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Abstract: This article provides a comprehensive analysis of the impact of the increasing number
of measurements and the possible increase in the number of faults in multi-constellation Global
Navigation Satellite System (GNSS) Receiver Autonomous Integrity Monitoring (RAIM). Residual-
based fault detection and integrity monitoring techniques are ubiquitous in linear over-determined
sensing systems. An important application is RAIM, as used in multi-constellation GNSS-based
positioning. This is a field in which the number of measurements, m, available per epoch is rapidly
increasing due to new satellite systems and modernization. Spoofing, multipath, and non-line of sight
signals could potentially affect a large number of these signals. This article fully characterizes the
impact of measurement faults on the estimation (i.e., position) error, the residual, and their ratio (i.e.,
the failure mode slope) by analyzing the range space of the measurement matrix and its orthogonal
complement. For any fault scenario affecting h measurements, the eigenvalue problem that defines
the worst-case fault is expressed and analyzed in terms of these orthogonal subspaces, which enables
further analysis. For h > (m− n), where n is the number of estimated variables, it is known that
there always exist faults that are undetectable from the residual vector, yielding an infinite value for
the failure mode slope. This article uses the range space and its complement to explain: (1) why, for
fixed h and n, the failure mode slope decreases with m; (2) why, for a fixed n and m, the failure mode
slope increases toward infinity as h increases; (3) why a failure mode slope can become infinite for
h ≤ (m− n). A set of examples demonstrate the results of the paper.

Keywords: navigation; fault detection; RAIM; GNSS

1. Introduction

Multi-constellation Global Navigation Satellite Systems (GNSSs) have reached a matu-
rity level where they are routinely relied upon as critical positioning systems that require a
high degree of integrity [1,2]. The integrity of a positioning system is a measure of how
much trust can be allocated to the correctness of the position solution [3]. This measure
includes the ability of that system to be monitored (by itself or otherwise) and to provide
timely warnings to the user when the system should not be used for positioning. Integrity
monitoring, thus, requires the system to detect faulty measurements before they cause
out-of-specification performance [4].

Receiver Autonomous Integrity Monitoring (RAIM) is one well-established method of
ensuring the consistency of the positioning solution and assessing the integrity risk posed
by available measurements [4–6]. Integrity risk is defined as the probability of undetected
faults causing unacceptably large positioning errors [7]. Current implementations of
residual-based RAIM (RB RAIM) are designed to detect faulty measurements and to
evaluate the safety risk posed by possibly undetected faults (see Section 23.7 in [8]).

Integrity monitoring is applicable to a wide array of sensors that provide redundant
measurements. Early approaches to RAIM emphasized its use to supplement various
modes of aerospace navigation [9–11] or the ability of RAIM to enhance satellite-based
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augmentation services [12], such as the Wide Area Augmentation System (WAAS) [13]. The
research in [13,14] proposed an implementation of weighted RAIM to compute Vertical
Protection Levels (VPLs) for precision approach and landing supported by information
from WAAS. Notable is that all the above methods assumed only single-measurement
faults. This was justified by the assumption that measurement faults were caused by
partial or complete satellite failure and that the likelihood of more than one satellite failing
simultaneously is small.

Multi-measurement fault scenarios can be computationally challenging. In a scenario
where the total number of measurements is denoted by m and the number of faulty
measurements is denoted by h, the number of combinations of sensor faults that must be
considered is (m

h ), which grows rapidly with both m and h.
The growing availability of multiple GNSS constellations with multi-frequency mea-

surements available per system means that the number of measurements available per
epoch is rapidly increasing; therefore, m entering the 50–100 range is not unreasonable
even in low-cost receivers [15–18].

In emerging applications, such as urban automotive navigation, healthy satellites
could have faulty measurements (i.e., out-of-specification range errors) due to non-line-
of-sight signals [19,20], strong multipath [21,22], ionospheric effects [23–25], and other
environmental factors [26]. In low-latitude regions, ionospheric scintillation can be more
pronounced [27], and persistent satellite oscillator anomalies resembling ionospheric scin-
tillation have been recently reported to affect multiple GPS satellites [28,29]. Spoofing
is an important threat to GNSS, which is achieved by simultaneously altering all satel-
lite measurements in a targeted region [30–33]. These examples demonstrate that multi-
measurement faults (i.e., h� 1) are a reasonable possibility that cannot be ignored.

In such multi-fault hypotheses, the fault direction is unknown; therefore, an upper
bound on the integrity risk is derived for the worst-case fault direction in each h-fault
scenario, using the worst-case failure mode slope [7,34]. This slope is defined as the
largest ratio of the fault-induced estimation error to the fault-induced residual [34]. The
failure mode slope is infinite when a fault is undetectable from the residual vector. For
example, when the fault is in the range space of the measurement matrix, it is undetectable
and the failure mode slope is infinite (see p. 110 in [10]). Such a fault can always be
found when h > (m− n), where n is the dimension of the vector that is being estimated.
Single (i.e., h = 1) and double measurement (i.e., h = 2) fault scenarios are considered in,
e.g., refs. [13,34], respectively. Multi-measurement fault scenarios (1 ≤ h) are considered
in [7,35], where the worst-case fault vector was determined by solving an eigenvalue
problem. The worst-case slope is the maximum eigenvalue and the worst-case fault
direction corresponds to its eigenvector. The analysis of [7] considers only one component
of the state vector, which would be important in applications such as the vertical error in
precision aircraft landing.

However, in other applications, such as land and sea navigation, there is interest in
how multiple faults affect vector quantities, i.e., the horizontal position [36,37].

This paper studies how the RB RAIM failure mode slope changes as a function of the
number of measurements, m, and the number of faulty measurements, h. The analysis uses
the SVD as a tool: (1) to explicitly characterize the fault-induced estimation error and the
fault-induced residual; (2) to find and characterize the linear space of faults that affect the
residual, but not the estimate; (3) to find and characterize the linear space of (undetectable)
faults that affect the estimate, but not the residual; and (4) to provide an analytic expression
for the worst-case fault direction for all 1 ≤ h ≤ m. In addition, the expression that results
from the SVD approach provides additional physical insight into the solution. In the case
where h > (m− n), this article provides an orthogonal basis for the (m− n) dimensional
linear space of faults that have infinite failure mode slope and are, hence, undetectable by
residual-based detectors. Finally, this paper shows that, even in the case that h ≤ (m− n),
it is possible to have an infinite failure mode slope and provides analytic expressions that
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determine when this is the case. The examples in Section 10.4 demonstrate the main points
of the article, including an example of undetectable faults when h = m− n.

This paper is organized as follows: Section 2 introduces the measurement model,
including assumptions and models of the noise and fault. Section 3 defines the notation
and symbols adopted. Section 4 uses the SVD decomposition of the measurement matrix to
analyze the effects of noise and faults on the estimation error and residual. Section 5 reviews
concepts related to integrity risk, while Section 6 reviews the concept of the failure mode
slope. Section 7 presents new results on the best and worst-case fault direction vectors
for general fault scenarios, showing them to be intrinsically related to certain singular
vectors of the measurement matrix. An analytical expression for the upper bound on the
estimation error is also provided. Section 8 analyzes worst-case fault modes for different
fault scenarios, beginning with single-measurement faults, then double-measurement faults,
and, ultimately, multi-measurement faults. Section 9 discusses the generalization of the
approach when only subspaces of the estimated state are of interest. Section 10 presents
and discusses GNSS examples demonstrating the results herein. Section 11 provides
concluding remarks.

2. Problem Formulation

Consider the following over-determined linear measurement model, which applies to
multi-constellation GNSS:

y = H x + η+ f, (1)

where y ∈ Rm×1 is the measurement vector; H ∈ Rm×n is the measurement matrix, with
m > n and rank(H) = n; x ∈ Rn is a vector to be estimated; η ∈ Rm is measurement noise
that is assumed to be Gaussian with η ∼ N (0, Cη), where Cη = σ2

η I; and f ∈ Rm is the
fault (sometimes also referred to as the bias or failure). The fault f is defined as:

f , µ~f, (2)

where µ ∈ R is the magnitude of the fault, and the unit vector~f is the fault direction. In the
absence of a fault, µ = 0.

This papers investigates the impact of f on the estimation error and the fault detector,
within the context of evaluating Hazardously Misleading Information (HMI). This paper
uses the term fault scenario to mean a combination of faults affecting h measurements
(i.e., the vector~f has h non-zero components). The failure mode is defined to be a specific
combination of measurements within a fault scenario. Note that there are Mh = (m

h )
different failure modes within each fault scenario. For each failure mode, one of the goals
of this paper is to explicitly define the worst-case fault direction and its failure-mode slope.

In many applications, the analyst is only interested in a rotated subvector of x. Such
situations are easily addressed within the context of this article by defining z = M x and
applying the methods herein to the vector z instead of x. In this context, M combines a
rotation and projection matrix. For example, in an automotive application, the horizontal
position error is usually of primary interest. Assume that GNSS provides an estimate
of x = [x, y, z, b]> ∈ R4, where x, y, z are the position coordinates in an Earth-Centered
Earth-Fixed (ECEF) reference frame, and b is the receiver clock bias. Then, M ∈ R2×4 can
be defined as:

M ,
[
I2×2 02×2

] T
ER , (3)

where T
ER ∈ R4×4 is a rotation matrix from ECEF to tangent plane [38]. This definition

of M transforms x from ECEF to tangent plane and only retains the horizontal position
components, removing the vertical position and the clock bias components.

In the analysis that follows, the derivations will be performed on the general case,
estimating the full estimation vector x. Later in the paper, the horizontal position special
case will be considered.
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3. Notation

Different equality symbols will be used to distinguish between definitions, computa-
tions, and theoretical models used for analysis. The symbol ‘,’ indicates a definition of a
specific model or quantity. The symbol ‘ .

=’ indicates that the quantity on the left-hand side
can computed from the quantities on the right-hand side. The symbol ‘=’ indicates that an
equation is a theoretical model, not a definition or a computation used in implementations.
Such models are used for analysis and physical interpretation of quantities.

The analysis of this article will use the singular value decomposition (SVD). The SVD
of a matrix H ∈ Rm×n is

H , [U1, U2]

[
Σ

0

]
V>, (4)

where U = [U1, U2] ∈ Rm×m is a unitary matrix with two orthogonal submatrices
U1 = [u1

1, · · · , un
1 ] ∈ Rm×n and U2 = [u1

2, · · · , um−n
2 ] ∈ Rm×(m−n); Σ ∈ Rn×n is positive

definite and diagonal, where the diagonal elements α1 ≥ α2 ≥ . . . ≥ αn > 0 are the singular
values of H; and V ∈ Rn×n is unitary. These matrices have interpretations that are useful
for the analysis: V is an orthonormal basis for the domain of H; U1 is an orthonormal basis
for the n dimensional linear space that is the range of H; and U2 is an orthonormal basis for
the (m− n) dimensional linear space that is orthogonal to the range of H.

The term eigenvalue problem will refer to the constrained quadratic optimization prob-
lem of the form:

x∗ = arg max
‖x‖2=1

x>A x = arg max
x 6=0

x>A x
x>x

, (5)

where A ∈ Rn×n is a real symmetric matrix. The solution x∗ ∈ Rn is the eigenvector
corresponding to the largest eigenvalue of A [39]. That eigenvalue is max‖x‖2=1 x>A x.

When necessary, the actual and estimated values of a quantity are distinguished by x
and x̂, respectively. Vectors and matrices are written in boldface, with vectors in lowercase
and matrices in uppercase. For example, v ∈ Rn is an n-element vector and V ∈ Rn×n is
an n× n matrix. Positive definiteness (i.e., v>V v > 0, ∀v 6= 0) and semi-definiteness (i.e.,
v>V v ≥ 0, ∀v 6= 0) of a matrix is indicated by V � 0 and V � 0, respectively. The matrix
In×n = In ∈ Rn×n is the n× n identity matrix. The symbol~v indicates the unit vector in the
direction of vector v. The vector ei is the i-th column of I, which is the i-th standard basis
vector of Rn, where i ≤ n. Throughout the article, tr(·) is the trace operator and ‖·‖ is the
L2 norm. For random vector ζ, its mean squared value will be denoted as ‖ζ‖2

M =E〈ζ>ζ〉.
Other notations will be defined when used.

4. Analysis of the Estimation Error and Residual

For measurements described by Equation (1), the minimum-variance unbiased (MVU)
estimate of x is computed as [40]:

x̂ .
= (H>C−1

η H)−1H>C−1
η y (6)

.
= H∗ y , (7)

where H∗ , (H>C−1
η H)−1H>C−1

η . In the special case where Cη = σ2
η I, this simplifies to

H∗ , (H>H)−1H>. This special case is the main focus of this article.
The analyses that follow use the SVD of H to analyze the impact of faults on the

estimation of x̂. Substituting Equation (4) into the definition of H∗ in Equation (7) yields
H∗ = V Σ−1 U>1 , so that Equation (7) becomes:

x̂ .
= V Σ−1 U>1 y. (8)

Equation (8) is derived in Equation (S5) of Section S1 in the Supplementary Materials [41].
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4.1. Effects of Noise and Faults on the Estimate

To analyze the effect of the measurement noise η and fault f, substitute (1) into (7):

x̂ = ((H>H)−1H>)(H x + η+ f)

= (H>H)−1H>H x + (H>H)−1H>(η+ f)

= x + H∗(η+ f). (9)

The estimate x̂ is a Gaussian random variable with

E〈x̂〉 = x + H∗ f and Cx = COV(x̂) = σ2
η (H

>H)−1 = σ2
η V Σ−2 V>.

The estimation error defined as δx = x̂− x relates to the noise and fault vector as:

δx = H∗(η+ f) = V Σ−1 U>1 η+ V Σ−1 U>1 f (10)

= δxη + δxf.

with noise-induced error δxη , V Σ−1 U>1 η and fault-induced bias δxf , V Σ−1 U>1 f. The
expected value and covariance of the estimation error are:

E〈δx〉 = H∗ E〈η+ f〉 = δxf and (11)

COV(δx) = σ2
η V Σ−2 V>. (12)

The fault induces an unknown bias δxf on the estimate but does not affect its covari-
ance, which remains Cx. The estimation error distribution is Gaussian:

δx ∼ N (δxf, Cx). (13)

Section S2 of the Supplementary Materials [41] shows that the mean-squared-error (MSE)
of the estimate is:

‖δx‖2
M , E

〈
(δx)>(δx)

〉
= ‖δxf‖2 + κ1, (14)

where

‖δxf‖2 = ‖Σ−1U>1 f‖2 and κ1 , tr(Cx). (15)

Equation (14) shows that the fault and noise have independent effects on the norm of
the estimation error.

The first term allows the evaluation of the effect of specific faults on the estimate, given
any specific instances of the measurement matrix H and fault vector f. This will allow the
analyst to find bounds on the estimation error under different fault scenarios.

It is convenient to rewrite the fault f using the orthogonal basis of Rm defined by the
columns of U:

f =
n

∑
k=1

ak uk
1 +

m−n

∑
`=1

b` u`
2 = U1 a + U2 b =

[
U1 U2

][a
b

]
, (16)

where a ∈ Rn and b ∈ R(m−n) are coefficient vectors. Specifically,[
a b

]>
=
[
U1 U2

]>f. (17)
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Substituting the orthogonal decomposition of (16) into (10) yields:

δx =
(

V Σ−1U>1
)([

U1 U2
][a

b

]
+ η

)
= V Σ−1U>1 U1 a + V Σ−1U>1 U2 b + δxη

= V Σ−1a + δxη . (18)

Equation (18) shows that δxf , V Σ−1 U>1 f = V Σ−1a, which has the following interpretation.

Fact 1. Any portion of a fault f that is within the span of the (m− n) dimensional linear space
defined by the columns of U2 has no effect on the estimate. 4

4.2. Effects of Noise and Faults on the Measurement Residual

The measurement residual is

r .
= y− ŷ = (I− P) y, (19)

where ŷ .
= H x̂ .

= P y with P , H H∗ = U1U>1 ∈ Rm×m. The matrix P is the projection
matrix onto the range space of H. It is symmetric, positive semi-definite, and idempotent
with rank(P) = n. See Lemma S1 of Section S1 in the Supplementary Materials [41].

The effect of noise η and fault f on the measurement residual is analyzed by substitut-
ing (1) into (19):

r = (I− P)(H x + η+ f) = (I− P)(η+ f)

= Q η+ Q f. (20)

Equation (20) shows that r = rf + rη where the fault-induced residual is rf = Q f and
the noise-induced residual is rη = Q η. The matrix Q , (I − P) = U2U>2 ∈ Rm×m is
the projection matrix onto the complement of the range space of H. Therefore, Q P =
P Q = 0 and Q H = 0. The properties of Q are discussed in Lemma S2 of Section S1 of the
Supplementary Materials [41]. It is a symmetric, positive semi-definite, and idempotent
matrix with rank(Q) = (m− n). Substituting Equation (16) into (20) yields

r = Q η+ Q U2 b

= Q η+ U2 b. (21)

Equations (20) and (21) have the following interpretation.

Fact 2. Any portion of a fault f that is within the span of the n dimensional linear space defined by
the columns of U1 has no effect on the residual. 4

The expected value and covariance of r are:

E〈r〉 = Q f = U2 U>2 f and Cr
.
= σ2

η Q = σ2
η U2 U>2 . (22)

The covariance matrix Cr is only positive semi-definite, so not invertible [42]. The distribu-
tion of r is Gaussian:

r ∼ N (Q f, Cr). (23)

Section S3 of the Supplementary Materials [41] shows that the MSE of the residual is:

‖r‖2
M = ‖rf‖2 + κ2, (24)

where

‖rf‖2 = ‖U>2 f‖2 and κ2 , ‖rη‖2
M = (m− n) σ2

η = tr(Cr). (25)
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The residual MSE defined in (24) is the sum of a fault-dependent component, ‖rf‖2, and a
noise-dependent component, ‖rη‖2

M.

4.3. Fault Decisions

The residual-based test statistic is

Tr
.
= r>r = ‖r>r‖2, (26)

with faults declared when Tr ≥ T∗. (Alternatively, RAIM methods can be defined based
on a parity vector [7,10]. By the definition of a parity vector, it is the case that any parity
vector must satisfy p , R>U>2 y, where R is a unitary matrix. Therefore, r = U2 R p and
‖r‖ = ‖p‖ because U>2 U2 = I. Because ‖r‖ = ‖p‖, the two test statistics are completely
equivalent. This article chooses to focus on the residual vector. All results herein extend
directly to the parity vector.)

Based on Equation (19), the test statistic can also be computed as Tr
.
= y>Q y. The pro-

cedures to select T∗ based on the probability of false alarm and continuity risk specifications
are described in [13,43].

5. Integrity Risk Evaluation

Integrity risk evaluates the probability of having Hazardously Misleading Information
(HMI) [8]. HMI refers to the case when the estimation error exceeds a predefined threshold
referred to as alarm limit L, while the fault detector Tr does not detect a fault. It is written as:

HMI , (‖δx‖ > L) ∩ (Tr < T?). (27)

The probability of HMI, P(HMI), is evaluated under different fault hypotheses Hh,i.
The number of fault hypotheses for m measurements, of which h are fault-affected, is
Mh = (m

h ) (i.e., the number of permutations of m items taken h at a time). Therefore, the
integrity risk can then be expressed as:

P(HMI) =
m

∑
h=1

Ph(HMI), where (28)

Ph(HMI) =
Mh

∑
i=0

P(HMIh,i |Hh,i)P(Hh,i), (29)

where the possible Mh hypotheses for each h = 1, . . . , m are assumed mutually exclusive
and jointly exhaustive.

Full evaluation of integrity risk requires evaluating each term in the summation of
(28). However, this incurs a heavy computational cost when Mh becomes large; therefore,
some references employ hypothesis reduction approaches that only evaluate a subset of
hypotheses, while accounting for the remaining hypotheses by assigning them a probability
of occurrence [44]. For example, if a bound PR can be defined such that

PR ≥
m

∑
h=h?+1

Ph(HMI),

then,

P(HMI) ≤
h?

∑
h=1

Ph(HMI) + PR. (30)

In this case, the analyst only needs to evaluate Ph(HMI) for h = 1, . . . , h?. The procedures
to determine h? and the corresponding PR are described in [45,46]. These papers presents
reasonable values for h? in the context of the historical data of single satellite failure. They
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do not consider situations with large numbers of faulty measurements due to spoofing,
non-line-of-sight signals, etc.

5.1. Hypothesis Probabilities

Let P(Hh) denote the probability of one of the h-fault scenarios occurring. Usually the
probabilities of occurrence of all fault hypotheses Hh,i are assumed to be equal: P(Hh,i) =
P(Hh,j) for 1 ≤ i, j ≤ Mh. Then, the probability of occurrence of the h-fault scenario is

P(Hh) =
Mh

∑
i=1

P(Hh,i) = Mh P(Hh,1) for h = 1, . . . , m.

The allocation of the nominal probabilities for each fault scenario is such that

m

∑
h=1

Mh P(Hh,1) = 1− P0, (31)

where P0 is the probability of the fault-free scenario. The value of each P(Hh,1) is small and
determined empirically. See, e.g., ref. [7].

5.2. Evaluating P(HMIh,i |Hh,i)

The probability of HMI under the i-th of the h-fault hypotheses is

P(HMIh,i |Hh,i) = P
(
‖δx̂‖2 > L2, Tr < T?

∣∣∣Hh,i

)
=P
(
(‖δx̂‖2>L2)

∣∣∣ (Tr <T?, Hh,i)
)

P
(
Tr <T?

∣∣Hh,i
)
.

The failure mode slope, which is reviewed in Section 6, provides a means of predicting the

probability that P
(
(‖δx̂‖2>L2)

∣∣∣ (Tr <T?, Hh,i)
)

based on Tr, as defined in Equation (26).

6. Failure Mode Slope

The literature defines the failure mode slope g f as the ratio between the norm of the
fault-induced bias of the estimate, ‖δxf‖ and the norm of fault-induced residual ‖rf‖:

g f ,
‖δxf‖
‖rf‖

, (32)

as in refs. [4,7,35,43,47–50]. Equation (32) can be reorganized as:

‖δxf‖ = g f ‖rf‖, (33)

which shows that, for a given g f , the norm of the fault-induced estimation bias grows
proportionately with norm of the fault-induced residual. The largest estimation error ‖δxf‖
induced by the fault f that is not detectable for the residual test Tr ≤ T? is:

‖δxf‖ = g f
√

T?. (34)

When the maximum failure mode slope is bounded, g f ≤ ḡ f , over a specified set of

possible fault scenarios (e.g., 1 ≤ h ≤ h?), then selecting T? as a function of L2

ḡ2
f

allows the

RAIM designer to control the probability of HMI. If Tr > T? or g f > ḡ f for the current set
of available satellites, RAIM can declare the navigation solution to be unavailable [11,48].
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Based on Equations (15) and (25), for any given fault direction~f, the failure mode
slope can be computed as:

g f =
‖Σ−1U>1~f‖2

‖U>2 ~f‖2
=
‖Σ−1a‖2

‖b‖2 , (35)

where the fault direction~f defines the coordinate vectors a and b, as in Equation (17). The
failure mode slope depends on the satellite constellation geometry (i.e., H through Σ, U1

and U2), and on fault direction through~f, but not on the fault magnitude.

7. Best and Worst-Case Faults

Equation (35) shows that it is the direction of the fault, not the magnitude, that is of
interest. Because Σ is diagonal, Equation (35) is equivalent to

g f
.
=

∑n
i=1

(
ai
αi

)2

∑m−n
j=1 (bj)2

. (36)

where αi are the singular values of H. Based on Equation (36), with a and b defined as in
Equation (17), the following conclusions are straightforward:

Best Case: For any fault that has ‖a‖ = 0 and ‖b‖ = 1, the fault direction~f ∈ span(U2).
In this case, the numerator is zero and the failure mode slope g f = 0. Physi-
cally, this means that the fault has absolutely no impact on the state estimate.

Worst Case: For any fault that has ‖a‖ = 1 and ‖b‖ = 0, the fault direction~f ∈ span(U1).
In this case, the denominator is zero and the failure mode slope g f = ∞.
Physically this means that the fault has no impact on the residual. Therefore,
the residual test cannot detect it.

Note that, in both cases, the fault direction is not unique. Rather, each case allows an
uncountably infinite number of fault directions within a finite dimensional subspace of Rm.

Within the worst-case subspace, certain directions can still be considered worse than
others. The problem of finding a unit vector a that maximizes the numerator (i.e., the
estimation error for µ = 1) is formulated as:

a = arg max
a

n

∑
i=1

(
ai
αi

)2
, subject to

n

∑
i=1

a2
i = 1

= arg max
‖a‖2=1

(
a>Σ−2a

)
. (37)

The problem in Equation (37) is a constrained quadratic maximization problem as in (5), of
which the solution is the eigenvector corresponding to the largest eigenvalue of U1Σ−2U>1 .

Therefore, the worst-case fault direction that has the greatest impact on the estimate
per unit change in fault magnitude is the vector~fw = un

1 , making the worst-case fault vector
f = µ un

1 . Using Equation (17), the coefficient vector corresponding to this fault direction is:

aw = µU>1 un
1 = µ en, (38)

where en ∈ Rn is the n-th standard n dimensional unit direction vector. Using Equation (14),
the corresponding mean-squared estimation error is:

‖δx‖2
M = µ2

(
e>n Σ−2en

)
+ κ1 =

(
µ

αn

)2
+ κ1. (39)
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This shows that the growth in the estimation error caused by the fault f = µ un
1 is directly

proportional to the inverse of the smallest singular value of H and the residual vector is
not affected.

This section discussed the best and worst-case fault directions in the general case.
Typically, these worst-case faults have non-zero contributions from all sensors; therefore,
they do not correspond to any specific fault scenario with h < m. When a fault has a
non-zero component in the linear space spanned by U2 (i.e., ‖b‖ 6= 0), then g f is finite. The
next section analyzes and determines the worst-case fault for general h-fault scenarios.

8. Single, Double, Multi-Measurement Faults

This section considers different h-fault scenarios. The failure mode slope of Equation (32)
can be used as the metric for fault impact; therefore, the worst-case fault direction is de-
fined as:

~fw = arg max
‖f‖2=1

g f (f) = arg max
‖f‖2=1

‖Σ−1U>1~f‖2

‖U>2 ~f‖2
. (40)

This problem will be solved for different h-fault scenarios, beginning with faults affect-
ing single measurements (i.e., h = 1), then two measurements (i.e., h = 2), and finally
culminating with a general discussion of multi-measurements faults (i.e., h ≥ 1). For
each scenario, the analysis determines conditions when there are faults that cause the
failure mode slope to be infinite. When the failure mode slope is finite the worst-case fault
direction is determined.

8.1. Single-Measurement Faults

Single-measurement faults have the form f = µ ej for j = 1, . . . , m. For each such
single-measurement fault, Equation (40) becomes

g f (ej) =
e>j U1 Σ−2U>1 ej

e>j U2 U>2 ej
=

∑n
i=1

(
ui(j)

1
αi

)2

∑m−n
i=1

(
ui(j)

2
)2 . (41)

where ui(j)
1 is the j-th element of vector ui

1 for i = 1, . . . , n and ui(j)
2 is the j-th element of

vector ui
2 for i = 1, . . . , (m− n). For each j, the value of g f (ej) can be determined. The one

with the largest value determines the worst-case single sensor failure (i.e., fault direction).
In the single fault scenario, g f can be infinite if an entire row of U2 is zero. For example,

the rank 4 matrix H defined as:

H =
1
2


1 −1

√
2 2√

2
√

2 0 2
−1 1

√
2 2√

2− 1
√

2 + 1
√

2 2
1 −1

√
2 2

 has U2 =


−
√

2
0
0
0√
2

,

which means that a single-sensor fault on any one of measurements 2, 3, or 4 cannot be
detected by the residual (or parity) test statistic.

8.2. Double-Measurement Faults

For a double-measurement fault, two of the measurements are affected, not necessarily to
the same extent. The fault is a linear combination of the individual measurement directions:

f2 = µ
(
sj ej + sk ek

)
= µ ejk, (42)
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where, for j 6= k, ejk ,
(
sj ej + sk ek

)
is the overall fault direction, and sj, sk ∈ [−1, 1] are

scaling coefficients such that ‖ejk‖2 = s2
j + s2

k = 1.
The fault direction vector ejk can be written as:

ejk = Djk s, (43)

where s ∈ R2, and Djk ∈ Rm×2 are a binary matrix of which the only non-zero elements are
in the j-th and k-th positions of the two columns, respectively, i.e.:

Djk =

ej ek

. (44)

For each such two-fault mode, Equation (40) becomes

g f (ejk) =
e>jk U1 Σ−1U>1 ejk

e>jk U2 U>2 ejk
for ‖ejk‖ 6= 0

=
s>Γjk s
s>∆jk s

for ‖s‖ 6= 0, (45)

with ∆jk = D>jkQ Djk ∈ R2×2, Q = U2 U>2 , and Γjk = D>jkU1 Σ−2 U>1 Djk ∈ R2×2. Given
these definitions,

Γjk =

∑n
i=1

(
ui(j)

1

)2

α2
i

∑n
i=1

ui(j)
1 ui(k)

1
α2

i

∑n
i=1

ui(j)
1 ui(k)

1
α2

i
∑n

i=1

(
ui(k)

1

)2

α2
i

 and ∆jk =

∑m−n
i=1

(
ui(j)

2

)2
∑m−n

i=1 ui(j)
2 ui(k)

2

∑m−n
i=1 ui(j)

2 ui(k)
2 ∑m−n

i=1

(
ui(k)

2

)2

.

Both Γjk and ∆jk are symmetric and, at least, positive semi-definite.
The failure mode slope for each pair (j, k) is determined by the value of s that maxi-

mizes g f (ejk), as defined in Equation (45). This optimization problem is:

s∗jk = arg max
s 6=0

s>Γjk s
s>∆jk s

. (46)

When ∆jk is positive definite (i.e., nonsingular and invertible), then it has a square

root matrix, denoted as ∆
1
2
jk, which is, itself, positive definite and symmetric [42], and ∆jk

can be expressed as ∆jk = ∆
1
2
jk∆

1
2
jk. As discussed in [35], the problem in Equation (46) is

equivalent to

s∗jk = arg max
s 6=0

s>∆
1
2
jk∆
− 1

2
jk Γjk ∆

− 1
2

jk ∆
1
2
jks

s>∆
1
2
jk∆

1
2
jk s

. (47)

Letting q = ∆
1
2
jk s, the problem becomes:

q∗jk = arg max
q 6=0

q>Ψjk q
q> q

, (48)
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where Ψjk = ∆
− 1

2
jk Γjk ∆

− 1
2

jk ∈ R2×2. The problem in (48) is an eigenvalue problem of which
the solution q∗jk is the eigenvector corresponding to the largest eigenvalue, denoted as λ∗jk,

of Ψjk. Therefore, s∗ = ∆−
1
2 q∗ and g∗f = λ∗jk.

Each pair of satellites yields a value for λ∗jk. There are (m
2 ) possible combinations that

must be evaluated to quantify the worst-case impact of double-measurement faults on the
estimation error and solution integrity.

8.3. Multi-Measurement Faults

This section generalizes the approach of Section 8.2 to the general case of h sensor failures.
A fault that affects h measurements, for 1 ≤ h ≤ m, can be written as:

fh = µ eπ , (49)

where π denotes a permutation of the set of integers between 1 and m that has cardinality
|π| = h. The fault direction vector eπ can be written as:

eπ = Dπ s, (50)

where ‖eπ‖2 = 1 and s ∈ Rh with ‖s‖2 = 1. The matrix Dπ ∈ Rm×h is as defined in (44),
but with h unique columns.

For the h-fault scenario, the g f (f) in Equation (40) is equivalent to

g f (eπ) =
e>π U1 Σ−2U>1 eπ

e>π U2 U>2 eπ
for ‖eπ‖ 6= 0 (51)

=
s>Γπ s
s>∆π s

for ‖s‖ 6= 0. (52)

Letting πj denote the j-th element of π for j ∈ {1, . . . , h} and defining Φ = U1 Σ−2 U>1 ,
the matrix Γπ = D>π Φ Dπ ∈ Rh×h has the form:

Γπ =



∑n
i=1

(
u

i,π1
1
αi

)2
∑n

i=1
u

i,π1
1 u

i,π2
1

α2
i

· · · ∑n
i=1

u
i,π1
1 u

i,πh
1

α2
i

∑n
i=1

u
i,π2
1 u

i,π1
1

α2
i

∑n
i=1

(
u

i,π2
1
αi

)2
· · · ∑n

i=1
u

i,π2
1 u

i,πh
1

α2
i

...
...

. . .
...

∑n
i=1

u
i,πh
1 u

i,π1
1

α2
i

∑n
i=1

u
i,πh
1 u

i,π2
1

α2
i

· · · ∑n
i=1

(
u

i,πh
1
αi

)2


.

where u
i,πj
1 denotes the element in row i and column πj of U1 (similarly for u

i,πj
2 ). The

matrix ∆π = D>π Q Dπ ∈ Rh×h has the form:

∆π =



∑m−n
i=1

(
ui,π1

2
)2

∑m−n
i=1 ui,π1

2 ui,π2
2 · · · ∑m−n

i=1 ui,π1
2 ui,πh

2

∑m−n
i=1 ui,π2

2 ui,π1
2 ∑m−n

i=1

(
ui,π2

2
)2 · · · ∑m−n

i=1 ui,π2
2 ui,πh

2

...
...

. . .
...

∑m−n
i=1 ui,πh

2 ui,π1
2 ∑m−n

i=1 ui,πh
2 ui,π2

2 · · · ∑m−n
i=1

(
ui,πh

2
)2


.

The matrix ∆π is singular if any vector in the span of Dπ lies entirely in the span of U1
or if at least one of the rows of U2 is zero. Additionally, Section S4 of the Supplementary
Materials [41] shows that ∆π is singular whenever h > m− n but does not say anything
about the case h ≤ (m− n).
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As was conducted to convert from Equation (46) to (48), the square root of ∆π defines

Ψπ = ∆
− 1

2
π Γπ ∆

− 1
2

π ∈ Rh×h, where q = ∆
1
2
π s. The worst-case fault direction problem from

Equation (40) for the h-fault scenario is equivalent to:

q∗π = arg max
q 6=0

q>Ψπ q
q> q

. (53)

For some values of h, ∆π can be singular for some π. Therefore, there are two cases to be
considered: ∆π is singular and ∆π is nonsingular.

When ∆π is nonsingular, the solution to Equation (53) is the eigenvector corresponding

to the largest eigenvalue λ∗π of Ψπ . Then, s∗ = ∆
− 1

2
π q∗π and the worst-case fault direction is:

~fw = Dπ ∆
− 1

2
π q∗π . (54)

The failure mode slope g∗f = λ∗π is finite.

When ∆π is singular, the matrix ∆
− 1

2
π does not exist, so the problem in Equation (53)

cannot be formulated and solved. This case is discussed in Section 8.4.

8.4. Undetectable Faults

This section further discusses the case that ∆π is singular. Let q denote the num-
ber of zero eigenvalues of ∆π , with 0 < q < h. Consider an eigendecomposition ∆π =
W A W>, where W = [w1, · · · , wq, · · · , wh] ∈ Rh×h and A = diag(λ1, · · · , λh) ∈ Rh×h,
with {λi}i=1,...,q = 0. The eigenvectors corresponding to the zero eigenvalues span a linear
subspace of which the basis is {wi}i=1,...,q. For s in this linear subspace:

s =
q

∑
i=1

ci wi = Wq c,

where Wq = [w1, . . . , wq] ∈ Rh×q and c ∈ Rq, with ‖c‖2 = 1. Any s in this subspace will
be in the null space of ∆π , meaning that rf = 0. Therefore, g f = ∞. The fault-induced
estimation error is δxf = Σ−1U>1 DπWq c, with norm

‖δxf‖2 = c>Υ c, (55)

where Υ = W>q D>π U1Σ−2U>1 DπWq is symmetric and positive semi-definite. The vector
that maximizes the quadratic form in Equation (55) is:

c∗ = arg max
‖c‖2=1

c>Υ c. (56)

Equation (56) is an eigenvalue problem; therefore, c∗ is the eigenvector associated with the
largest eigenvalue υ∗ of Υ. Of all the undetectable fault directions, the fault direction that
causes the largest estimation error is

~fw = DπWq c∗; (57)

and the worst-case fault-induced estimation error (per unit fault) is: maxc(‖δxf‖2) = υ∗.

8.5. Effect of Number of Faults on Failure Mode Slope

Whether g f is finite (i.e., ∆π is singular) depends on (1) how many measurements
have faults, h, and (2) the structure of the measurement matrix H. The discussion below
summarizes how the failure mode slope changes with the number of faults h.

(a) When 1 ≤ h ≤ (m− n), ∆π can be either singular or nonsingular. When nonsingular,
rank(∆π) = h, the worst-case fault direction is given by Equation (54), and g f < ∞.
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When singular, rank(∆π) < h, the worst-case fault direction is given by Equation (57)
and the failure mode slope is unbounded, i.e., g f = ∞.

(b) As h increases toward (m − n), the numerator in Equation (40) is bounded above
by the squared reciprocal of the smallest singular value (i.e., 1

α2
n

), while the (worst-
case) denominator can decrease toward zero, which causes the failure mode slope to
increase toward infinity.

(c) When h > (m− n), ∆π is singular. Therefore, there is at least one fault direction, as
defined in Equation (57), that will make ‖rf‖2 = 0. As a result, g f = ∞.

(d) For h = m, Dπ = Im and ∆π = Q. This ∆π has (m − n) eigenvalues values that
are one and n eigenvalues that are zero. The eigenvectors corresponding to the zero
eigenvalues are in span(U1), which is the null space of U2. As stated in Section 6, any
fault in span(U1) is not detectable from the residual and has g f = ∞. In particular,
the worst-case fault direction is~fw = un

1 , which is undetectable and affects the state
estimation error the most. This is the same solution as that in Equation (57).

9. Effect of Fault on Horizontal Position

The previous sections analyzed the general case for the full estimation vector x. In
some applications, the analyst might only be interested in a portion of the estimation vector
z that is linearly related to x. For example, in automotive transportation applications, there
is often a focus on the horizontal position. In this case, the goal is to analyze how the
worst-case fault affects the horizontal position, which satisfies z = M T

ER x, where M and
T
ER are defined in (3).

The failure mode slope associated with the horizontal position is defined as:

g f ,
‖δzf‖2

‖rf‖2 . (58)

Because both y and ŷ are unchanged despite the transformation on the estimation
vector, the measurement residual r, defined in (19), remains unchanged. The horizontal
position error is:

δz = M T
ER V Σ−1U>1 (f + η), (59)

which makes the fault-induced and noise-dependent portions of the horizontal position
error, respectively:

δzf = M T
ER V Σ−1U>1 f and δzη = M T

ER V Σ−1U>1 η.

The worst-case fault direction for the horizontal position error can be found by the
same methods used in the previous subsections. The only difference is that the matrix Φ

used to compute Γ in Section 8.2 becomes:

Φ = U1Σ−1V> T
ER>M>M T

ER V Σ−1U>1 . (60)

The norm of the fault-induced horizontal position error is

‖δzf‖2 = f>Φ f, (61)

and the analysis in Section 8 for g f defined in (32) could be repeated with g f defined as in
Equation (58).

10. Example Discussion

This section provides examples demonstrating selected topics from the paper in the
context of GNSS applications.
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10.1. Fixed Number of Measurements

Consider the measurement matrix H used in [43,49]:

H =



0.7460266527 −0.4689257437 0.4728137904 1
−0.8607445743 −0.3446039300 0.3746557209 1

0.2109370676 0.3502943374 0.9125784518 1
−0.0619331319 −0.4967359072 0.8656891623 1
−0.7248969588 0.4759681238 0.4979746422 1
−0.4009266538 0.1274180997 0.9072058455 1

. (62)

The number of measurement is m = 6. The number of variables to be estimated is n = 4.
The pseudorange noise vector η is considered to be zero-mean Gaussian with standard
deviation ση = 3.30 m, i.e., η ∼ N (0, σ2

η). The position vector portion of x is represented in
a local tangent plane.

For single-measurement faults, h = 1, the fault is written as fi = µ ei ∈ R6, where ei is
the i-th standard basis vector in the R6 for i = 1, . . . , 6. The squared failure mode slope gi

f
relating δzf to rf for each i is computed by Equation (41), as adapted for the horizontal case
defined in Equation (58). The slope values are:√

gi
f = {2.144, 1.099, 0.917, 1.228, 1.199, 0.275},

for i = 1, . . . , 6. Figure 1 plots the horizontal position error norm versus the norm of the
residual vector. This axes format matches that used in, e.g., refs. [10,11,43]. For each
satellite, Figure 1 displays two items: (1) lines with slope

√
gi

f , and (2) samples of ‖δz‖
computed for three values of µ and N = 1000 instances of noise η. For each instance, the
η, µ, and ei are used to construct a measurement vector y using (1), which is solved for
‖δz‖ using (59) and the residual-based test statistic ‖r‖ is computed using (24). Because
η is a Gaussian random vector, simulating N measurements with the same fi produces a
point cloud of (‖r‖, ‖δz‖) values, each depicted by a dot. Each point cloud is an ellipsoid
of which the center is the mean (‖δrf‖, ‖δzf‖) (for a given µ). For the smallest value
of µ, the six clusters are very near the origin. As µ increases, the cluster corresponding
to fault direction ei moves away from the origin along the line with slope

√
gi

f , as the
theory predicts.

0 10 20 30 40 50 60 70 80 90
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20
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40

50

60
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90

Figure 1. Illustration of failure mode slopes (straight lines) computed using (58) and points corre-
sponding to measurements with worst-case faults of magnitudes µ = 10, 70, 100.
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The largest failure mode slope occurs for i = 1 (i.e., green). This means that a fault on
the measurements from satellite 1 will cause the largest change in the estimated vector per
unit increase in ‖δrf‖.

This does not, however, mean that this fault will produce the largest estimated position
error for a given value of µ, because its effect on both ‖δzf‖ and ‖δrf‖ can be small,
while g f is their ratio. Table 1 shows the values of ‖δzf‖, ‖rf‖, and g f for µ = 100. A
fault on a measurement from satellite 4 produces the largest position error, but it also
produces a proportionally larger test statistic. The value of µ affects both the numerator
and denominator of g f but not their ratio and, hence, not the value of g f .

Table 1. Values for means of ‖δzf‖ and ‖rf‖, and g f for single-measurement faults, h = 1, and µ = 1
using H in (62).

i ‖δzf‖2 ‖rf‖2 g f

1 0.3496 0.0761 4.5955
2 0.3330 0.2755 1.2087
3 0.3479 0.4139 0.8405
4 0.5270 0.3496 1.5078
5 0.4367 0.3036 1.4382
6 0.0441 0.5813 0.0758

Table 2 shows the worst-case squared failure mode slopes for different h-fault scenarios.
In addition, it shows the fault-induced horizontal position error and residual squared
norms, computed for µ = 1. Due to the fact that the largest single measurement fault slopes
in Table 1 correspond to measurements i = 1 and i = 4, one might assume that when
h = 2, the worst-case failure mode slope would occur when measurements from these two
satellites are affected. This turns out not to be the case. The largest g f corresponds to faults
on satellites 1 and 6 with coefficients s =

[
0.9352 −0.3541

]
and the overall fault direction,

as defined in (43).

10.2. Multi-Measurement Faults: Increasing m

Consider a matrix H consisting of m = 20 GNSS measurements. This matrix is created
using randomly selected elevation and azimuth angles, denoted by Ei and Ai, respectively.
To reflect practical GNSS situations, Ei ∈ [15◦, 90◦] and Ai ∈ [0◦, 360◦] for i = 1, . . . , m. Each
row of H represents a new measurement with hi =

[
1i 1

]
, where the unit line-of-sight

vector is
1i =

[
cos Ei sin Ai cos Ei cos Ai sin Ei

]
.

The matrix H is expressed as:

H =
[
h>1 , · · · , h>m

]>
. (63)

As m is increased, the first (m− 1) rows remain the same, while one new row is added.
Using this H, for the first six fault scenarios (i.e., h = 1, . . . , 6), each column of Table 3

shows the worst-case g f for a fixed value of h as a function of m. Each column of Table 3
is graphed in Figure 2 as a dotted line of a unique color. The color code corresponding to
different values of h is defined along the right side of the figure.
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Figure 2. Maximum failure mode slope g f as a function of the number of measurements m. Each
dotted curve is for a fixed value of h. (a) Full vertical scale graph of g f . For m ≥ 11, g f is numerically
infinite for h∗ = (m− n). (b) Reduced vertical scale graph. For each m, g f increases with h. For each
h, maximum g f decreases as m increases.

Note that, for each fixed h (i.e., any column), the value of g f decreases as m increases.
Section 6 discussed that the detection threshold T∗ can be set as a function of the worst-
case failure mode slope g∗f . The fact that g f decreases for fixed h as m increases allows
the designer to reduce integrity risk for the h-fault scenario by increasing the number of
measurements used.

10.3. Multi-Measurement Faults: Increasing h

Each row of Table 3 shows the worst-case g f for a fixed value of m as a function of
h. Note that for each fixed m (i.e., any row), the value of g f increases with h. The fact
that g f increase for fixed m as h increases shows that integrity risk increases with higher
h-fault scenarios.
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Table 2. Values of ‖δzf‖, ‖rf‖, and g f for worst-case fault modes when h = 1, . . . , 6 and µ = 1 for H
defined in Equation (62). The matrix ∆ is singular for fault scenarios marked with an asterisk (∗).

h ‖δzf‖2 ‖rf‖2 g f Faulty Measurements

0 0 0 Undefined []
1 0.3496 0.0761 4.5955 [1]
2 0.3925 0.0085 46.2977 [1, 6]
3 * 1.1456 0 ∞ [3, 4, 5]
4 * 1.4856 0 ∞ [2, 3, 4, 5]
5 * 1.5028 0 ∞ [1, 2, 3, 4, 5]
6 * 1.5254 0 ∞ [1, 2, 3, 4, 5, 6]

For a given H, m is constant. The reason why the worst-case g f increases as a function
of h is explained as follows. As h increases to h′ = h + 1, the matrix Dπ gains an additional
column and the vector s gains an additional row. This allows more flexibility in choosing
the worst-case fault direction, which maximizes g f . Whatever direction caused the worst-
case fault for h is still a viable fault for h′ (just set the coefficient for the new row of s to zero);
however, the additional column of Dπ may allow the optimization defined in Section 8.3 to
find a new fault direction such that g f (h′) ≥ g f (h). The fact that the worst-case g f increases
with h is shown by Table 2 for the specific H in Equation (62); each row in Table 3 for the H
defined in Equation (63); and the colored dots at any fixed value of m in Figure 2.

Figure 3 separately graphs the numerator ‖x~fw
‖ (blue) and denominator ‖r~fw

‖ (red)
of Equation (40) as a function of h for three values of m (dashed for m = 20, dotted for
m = 21, and solid for m = 22). For each m, as h increases, the value of ‖x~fw

‖ tends toward,

but is bounded above by 1
αn

, where, for this example, αn = 1.938 for m = 22. The increase

toward the upper bound is not monotonic. The worst-case fault ~fw is defined based on the
ratio g f defined in Equation (32). This ratio can increase even if the numerator decreases
with h, as long as the denominator decreases at least a proportionate amount. For each
m, as h increases, the value of ‖r~fw

‖ tends (not monotonically) toward zero. As the ‖r~fw
‖

approaches zero, g f approaches infinity. The fact that g f increases toward infinity is not
due to ‖δxf‖ becoming very large but due to ‖rf‖ approaching zero.

Table 3. Values of the worst-case g f for the first six fault scenarios. As m increases, the worst-case g f
decreases uniformly for a fixed h. As h increases, the worst-case g f increases uniformly for a fixed m.

m h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

6 29.78 1813.29 ∞ ∞ ∞ ∞
7 1.85 54.32 22,545.14 ∞ ∞ ∞
8 1.22 3.5 53.41 22,729.26 ∞ ∞
9 0.94 3.14 24.59 63.98 4.86 × 105 ∞
10 0.73 2.95 10.34 48.22 803.44 4.69 × 105

11 0.64 2.83 7.59 21.47 51.57 9597.89
12 0.43 1.06 2.94 10.11 21.46 594.47
13 0.43 1 1.89 7.63 12.29 26.46
14 0.43 1 1.9 7.32 11.17 23.49
15 0.45 0.91 1.69 5.8 9.82 22.46
16 0.33 0.63 1.24 3.71 5.89 11.52
17 0.33 0.59 1.21 3.21 5.31 11.12
18 0.11 0.42 0.68 1.31 3.32 5.4
19 0.11 0.22 0.52 0.78 1.42 3.43
20 0.1 0.21 0.49 0.75 1.27 3.02
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Figure 3. Norm of the fault-induced residual ‖rf‖ and estimation error ‖δxf‖ as a function of h for
m = 20 (dashed), m = 21 (dotted), m = 22 (solid).

10.4. How Does g f Become Infinite for h ≤ (m− n)?

Define h∗ as the value of h at which ∆π becomes nonsingular for a given H. For h ≥ h∗,
there exist faults that do not affect the residual and, therefore, are undetectable from it for
any threshold T?.

Consider the H in Equation (63) that produced the results in Table 3. For m = 6 and
(m− n) = 2, g f is finite for h = 1 and 2 and infinite for h > 2; therefore, h∗ = 3. For m = 7
and (m− n) = 3, h∗ = 4 and there are 3 finite values of g f . For all values of m, there are, at
most, (m− n) finite values of g f since ∆π is singular for all h > (m− n). From Table 3, for
m = 6 to 10, h∗ = (m− n) + 1, which is the known case [10].

As shown in Section 8.3, it is possible to have h∗ ≤ (m− n). The gray line in Figure 2a
corresponds to h = (m− n). When m ≥ 11, there are only (m− n)− 1 finite values of
g f and, hence, h∗ = (m− n). The brown curve in Figure 2a corresponds to g f values for
h = (m− n)− 1. The general (though not absolute) trend of g f values on these curves
is increasing with m, suggesting that as m increases the dimension of the subspace of
undetectable faults may further increase, thus making h∗ = (m− n)− 1 as m increases.

This shows that increasing the number of measurements m results in a trade-off. For
a given h, g f (m) decreases as m increases; however, g f (m− n) is non-decreasing with m,
and h?(m) may become less than or equal to (m− n).

11. Conclusions

This paper analyzed the effect of measurement faults on the estimation error, mea-
surement residual, and the failure mode slope in linear over-determined systems, such
as GNSS. Of particular interest is the case where m is large because the number of GNSS
measurements is increasing. The singular value decomposition provides formulas for the
fault-induced estimation error and residual vector (see Equations (10) and (20), respec-
tively) in terms of the orthogonal basis (i.e., U1) for the range of H and the complement
of the range space (i.e., U2). This decomposition provides convenient formulas for the
failure mode slope and worst-case fault in Equations (36) and (40). Using this decompo-
sition, Section 7 provides U1 as a basis for the n dimensional linear space of faults that
are undetectable from the residual (or parity) vector and U2 as the basis for the linear
space of faults that affect the residual vector without affecting the estimate. For each
fault scenario affecting h measurements, finding the worst-case fault is known to be an
eigenvalue problem. Herein, this eigenvalue problem is written in terms of these two linear
spaces, as in Equations (51) and (53). The detectability of any fault in the h-fault scenario
from the residual vector depends on whether the range space of the matrix Dπ , which is
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a permutation of h columns of the identity matrix, has a component in the linear space
spanned by U1. Building on this idea, it is clear from Equation (40) that, as h increases,
the numerator is bounded above by the squared reciprocal of the smallest singular value
(i.e., 1

α2
n

), while the (worst-case) denominator can decrease toward zero, which causes the
failure mode slope to increase toward infinity. Alternatively, for a fixed h, as the num-
ber of measurements m increases, the dimension of the vector ‖rf‖ in the denominator
increases, which tends to decrease the failure mode slope for h. Simulated GNSS examples
are included to demonstrate the results derived herein.
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