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Parkinson’s Disease in Male Rats
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Background and objective: Developing therapy for non-motor symptoms of Parkinson’s
disease (PD) is important for improving patients’ quality of life. Previously, we reported
that the ghrelin receptor agonist, HM01 normalized the decreased 4-h fecal output and
levodopa-inhibited gastric emptying in 6-OHDA rats, and activated selective areas in
brain and spinal cord. In this study, we evaluated whether chronic HM01 treatment
influences motor functions and/or has beneficial effects on non-motor symptoms
including alterations of body weight and composition, defecation, feeding and water
intake in 6-OHDA rats.

Methods: Male rats were microinjected unilaterally into the medial forebrain bundle with
either vehicle or 6-OHDA. Three weeks later, we assessed basal body weight, and
24-h fecal output (pellets, weight, dry weight and water content), water intake and food
intake (ingested and spillage). Then, HM01 (3 mg/kg) or vehicle was given per gavage
daily for 10–12 days and the same parameters were re-assessed daily. Motor behavior
(stepping and rotations tests), body composition were monitored before and after the
HM01 treatment.

Results: 6-OHDA rats showed motor deficits in rotation test induced by apomorphine
and stepping test. They also displayed a significant reduction in body weight, water
consumption, fecal weight and water content and an increase in food spillage
compared to vehicle microinjected rats. Daily oral treatment of HM01 did not modify
motor alterations compared to vehicle but significantly increased the body weight,
fat mass, and 24-h fecal weight, fecal water content, food and water intake in
6-OHDA rats, while HM01 had no significant effect in vehicle microinjected rats.
Fecal weight and water content were both correlated with water intake, but not
with food intake. Fat mass, but not body weight, was correlated with food intake.
HM01 effects were significant after 24 h and remained similar during the treatment.

Abbreviations: 6-OHDA, 6-hydroxydopamine; CMC, carboxymethyl cellulose; DA, dopamine or dopaminergic; GI,
gastrointestinal; GHSR, growth hormone secretagogue receptor; mfb, medial forebrain bundle; MRI, magnetic resonance
imaging; og, orogastric or orogastrically; PD, Parkinson’s disease; SN, substantia nigra; TH, tyrosine hydroxylase.
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Conclusions: Chronic treatment with ghrelin agonist, HM01 improved several
non-motor symptoms in the rat PD model induced by 6-OHDA lesion including the
decrease in body weight, water consumption, fecal weight and water content, and
increased food intake while not improving the motor deficits. These findings provide
pre-clinical evidence of potential benefits of ghrelin agonists to alleviate non-motor
symptoms in PD patients.

Keywords: body composition, defecation, ghrelin agonist, 6-hydroxydopamine, rat, water intake

INTRODUCTION

Parkinson’s disease (PD), although principally characterized
by tremor and other motor impairments, also encompasses
non-motor symptoms with alterations notably in the digestive
system and body weight maintenance (Jost, 2010; Sakakibara
et al., 2011). Constipation occurs with a high incidence at
all stages (Stirpe et al., 2016; Knudsen et al., 2017) and the
majority of PD patients also display body weight loss with a
prominent decrease in fat mass (Lorefält et al., 2004; Sharma
and Lewis, 2017). PD patients also showed reduced water intake
compared to healthy controls (Ueki and Otsuka, 2004; Barichella
et al., 2017). This adipsia is of potential relevance since two
clinical surveys in PD patients pointed to an association between
daily liquid intake and constipation (Ueki and Otsuka, 2004;
Gan et al., 2018).

None of the animal models can replicate all of the PD
pathological alterations and progression occurring in patients,
however, each model recapitulates particular features that can
have translational values (Beal, 2010; Bové and Perier, 2012;
Blesa and Przedborski, 2014; Francardo, 2018). The model
in which the neurotoxin, 6-hydroxyldopamine (6-OHDA) is
microinjected into the substantia nigra (SN)-striatum pathway,
has been widely used in preclinical studies to assess new
compounds and largely contributed to drug development for
the dopamine (DA) treatment of PD patients (Bové and
Perier, 2012; Francardo, 2018). The 6-OHDA model is also
relevant to study the impact of altered central DA signaling
circuits on gastrointestinal (GI) function and other non-motor
deficits occurring during PD progression (Karasawa et al.,
2014a; Toti and Travagli, 2014). In particular, rats microinjected
unilaterally with 6-OHDA into themedial forebrain bundle (mfb,
containing the axons of nigrostriatal dopaminergic neurons)
display decreased defecation, and reduced colonic contractions,
water intake and body weight (Blandini et al., 2009; Colucci et al.,
2012; Karasawa et al., 2014a; Fornai et al., 2016).

Ghrelin is a well-known pleiotropic gut hormone that
regulates energy balance via enhancing appetite and adiposity,
stimulates GI transit, and plays a role in rewarding behavior
(Müller and Tschöp, 2013; Müller et al., 2015). Ghrelin actions
are mediated by interaction with the growth hormone (GH)
secretagogue receptor (GHS-R1a, or ghrelin receptor), a G
protein-coupled receptor distributed in both in the peripheral
and central nervous systems (Poitras and Tomasetto, 2009;
Sallam and Chen, 2010; Müller and Tschöp, 2013; Müller et al.,
2015). In particular, ghrelin receptors are expressed in SN
neurons immunoreactive for tyrosine hydrolase (TH; Guan et al.,

1997; Zigman et al., 2006; Jiang et al., 2008; Andrews et al.,
2009) and are downregulated at this site in a mouse model of
PD with motor dysfunction (Suda et al., 2018). Other studies
indicate that ghrelin modulates dopaminergic neurons in the
ventral tegmental area (VTA) and SN (Stievenard et al., 2017)
and induces a neuroprotective effect in animal models of PD
(Bayliss and Andrews, 2013; de Candia and Matarese, 2018;
Morgan et al., 2018). In addition, clinical studies indicate that
systemic or oral administration of ghrelin agonists increases
appetite and body mass in patients with cancer cachexia (Argilés
et al., 2017; Khatib et al., 2018). This supports a potential
beneficial effect to improve nutritional and metabolic status
of PD patients who have loss of appetite and body weight
and reduced circulating ghrelin levels during the postprandial
recuperation phase (Unger et al., 2011; Song et al., 2017). It
is also of relevance that some ghrelin receptor agonists have
moved to clinical trials for gastroparesis and constipation (Acosta
et al., 2015; Mulak and Bonaz, 2015; Shin and Wo, 2015;
Mosińska et al., 2017). Collectively, these findings suggest that
ghrelin agonists may be of benefit to alleviate PD symptoms
(Ramprasad et al., 2018).

In the present study, we investigated whether repeated
treatment with the new orally active, long acting and blood brain
barrier penetrant ghrelin agonist, HM01 (Karasawa et al., 2014a),
had beneficial effects on several homeostatic dysfunctions
in the 6-OHDA rat PD model not treated with L-dopa.
We assessed simultaneously the alterations of feeding and
drinking behavior, defecation, and body weight and composition
induced by 6-OHDA and the influence of 10–12 days oral
administration of HM01. In addition, we examined whether
HM01 influenced 6-OHDA altered motor functions in the
stepping and rotation tests.

MATERIALS AND METHODS

Animals
Adult male Sprague-Dawley (SD) rats (250–270 g, Harlan
Laboratories, San Diego, CA, USA) were kept under
controlled illumination (12:12 h light/dark cycle, lights on/off:
6:00 AM/6:00 PM) and temperature (22 ± 2◦C). Animals were
fed a standard rodent diet (Prolab RMH 2,500; LabDiet, PMI
Nutrition, Brentwood, MO, USA) and tap water ad libitum.
Animal care and experimental procedures followed institutional
ethic guidelines and conformed to the requirements of federal
regulations for animal research conduct. All procedures were
approved by the Animal Research Committee at Veterans
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Affairs Greater Los Angeles Healthcare System (animal protocol
#01001–15). The experiments were performed in non-fasted rats.

Reagents
The ghrelin agonist, HM01 (provided by Helsinn SA Lugano,
Lugano, Switzerland) was suspended in vehicle (0.5%
carboxymethyl cellulose, CMC), except otherwise stated.
The neurotoxin, 6-OHDA hydrochloride (Sigma-Aldrich Co., St.
Louis, MO, USA) was dissolved in a saline solution containing
0.2% ascorbic acid. Apomorphine (Sigma-Aldrich Co., St. Louis,
MO, USA) was dissolved in saline.

6-OHDA Rat Model of PD
The procedure was as described in our previous study (Karasawa
et al., 2014a) and similar as reported by others (Blandini
et al., 2009; Decressac et al., 2012; Gambaryan et al., 2014;
Pellegrini et al., 2017). In brief, rats were anesthetized with an
intramuscular injection of ketamine hydrochloride (75 mg/kg,
Ketanest; Fort Dodge Laboratories, Fort Dodge, IA, USA) and
xylazine (5 mg/kg, Rompun; Mobay Corporation, Shawnee,
KS, USA), and placed on a stereotaxic apparatus (David Kopf
Instruments, Tujunga, CA, USA). Then, 6-OHDA (12 µg in
3 µl) or vehicle (3 µl saline with 0.2% ascorbic acid) was
microinjected unilaterally into the mfb using the following
coordinates (mm) from the bregma (anterior-posterior: −4.4;
medial-lateral: +1.2; and dorsal-ventral: −8.0) according to
Paxinos and Watson (2007) atlas. Thereafter, rats were housed
individually and experiments started after a 3-week period to
reach a stabilized degeneration of the nigrostriatal pathways
(Bové and Perier, 2012). The localizations of microinjection
sites were identified by the needle trail in brain sections under
microscopic examination and by immunohistochemistry for
tyrosine hydroxylase (TH) at the end of each protocol as in
previous studies (Wang et al., 2009).

Measurements
Food and Water Intake, and Fecal Output
Rats housed individually were given pre-weighed food and water
bottle with a ballpoint sipper tube in order to avoid water spillage
as described previously (Karasawa et al., 2014a,b). Twenty-four
hours later, water bottle was weighed, food remained in the feeder
were weighed together with small pieces of chow dropped in the
bedding, and the differences were calculated. The fecal pellets
were counted, weighed, dried in an oven for 24 h and reweighed.
The fecal water content was calculated by subtracting dry weight
from wet weight.

Food Spills
Rats were housed individually in cages with a wire grid at
the bottom and given pre-weighed food and water bottle.
Twenty-four hours later, food remained in the feeder and food
spills under the wire grid were weighed separately. Food intake
was calculated by subtracting the food remained in the feeder and
spills from pre-weight.

Body Composition
It was measured using a rodent magnetic resonance imaging
(MRI) body composition analyzer (EchoMRI 700, EchoMedical

Systems, Houston, TX, USA) as in our previous studies (Stengel
et al., 2013). Changes in fat and leanmass and body water content
were calculated relative to the values before HM01 treatment.

Motor Impairment Tests
The methods were adapted from previous publications (Olsson
et al., 1995; Mehta et al., 2005; Decressac et al., 2012). The tests
were video-recorded and two observers blind to experimental
conditions counted the motor behaviors. Stepping test: rats were
trained for the procedure 2 days before the test. Rats were held
by the experimenter with one hand fixing the hindlimbs and
right forelimb and slightly raising them above the surface of the
table while the left forelimb (the impaired limb by opposite site
with the 6-OHDA lesion that is rostral to pyramidal decussation)
was unrestrained and touched a table. Rats were moved sideways
90 cm in 5 s on the table surface and the number of adjusted
steps were counted. The procedure was repeated three times
and the average was calculated. Rotation test: rats were injected
intraperitoneally (ip) with apomorphine (0.5 mg/ml/kg) and
placed in an empty cage and videotaped for 30 min. Rotations
that usually start within a few min post-injection, were counted
for 15 min and the number of rotations per min were calculated
for each rat.

Experimental Protocols
Schematic representation of protocols in the Figure 1 indicates
the timelines of different treatments and measurements during
the experimental period. Different cohorts of rats were used for
each experiment.

Effects of Daily HM01 Treatment on Body Weight
and Composition, 24-h Food, Water and Fecal
Measurements in 6-OHDA Rats
Rats were microinjected with 6-OHDA or vehicle (control),
and 3 weeks after, basal 24-h food and water intake, fecal
output (number, fecal dry weight and water content) and body
weight were measured for 2–3 days. Thereafter, rats received
daily og administration of HM01 (3 mg/kg) or vehicle between
9–10 AM for 10–12 days. Body weight, food and water intake,
and defecation were monitored every day at 24 h intervals.
Body composition was measured before and at the end of
HM01 treatments. The 3 mg/kg dose selected was based on our
previous dose-response study showing a maximal increase in the
4-h fecal weight induced by og HM01 administration in rats
(Karasawa et al., 2014a).

Food Spills
Three weeks after vehicle or 6-OHDA microinjections, rats were
acclimated to the housing conditions of a wire grid floor for
2 days. On the experiment day, rats were given pre-weighed food
and 24 h later, food and food spills under the wire grid were
weighed.

Effect of HM01 on Motor Functions in 6-OHDA Rats
Rats were microinjected with 6-OHDA or vehicle, and 3 weeks
later they received the daily gavage with HM01 (3 mg/kg).
The motor tests (stepping and rotation tests) were performed
1–3 days before and on the 11th (stepping) and 12th day
(rotation) at 4–6 h after the last og HM01 treatment (3 mg/kg).
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FIGURE 1 | Schematic illustration of experimental protocols time course and related determinations.

FIGURE 2 | Photomicrographs of brain sections with tyrosine hydroxylase (TH) immunostaining at levels of the striatum (A,B) and substantia nigra (SN; C,D) from
rats microinjected with vehicle (A,C) or 6-OHDA (B,D) in the right site of medial forebrain bundle (mfb). The immunostaining was processed about 6 weeks after mfb
microinjection. Marked reductions in striatal fiber density (B) and nigral DA neurons (D) were shown on the side of 6-OHDA injection (right). SNc: substantia nigra
pars compacta; SNr: SN pars reticulata; VTA: ventral tegmental area.

Data Analysis and Statistics
Data are presented as mean ± standard error of the mean
(SEM). The 24-h food and water intake and pellet output were
calculated per 300 g body weight and the 10-day treatment
period with HM01 on these parameters was expressed as

24-h averages of daily measurements. Statistical analysis was
performed using SigmaPlot 12.5 (Systat Software, Inc., San Jose,
CA, USA). Comparisons between two groups were performed by
the Student’s t-test and among multiple groups by one-way or
two-way analysis of variance (ANOVA) followed by Tukey post
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hoc multiple comparisons. Time course of HM01 stimulatory
effects on daily feeding, drinking and defecation for the 10 days
treatment were analyzed by repeated measures one-way ANOVA
followed by Tukey test for all pairwise multiple comparisons.
Correlations were performed by a Lineal Regression. A
p-value < 0.05 was considered as significant.

RESULTS

Chronic Daily HM01 Treatment did Not
Improve Motor Deficits in Rats With
Unilateral Lesion of Medial Forebrain
Bundle Induced by 6-OHDA
Rats microinjected unilaterally into the mfb with 6-OHDA (6-
OHDA rats) lost the majority of TH-immunoreactive neurons
in the SN and fibers in the striatum ipsilateral to the lesion
site observed about 6 weeks later at the end of experiments
(Figure 2). This is consistent with previous publications with
similar microinjection sites (Blandini et al., 2009; Decressac et al.,
2012; Gambaryan et al., 2014; Pellegrini et al., 2017). Out of
68 rats microinjected with 6-OHDA for all studies, two had no
reduction of TH, indicative of misplacement of the injection site
and were excluded of data analysis.

The 6-OHDA rats showed forelimb akinesia in the
stepping test as indicated by the significant decrease in
adjusted steps compared to vehicle microinjected rats
(4.5 ± 0.6 vs. 9.4 ± 0.5 steps/90 cm/5 s, p < 0.05,
n = 14–15). After 12 days of og vehicle treatment, adjusted
steps by 6-OHDA rats were still significantly lower than
controls (3.6 ± 0.7 vs. 8.9 ± 0.8 steps/90 cm/5 s, p < 0.05,
Figure 3A). Chronic daily HM01 in 6-OHDA rats did not
improve the stepping performance compared HM01/vehicle

group (3.8 ± 0.8 vs. 7.8 ± 0.7 steps/90 cm/5 s, p < 0.05,
Figure 3A). In the rotation test (Figure 3B), rats with
unilateral lesion of SN display rotations after the ip injection
of apomorphine. Vehicle/vehicle and HM01/vehicle rats
did not show the occurrence of rotation. HM01 treatment
in 6-OHDA rats did not reduce the apomorphine-induced
rotations compared to vehicle/6-OHDA rats (7.1 ± 1.3 vs.
7.2 ± 1.8 turns/min, p > 0.05).

Changes in Water Intake, Food
Consumption and Fecal Output in 6-OHDA
Rats
Under basal conditions examined 3 weeks after the mfb
microinjection, 6-OHDA rats had a significant 8% reduction
of their body weight (Figure 4A), and 20%, 10% and 30%
decrease in 24-h water intake, fecal output weight and water
content respectively compared with vehicle microinjected rats
(Figures 4B,D,F). There were no differences in fecal pellet
numbers and dried fecal weight per 24 h (Figures 4C,E). The
food amount measured for 24 h showed a significant increase
between 6-OHDA and vehicle rats (Figure 4G).

To assess whether the increase in food intake could reflect
spills caused by motor impairments, 3 weeks after unilateral
microinjection in the mfb, another group of rats was monitored
for basal food intake when housed in cages with a grid at the
bottom to separate the spills. The amount of food spills during
24 h was significantly higher in 6-OHDA than vehicle rats
(18.4 ± 2.6 vs. 7.9 ± 1.3 g/24 h, Figure 5A), whereas the food
intake was the same between the two groups (16.7 ± 0.8 vs.
16.7 ± 0.7 g/24 h, Figure 5B). The difference between 6-OHDA
and vehicle rats was bigger than the rats housed in normal
housing due to the dropping of food pieces through the grid by
6-OHDA rats with motor impairment.

FIGURE 3 | Repeated treatments with ghrelin agonist, HM01 did not modify motor impairments in 6-OHDA rat Parkinson’s disease (PD) model. Rats were
microinjected with 6-OHDA or vehicle unilaterally into the medial forebrain bundle. HM01 (3 mg/kg) or vehicle was administered og daily for 12 days starting from
4 weeks after microinjection. Stepping (A) and apomorphine-induced rotation (B) tests were performed on the last 2 days at 4–6 h after HM01 treatment in vehicle
and 6-OHDA rats. Data are mean ± standard error of the mean (SEM) and animal numbers per group indicated in the graphs. ∗p < 0.05 vs. vehicle/vehicle by
one-way analysis of variance (ANOVA).
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FIGURE 4 | Basal body weight (A), 24-h water intake (B), fecal pellets (C), fecal weight (D), dry fecal weight (E), fecal water content (F) and food intake (G) in rats
microinjected with 6-OHDA or vehicle unilaterally into the medial forebrain bundle. The assessments were performed in 2–3 days between 3–4 weeks after the
microinjection. Data are mean ± SEM, calculated per 300 g body weight (bw). Number of rats/group indicated in each bar of graph A. ∗p < 0.05 vs. vehicle by
Student t-test.

FIGURE 5 | Food spillage assessed 3 weeks after brain microinjection when
the rats were housed in cages with a grid to separate the food spills. Food
spills (A) and food intake (B) were measured for 24 h and calculated per
300 g body weight (bw). Data are mean ± SEM and animal numbers per
group indicated in the graphs. ∗p < 0.05 vs. vehicle/vehicle by Student
t-test.

Chronic Daily HM01 Treatments
Normalized Defecation and Increased
Drinking and Feeding in 6-OHDA Rats
As observed under basal conditions, 10 days after og vehicle, the
6-OHDA rats had a significant 13%, 37% and 21% reduction of
fecal weight, fecal water and water intake/24 h respectively and
21% increase in food intake compared with vehicle/vehicle group
(Figures 6A,B,E). Treatment with HM01 (3 mg/kg, og) once a
day for 10 days had no significant effect on those parameters in
mfb vehicle rats compared with vehicle/vehicle group. However,
in 6-OHDA rats, the HM01 treatment normalized the reduced
fecal weight (Figure 6A) to values of vehicle/vehicle group.
The ghrelin agonist treatment significantly increased fecal water
content and water intake, although values are still significantly
lower than those of vehicle/vehicle group (Figures 6B,E).
HM01 also increased food intake (Figure 6F) compared to 6-
OHDA/vehicle group. The pellet numbers and dry weight were
not different among the four treatment groups (Figures 6C,D).
Two-way ANOVA showed the influence of 6-OHDA in food

Frontiers in Integrative Neuroscience | www.frontiersin.org 6 April 2019 | Volume 13 | Article 13

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Minalyan et al. Ghrelin Agonist Effects 6-OHDA Rats

FIGURE 6 | Effect of orogastric daily administration of HM01 (3 mg/kg) for 10 days on average daily fecal weight (A), fecal water content (B), fecal dry weight (C),
fecal pellets (D), and intake of water (E) and food (F) in rats microinjected with 6-OHDA or vehicle unilaterally into the medial forebrain bundle (3–4 weeks before).
Data are mean ± SEM calculated per 300 g of body weight (bw). Rats/group are indicated in each bar of graph (A). p < 0.05 as ∗: vs. vehicle/vehicle, #: vs.
6-OHDA/vehicle and §: vs. vehicle/HM01 by one-way and two-way ANOVA. Correlation of the average 24-h water intake with fecal weight (G) and with fecal water
content (H) during 10 days treatment of HM01 (og at 3 mg/kg) analyzed by linear regression.

intake (F(1,22) = 23.40, p < 0.001), water intake (F(1,22) = 14.83,
p < 0.001), fecal weight (F(1,22) = 10.76, p < 0.01) and fecal
water content (F(1,22) = 23.01, p < 0.001); and HM01 in food
intake (F(1,22) = 8.89, p < 0.01), fecal dry weight (F(1,22) = 7.85,
p = 0.01) and fecal pellet numbers (F(1,22) = 6.12, p < 0.05). The
interaction between 6-OHDA and HM01 showed significance
in fecal water content (F(1,22) = 7.80, p = 0.01), while not in
other parameters.

Daily fecal output weight and water content were highly
correlated with water intake (r2 = 0.67 and r2 = 0.80,
p < 0.001 respectively; Figures 6G,H), whereas fecal output
weight was not correlated with food intake (r2 = 0.13,
p > 0.05), and neither food intake with water intake (r2 = 0.01,
p > 0.05).

Time course of 24-h measurements at each day during
HM01 treatments showed a significant plateau increase of fecal
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weight, fecal water content and water intake occurring the 1st day
that was maintained throughout the 10 days experimental period
(Table 1). Likewise, there was no significant difference between
the first and last day of 24-h food intake measurement although
the days 2–5 had significant daily higher intake than days 7, 9 and
10 (Table 1).

HM01 Increased Body Weight and Fat Gain
in 6-OHDA Rats
Before HM01 treatment 6-HODA rats had a significantly lower
body weight compared to vehicle rats (321.9 ± 4.3 g, n = 15,
vs. 346.7 ± 5.6 g, n = 11, p < 0.001) while showing no
significant changes in fat mass and a non-significant decrease
in lean mass and body total water. In mfb-vehicle rats,
HM01 (3 mg/kg, og) administration for 10–12 days had no
significant effect on body weight, lean mass and body water
(Figures 7A,C,D) and there is a trend to increase fat mass
(Figure 7B). HM01 treatment in 6-OHDA rats normalized the
decreased body weight values to those of vehicle/vehicle controls
(Figure 7A) and significantly increased the fat mass (Figure 7B)
while there was a non-significant increase in lean mass or body
water (Figures 7C,D). Two-way ANOVA revealed influences of
6-OHDA and HM01 in body weight (F(1,22) = 5.21 and 9.57,
p < 0.05), lean mass (F(1,22) = 9.48 and 5.29, p < 0.05) and total
body water (F(1,22) = 9.98 and 4.63, p < 0.05), and interaction
of 6-OHDA and HM01 on lean mass (F(1,22) = 4.43, p < 0.05),
whereas HM01 only significantly influenced the body fat mass
(F(1,22) = 8.48, p < 0.05).

Body fat mass was significantly correlated with food intake
(r2 = 0.59, p < 0.001), and to a small extent with body weight
(r2 = 0.22, p < 0.05; Figures 7E,F).

DISCUSSION

This study provides new insight into functional alterations
occurring in the neurotoxin PD model with unilateral lesion
of the nigrostriatal system induced by 6-OHDA microinjected
unilaterally into the mfb. We found that the reduced daily fecal
weight and water content were correlated with the reduction of
water intake. More importantly, we demonstrated the beneficial
effects of repeated daily oral treatment with the long-acting
ghrelin agonist, HM01 (Karasawa et al., 2014a) on some
non-motor alterations namely the constipation-like defecation,
reduction of water intake and body weight. The HM01-increased
body weight gain could result from increased energy intake, lean
mass and more prominently fat mass. However, HM01 did not
modify 6-OHDA-induced motor impairments, indicating that
the ghrelin agonist exerts its actions primarily by influencing
altered feeding and drinking behavior.

The 24 h fecal water content is highly correlated to water
intake in 6-OHDA rats treated with and without HM01.
This finding is consistent with two clinical reports showing
a reduction of liquid intake in PD patients associated with
the incidence of constipation (Ueki and Otsuka, 2004; Gan
et al., 2018). In addition, experimental evidence demonstrated
that DA pathways from the midbrain to forebrain limbic
system play a role in anticipatory and motivated drinking
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FIGURE 7 | Body weight and composition of rats microinjected with 6-OHDA or vehicle unilaterally into the medial forebrain bundle after HM01 or vehicle
treatments. HM01 (3 mg/kg) or vehicle was administered og daily for 10–12 days starting from 3 to 4 weeks after microinjection of 6-OHDA. (A) Body weight; (B) fat
mass; (C) lean mass; (D) total body water. Body fat mass (E) and body weight (F) are correlated with food intake. Data are mean ± SEM. Rats/group are indicated in
each bar of graph (A). p < 0.05 as ∗: vs. vehicle/vehicle, and #: vs. 6-OHDA/vehicle by one-way ANOVA. Two-way ANOVA revealed an interaction between 6-OHDA
and HM01 on changes of body weight, lean mass and total body water (p > 0.05), and the HM01 increased body fat mass (p < 0.05).

behavior (Cone et al., 2016; Hsu et al., 2018). Activation
of DA signals in the striatal system increased water intake
(Pal et al., 1992; Amato et al., 2012), while lesion by
6-OHDA attenuated angiotensin II-reduced drinking in
rats (Sumners et al., 1981). The high correlation of water intake
and fecal water content suggests that the constipation-like
defecation is mainly a consequence of reduction of water intake,
which may be specific to this model that has decreased DA

signals in the nigrostriatal system. The 6-OHDA rats may
be a relevant model to delineate the role of DA signaling
and interactions with other circuits that regulate drinking
behavior. In addition, the decrease in water intake, unlike
food consumption in 6-OHDA rats, points to possible
disassociated central mechanisms underlying altered food
and water intakes in rats with 6-OHDA-induced loss of
dopaminergic neurons, as found in other experimental
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conditions (Karasawa et al., 2014b; Zimmerman et al., 2017;
Gizowski and Bourque, 2018).

Our data further showed that HM01 partially resumed
reduced water intake and fecal water content in 6-OHDA rats,
and further increased food intake in 6-OHDA rats, while having
no significant effects in controls. HM01 effect on water intake
could be related to the activation of ghrelin receptors in reward
center, as reports showed that ghrelin or agonist injected into
the VTA induced reward behaviors (Perelló and Zigman, 2012;
Stievenard et al., 2017). Although ghrelin inhibition of water
intake was previously reported in rats, the study was done under
conditions of dehydration-induced drinking such as 24 h water
deprivation or administration of angiotensin II (Hashimoto and
Ueta, 2011). Further studies are needed to delineate whether
6-OHDA rats have alterations of fluid homeostasis and lower
drive for drinking and to investigate the central circuitry that
causes decreased water intake and mediates ghrelin effect on
drinking behavior.

Rats with 6-OHDA lesion in the nigrostriatal system weigh
less than control rats, indicating that the loss of dopaminergic
neurons in the nigrostriatal system could play a role in
maintaining body weight. Weight loss is common in PD patients
and more prominent with the progression of the disease. It is
associated with fat mass loss (Lorefält et al., 2004; Pålhagen et al.,
2005) and caused by heterogenic factors including malnutrition
(Mukherjee et al., 2016; Sharma and Lewis, 2017). However, there
are also reports on weight gain in PD patients at the early stage
(Vikdahl et al., 2014). In the present study, 6-OHDA rats did not
lose body fat while they weighed less than vehicle controls. The
reduction in body weight in 6-OHDA rats could be associated
with the combined trends of lower lean mass and body water
content. By contrast, the basal food intake was increased when
monitored 3 weeks after the brain microinjection. This change
may reflect the component of the increased spills because of
motor deficits of the 6-OHDA rats. This is supported by the food
spilling control experiment using a grid to separate the spills.
We showed the 6-OHDA rats ate the same amount of food as
vehicle controls while the use of the grid resulted in more small
pieces of chow dropped below the grid in 6-OHDA than vehicle
rats. It is to note that the spillage was much more than that in
normal housing conditions. Thus, we did not perform tests with
HM01 using the same setting for all other experiments.

HM01 significantly increased 24-h food intake in 6-OHDA
rats while having no significant effect on that in vehicle
microinjected rats. HM01 also increased body weight gain in
6-OHDA rats with a prominent increase in body fat mass, which
was correlated to food intake, indicative of positive energy intake.
HM01 stimulated feeding possibly involves brain pathways since
HM01 is brain penetrant and activates neurons in nuclei involved
in food regulation, the hypothalamic arcuate nucleus and nucleus
tractus solitarius (Karasawa et al., 2014a). Ghrelin acts centrally
to induce adiposity (Wren et al., 2001; Theander-Carrillo et al.,
2006; Al Massadi et al., 2017) as well as peripherally to increase
lipogenesis (Müller and Tschöp, 2013; Müller et al., 2015). As
HM01 crosses the blood brain barrier, it may act both in the
brain and in the periphery to increase fat mass. The ability of
ghrelin agonist to increase body weight, fat mass and food intake

should be beneficial to PD patients who lose body weight due
to malnutrition, especially in the late stage when patients have a
more prominent loss of fat mass (Mukherjee et al., 2016).

Ghrelin prokinetic effect on GI motility involves the central
nervous system (Poitras and Tomasetto, 2009; Sallam and
Chen, 2010). We demonstrated in our previous study that
oral administration of HM01 increased c-Fos expression in
the lumbosacral spinal intermediolateral column and arcuate
nucleus in the hypothalamus in 6-OHDA rats (Karasawa et al.,
2014a), which bear the central mechanisms regulating colonic
functions (Tebbe et al., 2005; Hirayama et al., 2010; Ferens et al.,
2011). In support of this contention, studies showed that ghrelin
acted in the hypothalamus to stimulate GI motility (Wang
et al., 2015; Huang et al., 2017), and ghrelin and its agonists
improved defecation in rats primarily through lumbo-sacral
spinal component (Hirayama et al., 2010; Pustovit et al., 2014,
2015). Studies should be directed to unveil brain circuity linked
to the mesolimbic pathways for ghrelin agonist modulatory effect
on the GI propulsive motor function (Anselmi et al., 2017;
Garrido-Gil et al., 2018).

In conclusion, our data further demonstrated that 6-OHDA-
induced loss of nigrostriatal DA neurons decreased fecal weight
and water content, which is correlated to a decrease in water
intake. Oral chronic HM01 treatment did not alleviate motor
impairment induced by the 6-OHDA while normalizing the
reduction of body weight, constipation-like feature most likely
by increasing water and food intake and fecal water content,
beside the well-known prokinetic effect on the GI tract (Poitras
and Tomasetto, 2009; Greenwood-Van Meerveld et al., 2011;
Mosińska et al., 2017). The use of orally active, long-acting
ghrelin agonist may be a promising venue to alleviate non-motor
PD symptoms related to energy balance in those patients with
decreased water and food intakes, delayed GI propagation, and
reduced body mass. These beneficial effects will be important to
improve patients’ quality of life (Mosińska et al., 2017).
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