Lawrence Berkeley National Laboratory

Biological Systems & Engineering

Title

Engineered Escherichia coli platforms for tyrosine-derivative production from phenylalanine using phenylalanine hydroxylase and tetrahydrobiopterin-regeneration system

Permalink https://escholarship.org/uc/item/3202s463

Journal

Biotechnology for Biofuels and Bioproducts, 16(1)

ISSN 2731-3654

Authors

Satoh, Yasuharu Fukui, Keita Koma, Daisuke <u>et al.</u>

Publication Date

2023

DOI

10.1186/s13068-023-02365-5

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial License, available at <u>https://creativecommons.org/licenses/by-nc/4.0/</u>

Peer reviewed

1	Engineered Escherichia coli platforms for tyrosine-derivative
2	production from phenylalanine using phenylalanine hydroxylase and
3	tetrahydrobiopterin-regeneration system
4	
5	Yasuharu Satoh ^{1,2*} , Keita Fukui ³ , Daisuke Koma ⁴ , Ning Shen ² , and Taek Soon Lee ⁵
6	
7	¹ Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
8	² Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo
9	060-8628, Japan.
10	³ Ajinomoto Co., Inc., Tokyo 104-8315, Japan.
11	⁴ Osaka Research Institute of Industrial Science and Technology, Osaka 536-8553, Japan.
12	⁵ Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory,
13	Berkeley, CA 94720, USA.
14	
15	*Corresponding author: Tel. & Fax: +81 11 706 7118, E-mail: syasu@eng.hokudai.ac.jp
16	
17	
18	

19 ABSTRACT

Background: Aromatic compounds derived from tyrosine are important and diverse chemicals that have industrial and commercial applications. Although these aromatic compounds can be obtained by extraction from natural producers, their growth is slow, and their content is low. To overcome these problems, many of them have been chemically synthesized from petroleum-based feedstocks. However, because of the environmental burden and depleting availability of feedstock, microbial cell factories are attracting much attention as sustainable and environmentally friendly processes.

27 Results: To facilitate development of microbial cell factories for producing tyrosine 28 derivatives, we developed simple and convenient tyrosine-producing Escherichia coli 29 platforms with a bacterial phenylalanine hydroxylase, which converted phenylalanine to 30 tyrosine with tetrahydromonapterin as a cofactor, using a synthetic biology approach. By 31 introducing a tetrahydrobiopterin regeneration system, the tyrosine titer of the plasmid-32 based engineered strain was 4.63 g/L in a medium supplemented with 5.00 g/L phenylalanine with a test tube. The strains were successfully used to produce industrially 33 34 attractive compounds, such as tyrosol with a yield of 1.58 g/L by installing a tyrosol-35 producing module consisting of genes encoding tyrosine decarboxylase and tyramine oxidase on a plasmid. Gene integration into E. coli chromosomes has an advantage over 36

37 the use of plasmids because it increases genetic stability without antibiotic feeding to the 38 culture media and enables more flexible pathway engineering by accepting more plasmids 39 with artificial pathway genes. Therefore, we constructed a plasmid-free tyrosineproducing platform by integrating five modules, comprising genes encoding the 40 41 phenylalanine hydroxylase and tetrahydrobiopterin regeneration system, into the 42 chromosome. The platform strain could produce 1.04 g/L of 3,4-dihydroxyphenylalanine, 43 a drug medicine, by installing a gene encoding tyrosine hydroxylase and the 44 tetrahydrobiopterin regeneration system on a plasmid. Moreover, by installing the 45 tyrosol-producing module, tyrosol was produced with a yield of 1.28 g/L.

46 **Conclusions:** We developed novel *E. coli* platforms for producing tyrosine from 47 phenylalanine at multi-gram-per-liter levels in test-tube cultivation. The platforms 48 allowed development and evaluation of microbial cell factories installing various 49 designed tyrosine-derivative biosynthetic pathways at multi-grams-per-liter levels in test 50 tubes.

51 Keywords: Phenylalanine hydroxylase, tyrosine, tetrahydrobiopterin, chromosome
52 engineering, hydroxytyrosol.

53

54

55 BACKGROUND

Aromatic compounds are an important class of diverse chemicals with a wide range of industrial and commercial applications, such as nutraceuticals (vitamin E, resveratrol, hydroxytyrosol), pharmaceuticals (3,4-dihydroxyphenylalanine [DOPA], adrenalin, morphine, melatonin), fragrance ingredients (2-phenylethanol, 3-phenylpropanol), and polymers (styrene, hydroxystyrene, tyrosol) **[1–6]**. These compounds can be produced by various plants, algae, fungi, and bacteria from proteinogenic amino acids, with phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp) as precursors.

Although these aromatic compounds can be obtained by extraction from producers, their growth is slow. Additionally, the content of the compounds is low. To overcome these problems, many aromatic compounds have been chemically synthesized from petroleum-based feedstocks. However, because of the environmental burden and depleting availability of feedstock, other sustainable and environmentally friendly processes are required.

Recent remarkable advances in metabolic engineering and synthetic biology have made it possible to develop fermentative processes using microbial cell factories, which utilized natural and non-natural biosynthetic pathways to produce chemicals from renewable resources **[7, 8]**. Aromatic compounds derived from Tyr are important

73	chemicals and various microbial cell factories that produce Tyr derivatives have been
74	developed by already-known and artificially designed biosynthetic pathways that utilize
75	enzymes/genes from different sources [9-11]. Escherichia coli and yeast have been
76	extensively used as hosts [1-4]. Several bacteria were also considered. Among the hosts,
77	E. coli exhibits considerable advantages in the rapid development of microbial cell
78	factories suitable for industrial production because of its high growth rate and well-
79	studied genome and metabolic network as well as the availability of various synthetic
80	biology tools for engineering and established strategies for high-cell-density fermentation
81	in inexpensive media [5].
82	We have succeeded in engineering E. coli to produce DOPA, tyrosol, and
83	hydroxytyrosol from Tyr, which was supplied via a central metabolic pathway and
84	supplemented in cultivation media; however, the titers were low (<1.22 mM) (Figure 1A)
85	[12, 13]. Therefore, for high Tyr-derivative production, enhancement of Tyr supply in <i>E</i> .
86	coli is needed. However, Tyr production by E. coli is limited because its biosynthesis is
87	elaborately regulated [14]. Furthermore, low solubility of Tyr (0.45 g/L [2.5 mM] in water
88	at 25 °C) makes it difficult to feed Tyr into culture broths at high concentrations [15]. To
89	increase Tyr supply, various metabolic engineering approaches, such as deregulation at
90	transcriptional level and overexpression of bottleneck and feedback-resistant enzymes,

91	have been employed [16–18]. Although the titers by flask-scale production were reported
92	to be 2 to 3 g/L by the rationally engineered strains, further enhanced production is
93	necessary for industrial applications.
94	Tyr can be converted from Phe by Phe hydroxylase (PheH) [19, 20]. PheH is an iron-
95	dependent non-heme enzyme that catalyzes para-hydroxylation of Phe using O2 and
96	tetrahydrobiopterin (BH4) as the reducing substrate (Figure 1A). Some bacteria,
97	including Chromobacterium, Pseudomonas, and Xanthomonas species, have PheHs,
98	which use tetrahydromonapterin (MH4) instead of BH4 as the cofactor [21, 22].
99	Previously, we succeeded in engineering an <i>E. coli</i> strain that could oxidize Tyr to DOPA
100	using mouse Tyr hydroxylase (TyrH), a PheH homolog, and endogenous MH4, together
101	with the human BH4 regeneration system, which reduces the oxidized form of the
102	cofactor, quinonoid dihydromonapterin (qMH2) [13]. In this study, we developed a
103	simple and convenient Tyr-supplying E. coli strain by utilizing a bacterial PheH and the
104	human BH4 regeneration system. The Tyr titer of the strain expressing these enzymes
105	with a plasmid was 4.63 g/L (25.5 mM) by feeding 5.00 g/L (30.3 mM) of Phe, a highly
106	water-soluble compound (29.6 g/L [179 mM] in water at 25 °C). To enable more flexible
107	pathway engineering, we also constructed a plasmid-free platform, which was performed
108	by integration of the above-mentioned genes of the PheH and the human BH4

regeneration system into the chromosome. This has an advantage over the use of plasmids because it increases genetic stability without antibiotic feeding into the culture media and accepts more plasmids carrying artificial pathway genes. These platform strains were successfully applied to produce Tyr-derived compounds, such as DOPA, tyrosol, and hydroxytyrosol.

114

115 **RESULTS**

116 Screening of PheHs for Tyr-overproduction.

117 We searched for PheHs with high activities for construction of an E. coli platform to 118 produce Tyr from Phe at a high titer. First, the activity of rat PheH (RatPheH) was 119 examined because the enzyme is well characterized and has been successfully expressed 120 as an active form in E. coli [19, 23]. The RatPheH consists of N-termins regulatory 121 domain and C-terminus catalytic domain. A truncated enzyme lacking the regulatory 122 domain was previously reported to have almost the same activity as the parental enzyme 123 and to be highly expressed in E. coli. Therefore, a codon-optimized DNA fragment 124 encoding only the catalytic domain of the RatPheH (RatPheHc) was synthesized and 125 cloned into the protein expression vector pQE1a-Red (pQE1a-RatC, Table 1, 126 supplementary materials), in which the gene was expressed under the control of the strong

127	tac promoter and repressed by lac operator and lac repressor (LacI). To estimate the net
128	effect of PheH activity for Tyr production, a Tyr-auxotrophic mutant E. coli Y0 strain, in
129	which tyrA encoding bifunctional chorismate mutase/prephenate dehydratase was
130	knocked out [24], was used as host (Table 2, supplementary materials). For regeneration
131	of the cofactor MH4, which is stoichiometrically consumed during the Phe hydroxylation
132	reaction, the human pterin-4 α -carbinolamine dehydratase gene (PCD) and
133	dihydropteridine reductase gene (DHPR) were also coexpressed, in that order, under the
134	control of a <i>lac</i> promoter using plasmid pSTV-BH4R (Figure 1B). The production of the
135	PCD and DHPR was confirmed by Western blot analyses (Figure S1) and the strain Y0
136	harboring pSTV-BH4R was designated as strain YBR (Table 2).
137	Then, the RatPheHc expression in strain YBR, harboring pQE1a-RatC, was analyzed
138	by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). As shown
139	in Figure S2, soluble expression of the RatPheHc was confirmed. To examine Tyr
140	production, the transformant was cultured in M9Y medium, including 30.3 mM (5.00
141	g/L) Phe and 1.0%(w/v) glucose, for 48 h in test tubes, and the product was analyzed by
142	high-performance liquid chromatography (HPLC). As shown in Figure 2A,
143	approximately 0.443 \pm 0.030 mM (0.080 g/L) of Tyr was produced even though nearly

145	The oxidized form of cofactor qMH2 generated during the Phe hydroxylation
146	reaction is reduced by DHPR with NADH. Glycerol reportedly regenerates NADH more
147	effectively than glucose [25]; thus, glycerol was used as the sole carbon source. Although
148	the Tyr titer was improved to 1.09 ± 0.19 mM (0.197 g/L), most of the Phe still remained
149	in the culture medium (Figure 2B). In addition, after 24 h of cultivation, cell growth was
150	slower than when glucose was used as carbon source.
151	To further improve the productivity, we next examined the activities of seven other
152	bacterial PheHs. The genes were selected from different classes of bacteria, including
153	Bacillus sp. INT005 (BsPheH) [26] from Bacilli; Cupriavidus necator (CnPheH),
154	Chromobacterium violaceum (CvPheH) and Gulbenkiania sp. SG4523 (GsPheH1 and
155	GsPheH2) from β -proteobacteria; and Xanthomonas oryzae (XoPheH) and Pseudomonas
156	putida (PpPheH) from γ -proteobacteria. The identities of PheHs among these enzymes
157	are 20% to 70% (Table S1). Polymerase chain reaction (PCR) amplified-DNA fragments
158	encoding PheHs were cloned into the protein expression vector pQE1a-Red and used for
159	Tyr production in the same manner as described above. As shown in Figure S2, we
160	confirmed that all enzymes were produced as soluble forms in the strain YBR by SDS-
161	PAGE analysis. In terms of Tyr production (Figures 3A and 3B), a strain YBR carrying
162	<i>GsPheH1</i> yielded the highest titer (24.7 \pm 1.3 mM [4.48 g/L]) among the tested PheHs at

163 48 h of cultivation. Therefore, *GsPheH1* was selected for further analyses.

164

165 Plasmid-based Tyr-producing platform

166 Construction of plasmid-based Tyr-producing platform

167 To construct pathways for Tyr-derivative production, many pathway genes are 168 introduced into the host cell. From this point of view, the number of plasmids carrying 169 genes encoding PheH and co-factor regeneration enzymes should be minimal. Therefore, 170 we constructed plasmid pQE1a-Gs1-BH4R (Figure 1B and Table 1), which co-expresses 171 GsPheH1 and the BH4-regeneration genes, which encode PCD and DHPR, as described 172 in supplementary materials. As shown in Figure 3C, strain Y0 harboring pQE1a-Gs1-173 BH4R, designated as strain PGs (Table 2), converted most of the Phe to Tyr, 25.5 ± 1.6 174 mM (4.63 g/L) after 48 h of cultivation. The cell growth and Tyr titer (24.2 \pm 1.7 mM 175 [4.39 g/L]) at 24 h of cultivation were markedly improved when compared with those of 176 strain YBR harboring pQE1a-Gs1 (Figure 3B). Therefore, we then applied strain PGs for 177 Tyr-derivative production.

178

179 Application of a plasmid-based Tyr-producing platform strain

180 We evaluated the above-mentioned plasmid-based Tyr-producing platform by

181	measuring tyrosol productivity. Tyrosol is an attractive phenolic compound used for
182	pharmaceuticals and fine chemicals [27–29]. We have constructed a tyrosol biosynthetic
183	pathway from Tyr via three steps: decarboxylation of Tyr to tyramine, deamination of
184	tyramine to 4-hydroxyphenylacetaldehyde (HPAAld), and reduction of HPAAld to
185	tyrosol (Figure 1A) [12]. As endogenous enzyme(s) in E. coli, such as alcohol
186	dehydrogenase(s), can catalyze the reduction of HPAAld to tyrosol, two genes encoding
187	Tyr decarboxylase (TDC) from Papaver somniferum and tyramine oxidase (TYO) from
188	Micrococcus luteus were introduced into the Tyr producer. We previously constructed a
189	plasmid, pBbS1a-2, which carried the TDC- and TYO-encoding genes, but the selection
190	marker was ampicillin-resistance (Ap ^R), which is the same as pQE1a-Gs1-BH4R. We
191	therefore reconstructed plasmids with a pCF1s-Red vector (streptomycin-resistance
192	marker [Sm ^R], pCDF ori) as described in supplementary materials. The TDC- and TYO-
193	encoding genes were cloned as artificial operons into pCF1s-Red, so that the order of the
194	two genes was interchanged to make pCF1s-TDC-TYO and pCF1s-TYO-TDC,
195	respectively (Figure 1B). When the transformants were cultured in M9Y medium with
196	30.3 mM (5.00 g/L) Phe for 72 h at 30 °C, tyrosol was produced with a yield of 4.93 \pm
197	0.31 mM (0.682 g/L) by strain PGs harboring pCF1s-TYO-TDC, while 11.5 \pm 1.2 mM
198	(1.58 g/L) was yielded by strain PG harboring pCF1s-TDC-TYO, which is 2.3-fold higher

199	than that of the former strain (Figure 4A and 4B). The results suggested that the gene
200	order in the operon was crucial for increased titer. Thus, we demonstrated that the
201	platform could be applicable for Tyr-derivative-producing pathways.
202	
203	Plasmid-free Tyr-producing platform
204	Integration of Tyr-producing module into E. coli chromosome
205	Gene integration into the E. coli chromosome offers considerable advantages over
206	the use of plasmids, especially for large scale industrial applications [18, 30]. It increases
207	genetic stability without antibiotic feeding of the culture media and enables more flexible
208	pathway engineering as more plasmids carrying artificial pathway genes are acceptable.
209	Therefore, we attempted to develop a plasmid-free Tyr-supplying platform E. coli strain
210	by integrating GsPheH1 and BH4-regeneration-related genes into the chromosome as a
211	cassette (Tyr-producing module).
212	For integration of the Tyr-producing module into the E. coli chromosome, we
213	employed the bacteriophage λ Red recombineering system [31–33]. As an integration site,
214	we selected the <i>tyrA</i> locus because the <i>tyrA</i> -knockout mutant Y0 could be recovered by
215	introduction of GsPheH1 and BH4-regeneration-related genes as described above. As
216	described in supplementary materials, the desired strain GsBR1 was successfully

217 obtained and then evaluated for its Tyr production (Figure 5). When cultivated under the 218 same conditions mentioned above, Tyr productivity was markedly decreased, to $0.252 \pm$ 219 0.012 mM (0.046 g/L), when compared with that of the plasmid-based strain PGs (Figure 220 3C). Considering that the copy number of pQE vectors used for the plasmid-based 221 platform is 20 to 30 (Qiagen, Dusseldorf, Germany), the low productivity was likely due 222 to gene dosage of the Tyr-producing module. 223 To improve Tyr productivity, the module was additionally integrated into the *feaB*-224 tynA region of strain GsBR1 because the region was already knocked out. We obtained 225 the strain by the method described in the supplementary materials and it was designated 226 as strain GsBR2. The Tyr titer of the constructed strain was slightly enhanced to $0.705 \pm$ 227 0.023 mM (0.128 g/L), compared to that of strain GsBR1 (Figure 5), but was still lower 228 than that of the plasmid-based strain PGs. 229 230 Stepwise and scarless integration of the Tyr-supplying module at different locations of the chromosome using λRed recombinase 231 232 As demonstrated with the construction of the strains, GsBR1 and GsBR2, λ Red

- recombineering is a powerful tool for integration of a DNA fragment prepared by PCR
- 234 into the desired chromosomal site of *E. coli*. In general, an antibiotic-resistance marker is

235 repeatedly used for gene integration and knockout and is removed with flippase 236 (FLP)/FLP recognition target (FRT) recombination for marker recycling [32, 33]. 237 However, multiple FRT-sequences (scars) left on the chromosome can induce 238 chromosomal deletion and rearrangements between undesired FRT-sequences in the 239 FLP/FRT recombination reaction. We therefore attempted to develop a genome-240 engineering method without scar sequences based on λ Red-based recombineering and 241 auxotrophy complementation. The scheme depicting our process is shown in Figure 6. At 242 first, an essential gene for E. coli was selected as the target locus for module integration 243 and its knockout mutant was constructed by the λ Red-mediated recombination method, 244 using an appropriate antibiotic-resistance gene. The auxotrophic mutant was then 245 transformed with λ Red recombinase and the DNA fragment assembled the essential gene, 246 the target module, and attached homology arms for chromosome integration. Finally, 247 DNA integration in recombinant cells showing recovery of the auxotrophic phenotype 248 was confirmed by PCR and sequence analysis. To reduce unexpected effects on 249 downstream genes by the module integration, we selected essential genes that were least 250 likely to form an operon structure with downstream genes.

251 To examine the effectivity of this strategy, *aroD* (3-dehydroquinate dehydratase 252 gene), essential for aromatic amino acid production [24, 34], was targeted. A DNA

253	fragment, comprised aroD and the Tyr-producing module, was replaced with the
254	kanamycin (Km)-resistance marker in the chromosome of an aroD-knockout mutant
255	which was derived from strain GsBR2 (strain GsBR2 $\Delta aroD$) as described in
256	supplementary materials. After selection in the M9 minimal medium, we successfully
257	obtained a recombinant strain (GsBR3). Furthermore, the Tyr-producing module was also
258	integrated downstream of cysE (serine O-acetyltransferase gene) and serA (3-
259	phosphoglycerate dehydrogenase gene), in the same manner as for <i>aroD</i> , to construct
260	strains GsBR4 and GsBR5, respectively (supplementary materials). As shown in Figure
261	5, depending on the number of the Tyr-producing modules, Tyr production by strains
262	GsBR3 to GsBR5 after 48 h of cultivation was almost linearly enhanced up to 3.23 ± 0.09
263	mM (0.586 g/L), which was approximately 13-fold higher than that of strain GsBR1.
264	However, the titer of strain GsBR5 was merely 12.6% of that of strain PGs.
265	
266	Application of plasmid-free Tyr-producing platform for its derivatives production
267	We next evaluated the plasmid-free platform based on DOPA and tyrosol production.
268	We first examined the production of DOPA, which is used as a drug for treatment of
269	Parkinson's disease [35]. We previously reported that DOPA was produced from Tyr in <i>E</i> .
270	coli expressing the mouse TyrH-encoding gene together with human BH4-regeneration-

271	related genes on the pBbE1k-3 plasmid [13]. We therefore used this plasmid, which
272	included TyrH, DHPR, and PCD as an operon in this order, under the control of trc
273	promoter (DOPA-producing module). The DOPA productivity of transformant of strain
274	GsBR5 harboring pBbE1k-3 (Figure 7A) was 5.28 ± 0.04 mM (1.04 g/L), demonstrating
275	that strain GsBR5 can be used to produce DOPA. Interestingly, the titer exceeded Tyr
276	production (3.23 mM) of the host strain GsBR5, suggesting that the BH4-regeneration
277	system, additionally introduced by the plasmid pBbE1k-3, elevated Tyr production. To
278	investigate this speculation, Tyr production of strain GsBR5 harboring pSTV-BH4R was
279	examined (Figure 5). As expected, the titer was markedly increased and reached 15.8 \pm
280	0.5 mM (2.86 g/L) after 48 h of cultivation. In contrast, additional GsPheH1 expression
281	was poorly effective for Tyr production (Figure 5). Taken together, the cofactor
282	regeneration step is a bottleneck in strain GsRB5.
283	Next, we evaluated tyrosol production using pCF1s-TDC-TYO. This transformant of
284	strain GsBR5 produced 4.41 \pm 0.20 mM (0.609 g/L) tyrosol at 72 h. Furthermore, strain
285	GsBR5 harboring pCF1s-TDC-TYO-BH4R, a derivative of pCF1s-TDC-TYO that had
286	the BH4-regeneration genes inserted to improve the rate-limiting step of the host strain,
287	produced 2.1-fold more tyrosol (9.27 \pm 0.64 mM [1.28 g/L]) (Figure 7B), which was
288	comparable to that of the plasmid-based platform with strain PGs harboring pCF1s-TDC-

TYO (11.5 mM), indicating that the additional introduction of the BH4-regeneration
system was effective for increased production.

291 Furthermore, we attempted to convert strain GsBR5 harboring the DOPA-producing 292 module to hydroxytyrosol-producing cells. Hydroxytyrosol is a powerful antioxidant and 293 used for human health promotion [36, 37]. Hydroxytyrosol is obtained from DOPA by 294 three steps similar to those involved in tyrosol production; decarboxylation of DOPA, 295 deamination of dopamine, and reduction of 3,4-dihydroxyphenylacetaldehyde 296 (DHPAAld, Figure 1A) [13]. For specific production of hydroxytyrosol without 297 byproducts, a DOPA-specific decarboxylase (DDC) from Sus scrofa, which does not 298 recognize Tyr [38], was used. Since hydroxytyrosol is obtained from dopamine by TYO 299 from M. luteus, and endogenous alcohol dehydrogenase(s) in E. coli, the already-300 constructed plasmid pBbS1a-3, which includes the genes encoding DDC and TYO as an 301 operon in this order under the control of a trc promoter (hydroxytyrosol-producing 302 module), was used. Strain GsBR5 harboring pBbE1k-3 and pBbS1a-3 was cultured using 303 the same procedures described above. As shown in Figure 8, 0.147 ± 0.015 mM (0.023) 304 g/L) hydroxytyrosol was produced. This titer was rather low, considering that DOPA 305 production of strain GsBR5 harboring pBbE1k-3 was 5.28 ± 0.04 mM (1.04 g/L, Figure 306 7A). Since growth inhibition of GsBR5 harboring pBbE1k-3 and pBbS1a-3 was observed

307	(Figure S3), additional expression of DDC and TYO would negatively affect the cell
308	growth. Therefore, we cultivated the strain under various conditions by varying
309	isopropyl- β -D-thiogalactopyranoside (IPTG) concentrations. Consequently, growth
310	inhibition was relieved depending on a decrease in IPTG concentration (Figure S3). The
311	titer of hydroxytyrosol production was also enhanced to 0.253 ± 0.006 mM (0.039 g/L)
312	by addition of 100 μ M IPTG (Figures 8). Thus, strain GsBR5 could be applied to develop
313	microbial cell factories with multi-modules for Tyr-derivative production.

315 **DISCUSSION**

316 In this study, we reported novel E. coli platforms for producing Tyr from Phe, using 317 Gulbenkiania sp. PheH1 together with human BH4-regeneration system, at multi-gram-318 per-liter levels in test-tube cultivation. The titer of our engineered strain using a plasmid 319 (strain PGs) was higher than those of rationally engineered Tyr-overproducing strains in 320 flask cultivation (3.0 g/L, 16.6 mM) [17]. In addition, our developed platform strains were 321 successfully applied for producing industrially valuable aromatic compounds, DOPA, 322 tyrosol, and hydroxytyrosol, and the titers were improved, compared to those previously 323 reported [12, 13]. Furthermore, we successfully optimized the tyrosol-producing module 324 and revealed a bottleneck step in the hydroxytyrosol-producing pathway. Therefore, the engineered strains would be useful for the efficient development of already known and
artificially designed biosynthetic pathways. Moreover, this would enable us easy access
to adequate amount of rare natural Tyr-derivatives for further analysis.

328 In terms of hydroxytyrosol production, the titer of strain GsBR5 as a host (0.253 mM, 329 0.039 g/L) was improved compared with that (0.19 mM, 0.029 g/L) of E. coli $\Delta feaB$ with 330 both DOPA- and hydroxytyrosol-producing modules in cultures fed 1 mM Tyr [13]. 331 However, it was quite low, considering that the strain GsBR5 with the DOPA-producing 332 module produced 5.28 mM (1.04 g/L) of DOPA. Recently, Nakagawa et al. reported that 333 rat TyrH activity was inhibited by DDC from Pseudomonas putida [39]. In our 334 experiment, mouse TyrH activity was likely inhibited by pig DDC. We need further 335 analysis to elucidate this inhibition effect to improve productivity.

Effective DOPA-producing pathways in microbial cells have garnered much attention for fermentative production of natural plant products, such as the benzylisoquinoline alkaloids, morphine and codeine, and the pigment betalains [**39–42**]. For benzylisoquinoline alkaloid production, a tyrosinase has been used to produce DOPA from Tyr. The enzyme catalyzes multiple oxidation reactions, including Tyr to DOPA and DOPA to *ortho*-quinone, using molecular oxygen. This overoxidation results in low product yield. In contrast, the yield has been improved by utilization of monooxygenase

343	TyrH from <i>Drosophila melanogaster</i> ; overcoming the overoxidation issue of tyrosinase.
344	Therefore, TyrHs are widely applicable for development of microbial cell factories that
345	can produce various DOPA derivatives. Since the accumulation of Tyr (4.61 mM) was
346	detected under our experimental conditions, as shown in Figure 7A, we need to optimize
347	the cultivation conditions and/or search for and engineer more active enzymes for
348	increased production of DOPA.
349	To facilitate engineering of microbial cell factories in a high-throughput fashion,
350	Design-Build-Test-Learn cycles can be applied for optimization and fine-tuning of the
351	designed biosynthetic pathways. In these cycles, combinatorial DNA parts, consisting of
352	the relevant genes with promoters of different strength, ribosome binding sites of different
353	translation efficiency, and artificial operons in various gene orders, are constructed,
354	introduced into the microbial cells, and evaluated in parallel. The key cultivation
355	parameters are monitored in real time using optical measurement systems [43]. Recent
356	advancements in <i>in vivo</i> biosensors, used to evaluate the concentration of products and
357	intermediates, coupled to fluorescence proteins, which produce a real-time output signal,
358	make the optical measurement more sensitive and reliable. However, Tyr precipitates
359	would interfere with these optical measurements, owing to the addition of the reactant to
360	the medium at high concentrations. In contrast, the platform strains preventing the issue

361 would accelerate the efficient development of microbial cell factories.

362 Our ultimate goal was the development of microbial cell factories to produce Tyr-363 derivatives from renewable resources of biomass. To achieve this, the pathways 364 (modules), optimized by our platform strains, can be installed into strains already 365 engineered for Tyr-overproduction from biomass. Phe-overproducing strains can also be 366 employed by installing the pathways (modules) together with PheH and a BH4-367 regeneration system. In fact, Huang et al. reported production of 2.21 mM (0.401 g/L) Tyr by a strain overexpressing a bacterial PheH gene, as well as genes responsible for the 368 369 shikimate pathway and MH4 biosynthesis and recycling [44]. The Phe producers with a 370 PheH may have advantages over Tyr producers, because the Phe titer of engineered strains 371 (over 6 g/L) is higher than the Tyr titer of Tyr producers [45, 46]. In addition, some Tyr 372 producers are *pheA* knockout mutants (Phe auxotrophy) due to the increased metabolic 373 flux toward Tyr from chorismate and require Phe supplementation [18]. Conversely, Phe 374 producers with PheH do not require Phe supplementation. As another approach, we would 375 employ modular co-culture metabolic engineering approach [47-49]. In this case, the 376 strains with Tyr-derivative-producing module(s) produce appropriate compounds using 377 Phe, which is biosynthesized from biomass by the Phe producer, under co-culture 378 conditions.

379	Remarkable progress of Clustered Regularly Interspaced Short Palindromic Repeats
380	(CRISPR)/CRISPR-associated protein (Cas) technology in recent years has vastly
381	facilitated genome editing of various organisms, including prokaryotes and eukaryotes.
382	This technology is also now used widely for chromosome engineering to develop
383	metabolic engineered strains [11, 50]. Compared to the described method that uses λ Red
384	recombinase, CRISPR/Cas technology allows for more flexible scarless integration of a
385	DNA fragment into the chromosome. However, this system poses the risk of off-target
386	effects, which induces mutation at untargeted sites. To reduce this unwanted effect,
387	selection of appropriate CRISPR/Cas tools and careful design of a guide-RNA sequence
388	are needed. Taking this into account, the scarless gene integration method based on the
389	commonly used λRed recombination would be advantageous.
390	
391	CONCLUSIONS
392	In this study, we developed simple and convenient Tyr-producing E. coli platforms,
393	which employ a bacterial PheH and a human BH4-regeneration system, using

endogenous MH4 as a cofactor. These platforms produced Tyr in multi-gram-per-liter
levels from Phe supplemented as the substrate. These platforms allowed development and

396 evaluation of various designed Tyr-derivative biosynthetic pathways. The usefulness of

397	the platforms was demonstrated using DOPA, tyrosol, and hydroxytyrosol production as
398	examples. Furthermore, to facilitate development of chromosome engineering strains for
399	metabolic engineering, we showed a scarless gene integration method based on the well-
400	established λRed recombineering system combined with complementation of auxotrophic
401	phenotypes.
402	
403	MATERIALS AND METHODS
404	General
405	All media, chemicals, and reagents were of analytical grade and were purchased
406	from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan), Sigma-Aldrich Japan
407	K.K. (Tokyo, Japan), KANTO CHEMICAL Co., Inc. (Tokyo, Japan), or Tokyo Chemical
408	Industry Co., Ltd. (Tokyo, Japan). Synthetic genes were purchased from Integrated DNA
409	Technologies, Inc. (Coralville, IA, USA). PCR was performed using a GeneAmp PCR
410	System 9700 thermal cycler (Thermo Fisher Scientific Inc., Waltham, MA, USA) with
411	KOD DNA polymerase (Toyobo Co. Ltd, Osaka, Japan) according to the manufacturer's
412	protocols. General genetic manipulations of <i>E. coli</i> were performed according to standard
413	protocols.

415 Bacterial strains and cultures

416	The strains used in this study are summarized in Table 2. Escherichia coli JM109
417	(Nippon Gene Co., Ltd, Tokyo, Japan) was routinely used for plasmid construction. For
418	Tyr production, E. coli BW25113 derivatives were used.
419	The growth medium routinely used was LB broth medium (Lennox; Sigma-Aldrich
420	Japan K.K.). M9 minimal medium [M9 minimal salts (Becton, Dickinson and Company,
421	Franklin Lakes, NJ, USA), 0.4 or 1.0%(w/v) carbon sources (glucose or glycerol), 5 mM
422	MgSO ₄ , 0.1 mM CaCl ₂] supplemented with 0.1%(w/v) yeast extract (M9Y medium) was
423	used for Tyr production. Ampicillin (Ap), chloramphenicol (Cm), streptomycin (Sm), and
424	kanamycin (Km) were added to media at 100, 30, 20, and 25 mg/L, respectively, to
425	maintain plasmids. For the selection of gene knockout mutants, Km was used at 13 mg/L.
426	
427	Plasmid construction
428	Plasmids used in this study are listed in Table 1 and Figure 1B. Detailed methods
429	for plasmid construction are described in the supplementary materials.
430	
431	Production of Tyr and its derivatives.

Escherichia coli strains harboring appropriate plasmids were pre-cultured in M9Y

433 medium containing 0.4%(w/v) glucose or glycerol for 16 h at 30 °C. After inoculating 434 appropriate amounts of the precultures into 3 mL of M9Y medium so that optical density (OD) at 600 nm to 0.15, they were incubated at 30 °C with shaking (200 rpm). The 435 medium contained 5.00 g/L (30.3 mM) Phe, 20 mg/L FeSO4·7H2O, and 10 g/L 436 437 (1.0%[w/v]) of the same carbon sources used for pre-cultivation with test tubes. To induce 438 protein expression, IPTG was added to a final concentration of 500 µM at 4 h of 439 cultivation, unless noted otherwise. Samples (300 µL) were collected at appropriate time-440 points and were analyzed by HPLC. OD measurements at 600 nm were also taken using 441 a NanoDrop 2000C spectrophotometer (Thermo Fisher Scientific Inc.), using cuvettes 442 after dilution in a 1 N HCl solution.

443

444 HPLC analysis

Culture aliquots (50 μ L) mixed with 1 N HCl (200 μ L) were heated at 50 °C for 30 min. After centrifugation, the supernatants (2 μ L) were analyzed using a Shimadzu HPLC system (Shimadzu Co., Kyoto, Japan), equipped with an InertSustain C18 column (column length, 150 mm; inner diameter, 2.1 mm; particle size, 3 μ m; GL Science Inc., Tokyo, Japan). Buffer A (0.1%[v/v] formic acid solution) and buffer B (methanol with 0.1%[v/v] formic acid) were used as a mobile phase, and compounds were eluted at 35 °C

451	and a flow rate of 0	.2 mL/min.	with increasing	concentrations of	of buffer E	3 as follows: 2%.
-	-)	0			

- 452 0-3 min; 2–30%, 3–35 min. Eluted compounds were detected by measuring absorbance
- 453 at 210 and 280 nm.
- 454
- 455 LIST OF ABBREVIATIONS
- 456 Ap, Ampicillin
- 457 BH4, tetrahydrobiopterin
- 458 Cas, CRISPR-associated protein
- 459 Cm, chloramphenicol
- 460 CRISPR, clustered regularly interspaced short palindromic repeats
- 461 DHPR, dihydropteridine reductase
- 462 DOPA, 3,4-dihydroxyphenylalanine
- 463 FLP, flippase
- 464 FRT, flippase recognition target
- 465 HPAAld, 4-hydroxyphenylacetaldehyde
- 466 HPLC, high-performance liquid chromatography
- 467 IPTG, isopropyl-β-D-thiogalactopyranoside
- 468 Km, kanamycin

469	MH4,	tetrahydr	omonapterin
		2	

- 470 OD, optical density
- 471 PCD, pterin- 4α -carbinolamine dehydratase
- 472 Phe, phenylalanine
- 473 PheH, phenylalanine hydroxylase
- 474 qMH2, quinonoid dihydromonapterin
- 475 RatPheH, rat phenylalanine hydroxylase
- 476 RatPheHc, catalytic domain of rat phenylalanine hydroxylase
- 477 Sm, streptomycin
- 478 TDC, tyrosine decarboxylase
- 479 Trp, tryptophan
- 480 TYO, tyramine oxidase
- 481 Tyr, tyrosine
- 482 TyrH, tyrosine hydroxylase
- 483

484 SUPPLEMENTARY INFORMATION

485 The online version contains supplementary material available at xxx.

487 **DECLARATIONS**

488	Ethics approval and consent to participate
-----	--

489 Not applicable

490

491	Consent for publica	tion
-----	----------------------------	------

492 Not applicable

493

494 Availability of data and materia	ability of data and materials
--------------------------------------	-------------------------------

495 All data generated or analyzed during this study are included in this published article

496 and its supplementary information files.

497

498 **Competing interests**

499 The authors declare that they have no competing interests.

500

501 Funding

502 This work was supported by JSPS KAKENHI Grant Number JP16K06864 and

- 503 JP22K04835 to Y.S. This work was also granted from ENEOS TONENGENERAL
- 504 Research/Development Encouragement & Scholarship Foundation, KOSÉ Cosmetology

505	Research Foundation, and The Akiyama Life Science Foundation to Y.S. N.S. was
506	supported by Hokkaido University Ambitious Doctoral Fellowship by the Ministry of
507	Education, Culture, Sports, Science and Technology (MEXT).
508	
509	Authors' contributions
510	Yasuharu Satoh: Conceptualization, Methodology, Investigation, Visualization,
511	Writing – Original Draft, Writing – Review & Editing.
512	Keita Fukui: Conceptualization, Methodology, Writing – Review & Editing.
513	Daisuke Koma: Methodology, Investigation, Writing – Review & Editing.
514	Ning Shen: Validation.
515	Taek Soon Lee: Methodology, Writing – Review & Editing.
516	
517	Acknowledgement
518	We would like to thank Professor Tohru Dairi (Hokkaido University) for valuable
519	discussions.
520	
521	REFERENCES
522	1. Averesch NJH, Krömer JO. Metabolic engineering of the shikimate pathway for

523		production of aromatics and derived compounds-present and future strain
524		construction strategies. Front Bioeng Biotechnol. 2018;6:32.
525	2.	Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the
526		production of aromatic amino acid pathway derivatives: from commodity
527		chemicals to plant-sourced natural products. Metab Eng. 2020;58:94-132.
528	3.	Thompson B, Machas M, Nielsen DR. Creating pathways towards aromatic
529		building blocks and fine chemicals. Curr Opin Biotechnol. 2015;36:1–7.
530	4.	Shen YP, Niu FX, Yan ZB, Fong LS, Huang YB, Liu JZ. Recent advances in
531		metabolically engineered microorganisms for the production of aromatic
532		chemicals derived from aromatic amino acids. Front Bioeng Biotechnol.
533		2020;8:407.
534	5.	Yang D, Park SY, Park YS, Eun H, Lee SY. Metabolic engineering of Escherichia
535		coli for natural product biosynthesis. Trends Biotechnol. 2020;38:745-65.
536	6.	Robinson CJ, Carbonell P, Jervis AJ, Yan C, Hollywood KA, Dunstan MS, Currin
537		A, Swainston N, Spiess R, Taylor S et al. Rapid prototyping of microbial
538		production strains for the biomanufacture of potential materials monomers. Metab
539		Eng. 2020;60:168–82.
540	7	Nichard I. Tillion of CD. Determined D. Landerstein A. 1. S. 1. (1)

540 7. Nielsen J, Tillegreen CB, Petranovic D. Innovation trends in industrial

541		biotechnology. Trends Biotechnol. 2022;40:1160-72.
542	8.	Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom
543		E. Microbial production of advanced biofuels. Nat Rev Microbiol. 2021;19:701-
544		15.
545	9.	Xu X, Liu Y, Du G, Ledesma-Amaro R, Liu L. Microbial chassis development for
546		natural product biosynthesis. Trends Biotechnol. 2020;38:779-96.
547	10.	Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. Systems metabolic
548		engineering strategies: integrating systems and synthetic biology with metabolic
549		engineering. Trends Biotechnol. 2019;37:817-37.
550	11.	Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE, Lee SY. Tools and strategies
551		of systems metabolic engineering for the development of microbial cell factories
552		for chemical production. Chem Soc Rev. 2020;49:4615-36.
553	12.	Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. Engineering of a tyrosol-
554		producing pathway, utilizing simple sugar and the central metabolic tyrosine, in
555		Escherichia coli. J Agric Food Chem. 2012;60:979-84.
556	13.	Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. Engineering of L-tyrosine
557		oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metab
558		Eng. 2012;14:603–10.

559	14.	Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F.
560		Engineering Escherichia coli to overproduce aromatic amino acids and derived
561		compounds. Microb Cell Fact. 2014;13:126.
562	15.	Zimmer A, Mueller R, Wehsling M, Schnellbaecher A, von Hagen J. Improvement
563		and simplification of fed-batch bioprocesses with a highly soluble
564		phosphotyrosine sodium salt. J Biotechnol. 2014;186:110-8.
565	16.	Juminaga D, Baidoo EE, Redding-Johanson AM, Batth TS, Burd H,
566		Mukhopadhyay A, Petzold CJ, Keasling JD. Modular engineering of L-tyrosine
567		production in Escherichia coli. Appl Environ Microbiol. 2012;78:89-98.
568	17.	Kim SC, Min BE, Hwang HG, Seo SW, Jung GY. Pathway optimization by re-
569		design of untranslated regions for L-tyrosine production in Escherichia coli. Sci
570		Rep. 2015;5:13853.
571	18.	Koma D, Kishida T, Yoshida E, Ohashi H, Yamanaka H, Moriyoshi K, Nagamori
572		E, Ohmoto T. Chromosome engineering to generate plasmid-free phenylalanine-
573		and tyrosine-overproducing Escherichia coli strains that can be applied in the
574		generation of aromatic-compound-producing bacteria. Appl Environ Microbiol.
575		2020;86:e00525-20.
576	19.	Daubner SC, Hillas PJ, Fitzpatrick PF. Characterization of chimeric pterin-

- dependent hydroxylases: contributions of the regulatory domains of tyrosine and
 phenylalanine hydroxylase to substrate specificity. Biochemistry 1997;36:11574–
 82.
- 580 20. Flydal MI, Martinez A. Phenylalanine hydroxylase: function, structure, and 581 regulation. IUBMB Life 2013;65:341–9.
- 582 21. Onishi A, Liotta LJ, Benkovic SJ. Cloning and expression of Chromobacterium
- violaceum phenylalanine hydroxylase in Escherichia coli and comparison of
 amino acid sequence with mammalian aromatic amino acid hydroxylases. J Biol
 Chem. 1991;266:18454–9.
- 586 22. Pribat A, Blaby IK, Lara-Núñez A, Gregory 3rd JF, de Crécy-Lagard V, Hanson
- 587 AD. FolX and FolM are essential for tetrahydromonapterin synthesis in
- 588 Escherichia coli and Pseudomonas aeruginosa. J Bacteriol. 2010;192:475–82.
- 589 23. Daubner SC, Melendez J, Fitzpatrick PF. Reversing the substrate specificities of
- 590 phenylalanine and tyrosine hydroxylase: aspartate 425 of tyrosine hydroxylase is
- 591 essential for L-DOPA formation. Biochemistry 2000;39:9652–61.
- 592 24. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita
- 593 M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-
- 594 gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008.

595	25.	da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon
596		source for industrial microbiology. Biotechnol Adv. 2009;27:30-9.
597	26.	Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M. Isolation
598		and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate
599		(PHA) from gas field soil. J Biosci Bioeng. 2003;95:77-81.
600	27.	Yoo S. Antihypertensive polyhalohydroxyisopropyl phenylalka(e)noic acid esters
601		of alkylaminohydroxypropyloxyphenylalkyl alcohols. U.S. Patent 1984;4450172.
602	28.	Ippolito RM, Vigmond S. Process for preparing substituted phenol ethers via
603		oxazolidine-structure intermediates. U.S. Patent 1988;4760182.
604	29.	Granado L, Tavernier R, Henry S, Auke RO, Foyer G, David G, Caillol S. Toward
605		sustainable phenolic thermosets with high thermal performances. ACS Sustain
606		Chem Eng. 2019;7:7209–17.
607	30.	Santos CNS, Regitsky DD, Yoshikuni Y. Implementation of stable and complex
608		biological systems through recombinase-assisted genome engineering. Nat
609		Commun. 2013;4:2503.
610	31.	Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in
611		Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A.
612		2000;97:6640–5.

613	32.	Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL.
614		Recombineering: in vivo genetic engineering in E. coli, S. enterica, and Beyond.
615		Methods Enzymol. 2007;421:171–99.
616	33.	Sharan SK, Thomason LC, Kuznetsov SG, Court DL. Recombineering: a
617		homologous recombination-based method of genetic engineering. Nat Protoc.
618		2009;4:206–23.
619	34.	Satoh Y, Kuratsu M, Kobayashi D, Dairi T. New gene responsible for para-
620		aminobenzoate biosynthesis. J Biosci Bioeng. 2014;117:178-83.
621	35.	Di Luca DG, Reyes NGD, Fox SH. Newly approved and investigational drugs for
622		motor symptom control in Parkinson's Disease. Drugs 2022;82:1027-53.
623	36.	Omar SH: Oleuropein in olive and its pharmacological effects. Sci Pharm.
624		2010;78:133–54.
625	37.	Martínez-Zamora L, Peñalver R, Ros G, Nieto G. Olive tree derivatives and
626		hydroxytyrosol: their potential effects on human health and its use as functional
627		ingredient in meat. Foods 2021;10:2611.
628	38.	Blechingberg J, Holm IE, Johansen MG, Børglum AD, Nielsen AL. Aromatic L-
629		amino acid decarboxylase expression profiling and isoform detection in the
630		developing porcine brain. Brain Res. 2010;1308:1–13.

631	39.	Nakagawa A, Nakamura S, Matsumura E, Yashima Y, Takao M, Aburatani S, Yaoi
632		K, Katayama T, Minami H. Selection of the optimal tyrosine hydroxylation
633		enzyme for (S)-reticuline production in Escherichia coli. Appl Microbiol
634		Biotechnol. 2021;105:5433-47.
635	40.	Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete
636		biosynthesis of opioids in yeast. Science 2015;349:1095-100.
637	41.	Grewal PS, Modavi C, Russ ZN, Harris NC, Dueber JE. Bioproduction of a
638		betalain color palette in Saccharomyces cerevisiae. Metab Eng. 2018;45:180-8.
639	42.	Matsumura E, Nakagawa A, Tomabechi Y, Ikushiro S, Sakaki T, Katayama T,
640		Yamamoto K, Kumagai H, Sato F, Minami H. Microbial production of novel
641		sulphated alkaloids for drug discovery. Sci Rep. 2018;8:7980.
642	43.	Hemmerich J, Noack S, Wiechert W, Oldiges M. Microbioreactor systems for
643		accelerated bioprocess development. Biotechnol J. 2018;13:1700141.
644	44.	Huang J, Lin Y, Yuan Q, Yan Y. Production of tyrosine through phenylalanine
645		hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli. J Ind
646		Microbiol Biotechnol. 2015;42:655–9.
647	45.	Zhou H, Liao X, Wang T, Du G, Chen J. Enhanced L-phenylalanine biosynthesis
648		by co-expression of pheA ^{fbr} and aroF ^{wt} . Bioresour Technol. 2010;101:4151–6.

649	46.	Wu WB, Guo XL, Zhang ML, Huang QG, Qi F, Huang JZ. Enhancement of L-
650		phenylalanine production in Escherichia coli by heterologous expression of
651		Vitreoscilla hemoglobin. Biotechnol Appl Biochem. 2018;65:476-83.
652	47.	Zhang H, Wang X. Modular co-culture engineering, a new approach for metabolic
653		engineering. Metab Eng. 2016;37:114–21.
654	48.	Liu X, Li XB, Jiang J, Liu ZN, Qiao B, Li FF, Cheng JS, Sun X, Yuan YJ, Qiao J
655		et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient
656		production of glycosides. Metab Eng. 2018;47:243-53.
657	49.	Wang R, Zhao S, Wang Z, Koffas MAG. Recent advances in modular co-culture
658		engineering for synthesis of natural products. Curr Opin Biotechnol. 2020;62:65-
659		71.
660	50.	Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of
661		microbial cell factories. Metab Eng. 2016;34:44–59.
662		

664 FIGURE CAPTIONS

Figure 1. Biosynthetic pathways for producing tyrosine and its derivatives from
 phenylalanine (A) and gene organization in the constructed plasmids (B).

667

Figure 2. Tyrosine production of plasmid-based engineered strains with Rat
 pheylalanine hydroxyase.

670 Strain YBR expressing the catalytic domain of RatPheH (RatPheHc), using glucose (A)

671 or glycerol (B) as the carbon sources. Each of the transformants was cultured up to 48 h

at 30 °C. Phe, black squares; Tyr, blue squares; OD, white circles. Data are presented as

673 mean values with standard deviations for three independent experiments. Symbols

674 without an error bar indicate that they are larger than the size of the error bar.

```
Figure 3. Tyrosine production of plasmid-based engineered strains with bacterial
phenylalanine hydroxylases.
```

- 678 (A) Tyrosine production of strain YBR harboring pQE1a derivatives, including bacterial
- 679 PheHs. Each of the transformants was cultured for 48 h at 30 °C. Glycerol was used as
- the carbon source. BsPheH, Bs; CnPheH, Cn; CvPheH, Cv; GsPheH1, Gs1; GsPheH2,
- 681 Gs2; XoPheH, Xo; PpPheH, Pp; OD, circles; Tyr, bars. (B and C) Fermentation profiles

of tyrosine production of strain YBR harboring pQE1a-Gs1 (B) and strain PGs (C). Each
of the transformants was cultured up to 48 h at 30 °C. Phe, black squares; Tyr, blue
squares; OD, white circles. Data are presented as mean values with standard deviations
for three independent experiments. Symbols without an error bar indicate that they are
larger than the size of the error bar.

687

688 Figure 4. Tyrosol production of plasmid-based engineered strains.

689 Fermentation profiles of tyrosol production of strain PGs harboring pCF1s-TDC-TYO

690 (A) or pCF1s-TYO-TDC (B). Each of the transformants was cultured up to 72 h at 30 °C.

691 Phe, black squares; Tyr, blue squares; tyramine, orange triangles; tyrosol, red triangles;

- 692 OD, white circles. Data are presented as mean values with standard deviations for three
- 693 independent experiments. Symbols without an error bar indicate that they are larger than
- 694 the size of the error bar.
- 695

696 Figure 5. Tyrosine production of chromosome engineered strains GsBR1 to GsBR5.

697 Strains GsBR1 (white), GsBR2 (gray), GsBR3 (orange), GsBR4 (green), and GsBR5

- 698 (yellow), in which one to five Tyr-producing modules were integrated at different gene
- loci on the chromosome, were tested. Strains GsBR1, GsBR3, and GsBR5 transformed

700	with pQE1a-Gs1 (GsPheH1) or pSTV-BH4R (BH4R) were also evaluated. Each strain
701	was cultured for 48 h at 30 °C. Tyr, bars; OD, blue circles. Data are presented as mean
702	values with standard deviations for three independent experiments. Symbols without an
703	error bar indicate that they are larger than the size of the error bar.
704	
705	Figure 6. Schematic diagram of scarless chromosome engineering using λRed
706	recombinase.
707	Schematic diagram of scarless chromosome engineering. First, an auxotrophic mutant
708	with an essential gene knocked out is constructed using λRed recombinase and an
709	antibiotic-resistance marker. The auxotrophic phenotype of the mutant is then recovered
710	using λRed recombinase and a DNA fragment in which the essential gene and a target
711	module are assembled by overlap extension polymerase chain reaction.
712	
713	Figure 7. DOPA and tyrosol production of chromosome engineered strain GsBR5.
714	DOPA (A) and tyrosol (B) production of recombinant GsBR5. Strain GsBR5 was
715	transformed with pBbE1k-3 for DOPA production and pCF1s-TDC-TYO-BH4R for
716	tyrosol production, respectively. Each strain was cultured up to 72 h at 30 °C. Phe, black
717	squares; Tyr, blue squares; DOPA, purple diamonds; tyramine, orange triangles; tyrosol,

718	red triangles; OD, white circles. Data are presented as mean values with standard
719	deviations for three independent experiments. Symbols without an error bar indicate that
720	they are larger than the size of the error bar.
721	
722	Figure 8. Hydroxytyrosol production of chromosome engineered strain GsBR5.
723	Hydroxytyrosol production of recombinant GsBR5 transformed with pBbE1k-3 and
724	pBbS1a-3. The recombinant cell, treated at different IPTG concentration to induce target
725	protein production, was cultured up to 96 h at 30 °C. Data are presented as mean values
726	with standard deviations for three independent experiments. Symbols without an error bar
727	indicate that they are larger than the size of the error bar.

