclude
that the only expressions for modified boundary conditions
which are consistent with our assumptions are

γðμÞαβ ¼ coshðμÞγð0Þαβ þ sinhðμÞ
Rð0Þ T̃ð0Þ

αβ ;

T̃ðμÞ
αβ ¼ coshðμÞT̃ð0Þ

αβ þ sinhðμÞRð0Þγð0Þαβ ; ð3:40Þ

which are exactly the ones which we claim correspond to
the root-TT̄ deformation.

B. Derivation of deformed energy levels

The TT̄ deformation of a QFT on a cylinder of radius
R has a well-known effect on the spectrum of the
theory [2–4]. For an energy eigenstate jni with energy
EnðR; λÞ and momentum Pn, the deformed energy satisfies
the inviscid Burgers’ equation,

∂En

∂λ
¼ En

∂En

∂R
þ P2

n

R
; ð3:41Þ

and the momentum Pn remains unchanged. If the unde-
formed theory is a CFT, so that all of the undeformed energy

levels are of the form Eð0Þ
n ≡ EnðR; 0Þ ¼ an

R for constants an,
then (3.41) can be solved in closed form to obtain

EnðR; λÞ ¼
R
2λ

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λEð0Þ

n

R
þ 4λ2P2

n

R2

s
− 1

1CA: ð3:42Þ
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The flow equation (3.41) can be derived by using the
point-splitting definition of the local TT̄ operator in any
translation-invariant QFT and then expressing the
components of the energy-momentum tensor in terms of
En, R,

∂En
∂R , and Pn.

In the case of the root-TT̄ deformation, it is not
known whether one can define a local operator R by
point-splitting. Therefore we cannot give a rigorous
derivation of a flow equation like (3.41) for a quantum
field theory deformed by root-TT̄. However, in the
spirit of the preceding subsection, we can attempt to list
the properties that such a flow equation would neces-
sarily possess and then see whether there exists a
unique differential equation satisfying these properties.
We stress that this type of argument does not constitute
a proof that a root-TT̄ deformed QFT exists and has a
particular spectrum. It would merely show that, assum-
ing that the root-TT̄ deformation is well-defined
quantum-mechanically and behaves in the expected
way, then there is only one possible flow equation
that the spectrum could satisfy.4

Before enumerating the desired properties of such a
flow equation, it is useful to obtain a rough expectation for
what the result might look like. Suppose, for the sake of
argument, that there exists a local operator RðxÞ in the
spectrum of a QFT with the property that

hRi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
hTαβihTαβi −

1

4
hTα

αi2
r

; ð3:43Þ

and consider a deformation of the action given by
∂S
∂μ ¼

R
d2xR. By expressing the components of the stress

tensor for the theory on a cylinder of radius R in terms of
energies and momenta, exactly as in the derivation of the
inviscid Burgers’ equation for TT̄, one would arrive at a
putative root-TT̄ flow equation

∂En

∂μ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
En − R

∂En

∂R

�
2

− P2
n

s
; ð3:44Þ

or equivalently�
∂En

∂μ

�
2

−
1

4

�
En − R

∂En

∂R

�
2

þ P2
n ¼ 0: ð3:45Þ

If the initial condition for this flow is a CFT, so En ∼ 1
R and

Pn ∼ 1
R, then the solution is

EnðR; μÞ ¼ coshðμÞEnðR; 0Þ þ sinhðμÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEð0Þ

n Þ2 − P2
n

q
;

ð3:46Þ

where Eð0Þ
n ¼ EnðR; 0Þ, and again the momenta Pn are

unaffected.
Much like the root-TT̄ flow equation for the Lagrangian,

this candidate deformation of the energy levels forms a
two-parameter family of commuting deformations along
with the TT̄ flow. Beginning with a CFT, the solution for
the doubly deformed spectrum is

EnðR; μ; λÞ ¼
R
2λ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ

�
coshðμÞEð0Þ

n þ sinhðμÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eð0Þ
n

�
2
− P2

n

r �
þ 4λ2

R2
P2
n

s
− 1

!
; ð3:47Þ

where Eð0Þ
n ¼ EnðR; 0; 0Þ. The spectrum (3.47) satisfies the

two commuting flow equations�
∂En

∂μ

�
2

−
1

4

�
En − R

∂En

∂R

�
2

þ P2
n ¼ 0;

∂En

∂λ
− En

∂En

∂R
−
P2
n

R
¼ 0; ð3:48Þ

corresponding to the root-TT̄ and TT̄ deformations,
respectively.
In Sec. IV we will give an argument that (3.45) is the

correct flow equation using holography. For now, we would
like to argue that this partial differential equation is the only
reasonable possibility. To that end, we would like to look

for the most general flow equation for a spectrum with the
following properties:
(a) The flow is generated by a marginal stress tensor

deformation. This means that it is a partial differential
equation for ∂En

∂μ , where μ is a dimensionless parameter,
which arises from a deformation of the Euclidean
action by a Lorentz scalar constructed from the stress-
energy tensor.

(b) The momentum Pn is undeformed along the flow,
so PnðμÞ ¼ Pnð0Þ.

(c) The flow equation forms a two-parameter family of
commuting flows with the inviscid Burgers’ equation
associated with the TT̄ deformation.

We will show that the only flow equation consistent
with (a)–(c) is (3.45). First, it will be useful to express
the possible Lorentz scalars constructed from Tαβ in terms
of energies and momenta. We work in Euclidean signature
with coordinates ðx; yÞ, where x ∼ xþ R is the compact

4Note that such a differential equation for the cylinder
spectrum is distinct from a flow equation for the classical
Hamiltonian density, which has been studied in [34].
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direction of the cylinder and y is the Euclidean time
direction. See Fig. 1.
In an energy eigenstate jni, the components of the stress

tensor are related to the energy En and momentumPn of the
state as follows:

Tyy¼−
1

R
EnðRÞ; Txx¼−

∂EnðRÞ
∂R

; Txy¼
i
R
PnðRÞ:

ð3:49Þ

Furthermore, as we have described above, any Lorentz
scalar constructed from Tαβ is a function of the two
independent invariants

x1 ¼ Tα
α ¼ −

2En

R
− 2

∂En

∂R
;

x2 ¼ TαβTαβ ¼
�
∂En

∂R

�
2

þ E2
n

R2
−
2P2

n

R2
: ð3:50Þ

We are interested in a deformation of the form ∂μSE ¼R
d2xfðx1; x2Þ. The Euclidean Lagrangian density is the

Hamiltonian density, whose integral over a spatial slice
gives the energy En of a state. Therefore this deformation of
the Euclidean action can be written as

∂μEn ¼
Z

R

0

dxfðx1; x2Þ ¼ Rfðx1; x2Þ: ð3:51Þ

We have assumed that this flow is generated by a marginal
deformation, which means that fðx1; x2Þ has mass dimen-
sion 2. The function f must therefore be homogeneous of
degree 1

2
in x2 and degree 1 in x1. This allows us to scale the

factor of R into the arguments of f:

∂En

∂μ
¼ fðRx1; R2x2Þ: ð3:52Þ

Next we use the second assumption, that the momenta Pn
are undeformed along the flow. This means that the theory
is connected to some conformal field theory by a flow along
which the momenta are constant, and therefore the depend-
ence of momenta on the radius is fixed to be Pn ∼ 1

R as in a
CFT. It is convenient to define dimensionless momenta

pn ¼ RPn. We will also rescale x1 by a factor of − 1
2
for

convenience and write

∂En

∂μ
¼fðx̃1; x̃2Þ;

x̃1¼EnþR
∂En

∂R
; x̃2¼R2

�
∂En

∂R2

�
2

þE2
n−

2p2
n

R2
: ð3:53Þ

This is the most general ansatz for a flow equation consistent
with our first two assumptions. We will now fix the
dependence of f on x̃1; x̃2 using the third assumption.
Consider a two-parameter family of theories with ener-

gies EnðR; λ; μÞ which satisfy the simultaneous partial
differential equations

∂En

∂μ
¼ fðx̃1; x̃2Þ;

∂En

∂λ
¼ En

∂En

∂R
þ p2

n

R3
: ð3:54Þ

Differentiating the μ flow equation with respect to R gives

∂
2En

∂μ∂R
¼ ∂f
∂x̃1

�
2
∂En

∂R
þR

∂
2En

∂R2

�
þ 2

R3

∂f
∂x̃2

�
2p2

nþR3
∂En

∂R

�
EnþR

∂En

∂R
þR2

∂
2En

∂R2

��
;

ð3:55Þ
while the derivative of the λ flow equation with respect
to R is

∂
2En

∂λ∂R
¼ En

∂
2En

∂R2
þ
�
∂En

∂R

�
2

−
3p2

n

R4
: ð3:56Þ

Wemay compute the mixed second partial derivative ∂
2En
∂μ∂λ in

two ways. Taking a μ derivative of the expression for ∂En
∂λ

and simplifying using (3.55) yields

∂
2En

∂μ∂λ
¼fðx̃1; x̃2Þ

∂En

∂R
þEn

∂f
∂x̃1

�
2
∂En

∂R
þR

∂
2En

∂R2

�
þ2En

R3

∂f
∂x̃2

�
2p2

nþR3
∂En

∂R

�
EnþR

∂En

∂R
þR2

∂
2En

∂R2

��
:

ð3:57Þ

On the other hand, the λ derivative of ∂En
∂μ is

∂
2En

∂λ∂μ
¼ 1

R3

∂f
∂x̃1

�
−2p2

nþR4

�
∂En

∂R

�
2

þR3En
∂En

∂R
þR4

∂
2En

∂R2

�
þ ∂f
∂x̃2

�
2En

�
p2
n

R3
þEn

∂En

∂R

�
þ 2

R2

∂En

∂R

�
−3p2

nþR4

�
∂En

∂R

�
2

þR4En
∂
2En

∂R2

��
:

ð3:58Þ

FIG. 1. We denote the compact direction by x ∼ xþ R, where R
is the radius of the spatial S1, and write y for the noncompact
Euclidean time direction.
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By our third assumption, the λ-flow must commute with the
μ-flow and hence the two mixed second partial derivatives
must be equal. We set (3.57) equal to (3.58) and eliminate
the variables pn and

∂En
∂R in favor of y1, y2. This leads to the

differential equation

0 ¼ x̃1f þ x̃31
∂f
∂x̃2

− 3x̃1x̃2
∂f
∂x̃2

− x̃2
∂f
∂x̃1

þ En

�
x̃1

∂f
∂x̃1

þ 2x̃2
∂f
∂x̃2

− f

�
: ð3:59Þ

The function f can depend on the variables x̃1 and x̃2 but
not on the function EnðR; λ; μÞ directly. Thus in order
for the Eq. (3.59) to be consistent, the En-dependent and
En-independent terms must vanish separately:

0 ¼ x̃1
∂f
∂x̃1

þ 2x̃2
∂f
∂x̃2

− f;

0 ¼ x̃1f þ x̃31
∂f
∂x̃2

− 3x̃1x̃2
∂f
∂x̃2

− x̃2
∂f
∂x̃1

: ð3:60Þ

The solution to the first line of (3.60) is

f ¼ x̃1g

�
x̃2
x̃21

�
; ð3:61Þ

where g is an arbitrary function. Letting X ¼ x̃2
x̃2
1

and

substituting this ansatz into the second line of (3.60) gives

ðX − 1ÞðgðXÞ þ ð1 − 2XÞg0ðXÞÞ ¼ 0: ð3:62Þ

There are two possibilities. The first factor vanishes if
X ¼ 1, which is the case when

TαβTαβ ¼
1

4
ðTα

αÞ2: ð3:63Þ

This is a trivial case in which the stress tensor for the
theory is degenerate and the two trace structures become
dependent. We will discard this solution and require that
X is not identically equal to 1. This leaves us with the
second possibility, gðXÞ þ ð1 − 2XÞg0ðXÞ ¼ 0, which has
the solution

gðXÞ ¼ c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X − 1

p
; ð3:64Þ

where c1 is an arbitrary constant. Tracing back through
the changes of variables, this corresponds to a deforma-
tion of the form

fðx1; x2Þ ¼ c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 − x21

q
: ð3:65Þ

Choosing the normalization to be c1 ¼ 1
2
, we conclude

that the function f is

fðx1; x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
x2 −

1

4
x21

r
¼ R; ð3:66Þ

which is precisely the root-TT̄ operator. The flow equa-
tion for the energies is

∂En

∂μ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
En − R

∂En

∂R

�
2

− P2
n

s
; ð3:67Þ

and taking the square of this equation recovers (3.45).
Our conclusion is that there is only a single marginal

deformation of the cylinder spectrum for a 2D quantum
field theory which is constructed from the energy-
momentum tensor and which commutes with the irrelevant
TT̄ flow. This unique deformation is the one which
corresponds to the combination of stress tensors which
appears in the classical root-TT̄ deformation. We reiterate
that this does not represent a proof that the root-TT̄ operator
is necessarily well-defined at the quantum level. However,
if there exists any deformation of the quantum theory with
the properties that we listed, it must lead to exactly the flow
equation which one would have naïvely guessed would
correspond to the root-TT̄ deformation, as we did around
equation (3.43).

IV. AdS3 GRAVITY WITH ROOT-TT̄ DEFORMED
BOUNDARY CONDITIONS

In this section, we aim to show that the root-TT̄
deformed boundary conditions derived in section III A
are compatible with our proposed flow equation for the
spectrum in Sec. III B. To do this, wewill compute the mass
(or energy) of a spacetime with root-TT̄ deformed boun-
dary conditions and compare this deformed mass to its
undeformed value.
It is well known that the notion of mass is subtle in a

generally covariant theory, and there are many definitions
of the total mass of a spacetime which are applicable
in different contexts. In our case, since we are interested
in asymptotically AdS3 spacetimes, it will be most
convenient to define the spacetime mass as the integral
of the quasilocal Brown-York stress tensor [48]. In a
d-dimensional spacetime M, this mass integral is given by

M ¼
Z
Σ
dd−1x

ffiffiffi
σ

p
uμTμνξ

ν; ð4:1Þ

where Σ is a spacelike surface in the boundary ∂M with
metric σαβ, uμ is a timelike unit normal, and ξν is the Killing
vector associated with time translations. Our strategy will
be to compute the mass (4.1) by choosing a convenient
coordinate system generated by a field-dependent change
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of variables which implements our root-TT̄ deformed
boundary conditions. Such field-dependent diffeomor-
phisms have also appeared in various works in the context
of the ordinary TT̄ deformation [18,30,49].
It would be very interesting to study the mass of AdS3

spacetimes subject to modified boundary conditions
using a more general prescription such as the covariant
phase space formalism [50,51]. The result of a mass
calculation in this formalism is guaranteed to agree
with (4.1), but because this machinery maintains covari-
ance, it may be possible to obtain mass flow equations
associated with TT̄ and root-TT̄ deformations (or even
more general stress tensor deformations) without resort-
ing to a field-dependent diffeomorphism.
We will also obtain the corresponding root-TT̄ deformed

boundary conditions in the Chern-Simons description
of AdS3 gravity. In this formalism, the definition of the
deformed spacetime mass is not immediately obvious. As
we will review around equation (4.36), in the undeformed
theory with conventional boundary conditions, it is
straightforward to show that the mass (4.1) is equal to
the value of the Chern-Simons boundary term which
imposes the appropriate boundary conditions. We will
see by explicit computation that this remains true when
this boundary term is modified to the one which imposes
the root-TT̄ deformed boundary conditions. This provides
evidence that the Chern-Simons boundary term continues
to yield the spacetime mass even with modified boundary
conditions, which one might attempt to prove more gen-
erally by a computation in the canonical formulation.

A. Metric formalism

First, we will briefly review the salient details in AdS3
gravity to set the stage for the deformed energy spectrum
computation.5 Pure three-dimensional general relativity
contains no local degrees of freedom, but is nontrivial
enough to have black hole solutions and is a useful arena
to study interesting phenomena in a controllable manner. A
general solution of AdS3 gravity can be written in the
Fefferman-Graham expansion [55]

ds2 ¼ l2dρ2

4ρ2
þ
 
gð0Þαβ ðxαÞ

ρ
þ gð2Þαβ ðxαÞ þ ρgð4Þαβ ðxαÞ

!
dxαdxβ;

ð4:2Þ

which terminates at second order [56] and where ρ ¼ 0 is
the AdS3 boundary. The AdS3 radius is l and the three-

dimensional Einstein equations determine gð4Þαβ in terms of
the other two Fefferman-Graham expansion coefficients as

gð4Þαβ ¼ 1

4
gð2Þαγ gð0Þγδg

ð2Þ
δβ : ð4:3Þ

Asymptotically AdS3 solutions realize two copies of the
Virasoro algebra, which are generated by Brown-Henneaux
diffeomorphisms [57] that preserve the leading asymptotics
of the metric (4.2). Such diffeomorphisms correspond to
conformal transformations in the 2D boundary theory.
From the AdS=CFT dictionary [58,59], the Fefferman-

Graham quantity gð2Þαβ is proportional to the expectation
value of the boundary CFT stress tensor

gð2Þαβ ¼ 8πGlðTαβ − gð0Þαβ T
α
αÞ≡ 8πGlT̂αβ; ð4:4Þ

and gð0Þαβ is the metric on the boundary where the dual
CFT lives. To derive the energy spectrum of this back-
ground (4.2) with the root-TT deformed boundary con-
ditions, we borrow some of the key methods developed to
study holographic aspects of the double-trace TT̄ defor-
mation in the metric formalism [18] and Chern-Simons
formalism [60] at large N. See Appendix for a review of
these methods. As a consequence of our analysis, we will
also find that the bulk spacetime exhibits superluminal
propagation for one sign of the root-TT̄ deformation
parameter μ, which is also the case for the bad-sign TT̄
deformation.

1. Root-TT̄ deformed theory

In Sec. III A, we argued that the root-TT̄ deformed
boundary metric and stress tensor are

γðμÞαβ ¼ coshðμÞγð0Þαβ þ sinhðμÞ
Rð0Þ T̃ð0Þ

αβ ;

T̃ðμÞ
αβ ¼ coshðμÞT̃ð0Þ

αβ þ sinhðμÞRð0Þγð0Þαβ : ð4:5Þ

The strategy we follow here is motivated by the analysis of
TT̄-deformed AdS3=CFT2 in [18]. As in the holographic
analysis of the TT̄ deformation, we will make two
assumptions about the root-TT̄ flow. The first is that this
deformation is smooth and therefore preserves the boun-
dary theory’s degeneracy of states; for a black hole
solution, this corresponds to the statement that the black
hole horizon area is unchanged. The second assumption is
that the deformation does not affect the momentum
quantum number Pn in the boundary field theory, which
is quantized in units of 1

R, where R is the cylinder radius.
Thus we will equate the deformed and undeformed areas
and angular momenta. These assumptions imply the root-
deformed energy spectrum which was derived by consis-
tency conditions in Sec. III B. Unlike the TT̄ deformation,
the trace of the root-TT̄ theory does not flow, as expected
for a classically marginal deformation.

5For useful reviews on the AdS3=CFT2 correspondence,
see [52–54].
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We will now focus on the case of a Bañados
geometry [61] which is parameterized by two quantities
LðuÞ and L̄ðvÞ. A Bañados geometry’s Fefferman-Graham
quantities are defined

gð0Þαβ dx
αdxβ ¼ dudv;

gð2Þαβ dx
αdxβ ¼ LðuÞdu2 þ L̄ðvÞdv2;

gð4Þαβ dx
αdxβ ¼ LðuÞL̄ðvÞdudv ð4:6Þ

implying that the metric (4.2) becomes

ds2 ¼ l2dρ2

4ρ2
þ dudv

ρ
þ LðuÞdu2 þ L̄ðvÞdv2

þ ρLðuÞL̄ðvÞdudv: ð4:7Þ

The root-TT̄ deformed boundary metric and stress tensor
given in (4.5) are therefore

γðμÞαβ ¼ ðcosh μÞgð0Þαβ þ sinh μ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðuÞL̄ðvÞ

q gð2Þαβ

¼ 1

2

0B@
ffiffiffiffiffiffiffi
LðuÞ
L̄ðvÞ

q
sinh μ cosh μ

cosh μ
ffiffiffiffiffiffiffi
L̄ðvÞ
LðuÞ

q
sinh μ

1CA;

T̃ðμÞ
αβ ¼ cosh μ

2
gð2Þαβ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðuÞL̄ðvÞ

q
ðsinh μÞgð0Þαβ

¼ 1

2

0B@ LðuÞ cosh μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðuÞL̄ðvÞ

q
sinh μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðuÞL̄ðvÞ
q

sinh μ L̄ðvÞ cosh μ

1CA;

ð4:8Þ

where we work in conventions such that 4πGl ¼ 1 and

substituted (4.6) into (4.5). We also used gð2Þαβ ¼ 2Tαβ and

computed the operator R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðuÞL̄ðvÞ

q
. We now identify

a field-dependent diffeomorphism to new coordinates U, V
defined by

dU ¼
�
cosh

μ

2

�
duþ

ffiffiffiffiffiffiffiffiffiffi
L̄ðvÞ
LðuÞ

s �
sinh

μ

2

�
dv;

dV ¼
�
cosh

μ

2

�
dvþ

ffiffiffiffiffiffiffiffiffiffi
LðuÞ
L̄ðvÞ

s �
sinh

μ

2

�
du: ð4:9Þ

which has the property that the metric, when written in
these new variables, returns to the standard form:

γðμÞαβ dx
αdxβ ¼ dUdV: ð4:10Þ

Expressing (4.9) in matrix notation, we may write the field
dependent coordinate transformation and its inverse as

�
dU

dV

�
¼

0B@ cosh μ
2

ffiffiffiffiffiffiffi
L̄ðvÞ
LðuÞ

q
sinh μ

2ffiffiffiffiffiffiffi
LðuÞ
L̄ðvÞ

q
sinh μ

2
cosh μ

2

1CA�du

dv

�
;

�
du

dv

�
¼

0B@ cosh μ
2

−
ffiffiffiffiffiffiffi
L̄ðvÞ
LðuÞ

q
sinh μ

2

−
ffiffiffiffiffiffiffi
LðuÞ
L̄ðvÞ

q
sinh μ

2
cosh μ

2

1CA� dU

dV

�
:

ð4:11Þ

For black hole solutions with constant ðLðuÞ; L̄ðvÞÞ≡
ðLμ; L̄μÞ, the Fefferman-Graham quantities in the ðU;VÞ
coordinates are

gð0Þαβ dx
αdxβ ¼ dudv

¼ −
1

2
sinh μ

 ffiffiffiffiffiffi
Lμ

L̄μ

s
dU2 þ

ffiffiffiffiffiffi
L̄μ

Lμ

s
dV2

!
þ cosh μdUdV;

gð2Þαβ dx
αdxβ ¼ Lμdu2 þ L̄μdv2

¼ cosh μðLμdU2 þ L̄μdV2Þ
− 2

ffiffiffiffiffiffiffiffiffiffiffi
LμL̄μ

q
sinh μdUdV;

gð4Þαβ dx
αdxβ ¼ LμL̄μdudv

¼ LμL̄μ

 
−
1

2
sinh μ

 ffiffiffiffiffiffi
Lμ

L̄μ

s
dU2 þ

ffiffiffiffiffiffi
L̄μ

Lμ

s
dV2

!

þ cosh μdUdV

!
: ð4:12Þ

The metric (4.2) in terms of these Fefferman-Graham
quantities (4.12) at the event horizon ρh ¼ ðLμL̄μÞ−1

2 is

ds2jρ¼ρh
¼ l2LμL̄μ

4
dρ2 þ e−μ

�� ffiffiffiffiffiffi
Lμ

q
þ

ffiffiffiffiffiffi
L̄μ

q �
2

dϕ2

þ
� ffiffiffiffiffiffi

Lμ

q
−

ffiffiffiffiffiffi
L̄μ

q �
2

dT2 þ 2ðLμ − L̄μÞdTdϕ
�
;

ð4:13Þ

where ðU;VÞ ¼ ðϕþ T;ϕ − TÞ. The undeformed and
deformed event horizon areas are read off from (4.13)

Að0Þ ¼
Z

R

0

dϕ
ffiffiffiffiffiffiffi
gϕϕ

p ¼ R

� ffiffiffiffiffiffi
L0

p
þ

ffiffiffiffiffiffi
L̄0

q �
;

AðμÞ ¼
Z

R

0

dϕ
ffiffiffiffiffiffiffi
gϕϕ

p jρh ¼ Re−
μ
2

� ffiffiffiffiffiffi
Lμ

q
þ

ffiffiffiffiffiffi
L̄μ

q �
: ð4:14Þ
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Now to extract the deformed energy and angular momen-
tum. Using (4.8) and (4.12), we write the components of the
stress tensor

TðμÞ
αβ dx

αdxβ ¼ 1

2
ðLμdU2 þ L̄μdV2Þ

¼ 1

2
ðLμ þ L̄μÞðdT2 þ dϕ2Þ þ ðLμ − L̄μÞdϕdT:

ð4:15Þ

Restoring factors of 4πGl, the deformed energy and
angular momentum from (4.15) are

Eμ ¼
Z

R

0

dϕTðμÞ
TT ¼ R

8πGl
ðLμ þ L̄μÞ;

Jμ ¼
Z

R

0

dϕTðμÞ
Tϕ ¼ R

8πGl
ðLμ − L̄μÞ: ð4:16Þ

The root-TT̄ deformed energy (4.16) is a simple sum
Lμ þ L̄μ, reminiscent of a CFT’s energy, which is a sign
that the root-TT̄ deformed theory remains a CFT. This
simplicity of energy ceases to exist for the TT̄ deformation
due to the deformed theory being nonconformal. In the TT̄
deformation of AdS3=CFT2, the energy is

Eλ ¼
R

8πGl
Lλ þ L̄λ − 2ρcLλL̄λ

1 − ρ2cLλL̄λ

; ð4:17Þ

with ðLλ; L̄λÞ defined in [18] and (A24). The next ingre-
dients are the areas and angular momenta, which obey

ffiffiffiffiffiffi
L0

p
þ

ffiffiffiffiffiffi
L̄0

q
¼ e−

μ
2

� ffiffiffiffiffiffi
Lμ

q
þ

ffiffiffiffiffiffi
L̄μ

q �
;

L0 − L̄0 ¼ Lμ − L̄μ; ð4:18Þ

and the solutions of (4.18) are

Lμ ¼
� ffiffiffiffiffiffi

L0

p
cosh

μ

2
þ

ffiffiffiffiffiffi
L̄0

q
sinh

μ

2

�
2

;

L̄μ ¼
� ffiffiffiffiffiffi

L̄0

q
cosh

μ

2
þ

ffiffiffiffiffiffi
L0

p
sinh

μ

2

�
2

: ð4:19Þ

Using the relations (4.19) to express the deformed energy in
terms of L0, L̄0 then yields

Eμ¼
R

8πGl

�
ðL0þ L̄0Þcoshμþ2

ffiffiffiffiffiffiffiffiffiffiffi
L0L̄0

q
sinhμ

�
: ð4:20Þ

We can rewrite (4.20) in terms of the undeformed energy
and angular momentum by recalling that

E0 ¼
R

8πGl
ðL0 þ L̄0Þ; J0 ¼

R
8πGl

ðL0 − L̄0Þ;

L0 ¼
4πGl
R

ðE0 þ J0Þ; L̄0 ¼
4πGl
R

ðE0 − J0Þ: ð4:21Þ

After identifying the bulk angular momentum J0 with
the CFT momentum P0, this gives the same energy
spectrum (3.46) we found from consistency conditions,
namely

Eμ ¼ E0 cosh μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − P2

0

q
sinh μ: ð4:22Þ

2. Propagation speed

In the case of the usual TT̄ deformation, there is a
sharp distinction between the two signs of the defor-
mation parameter λ. In our conventions, λ > 0 corre-
sponds to the “good sign” of the flow. With this choice
of sign, so long as λ is not too large, all of the energy
eigenvalues in a TT̄-deformed CFT remain real. For the
“bad sign” λ < 0, however, all but finitely many of the
energies in the deformed theory become complex.6 This
signals a pathology in the bad-sign-deformed theory
which appears to be quite robust to the type of TT̄-
deformation one uses. For instance, a single-trace TT̄
deformation with the bad sign corresponds to a bulk
dual with closed timelike curves [63]. The conventional
double-trace TT̄ deformation, which is the version
considered in this work, with the bad choice of sign
is dual to a bulk spacetime which exhibits superluminal
propagation [64,65].
It is natural to ask whether the root-TT̄ deformation has

a similar pathology for one choice of the sign. Such a
pathology would not be visible at the level of the
formula (4.22) for the root-TT̄ deformed spectrum, which
appears to yield real energies for either sign of μ.
However, we will now show that the sign choice μ < 0
leads to a bulk spacetime which allows superluminal
propagation. This suggests that, as with TT̄, only the
positive sign of the root-TT̄ flow parameter may lead to a
sensible deformed theory.
To demonstrate this superluminal propagation, we begin

with a diagonal stress tensor T̃αβð0Þ ¼ diagðT̃ttð0Þ; T̃xxð0ÞÞ
on a two-dimensional space equipped with ðt; xÞ coordi-
nates and flat metric ηαβ ¼ diagð−1; 1Þ. The boundary
deformed metric (4.5) in this setting is

6In some cases, these complex energies can be removed by
performing multiple TT̄ deformations in a row. For instance, one
can deform a pair of CFTs by the bad sign of λ and then
subsequently deform the tensor product of these theories by a
good-sign flow to cure the spectrum [62].
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ds2 ¼ ð−dt2 þ dx2Þ cosh μ

þ sinh μ

Rð0Þ ðT̃ttð0Þdt2 þ T̃xxð0Þdx2Þ
¼ −e−μdt2 þ eμdx2; ð4:23Þ

where we have used T̃tt ¼ T̃xx ¼ Rð0Þ.
Null geodesics obey ds2 ¼ 0 which have the following

propagation speed

v ¼ e−μ; ð4:24Þ

and in particular we see that v > 1 if μ < 0. This confirms
that the bulk supports superluminal propagation for the
negative sign of the root-TT̄ deformation parameter.
This result might have been anticipated because the root-

TT̄ deformation is closely connected to the modified
Maxwell or ModMax theory of electrodynamics in four
spacetime dimensions. In particular, the 4d root-TT̄ defor-
mation of the free Maxwell theory yields the ModMax
theory [25,27], and the dimensional reduction of this theory
to two spacetime dimensions is the modified scalar theory
which is obtained from a root-TT̄ flow of free scalars [30].
It was already pointed out in [21] that the 4d ModMax
theory also allows for superluminal propagation when
γ < 0, which corresponds to μ < 0 in our notation. This
gives another reason to suspect that the root-TT̄ deforma-
tion may be ill behaved for μ < 0.

B. Chern-Simons formalism

The three-dimensional Einstein-Hilbert action is express-
ible semiclassically as the difference of two Chern-Simons
actions [66,67]

SEH½gαβ� ¼ SCS½A� − SCS½Ā�; ð4:25Þ

where

SCS½A� ¼
l

16πG

Z
Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
; ð4:26Þ

and the bulk one-form Chern-Simons connections ðA; ĀÞ ¼
ðAαdxα; ĀαdxαÞ are expressed in terms of the vielbein
Ea ¼ Ea

αdxα and spin connection Ωa ¼ 1
2
ϵabcΩαbcdxα:

Aa ¼ Ωa þ 1

l
Ea; Āa ¼ Ωa −

1

l
Ea; ð4:27Þ

where a ¼ −1, 0, 1 are SLð2;RÞ group indices. The
equations of motion imply flatness

F ¼ dAþ A ∧ A ¼ 0; F̄ ¼ dĀþ Ā ∧ Ā ¼ 0; ð4:28Þ

and the bulk metric is related to the Chern-Simons gauge
fields as

gαβ ¼
l2

2
Tr
�
ðAα − ĀαÞðAβ − ĀβÞ

�
; ð4:29Þ

where the trace is over SLð2;RÞ indices. The connections
associated to the Bañados geometry (4.7) are

A ¼ −
1

2ρ
L0dρþ

1

l

�
−
ffiffiffi
ρ

p
L0L−1 þ

1ffiffiffi
ρ

p L1

�
du

¼

0B@− dρ
4ρ −

ffiffi
ρ

p
L0du
l

− du
l
ffiffi
ρ

p dρ
4ρ

1CA;

Ā ¼ 1

2ρ
L0dρþ

1

l

�
1ffiffiffi
ρ

p L−1 −
ffiffiffi
ρ

p
L̄0L1

�
dv

¼

0B@ dρ
4ρ

dv
l
ffiffi
ρ

pffiffi
ρ

p
L̄0dv
l − dρ

4ρ

1CA; ð4:30Þ

where the SLð2;RÞ generators are

L−1 ¼
�
0 1

0 0

�
; L0 ¼

1

2

�
1 0

0 −1

�
; L1 ¼

�
0 0

−1 0

�
:

ð4:31Þ

These generators satisfy the standard commutation relations

½Lm; Ln� ¼ ðm − nÞLmþn: ð4:32Þ

In radial gauge, we may extract the radial dependence from
the bulk connections as

Aðρ; uÞ ¼ b−1ðρÞðdþ aðuÞÞbðρÞ;
Āðρ; vÞ ¼ bðdþ āðvÞÞb−1ðρÞ;

bðρÞ ¼ e−
1
2
L0 ln ρ ¼

�
ρ−

1
4 0

0 ρ
1
4

�
; ð4:33Þ

where the boundary connections are

aðuÞ ¼ 1

l
ð−L0ðuÞL−1 þ L1Þdu; āðvÞ

¼ 1

l
ðL−1 − L̄0ðvÞL1Þdv: ð4:34Þ

To compare more easily with our metric formalism analysis,
we work in the same temporal and periodic coordinates7

t ¼ 1

2
ðuþ vÞ; φ ¼ 1

2
ðu − vÞ; φ ∼ φþ R: ð4:35Þ

7We distinguish between the undeformed coordinates ðt;φÞ
and the deformed coordinates ðT;ϕÞ.
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In these variables (4.35), the chiral boundary conditions are
At ¼ Aφ; Āt ¼ −Āφ. To have a variational principle which
realizes these chiral boundary conditions, we add the
following boundary term to the total Chern-Simons action:

S ¼ SCS½A� − SCS½Ā� þ
l

16πG

Z
∂M

dtdφTrðA2
φ þ Ā2

φÞ:

ð4:36Þ

In the undeformed theory with conventional boundary
conditions, it can be shown that the boundary term in
(4.36) that imposes the chiral boundary conditions is related
to the mass of the bulk spacetime, which can be defined via
other means in the metric formalism [68,69]. In our case, this
mass is simply the black hole’s total energy. We can see this
explicitly by substituting (4.30) into the boundary action,
which yields

Sbdry ¼
l

16πG

Z
∂M

dtdφTrðA2
φ þ Ā2

φÞ

¼ 1

8πGl

Z
∂M

dtdφðL0 þ L̄0Þ; ð4:37Þ

since the undeformed energy is

E0 ¼
R

8πGl
ðL0 þ L̄0Þ: ð4:38Þ

It is not obvious, without performing a computation in the
canonical formulation, that the Chern-Simons boundary
action will continue to yield the mass of the bulk spacetime

in the presence of a boundary deformation. However, wewill
find that this is indeed the case when the boundary is
deformed by the root-TT̄ operator.
Next we will understand the mixed boundary conditions

imposed by the root-TT̄ deformation in Chern-Simons
variables. There are two equivalent approaches that one
might use in order to find the deformed boundary con-
ditions. One strategy to find the deformed Chern-Simons
connections is to use the field dependent coordinate trans-
formation (4.11). In describing this approach, we will work
with an explicit choice of coordinate system.
The second method is to work with a covariant expansion

of the boundary connections in terms of vielbeins eai and
their dual expectation values fai , which are related to the
stress tensor. One can then work out the mixing of sources
and expectation values in Chern-Simons variables, either by
imposing consistency conditions of the kind discussed

in Sec. III A, or by taking the results for γðμÞαβ and T̃ðμÞ
αβ in

Eq. (3.40) as given and then finding the modification in
Chern-Simons variables which reproduce these results.

1. Root-TT̄ deformed Chern-Simons:
Coordinate approach

The first way to find the deformed Chern-Simons
connections is to use the field dependent coordinate trans-
formation (4.11). In describing this approach, we will work
directly with boundary coordinates U, V for the deformed
theory and u, v for the undeformed theory. Transforming
the connections A and Ā using this change of coordinates
yields

AðμÞ ¼ −
1

2ρ
L0dρþ

1

l

�
−
ffiffiffi
ρ

p
LμL−1 þ

1ffiffiffi
ρ

p L1

� 
cosh

μ

2
dU −

ffiffiffiffiffiffi
L̄μ

Lμ

s
sinh

μ

2
dV

!
;

ĀðμÞ ¼ 1

2ρ
L0dρþ

1

l

�
1ffiffiffi
ρ

p L−1 −
ffiffiffi
ρ

p
L̄μL1

� 
−

ffiffiffiffiffiffi
Lμ

L̄μ

s
sinh

μ

2
dU þ cosh

μ

2
dV

!
: ð4:39Þ

It is straightforward to see the mixed boundary conditions in this root-TT̄ deformed setting:

ffiffiffiffiffiffi
L̄μ

Lμ

s �
sinh

μ

2

�
AUðμÞ þ

�
cosh

μ

2

�
AVðμÞ ¼ 0;

ffiffiffiffiffiffi
L̄μ

Lμ

s �
cosh

μ

2

�
ĀUðμÞ þ

�
sinh

μ

2

�
ĀVðμÞ ¼ 0: ð4:40Þ

Moreover, we can extract the deformed boundary Chern-Simons connections

aðμÞ ¼ 1

l
ð−LμL−1 þ L1Þ

  
cosh

μ

2
−

ffiffiffiffiffiffi
L̄μ

Lμ

s
sinh

μ

2

!
dϕþ

 
cosh

μ

2
þ

ffiffiffiffiffiffi
L̄μ

Lμ

s
sinh

μ

2

!
dT

!
;

āðμÞ ¼ 1

l
ðL−1 − L̄μL1Þ

  
cosh

μ

2
−

ffiffiffiffiffiffi
Lμ

L̄μ

s
sinh

μ

2

!
dϕ −

 
cosh

μ

2
þ

ffiffiffiffiffiffi
Lμ

L̄μ

s
sinh

μ

2

!
dT

!
; ð4:41Þ
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which obey

aTðμÞ ¼
cosh μ

2
þ

ffiffiffiffi
L̄μ

Lμ

r
sinh μ

2

cosh μ
2
−

ffiffiffiffi
L̄μ

Lμ

r
sinh μ

2

aϕðμÞ;

āTðμÞ ¼ −
cosh μ

2
þ

ffiffiffiffi
Lμ

L̄μ

q
sinh μ

2

cosh μ
2
−

ffiffiffiffi
Lμ

L̄μ

q
sinh μ

2

āϕðμÞ: ð4:42Þ

To make contact with our discussion of the horizon area in
the metric formalism, we note that one may compute the
BTZ black hole’s Bekenstein-Hawking entropy (and thus
its horizon area) directly in the Chern-Simons formalism.
Following [70], the black hole entropy is given in terms of
Chern-Simons quantities as

S ¼ CTrððλϕ − λ̄ϕÞL0Þ; ð4:43Þ

where C is a constant which depends on the central
charge c, but whose precise value is not important for this
discussion, λϕ and λ̄ϕ are diagonal traceless matrices
containing the eigenvalues of aϕ and āϕ.
Equation (4.43) was derived in [70] using a particular

boundary term which is appropriate for the Drinfeld-
Sokolov form of the connections, which in our case
corresponds to a Bañados type solution. We note that
the root-TT̄ deformed connections are not of this form
when written in terms of the original coordinates, which
will become clear when we obtain covariant expressions for
the deformed in Eq. (4.54). However, when we write the
deformed connections in new coordinates ðT;ϕÞ using the
field-dependent diffeomorphism (as we have done above),
the connections are of Bañados type, albeit characterized
by deformed parameters Lμ and L̄μ. Therefore it is justified
to use the expression (4.43) so long as we work in the
transformed coordinates.
Diagonalizing the connections given in (4.41), one finds

λϕ ¼ 1

l

0B@
ffiffiffiffiffiffi
Lμ

p
cosh μ

2
−

ffiffiffiffiffiffi
L̄μ

q
sinh μ

2
0

0 −
ffiffiffiffiffiffi
Lμ

p
cosh μ

2
þ

ffiffiffiffiffiffi
L̄μ

q
sinh μ

2

1CA;

λ̄ϕ ¼ 1

l

0B@−
ffiffiffiffiffiffi
L̄μ

q
cosh μ

2
þ ffiffiffiffiffiffi

Lμ

p
sinh μ

2
0

0
ffiffiffiffiffiffi
L̄μ

q
cosh μ

2
−

ffiffiffiffiffiffi
Lμ

p
sinh μ

2

1CA: ð4:44Þ

Therefore

Sð0Þ ¼ C
l

� ffiffiffiffiffiffi
L0

p
þ

ffiffiffiffiffiffi
L̄0

q �
;

SðμÞ ¼ C
l
e−

μ
2

� ffiffiffiffiffiffi
Lμ

q
þ

ffiffiffiffiffiffi
L̄μ

q �
: ð4:45Þ

Equating the two entropies in equation (4.45) then gives
the same area equation which we found in (4.18) using a
metric-formalism analysis.
The corresponding boundary term which we must add in

order to have a well-defined variational principle with
respect to these root-TT̄ deformed boundary conditions is

δSbdry ¼
l

8πG

Z
∂M

dTdϕ

0BB@Tr

2664cosh
μ
2
þ

ffiffiffiffi
L̄μ

Lμ

r
sinh μ

2

cosh μ
2
−

ffiffiffiffi
L̄μ

Lμ

r
sinh μ

2

aϕðμÞδaϕðμÞ

3775þ Tr

2664cosh
μ
2
þ

ffiffiffiffi
Lμ

L̄μ

q
sinh μ

2

cosh μ
2
−

ffiffiffiffi
Lμ

L̄μ

q
sinh μ

2

āϕðμÞδāϕðμÞ

3775
1CCA: ð4:46Þ

We substitute the boundary connections (4.42) and their
variations to find

δSbdry ¼
1

8πGl

Z
∂M

dTdϕðδLμ þ δL̄μÞ; ð4:47Þ

from which Sbdry is easily read off

Sbdry ¼
1

8πGl

Z
∂M

dTdϕðLμ þ L̄μÞ: ð4:48Þ

In summary, we have shown that the final expression (4.48)
for the deformed boundary action in Chern-Simons
variables is identical to that of the root-TT̄ deformed
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energy, given in (4.16), of the spacetime computed in the
metric formalism.8

Note that we have not given any a priori justification that
the deformed Chern-Simons boundary action yields the
spacetime mass when the boundary theory is deformed by a
general multitrace operator. Although it is easy to show that
this is true in the undeformed theory, a general proof that
the Chern-Simons boundary action computes the spacetime
mass in the presence of modified boundary conditions
would require a computation of the Hamiltonian using an
analysis of the canonical structure. We will not pursue such
an analysis here. However, the fact that the deformed
boundary action (4.48) does agree with the energy com-
puted in the metric formulation may be viewed as an
a posteriori argument that such an analysis in the canonical
formulation would conclude that the boundary term equals
the spacetime energy in the case of root-TT̄ deformed
boundary conditions.

2. Root-TT̄ deformed Chern-Simons:
Covariant approach

We now describe the second approach. In order to
make the sources and expectation values in Chern-
Simons variables explicit, it is convenient to expand the
boundary gauge fields as

ai ¼ 2eþi L1 − f−i L−1 þ ωiL0;

āi ¼ fþi L1 − 2e−i L−1 þ ωiL0: ð4:49Þ

In the case of a Bañados-type geometry, this expansion
reduces to the one given in (4.34). In these expansions, eai
plays the role of the boundary vielbein, where we use
middle Latin letters i, j, k for curved boundary indices
and early Latin letters a, b, c for flat boundary indices. We
have chosen the numerical factors appearing in the expan-
sions (4.49) to simplify our final results, but they will lead
to some unfamiliar factors of 2 in certain expressions. For
instance, the boundary metric in these conventions is

γij ¼ 2eai ηabe
b
j ; ð4:50Þ

which has an additional factor of 2 compared to the
standard definition. We also define

e ¼ detðebj Þ; ð4:51Þ

so that detðγijÞ ¼ −4e2, and the Levi-Civita symbols with
flat and curved indices are

ϵab ¼
�

0 1

−1 0

�
ab

; ϵij ¼ 1

2e

�
0 1

−1 0

�ij
; ð4:52Þ

These satisfy various identities such as gij ¼ −ϵikϵjlgkl,
ϵab ¼ 2ϵijeai e

b
j , and so on, with factors of 2 that can be

traced back to the definition (4.50). Flat indices are raised
and lowered with ηab, where we take ηþ− ¼ η−þ ¼ −1
in this subsection. We refer the reader to Sec. 2 of [71],
or to [72], for more details on these notational conventions.
In the holographic dictionary, this vielbein eai is the

source while the other expansion coefficients fai are the
dual expectation values, which are related to the boundary
stress tensor with one flat and one curved index according
to the relation

Ti
a ¼

1

4πG
ϵabϵ

ijfbj : ð4:53Þ

We will assume that the boundary spin connection ω
vanishes in the undeformed theory, which is appropriate
for a flat boundary.
We expect, based on the general analysis of Sec. II, that

the addition of a multitrace boundary term in Chern-Simons
variables will impose modified boundary conditions in
which some deformed source eai ðμÞ is now held fixed in the
variational principle, rather than the undeformed source
eai ð0Þ. In the case of a boundary TT̄ deformation, we recall
from [71,72] that the resulting modification of the sources
and expectation values is simply

eai ðλÞ ¼ eai ð0Þ þ
λ

4πG
fai ; fai ðλÞ ¼ fai ð0Þ: ð4:54Þ

One can determine the analogue of (4.54) which corre-
sponds to a boundary root-TT̄ deformation by following
the procedure of Sec. III A. That is, we first write down
the most general expression for deformed quantities eai ðμÞ
and fai ðμÞ which depend on a dimensionless parameter μ,
preserve tracelessness for a conformal seed theory,
and commute with the TT̄-deformed boundary conditions
(4.54). We will not carry out these steps explicitly, since
they are identical to those of Sec. III A after changing from
metric variables to Chern-Simons variables. Instead we
simply quote the result, which for a CFT seed is

eai ðμÞ ¼ cosh

�
μ

2

�
eai ð0Þ þ

sinhðμ
2
Þ

Rð0Þ fai ð0Þ;

fai ðμÞ ¼ cosh

�
μ

2

�
fai ð0Þ þ sinh

�
μ

2

�
Rð0Þeai ð0Þ: ð4:55Þ

Here Rð0Þ is the usual root-TT̄ operator, which can be
expressed purely in Chern-Simons variables. Again, these
expressions will have some unusual numerical factors

8In [60] it was shown that the corresponding Chern-Simons
boundary action for TT̄-deformed boundary conditions also
matches the TT̄-deformed spacetime energy (4.17).
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introduced by (4.50). For instance, we can reproduce a
general stress tensor on a standard flat metric via

eia ¼
1ffiffiffi
2

p
�
0 1

1 0

�
i

a

; fia ¼
4πGffiffiffi

2
p

�
Tzz −Tzz̄

−Tzz̄ Tz̄ z̄

�
i

a

;

ð4:56Þ

and then the stress tensor with two curved indices is

Tij ¼ Tk
aeaj gki ¼

�
Tzz Tzz̄

Tzz̄ Tz̄ z̄

�
ij

; ð4:57Þ

and its trace is gijTij ¼ −2Tzz̄, while the invariant TijTij is

TijTij ¼ 2ðTzzTz̄ z̄ þ T2
zz̄Þ: ð4:58Þ

It is straightforward to covariantize these statements and
obtain expressions for Rð0Þ. For instance, in the case of a
conformal seed theory with a traceless stress tensor, we find

Rð0Þ ¼ 1

4πG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fai fbj ϵabϵij

q
: ð4:59Þ

In the general case where the undeformed stress tensor is
not traceless, we can define a traceless part of fai , which is
the analog of T̃αβ, as

f̃ai ¼ fai − 4πGeai ðebjTj
bÞ; ð4:60Þ

and then express the root-TT̄ operator as

Rð0Þ ¼ 1

4πG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f̃ai f̃bj ϵabϵij

q
: ð4:61Þ

One can then check that, after transforming from Chern-
Simons variables to metric variables, the deformed quan-
tities (4.55) reproduce the metric and stress tensor (4.54) in
the case of a conformal seed theory (or for a general seed, if
we replace fai with f̃ai ).
In particular, the deformed connections computed with

the eai ðμÞ in (4.55) agree with those in (4.41). One can see
this by expressing the fai in terms of L and L̄ and choosing
coordinates ðϕ; TÞ. Indeed it must have been the case that
these agree, since the coordinate transformation which was
used to obtain (4.41) is precisely the one that generates the
root-TT̄ deformed metric and stress tensor in the metric
formalism, and the deformed vielbein (4.55) reproduces
these quantities. Therefore the two methods are equivalent.

V. CONCLUSION AND OUTLOOK

In this paper, we have investigated several properties of
the root-TT̄ operator in holography. Among our main
results is the proposal (3.45) for the flow of the finite-
volume spectrum of a root-TT̄ deformed CFT. We have

explicitly verified that this flow equation matches the
deformed spacetime mass for a class of Bañados-type
AdS3 solutions subject to root-TT̄ deformed boundary
conditions. This represents the first calculation which
may shed light on quantum aspects of the root-TT̄
deformation. Although a quantum definition of the root-
TT̄ operator itself is still not known in the field theory, we
have sidestepped this issue by working in a large N limit
and performing a holographic calculation in the bulk dual.
Besides the question of a quantum definition of the root-

TT̄ operator, there remain many other avenues for future
research, two of which we outline below. We believe that a
better understanding of these issues will offer new insights
in nonanalytic root-TT̄-like (or ModMax-like) theories, and
we hope to return to some of these questions in future work.

A. Correlation functions

An immediate, and important, next step would be to study
correlation functions in a root-TT̄ deformed CFT2. Due to
the awkwardness of the square-root of an operator, calculat-
ing a root-TT̄ deformed correlation function in perturbation
theory seems difficult and ambiguous. However, because the
root-TT̄ operator exhibits some of the special properties of
the TT̄ operator, there might be hope that a perturbative
calculation is feasible. In particular, we have seen that
demanding commutativity of the TT̄ and root-TT̄ flows is
a powerful constraint which allowed us to uniquely fix the
deformed boundary conditions and flow equation for the
spectrum. One might conjecture that perturbative corrections
to correlation functions may also be fixed by imposing
commutativity of the following diagram:

To be more concrete, the TT̄-deformed two-point planar
stress tensor correlators take the following form from dimen-
sional analysis, translational and rotational symmetry [73,74]

hTzzðxÞTzzð0ÞiðλÞ ¼
1

z4
f1ðyÞ;

hTzzðxÞTzz̄ð0ÞiðλÞ ¼
1

z3z̄
f2ðyÞ;

hTzzðxÞTz̄ z̄ð0ÞiðλÞ ¼
1

z2z̄2
f3ðyÞ;

hTzz̄ðxÞTzz̄ð0ÞiðλÞ ¼
1

z2z̄2
f4ðyÞ; ð5:1Þ
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where y ¼ zz̄=λ and the functions fiðyÞ are fixed by stress tensor conservation ∂αTαβ ¼ 0 and the trace flow equation Tzz̄ ¼
−πλTT̄ giving Tzz̄ ¼ −πλTzzTz̄ z̄ þOðλ2Þ. Using the trace flow equation, we can easily determine f4ðyÞ at Oðλ2Þ:

hTzz̄ðxÞTzz̄ð0ÞiðλÞ ¼ hð−πλTzzðxÞTz̄ z̄ðxÞÞð−πλTzzð0ÞTz̄ z̄ð0ÞÞið0Þ þ � � �
¼ π2λ2hTzzðxÞTzzð0Þið0ÞhTz̄ z̄ðxÞTz̄ z̄ð0Þið0Þ þ � � �

¼ π2λ2c2

4z4z̄4
þ � � �

⇒ f4ðyÞ ¼
π2c2

4y2
þ � � � :

The correlators also obey ∂
αhTαβðxÞTρσð0ÞiðλÞ ¼ 0 which give three conservation equations:

β ¼ ρ ¼ σ ¼ z∶ ∂z̄hTzzðxÞTzzð0ÞiðλÞ þ ∂zhTz̄zðxÞTzzð0ÞiðλÞ ¼ ∂z̄

�
f1ðyÞ
z4

�
þ ∂z

�
f2ðyÞ
z3z̄

�
¼ 0;

β ¼ z̄; ρ ¼ σ ¼ z∶ ∂z̄hTzz̄ðxÞTzzð0ÞiðλÞ þ ∂zhTz̄ z̄ðxÞTzzð0ÞiðλÞ ¼ ∂z̄

�
f2ðyÞ
z3z̄

�
þ ∂z

�
f3ðyÞ
z2z̄2

�
¼ 0;

β ¼ z; ρ ¼ z; σ ¼ z̄∶ ∂z̄hTzz̄ðxÞTz̄zð0ÞiðλÞ þ ∂zhTz̄zðxÞTzz̄ð0ÞiðλÞ ¼ ∂z̄

�
f2ðyÞ
z3z̄

�
þ ∂z

�
f4ðyÞ
z2z̄2

�
¼ 0: ð5:2Þ

Since f4ðyÞ at Oðλ2Þ is known, we can determine the other
fiðyÞ from solving (5.2) with initial conditions that the seed
theory’s correlators are recovered when λ ¼ 0:

f1ðyÞ ¼
c
2
þ 5π2λ2c2

6z2z̄2
þ � � � ; f2ðyÞ ¼ −

π2λ2c2

3z2z̄2
þ � � � ;

f3ðyÞ ¼
π2λ2c2

4z2z̄2
þ � � � ; f4ðyÞ ¼

π2λ2c2

4z2z̄2
þ � � � : ð5:3Þ

For the root-TT̄ case, one should follow similar logic as in the
above TT̄ example:

hTzzðxÞTzzð0ÞiðμÞ ¼
1

z4
g1ðuÞ;

hTzzðxÞTzz̄ð0ÞiðμÞ ¼
1

z3z̄
g2ðuÞ;

hTzzðxÞTz̄ z̄ð0ÞiðμÞ ¼
1

z2z̄2
g3ðuÞ;

hTzz̄ðxÞTzz̄ð0ÞiðμÞ ¼
1

z2z̄2
g4ðuÞ; ð5:4Þ

where the giðuÞ obey the same stress tensor conservation
equations (5.2). It would be interesting to see whether one or
more of the giðuÞ can be fixed from demanding commuta-
tivity of the TT̄ and root-TT̄ flows. For example, perhaps
commutativitymay fix one of the giðuÞ and then conservation
of the stress tensor may fix the others. It would also be
interesting to understand this commutativity and correlators
in the context of quantum corrections, such as the two-loop

corrected TT̄-deformed planar stress tensor correlators
found in [74].

B. The fate of conformal symmetry

The root-TT̄ operator is classically marginal and thus
preserves conformal invariance at the classical level. It is an
important open question to determine the fate of conformal
symmetry in the quantum theory, assuming that a quantum
definition of the root-TT̄ operator exists. Quantum correc-
tions might make this operator marginally relevant or
marginally irrelevant, which would mean that conformal
invariance is broken at the quantum level.
One way to probe this question is to investigate the high-

energy density of states. In any two-dimensional CFT, the
degeneracy of states for large energy and high temperature
is described by the Cardy formula [75], which fixes the
asymptotic scaling to be

ρðE0Þ ∼ exp

�
2π

ffiffiffiffiffiffiffiffi
cE0

3

r �
; SðE0Þ ∼ 2π

ffiffiffiffiffiffiffiffi
cE0

3

r
: ð5:5Þ

Therefore, to investigate whether a root-TT̄ deformed CFT
remains a CFT, one might ask whether its high-energy
behavior agrees with (5.5). A sketch of an argument in
support of this claim might proceed as follows. First, since
the root-TT̄ deformed energy spectrum depends on both the

energy Eð0Þ
n and momentum Pn of the corresponding state

in the undeformed theory, we cannot immediately use the
naïve Cardy formula (5.5), which has already coarse-
grained over all states with an energy near En but with
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any momentum Pn. However, we may use a generalization
of the Cardy formula which accounts for the spin of a CFT
state [76,77]. In terms of left-moving and right-moving
energies, this formula reads

ρðEL; ERÞ ∼ exp

 
2π

ffiffiffiffiffiffiffiffi
cEL

6

r
þ 2π

ffiffiffiffiffiffiffiffi
cER

6

r !
: ð5:6Þ

One can express our deformed spectrum (3.46) in terms
of the left-moving and right-moving energies, such that
Eμ ¼ ðELÞμ þ ðERÞμ and Pμ¼ðELÞμ−ðERÞμ¼P0, which
satisfy

ffiffiffiffiffiffiffiffiffiffiffiffi
ðELÞ0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðELÞμ

q
cosh

�
μ

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
ðERÞμ

q
sinh

�
μ

2

�
;

ffiffiffiffiffiffiffiffiffiffiffiffi
ðERÞ0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðERÞμ

q
cosh

�
μ

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
ðELÞμ

q
sinh

�
μ

2

�
:

ð5:7Þ

The deformed density of states ρμðEL; ERÞ is then obtained
by expressing the density of states of the undeformed
theory in terms of the deformed left-moving and right-
moving energies. Up to a factor which is unimportant for
the leading exponential behavior, we find

ρμðEL; ERÞ ∼ exp

�
2π

ffiffiffiffiffiffiffiffi
cEL

6

r
e−μ=2 þ 2π

ffiffiffiffiffiffiffiffi
cER

6

r
e−μ=2

�
:

ð5:8Þ

It therefore appears that the high-energy density of
states for the deformed theory still has the (generalized)
Cardy behavior appropriate for a conformal field theory,
although with a new effective central charge ceff ¼ ce−μ.
In particular, this gives one hint that the root-TT̄ defor-
mation (if it indeed is well-defined quantum mechan-
ically) may actually be marginally relevant, since the
central charge appears to decrease along the flow for
positive μ.9

Although suggestive, there are some subtleties which
prevent this argument from being fully rigorous. One is that
we have not, strictly speaking, demonstrated that the root-
TT̄ flow equation holds for an arbitrary state in the
deformed theory. Our gravitational calculation only dem-
onstrates that this flow equation holds for holographic

states which are dual to Bañados-type geometries, and only
in the large N regime. A robust quantum definition of the
root-TT̄ operator might allow one to more carefully analyze
the high-energy behavior of the deformed theory and
determine whether it still exhibits Cardy behavior.
Another way of probing the fate of conformal invariance

is to investigate modular properties of the root-TT̄
deformed torus partition function. If one could show that
the deformed partition function remains modular invariant,
this would offer further evidence that the theory is
conformal. One strategy for doing this would be to
derive a differential equation that the deformed partition
function satisfies. In the case of the TT̄ deformation, it is
known [15,17] that the torus partition function obeys the
flow equation

∂λZλðτ; τ̄Þ ¼
�
τ2∂τ∂τ̄ þ

1

2

�
∂τ2 −

1

τ2

�
λ∂λ

�
Zλðτ; τ̄Þ; ð5:9Þ

and that Zλ is invariant under a modular transformation if
the TT̄ parameter λ also transforms. It appears that a root-
TT̄ deformed theory obeys an analogous flow equation,

∂
2
γZγðτ; τ̄Þ ¼ ðτ22ð∂τ∂τ̄Þ þ τ2∂τ2ÞZγðτ; τ̄Þ; ð5:10Þ

which suggests that the root-TT̄ deformed theory may be
modular invariant. The properties of the flow equation (5.10)
will be investigated in more detail elsewhere [78].
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APPENDIX: AdS3 GRAVITY WITH TT̄-
DEFORMED BOUNDARY CONDITIONS

In Sec. IV, we used several methods that have been
developed for studying AdS3 gravity with TT̄-deformed

9One can also see this by considering the behavior of the
spectrum (3.46) as μ → ∞. In this limit, it appears that all
negative-energy states in the undeformed theory approach zero
deformed energy, while all undeformed positive-energy states
have deformed energies which grow without bound. This
suggests that the large-μ root-TT̄ deformed theory becomes a
gapped system with only a finite number of states.

ROOT-TT̄ DEFORMED BOUNDARY … PHYS. REV. D 107, 126022 (2023)

126022-27



boundary conditions, both in the metric formalism [18] and
in the Chern-Simons formalism [60]. To make the present
work self-contained, we review some aspects of these
methods in this appendix, which are also useful for our
analysis of root-TT̄ deformed boundary conditions. We
refer the reader to the original works for further details, and
to the related work [72] for additional results in the Chern-
Simons formalism.

1. Metric formalism

We recall that the modified metric γðλÞαβ and stress

tensor TðλÞ
αβ corresponding to a boundary TT̄ deforma-

tion satisfy the equation (2.36) which was rederived in
the main text. By equating the coefficients of the
independent terms on both sides of this equation,
one arrives at a set of partial differential equations
for the deformed quantities. These differential equations
were first analyzed in [79], where it was shown that
they can be written as

∂γαβ
∂λ

¼ −2T̂αβ;
∂T̂αβ

∂λ
¼ −T̂αγT̂β

γ;
∂ðT̂αγT̂β

γÞ
∂λ

¼ 0:

ðA1Þ

Here we have omitted the (λ) superscripts on γðλÞαβ and

T̂ðλÞ
αβ ¼ TðλÞ

αβ − γðλÞαβ T
ðλÞρ

ρ.
The solutions of (A1) are (1.6). In terms of the

Fefferman-Graham quantities, the deformed boundary
metric and stress tensor are

γðλÞαβ ¼ gð0Þαβ −
2λ

8πGl
gð2Þαβ þ λ2

ð8πGlÞ2 g
ð2Þ
αρ g

ð2Þ
σβ γ

ð0Þρσ

¼ gð0Þαβ − λgð2Þαβ þ λ2gð4Þαβ ; ðA2Þ

and

T̂ðλÞ
αβ ¼ T̂ð0Þ

αβ − λT̂ð0Þ
αρ T̂

ð0Þ
σβ γ

ð0Þρσ

¼ 1

8πGl
gð2Þαβ −

λ

ð8πGlÞ2 g
ð2Þ
αρ g

ð2Þ
σβ g

ð0Þρσ

¼ 1

2

�
gð2Þαβ − 2λgð4Þαβ

�
; ðA3Þ

where we used (4.3) and work in conventions such that
4πGl ¼ 1. For the bad sign of the deformation param-
eter, these modified asymptotic boundary conditions
can be interpreted as Dirichlet boundary conditions at a

finite radial coordinate ρc ¼ − λ
4πGl.

10 Although we are
primarily interested in the good sign of the deformation,
it is convenient to express various quantities in terms of
ρc, although we note that for λ > 0 we have ρc < 0 and
in this context ρc cannot be interpreted as a physical
value of the coordinate ρ. Thus

γðλÞαβ ¼ gð0Þαβ þ ρcg
ð2Þ
αβ þ ρ2cg

ð4Þ
αβ ;

T̂ðλÞ
αβ ¼ 1

2

�
gð2Þαβ þ 2ρcg

ð4Þ
αβ

�
: ðA4Þ

Specializing to a Bañados geometry (4.7), the boundary
metric in Fefferman-Graham quantities is

γðλÞαβ dx
αdxβ ¼ dudvþ ρcðLðuÞdu2 þ L̄ðvÞdv2Þ

þ ρ2cLðuÞL̄ðvÞdudv: ðA5Þ

We express (A5) as

γðλÞαβ dx
αdxβ ¼ dUdV; ðA6Þ

where ðU;VÞ are the undeformed coordinates

dU ¼ duþ ρcL̄ðvÞdv; dV ¼ dvþ ρcLðuÞdu: ðA7Þ

In matrix form, we can define the state dependent
coordinate transformation in (A7) and its inverse as�
dU

dV

�
¼
�

1 ρcL̄ðvÞ
ρcLðuÞ 1

��
du

dv

�
;�

du

dv

�
¼ 1

1− ρ2cLðuÞL̄ðvÞ
�

1 −ρcL̄ðvÞ
−ρcLðuÞ 1

��
dU

dV

�
:

ðA8Þ

Using (A8), we can write the boundary metric gð0Þαβ in
the ðU;VÞ coordinates

gð0Þαβ dx
αdxβ ¼ dudv

¼ ðdU − ρcL̄ðvÞdVÞðdV − ρcLðuÞdUÞ
ð1 − ρ2cLðuÞL̄ðvÞÞ2

;

ðA9Þ

10One can see by straightforward algebra that the asymptotic
conditions (A2) are equivalent to fixing the induced metric to be
gð0Þαβ at this value of ρc if λ < 0. Another way to determine the
relation between the bulk cutoff ρc and the TT̄ coupling λ is using
the trace flow equation Tα

α ∝ λ detTαβ [64,65,73].
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as well as the other Fefferman-Graham quantities:

gð2Þαβ dx
αdxβ ¼ LðuÞdu2 þ L̄ðvÞdv2

¼ LðuÞ
�

dU − ρcL̄ðvÞ
1 − ρ2cLðuÞL̄ðvÞ

�
2

þ L̄ðvÞ
�

dV − ρcLðvÞ
1 − ρ2cLðuÞL̄ðvÞ

�
2

¼ ð1þ ρ2cLðuÞL̄ðvÞÞðLðuÞdU2 þ L̄dV2Þ − 4ρcLðuÞL̄ðvÞdUdV

ð1 − ρ2cLL̄ðvÞÞ2
; ðA10Þ

and

gð4Þαβ dx
αdxβ

¼ LðuÞL̄ðvÞdudv

¼ LðuÞL̄ðvÞ ðdU − ρcL̄ðvÞdVÞðdV − ρcLðuÞdUÞ
ð1 − ρ2cLðuÞL̄ðvÞÞ2

:

ðA11Þ

Proving (A11) is straightforward:

gð4Þαβ ¼ 1

4
gð2Þαρ g

ð2Þ
σβ g

ð0Þρσ

¼ 1

4

�
LðuÞ 0

0 L̄ðvÞ

��
0 2

2 0

��
LðuÞ 0

0 L̄ðvÞ

�
¼ LðuÞL̄ðvÞgð0Þαβ : ðA12Þ

Substituting the expressions for gð2Þαβ and gð4Þαβ in (A10)
and (A11) into the result (A4) for the trace-reversed

deformed stress tensor T̂ðλÞ
αβ , we find that

T̂ðλÞ
αβ dx

αdxβ

¼1

2
ðgð2Þαβ þ2ρcg

ð4Þ
αβ Þdxαdxβ

¼LðuÞdU2þ L̄ðvÞdV2−2ρcLðuÞL̄ðvÞdUdV

2ð1−ρ2cLðuÞL̄ðvÞÞ
; ðA13Þ

and trace-reversing to obtain the deformed stress tensor
in the ðU;VÞ coordinates yields

TðλÞ
αβ dx

αdxβ ¼LðuÞdU2þ L̄ðvÞdV2þ 2ρcLðuÞL̄ðvÞdUdV

2ð1− ρ2cLðuÞL̄ðvÞÞ
:

ðA14Þ

It is straightforward to show that (A14) obeys the TT̄
trace flow equation and is conserved

∂VT
ðλÞ
UU þ ∂UT

ðλÞ
VU ¼ ∂VT

ðλÞ
UV þ ∂UT

ðλÞ
VV ¼ 0: ðA15Þ

From this Fefferman-Graham analysis, we have there-
fore determined the deformed black hole solutions for
constant ðLðuÞ; L̄ðvÞÞ≡ ðLλ; L̄λÞ. In terms of the tem-
poral and angular coordinates ϕ and T, (A14) becomes

TðλÞ
αβ dx

αdxβ ¼ ðLλ þ L̄λ − 2ρcLλL̄λÞdT2 þ ðLλ þ L̄λ þ 2ρcLλL̄λÞdϕ2 þ 2ðLλ − L̄λÞdϕdT
2ð1 − ρ2cLλL̄λÞ

; ðA16Þ

where ðU;VÞ ¼ ðϕþ T;ϕ − TÞ. Therefore, in the ðT;ϕÞ
coordinates and restoring factors of 4πGl, we find that
the deformed energy and angular momentum are

Eλ ¼
Z

R

0

dϕTðλÞ
TT ¼ RðLλ þ L̄λ − 2ρcLλL̄λÞ

8πGlð1 − ρ2cLλL̄λÞ
;

Jλ ¼
Z

R

0

dϕTðλÞ
Tϕ ¼ RðLλ − L̄λÞ

8πGlð1 − ρ2cLλL̄λÞ
: ðA17Þ

The functions ðLλ; L̄λÞ are fixed in terms of ðL0; L̄0Þ by
equating the undeformed and deformed angular
momenta and event horizon areas [18]. This is possible

because the TT̄ flow preserves the boundary theory’s
degeneracy of states, which implies that the horizon
area of the black hole is unchanged by the deformation.
The angular momentum is holographically dual to the
momentum Pn of the state in the field theory, which is
quantized in units of 1

R and thus cannot flow with the
deformation parameter because λ is continuous. In fact,
we expect that these two assumptions should hold
for any stress tensor deformation of the boundary
field theory (including root-TT̄), since any flow equa-
tion for the spectrum which is driven by a function
of only energies and momenta will also preserve
degeneracies.
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We have already determined the angular momentum, so we now consider the horizon areas. The undeformed event
horizon in the Fefferman-Graham gauge is at

ρh ¼
1ffiffiffiffiffiffiffiffiffiffiffi
L0L̄0

p ; ðA18Þ

and (4.7) evaluated at (A18) is

ds2
			
ρh¼ðL0L̄0Þ−

1
2
¼ l2L0L̄0

4
dρ2 þ

� ffiffiffiffiffiffi
L0

p
−

ffiffiffiffiffiffi
L̄0

q �
2

dT2 þ
� ffiffiffiffiffiffi

L0

p
þ

ffiffiffiffiffiffi
L̄0

q �
2

dϕ2 þ 2ðL0 − L̄0ÞdTdϕ: ðA19Þ

For the deformed black hole metric, substituting (A9)–(A11) into (4.7) evaluated at the event horizon

ρh ¼
1ffiffiffiffiffiffiffiffiffiffiffi
LλL̄λ

p ; ðA20Þ

we obtain

ds2
			
ρh¼ðLλL̄λÞ−

1
2
¼ l2LλL̄λ

4
dρ2 þ

� ffiffiffiffiffiffi
Lλ

p
−

ffiffiffiffiffiffi
L̄λ

p �
2
dT2 þ

� ffiffiffiffiffiffi
Lλ

p þ
ffiffiffiffiffiffi
L̄λ

p �
2
dϕ2 þ 2ðLλ − L̄λÞdϕdT�

1þ ρc
ffiffiffiffiffiffiffiffiffiffiffi
LλL̄λ

p �
2

; ðA21Þ

which has event horizon area

AðλÞ ¼
Z

R

0

dϕ
ffiffiffiffiffiffiffi
gϕϕ

p 			
ρh¼ðLλL̄λÞ−

1
2
¼ R

ffiffiffiffiffiffi
Lλ

p þ
ffiffiffiffiffiffi
L̄λ

p
1þ ρc

ffiffiffiffiffiffiffiffiffiffiffi
LλL̄λ

p : ðA22Þ

Equating the undeformed and deformed event horizon areas and angular momenta, we arrive at the constraints for ðLλ; L̄λÞ,

ffiffiffiffiffiffi
L0

p
þ

ffiffiffiffiffiffi
L̄0

q
¼

ffiffiffiffiffiffi
Lλ

p þ
ffiffiffiffiffiffi
L̄λ

p
1þ ρc

ffiffiffiffiffiffiffiffiffiffiffi
LλL̄λ

p ; L0 − L̄0 ¼
Lλ − L̄λ

1 − ρ2cLλL̄λ

: ðA23Þ

The solution to (A23) is

Lλ ¼
−ð1þ ρcðL0 − L̄0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2cðL0 − L̄0Þ2 − 2ρcðL0 þ L̄0Þ þ 1

q
þ ρ2cðL0 − L̄0Þ2 − 2ρcL̄0 þ 1

2ρ2cL0

;

L̄λ ¼
−ð1 − ρcðL0 − L̄0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2cðL0 − L̄0Þ2 − 2ρcðL0 þ L̄0Þ þ 1

q
þ ρ2cðL0 − L̄0Þ2 − 2ρcL0 þ 1

2ρ2cL̄0

: ðA24Þ

Substituting (A24) into the energy equation (A17), we arrive
at the well-established TT̄-deformed energy expressed in
terms of the field theory energy E0 and momentum P0,

Eλ ¼
R

8πGlρc

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ρcðL0 þ L̄0Þ þ ρ2cðL0 − L̄0Þ2

q �
¼ R

2λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λE0

R
þ 4λ2P2

0

R2

r
− 1

�
; ðA25Þ

where the undeformed energy E0, angular momentum J0
(which corresponds to the momentum P0 in the CFT), and
deformation parameter with units restored are

E0 ¼
R

8πGl
ðL0 þ L̄0Þ; J0 ¼

R
8πGl

ðL0 − L̄0Þ ¼ P0;

λ ¼ −4πGlρc: ðA26Þ
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2. Chern-Simons formalism

To obtain the TT̄-deformed Chern-Simons connections, we use the coordinate transformation in (A8) to obtain

AðρcÞ ¼ −
1

2ρ
L0dρþ

1

l

�
−
ffiffiffi
ρ

p
LλL−1 þ

1ffiffiffi
ρ

p L1

��
dU − ρcL̄λdV

1 − ρ2cLλL̄λ

�
;

ĀðρcÞ ¼
1

2ρ
L0dρþ

1

l

�
1ffiffiffi
ρ

p L−1 −
ffiffiffi
ρ

p
L̄λL1

��
dV − ρcLλdU

1 − ρ2cLλL̄λ

�
: ðA27Þ

We can see that the deformed gauge fields obey a mixed
boundary condition

ρcL̄λAUðρcÞ þ AVðρcÞ ¼ 0;

ĀUðρcÞ þ ρcLλĀVðρcÞ ¼ 0: ðA28Þ

To convert the connections from the ðU;VÞ coordinates to
the ðT;ϕÞ coordinates, we recall that

A ¼ Aαdxα

¼ AUdU þ AVdV

¼ ðAU þ AVÞdϕþ ðAU − AVÞdT; ðA29Þ

yielding

Aϕ ¼ AU þ AV; AT ¼ AU − AV;

Āϕ ¼ ĀU þ ĀV; ĀT ¼ ĀU − ĀV: ðA30Þ

Hence

AϕðρcÞ ¼
1

l
1 − ρcL̄λ

1 − ρ2cLλL̄λ

�
−
ffiffiffi
ρ

p
LλL−1 þ

1ffiffiffi
ρ

p L1

�
;

ATðρcÞ ¼
1þ ρcL̄λ

1 − ρcL̄λ

AϕðρcÞ; ðA31Þ

and

ĀϕðρcÞ ¼
1

l
1 − ρcLλ

1 − ρ2cLλL̄λ

�
1ffiffiffi
ρ

p L−1 −
ffiffiffi
ρ

p
L̄λL1

�
;

ĀTðρcÞ ¼ −
1þ ρcLλ

1 − ρcLλ
ĀϕðρcÞ: ðA32Þ

The boundary connections obey a similar relation as the
bulk connections

aϕðρcÞ ¼
1

l
1 − ρcL̄λ

1 − ρ2cLλL̄λ

ð−LλL−1 þ L1Þ;

aTðρcÞ ¼
1þ ρcL̄λ

1 − ρcL̄λ

aϕðρcÞ; ðA33Þ

and

āϕðρcÞ ¼
1

l
1 − ρcLλ

1 − ρ2cLλL̄λ

ðL−1 − L̄λL1Þ;

āTðρcÞ ¼ −
1þ ρcLλ

1 − ρcLλ
āϕðρcÞ: ðA34Þ

Wemay also study the black hole entropy and horizon areas
using these deformed connections in the same way as we
did in the root-TT̄ deformed case around Eq. (4.43). The
analogs of the matrices λϕ and λ̄ϕ in Eq. (4.44), which are
simply the diagonalized versions of aϕ and āϕ, for the
TT̄-deformed connections (A34), are

λϕ ¼ 1

l

0BB@
ð1−ρcL̄λÞ

ffiffiffiffi
Lλ

p
1−ρ2cLλL̄λ

0

0 − ð1−ρcL̄λÞ
ffiffiffiffi
Lλ

p
1−ρ2cLλL̄λ

1CCA;

λ̄ϕ ¼ 1

l

0BB@− ð1−ρcLλÞ
ffiffiffiffi
L̄λ

p
1−ρ2cLλL̄λ

0

0
ð1−ρcLλÞ

ffiffiffiffi
L̄λ

p
1−ρ2cLλL̄λ

1CCA: ðA35Þ

Using the equation S ¼ CTrððλϕ − λ̄ϕÞL0Þ for the entropy,
which we quoted in (4.43), we find an expression for the
deformed entropy SðλÞ:

SðλÞ ¼ C
l

 ffiffiffiffiffiffi
Lλ

p þ
ffiffiffiffiffiffi
L̄λ

p
1þ ρc

ffiffiffiffiffiffiffiffiffiffiffi
LλL̄λ

p !
: ðA36Þ

Setting (A36) equal to the undeformed entropy

Sð0Þ ¼ C
l

� ffiffiffiffiffiffi
L0

p
þ

ffiffiffiffiffiffi
L̄0

q �
; ðA37Þ

then reproduces the area equation (A23).
Following [60], we can now read off the variation

of the boundary action which is compatible with the
relations (A33) and (A34) for the deformed boundary
connections:
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δS¼−
l

8πG

Z
∂M

dTdϕ

�
Tr

��
aTðρcÞ−

1þρcL̄λ

1−ρcL̄λ

aϕðρcÞ
�
δaϕðρcÞ

�
−Tr

��
āTðρcÞþ

1þρcLλ

1−ρcLλ
āϕðρcÞ

�
δāϕðρcÞ

��
: ðA38Þ

We see that, when the constraints (A33) and (A34) are satisfied, the variation (A38) collapses to δSbdry ¼ 0. This
guarantees a well-defined variational principle.
To determine this boundary action in terms of Lλ, L̄λ, and ρc, we must first evaluate the variations of the boundary

connections. The variations of (A33) and (A34) are

δaϕðρcÞ ¼
ð1 − ρcL̄λÞðL−1 − ρ2cL̄λL1ÞδLλ − ρcðLμL−1 − L1Þð1 − ρcLλÞδL̄λ

lð1 − ρ2cLλL̄λÞ2
;

δāϕðρcÞ ¼
−ρcðL−1 − L̄μL1Þð1 − ρcL̄λÞδLλ − ðρ2cLμL−1 − L1Þð1 − ρcLλÞδL̄λ

lð1 − ρ2cLλL̄λÞ2
: ðA39Þ

The variation of the boundary piece is

δSbdry ¼
l

8πG

Z
∂M

dTdϕ

�
1þ ρcL̄λ

1 − ρcL̄λ

TrðaϕðρcÞδaϕðρcÞÞ þ
1þ ρcLλ

1 − ρcLλ
TrðāϕðρcÞδāϕðρcÞÞ

�
; ðA40Þ

and using (A39), the traces evaluate to

TrðaϕðρcÞδaϕðρcÞÞ ¼
ð1 − ρcL̄λÞ2ð1þ ρ2cLλL̄λÞδLλ − 2ρcLλð1 − ρcLλÞð1 − ρcL̄λÞδL̄λ

l2ð1 − ρ2cLλL̄λÞ3
;

TrðāϕðρcÞδāϕðρcÞÞ ¼
−2ρcL̄λð1 − ρcLλÞð1 − ρcL̄λÞδLλ þ ð1 − ρcLλÞ2ð1þ ρ2cLλL̄λÞδL̄λ

l2ð1 − ρ2cLλL̄λÞ3
: ðA41Þ

Substituting (A41) into (A40), the varied boundary action in terms of δLλ and δL̄λ is

δSbdry ¼
1

8πGl

Z
∂M

dTdϕ

��
1 − ρcL̄λ

1 − ρ2cLλL̄λ

�
2

δLλ þ
�

1 − ρcLλ

1 − ρ2cLλL̄λ

�
2

δL̄λ

�
; ðA42Þ

from which Sbdry can be read off as

Sbdry ¼
1

8πGl

Z
∂M

dTdϕ
Lλ þ L̄λ − 2ρcLλL̄λ

1 − ρ2cLλL̄λ

: ðA43Þ

After integration over ϕ in (A43), we find that

Sbdry ¼
Z

dT
RðLλ þ L̄λ − 2ρcLλL̄λÞ
8πGlð1 − ρ2cLλL̄λÞ

¼
Z

dTEλ; ðA44Þ

where we have used the expression for Eλ in (A17).
Therefore the boundary Lagrangian density in the

Chern-Simons formalism agrees with the deformed
mass (or energy) of the bulk spacetime as computed in
the metric formalism.
We emphasize again that it was not clear a priori that the

boundary Chern-Simons action would necessarily repro-
duce the mass of the deformed spacetime. Although this is
true in the undeformed theory, after adding a boundary
deformation which implements mixed boundary conditions
in the bulk, one would need to compute the Hamiltonian in
order to argue that the Chern-Simons boundary action will
agree with the deformed spacetime mass in general.
However, in this case, we have seen by explicit compu-
tation that the two agree, at least for the class of Bañados-
type solutions we are considering.
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