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ABSTRACT OF THE DISSERTATION

Analytic methods for large-scale data

by

Denali Marie Molitor

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Deanna Hunter, Chair

Methods that analyze large-scale data and make predictions based on data are increasingly

prevalent in a variety of industries. These methods are often complex, rely on a variety of

subroutines and are applied in settings for which they lack theoretical guarantees. Additionally,

storage requirements and computational speed are crucial to the feasibility of methods at

large-scales.

Here, we derive theoretical guarantees for machine learning and data analytic subroutines

such as matrix completion and optimization. We also extend the development of classification

methods for binary, compressed data. More specifically, we consider the following. We analyze

a regularized variant of the standard nuclear-norm minimization problem for low-rank matrix

completion for settings in which smaller entries are more likely to be missing. We derive

convergence guarantees for a gradient descent method for solving support vector machines

and compare the derived convergence guarantees to those of existing strategies. We analyze

adaptive sampling strategies for sketch-and-project methods for solving large-scale least-

squares problems. We develop hierarchical and iterative extensions to the simple classification

method for binary data introduced in [NSW17].
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CHAPTER 1

Introduction

As the magnitude of data collection and the influence that data has on our lives increases,

understanding methods for analyzing, processing and manipulating data is critical. For

example, decisions based on surveillance data and facial recognition, financial data and credit

or loan approvals, and medical data and treatment plans can have significant impacts on lives.

Here, we study data analytic subroutines and methods for classification. More specifically,

we consider methods for inferring entries of incomplete data, extensions to a classification

method for binary data and iterative methods for solving large linear systems of equations.

Developing a solid understanding of the assumptions and consequences of algorithmic

choices in data analysis is imperative. Gaps in understanding can lead to unexpected outputs

and results which could have extreme negative consequences. Often, methods are applied

in settings that lack performance guarantees. Two such settings are matrix completion and

optimization.

Datasets often include missing entries, whose values are unknown. A popular method for

inferring missing entries assumes that the matrix to be recovered is approximately low-rank.

Recovery guarantees for low-rank matrix completion typically assume that the missing entries

occur uniformly at random. This assumption is highly unrealistic for many applications. For

example, less popular movies may be less likely to receive viewer ratings and medical patients

may be less likely to answer questions about symptoms that they are not experiencing. If

there is known structure to the missing entries, we can ideally incorporate this into the

recovery method to improve results. In Chapter 2, we discuss matrix completion when entries

are missing in a structured manner and propose a regularized variant to accommodate this

structure. This work is extended in [HMN19] to consider how the error introduced by various
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matrix completion strategies affects the conclusions of statistical inferences.

Many machine learning models require solving large-scale optimization problems in order

to learn appropriate model parameters. The choice of optimization method can affect the

learned parameters and ultimate model.

Gradient descent is a classical method for finding the minimum of differentiable convex

functions. In Chapter 3, we propose a gradient descent method for minimizing the support

vector machine (SVM) hinge loss [CV95]. We analyze the convergence of the proposed

optimization strategy to the maximal separating hyperplane and compare it to existing

approaches and their convergence guarantees.

Stochastic gradient descent (SGD) is a variant of gradient descent that is especially useful

for optimization problems of the form F (x) =
∑n

i=1 fi(x) with n very large. Stochastic

gradient descent randomly selects an index i or set of indices and performs a gradient descent

update with respect to the selected fi(x) terms, thus avoiding the expensive computation of

the full gradient of F at each iteration. While convergence guarantees for gradient descent

and SGD require convexity of the objective function F , these methods are often applied

to optimize non-convex functions such as those that arise when training neural networks.

Despite the lack of guarantees in the non-convex setting, SGD and its variants have been

shown to typically work well in practice.

A key component of SGD is the selection of the random index or indices i at each iteration.

In the least-squares setting, SGD with a reweighting component has been shown to be

equivalent to the randomized Kaczmarz method (RK) [NSW15]. Randomized Kacmzarz is a

specific example of a more general class of methods known as sketch-and-project methods.

In Chapter 4, we analyze the convergence of sketch-and-project methods with a variety of

sampling strategies for selecting indices i that depend on the current approximation to the

solution.

Classification is a common task for machine learning methods. In classification, one aims

to assign the correct label to a given data point. For example, correctly labeling images of

cats versus images of dogs. [NSW17] introduces a classification method intended for binary
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data. Such classification methods are advantageous when storing or collecting raw data is

infeasible and thus only compressed binary measurements are available. Chapter 5 considers

an extension of the method proposed in [NSW17] for data that has hierarchical class structure

and Chapter 6 proposes an iterative extension that leads to improved accuracy at the cost of

additional computation.
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CHAPTER 2

Matrix Completion for Structured Data

2.1 Introduction

Data acquisition and analysis is ubiquitous, but data often contains errors and can be highly

incomplete. For example, if data is obtained via user surveys, people may only choose to

answer a subset of questions. Ideally, one would not want to eliminate surveys that are

only partially complete, as they still contain potentially useful information. For many tasks,

such as certain regression or classification tasks, one may require complete or completed

data [SG02]. Alternatively, consider the problem of collaborative filtering, made popular

by the classic Netflix problem [BL07, BK07, KBV09], in which one aims to predict user

ratings for unseen movies based on available user-movie ratings. In this setting, accurate data

completion is the goal, as opposed to a data pre-processing task. Viewing users as the rows in

a matrix and movies as the columns, we would like to recover unknown entries of the resulting

matrix from the subset of known entries. This is the goal in many types of other applications,

ranging from systems identification [LV09] to sensor networks [BLW06,Sch86,Sin08]. This

task is known as matrix completion [Rec11]. If the underlying matrix is low-rank and the

observed entries are sampled uniformly at random, one can achieve exact recovery with

high probability under mild additional assumptions by using nuclear norm minimization

(NNM) [CT10,RFP10,CR09,Gro11,CP10].

For many applications, however, we expect structural differences between the observed

and unobserved entries, which violate these classical assumptions. By structural differences,

we mean that whether an entry is observed or unobserved need not be random or occur

by some uniform selection mechanism. Consider again the Netflix problem. Popular, or

4



well-received movies are more likely to have been rated by many users, thus violating the

assumption of uniform sampling of observed entries across movies. On the flip side, a missing

entry may indicate a user’s lack of interest in that particular movie. Similarly, in sensor

networks, entries may be missing because of geographic limitations or missing connections;

in survey data, incomplete sections may be irrelevant or unimportant to the user. In these

settings, it is then reasonable to expect that missing entries have lower values1 than observed

entries.

In this work, we propose a modification to the traditional NNM for matrix completion

that still results in a semi-definite optimization problem, but also encourages lower values

among the unobserved entries. We show that this method works better than NNM alone

under certain sampling conditions.

2.1.1 Nuclear Norm Matrix Completion

Let M ∈ Rn1×n2 be the unknown matrix we would like to recover and Ω be the set of indices

of the observed entries. Let PΩ : Rn1×n2 → Rn1×n2 , where

[PΩ]ij =


Mij (i, j) ∈ Ω

0 (i, j) 6∈ Ω

as in [CT10]. In many applications, it is reasonable to assume that the matrix M is low-rank.

For example, we expect that relatively few factors contribute to a user’s movie preferences as

compared to the number of users or number of movies considered. Similarly, for health data,

a few underlying features may contribute to many observable signs and symptoms.

The minimization,

M̂ = argmin
A

rank(A) s.t. PΩ(A) = PΩ(M)

recovers the lowest rank matrix that matches the observed entries exactly. Unfortunately,

1Of course, some applications will tend to have higher values in missing entries, in which case our methods
can be scaled accordingly.
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this minimization problem is NP-hard, so one typically uses the convex relaxation

M̂ = argmin
A
||A||∗ s.t. PΩ(A) = PΩ(M), (2.1)

where ||·||∗ is the nuclear norm, given by the sum of the singular values, i.e. ||X||∗ :=
∑

i σi(X)

[CT10,RFP10,CP10,CR09].

2.1.2 Matrix Completion for Structured Observations

We propose adding a regularization term on the unobserved entries to promote adherence to

the structural assumption that we expect these entries to be close to 0. We solve

M̃ = argmin
A
||A||∗ + α||PΩC (A)|| s.t. PΩ(A) = PΩ(M), (2.2)

where α > 0 and || · || is an appropriate matrix norm. For example, if we expect most of the

unobserved entries to be 0, but a few to be potentially large in magnitude, the entrywise L1

norm ||M ||1 =
∑

ij |Mij| is a reasonable choice.

2.1.3 Matrix Completion with Noisy Observations

In reality, we expect that our data is corrupted by some amount of noise. We assume the

matrix M , that we would like to recover, satisfies

PΩY = PΩM + PΩZ,

where PΩY are the observed values, M is low-rank and PΩZ represents the noise in the

observed data. In [CP10], Candés and Plan suggest using the following minimization to

recover the unknown matrix:

M̂ = argmin
A
||A||∗ s. t. ||PΩ(M − A)||F < δ. (2.3)

Recall, ||X||F =
√∑

ij X
2
ij. The formulation above is equivalent to

M̂ = argmin
A
||PΩ(M − A)||F + ρ||A||∗ (2.4)
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for some ρ = ρ(δ). The latter minimization problem is generally easier to solve in practice

[CP10].

In order to account for the assumption that the unobserved entries are likely to be close

to zero, we again propose adding a regularization term on the unobserved entries and aim to

solve

M̃ = argmin
A
||PΩ(M − A)||F + ρ||A||∗ + α||PΩC (A)||. (2.5)

2.2 Numerical Results

2.2.1 Recovery without Noise

We first investigate the performance of Equation (2.2) when the observed entries are exact,

i.e. there is no noise or errors in the observed values. In Figure 2.1, we consider low-rank

matrices M ∈ R30×30. To generate M of rank r, we take M = MLMR, where ML ∈ R30×r and

MR ∈ Rr×30 are sparse matrices (with density 0.3 and 0.5, respectively) and whose nonzero

entries are uniformly distributed at random between zero and one. We subsample from the zero

and nonzero entries of the data matrix at various rates to generate a matrix with missing entries.

We compare performance of Equation (2.2) using L1 regularization on the unobserved entries

with standard NNM and report the error ratio ||M̃ −M ||F/||M̂ −M ||F for various sampling

rates, where M̃ and M̂ are the solutions to Equation (2.2) and Equation (2.1), respectively.

The regularization parameter α used is selected optimally from the set {10−1, 10−2, 10−3, 10−4}

(discussed below). Values below one in Figure 2.1 indicate that the minimization with L1

regularization outperforms standard NNM. Results are averaged over ten trials. As expected,

we find that if the sampling of the nonzero entries is high, then the modified method

Equation (2.2) is likely to outperform standard NNM.

We choose the parameter α, for the regularization term, to be optimal among α ∈

{10−1, 10−2, 10−3, 10−4} and report the values used in Figure 2.2. For large α, the recovered

matrix will approach that for which all unobserved entries are predicted to be zero, and as α

becomes close to zero, recovery by Equation (2.2) approaches that of standard NNM.
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When the sampling rate of the zero entries is low and the sampling of the nonzero entries

is high, in addition to Equation (2.2) outperforming NNM, we also see that a larger value

for α is optimal, supporting the claim that regularization improves performance. Higher α

values are also sometimes optimal when the nonzero sampling rate is nearly zero. If there are

very few nonzero entries sampled then the low-rank matrix recovered is likely to be very close

to the zero matrix. In this setting, we expect that even with standard NNM the unobserved

entries are thus likely to be recovered as zeros and so a larger coefficient on the regularization

term will not harm performance. When α is close to zero, the difference in performance is

minimal, as the regularization will have little effect in this case.

Figure 2.1: For M̃ and M̂ given by Equation (2.2) and Equation (2.1), respectively, with L1

regularization on the recovered values for the unobserved entries, we plot ||M̃ −M ||F/||M̂ −

M ||F . We consider 30x30 matrices of various ranks and average results over ten trials, with

α optimal among α ∈ {10−1, 10−2, 10−3, 10−4}.

2.2.2 Recovery with Noisy Observed Entries

We generate matrices as in the previous section and now consider the minimization given

in Equation (2.4). Suppose the entries of the noise matrix Z are i.i.d. N(0, σ2). We set the
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Figure 2.2: Average optimal α value among α ∈ {10−1, 10−2, 10−3, 10−4} for the minimization

given in Equation (2.2) with L1 regularization on the recovered values for the unobserved

entries. The matrices considered here are the same as in Figure 2.1.

parameter ρ, as done in [CP10], to be

ρ = (
√
n1 +

√
n2)

√
|Ω|
n1n2

σ.

We specifically consider low-rank matrices M ∈ R30×30 generated as in the previous section

and a noise matrix Z with i.i.d. entries sampled from N(0, 0.01). Thus we set ρ = 2
√
|Ω|
30
·0.1.

We again report ||M̃ −M ||F/||M̂ −M ||F for various sampling rates of the zero and nonzero

entries of M in Figure 2.3. Here, M̂ and M̃ are given by Equation (2.4) and Equation (2.5)

respectively. We see improved performance with regularization when the sampling rate of

the zero entries is low and the sampling of the nonzero entries is high.

2.2.3 Matrix recovery of health data

Next, we consider real survey data from 2126 patients responding to 65 particular questions

provided by LymeDisease.org. Data used was obtained from the LymeDisease.org patient

registry, MyLymeData, Phase 1, June 17, 2017. Question responses are integer values between

zero and four and answering all questions was required, that is this subset of the data survey

9



Figure 2.3: For M̃ and M̂ given by Equation (2.2) and Equation (2.1), respectively, with L1

regularization on the recovered values for the unobserved entries, we plot ||M̃ −M ||F/||M̂ −

M ||F . We consider 30x30 matrices of various ranks with normally distributed i.i.d. noise

with standard deviation σ = 0.1 added. We average results over ten trials and with α optimal

among α ∈ {10−1, 10−2, 10−3, 10−4}.
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is complete (so we may calculate reconstruction errors). All patients have Lyme disease

and survey questions ask about topics such as current and past symptoms, treatments and

outcomes. For example, “I would say that currently in general my health is: 0-Poor, 1-Fair,

2-Good, 3-Very good, 4-Excellent.” Although, this part of the data considered is complete,

we expect that in general, patients are likely to record responses for particularly noticeable

symptoms, while a missing response in a medical survey may indicate a lack of symptoms.

Thus, in this setting, L1 regularization of the unobserved entries is a natural choice.

Due to computational constraints, for each of the ten trials executed, we randomly sample

50 of these patient surveys to generate a 50x65 matrix. As in the previous experiments,

we subsample from the zero and nonzero entries of the data matrix at various rates to

generate a matrix with missing entries. We complete this subsampled matrix with both NNM

Equation (2.1) and Equation (2.2) using L1 regularization on the unobserved entries and

report ||M̃ −M ||F/||M̂ −M ||F , averaged over ten trials in Figure 2.4. The parameter α, for

the regularization term, is chosen to be optimal among α ∈ {10−1, 10−2, 10−3, 10−4} and we

report the values used in Figure 2.5.

The results for the Lyme disease data match closely those found in the synthetic exper-

iments done with and without noise. Regularizing the L1-norm of the unobserved entries

improves performance if the sampling of non-zero entries is sufficiently high and sampling of

zero entries is sufficiently low.

2.3 Analytical Remarks

We provide here some basic analysis of the regularization approach. First, in the simplified

setting, in which all of the unobserved entries are exactly zero, the modified recovery given in

Equation (2.2) will always perform at least as well as traditional NNM.

Proposition 2.3.1. Suppose M ∈ Rn1×n2 and Ω gives the set of index pairs of the observed

entries. Assume that all of the unobserved entries are exactly zero, i.e. PΩC (M) = 0. Then

for

M̂ = argmin ||A||∗ s.t. PΩ(A) = PΩ(M),
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Figure 2.4: For M̃ and M̂ given by Equation (2.2) and Equation (2.1), respectively,

with L1 regularization on the recovered values for the unobserved entries, we plot

||M̃ − M ||F/||M̂ − M ||F . We consider 50 patient surveys with 65 responses each cho-

sen randomly from 2126 patient surveys. We average results over ten trials and with α

optimal among α ∈ {10−1, 10−2, 10−3, 10−4}.

Figure 2.5: Average optimal α value among α ∈ {10−1, 10−2, 10−3, 10−4} for the minimization

given in Equation (2.2) with L1 regularization on the recovered values for the unobserved

entries in Lyme patient data.
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and

M̃ = argmin ||A||∗ + α||PΩC (A)|| s.t. PΩ(A) = PΩ(M),

we have

||M̃ −M || ≤ ||M̂ −M ||

for any matrix norm || · ||.

Proof. From the definitions of M̂ and M̃ ,

||M̂ ||∗ ≤ ||M̃ ||∗.

Using the inequality above,

||M̃ ||∗ + α||PΩC (M̃)|| ≤ ||M̂ ||∗ + α||PΩC (M̂)||

≤ ||M̃ ||∗ + α||PΩC (M̂)||.

For α > 0, we have

||PΩC (M̃)|| ≤ ||PΩC (M̂)||.

The desired result then follows since

PΩ(M̃) = PΩ(M̂) = PΩ(M)

and under the assumption that PΩC (M) = 0, as

||M̃ −M || = ||PΩC (M̃)|| ≤ ||PΩC (M̂)|| = ||M̂ −M ||.

2.3.1 Connection to Robust Principal Component Analysis (RPCA)

The program Equation (2.2) very closely resembles the method proposed in [CLM11], called

Robust Principal Component Analysis (RPCA). RPCA is a modified version of traditional

Principal Component Analysis that is robust to rare corruptions of arbitrary magnitude. In

RPCA, one assumes that a low-rank matrix has some set of its entries corrupted. The goal is
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to recover the true underlying matrix despite the corruptions. More simply, for the observed

matrix Y ∈ Rn1×n2 , we have the decomposition

Y = L+ S,

where L is the low-rank matrix we would like to recover and S is a sparse matrix of corruptions.

The strategy for finding this decomposition proposed in [CLM11] is

argmin
L,S

||L||∗ + α||S||1 s.t. L+ S = Y. (2.6)

This method can be extended to the matrix completion setting, in which one would like to

recover unobserved values from observed values, of which a subset may be corrupted. In this

setting, [CLM11] proposes solving the following minimization problem

argmin
L,S

||L||∗ + α||S||1 s.t. PΩ(L+ S) = PΩ(Y ).

We now return to our original matrix completion problem, in which we assume the

observed entries to be exact. Let M ∈ Rn1×n2 again be the matrix we aim to recover. If we

expect the unobserved entries of M to be sparse, that is, only a small fraction of them to

be nonzero, we can rewrite the minimization Equation (2.2) in a form similar to RPCA in

which we know the support of the corruptions is restricted to the set ΩC , i.e. S = PΩC (S).

We then have,

argmin
A,S

||A||∗ + α||S||1 s.t. A+ S = PΩ(M). (2.7)

This strategy differs from traditional RPCA in that we assume the observed data to be free

from errors and therefore know that the corruptions are restricted to the set of unobserved

entries.

Directly applying Theorem 1.1 from [CLM11], we have the following result.

Proposition 2.3.2. Suppose M ∈ Rn1×n2 and M = UΣV ∗ gives the singular value decompo-

sition of M . Suppose also

max
i
||U∗ei||2 ≤

µr

n1

, max
i
||V ∗ei||2 ≤

µr

n2

,
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and

||UV ∗||∞ ≤
√

µr

n1n2

,

where r is the rank of M , ||X||∞ = maxi,j |Xi,j|, ei is the ith standard basis vector and µ is

the incoherence parameter as defined in [CLM11]. Suppose that the set of observed entries,

Ω, is uniformly distributed among all sets of cardinality of m and the support set of S0 of

non-zero unobserved entries is uniformly distributed among all sets of cardinality s contained

in ΩC. Then there is a numerical constant c such that with probability at least 1− cn−10 the

minimization in Equation (2.7) with α = 1/
√
n achieves exact recovery, provided that

rank(L0) ≤ ρrn(2)µ
−1(log n(1))

−2 and s ≤ ρsn(1)n(2),

where ρr and ρs are positive numerical constants.

This proposition is a direct application of Theorem 1.1 in [CLM11] to the program given

by Equation (2.7). Note that here, the corruptions are exactly the unobserved entries that

are nonzero. Thus, if s, the number of nonzero unobserved entries is small, this result may be

stronger than corresponding matrix completion results that instead depend on m, the larger,

number of missing entries.

The authors of [CLM11] note that RPCA can be thought of as a more challenging version

of matrix completion. The reasoning being, that in matrix completion we aim to recover

the set of unobserved entries, whose locations are known, whereas in the RPCA setting, we

have a set of corrupted entries, whose locations are unknown, and for which we would like to

both identify as erroneous and determine their correct values. Figure 1 of [CLM11] provides

numerical evidence that in practice RPCA does in fact require more stringent conditions

to achieve exact recovery than the corresponding matrix completion problem. In image

completion or repair, corruptions are often spatially correlated or isolated to specific regions

of an image. In [LRZ12], the authors provide experimental evidence that incorporating an

estimate of the support of the corruptions aids in recovery. By the same reasoning, we expect

that a stronger result than suggested by Proposition 2.3.2 likely holds, as we do not make use

of the fact that we are able to restrict the locations of the corruptions (nonzero, unobserved

entries) to a subset of the larger matrix.
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2.4 Discussion

For incomplete data in which we expect that unobserved entries are likely to be 0, we find that

regularizing the values of the unobserved entries when performing NNM improves performance

under various conditions. This improvement in performance holds for both synthetic data,

with and without noise, as well as for Lyme disease survey data. We specifically investigate

the performance of L1 regularization on the unobserved entries as it is a natural choice for

many applications.

Testing the validity of methods, such as Equation (2.2), on real data is challenging, since

this setting hinges on the assumption that unobserved data is structurally different than

observed data and would require having access to ground truth values for the unobserved

entries. In this paper, we choose to take complete data and artificially partition it into

observed and unobserved entries. Another way to manage this challenge is to examine

performance of various tasks, such as classification or prediction, based on data that has

been completed in different ways. In this setting, relative performance of different completion

strategies will likely depend on the specific task considered. However, for many applications,

one would like to complete the data in order to use it for a further goal. In this setting,

judging the performance of the matrix completion algorithm by its effect on performance of

the ultimate goal is very natural.

We offer preliminary arguments as to why we might expect the approach in Equation (2.2)

to work well under the structural assumption that unobserved entries are likely to be sparse or

small in magnitude, however, stronger theoretical results are likely possible. For example, we

show that regularizing the values of the unobserved entries when performing NNM improves

performance in the case when all unobserved entries are exactly zero, but based on empirical

evidence we expect improved performance under more general conditions.

A range of papers, including [CT10,RFP10,CR09,Gro11], discuss the conditions under

which exact matrix completion is possible under the assumption that the observed entries of

the matrix are sampled uniformly at random. Under what reasonable structural assumptions

on the unobserved entries might we still be able to specify conditions that will lead to exact
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recovery? We save such questions for future work.
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CHAPTER 3

Bias of Gradient Descent for the Non-Smooth Hinge

Loss

3.1 Introduction

Several recent works suggest that the optimization methods used in training models affect

the model’s ability to generalize through implicit biases to certain solutions [ZBH17,NTS14,

HRS16,HHS17,PKL17,PLM18,HHS17,CCS17,CPS18]. In order to understand the effects

of optimization methods in more complex and often non-convex settings such as for neural

networks, it is natural to first understand their behavior in simpler settings, such as for least

squares regression, logistic regression, and support vector machines (SVM) [SHN18,NLG19,

GLS18]. In particular, gradient descent and its many variants, including the subgradient

method, are popular choices for optimizing machine learning models and thus warrant careful

study.

It was recently shown that gradient descent applied to the (unregularized) logistic re-

gression problem for linearly separable data converges to the solution with maximal margin,

while other choices of optimization method converge to different solutions [SHN18]. Conver-

gence to the maximal-margin solution is desirable, as the margin is an important quantity

for deriving generalization guarantees [BS99,Vap82,Vap99,VC74,Vap13]. The analysis of

Soudry et al [SHN18] extends to additional loss functions, but requires particular properties,

including smoothness and monotonicity. These assumptions do not hold, however, for non-

differentiable functions such as the hinge loss objective, which is the loss function used in

training SVM [CV95].
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Here, we analyze the convergence to the maximal margin solution of a homotopic subgradi-

ent method applied to the non-smooth hinge loss. In particular we consider a method in which

a number of subgradient updates are applied to the hinge loss with decreasing regularization.

Although it is well known that the exact solutions of the regularized hinge loss converge to

the hard-margin SVM solution as the regularization decreases to zero in the linearly separable

case [RZH04,HRT04], we are unaware of results that provide explicit convergence rates for

an iterative optimization algorithm, such as the subgradient method, that converges to the

hard-margin SVM solution in a single pass of the regularization parameter λ. We provide

such an analysis here, and demonstrate that the iterates of an averaged subgradient method

applied to the regularized SVM loss with shrinking regularization parameters converge to

the max-margin solution at a rate of O
(
k−1/6+δ

)
for linearly separable data, where δ is any

small positive constant.

For linearly separable data there exists λ′ > 0 be such that the solution w∗λ to the hinge

loss with regularization parameter λ is equal to the true, hard-margin solution w∗ for all

λ ≤ λ′ [RZH04,HRT04]. While λ′ is constant for a fixed problem, knowing its value in advance

is typically unrealistic. Additionally, if the data is not well separated, λ′ can be very small.

The homotopic subgradient method analyzed here depends on the value of λ′ and converges at

a rate of O
(
(λ′)−2k−1/6+δ

)
. If one were to know the appropriate regularization parameter λ′

in advance, the averaged subgradient method with appropriate fixed step sizes would converge

in L2 error at a rate of O
(
(λ′)−1k−1/4

)
. This rate can be improved to O

(
(λ′)−1k−1/2

)
by

using weighted step sizes that depend on λ′ [Bub15, LSB12]. Thus, we pay a small price

for the shrinking regularization routine and for not knowing the value of λ′ in advance. We

additionally provide faster convergence guarantees and improved convergence results for the

proposed method on small datasets as compared to gradient descent applied to the logistic

loss with fixed step sizes [SHN18].
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3.1.1 Contributions

While several works analyze the convergence of various optimization methods to the maximal-

margin solution for separable data [SHN18,NLG19], we are unaware of any works that provide

explicit convergence rates for the fundamental subgradient descent method. Convergence

of the subgradient method and stochastic subgradient method have been analyzed for non-

smooth convex functions, however these works only provide convergence guarantees in the

loss-function values and not the iterates, as, for general convex functions, the minimizer may

not be finite and may not be unique [SZ13,Zha04]. In the context of solving the hard-margin

SVM, the restriction to linearly separable data guarantees the existence of a minimizer and

considering the maximal margin solution ensures uniqueness. Moreover, in the context of

general convex functions, previous works often use the projected subgradient method and

require knowledge of a bounded domain in which a minimizer exists [SZ13,Bub15]. For solving

the hard-margin SVM via gradient descent, we show that such a projection is unnecessary.

Here, we provide explicit convergence guarantees for a homotopic subgradient method

for optimizing the non-smooth SVM hinge loss. The proposed method uses decreasing

regularization parameters and leads to the hard-margin SVM solution. We study the effects

of optimization via this method on the generalization ability of the learned solutions through

proved convergence rates to the hard-margin SVM solution in terms of L2 error as well as

difference in angle and margin from the true solution. We additionally show that these

convergence rates to the hard-margin SVM solution outpace recent results such as gradient

descent with fixed step sizes applied to the logistic loss [SHN18,NLG19]. We demonstrate

the convergence of the proposed method on a synthetic dataset.

3.1.2 Organization

In Section 3.2, we introduce the specific problem setting, the notation that will be used

throughout, and the proposed optimization scheme, Algorithm 1. Section 3.3 provides the

main convergence results for Algorithm 1. An outline for the proof of the main convergence

theorem, Theorem 3.3.1, is provided in Section 3.4, with additional details in Section 3.8.
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We test convergence properties of Algorithm 1 for a simple synthetic dataset in Section 3.5.

Section 3.6 provides additional implementation details for Algorithm 1 as well as possible

modifications and extensions.

3.2 Problem Setup

We consider the binary classification problem with data {(xj, yj) : j = 1, . . . , n}, where

xj ∈ Rd are the data points and yj ∈ {−1, 1} their labels. We aim to classify the data via a

homogeneous linear SVM. Specifically, we wish to identify a weight vector w∗ that satisfies

w∗ = argmin
w
‖w‖ subject to yjx

>
j w ≥ 1 ∀ j.

Throughout, we write ‖ · ‖ = ‖ · ‖2. We can equivalently find

w∗ = argmin
w
‖w‖ subject to L(w) = 0, (3.1)

where

L(w) :=
1

n

n∑
j=1

h(yjx
>
j w) and h(u) := max(0, 1− u).

The function h(u) is commonly referred to as the hinge loss. We assume throughout that

the data is linearly separable, i.e. there exists a vector w satisfying L(w) = 0 as is done

in [SHN18, NLG19, WGC19, BGM18, NSS19, RZH04]. This assumption is common and

necessary in order to discuss the margin of the approximated solutions. Minimizing the norm

of the solution w to L(w) = 0 corresponds to maximizing the margin, that is maximizing

the minimal distance between any data point and the separating hyperplane determined by

w. In this setting, the solution to Equation (3.1), w∗, is often referred to as the hard-margin

SVM solution.

The constrained optimization problem in Equation (3.1) is the primal formulation of an

SVM. While solving or approximating the corresponding dual SVM formulation is popular

in practice, there are advantages to approximating the primal problem directly [Cha07]. Of

particular interest for this work, considering the primal formulation allows for straightforward

analysis of the effect of the optimization error on the margin and hyperplane angle.
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As an alternative to solving Equation (3.1) directly, one often looks for a solution to an

unconstrained, regularized version. Define the functional:

Fλ(w) :=
λ

2
‖w‖2 +

1

n

n∑
j=1

h(yjx
>
j w). (3.2)

For λ > 0, Fλ is strongly convex with strong convexity parameter λ. We will use ∂F to

denote the subgradient of F . The gradient of Fλ(w) exists as long as yjx
>
j w 6= 1 for all j

and is given by

∂Fλ(w) = λw − 1

n

∑
j:yjx>j w<1

yjxj. (3.3)

When yjx
>
j w = 1 for some j, the subgradient set ∂Fλ(w) contains the point

λw − 1

n

∑
j:yjx>j w<1

yjxj ∈ ∂Fλ(w).

When the gradient does not exist, we will abuse notation and use Equation (3.3) in the

subgradient method update of Equation (3.5).

Let

w∗λ := argmin
w

Fλ(w). (3.4)

We will refer to w∗λ as the solution to the regularized subproblem of minimizing Equation (3.2).

A larger regularization parameter λ encourages a solution w∗λ with smaller norm at the cost

of having some points lie within the margin. For linearly separable data and as λ approaches

0, the regularized solutions w∗λ converge to the unregularized solution, w∗. Let λ′ > 0 be

such that w∗λ = w∗ for all λ ≤ λ′. Such a λ′ is guaranteed to exist for linearly separable

data [RZH04,HRT04]. This fact suggests solving Equation (3.2) by using the subgradient

method for a sufficiently small value of λ. Of course, the value of λ′ will typically be unknown.

We use the following assumption and definition of λ′ throughout.

Assumption 3.2.1. The data x1, . . . ,xn ∈ Rd with labels y1, . . . , yn ∈ {−1, 1} are linearly

separable, i.e. there exists w such that for all i, yiw
>xi > 0. Let w∗ be the hard-margin SVM

(i.e. w∗ solves Equation (3.1)) and λ′ be such that for all λ ≤ λ′, w∗λ = argminFλ = w∗.
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While in practice, one may be satisfied with the solution w∗λ for λ sufficiently small, we are

interested in the convergence to the true hard-margin SVM given by w∗. Thus, we instead

propose to use a “homotopic” variant of the subgradient method that iteratively approximates

the solution to Equation (3.2) while the regularization parameter λ and accompanying step

size η of the subgradient method in Equation (3.5) decay at prescribed rates. Incorporating a

piecewise constant decaying step size is commonly used for large-scale minimization problems,

especially when using stochastic gradient descent variants [BCN18].

Recall the subgradient method given by the updates:

wk+1 = wk − ηk∂Fλ(wk), (3.5)

where wk is the approximate solution at iteration k and ηk is a step size. For some number

of outer iterations s = 1, . . . , S, we choose a regularization parameter λs > 0, a step size

ηs > 0 and a number of inner iterations ts. The regularization parameter λs and step size ηs

are selected such that they decrease to 0 as s increases. Let ws−1 be the current estimate

of w∗. We then perform ts subgradient updates applied to the loss function Fλs with initial

iterate ws−1 and step size ηs. The next estimate, ws, is given by the average of the ts

subgradient iterates. This process is detailed in Algorithm 1. For specific choices of λs, ηs

and ts, Algorithm 1 converges to the hard-margin SVM solution w∗. Convergence guarantees

are detailed in Theorem 3.3.1.

While the strongly convex functions Fλ are not globally Lipschitz, they are Lipschitz

functions on bounded domains. Using a projected subgradient method in which iterates are

projected onto a bounded domain is a natural strategy for restricting the domain of the

iterates. A projection is unnecessary in this setting, however, as the regularization parameter

λ > 0 naturally promotes solutions of smaller norm. In fact, the iterates produced by the

subgradient method in Algorithm 1 remain bounded in norm with a bound that depends on

the current regularization parameter λ.

Lemma 3.2.2. Fix a regularization parameter λ > 0 and step size η > 0 such that ηλ < 1.

Define

Bλ :=

∑n
j=1‖xj‖
λn

. (3.6)
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Algorithm 1 Homotopic subgradient method

Input: data {xj}, labels {yj}, maximum outer iterations S, parameter for initial inner

iterations s0 > 2, parameters 1 > p > 0 and r > 2p

Define ε0 = log(s0)−log(s0−1)
log(s0)

, α = min
{

r−2p
2(1+ε0)

, 1− p
}

, and C = max
{

4, 1
2
sp0(s0 − 1)α

}
Initialize w0 = 0

for s = 0, 1, . . . , S − 1 do

λs = (s0 + s)−p, ts = (s0 + s)r, and ηs = C(s0+s−1)−α√
ts

w0 = ws

for i = 1, 2, . . . , ts do

wi = (1− λsηs)wi−1 + ηs
n

∑
j:yjx>j wi−1≤1 yjxj

end for

ws+1 = 1
ts

∑ts
i=1 wi

end for

Output wS

If the initial iterate w0 is such that ‖w0‖ ≤ Bλ, then each iterate wk produced by the

subgradient method of Equation (3.3) applied to the function Fλ of Equation (3.2) has

‖wk‖ ≤ Bλ. Additionally, ‖w∗‖ ≤ Bλ.

In summary, if the initial iterate w0 is such that ‖w0‖ ≤ Bλ, then the iterates produced

by the subgradient method applied to Fλ will also have norm less than or equal to Bλ.

Remark. Using Lemma 3.2.2, one can show that the functionals Fλ are Lipschitz over the

domain of iterates produced by Algorithm 1. Specifically, the constant

L :=
2

n

n∑
j=1

‖xj‖ (3.7)

bounds the Lipschitz constants of each function Fλ restricted to the ball centered at the

origin with radius Bλ. Lemma 3.2.2 guarantees that the iterates produced when applying the

subgradient method to Fλ and for sufficiently small initial iterate remain with this domain.

Note that the bound on the Lipschitz constants L is independent of the regularization

parameter λ.
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3.3 Main Results

We now provide explicit rates of convergence to the hard-margin SVM solution for Algorithm 1.

We provide convergence rates in terms of the L2 error, difference in angle, and difference in

margin between the approximation wS and the true hard-margin solution. The convergence

results are stated in terms of k, the total number of subgradient updates required. Recall

that the approximations ws are only updated at increments of ts subgradient updates. Let

zk = ws, so that zk is the approximation after k =
∑s

i=1 ti subgradient calculations.

Theorem 3.3.1 provides a convergence guarantee for the L2 error of the iterates produced

by Algorithm 1. This result will be used to additionally derive convergence guarantees for

the angle and margin of the solution in Lemma 3.3.4. The parameter p determines the rate

of decay of the regularization λs and the parameter r determines the number of steps ts used

at each fixed level of regularization. The constant L is as defined in Equation (3.7) and is an

upper bound on the Lipschitz constants of the functions Fλ restricted to the domain of the

iterates produced by the subgradient method applied to Fλ (Lemma 3.2.2).

Theorem 3.3.1. Consider Algorithm 1 with parameters r and p such that 0 < p < 1 and

r > 2p. Choose an initial number of inner iterations sr0 ∈ N with s0 > 2. Let L = 2
∑n
j=1‖xj‖
n

as defined in Equation (3.7). Define

C = max
{

4, 1
2
sp0(s0 − 1)α

}
and α = min

(
r − 2p

2(1 + ε0)
, 1− p

)
,

with ε0 = log(s0)−log(s0−1)
log(s0)

. Let zk be the average of the ts subgradient descent updates calculated

to minimize the function Fλs with step size ηs = C(s0+s−1)−α√
ts

, where k is the total number of

subgradient descent updates calculated. Then for data and λ′ satisfying Assumption 3.2.1,

‖zk −w∗‖ ≤ CL ((r + 1)k)
−α(1−ε0)

r+1 +
L

2(λ′)2
((r + 1)k)

−p
r+1 . (3.8)

Let c = min
(
α(1−ε0)
r+1

, p
r+1

)
. Then

‖zk −w∗‖ ≤
(
C +

1

2(λ′)2

)
L(r + 1)−ck−c.
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An outline for a proof of Theorem 3.3.1 can be found in Section 3.4 with additional details

in Section 3.8. Note that, for small ε0, the two terms in the bound of Equation (3.8) will

decrease at approximately the same rate if r = 2 and p = 1/2. Corollary 3.3.2 gives a simpler,

explicit rate of convergence by making this specification and setting s0 = 10.

Corollary 3.3.2. Consider Algorithm 1 with parameters r = 2, p = 1/2 and an initial

number of inner iterations sr0 = s2
0 ∈ N with s0 > 2. Let L = 2

∑n
j=1‖xj‖
n

. Define

C = max
{

4, 1
2
sp0(s0 − 1)α

}
and α = min

(
r − 2p

2(1 + ε0)
, 1− p

)
,

with ε0 = log(s0)−log(s0−1)
log(s0)

. Let zk be the average of the ts subgradient descent updates calculated

for Fλs with step size ηs = C(s0+s−1)−α√
ts

, where k is the total number of subgradient descent

updates calculated. Then for data and λ′ satisfying Assumption 3.2.1,

‖zk −w∗‖ ≤ CL (3k)
−1
6

(1−ε0)
(1+ε0) +

L (3k)−1/6

2(λ′)2
.

Choosing s0 = 10, we have ε0 < 0.046, C < 4.9 and arrive at the convergence rate

‖zk −w∗‖ ≤ 4.17Lk
−0.913

6 +
0.42Lk−1/6

(λ′)2
.

At least theoretically, sending s0 →∞ leads to the best convergence rate guarantee. In fact,

the convergence rate provided by Theorem 3.3.1 can be made arbitrarily close to O
(
k−1/6

)
by choosing r = 2, p = 1/2, and s0 sufficiently large. As we will see in Section 3.5, using s0

extremely large becomes impractical as the number of iterations for each fixed-λ subproblem

becomes extremely large.

For strongly-convex, Lipschitz functions with strong-convexity parameter λ, one can

achieve convergence in ‖w−w∗‖ at a rate of O
(
λ−1k−1/4

)
, using projected averaged gradient

descent with fixed step sizes (Theorem 3.2 [Bub14]). Using weighted step sizes, and knowledge

of the strong convexity parameter, this rate can be improved to O
(
λ−1k−1/2

)
(Theorem

3.9 [Bub14], originally from [LSB12]). A challenge of solving for the hard-margin SVM is

that we do not optimize a strongly convex function. While one could fix a regularization

parameter λ leading to a strongly convex function, there is no guarantee that the minimizer

of this function Fλ will correspond to the true solution w∗. Since the convergence rate of
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Algorithm 1 can be made arbitrarily close to O
(
(λ′)−2k−1/6

)
we lose very little, only a factor

of O
(
(λ′)−1k1/12+δ

)
compared to the convergence rate of projected averaged gradient descent

with fixed step sizes, for not knowing λ′ in advance and instead incorporating decreasing

explicit regularization.

Additionally, in designing Algorithm 1, we aimed for a simple algorithm as opposed to

optimizing all possible parameters. One could possibly improve on the rates given here by

further optimizing these parameters.

3.3.1 Convergence rates for angle and margin gaps

The convergence rate in Theorem 3.3.1 can be used to derive rates of convergence to the

angle and margin of the optimal separating hyperplane w∗.

Definition 3.3.3. For the hard margin SVM solution w∗ and a vector w, define

angle gap := 1− w>w∗

‖w‖‖w∗‖

and

margin gap :=
1

‖w∗‖
−min

i

yix
>
i w

‖w‖
.

While it is natural to consider the L2 error of the derived solution, the angle between the

true and derived solutions as well as the difference in the size of the margins give a more

intuitive interpretation of the effect of that error. For example, an approximate solution w

that is off by a constant factor, that is w = cw∗, will have an angle gap of zero and non-zero

margin gap if c 6= 1. If an approximate solution w has a nonzero angle gap, but negligible

margin gap, this suggests that the derived solution w still separates the data reasonably well.

Convergence rates of Algorithm 1 in terms of the angle and margin gaps are stated in

Lemma 3.3.4 and compared to other recently obtained convergence rates in Table 3.1. The

rates of convergence in these metrics can be derived from Theorem 3.3.1. These arguments

are included in Section 3.8.
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Algorithm 1 [SHN18]

Angle gap O
(
k−1/3+2δ

)
O

((
log log(k)

log(k)

)2
)

Margin gap O
(
k−1/6+δ

)
O
(

1
log(k)

)

Table 3.1: Comparison of convergence rates for Algorithm 1 with those of [SHN18] for gradient

descent with fixed step sizes applied to the logistic loss.

Lemma 3.3.4. Let

c = min

(
(r − 2p)(1− ε0)

2(r + 1)(1 + ε0)
,
(1− p)(1 + ε0)

r + 1
,

p

r + 1

)
,

where p, r, s0, and ε0 are as given in Theorem 3.3.1 so that c is the exponent in the convergence

rate of Theorem 3.3.1. Let δ be such that c = 1/6− δ. The value of δ is positive and can be

made arbitrarily close to 0 by choosing s0 sufficiently large and setting p = 1/2 and r = 2.

Then for the angle gap,

1− w>k w∗

‖wk‖‖w∗‖
= O

(
k−1/3+2δ

)
.

For the margin gap,
1

‖w∗‖
−min

i

yix
>
i wk

‖wk‖
= O

(
k−1/6+δ

)
.

The convergence guarantees for the angle and margin gaps for Algorithm 1 are significantly

faster than those given in Soudry et al [SHN18] for gradient descent with fixed step sizes

applied to the logistic loss (see Table 3.1). Nacson et al [NLG19] demonstrate that using

aggressive adaptive step sizes for gradient descent applied to the logistic loss leads to a faster

convergence rate of O
(

log(t)√
t

)
. While the convergence guarantees for Algorithm 1 are slower,

as c ≤ 1/6, in this paper, we are interested in analyzing convergence guarantees for gradient

descent applied to the non-smooth hinge loss.
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3.4 Proof of Theorem 3.3.1

We prove Theorem 3.3.1 through a series of lemmas, which are stated in Subsection 3.4.1

and whose proofs are contained in Section 3.8. The proof of Theorem 3.3.1 is contained in

Subsection 3.4.2.

We briefly summarize each of the lemmas for convenience. Lemma 3.4.1 provides a

modified convergence guarantee for the averaged subgradient method applied to the functions

Fλ. Lemma 3.4.2 bounds the distance between minimizers of Fλ for different regularization

parameters λ. This result allows for the incorporation of the decreasing regularization in

Algorithm 1. Lemma 3.4.3 makes use of Lemma 3.4.1 and Lemma 3.4.2 to bound the initial

error ‖ws −w∗λ‖ of each regularized subproblem as given in Equation (3.4).

3.4.1 Useful lemmas

Lemma 3.4.1 is a modified version of a standard convergence analysis of the averaged

subgradient method for convex Lipschitz functions (Theorem 3.2 of [Bub15]). This result

bounds the distance between the average of the subgradient descent iterates w and the

minimizer w∗λ of the functional Fλ for a fixed regularization parameter λ.

Lemma 3.4.1. Let

Fλ(w) =
λ

2
‖w‖2 +

1

n

n∑
j=1

max(0, 1− yjx>j w)

and L = 2
∑n
j=1‖xj‖
n

. Let the initial iterate w0 be such that ‖w0‖ ≤ L
2λ

and let w∗λ minimize

Fλ. Suppose ‖w0 −w∗λ‖ ≤ R, so that w∗λ is contained in a ball of radius R and center w0.

Let w = 1
t

∑t
s=1 ws be the average of t subgradient method iterates with initial iterate w0 and

step size η = R
L
√
t
. Then

0 ≤ Fλ(w)− Fλ(w∗λ) ≤
RL√
t
− λ

2
‖w −w∗λ‖2.

Note that Lemma 3.4.1 also guarantees that

‖w −w∗λ‖2 ≤ 2RL

λ
√
t
.
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The next lemma bounds the distance between the minimizers w∗λ and w∗
λ̃

of the functions

Fλ and Fλ̃ and shows that distance from w∗λ to the true hard-margin solution w∗, ‖w∗λ−w∗‖,

is proportional to the regularization parameter λ.

Lemma 3.4.2. Let w∗λ minimize Fλ as given in Equation (3.2) and let w∗ solve Equa-

tion (3.1). Let λ′ > 0 be such that w∗λ = w∗ for all λ ≤ λ′ and L = 2
∑n
j=1‖xj‖
n

. For λ, λ̃ ≥ 0

and data satisfying Assumption 3.2.1, we have

‖w∗λ −w∗
λ̃
‖ ≤ L

2

∣∣∣∣1λ − 1

λ̃

∣∣∣∣ (3.9)

and

‖w∗λ −w∗‖ ≤ Lλ

2 (λ′)2 . (3.10)

The final lemma bounds the initial error at each fixed level of regularization for the

subgradient updates produced when minimizing Fλs . In particular, it specifies a bound

shrinking in s on the distance between the initial iterate ws and the minimizer w∗λs of the

function Fλs . The fact that the initial error for each regularized subproblem goes to zero is

crucial for proving the convergence of Algorithm 1 to the hard margin SVM solution.

Lemma 3.4.3. Let L = 2
∑n
j=1‖xj‖
n

and R0 = L
2λ0

. For s0 ∈ N with s0 > 2, p ∈ (0, 1), and

r > 2p, let λs = (s0 + s)−p and ts = (s0 + s)r. Let

Rs = CL(s0 + s− 1)−α for 0 ≤ α ≤ min

(
r − 2p

2(1 + ε0)
, 1− p

)
,

with

C = max

{
4,

1

2λ0

(s0 − 1)α
}

and ε0 =
log(s0)− log(s0 − 1)

log(s0)
.

Let ηs = Rs
L
√
ts

. Then for the averaged subgradient iterates ws of Algorithm 1,

‖ws −w∗λs‖ ≤ Rs.

Based on Lemma 3.4.3, for r > 2p and p < 1 the radii Rs shrink to 0 as s increases.
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3.4.2 Proof of Theorem 3.3.1.

We now prove Theorem 3.3.1 using the above lemmas.

Proof. We use the triangle inequality to bound the error as

‖ws −w∗‖ ≤ ‖ws −w∗λs‖+ ‖w∗λs −w∗‖. (3.11)

We then bound the terms ‖ws −w∗λs‖ and ‖w∗λs −w∗‖ using the lemmas of Subsection 3.4.1.

Let L = 2
∑n
j=1‖xj‖
n

and choose s0 ∈ N with s0 > 2. Let λs = (s0 + s)−p and ts = (s0 + s)r.

Let

Rs = CL(s0 + s− 1)−α, for α = min

(
r − 2p

2(1 + ε0)
, 1− p

)
,

with

C = max
{

4, 1
2
sp0(s0 − 1)α

}
and ε0 =

log(s0)− log(s0 − 1)

log(s0)
.

Let ηs = Rs
L
√
ts

. By Lemma 3.4.3, considering the first term in the bound of Equation (3.11),

‖ws −w∗λs‖ ≤ Rs = CL(s0 + s− 1)−α.

Changing the base,

‖ws −w∗λs‖ ≤ CL(s0 + s)−α(1−ε0).

We now bound the second term of the bound in Equation (3.11). Let λ′ > 0 be such that

w∗λ = w∗ for all λ ≤ λ′. By Lemma 3.4.2,

‖w∗λs −w∗‖ ≤ Lλs
2(λ′)2

=
L(s0 + s)−p

2(λ′)2
.

The total number of updates, k, used to calculate ws is bounded by

k =
s−1∑
i=0

ti =

s0+s−1∑
i=s0

ir ≤
∫ s+s0

s0+1

ir =
(s+ s0)r+1

r + 1
.

Rearranging,

((r + 1)k)
1
r+1 ≤ s0 + s.

Writing the bounds in terms of the total number of updates, k,

‖ws −w∗λs‖ ≤ CL(s0 + s)−α(1−ε0) ≤ CL ((r + 1)k)
−α(1−ε0)

r+1
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and

‖w∗λs −w∗‖ ≤ L ((r + 1)k)
−p
r+1

2(λ′)2
.

Combining these,

‖ws −w∗‖ ≤ ‖ws −w∗λs‖+ ‖w∗λs −w∗‖

≤ CL ((r + 1)k)
−α(1−ε)
r+1 +

L ((r + 1)k)
−p
r+1

2(λ′)2
.

In order to optimize the convergence rate given in Theorem 3.3.1, we aim to choose

parameters p and r such that

p, q = argmax
p,q

min

{
(r − 2p)(1− ε0)

2(1 + ε0)
, (1− p)(1− ε0), p

}
.

For ε0 small, p = 1/2 and r = 2 lead to a nearly optimal converge rate of

‖ws −w∗‖ ≤ 4L ((r + 1)k)−
(1−ε)
6(1+ε) +

L ((r + 1)k)−1/6

2(λ′)2
.

The choices p = 1
2

and r = 2 are considered in Corollary 3.3.2 and an explicit convergence

rate is given under these conditions.

3.5 Experimental Results

We demonstrate the convergence of Algorithm 1 through several experiments on a simple

synthetic dataset that is shown in Figure 3.1. The experiments aim to explore the differences

between convergence in theory versus practice and are not intended to be exhaustive or

demonstrate superior performance over existing methods. The data includes four support

vectors which occur at ±(0.5, 1.5) and ±(1.5, 0.5). The hard-margin SVM solution is given by

w∗ = (0.5, 0.5). The maximal regularization parameter λ′ such that w∗λ = w∗ for all λ ≤ λ′

is λ′ = 0.5. We fix the parameters p = 1/2 and r = 2 as are considered in Corollary 3.3.2 and

initialize w0 = 0.
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Figure 3.1: Synthetic data considered.

Figure 3.2: Performance of Algorithm 1 applied to data from Figure 3.1 with p = 1/2, r = 2

and varying s0.

We measure convergence in terms of the L2 error as well as the angle and margin gaps

of Definition 3.3.3. Convergence results for Algorithm 1 with p = 1/2, r = 2 and varying

s0 are shown in Figure 3.2. In terms of the L2 error, for a fixed number of iterations, there

appears to be an optimal choice for the parameter s0, as choosing s0 = 10 performs better

than s0 = 3, 5 or 20.

We additionally compare the convergence of Algorithm 1 in terms of the angle gap and

margin gap to gradient descent using fixed step sizes applied to the logistic loss. We use step

sizes η = 1
σmax(X)

, where σmax(X) is the largest singular value of the data matrix X. As can

be seen in Figure 3.3, we find significantly faster convergence via Algorithm 1 as compared

to minimization of the logistic loss via gradient descent with fixed step sizes as considered

in [SHN18,NLG19]. This result is unsurprising, as Algorithm 1 arrives at the SVM solution

via controlled explicit regularization as opposed to only implicit regularization via gradient
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Figure 3.3: Performance of Algorithm 1 applied to data from Figure 3.1 in terms of the angle

and margin gaps with p = 1/2, r = 2 and varying s0. For comparison, we include gradient

descent applied to the logistic loss as described in [SHN18] with step size η = 1
σmax(X)

, where

σmax(X) is the largest singular value of the data matrix X.

descent.

We additionally consider the performance of Algorithm 1 applied to the data of Figure 3.1

with the y-values of the data multiplied by 20. This leads to a slightly more challenging

problem with less symmetric data. The results are shown in Figure 3.4. We find that the

convergence of Algorithm 1 is slightly slower in terms of L2 error. The logistic loss converges

significantly slower in terms of both the angle and margin gaps, whereas the effect on the

convergence of Algorithm 1 appears to be minimal.

3.6 Implementation remarks

As presented, Algorithm 1 is highly adaptable for different loss functions and settings in which

one would like to consider a range of regularization parameters or variable regularization.

In this section, we present several potential modifications of interest, including adaptive

or gradient based step sizes, amenability to using stochastic subgradients, and alternative

updates.
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Figure 3.4: Performance of Algorithm 1 applied to the data of Figure 3.1, but with the values

of all y-coordinates scaled by 20. The parameters p = 1/2, r = 2 and varying s0 are used.

For comparison, the angle gap and margin gap plots include gradient descent applied to the

logistic loss as described in [SHN18] with step size η = 1
σmax(X)

, where σmax(X) is the largest

singular value of the data matrix X.
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3.6.1 Adaptive step sizes

When the regularization parameter, λ, or the norm of w are small and close to optimal, if

an iterate violates one of the hinge loss constraints, this can increase the magnitude of the

gradient of the loss Fλ significantly, leading to a relatively large jump in the next iterate

followed by many smaller steps back toward the optimal solution of smaller norm. Using

gradient descent with adaptive or loss-dependent step sizes can minimize the effects of these

cycles. For example, we could adjust Algorithm 1 to use step sizes that are normalized by

the magnitude of the subgradient,

wk+1 = wk − ηk
∇Fλ(wk)

‖∇Fλ(wk)‖
. (3.12)

With this choice, the magnitude of the update is always ηk and is independent of the

magnitude of the gradient of Fλ. Cursory experimental results suggest that using adaptive

step sizes as in Equation (3.12), leads to slower convergence to the true solution initially and

does not lead to improved convergence overall.

One could also potentially increase the convergence rate guarantees for Algorithm 1 by

incorporating aggressive loss-dependent step sizes. In [NLG19], the authors show that when

using Equation (3.12) with step sizes ηk = 1
L(wk)

, gradient descent applied to the logistic loss

converges at the nearly optimal rate of O(t−1/2 log t). While this strategy provides a faster

convergence rate, loss-dependent step sizes are less commonly used in practice as, in the

stochastic setting, updating the loss at each iteration is often too expensive. The stochastic

setting is discussed further in Subsection 3.6.3.

3.6.2 Regularization decay rate

In Algorithm 1, we consider regularization parameters that decay at a rate of λs = O(s−p) for

a constant p > 0. One might consider other choices for the decay rate of the regularization

parameter λ. For example λs = O
(

1
log(s)

)
or λs = O(cs) for c ∈ (0, 1). Recall that in

bounding the error ‖ws −w∗‖ we use the decomposition

‖ws −w∗‖ ≤ ‖ws −w∗λs‖+ ‖w∗λs −w∗‖.
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The first term converges more quickly when λ is large while the second term converges more

quickly when λ is small. The decay rate of λs = O(s−p) was chosen to balance the convergence

of these terms.

3.6.3 Stochastic subgradients

Algorithm 1 can be naturally extended to the stochastic subgradient setting, in which one

performs updates based on the subgradient of the loss with respect to only a subset of the

data points. This is often necessary for large-scale optimization problems. Additionally,

although piecewise-constant decaying step sizes are incorporated into Algorithm 1 to account

for the introduced regularization, it is also often used in stochastic gradient descent in order

to mitigate the effect of noise in the gradient approximation of each update [BCN18]. This

commonality suggests that Algorithm 1 may be particularly suited for the stochastic setting.

3.6.4 Alternative updates

Lemma 3.4.1 is the only result that depends on the update given by the fixed-λ subproblem

and, in particular, Theorem 3.3.1 applies to any update that satisfies ‖ws −w∗λ‖ ≤ Rs for

each s = 1, . . . , S. Thus, as opposed to using the average of the iterates from each fixed λ

subproblem, one could use alternative updates, such as

ŵs = argmin
i=1,...,ts

Fλs(wi),

or the iterate that leads to the minimal loss for that subproblem. We refer to this update

choice as the best-iterate update and investigate the effects of this choice in Figure 3.5.

We find that the best-iterate update typically leads to significantly faster convergence in

terms of the L2 error. Specifically, choosing the best iterate can alleviate the slow convergence

caused by the slow decrease in step size. The convergence of the two strategies, using the

averaged iterate and the best iterate, perform comparably in terms of the angle gap. Using

the best iterate converges somewhat slower in terms of the margin gap.
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Figure 3.5: Performance of Algorithm 1 applied to data from Figure 3.1 using the averaged

iterate versus the best iterate from each regularized subproblem. parameters p = 1/2, r = 2

and s0 = 10 are used.

3.6.5 Incorporating a bias term

As in [RZH04,SHN18], we consider the case in which the maximal-margin separating hyper-

plane intersects the origin. One can allow for more general hyperplanes by learning a bias

term b for the separating hyperplane. We propose the following method for approximating

the bias term b

b = −(mini:yi=1 x>i w + maxi:yi=−1 x>i w)

2
, (3.13)

which is guaranteed to be close to the true max-margin bias b∗ when ‖w −w∗‖ is small.

Specifically, one can verify that for the bias b as calculated in Equation (3.13) and b∗ the

true bias, we have

|b− b∗| ≤ max
i
‖xi‖‖w −w∗‖.

Initial experiments with a non-trivial bias demonstrate convergence similar to the zero-bias

case.
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3.7 Conclusion

We have shown that, for linearly separable data, the subgradient method converges to the max-

margin SVM solution when minimizing the unconstrained regularized SVM, Equation (3.2),

with decreasing regularization parameters, λ. Under the conditions given in Theorem 3.3.1,

this convergence can be guaranteed to be O
(
k−1/6+δ

)
for any δ > 0. We compare convergence

rates in several metrics to those provided in [SHN18,NLG19]. In particular, the convergence

rate guarantees for Algorithm 1 are faster than those of [SHN18,NLG19] for gradient descent

with fixed step sizes. This restriction to fixed or piecewise constant step sizes is a practical

choice, especial when working with large-scale optimization problems. We additionally

demonstrate the convergence of Algorithm 1 on a simple synthetic dataset.

Although we specifically consider the hinge loss and SVMs, the results and analysis

presented here could be extended to more general settings. For example, one could more

generally consider settings in which one aims to solve

w∗ = lim
λ→0+

argmin
w

λ

2
g(w) + f(w),

where g is strongly convex and Lipschitz over bounded domains, f is convex and Lipschitz,

and the regularization path,

w∗λ =
λ

2
g(w) + f(w),

is Lipschitz in λ.

3.8 Lemma Proofs

We now present proofs for the lemmas of Sections 3.2 to 3.4.

We first prove Lemma 3.2.2, which gives a bound on the norm of the iterates produced

by the subgradient method applied to Equation (3.2).

Proof of Lemma 3.2.2
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Proof. Consider the subgradient update for minimizing the function Fλ of Equation (3.2)

w′ = (1− λη)w +
η

n

∑
j:yjx>j w≤1

yjxj (3.14)

with ηλ < 1. Suppose that the iterate w satisfies ‖w‖ ≤ 1
λn

∑n
j=1‖xj‖. We aim to show that

w′ given by the subgradient update also satisfies ‖w‖ ≤ 1
λn

∑n
j=1‖xj‖. Taking the norm on

both sides of Equation (3.14),

‖w′‖ =

∥∥∥∥(1− ηλ)w +
η

n

∑
j:yjx>j w≤1

yjxj

∥∥∥∥
≤ (1− ηλ)‖w‖+

η

n

∥∥∥∥ ∑
j:yjx>j w≤1

yjxj

∥∥∥∥
≤ (1− ηλ)

1

λn

n∑
j=1

‖xj‖+
η

n

n∑
j=1

‖xj‖

=
1

λn

n∑
j=1

‖xj‖ −
η

n

n∑
j=1

‖xj‖+
η

n

n∑
j=1

‖xj‖

=
1

λn

n∑
j=1

‖xj‖.

Thus the norms of all iterates of the subgradient method applied to the function Fλ remain

bounded by 1
λn

∑n
j=1‖xj‖ if the initial iterate has norm at most 1

λn

∑n
j=1‖xj‖. The norm of

the minimizer w∗λ of Fλ must also satisfy the bound ‖w∗λ‖ ≤ 1
λn

∑
j‖xj‖ as 0 ∈ ∂Fλ(w∗λ) and

so

λ‖w∗λ‖ ≤
1

n

∣∣∣∣∣∣∣∣ ∑
j:yjx>j w∗λ≤1

yjxj

∣∣∣∣∣∣∣∣.

Proof of Lemma 3.3.4

Lemma 3.3.4 uses Theorem 3.3.1 to derive bounds for the angle and margin gaps.

Proof. To derive a convergence rate for the angle gap, we use the decomposition

‖wk −w∗‖2 = ‖wk‖2 + ‖w∗‖2 − 2w>k w∗

= (‖wk‖ − ‖w∗‖)2 + 2‖wk‖‖w∗‖ − 2w>k w∗.
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Dividing by 2‖wk‖‖w∗‖,

1− w>k w∗

‖wk‖‖w∗‖
=
‖wk −w∗‖2 − (‖wk‖ − ‖w∗‖)2

2‖wk‖‖w∗‖

≤ ‖wk −w∗‖2

2‖wk‖‖w∗‖
.

Since ‖w∗‖ is necessarily bounded away from 0 since yix
>
i w∗ ≥ 1 for all i. We can bound

‖wk‖ away from 0 for t large using the convergence of wk to w∗ guaranteed by Theorem 3.3.1.

Let

c = min

(
(r − 2p)(1− ε0)

2(r + 1)(1 + ε0)
,
(1− p)(1 + ε0)

r + 1
,

p

r + 1

)
,

be the exponent in the convergence rate of ‖w − w∗‖ and p, r, and ε0 be defined as in

Theorem 3.3.1. Since

(‖wk‖ − ‖w∗‖)2 ≤ ‖wk −w∗‖2 ≤ Ak−2c

for constants A, c > 0 by Theorem 3.3.1, then ‖wk‖ ≥ ‖w∗‖ − Ak−c. Thus for k sufficiently

large, we can bound ‖w‖ away from 0 and have

1− w>k w∗

‖wk‖‖w∗‖
= O

(
k−2c

)
. (3.15)

We now consider the margin bound. Let j = argmini=1,...n
yix
>
i wk
‖wk‖

. Since yix
>
i w∗ ≥ 1 for

all i = 1, . . . , n, we have that

0 ≤ 1

‖w∗‖
−
yjx

>
j wk

‖wk‖
≤
yjx

>
j w∗

‖w∗‖
−
yjx

>
j wk

‖wk‖

= yjx
>
j

(
w∗

‖w∗‖
− wk

‖wk‖

)
≤ ‖xj‖

∥∥∥∥ w∗

‖w∗‖
− wk

‖wk‖

∥∥∥∥.
Note that ∥∥∥∥ w∗

‖w∗‖
− wk

‖wk‖

∥∥∥∥2

= 2

(
1− w>k w∗

‖wk‖‖w∗‖

)
.

Assuming the data is finite and linearly separable, by Equation (3.15) we then have

1

‖w∗‖
−min

i

yix
>
i wk

‖wk‖
= O

(
k−c
)
.
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Proof of Lemma 3.4.1

Lemma 3.4.1 provides a modified convergence guarantee for the averaged subgradient method

applied to the functions Fλ [Bub14].

Proof. Let Fλ be a strongly convex function with strong convexity parameter λ and Lipschitz

constant L on the bounded domain considered. Let w0 be an initial iterate and w∗λ be the

minimizer of Fλ. Suppose ‖w0 −w∗λ‖ ≤ R, so that w∗λ is contained in a ball of radius R and

center w0. Let w = 1
t

∑t
i=1 wi be the average of t subgradient descent iterates with initial

iterate w0 and step size η = R
L
√
t
. We aim to show that

0 ≤ Fλ(w)− Fλ(w∗λ) ≤
RL√
t
− λ

2
‖w −w∗λ‖2.

The following proof relies heavily on Theorem 3.2 of [Bub14] (See also [Bub15]).

Since w∗λ is the minimizer of Fλ, the inequality

Fλ(w)− Fλ(w∗λ) ≥ 0

is immediate. Let g(w) = Fλ(w)− λ
2
||w||2. Since g(w) is convex,

g(w) ≤ 1

t

t∑
i=1

g(wi)

and thus

Fλ(w)− λ

2
||w||2 ≤ 1

t

t∑
i=1

(
Fλ(wi)−

λ

2
||wi||2

)
.

Reorganizing and subtracting Fλ(w
∗
λ),

Fλ(w)− Fλ(w∗λ)

≤ 1

t

t∑
i=1

(
Fλ(wi)− Fλ(w∗λ)−

λ

2

(
||wi||2 − ||w||2

))
. (3.16)

Using the strong convexity of Fλ and the proof of Theorem 3.2 of [Bub14],

Fλ(wi)− Fλ(w∗λ)

≤ ∂Fλ(wi)
>(wi −w∗λ)−

λ

2
‖wi −w∗λ‖2

=
1

2η

(
‖wi −w∗‖2 − ‖wi+1 −w∗‖2

)
+
η

2
‖∂Fλ(wi)‖2 − λ

2
‖wi −w∗λ‖2

≤ 1

2η

(
‖wi −w∗‖2 − ‖wi+1 −w∗‖2

)
+
ηL2

2
− λ

2
‖wi −w∗λ‖2.
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Making this substitution into Equation (3.16),

Fλ(w)− Fλ(w∗λ)

≤ 1

2tη

(
‖w1 −w∗‖2 − ‖wt+1 −w∗‖2

)
+
ηL2

2

− λ

2t

t∑
i=1

(
‖wi −w∗λ‖2 + ||wi||2 − ||w||2

)

≤ R2

2tη
+
ηL2

2
− λ

2t

t∑
i=1

(
‖wi −w∗λ‖2 + ||wi||2 − ||w||2

)

≤ RL√
t
− λ

2t

t∑
i=1

(
||wi||2 − ||w||2 + ‖wi −w∗λ‖2

)
.

Decomposing the sum,

1

t

t∑
i=1

‖wi −w∗λ‖2 =
1

t

t∑
i=1

(
||wi||2 − 2w>i w∗λ + ||w∗λ||2

)
=

1

t

t∑
i=1

(
||wi||2

)
− 2w>w∗λ + ||w∗λ||2

=
1

t

t∑
i=1

(
||wi||2

)
− ||w||2 + ||w||2 − 2w>w∗λ + ||w∗λ||2

=
1

t

t∑
i=1

(
||wi||2 − ||w||2

)
+ ||w −w∗λ||2.

Making this substitution,

Fλ(w)− Fλ(w∗λ)

≤ RL√
t
− λ

t

∑(
||wi||2 − ||w||2

)
− λ

2
||w −w∗λ||2.

Since ||w||2 is convex, λ
t

∑
(||wi||2 − ||w||2) ≥ 0 and

Fλ(w)− Fλ(w∗λ) ≤
RL√
t
− λ

2
||w −w∗λ||2

as desired.

Proof of Lemma 3.4.2

We now prove Lemma 3.4.2, which bounds the distance between minimizers of Fλ for different

regularization parameters λ.
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Proof. Let w∗λ minimize Fλ as given in Equation (3.2). Let λ′ > 0 be such that w∗λ = w∗ for

all λ ≤ λ′. For λ, λ̃ ≥ 0 and data satisfying Assumption 3.2.1, we aim to show that

‖w∗λ −w∗
λ̃
‖ ≤ L

2

∣∣∣∣1λ − 1

λ̃

∣∣∣∣
and

‖w∗λ −w∗
λ̃
‖ ≤ maxj ‖xj‖

(λ′)2 |λ− λ̃|.

The proof of Lemma 3.4.2 makes use of Lemma 8 of [LS18], which is also stated below.

Lemma 3.8.1. (Perturbation of strongly convex functions I [LS18]). Let f(z) be a non-

negative, α2-strongly convex function. Let g(z) be a L-Lipschitz non-negative convex function.

For any β ≥ 0, let z[β] be the minimizer of f(z) + βg(z), then we have,∥∥∥∥dz[β]

dβ

∥∥∥∥ ≤ L

α2
.

Let f(w) = ‖w‖2 and g(w) = 1
n

∑n
j=1 max{0, 1 − yjx>j w}. Then f is strongly convex

with strong convexity parameter 2 and g is Lipschitz with a Lipschitz constant bounded by

1
n

∑n
j=1 ‖xj‖. Note that

Fλ(w) =
λ

2
f(w) + g(w) =

λ

2

[
f(w) +

2

λ
g(w)

]
=
λ

2
[f(w) + β(λ)g(w)]

for β(λ) = 2
λ
. Applying Lemma 8 of [LS18],∥∥∥∥dw[λ]

dλ

∥∥∥∥ =

∥∥∥∥dw[λ]

dβ(λ)
· dβ(λ)

dλ

∥∥∥∥
≤ 1

2n

n∑
j=1

‖xj‖ · |β′(λ)| =
1
n

∑n
j=1 ‖xj‖
λ2

.
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Integrating, for any λ̃ ≥ λ̂ > 0, we have

‖w∗
λ̃
−w∗

λ̂
‖ =

∥∥∥∥∫ λ̃

λ̂

dw[λ]

dλ
dλ

∥∥∥∥
≤
∫ λ̃

λ̂

∥∥∥∥dw[λ]

dλ

∥∥∥∥dλ
≤
∫ λ̃

λ̂

1
n

∑
j‖xj‖
λ2

dλ

= 1
n

∑
j

‖xj‖
∣∣∣∣1λ̃ − 1

λ̂

∣∣∣∣ .
As the regularization parameter λ approaches zero, we will use the following bound. Since

for all λ < λ′, w[λ] = w[λ′] = w∗, then for λ < λ′,
∥∥dw[λ]

dλ

∥∥ = 0. Thus∥∥∥∥dw[λ]

dλ

∥∥∥∥ ≤ maxj ‖xj‖
(λ′)2 ∀ λ > 0.

This gives the second bound,

‖w∗
λ̃
−w∗

λ̂
‖ ≤

∫ λ̃

λ̂

1
n

∑
j‖xj‖
λ2

dλ ≤
∫ λ̃

λ̂

1
n

∑
j‖xj‖
λ′2

dλ ≤ maxj ‖xj‖
(λ′)2 |λ̃− λ̂|.

Proof of Lemma 3.4.3 We finally prove Lemma 3.4.3, which makes use of Lemma 3.4.1

and Lemma 3.4.2 to bound the initial error ‖ws −w∗λ‖ of each regularized subproblem given

in Equation (3.4).

Proof. We aim to show ‖ws −w∗λs‖ ≤ Rs with Rs defined below and proceed by induction.

For s0 ∈ N with s0 > 2, p ∈ (0, 1), and r > 2p, let λs = (s0 + s)−p, ts = (s0 + s)r. Recall that

L = 2
n

∑n
j=1‖xj‖. For some parameter α > 0, let

Rs = CL(s0 + s− 1)−α with C = max

{
4,

1

2λ0

(s0 − 1)α
}
.

By Lemma 3.2.2, and since w0 = 0, we have ‖w0 −w∗λ0‖ ≤
L

2λ0
. Note that R0 ≥ L

2λ0
and

thus the base case, ‖w0 −w∗λ0‖ ≤ R0 is satisfied.

Suppose that ‖ws −w∗λs‖ ≤ Rs. By the triangle inequality,

‖ws −w∗λs‖ ≤ ‖ws −w∗λs−1
‖+ ‖w∗λs−1

−w∗λs‖.
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For ws generated as in Algorithm 1, Lemma 3.4.1 along with the inductive assumption gives

that

‖ws −w∗λs−1
‖ ≤

(
2Rs−1L

λs−1

√
ts−1

)1/2

=

√
2CL(s0 + s− 2)−α/2

(s0 + s− 1)r/4−p/2
.

From Equation (3.9) of Lemma 3.4.2,

‖w∗λs−1
−w∗λs‖ ≤

L
2

(
1
λs
− 1

λs−1

)
= L

2
((s0 + s)p − (s0 + s− 1)p)

≤ Lp
2

(s0 + s− 1)p−1.

Combining these

‖ws −w∗λs‖ ≤
√

2CL(s0 + s− 2)−α/2

(s0 + s− 1)r/4−p/2
+
L

2
p(s0 + s− 1)p−1.

Applying a change of base via ε ≥ log(s0+s−1)−log(s0+s−2)
log(s0+s−1)

,

‖ws −w∗λs‖ ≤
√

2CL(s0 + s− 1)p/2−α/2(1−ε)−r/4 +
Lp

2
(s0 + s− 1)p−1.

To simplify the analysis and remove the dependence of ε on the iteration number s, we use

ε0 = log(s0)−log(s0−1)
log(s0)

. Now, for

0 ≤ α ≤ min

(
r − 2p

2(1 + ε0)
, 1− p

)
and p < 1, we have

‖ws −w∗λs‖ ≤ L
(√

2C +
p

2

)
(s0 + s− 1)−α ≤ CL(s0 + s− 1)−α = Rs.

Note that allowing the first term in the upper bound on α to increase with s leads to smaller

bounds Rs. This choice, however, complicates the analysis.
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CHAPTER 4

Adaptive Sketch-and-Project Methods

4.1 Introduction

We consider the fundamental problem of finding an approximate solution to the linear system

Ax = b, (4.1)

where A ∈ Rm×n and b ∈ Rm. Given the possibility of multiple solutions, we set out to find a

least-norm solution given by

x∗
def
= min

x∈Rn
1
2
‖x‖2

B subject to Ax = b, (4.2)

where B ∈ Rn×n is a symmetric positive definite matrix and ‖x‖2
B

def
= 〈Bx, x〉 . Here, we

consider consistent systems, for which there exists an x that satisfies Equation (4.1).

When the dimensions of A are large, direct methods for solving Equation (4.2) can be

infeasible, and iterative methods are favored. In particular, Krylov subspace iterative methods

including the conjugate gradient algorithms [HS52] are the industrial standard so long as one

can afford full matrix vector products and the system matrix fits in memory. On the other

hand, if a single matrix vector product is considerably expensive, or A is too large to fit in

memory, then randomized iterative methods such as the randomized Kaczmarz [Kac37,SV09]

and coordinate descent method [MNR15b,LL10] are effective.

4.1.1 Randomized Kacmarz

The randomized Kaczmarz method is typically used to solve linear systems of equations in the

large data regime, i.e., when the number of samples m is much larger than the dimension n.
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The Kaczmarz method was originally proposed in 1937 and has seen applications in computer

tomography (CT scans), signal processing, and other areas [Kac37,SV09,GBH70,Nat01]. In

each iteration k, the current iterate xk is projected onto the solution space of a selected row

of the linear system of Equation (4.1). Specifically, at each iteration

xk+1 = argmin
x∈Rn

‖x− xk‖2 subject to Aik:x = bik ,

where Aik: is the row of A selected at iteration k. Let A>ik: denote the transpose of this row.

The Kaczmarz update can be written explicitly as

xk+1 = xk +
bik − 〈Aik:, x

k〉
‖Aik:‖2

A>ik:. (4.3)

4.1.2 Coordinate descent

Coordinate descent is commonly used for optimizing general convex optimization func-

tions when the dimensions are extremely large, since at each iteration only a single co-

ordinate (or dimension) is updated [RT14, RT13]. Here, we consider coordinate descent

applied to Equation (4.2). In this setting, it is sometimes referred to as randomized Gauss-

Seidel [MNR15b,LL10].

At iteration k an index i ∈ {1, . . . , n} is selected and the coordinate xki of the current

iterate xk is updated such that the least-squares objective ‖b−Ax‖2 is minimized. More

formally,

xk+1 = argmin
x∈Rn, λ∈R

‖b−Ax‖2 subject to x = xk + λ ei,

where ei is the ith coordinate vector. Let A:i denote the ith column of A and A>ik: denote the

transpose of this column. The explicit update for coordinate descent applied to Equation (4.2)

is given by

xk+1 = xk −
A>:ik(Ax

k − b)
‖A:ik‖2

eik . (4.4)

4.1.3 Sketch-and-project methods

Sketch-and-project is a general archetypal algorithm that unifies a variety of randomized

iterative methods including both randomized Kaczmarz and coordinate descent along with
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all of their block variants [GR15b]. At each iteration, sketch-and-project methods project

the current iterate onto a subsampled or sketched linear system with respect to some norm.

Let B ∈ Rn×n be a symmetric positive definite matrix. We will consider the projection with

respect to the B–norm given by ‖·‖B =
√
〈·,B·〉.

Let Si ∈ Rm×τ for i = 1, . . . , q be the set of sketching matrices where τ ∈ N is the

sketch size. In general, the set of sketching matrices Si could be infinite, however, here, we

restrict ourselves to a finite set of q ∈ N sketching matrices. At the kth iteration of the

sketch-and-project algorithm, a sketching matrix Si is selected and the current iterate xk is

projected onto the solution space of the sketched system S>ikAx = S>ikb with respect to the

B–norm. Given a selected index ik ∈ {1, . . . , q} the sketch-and-project update solves

xk+1 = argmin
x∈Rn

‖x− xk‖2
B subject to S>ikAx = S>ikb. (4.5)

The closed form solution to Equation (4.5) is given by

xk+1 = xk −B−1A>Hik(Ax
k − b), (4.6)

where

Hi
def
= Si(S

>
i AB−1A>Si)

†S>i , for i = 1, . . . , q, (4.7)

and † denotes the pseudoinverse.

One can recover the randomized Kaczmarz method under the sketch-and-project framework

by choosing the matrix B as the identity matrix and sketches Si = ei. If instead B = A>A

and sketches Si = Aei = A:i, where A:i is the ith column of the matrix A, then the resulting

method is coordinate descent.

4.1.4 Sampling of indices

An important component of the methods above is the selection of the index ik at iteration k.

Methods often use independently and identically distributed (i.i.d.) indices, as this choice

makes the method and analysis relatively simple [SV09, Nes12]. In addition to choosing

indices i.i.d. at each iteration, several adaptive sampling methods have also been proposed,
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which we discuss next. These sampling strategies use information about the current iterate in

order to improve convergence guarantees over i.i.d. random sampling strategies at the cost of

extra calculation per iteration. Under certain conditions, such strategies can be implemented

with only a marginal additional cost per iteration.

4.1.4.1 Sampling for the Kaczmarz method

The original Kaczmarz method cycles through the rows of the matrix A and makes projections

onto the solution space with respect to each row [Kac37]. In 2009, Strohmer and Vershynin

suggested selecting rows with probabilities that are proportional to the squared row norms

(i.e. pi ∝ ‖Ai:‖2
2) and provided the first proof of exponential convergence of the randomized

Kaczmarz method [SV09].

Several adaptive selection strategies have also been proposed in the Kaczmarz setting.

The max-distance Kaczmarz or Motzkin’s method selects the index ik at iteration k that leads

to the largest magnitude update [NSL16,MS54]. In addition to the max-distance selection

rule, Nutini et al also consider the greedy selection rule that chooses the row corresponding

to the maximal residual component, i.e., ik = argmaxi |Ai:x
k − bi| at each iteration, but show

that the max-distance Kacmzarz method performs at least as well as this strategy [NSL16].

More complicated adaptive methods have also been suggested for randomized Kaczmarz,

such as the capped sampling strategies proposed in [BW18a,BW18b,BW19a] or the sampling

Kaczmarz Motzkin’s method of [LHN17].

4.1.4.2 Sampling for coordinate descent

For coordinate descent, several works have investigated adaptive coordinate selection strate-

gies [PCJ17,NSL15,Nes12,AG18]. As coordinate descent is not restricted to solving linear

systems, these works often consider more general convex loss functions. A common greedy

selection strategy for coordinate descent applied to differentiable loss functions is to select

the coordinate that corresponds to the maximal gradient component, which is known as

the Gauss-Southwell rule [Tse90,LT92,NSL15,Nes12] or adaptively according to a duality
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gap [CQR15].

4.1.4.3 Sampling for sketch-and-project

The problem of determining the optimal fixed probabilities with which to select the index ik

at each iteration k was shown in Section 5.1 of [GR15b] to be a convex semi-definite program,

which is often a harder problem than solving the original linear system. The problem of

determining the optimal adaptive probabilities is even harder as one must consider the effects

of the current index selection on the future iterates. Here, instead, we present adaptive

sampling rules that are not necessarily optimal, but can be efficiently implemented and are

proven to converge faster than the fixed non-adaptive rules.

4.1.5 Choosing the sketches and preconditioning

Another key question is how we should choose the set of sketching matrices. This question

has been partially answered in Section 5.2 of [GR17], wherein the authors show that if a

preconditioned A were available, then the set of sketching matrices should be drawn from

row partitions or column partitions of this preconditioner. This strategy can be combined

with any index sampling rule for an overall faster algorithm. Here, we will assume a set of

sketching matrices has been provided, and focus only on the index sampling rule.

4.1.6 Additional related works

Various related works consider extensions to solving Equation (4.2) in the randomized

Kaczmarz, coordinate descent and sketch-and-project settings. The following summary of

related works is not exhaustive. While we consider consistent linear systems, others have

analyzed and extended sketch-and-project methods to handle inconsistent linear systems

[PP16,ZF13,Pop99,MNR15a,Dum15]. An adaptive maximum-residual sampling strategy has

also been analyzed for the inconsistent extension [PP16]. The randomized Kaczmarz method

has also been studied in the context of solving systems of linear inequalities [LL10,MS54,

BN15, BW19b]. Block and accelerated variants of randomized Kaczmarz and coordinate
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descent have also been analyzed [RT14,Nec19,NZZ15,NT14,LX15,NNG17,NS17]. Recent

works have considered combining ideas from random sketching methods with those from the

sketch-and-project framework [PJM19].

4.2 Contributions

Adaptive sampling strategies have not yet been analyzed for the general sketch-and-project

framework. We introduce three different adaptive sampling rules for the general sketch-

and-project method: the max-distance sampling rule, the capped-adaptive sampling rule,

and proportional sampling probabilities. We prove that each of these methods converge

exponentially in mean squared error with convergence guarantees that are strictly faster than

the guarantees for sampling indices uniformly.

4.2.1 Key quantity: Sketched loss

As we will see in the general convergence analysis of the sketch-and-project method detailed

in Section 4.7, the convergence at each iteration depends on the current iterate xk and a key

quantity known as the sketched loss

fi(x
k)

def
= ‖Axk − b‖2

Hi
, (4.8)

of the sketch Si (recall that Hi, defined in Equation (4.7), is symmetric positive semi-definite

and thus ‖·‖Hi

def
=
√
〈·,Hi·〉 gives a semi-norm). This sketched loss was introduced in [RT17]

where the authors show that the sketch-and-project method can be seen as a stochastic

gradient method (we expand on this in Section 4.4). We show that using adaptive selection

rules based on the sketched losses results in new methods with faster convergence guarantees.

4.2.2 Max-distance rule

We introduce the max-distance sketch-and-project method, which is a generalization of both

the max-distance Kaczmarz method (also known as Motzkin’s method) [NSL16,MS54,HN19],

greedy coordinate descent (Gauss-Southwell rule [NSL15]), and all their possible block variants.
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Nutini et al. showed that the max-distance Kaczmarz method performs at least as well as

uniform sampling and the non-uniform sampling method of [SV09], in which rows are sampled

with probabilities proportional to the squared row norms of A [NSL16]. We extend this result

to the general sketch-and-project setting and also show that the max-distance rule leads to a

convergence guarantee that is strictly faster than that of any fixed probability distribution.

4.2.3 The capped adaptive rule

A new family of adaptive sampling methods were recently proposed for the Kaczmarz and

coordinate descent type methods [BW18a,BW18b,BW19a]. We extend these methods to

the sketch-and-project setting, which allows for their application in other settings such as for

coordinate descent. While introduced under the names greedy randomized Kaczmarz and

relaxed greedy randomized Kaczmarz, we refer to these methods as capped adaptive methods

because they select indices i whose corresponding sketched losses fi(x
k) are larger than a

capped threshold given by a convex combination of the largest and average sketched losses.

These sampling strategies were introduced as ‘greedy randomized’ sampling rules [BW18a,

BW18b,BW19a], however, we rename them here to prevent confusion with the greedy max-

distance sampling rule. It was proven in [BW18a] that the convergence guarantee when using

the capped adaptive rule is strictly faster than the fixed non-uniform sampling rule given

in [SV09]. In Subsection 4.7.5, we generalize this capped adaptive sampling to sketch-and-

project methods and prove that the resulting convergence guarantee of this adaptive rule is

slower than that of the max-distance rule. Furthermore, in Subsection 4.A.3, we show that

the max-distance rule requires less computation at each iteration than the capped adaptive

rule.

4.2.4 The proportional adaptive rule

We also present a new and much simpler randomized adaptive rule as compared to the capped

adaptive rule discussed above, in which indices are sampled with probabilities that are directly

proportional to their corresponding sketched losses fi(x
k). We show that this rule gives a
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resulting convergence that is at least twice as fast as when sampling the sketches uniformly.

4.2.5 Efficient implementations

Our adaptive methods come with the added cost of computing the sketched loss f(xk) of

Equation (4.8) at each iteration. Fortunately, the sketched loss can be computed efficiently

with certain precomputations as discussed in Section 4.8. We show how the sketched

losses can be maintained efficiently via an auxiliary update, leading to reasonably efficient

implementations of the adaptive sampling rules. We demonstrate improved performance of

the adaptive methods over uniform sampling when solving linear systems with both real and

synthetic matrices per iteration and in terms of the flops required.

4.2.6 Consequences and future work

Our results on adaptive sampling have consequences on many other closely related problems.

For instance, an analogous sampling strategy to our proportional adaptive rule has been

proposed for coordinate descent in the primal-dual setting for optimizing regularized loss

functions [PCJ17]. Also a variant of adaptive and greedy coordinate descent has been

shown to speed-up the solution of the matrix scaling problem [AG18]. The matrix scaling

problem is equivalent to an entropy-regularized version of the optimal transport problem

which has numerous applications in machine learning and computer vision [AG18,Cut13].

Thus the adaptive methods proposed here may be extended to these other settings such as

adaptive coordinate descent for more general smooth optimization [PCJ17]. The adaptive

methods and the analysis proposed in this paper may also provide insights toward adaptive

sampling for other classes of optimization methods such as stochastic gradient, since the

randomized Kaczmarz method can be reformulated as stochastic gradient descent applied to

the least-squares problem [NSW15].
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4.3 Notation

We now introduce notation that will be used throughout. Let ∆q denote the simplex in Rq,

that is

∆q
def
= {p ∈ Rq :

q∑
i=1

pi = 1, pi ≥ 0, for i = 1, . . . , q}.

For probabilities p ∈ ∆q and values xi depending on an index i = 1, . . . , q, we denote

Ei∼p [xi]
def
=
∑q

i=1 pixi, where i ∼ p indicates that i is sampled with probability pi. At the

kth iteration of the sketch-and-project algorithm, a sketching matrix Sik is sampled with

probability

P[Sik = Si | xk] = pki , for i = 1, . . . , q, (4.9)

where pk ∈ ∆q and we use pk
def
= (pk1, . . . , p

k
q) to denote the vector containing these probabilities.

We drop the superscript k when the probabilities do not depend on the iteration.

For any symmetric positive semi-definite matrix G we write the semi-norm induced by

G as ‖·‖2
G

def
= 〈·,G·〉, while ‖·‖ denotes the standard 2-norm (‖·‖2). For any matrix M,

‖M‖F
def
=
√∑

i,j M2
ij. We use

λ+
min(G)

def
= min

v∈rangeG,v 6=0

‖v‖2
G

‖v‖2
2

,

to denote the smallest non-zero eigenvalue of G.

4.3.1 Organization

The remainder of the paper is organized as follows. Sections 4.4 and 4.5 provide additional

background on the sketch-and-project method and motivation for adaptive sampling in this

setting. Section 4.4 explains how the sketch-and-project method can be reformulated as

stochastic gradient descent. The sampling of the sketches can then be seen as importance

sampling in the context of stochastic gradient descent. Section 4.5 provides geometric intuition

for the sketch-and-project method and motivates why one would expect adaptive sampling

strategies that depend on the sketched losses fi(x
k) to perform well.

Section 4.6 introduces the various sketch selection strategies considered throughout
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the paper, while Section 4.7 provides convergence guarantees for each of the resulting

methods. In Section 4.8, we discuss the computational costs of adaptive sketch-and-project

for the sketch selection strategies of Section 4.6 and suggest efficient implementations of the

methods. Section 4.9 discusses convergence and computational cost for the special subcases

of randomized Kaczmarz and coordinate descent. Performance of adaptive sketch-and-project

methods are demonstrated in Section 4.10 for both synthetic and real matrices.

4.4 Reformulation as importance sampling for stochastic gradient

descent

The sketch-and-project method can be reformulated as a stochastic gradient method, as

shown in [RT17]. We use this reformulation to motivate our adaptive sampling as a variant

of importance sampling.

Let p ∈ ∆q. Consider the stochastic program

min
x∈Rd

F (x)
def
= Ei∼p [fi(x)] = Ei∼p

[
‖Ax− b‖2

Hi

]
. (4.10)

Objective functions F (x) such as the one in Equation (4.10) are common in machine learning,

where fi(x) often represents the loss with respect to a single data point.

When Ei∼p [Hi] is invertible, solving Equation (4.10) is equivalent to solving the linear

system Equation (4.1). This invertibility condition on Ei∼p [Hi] can be significantly relaxed

by using the following technical exactness assumption on the probability p and the set of

sketches introduced in [RT17].

Assumption 4.4.1. Let p ∈ ∆q, Σ
def
= {S1, . . . , Sq} be a set of sketching matrices and Hi as

defined in Equation (4.7). We say that the exactness assumption holds for (p,Σ) if

Null (Ei∼p [Hi]) ⊂ Null
(
A>
)
.

This exactness assumption guarantees1 that

Null (A) = Null
(
A>Ei∼p [Hi] A

)
. (4.11)

1This can be shown by applying Lemma 4.B.1 in Section 4.B with with G = Ei∼p [Hi] and W = A.
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This in turn guarantees that the expected sketched loss of the point x is zero if and only if

Ax = b. Indeed, by taking the derivative of (4.10) and setting it to zero we have that

∇F (x) = A>Ei∼p [Hi] (Ax− b) = A>Ei∼p [Hi] A(x− x∗) = 0.

Thus, every minimizer x of Equation (4.10) is such that

x− x∗ ∈ Null
(
A>Ei∼p [Hi] A

) (4.11)
= Null (A) , (4.12)

thus A(x− x∗) = Ax− b = 0. As shown in [GR15a] and [RT17] this exactness assumption

holds trivially for most practical sketching techniques.

When the number of fi functions is large, the SGD (stochastic gradient descent) method

is typically the method of choice for solving Equation (4.10). To view the sketch-and-project

update in Equation (4.6) as a SGD method, we sample an index ik ∼ p at each iteration and

take a step

xk+1 = xk −∇Bfik(x
k), (4.13)

where ∇Bfik(x
k) is the gradient taken with respect to the B–norm. For fi(x

k) of Equa-

tion (4.8), the exact expression of this stochastic gradient is given by

∇Bfik(x
k) = B−1A>Hik(Ax

k − b). (4.14)

By plugging Equation (4.14) into Equation (4.13) we can see that the resulting update is

equivalent to a the sketch-and-project update in Equation (4.6).

Though the indices i ∈ {1, . . . , q} are often sampled uniformly at random for SGD, many

alternative sampling distributions have been proposed in order to accelerate convergence,

including adaptive sampling strategies [CR18,JZ13,NSW15,ZZ15,KF18,LH15,ALS15]. Such

sampling strategies give more weight to sampling indices corresponding to a larger loss fi(x)

or a larger gradient norm ‖∇Bfi(x)‖2
B. In the sketch-and-project setting, it is not hard to

show2 that these two sampling strategies result in similar methods since

fi(x) = ‖Ax− b‖2
Hi

= ‖∇Bfi(x)‖2
B.

2See Lemma 3.1 in [RT17].
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In general, updating the loss and gradient of every fi(x) at each iteration can be too

expensive. Thus many methods resort to using global approximations of these values such as

the Lipschitz constant of the gradient [NSW15] that lead to fixed data-dependent sample

distributions. For the sketch-and-project setting, we demonstrate in Section 4.8 that the

adaptive sample distributions can be calculated efficiently, with a per-iterate cost on the

same order as is required for the sketch-and-project update.

4.5 Geometric viewpoint and motivational analysis

xk

xk+1

x∗

x∗ + Null
(
S>i A

)
fi(x

k)

Figure 4.1: The geometric interpretation of Equation (4.5), as the projection of xk onto a

random affine space that contains x∗. The distance traveled is given by fi(x
k) = ‖xk+1 − xk‖2

B.

The sketch-and-project method given in Equation (4.5) can be seen as a method that

calculates the next iterate xk+1 by projecting the previous iterate xk onto a random affine

space. Indeed, the constraint in Equation (4.5) can be re-written as

{x : S>i Ax = S>i b} = x∗ + Null
(
S>i A

)
. (4.15)

In particular, Equation (4.5) is an orthogonal projection of the point xk onto an affine

space that contains x∗ with respect to the B–norm. See Figure 4.1 for an illustration. This

projection is determined by the following projection operator.

Lemma 4.5.1. Let

Zi
def
= B−1/2A>Si(S

>
i AB−1A>Si)

†S>i AB−1/2 = B−1/2A>HiAB−1/2, (4.16)
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for i = 1, . . . , q, which is the orthogonal projection matrix onto range B−1/2A>Si. Consequently

ZiZi = Zi, and (I− Zi)Zi = 0. (4.17)

Furthermore we have that (I− Zi) gives the projection depicted in Figure 4.1 since

B1/2(xk+1 − x∗) = (I− Zik)B
1/2(xk − x∗). (4.18)

Finally we can re-write the sketched loss as

fi(x) = ‖B1/2(x− x∗)‖2
Zi
, for i = 1, . . . , q. (4.19)

Proof. The proof of Equation (4.17) relies on standard properties of the pseudoinverse and is

given in Lemma 2.2 in [GR15b].

As for the proof of Equation (4.18), subtracting x∗ from both sides of Equation (4.6) we

have that

xk+1 − x∗ = xk − x∗ −B−1A>Hik(Ax
k − b)

Ax∗=b
= xk − x∗ −B−1/2B−1/2A>HikAB−1/2B1/2(xk − x∗)

(4.16)
= xk − x∗ −B−1/2ZikB

1/2(xk − x∗). (4.20)

It now only remains to multiply both sides by B1/2.

Finally the proof of Equation (4.19) follows by using Ax∗ = b together with the definitions

of Hi and Zi given in Equation (4.7) and Equation (4.16) so that

fi(x) = ‖A(x− x∗)‖2
Hi

= ‖x− x∗‖2
A>HiA

(4.16)
= ‖B1/2(x− x∗)‖2

Zi
. (4.21)

With the explicit expression for the projection operator we can calculate the progress

made by a single iteration of the sketch-and-progress method. The convergence proofs later

on in Section 4.7 will rely heavily on Lemmas 4.5.2 and 4.5.3.

Lemma 4.5.2. Let xk ∈ Rd and let xk+1 be given by Equation (4.5). Then the squared

magnitude of the update is

‖xk+1 − xk‖2
B = fik(x

k), (4.22)
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and the error from one iteration to the next decreases according to

‖xk+1 − x∗‖2
B = ‖xk − x∗‖2

B − fik(xk). (4.23)

Proof. We begin by deriving Equation (4.23). Taking the squared norm in Equation (4.18)

we have

‖xk+1 − x∗‖2
B = ‖(I−B−1/2ZikB

1/2)(xk − x∗)‖2
B

= ‖(I− Zik)B
1/2(xk − x∗)‖2

2

=
〈
B1/2(xk − x∗), (I − Zik)(I − Zik)B

1/2(xk − x∗)
〉

(4.17)
=
〈
B1/2(xk − x∗), (I − Zik)B

1/2(xk − x∗)
〉

= ‖xk − x∗‖2
B −

〈
ZikB

1/2(xk − x∗),B1/2(xk − x∗)
〉

(4.19)
= ‖xk − x∗‖2

B − fi(xk). (4.24)

Finally we establish Equation (4.22) by subtracting xk from both sides of Equation (4.6)

so that

xk+1 − xk = −B−1/2ZikB
1/2(xk − x∗).

It now remains to take the squared B–norm and use Equation (4.19).

Equation (4.22) shows that the distance traveled from xk to xk+1 is given by the sketch

residual fik(x
k), as we have depicted in Figure 4.1. Furthermore, Equation (4.23) shows

that the contraction of the error xk+1 − x∗ is given by −fik(xk). Consequently Lemma 4.5.2

indicates that in order to make the most progress in one step, or maximize the distance

traveled, we should choose ik corresponding to the largest sketched loss fik(x
k). We refer

to this greedy sketch selection as the max-distance rule, which we explore in detail in

Subsection 4.6.3.

Next we give the expected decrease in the error.

Lemma 4.5.3. Let pk ∈ ∆q. Consider the iterates of the sketch-and-project method given

in Equation (4.6) where ik ∼ pki as is done in Algorithm 3. It follows that

Ei∼pk
[
‖xk+1 − x∗‖2

B | xk
]

= ‖xk − x∗‖2
B − Ei∼pk

[
fi(x

k)
]
.
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Proof. The result follows by taking the expectation over Equation (4.23) conditioned on

xk.

Lemma 4.5.3 suggests choosing adaptive probabilities so that Ei∼pk
[
fi(x

k)
]

is large. This

analysis motivates the adaptive methods described in Subsection 4.6.2.

4.6 Selection rules

Motivated by Lemmas 4.5.2 and 4.5.3, we might think that sampling rules that prioritize

larger entries of the sketched loss should converge faster. From this point we take two

alternatives, 1) choose the ik that maximizes the decrease (Subsection 4.6.3) or 2) choose a

probability distribution that prioritizes the biggest decrease (Subsection 4.6.2). Below, we

describe several sketch-and-project sampling strategies (fixed, adaptive, and greedy) and

analyze their convergence in Section 4.7. The adaptive and greedy sampling strategies require

knowledge of the current sketched loss vector at each iteration. Calculating the sketched loss

from scratch is expensive, thus in Section 4.8 we will show how to efficiently calculate the

new sketched loss f(xk+1) using the previous sketched loss f(xk).

4.6.1 Fixed sampling

We first recall the standard non-adaptive sketch-and-project method that will be used as a

comparison for the greedy and adaptive versions. In the non-adaptive setting the sketching

matrices are sampled from a fixed distribution that is independent of the current iterate xk.

For reference, the details of the non-adaptive sketch-and-project method are provided in

Algorithm 2.

4.6.2 Adaptive probabilities

Equation (4.23) motivates selecting indices that correspond to larger sketched losses with

higher probability. We refer to such sampling strategies as adaptive sampling strategies, as

they depend on the current iterate and its corresponding sketched loss values. In the adaptive
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Algorithm 2 Non-Adaptive Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, p ∈ ∆q, and a set of sketching matrices S =

[S1, . . . ,Sq]

2: for k = 0, 1, 2, . . . do

3: ik ∼ pi

4: xk+1 = xk −B−1A>Hik(Ax
k − b)

5: end for

6: output: last iterate xk+1

setting, we sample indices at the kth iteration with probabilities given by pk ∈ ∆q. Adaptive

sketch-and-project is detailed in Algorithm 3.

Algorithm 3 Adaptive Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, and a set of sketching matrices S = [S1, . . . ,Sq]

2: for k = 0, 1, 2, . . . do

3: fi(x
k) = ‖Axk − b‖2

Hi
for i = 1, . . . , q

4: Calculate pk ∈ ∆q . Typically based on f(xk)

5: ik ∼ pki

6: xk+1 = xk −B−1A>Hik(Ax
k − b)

7: end for

8: output: last iterate xk+1

4.6.3 Max-distance rule

We refer to the greedy sketch selection rule given by

ik ∈ argmax
i=1,...,q

fi(x
k) = argmax

i=1,...,q
‖Axk − b‖2

Hi
, (4.25)

as the max-distance selection rule. If multiple indices lead to the maximal sketched loss,

any of these indices can be chosen. Per iteration, the max-distance rule leads to the best

expected decrease in mean squared error. The max-distance sketch-and-project method is

described in Algorithm 4. This greedy selection strategy has been studied for several specific
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choices of B and sketching methods. For example, in the Kaczmarz setting, this strategy is

typically referred to as max-distance Kaczmarz or Motzkin’s method [GO12,NSL16,MS54].

For coordinate descent, this selection strategy is the Gauss-Southwell rule [Nes12,NSL15].

We provide a convergence analysis for the general sketch-and-project max-distance selection

rule in Theorem 4.7.6. We further show that max-distance selection leads to a convergence

rate that is strictly larger than the resulting convergence rate when sampling from any fixed

distribution in Theorem 4.7.8.

Algorithm 4 Max-Distance Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, and a set of sketching matrices S = [S1, . . . ,Sq]

2: for k = 0, 1, 2, . . . do

3: fi(x
k) = ‖Axk − b‖2

Hi
for i = 1, . . . , q

4: ik = arg maxi=1,...,q fi(x
k)

5: xk+1 = xk −B−1A>Hik(Ax
k − b)

6: end for

7: output: last iterate xk+1

4.7 Convergence

We now present convergence results for the max-distance selection rule, uniform sampling,

and adaptive sampling with probabilities proportional to the sketched loss. We summarize the

convergence rate guarantees discussed throughout Section 4.7 in Table 4.1. Note that these

are worst case convergence guarantees and thus may not reflect the expected performance of

each selection rule. Our first step in the analysis is to establish an invariance property of the

iterates in the following lemma.3 In particular, Lemma 4.7.1 guarantees the error vectors

xk − x∗ remain in the subspace range B−1A> for all iterations if x0 ∈ range B−1A>, which

allows for a tighter convergence analysis.

Lemma 4.7.1. If x0 ∈ range B−1A> then xk − x∗ ∈ range B−1A>.

3This lemma was first presented in [GR15a]. We present and prove it here for completeness.
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Proof. First note that x∗ ∈ range B−1A>. This follows by taking the Lagrangian of Equa-

tion (4.2) given by

L(x, λ) = 1
2
‖x‖2

B + 〈λ,Ax− b〉 .

Taking the derivative with respect to x, setting to zero and isolating x gives

x∗ = −B−1A>λ ∈ range B−1A>. (4.26)

Consequently x∗ − x0 ∈ range B−1A>. Assuming that xk − x∗ ∈ range B−1A> holds, by

induction we have that

xk+1 − x∗ (4.6)
= xk − x∗ −B−1A>Sik(S

>
ik

AB−1A>Sik)
†S>ik(Ax

k − b)︸ ︷︷ ︸
∈rangeB−1A>

. (4.27)

Thus xk+1 − x∗ is the difference of two elements in the subspace range B−1A> and thus

xk+1 − x∗ ∈ range B−1A>.

We also make use of the following fact. For a symmetric positive semi-definite random

matrix M ∈ Rn×n drawn from some probability distribution D and for any vector v ∈ Rn

ED
[
‖v‖2

M

]
= ED [〈v,Mv〉] = 〈v,ED [Mv]〉 = ‖v‖2

ED[M]. (4.28)

4.7.1 Important spectral constants

We define two key spectral constants in the following definition that will be used to express

our forthcoming rates of convergence.

Definition 4.7.2.

σ2
∞(B,S)

def
= min

v∈rangeB−1A>
max
i=1,...,q

‖B1/2v‖2
Zi

‖v‖2
B

. (4.29)

Let p ∈ ∆q and let

σ2
p(B,S)

def
= min

v∈rangeB−1A>

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

. (4.30)

Next we show that σ2
∞(B,S) and σ2

p(B,S) can be used to lower bound maxi fi(x) and

Ei∼p [fi(x)], respectively. This result will allow us to develop Equation (4.23) and Lemma 4.5.3

into a recurrence later on.

64



Lemma 4.7.3. Let p ∈ ∆q and consider the iterates xk given by Algorithm 3 when using

any adaptive sampling rule. The spectral constants Equation (4.29) and Equation (4.30) are

such that

max
i=1,...,q

fi(x
k) ≥ σ2

∞(B,S)‖xk − x∗‖2
B, (4.31)

Ei∼p
[
fi(x

k)
]
≥ σ2

p(B,S)‖xk − x∗‖2
B. (4.32)

Proof. From the invariance provided by Lemma 4.7.1 we have that xk − x∗ ∈ range B−1A>

and consequently

maxi=1,...,q fi(x
k)

‖xk − x∗‖2
B

(4.19)
= max

i=1,...,q

‖B1/2(xk − x∗)‖2
Zi

‖xk − x∗‖2
B

≥ min
v∈rangeB−1A>

max
i=1,...,q

‖B1/2v‖Zi
‖v‖2

B

(4.29)
= σ2

∞(B,S), ∀k. (4.33)

Analogously we have that

Ei∼p
[
fi(x

k)
]

‖xk − x∗‖2
B

(4.19)
=

Ei∼p
[
‖B1/2(xk − x∗)‖2

Zi

]
‖xk − x∗‖2

B

≥ min
v∈rangeB−1A>

Ei∼p
[
‖B1/2v‖2

Zi

]
‖v‖2

B

(4.30)+(4.28)
= σ2

p(B,S). (4.34)

Thus Equation (4.31) and Equation (4.32) follow by re-arranging Equation (4.33) and Equa-

tion (4.34) respectively.

Finally, we show that σ2
p(B,S) and σ2

∞(B,S) are always less than one, and if the exact-

ness Assumption 4.4.1 holds then they are both strictly greater than zero.

Lemma 4.7.4. Let p ∈ ∆q and the set of sketching matrices {S1, . . . ,Sq} be such that that

exactness Assumption 4.4.1 holds. We then have the following relations:

0 < σ2
p(B,S) = λ+

min (Ei∼p [Zi]) ≤ σ2
∞(B,S) ≤ 1.

Proof. Using the definition of Zi given in Equation (4.16) and the fact that B is symmetric

positive definite, we have

Null (Ei∼p [Zi])
(4.16)
= Null

(
B−1/2A>Ei∼p [Hi] AB−1/2

)
= Null

(
A>Ei∼p [Hi] AB−1/2

) Lemma 4.B.1
= Null

(
AB−1/2

)
,
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where we applied Lemma 4.B.1 in the appendix with G = Ei∼p [Hi] and W = A. Taking the

orthogonal complement of the above we have that

rangeEi∼p [Zi] = range B−1/2A>. (4.35)

Using the above we then have

σ2
p(B,S)

(4.30)
= min

v∈rangeB−1A>

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

(4.35)
= min

B1/2v∈rangeEi∼p[Zi]

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

= λ+
min (Ei∼p [Zi]) > 0.

Furthermore,

σ2
p(B,S)

(4.30)
= min

v∈rangeB−1A>

‖B1/2v‖2
Ei∼p[Zi]

‖v‖2
B

(4.28)
= min

v∈rangeB−1A>

Ei∼p
[
‖B1/2v‖2

Zi

]
‖v‖2

B

≤ min
v∈rangeB−1A>

max
i=1,...,q

‖B1/2v‖2
Zi

‖v‖2
B

= σ2
∞(B,S).

Finally, using the fact that the matrix Zi is an orthogonal projection (Lemma 4.5.1), we have

that

σ2
∞(B,S) = max

i=1,...,q

‖B1/2v‖2
Zi

‖v‖2
B

(4.17)
= max

i=1,...,q

‖ZiB
1/2v‖2

‖B1/2v‖2
≤ max

i=1,...,q

‖B1/2v‖2

‖B1/2v‖2
= 1.

4.7.2 Sampling from a fixed distribution

We first present a convergence result for the sketch-and-project method when the sketches

are drawn from a fixed sampling distribution. This result will later be used as a baseline for

comparison against the adaptive sampling strategies.

Theorem 4.7.5. Consider Algorithm 2 for some set of probabilities p ∈ ∆q. It follows that

E‖xk − x∗‖2
B ≤

(
1− σ2

p(B,S)
)k ‖x0 − x∗‖2

B.
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Proof. Combining Lemma 4.5.3 and Equation (4.32) of Lemma 4.7.3 we have that

Eik∼p
[
‖xk+1 − x∗‖2

B |xk
] Lemma 4.5.3

= ‖xk − x∗‖2
B − Eik∼p

[
fi(x

k)
]

(4.32)

≤
(
1− σ2

p(B,S)
)
‖xk − x∗‖2

B.

Taking the full expectation and unrolling the recurrence, we arrive at Theorem 4.7.5.

There are several natural and previously studied choices for fixed sampling distributions,

for example, sampling the indices uniformly at random. Another choice is to pick p ∈ ∆q

in order to maximize σ2
p(B,S), but this results in a convex semi-definite program (see

Section 5.1 in [GR15b] ). The authors of [GR15b] suggest convenient probabilities such that

pi ∼ ‖A>Si‖2
B−1 for which σ2

p(B,S) reduces to the scaled condition number.

4.7.3 Max-distance selection

The following theorem provides a convergence guarantee for the max-distance selection rule

of Subsection 4.6.3. To our knowledge, this is the first analysis of the max-distance rule for

general sketch-and-project methods.

Theorem 4.7.6. The iterates of max-distance sketch-and-project method in Algorithm 4

satisfy

‖xk − x∗‖2
B ≤ (1− σ2

∞(B,S))k‖x0 − x∗‖2
B,

where σ∞(B,S) is defined as in Equation (4.29) of Definition 4.7.2.

Proof. Combining Equation (4.23) and Equation (4.31) we have that

‖xk+1 − x∗‖2
B

(4.23)
= ‖xk − x∗‖2

B − max
i=1,...,q

fi(x
k)

(4.31)

≤
(
1− σ2

∞(B,S)
)
‖xk − x∗‖2

B.

Unrolling the recurrence gives Theorem 4.7.6.

One obvious disadvantage of sampling from a fixed distribution is that it is possible to

sample the same index twice in a row. Since the current iterate already lies in the solution
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space with respect to the previous sketch, no progress is made in such an update. For adaptive

distributions that only assign non-zero probabilities to non-zero sketched loss values, the

same index will never be chosen twice in a row since the sketched loss corresponding to the

previous iterate will always be zero (Lemma 4.7.7). This fact allows us to derive convergence

rates for adaptive sampling strategies that are strictly better than those for fixed sampling

strategies.

Lemma 4.7.7. Consider the sketched losses f(xk) generated by iterating the sketch-and-

project update given in Equation (4.6). We have that

fik(x
k+1) = 0, ∀ k ≥ 0.

Proof. Recall from Equation (4.19), we can write

fik(x
k+1) = ‖B1/2(xk+1 − x∗)‖2

Zik
=
〈
ZikB

1/2(xk+1 − x∗),B1/2(xk+1 − x∗)
〉
. (4.36)

We can show that the above is equal to zero by using Equation (4.18) and Lemma 4.5.1 we

have that

ZikB
1/2(xk+1 − x∗) (4.18)

= ZikB
1/2(xk −B−1/2ZikB

1/2(xk − x∗)− x∗)

= ZikB
1/2(xk − x∗)− ZikZikB

1/2(xk − x∗))
(4.17)
= ZikB

1/2(xk − x∗)− ZikB
1/2(xk − x∗))

= 0.

We now use Lemma 4.7.7 to additionally show that the convergence guarantee for the

greedy method is strictly faster than for sampling with respect to any set of fixed probabilities.

Theorem 4.7.8. Let p ∈ ∆q where pi > 0 for all i = 1, . . . , q. Let σ2
p(B,S) be defined as in

Equation (4.30) of Definition 4.7.2 and define

γ
def
=

1

maxi=1,...,q

∑q
j=1, j 6=i pj

> 1. (4.37)
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We then have that the max-distance sketch-and-project method of Algorithm 4 satisfies the

following convergence guarantee

‖xk+1 − x∗‖2
B ≤ (1− γσ2

p(B,S))‖xk − x∗‖2
B. (4.38)

Proof. Recall that fik(x
k+1) = 0 by Lemma 4.7.7. Thus,

Ej∼p
[
fj(x

k+1)
]

=

q∑
j=1, j 6=ik

pjfj(x
k+1)

≤
(

max
j=1,...,q

fj(x
k+1)

)( q∑
j=1, j 6=ik

pj

)

≤
(

max
j=1,...,q

fj(x
k+1)

)(
max
j=1,...,q

q∑
j=1, j 6=i

pj

)
(4.37)
=

maxj=1,...,q fj(x
k+1)

γ
. (4.39)

From Equation (4.23) we have that

‖xk+1 − x∗‖2
B

(4.23)
= ‖xk − x∗‖2

B − max
i=1,...,q

fi(x
k)

(4.39)

≤ ‖xk − x∗‖2
B − γEi∼p

[
fi(x

k)
]

(4.32)

≤
(
1− γσ2

p(B,S)
)
‖xk − x∗‖2

B.

4.7.4 The proportional adaptive rule

We now consider the adaptive sampling strategy in which indices are sampled with probabilities

proportional to the sketched loss values. For this sampling strategy, we derive a convergence

rate that is at least twice as fast as that of Theorem 4.7.5 for uniform sampling.

Theorem 4.7.9. Consider Algorithm 3 with pk = f(xk)
‖f(xk)‖1 . Let u =

(
1
q
, . . . , 1

q

)
∈ ∆q and

σ2
u(B,S) be as defined in Equation (4.30). Let VARu [·] denote the variance taken with respect

to the uniform distribution over indices i ∈ {1, . . . , q}. It follows that for k ≥ 1,

E‖xk+1 − x∗‖2
B |xk ≤

(
1− (1 + q2VARu

[
pki
]
)σ2

u(B,S)
)
‖xk − x∗‖2

B. (4.40)
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Furthermore we have that

E‖xk+1 − x∗‖2
B ≤

(
1− 2σ2

u(B,S)
)k E‖x1 − x∗‖2

B. (4.41)

Proof. Let Eu [·] denote the expectation taken with respect to the uniform distribution over

indices i ∈ {1, . . . , q}. First note that

VARu

[
fi(x

k)
]

= Eu
[
(fi(x

k))2
]
− Eu

[
fi(x

k)
]2

=
1

q

∑
(fi(x

k))2 − 1

q2

(∑
fi(x

k)
)2

. (4.42)

Given that pk = f(xk)
‖f(xk)‖1 ,

Ei∼pk
[
fi(x

k)
]

=

q∑
i=1

pki fi(x
k)

=

q∑
i=1

(fi(x
k))2∑q

i=1 fi(x
k)

(4.42)
=

qVARu

[
fi(x

k)
]

+ 1
q

(∑
fi(x

k)
)2∑q

i=1 fi(x
k)

=

(
q2VARu

[
fi(x

k)∑q
i=1 fi(x

k)

]
+ 1

)
1

q

q∑
i=1

fi(x
k). (4.43)

Recalling that pki = fi(x
k)∑q

i=1 fi(x
k)

and using Lemma 4.5.3 we have that

E‖xk+1 − x∗‖2
B |xk ≤ ‖xk − x∗‖2

B − (1 + q2VARu

[
pki
]
)σ2

u(B,S)‖xk − x∗‖2
B.

Furthermore, due to Lemma 4.7.7 we have that pk+1
ik

= 0. Therefore

VARu

[
pk+1
i

]
=

1

q

q∑
i=1

(
pk+1
i − 1

q

q∑
s=1

pk+1
s

)2

=
1

q

q∑
i=1

(
pk+1
i − 1

q

)2

≥ 1

q

(
pk+1
ik
− 1

q

)2

=
1

q2
.

This lower bound on the variance gives the following upper bound on Equation (4.40)

E‖xk+1 − x∗‖2
B |xk ≤

(
1− 2σ2

u(B,S)
)
‖xk − x∗‖2

B.

Taking the expectation and unrolling the recursion gives Equation (4.41).
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Thus by sampling proportional to the sketched losses the sketch-and-project method

enjoys a strictly faster convergence rate as compared to sampling uniformly. How much faster

depends on the variance of the adaptive probabilities through 1 + q2VARu

[
pki
]

which in turn

depends on the variance of the sketched losses.

This same variance term is used in [PCJ17] to analyze the convergence of an adaptive

sampling strategy based on the dual residuals for coordinate descent applied to regularized

loss functions and in [OAL16] for adaptive sampling in the block-coordinate Frank-Wolfe

algorithm for optimizing structured support vector machines.

4.7.5 Capped adaptive sampling

We now extend the capped adaptive sampling method and convergence guarantees of

[BW18a,BW18b,BW19a] for the randomized Kaczmarz and coordinate descent settings to

the general sketch-and-project setting, see Algorithm 5. Let p ∈ ∆q be a fixed reference

probability. At each iteration k an index set Wk is constructed on line 4 of Algorithm 5 that

contains indices whose sketched losses are sufficiently close to the maximal sketched loss and

that are at least as large as Ei∼p
[
fi(x

k)
]
. At each iteration, the adaptive probabilities pki

are zero for all indices that are not included in the set Wk. The input parameter θ ∈ [0, 1]

controls how aggressive the sampling method is. In particular, if θ = 1, the method reduces

to max-distance sampling. As θ approaches 0, the sampling method remains adaptive, as

only indices corresponding to sketched losses larger than Ei∼p
[
fi(x

k)
]

are sampled with

non-zero probability. Bai and Wu originally introduced an adaptive randomized Kaczmarz

method with θ = 1/2 [BW18a] and generalized this to allow for the more general choice of

θ ∈ [0, 1] [BW18b].

Algorithm 5 generalizes and improves upon the methods proposed in [BW18a,BW18b,

BW19a] in several ways. We generalize the methods from the randomized Kaczmarz setting

to the more general sketch-and-project setting. We additionally allow for the use of any fixed

reference probability distribution p ∈ ∆q, whereas the methods of [BW18a,BW18b,BW19a]

use a specific reference probability when identifying the set of indices that will be selected
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with nonzero probability. Lastly, we allow for the use of any adaptive sampling strategy

such that the probabilities pki are zero outside of the set Wk whereas the methods proposed

in [BW18a,BW18b,BW19a] specify that a specific adaptive probability be used. However, this

restriction is unnecessary in proving the accompanying convergence result Theorem 4.7.11.

Below, we provide two convergence guarantees for Algorithm 5. Theorem 4.7.10 provides

a convergence guarantee in terms of the spectral constants σ2
∞(B,S) and σ2

p(B,S) of Defini-

tion 4.7.2 and the parameter θ. Theorem 4.7.11 provides a generalization of the convergence

rate derived in [BW18b].

Algorithm 5 Capped Adaptive Sketch-and-Project

1: input: x0 ∈ Rn, A ∈ Rm×n, b ∈ Rm, p ∈ ∆q, θ ∈ [0, 1] and a set of sketching matrices

{S1, . . . ,Sq}

2: for k = 0, 1, 2, . . . do

3: fi(x
k) = ‖Axk − b‖2

Hi
for i = 1, . . . , q.

4: Wk =
{
i | fi(xk) ≥ θmaxj=1,...,q fj(x

k) + (1− θ)Ej∼p
[
fj(x

k)
]}

5: Choose pk ∈ ∆q such that support(pk) ⊂ Wk

6: ik ∼ pk

7: xk+1 = xk −B−1A>Hik(Ax
k − b)

8: end for

9: output: last iterate xk+1

Theorem 4.7.10. Consider Algorithm 5. Let p ∈ ∆q be a fixed reference probability and

θ ∈ [0, 1]. Let

Wk =

{
i | fi(xk) ≥ θ max

j=1,...,q
fj(x

k) + (1− θ)Ej∼p
[
fj(x

k)
]}

. (4.44)

It follows that

E‖xk − x∗‖2
B ≤

(
1− θσ2

∞(B,S)− (1− θ)σ2
p(B,S)

)k ‖x0 − x∗‖2
B. (4.45)

Proof. First note that Wk is not empty since

max
j=1,...,q

fj(x
k) ≥ Ej∼p

[
fj(x

k)
]
,
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and thus arg maxj=1,...,q fj(x
k) ∈ Wk. Since pki = 0 for all i 6∈ Wk, Lemma 4.5.3 gives that

Ei∼pk
[
‖xk+1 − x∗‖2

B |xk
]

= ‖xk+1 − x∗‖2
B −

∑
i∈Wk

pki fi(x
k). (4.46)

We additionally have∑
i∈Wk

fi(x
k)pki

(4.44)

≥
∑
i∈Wk

(
θ max
j=1,...,q

fj(x
k) + (1− θ)Ej∼p

[
fj(x

k)
])

pki

= θ max
j=1,...,q

fj(x
k) + (1− θ)Ej∼p

[
fj(x

k)
]

(4.47)

Lemma 4.7.3

≥
(
θσ2
∞(B,S) + (1− θ)σ2

p(B,S)
)
‖xk − x∗‖2

B. (4.48)

Using Equation (4.48) to bound Equation (4.46) and taking the expectation gives the

result.

The resulting convergence rate is a convex combination of the spectral constant σ2
∞(B,S)

which corresponds to the max-distance convergence rate guarantee and σ2
p(B,S) corresponding

to the convergence rate guarantee for the fixed reference probabilities p. This convex

combination is in terms of the parameter θ and we can see that as θ approaches 1 the

method and convergence guarantee approach that of max-distance. When θ is close to 0, the

convergence guarantee approaches that of a fixed distribution, but still filters out sketches

with sketched losses less than Ej∼p
[
fj(x

k)
]
. This suggests that for θ ≈ 0 the convergence

rate guarantee is loose.

We now explicitly extend the analysis of Bai and Wu’s work of [BW18b,BW18b,BW19a]

to derive a convergence rate guarantee for our more general Algorithm 5.

Theorem 4.7.11. Consider Algorithm 5. Let p ∈ ∆q be a set of fixed reference probabilities

and θ ∈ [0, 1]. Let

γ
def
=

1

maxi=1,...,q

∑q
j=1, j 6=i pj

> 1. (4.49)

It follows for k ≥ 1

E‖xk − x∗‖2
B (4.50)

≤
(
1− (θγ + (1− θ))σ2

p(B,S)
)k−1 (

1− θσ2
∞(B,S)− (1− θ)σ2

p(B,S)
)
‖x0 − x∗‖2

B,

where the expectation is taken with respect to the probabilities prescribed by Algorithm 5.
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Proof. By Lemma 4.7.7, at least one of the sketched losses is guaranteed to be zero for each

iterations k ≥ 1. Making the conservative assumption that this sketched loss corresponds

to the smallest probability p̂kik , we have, by Equation (4.39), that for an adaptive sampling

strategy that assigns pki = 0 to sketches Si with a sketched loss fi(x
k) = 0 that

maxj=1,...,q fj(x
k+1)

Ej∼p [fj(xk+1)]
≥ γ. (4.51)

Combining this with Equation (4.47),∑
i∈Wk

fi(x
k+1)pk+1

i ≥
(
θ

maxj=1,...,q fj(x
k+1)

Ej∼p [fj(xk+1)]
+ (1− θ)

)
Ej∼p

[
fj(x

k+1)
]

(4.51)

≥ (θγ + (1− θ))Ej∼p
[
fj(x

k+1)
]

(4.30)

≥ (θγ + (1− θ))σ2
p(B,S). (4.52)

Consequently for k ≥ 1, by Equation (4.46), we then have

E‖xk+1 − x∗‖2
B |xk ≤ ‖xk − x∗‖2

B − (θγ + (1− θ))σ2
p(B,S)‖xk − x∗‖2

B.

Taking the expectation and unrolling the recursion gives,

E‖xk+1 − x∗‖2
B ≤

(
1− (θγ + (1− θ))σ2

p(B,S)
)k−1 ‖x1 − x∗‖2

B.

Since, at the very first update, we cannot guarantee that there exists i ∈ [1, . . . , q] such that

fi(x
0) = 0, Equation (4.52) is not guaranteed for k = 0. So instead we use Equation (4.45)

to unroll the last step in this recurrence to arrive Equation (4.50).

The convergence rate for Algorithm 5 of Theorem 4.7.11 is an improvement over the

convergence rate guarantee for a fixed probability distribution since γ > 1. As was the

case for Theorem 4.7.10, the convergence rate is maximized when θ = 1, at which point

the resulting method is equivalent to the max-distance sampling strategy of Algorithm 4.

Further, when θ = 1, Theorem 4.7.11 guarantees

E‖xk − x∗‖2
B ≤

(
1− γσ2

p(B,S)
)k−1 (

1− σ2
∞(B,S)

)
‖x0 − x∗‖2

B.

For θ = 0, Theorem 4.7.11 recovers the same convergence guarantee as for sampling according

to the non-adaptive probabilities p.

74



Sampling

Strategy

Convergence

Rate Bound

Rate Bound

Shown In

Fixed, pki ≡ pi 1− σ2
p(B,S) [GR15b], Theorem 4.7.5

Max-distance 1− σ2
∞(B,S) Theorem 4.7.6

pki ∝ fi(x
k) 1− 2σ2

u(B,S) Theorem 4.7.9

Capped 1− (1 + ε)σ2
p(B,S) Theorem 4.7.11

Table 4.1: Summary of convergence guarantees of Section 4.7, where γ =

1/maxi=1,...,q

∑q
j=1,j 6=i pi

4.8 Implementation tricks and computational complexity

One can perform adaptive sketching with the same order of cost per iteration as the standard

non-adaptive sketch-and-project method when τq, the number of sketches q times the

sketch size τ , is not significantly larger than the number of columns n. In particular,

adaptive sketching methods can be performed for a per-iteration cost of O(τ 2q+ τn), whereas

the standard non-adaptive sketch-and-project method has a per-iteration cost of O(τn).

Section 4.A discusses the costs of adaptive sketch-and-project methods in more detail.

Pseudocode for efficient implementation is provided in Algorithm 6.

The main computational costs of adaptive sketch-and-project (Algorithm 3) at each

iteration come from computing the sketched losses fi(x
k) of Equation (4.8) and updating

the iterate from xk to xk+1 via Equation (4.6). The iterate update for xk and the formula

for the sketched loss fi(x
k) = ‖Ax− b‖2

Hi
both require calculating what we call the sketched

residual,

Rk
i

def
= C>i S>i (Axk − b), (4.53)

where Ci is any square matrix satisfying CiC
>
i = (S>i AB−1A>Si)

†. The adaptive methods

considered here require the sketched residual Rk
i for each sketch index i = 1, 2, . . . , q at each

iteration. For such adaptive methods, it is possible to update the iterate xk and compute

the sketched losses fi(x
k) more efficiently if one maintains the set of sketched residuals

{Rk
i : i = 1, 2, . . . , q} in memory.
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Different sampling strategies require different amounts of computation as well. Among

the adaptive sampling strategies considered here, max-distance sampling requires the least

amount of computation followed by sampling proportional to the sketched losses. Capped

adaptive sampling requires the most computation. The costs for each sampling strategy are

discussed in detail in Subsection 4.A.3 and are summarized in Table 4.7.

4.9 Summary of consequences for special cases

We now discuss the consequences of the convergence analyses of Section 4.7 and the computa-

tional costs detailed in Section 4.8 for the special sketch-and-project subcases of randomized

Kaczmarz and coordinate descent. For Ci as defined in Equation (4.54), in both the ran-

domized Kaczmarz method and coordinate descent, Ci is a scalar and thus its value is

fixed.

4.9.1 Adaptive Kaczmarz

By choosing the parameter matrix B = I and sketching matrices Si = ei for i = 1, . . . ,m

where ei ∈ Rn is the ith coordinate vector, we arrive at the Kaczmarz method introduced in

Subsection 4.1.1. For randomized Kaczmarz, the sketches Si = ei isolate a single row of the

matrix A, as S>i A = Ai:. In this setting, the number of sketches q = m for A ∈ Rm, and the

sketch size is τ = 1. In order to perform the adaptive update efficiently, the matrices

B−1A>SiCi =
A>i:
‖Ai:‖

and C>i S>i AB−1A>SjCj =
〈Ai:,Aj:〉
‖Ai:‖‖Aj:‖

∀ i, j = 1, 2, . . .m

should be precomputed.

In order to succinctly express the convergence rates, we define the diagonal probabil-

ity matrix P = diag(p1, . . . , pm) and the normalized matrix Ā
def
= D−1

RKA, with DRK
def
=

diag (‖A1:‖2, . . . , ‖Am:‖2) as in [NSL16]. In the randomized Kaczmarz setting, the projection

matrix Zi as defined in Equation (4.16) is the orthogonal projection onto the ith row of A

and takes the form

Zi =
Ai:A

>
i:

‖A2
i:‖

.
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We then have

Ei∼p [Zi] = D−1
RKAPA>D−1

RK = Ā>PĀ.

The costs and convergence rates for the adaptive sampling strategies discussed in Section 4.6

applied to the Kaczmarz method are summarized in Table 4.2, where we used the notation

‖x‖∞
def
= maxi |xi| for any vector x.

Sampling

Strategy

Convergence

Rate Bound

Rate Bound

Shown In

Flops Per

Iteration

Uniform 1− 1
m
λ+

min(Ā>Ā) [NSL16], Theorem 4.7.5 2 min(n,m) + 2n

pi ∝ ‖Ai:‖2
2 1− λ+min(A>A)

‖A‖2F
[SV09], Theorem 4.7.5 2 min(n,m) + 2n

Max-distance 1− min
v∈rangeA>

‖Āv‖∞
‖v‖2 [NSL16], Theorem 4.7.6 3m+ 2n

pki ∝ fi(x
k) 1− 2

m
λ+

min(Ā>Ā) Theorem 4.7.9 5m+ 2n

Capped 1− (θγ + 1)λ+
min(Ā>PĀ) [BW18b], Theorem 4.7.11 9m+ 2n

Table 4.2: Summary of convergence guarantees and costs of various sampling strategies

for the randomized Kaczmarz algorithm. Here, γ = 1/maxi=1,...,m

∑m
j=1,j 6=i pi as defined

in Equation (4.37), P = diag(p1, . . . , pm) is a matrix of arbitrary fixed probabilities, and

Ā := D−1
RKA, with DRK := diag (‖A1:‖2, . . . , ‖Am:‖2). Only leading order flop counts are

reported. The number of sketches is q, the sketch size is τ and the number of rows and

columns in the matrix A are m and n respectively.

4.9.2 Adaptive coordinate descent

By choosing the parameter matrix B = A>A and sketching matrices Si = Aei for i = 1, . . . , n

where ei ∈ Rm is the ith coordinate vector, we arrive at the coordinate descent method

introduced in Subsection 4.1.2. In this setting, the number of sketches q = n, where n is

number of columns in A, and the sketch size is τ = 1.

Coordinate descent uses fewer flops per iteration than indicated by the general computation

given in Subsection 4.A.1. This computational savings arises from the sparsity of the matrix
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B−1A>SikCik = ei/‖A:i‖. As a result, the iterate update of xk to xk+1 using the sketched

residuals Rk
ik

requires only O(1) flops instead of 2n flops as indicated in the general analysis

that is summarized in Table 4.5. The cost of a coordinate descent update is dominated by

the 2n flops required to calculate Rk
ik

by either the auxiliary update of Line 10 of Algorithm 6

or directly via Equation (4.53).

Similar to the randomized Kaczmarz case, we define the diagonal probability matrix P
def
=

diag(p1, . . . , pn) and the normalized matrix Ã
def
= AD−1

CD, with DCD
def
= diag (‖A:1‖2, . . . , ‖A:n‖2).

The projection matrix Zi as defined in Equation (4.16) is the projection given by

Zi = (A>A)−1/2A>A
eie
>
i

‖A:i‖2
A>A(A>A)−1/2 = (A>A)1/2 eie

>
i

‖A:i‖2
(A>A)1/2.

We then have

Ei∼p [Zi] = (A>A)1/2D−1
CDPD−1

CD(A>A)1/2.

Note that Ei∼p [Zi] is similar to PD−1
CDA>AD−1

CD = PÃ>Ã and thus

λ+
min(Ei∼p [Zi]) = λ+

min(PÃ>Ã).

The costs and convergence rates for the adaptive sampling strategies discussed in Section 4.6

applied to coordinate descent are summarized in Table 4.3.

4.10 Experiments

We test the performance of various adaptive and non-adaptive sampling strategies in the

special sketch-and-project subcases of randomized Kaczmarz and coordinate descent. We

report performance via three different metrics: norm-squared error versus iteration, norm-

squared error versus approximate flop count, and the worst expected convergence factor.

Results are averaged over 50 trials. For each trial a single matrix A is used. For the

experiments measuring error, a single true solution x∗ and vector b are used. The worst

expected convergence factor aims to approximate the spectral constants of Definition 4.7.2.

Since the max-distance method is deterministic, generating a new exact solution x∗ adds

more variation between trials, hopefully leading to a more accurate approximation of the
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Sampling
Convergence

Rate Bound

Rate Bound

Shown In

Flops Per

Iteration

Uniform 1− 1
n
λ+

min(Ã>Ã) Theorem 4.7.5 2n

pi ∝ ‖A:i‖2
2

(
1− λ+min(A>A)

‖A‖2F

)
[LL10] Theorem 4.7.5 2n

Max-distance 1− min
v∈rangeA>

‖Ãv‖∞
‖v‖2 . Theorem 4.7.6 3n

pki ∝ fi(x
k) 1− 2

n
λ+

min(Ã>Ã) Theorem 4.7.9 5n

Capped 1− (θγ + 1)λ+
min(PÃ>Ã) Theorem 4.7.11 9n

Table 4.3: Summary of convergence guarantees and costs of various sampling strategies for

adaptive coordinate descent. Here, γ = 1/maxi=1,...,m

∑n
j=1,j 6=i pi as defined in Equation (4.37),

P = diag(p1, . . . , pn) is a matrix of arbitrary fixed probabilities, and Ã = AD−1
CD, with

DCD = diag (‖A:1‖2, . . . , ‖A:n‖2). Only flop counts of leading order are reported.

spectral constant. The exact solutions x∗ are generated by

x∗ =
A>ω

‖A>ω‖B
,

where ω ∈ Rm is a vector of i.i.d. random normal entries. Thus ‖x∗‖2
B = 1 is normalized

with respect to the B–norm and lies in the row space of A. The latter condition guarantees

that x∗ is indeed the unique solution to Equation (4.1). We measure the error in terms of

the B-norm. Recall that for randomized Kaczmarz B = I , while for coordinate descent,

B = A>A. The sketch-and-project methods are implemented using the auxiliary update

Line 10 of Algorithm 6. For the max-distance sampling rule, if multiple sketches achieve the

maximal sketched-loss value, we select the first such sketch.

We consider synthetic matrices of size 1000× 100 and 100× 1000 that are generated with

i.i.d. standard Gaussian entries. We additionally test the various adaptive sampling strategies

on two large-scale matrices arising from real world problems. These matrices are available via

the SuiteSparse Matrix Collection [DH11]. The first system (Ash958) is an overdetermined

matrix with 958 rows, 292 columns, and 1916 entries [DGL89,DGL92]. The matrix comes

from a survey of the United Kingdom and is part of the original Harwell sparse matrix test

collection. The second real matrix we consider is the GEMAT1 matrix, which arises from
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optimal power flow modeling. This matrix is highly underdetermined and consists of 4929

rows, 10,595 columns, and 47,369 entries [DGL89,DGL92].

4.10.1 Error per iteration

We first investigate the convergence of the squared norm of the error, ‖xk − x∗‖2
B in terms of

the number of iterations, see Figure 4.2. The first row of subfigures (Figures 4.2a and 4.2b)

shows convergence for randomized Kaczmarz, while the second row of subfigures (Figures 4.2c

and 4.2d) gives the convergence of various sampling strategies for coordinate descent. The first

column of subfigures (Figures 4.2a and 4.2c) uses an underdetermined system of 100× 1000

while the second column of subfigures (Figures 4.2b and 4.2d) considers an overdetermined

system of 1000× 100. Figures 4.4c and 4.4d demonstrate convergence per iteration for the

Ash958 matrix and Figures 4.5a and 4.5c for randomized Kaczmarz and coordinate descent

applied to the GEMAT1 matrix.

As expected, we see that the max-distance sampling strategy performs the best per

iteration followed by the capped adaptive strategy, then sampling proportional to the sketched

residuals and finally followed by the uniform strategy. For randomized Kaczmarz applied

to underdetermined systems and coordinate descent applied to overdetermined systems,

max-distance and the capped adaptive sampling strategies perform similarly in terms of

squared error per iteration. The convergence of randomized Kaczmarz for each sampling

strategy applied to overdetermined systems is very similar to that of coordinate descent

applied to underdetermined systems. Similarly, the convergence of randomized Kaczmarz

for each sampling strategy applied to underdetermined systems is very similar to that of

coordinate descent applied to overdetermined systems. For the large and underdetermined

GEMAT1 matrix, we find that randomized coordinate descent methods have much larger

variance in their performance compared to randomized Kaczmarz methods.
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4.10.2 Error versus approximate flops required

If we take into account the number of flops required for each method, the relative performance

of the methods changes significantly. In order to approximate the number of flops required for

each sampling strategy, we use the leading order flop counts per iteration given in Tables 4.2

and 4.3. We do not consider the precomputational costs, but only the costs incurred at

each iteration. The performance in terms of flops of each sampling strategy is reported

in Figure 4.3. Performance on the Ash958 matrix is reported in Figures 4.4c and 4.4d.

Performance on the GEMAT1 matrix for randomized Kaczmarz and coordinate descent is

reported in Figures 4.5b and 4.5d.

As discussed in Section 4.8, the adaptive methods are typically more expensive than

non-adaptive methods as one must update the sketched residuals Rk
i for i = 1, . . . , q at each

iteration k. Yet even after taking flops into consideration, we find that the max-distance

sampling strategy still performs the best overall. For randomized Kaczmarz applied to

an overdetermined synthetic matrix, uniform sampling performance is comparable to max-

distance (Figure 4.3b). In all other experiments, however, max-distance sampling is the

clear winner. Since max-distance sampling performs at least as well per iteration as capped

adaptive sampling and sampling with probabilities proportional to the sketched losses, yet

the max-distance sampling method is less expensive, it naturally performs the best among

the adaptive methods when flop counts are considered.

4.10.3 Spectral constant estimates

Theorems 4.7.5, 4.7.6, and 4.7.8 to 4.7.11 of Section 4.7 provide conservative views of the

convergence rates of each method, as the spectral constants of Definition 4.7.2 give the

expected convergence corresponding to the worst possible point x ∈ range B−1A as opposed

to the iterates xk. In practice, the convergence at each iteration might perform better than

the convergence bounds indicate.

Recall that the convergence rates derived in Section 4.7 are given in terms of spectral
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constants (Definition 4.7.2) of the form

σ2
p(B,S)

def
= min

x∈rangeB−1A>

Ei∼p [fi(x)]

‖x− x?‖2
B

.

We will refer to the value
Ei∼pk

[
fi(x

k)
]

‖xk − x?‖2
B

as the expected step size factor and note that larger values indicate superior performance.

The smallest expected step size factor observed for each method provides an estimate

and upper bound on the spectral constants in the derived convergence rates. The minimal

expected step size factor for each sampling method applied to random Gaussian matrices of

size 1000× 100 and 100× 1000 are reported in Table 4.4. As expected, we find that these

values increase from uniform sampling, sampling proportional to the sketched losses, capped

adaptive sampling and finally max-distance selection. In Theorem 4.7.9, we proved a bound

on the convergence rate for sampling proportional to the sketched losses that was twice as

fast as the convergence guarantee for uniform sampling. We find that the estimated spectral

constants in Table 4.4 for the proportional sampling strategy is also at least twice as large as

the estimated spectral constant for uniform sampling.

Sampling
Randomized Kaczmarz Coordinate Descent

1000× 100 100× 1000 1000× 100 100× 1000

Uniform 0.00705 0.00667 0.00656 0.00715

pi ∝ ‖A:i‖2
2 0.02019 0.01569 0.01722 0.02014

Capped 0.03885 0.01901 0.01952 0.03878

Max-distance 0.04593 0.01994 0.02171 0.04711

Table 4.4: Minimal expected step size factor for each sampling method applied to matrices

containing i.i.d. guassian entries.
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4.11 Conclusions

We extend adaptive sampling methods to the general sketch-and-project setting. We present a

computationally efficient method for implementing the adaptive sampling strategies using an

auxiliary update. For several specific adaptive sampling strategies including max-distance se-

lection, the capped adaptive sampling of [BW18a,BW18b,BW19a], and sampling proportional

to the sketched residuals, we derive convergence rates and show that the greedy max-distance

sampling rule has the fastest convergence guarantee among the sampling methods considered.

This superior performance is seen in practice as well for both the randomized Kaczmarz and

coordinate descent subcases.

4.A Implementation tricks and computational complexity

We describe how one can perform adaptive sketching with the same order of cost per iteration

as the standard non-adaptive sketch-and-project method when τq, the number of sketches q

times the sketch size τ , is not significantly larger than the number of columns n. In particular,

we show how adaptive sketching methods can be performed for a per-iteration cost of

O(τ 2q+τn), whereas the standard non-adaptive sketch-and-project method has a per-iteration

cost of O(τn). The precomputations and efficient update strategies presented here are a

generalization of those suggested in [BW18a] for the Kaczmarz setting. Precomputational costs

are a one time expense and are independent of the sampling strategy. The precomputational

costs depend on the sparsity structure of the sketches and are summarized for randomized

Kaczmarz and coordinate descent in Table 4.6. The computational costs given in this section

may be over-estimates of the costs required for specific sketch choices such as when the

update is sparse, as is the case in coordinate descent. The special cases of adaptive Kaczmarz

and adaptive coordinate descent are analyzed in Section 4.9.

Pseudocode for efficient implementation is provided in Algorithm 6. Throughout this

section, we will frequently omit O(1) and O(log(q)) flop counts since they are insignificant

compared to the number of rows m, the number of columns n, and the number of sketches q.
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4.A.1 Per-iteration cost

The main computational costs of adaptive sketch-and-project (Algorithm 3) at each iteration

come from computing the sketched losses fi(x
k) of Equation (4.8) and updating the iterate

from xk to xk+1 via Equation (4.6). We now discuss how these steps can be calculated

efficiently. A suggested efficient implementation for adaptive sketch-and-project is provided

in Algorithm 6. The costs of each step of an iteration of the adaptive sketch-and-project

method are summarized in Table 4.5.

Let Ci be any square matrix satisfying

CiC
>
i = (S>i AB−1A>Si)

†. (4.54)

For example, Ci could be the Cholesky decomposition of (S>i AB−1A>Si)
†. The sketched

loss fi(x
k) and the iterate update from xk to xk+1 can now be written as

fi(x
k) = ‖S>i (Axk − b)‖2

CiC>i
= ‖C>i S>i (Axk − b)‖2

2

and

xk+1 = xk −B−1A>SikCikC
>
ik

S>ik(Ax
k − b).

Notice that both the iterate update for xk and the formula for the sketched loss fi(x
k) share

the sketched residual Rk
i

def
= C>i S>i (Axk − b) defined in Equation (4.53). In adaptive methods

one must compute the sketched residual Rk
i for i = 1, 2, . . . , q. When sampling from a fixed

distribution, however, calculating the sketched losses fi(x
k) is unnecessary and only the

sketched residual Rk
ik

corresponding to the selected index ik need be computed.

Depending on the sketching matrices Si and the matrix B, it is possible to update the

iterate xk and compute the sketched losses fi(x
k) more efficiently if one maintains the set

of sketched residuals {Rk
i : i = 1, 2, . . . , q} in memory. Using the sketched residuals, the

calculations above can be rewritten as

fi(x
k) = ‖Rk

i ‖2
2 (4.55)

and

xk+1 = xk −B−1A>SikCikR
k
ik
. (4.56)
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The sketched residuals {Rk
i : i = 1, 2, . . . , q} can either be computed via an auxiliary

update applied to the set of previous set of sketched residuals {Rk−1
i : i = 1, 2, . . . , q} or

directly using the iterate xk. Using the auxiliary update,

Rk+1
i = C>i S>i (Axk+1 − b)

= C>i S>i

(
A(xk −B−1A>SikCikR

k
ik

)− b
)

= Rk
i −C>i S>i AB−1A>SikCikR

k
ik

(4.57)

with the initialization

R0
i = C>i

(
S>i (Ax0 − b)

)
.

If the matrix C>i S>i AB−1A>SjCj ∈ Rτ×τ is precomputed for each i, j = 1, 2, . . . , q, the

sketched residual Rk
i can be updated to Rk+1

i for 2τ 2 flops for each index i via Equation (4.57).

Using the precomputed matrices requires storing 1
4
τ(τ + 1)q(q + 1) floats.

In the non-adaptive case, one only needs to compute the single sketched residual Rk
ik

as

opposed to the entire set of sketched residuals, since the sketched losses fi(x
k) are not needed.

If the matrices

C>i S>i A ∈ Rτ×n and C>i S>i b ∈ Rτ ,

are precomputed for i = 1, 2, . . . , q, computing each sketched residual Rk
i directly from the

iterate xk costs 2τn flops via Equation (4.53). If qτ > n, then it is cheaper to compute the

sketched residual Rk
ik

using the auxiliary update Equation (4.57) rather than computing it

directly from xk.

From the sketched residual Rk
i , the sketched losses fi(x

k) can be computed for 2τ −1 flops

for each index i via Equation (4.55). If the matrix B−1A>SiCi ∈ Rn×τ is precomputed for each

i = 1, 2, . . . , q, the iterate xk can then be updated to xk+1 for 2τn flops via Equation (4.56).

These costs are summarized in Table 4.5.

4.A.2 Cost of sampling indices

The cost of computing the sampling probabilities pk from the sketched losses fi(x
k) depends

on the sampling strategy used. Sampling from a fixed distribution can be achieved with
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Algorithm 6 Efficient Adaptive Sampling Sketch-and-Project

1: input: A ∈ Rm×n, b ∈ Rm, {Si ∈ Rm×τ : i = 1, 2, . . . , q}, B ∈ Rn×n, x0 ∈ range B−1A>,

2: compute Ci = Cholesky
(

(S>i AB−1A>Si)
†
)

for i = 1, 2, . . . , q . The Ci can be

discarded after Line 5.

3: compute B−1A>SiCi ∈ Rn×τ for i = 1, 2, . . . , q

4: compute C>i S>i AB−1A>SjCj ∈ Rτ×τ for i, j = 1, 2, . . . , q

5: initialize R0
i = C>i

(
S>i (Ax0 − b)

)
∈ Rτ for i = 1, 2, . . . , q

6: for k = 0, 1, 2, . . . do

7: compute fi(x
k) = ‖Rk

i ‖2
2 for i = 1, 2, . . . , q

8: sample ik ∼ pki , where pk ∈ ∆q is a function of f(xk)

9: update xk+1 = xk − (B−1A>SikCik)R
k
ik

10: update Rk+1
i = Rk

i − (C>i S>i AB−1A>SikCik)R
k
ik

for i = 1, 2, . . . , q

11: end for

12: output: last iterate xk+1

an O(1) cost using precomputations of O(q) [Wal74]. Adaptive strategies sample from a

new, unseen distribution at each iteration, which can be achieved with an average of q flops

using, for example, inversion by sequential search [Kem81, Dev86, p. 86]. In practice, the

probabilities pki corresponding to each index i are given by a function of the sketched losses

f(xki ) and normalizing these values is unnecessary. Instead, one can sum the q sketched losses

and apply inversion by sequential search with a random value r generated between zero and

the sum of these values. This summation requires q−1 flops. Thus, the total cost for sampling

from an adaptive probability distribution for the methods considered is approximately 2q flops

on average. The costs for the sampling strategies discussed in Section 4.6 are summarized in

Table 4.7. The calculations of these costs are discussed in more detail in Subsection 4.A.3.

4.A.3 Sampling strategy specific costs

We now detail the calculations that lead to the costs associated with each of the specific

sampling strategies that are reported in Table 4.7.
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Per iteration

computation
Flops

fi(x
k) ∀i via

Equation (4.55)
(2τ − 1)q

xk+1 via

Equation (4.56)
2τn

Rk
i ∀i with

auxiliary update,

Equation (4.57)

2τ 2q

Rk
ik

via direct

computation,

Equation (4.53)

2τn

(a) Baseline flop counts. Flop counts

of O(1) have been omitted.

Stored Object Storage

xk n

Rk
i ∀i τq

B−1A>SiCi ∀i τqn

C>i S>i AB−1A>SjCj

∀i, j
1
4
τ(τ + 1)q(q + 1)

C>i S>i A and

C>i S>i b ∀i
τq(n+ 1)

(b) Storage costs.

Table 4.5: Summary of the costs of the of Algorithm 6 excluding costs that are specific to

the sampling method. The number of sketches is q, the sketch size is τ and the number of

columns in the matrix A is n.

4.A.3.1 Sampling from a fixed distribution

When sampling the indices i from a fixed distribution, computing the sketched losses fi(x
k)

is unnecessary and only the sketched residual Rk
ik

of the selected index ik is needed to update

the iterate xk. If qτ > n, where q is the number of sketches, τ is the sketch size and n is the

number of columns in the matrix A, it is cheaper to compute the sketched residual Rk
ik

using

the auxiliary update Equation (4.57) rather than computing it directly from xk. Ignoring

the O(1) cost of sampling from the fixed distribution, the iterate update takes either 4τn

flops if qτ > n and one maintains the set of sketched residuals via the auxiliary update

Equation (4.57) or 2τ(n+ q) flops if the sketched residual Rk
ik

is calculated from the iterate

xk directly via Equation (4.53).
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Computation Randomized Kaczmarz Coordinate Descent

Ci of Equation (4.54) 1
‖Ai:‖ 2mn+O(m) 1

‖A:i‖ 2mn+O(n)

B−1A>SiCi
A>i:
‖Ai:‖ mn ei

‖A:i‖ n

C>i S>i AB−1A>SjCj
〈Ai:,Aj:〉
‖Ai:‖‖Aj:‖

m2n

+O(m2 +mn)

〈A:i,A:j〉
‖A:i‖‖A:j‖

mn2

+O(mn+ n2)

Table 4.6: Precomputational costs for adaptive randomized Kaczmarz and adaptive coordinate

descent. The computational costs assume the previous elements have been computed and

give the cost of computing the value for all indices.

4.A.3.2 Max-distance selection

Performing max-distance selection requires finding the maximum element of the length q

vector of sketched losses given in Equation (4.55). In the average case, this costs q +O(log q)

flops, where q flops are used to check each element and O(log q) flops arise from updates to

the running maximal value. For convenience, we ignore the O(log q) flops and consider the

cost of the selection step using the max-distance rule to be q flops. If the sketches Si are

vectors, or equivalently we have τ = 1, then the sketched residuals Rk
i are scalars and finding

the maximal sketched loss fi(x
k) is equivalent to finding the sketched residual Rk

i of maximal

magnitude. We can thus save q flops per iteration by skipping the step of computing the

sketched losses and instead taking the sketched residual of maximal magnitude.

4.A.3.3 Sampling proportional to the sketched loss

Sampling indices with probabilities proportional to the sketched losses fi(x
k) requires ap-

proximately 2q flops on average using inversion by sequential search.
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Sampling Strategy Non-Sampling Flops Flops from Sampling

Fixed, pki ≡ pi ∀k 2τ min(n, τq) + 2τn O(1)

Max-distance

(2τ 2 + 2τ − 1)q + 2τn

q if τ > 1

O(log(q)) if τ = 1

pki ∝ fi(x
k) 2q

Capped 6q

Table 4.7: Rule-specific per-iteration costs of Algorithm 6. Only leading order flop counts

are reported. The non-sampling flops are those that are independent of the specific adaptive

sampling method used and are those that correspond to the steps indicated in Table 4.5a.

The extra flops for sampling are those that are required to calculate the adaptive sampling

probabilities pk at each iteration. The number of sketches is q, the sketch size is τ and the

number of columns in the matrix A is n.

4.A.3.4 Capped adaptive sampling

Recall that using capped adaptive sampling requires identifying the set

Wk =

{
i | fi(xk) ≥ θ max

j=1,...,q
fj(x

k) + (1− θ)Ej∼p
[
fj(x

k)
]}

.

Sampling with the capped adaptive sampling strategy requires identifying the set Wk and

sampling an index from this set. Identifying the set Wk requires q + O(log q) flops to

identify the maximal sketched loss fi(x
k), 2q flops to compute the weighted average of the

sketched losses Ej∼p
[
fj(x

k)
]
, O(1) flops to calculate the threshold for the set Wk, and q

flops to compare each sketched loss against the threshold. Sampling an index from the

set Wk requires on average 2q flops by using inversion by sequential search as discussed

in Subsection 4.A.2.4 Thus, the total cost of the sampling step is 6q + O(log q) flops.

When a uniform average is used in place of the weighted average, the expected sketched loss

Ej∼p
[
fj(x

k)
]

can be computed in just q flops as opposed to 2q. In that case, the total cost

of the sampling step is only 5q +O(log q).

4The analyses of [BW18a,BW18b] omitted the cost of sampling the index from a new distribution at each
iteration, and thus our cost calculations differ by 2q.
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Sampling

Strategy

Flops Per

Iteration

When τ > 1

Flops Per

Iteration

When τ = 1

Fixed, pki ≡ pi 2τ min(n, τq) + 2τn 2 min(n, q) + 2n

Max-distance (2τ 2 + 2τ)q + 2τn 3q + 2n

pki ∝ fi(x
k) (2τ 2 + 2τ + 1)q + 2τn 5q + 2n

Capped (2τ 2 + 2τ + 5)q + 2τn 9q + 2n

Table 4.8: Summary of convergence guarantees of Section 4.7, where γ =

1/maxi=1,...,m

∑m
j=1,j 6=i pi as defined in Equation (4.37) and ε = θ(γ − 1) ≤ θ 1

m
. Flop

counts of O(log(q)) have been omitted. Flop counts assume all matrices are dense. The

number of sketches is q, the sketch size is τ and the number of columns in the matrix A is n.

4.B Auxiliary lemma

We now invoke a lemma taken from [GR16].

Lemma 4.B.1. For any matrix W and symmetric positive semidefinite matrix G such that

Null (G) ⊂ Null
(
W>) , (4.58)

we have that

Null (W) = Null
(
W>GW

)
. (4.59)

Proof. In order to establish Equation (4.59), it suffices to show the inclusion Null (W) ⊇

Null
(
W>GW

)
since the reverse inclusion trivially holds. Letting s ∈ Null

(
W>GW

)
, we

see that ‖G1/2Ws‖2 = 0, which implies G1/2Ws = 0. Consequently

Ws ∈ Null
(
G1/2

)
= Null (G)

(4.58)
⊂ Null

(
W>) .

Thus Ws ∈ Null
(
W>) ∩ range W which are orthogonal complements which shows that

Ws = 0.
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(a) Adaptive randomized Kaczmarz, A ∈

R100×1000.

(b) Adaptive randomized Kaczmarz, A ∈

R1000×100.

(c) Adaptive coordinate descent, A ∈ R100×1000. (d) Adaptive coordinate descent, A ∈ R1000×100.

Figure 4.2: A comparison between different selection strategies for randomized Kaczmarz and

coordinate descent methods. Squared error norms were averaged over 50 trials. Confidence

intervals indicate the middle 95% performance. Subplots on the left show convergence for

underdetermined systems, while those on the right show the convergence on an overdetermined

systems.
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(a) Adaptive randomized Kaczmarz, A ∈

R100×1000.

(b) Adaptive randomized Kaczmarz, A ∈

R1000×100.

(c) Adaptive coordinate descent, A ∈ R100×1000. (d) Adaptive coordinate descent, A ∈ R1000×100.

Figure 4.3: A comparison between different selection strategies for randomized Kaczmarz

and coordinate descent methods. Squared error norms were averaged over 50 trials and are

plotted against the approximate flops aggregated over the computations that occur at each

iteration. Confidence intervals indicate the middle 95% performance. Subplots on the left

show convergence for underdetermined systems, while those on the right show the convergence

on an overdetermined systems.
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(a) Adaptive coordinate descent. (b) Adaptive randomized Kaczmarz.

(c) Adaptive coordinate descent. (d) Adaptive randomized kaczmarz.

Figure 4.4: A comparison between different selection strategies for randomized Kaczmarz

and coordinate descent methods on the Ash958 matrix. Squared error norms were averaged

over 50 trials and plotted against both the iteration and the approximate flops required.

Confidence intervals indicate the middle 95% performance.
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(a) Adaptive randomized Kaczmarz. (b) Adaptive randomized Kaczmarz.

(c) Adaptive coordinate descent. (d) Adaptive coordinate descent.

Figure 4.5: A comparison between different selection strategies for randomized Kaczmarz

and coordinate descent on the GEMAT1 matrix. Squared error norms were averaged over 50

trials and plotted against both the iteration and the approximate flops required. Confidence

intervals indicate the middle 95% performance.

94



CHAPTER 5

Classification of Binary Data with Hierarchical Class

Structure

5.1 Introduction

We consider the problem of classification, where one is given a set of labeled data used for

training, and from that data wishes to accurately assign labels to new unlabeled data. In the

general problem, the class labels themselves have no relation to one another, however, data

can often be organized in a hierarchical way. For example, in image classification problems,

the data may contains images of inanimate and living objects. Then, within each of those

classes the data may be further identified as images of vehicles and toys, or humans and

animals. The data could then be further subdivided into classes of various animal types, and

so on. This structure can be visualized as a tree, where the children of each node correspond

to its sub-classes. Each data point in this case would have a label corresponding to a leaf of

the tree, but also possesses the characteristics of all the labels of its ancestors. One option of

course would be to simply use generic classification schemes to classify the data using the

leaf labels only. Hierarchical classification, however, makes use of information and structure

between groups in classifying the data [Gor87, SF11]. Extensions of popular classification

methods such as the support vector machine (SVM) to the hierarchical setting are not

straightforward, and such approaches often decompose the problem into many sub-problems

leading to higher computational complexities [COL04,WW98].

Recently, [NSW17] proposed a simple classification scheme that uses only binary rep-

resentations of data to perform classification; such representations arise naturally or are

particularly efficient in many applications, see e.g. [FSL14, JLB11, ASS96, BB11, GNR10].
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Here, we show that this method lends itself well to performing hierarchical classification

and, in particular, using the hierarchical structure to improve computational efficiency. The

classification method uses position of data relative to random hyperplanes to predict in

which class a point is most likely to belong. [NSW17] demonstrated that for more complex

data, using combinations of hyperplanes enables one to make more accurate predictions.

However, the computation required to make a prediction scales exponentially in the number

of hyperplane combinations used. Fortunately, the method is highly adjustable and for data

that is likely to be more or less difficult to classify, one can adjust the number of these

hyperplane combinations. Such a method is likely to be particularly useful for hierarchical

data in which certain subclasses of data are more or less difficult to classify than others.

5.2 Underlying Classification Algorithm

In this section, we describe the classification algorithm proposed in [NSW17]. Let A be a

random matrix in Rm×n, X = [x1 x2 · · · xp] ∈ Rn×p, where the xi ∈ Rp are the data with

labels b = (b1 · · · bp) assigned from a possibility of G classes. Suppose we only have access to

binary measurements of the data in the form Q = sign(AX), where sign(M)i,j = sign(Mi,j).

The rows of A will correspond to (random) hyperplanes, and thus Qi,j simply captures on

which side of the ith hyperplane the jth data point lies.

Let us build some intuition for the approach. Consider the two-dimensional data X shown

in the top plot of Figure 5.1, consisting of three labeled classes (green, blue, red). Consider

the four hyperplanes shown in the same plot, and suppose we had access only to the binary

data Q = sign(AX), where A contains the normals to each hyperplane as its rows. For the

new test point x (which by visual inspection should be labeled blue) and its binary data

q = sign(Ax), one could simply cycle through the hyperplanes and decide which class x

matches most often. For example, for the hyperplane colored purple in the plot, x has the

same sign (i.e. lies on the same side) as the blue and green classes. For the black hyperplane,

x only matches the blue class, and so on. Then for this example, x will clearly match the blue

class most often, and we could assign it that label correctly. However, next consider the more
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complicated geometry given in the bottom plot, where the data consists of only two classes

(red and blue), but they are now no longer linearly separable. This same strategy will no

longer be accurate for the test point x. However, now instead of single hyperplanes, consider

hyperplane pairs, and ask which class label x most often matches (note that in this context,

by “matches” we now mean that points lie in the same cone into which the hyperplanes divide

the space). For example, for the pair of hyperplanes colored orange and green, x matches

both red and blue points, whereas for the pair of hyperplanes colored orange and purple, x

only matches the blue class. One could now cycle through all pairs, and again ask which class

x matches most often. For complicated data, we could aggregate such information across

various levels, where at level l we consider l-tuples of hyperplanes in this way.

Figure 5.1: Two motivating examples for the classification method.

Let us now describe the method more formally. Consider m l-tuples of hyperplanes of

various lengths l = 1, · · · , L. Define the randomly selected index sets Λl,i, where Λl,i ⊂ [m],

|Λl,i| = l and each Λl,i is unique. If we then isolate the rows of Q contained in Λl,i to form the

l × p matrix QΛl,i , the columns of this matrix give the sign patterns of the data with respect

to the hyperplanes in Λl,i. Let Tl,i be the number of unique sign patterns, or equivalently

columns of QΛl,i . Based on these sign patterns, we then calculate the membership index

parameter r(l, i, t, g) for each l-tuple i = 1, · · · ,m, level l = 1, · · · , L, unique sign pattern

t = 1, · · · , Tl,i and class g = 1, · · · , G. Let Pg|t be the number of data points in class g with

sign pattern t and define:

r(l, i, t, g) :=
Pg|t∑G
j=1 Pj|t

∑G
j=1 |Pg|t − Pj|t|∑G

j=1 Pj|t
. (5.1)
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The first fraction in (5.1) measures the proportion of data with sign pattern t that belong to

class g, and the second fraction is a balancing term. This training process is also described

in Algorithm 7.

Algorithm 7 Training from [NSW17]

Input: binary training data Q, training labels b, number of classes G, number of levels L.

for l from 1 to L, i from 1 to m do

Randomly select Λl,i ⊂ [m], |Λl,i| = l.

Determine the Tl,i ∈ N unique column patterns in QΛl,i .

for t from 1 to Tl,i, g from 1 to G do

Compute r(l, i, t, g) as in Equation 5.1.

end for

end for

Given x ∈ Rn and q = sign(Ax), we predict the class of x as given in Algorithm 8.

Intuitively, the membership values r(l, i, t, g) indicate how likely a point with sign pattern t is

to lie in class g, given information from the ith l-tuple of hyperplanes. These are aggregated

over all measurements m and levels l, giving a likelihood that the point belongs to each class

g. The label assigned is simply the class g corresponding to the largest value of r̃.

Algorithm 8 Classification from [NSW17]

Input: binary testing data q, number of classes G, number of levels L, learned parameters

r(l, i, t, g), Tl,i, and Λl,i from Algorithm 7.

for l from 1 to L, i from 1 to m do

Identify the pattern t∗ ∈ [Tl,i] to which qΛl,i corresponds.

for g from 1 to G do

r̃(g) = r̃(g) + r(l, i, t∗, g).

end for

end for

Set r̃(g) = r̃(g)
Lm

for g = 1, · · · , G.

b̂x = argmaxg∈{1,··· ,G} r̃(g).
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Flops Operation

G Initialize r̃

m
∑L

l=1 |Tl,i|l Identify the sign pattern (worst case)

mGL Update r̃(g) for each class and level

G+ 1 Scale

G Predict b̂x = argmaxg∈{1,··· ,G} r̃(g)

Table 5.1: Testing flop counts.

5.2.1 Computational Complexity

Given a data point x ∈ Rd, we require

m(
L∑
l=1

|Tl,i|l +GL) + 3G+ 1

flops to predict its class as described in Algorithm 8. Flop counts for each step in Algorithm 8

are given in Table 5.1. We do not include the cost of calculating q = sign(Ax), as we

assume that the algorithm is provided these binary measurements. Additionally, it may

be the case that one does not have access to the underlying vector x and only knows the

binary measurements q. As the number of levels increases, the term m
∑L

l=1 |Tl,i|l typically

dominates the testing cost. The number of possible sign patterns for a single measurement is

2l and thus we at least have the bound |Tl,i| ≤ 2l. The inequality is strict if not all possible

sign patterns are realized by points in the training data.

5.2.2 Adjustment for Hierarchical Classification

We now describe our proposed adjustment for handling hierarchical classification, where the

labels possess some sort of tree structure. The classification scheme described above and

in [NSW17] has the property that more levels (higher L) are needed to accurately classify

more complicated data. Thus, if we know in advance that certain classes may require fewer

levels for classification with sufficient accuracy, we may isolate these classes in an initial
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classification that uses fewer levels and then further classify these groups of classes using only

the required number of levels for sufficient accuracy. This strategy leads to computational

savings without sacrificing accuracy when some classes are more easily discerned from the

others.

For illustration, consider the simple example where we have three classes, g1, g2, g3.

Suppose that L1 levels are necessary to classify data belonging to g1, but L2 levels are

required to differentiate between classes g2 and g3 where L2 > L1. We can perform binary

classification between g1 and {g2, g3} using L1 levels followed by classification between g2 and

g3 using L2 levels. These classifications can be organized as a tree with nodes H1 and H2 as

shown in Figure 5.2. The sets S1 and S2 give the class groupings for the model constructed

at nodes H1 and H2 respectively.

At test time, points initially classified as g1 require only

m

(
L1∑
l=1

|Tl,i|l +GL1

)
+ 3G+ 1

flops, where G = 2. In order to further discern between points predicted to belong to g2 or g3,

we can use the same measurements (or random hyperplanes) as used in the first classification.

Then for the two classifications, points initially classified as belonging to g2 or g3 require

m

(
L2∑
l=1

|Tl,i|l +
2∑
c=1

GcLc

)
+

2∑
c=1

(3Gc + 1)

flops to arrive at a prediction. Here, Gc is the number of groups at classification c and Lc

is the number of levels used for classification c. In this particular example, we would have

G1 = |S1| = |{g1, {g2, g3}}| = 2 and G2 = |S2| = |{g2, g3}| = 2.

The overhead cost to carrying out two classifications instead of one is quite limited overall.

For classifications in which some classes require fewer levels to predict, this hierarchical

structure can lead to significant computational savings, as shown in the experimental results

that follow. The magnitude of the computational savings is highly dependent on the

distribution of the testing data, however, as we only reduce computational costs for those

points predicted to be in one of the classes that is ‘easier’ to discern, i.e. requires fewer levels.
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H1

S1 = {g1, {g2, g3}}

H2

S2 = {g2, g3}

Figure 5.2: Hierarchical classification tree for a simple three-class example in which differenti-

ating g1 is significantly easier than differentiating g2 and g3.

The proposed hierarchical classification algorithm is further described in Algorithms 9 and

10.

Algorithm 9 Proposed adjustment for hierarchical classification (training).

Input: binary training data Q, training labels b, set of class groupings Sc for each node

Hc in the tree of classifications H, number of levels L = (L1, · · ·LC) to be used in each

classification.

for Hc ∈ H, do

Identify rows of Q such that the corresponding component of b is in one of the sets

contained in Sc. Form a matrix Qc containing these rows.

Define b̃ to be the labels indicating to which set of Sc a given row of Qc corresponds.

Train a classifier as in Algorithm 7 with training data Qc, labels b̃, number of groups

|Sc| and number of levels Lc as input.

end for

This hierarchical classification strategy naturally generalizes to incorporate more compli-

cated and deeper hierarchical structures in which the classifications can be structured as a

tree. See Figure 5.3 for an example. In order to maximize computational gains, however, we

would like the tree to be ‘imbalanced’ in terms of the maximum number of levels required

for sufficient classification accuracy along different paths of the tree. Such an imbalance

arises naturally in many applications. For example, consider brain imaging and the prob-

lem of detecting brain abnormalities including tumors and dementia; tumor detection is a

fairly easy learning problem whereas classifying differing types of dementia remains very
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Algorithm 10 Proposed adjustment for hierarchical classification (testing).

Input: binary testing data q, set of class groupings Sc, learned parameters r(l, i, t, g), Tl,i

and Λl,i for the classification associated to each node Hc in the tree of classifications H,

number of levels L = (L1, · · ·LC) to be used in each classification.

Begin at H1, the root classification.

while Hc is not null, do

Classify testing data q, as in Algorithm 8, with learned parameters r(l, i, t, g), Tl,i, Λl,i

from Hc into one of the sets contained in Sc.

if If q is predicted to belong to a single class then

Set Hc to be null.

else

Set Hc to be the node corresponding to the predicted set of classes for q within Sc.

end if

end while

challenging [DS16,HFK04].

5.2.3 Determining class hierarchies

When the number of classes is large, reorganizing a flat multiclass classification problem into

hierarchical (binary) classifications can be used as a general strategy to reduce the computation

required for testing [GP08]. Our proposed strategy need not only be applied in settings where

the data follows or is presented within the context of a clear hierarchical structure. A variety

of previous works have studied ways in which to detect structure among classes and use this

information to construct an informed hierarchy of the classes [GP08,GSC02,SFR17,LZO07,

ZBD99]. These strategies generally aim to group classes that are deemed ‘similar’ by some

measure, in order to reduce the number of missclassifications that occur high in the tree. For

example, some work suggests constructing a hierarchy based on the confusion matrix of the

flat multiclass classification problem [GP08,GSC02,SFR17]. Preferentially constructing class

hierarchies that are imbalanced in terms of ease of classification along different paths will also

102



H1

S1 = {g1, {g2, g3}, {g4, g5, g6}}

H2

S2 = {g2, g3}

H3

S3 = {{g4, g5}, g6}

H4

S4 = {g4, g5}

Figure 5.3: Example hierarchical classification tree. A classifier would be trained at each

node, Hc, to classify data among the sets given in Sc.

largely affect the computational savings achieved by our proposed hierarchical classification

method. We save details of how one might achieve this for future work.

5.3 Experimental results

In the following experiments, we test the computational gains achieved by the proposed

hierarchical classification strategy as described in Algorithms 9 and 10 compared with direct

classification into each individual group via ‘flat multiclass classification’ as described in

Algorithms 7 and 8. The ‘flat multiclass classification’ is a direct application of the method

proposed in [NSW17].

5.3.1 Two-dimensional synthetic data

We first test the computational gains achieved by the proposed hierarchical classification

strategy on the two-dimensional data shown in Figure 5.5. Each color represents a different

class and there are six classes in total. The red and yellow clusters each contain 200 training

and testing points, while the remaining four classes, green, black, blue and cyan, contain 100

training and testing points each. The distribution of testing points among the classes will

have a significant effect on the computation needed for testing in the hierarchical case. We
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expect classifying points from the red and yellow classes to be easier and to require fewer

levels than correctly classifying points as green, black, blue or cyan.

To take advantage of this structure in the data, we first predict whether a testing point

is red or yellow versus green, black, blue or cyan using only one level. If the test point was

predicted to be red or yellow, we then discern between these two classes again using only a

single level. If the test point was predicted to be green, black, blue or cyan, we then predict

among these classes by using varying numbers of levels. Accuracies and testing flops for the

hierarchical classification strategy versus flat multiclass classification are shown in Figure 5.5

for varying numbers of measurements m. We see a significant reduction in computational

cost using the hierarchical strategy without sacrificing accuracy.

H1

S1 = {{red, yellow}, {green, black, blue, cyan}}

H2

S2 = {red, yellow}

H3

S3 = {green, black, blue, cyan}

Figure 5.4: Hierarchical classification tree used to classify two-dimensional synthetic data as

shown in Figure 5.5.

5.3.2 Three-dimensional synthetic data

We test the hierarchical classification strategy and flat multiclass classification on three-

dimensional synthetic data as given in Figure 5.6. Each color represents a different class.

Again, we expect the four Gaussian clusters to require fewer levels for sufficiently accurate

classification than the ‘arcs’. The training data are distributed so that there is an equal

number of training and testing points in the Gaussian clusters and arcs. Specifically we

have 100 training and testing points in each arc and 200 training and testing points in each

Gaussian cluster.

Using a strategy similar to that used in the two-dimensional experiment, we first build a

classifier to predict whether a point belongs to one of the arcs or one of the Gaussian clusters
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Figure 5.5: For the data distributed as given in the upper-left plot, where each color represents

a different class, we classify testing data either by flat multiclass classification or our proposed

hierarchical classification strategy where the first classification discerns between red or yellow

versus green, black, blue or cyan. Accuracy and testing flops required are given in the

subsequent plots using m = 20, 50 and 100 respectively. Results are averaged over 10 trials.

using only a single level. If a data point is predicted to be in one of the Gaussian clusters, we

then use a single level again to predict to which of the clusters it belongs. If a data point is

predicted to be in one of the arcs, we use more levels to perform the subsequent classification

to discern between the arcs. We test the accuracy and computation required for using a

variety of levels in this second classification. As in the two-dimensional experiment, we again

see a reduction in the computational cost of testing without sacrificing accuracy.
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Figure 5.6: For the data distributed as given in the upper-left plot, where each color represents

a different class, we classify testing data either by flat multiclass classification or our proposed

hierarchical classification strategy where the first classification discerns between red or yellow

versus green, black, blue or cyan. Accuracy and testing flops required are given in the

subsequent plots using m = 20, 50 and 100 respectively. Results are averaged over 10 trials.

5.3.3 MNIST

Although not inherently hierarchical in nature, we demonstrate that our hierarchical strategy

can lead to computational savings on the MNIST dataset of handwritten digits [LCB10].

Consider the digits 1-5. Intuitively and in practice, the digit 1 tends to be easier to

classify correctly than the other digits. For example, if we apply the multiclass classification

from [NSW17] to classify the digits 1-5 using 1000 training points for each class, 10 levels

and testing on 200 training points from each class, we find that 98.5% of the 1s are classified

correctly, whereas the overall accuracy of classifying the digits 1-5 was 89.2% (the accuracy
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for classifying digits 2-5 was 86.88%). Thus, it is reasonable to expect that fewer levels are

required for sufficiently accurate classification of the 1s than are required to classify the

remaining digits.

We induce hierarchical structure by first classifying into 1s versus not 1s, followed by

classification into the digits 2,3,4 and 5 for those test points that were predicted to not be

1s in the first classification. When training the first classifier, we downsample the training

data for the digits 2-5 so that we have an equal number of training data points for 1s and

not 1s. We found that this adjustment improved the accuracy of the first classification. Five

levels are used for the first classification into 1s versus not 1s and a varying number of levels

(five to 10) are used for the subsequent classification. We again see a reduction in the total

testing flops required to achieve a given accuracy. Here, we use an equal number of test points

for each digit and thus get computational savings for approximately 1/5 of the test points,

specifically for all of the test points that are predicted to be 1s. If we had a much higher

proportion of 1s as compared to the other digits, then we would expect the computational

savings to be even more significant. Additionally, since this tree is fairly shallow, as expected

the improvements are mild, and we would expect more significant improvement for real data

that has a larger and more imbalanced tree structure, as in the other experiments.

Conclusion

We have demonstrated that the classification algorithm proposed in [NSW17] can be readily

adapted to to classify data in a hierarchical way that improves computational efficiency. We

achieve this by using fewer levels to classify data points predicted to be from classes that

are more readily identifiable. We could potentially further reduce computational costs for

easier to classify data by reducing the number of measurements m in those cases as well.

Theoretical guarantees as well as modifications that alleviate error propagation down the

tree are important directions for future work.
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Figure 5.7: Accuracy and testing flops required for flat multiclass classification versus our

proposed hierarchical classification strategy in classifying digits 1-5 in the MNIST dataset

are given using m = 50, 100, 200 and 500 respectively. Results are averaged over 10 trials.
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CHAPTER 6

An Iterative Method for Classification of Binary Data

6.1 Introduction

We consider the problem of performing classification when only binary measurements of data

are available. This situation may arise due to the need for extreme compression of data or in

the interest of hardware efficiency [FSL14,JLB13,LWY11,ASS96]. Despite this extremely

coarse quantization of the data, one can still perform learning tasks, such as classification,

with high accuracy. The authors of [NSW17] recently proposed a classification method for

binary data, which they show to be reasonably accurate and sufficiently simple to allow for

theoretical analysis in certain settings. Additionally, the predicted class can be approximately

understood as the class whose binarized training data most closely and frequently matches

that of the test point. As this approach will be the foundation of the work presented here,

we discuss it in detail in the next section.

Interpretability of algorithms and the ability to explain predictions is of increasing

importance as machine learning algorithms are applied to an expanding range of problems

in areas such as medicine, criminal justice, and finance [BS16,BBH17,PMD16]. Decisions

made based on algorithmic predictions can have profound repercussions for both participating

individuals as well as society at large. A major drawback to complex models such as deep

neural networks [LBB98,HZR16,CW08,LBH15] is that it is extremely difficult to explain how

or why such algorithms arrive at a specific prediction, see e.g. [ZWZ17,ZZ18,VML17] and

references therein. Studying and advancing models for which model output can be understood

will help to both improve methods that are more readily interpretable and develop tools

for understanding more complex models. The aim of this paper is to continue developing a
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framework with these two simultaneous goals in mind.

6.1.1 Contribution

We propose an extension of the simple classification method for binary data proposed

in [NSW17], which we will henceforth refer to as SCB. Specifically, we propose an iterative

method that uses output from SCB as input to a subsequent application of SCB. We refer

to this iterative method as ISCB. We find that the iterative extension, ISCB, often leads to

improved performance over SCB. Additionally, we demonstrate that SCB can be used for

dimension reduction or as a data preprocessing step to improve the performance of other

algorithms, such as support vector machines (SVM). While one can draw similarities between

methods such as decision tree ensembles [MKS94,MKS93,BHB07] and approximate nearest

neighbors [IM98,GIM99,ZLM14] with SCB, we focus here on the extension of SCB to an

iterative framework.

The iterative ISCB approach is reminiscent of the compositional nature of neural networks.

Due to the simplicity of the SCB framework, we can provide theoretical guarantees for

the accuracy of the iterative extension in simple two-dimensional settings. We believe that

studying this kind of iterative classification framework is interesting and practical in its own

right, and will also serve as a step toward gaining a more thorough understanding of more

complex deep learning strategies.

6.1.2 Organization

The paper is organized as follows. Section 6.2 introduces the problem statement and

classification strategies of interest. Subsection 6.2.1 describes the SCB framework introduced

in [NSW17] and Subsection 6.2.2 our proposed iterative extension. In Section 6.3, we

demonstrate the performance of the proposed approach on real and synthetic datasets.

Section 6.4 discusses variations and practical considerations. We provide theoretical guarantees

for the proposed iterative method in several simplified settings and provide intuition as to

why the iterative method generally outperforms the original approach in Section 6.5. Finally,
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Section 6.6 demonstrates how SCB can be adapted to serve as a data preprocessing and

dimension reduction strategy for other methods applied to binary data.

6.2 Classification using binary data

We first introduce the problem and notation that will be used throughout. Let A ∈ Rm×n be

a random measurement matrix (e.g. typically it will contain i.i.d. standard normal entries).

Let X = [x1 · · ·xp] ∈ Rn×p be the matrix of p data vectors xi ∈ Rn with labels b = (b1, · · · bp).

Let G be the number of groups or classes to which the data points belong, so that we may

assume bi ∈ {1, 2, . . . , G}. Suppose we have the binary measurements of the data

Q = sign(AX),

where sign(M)i,j = sign(Mi,j) and for a real number c the sign function simply assigns

sign(c) = 1 if c ≥ 0 and −1 otherwise. For a matrix M, let M(j) denote the jth column of M.

The rows of the matrix A can be viewed as the normal vectors to randomly oriented

hyperplanes, in which case the (i, j)th entry of Q denotes on which side of the ith hyperplane

the jth data point xj lies. In practice, the binary data Q may be obtained during processing

or be provided as direct input from some other source. In the latter case, we may not have

access to the data matrix X or the measurement matrix A, but only the resulting binary

data Q. We refer to the binary information indicating the position of a data point relative to

a set of hyperplanes as a sign pattern. In particular, for a column Q(j) and any subset of its

entries, the resulting vector indicates the sign pattern of the jth data point relative to that

subset of hyperplanes.

We aim to classify a data point x based only on the binary information contained in Q.

As a simple motivating example, consider the left plot of Figure 6.1. The training data points

each belong to one of three classes, red, blue, or green. Consider the test point indicated by

the black x. Cycling through the hyperplanes, the green hyperplane indicates that the test

point likely belongs to the blue or red class (since it lies on the same side as these clusters),

the purple hyperplane indicates that the test point likely belongs to the blue or green class,
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Figure 6.1: A motivating example for using positions relative to hyperplanes for classification.

the blue hyperplane indicates that the test point likely belongs to the blue class, and the

black hyperplane indicates that the test point likely belongs to the blue class. In aggregate,

the test point matches the relative positions of the blue class to the hyperplanes most often.

This prediction matches what we might predict visually.

For the data in the right plot of Figure 6.1, there are both red and blue points on the

same side as x for each hyperplane. However, if we consider sign patterns with respect to

pairs of hyperplanes instead of only single hyperplanes, we can isolate data within cones or

wedges as opposed to simply half-spaces. Comparing the sign patterns of the training data

with respect to pairs of hyperplanes with that of the test point, we find that the test point

x matches the sign patterns of the blue class most often. Thus, it may not be enough to

consider hyperplanes individually, but in tuples. SCB uses this intuition as motivation.

6.2.1 Simple classification for binary data (SCB)

In SCB, sign patterns of the data with respect to tuples of hyperplanes of various lengths are

recorded and aggregated to arrive at a prediction. The length of the sign patterns, or the

number of hyperplanes considered, is referred to as the level. For each level ` = 1, · · · , L, we

choose m random combinations of ` hyperplanes. Each of the hyperplane-tuples provides a

measurement of the data points. Fixing the number of hyperplane combinations considered,

as opposed to considering all possible combinations, prevents the number of measurements
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from growing exponentially with the level.

Let t be a sign pattern for the ith measurement at the `th level and Pg|t be the number of

training points in class g with sign pattern t. This sign pattern information is then aggregated

for the training data points in the membership function r(`, i, t, g), with

r(`, i, t, g) :=
Pg|t∑G
j=1 Pj|t

∑G
j=1 |Pg|t − Pj|t|∑G

j=1 Pj|t
, (6.1)

where ` = 1, · · · , L, i = 1, · · ·m, and g = 1, · · · , G. The first term in this formula gives

the fraction of points with sign pattern t that belong to class g, while the second acts as a

balancing term to account for differences in the relative sizes of different classes. Each value

in this membership function gives an indication of how likely a data point is to belong to

class g based on the fact that it has sign pattern t for the ith measurement at the `th level.

Larger r(`, i, t, g) values indicate that a data point is more likely to belong to the gth class.

Training is detailed in Algorithm 11, which simply computes all of these quantities.

Given a test point x, with binary data q = sign(Ax), for each level `, measurement

i and associated sign pattern t∗ we find the corresponding r(`, i, t∗, g) value and keep a

running sum for each group g, stored in the vector r̃ (note that the vector r̃ depends on

the data point x, but we notationally ignore this dependence for tidiness, and will write

r̃(g) for a class g or data point y when clarification is needed). If t∗ does not match any

of the sign patterns observed in the training data, then no update to r̃ is made. The

testing procedure is detailed in Algorithm 12. In [NSW17], the authors showed that this

classification method works well on both artificial and real datasets (e.g. MNIST [LCB10],

YaleB [CHH07b,CHH07a,CHH06,HYH05]).

6.2.2 Iterative classification for binary data (ISCB)

We now introduce a novel iterative extension to SCB, which we refer to as ISCB. First, we

motivate the extension through an example. Consider Figure 6.2, which plots the values of r̃

from Algorithm 12 for the task classifying the digits 0-4 of the MNIST dataset (where we

will use class labels 0, 1, . . . , 4). Note that test images of the digit 0 typically have lower r̃(1)

values than do other digits. Similarly, test images of the digit 1 typically have lower r̃(0)
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Algorithm 11 SCB Training from [NSW17]

Input: binary training data Q, training labels b, number of classes G, number of levels L.

for ` from 1 to L, i from 1 to m do

Randomly select ` hyperplanes.

for all observed sign patterns t and classes g from 1 to G do

Compute r(`, i, t, g) as in Equation (6.1).

end for

end for

Algorithm 12 SCB Classification from [NSW17]

Input: binary testing data q, number of classes G, number of levels L, learned parameters

r(`, i, t, g), and hyperplane tuples from Algorithm 11.

for ` from 1 to L, i from 1 to m do

Identify the sign pattern t∗ to which q corresponds for the ith `-tuple of hyperplanes.

for g from 1 to G do

r̃(g) = r̃(g) + r(`, i, t∗, g).

end for

end for

Set r̃(g) = r̃(g)
Lm

for g = 1, · · · , G.

Classify b̂ = argmaxg∈{1,··· ,G} r̃(g).

than do test images of the digits 1-4. Indeed, it is not only likely that

b̂x = argmax
g∈{1,··· ,G}

r̃(g)

corresponds to the true digit label, but in addition the r̃ vectors for testing images from

different digits contain different patterns. Thus, we expect that using a method more advanced

than simply predicting the class corresponding to the maximum of the the r̃ vector may

improve classification accuracy, specifically a strategy that makes use of the distribution of

the values contained in r̃.

One could make predictions based on the r̃ vectors in a variety of ways. We mention a

few such options here. Drawing intuition from simple neural network architectures such as
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multi-layer perceptron [Cyb89] and boosting algorithms such as AdaBoost [FS97,FSA99], we

first consider using iterative applications of SCB, where r̃ values of the training data from

previous iterations are used as input training data for the following iteration. In particular,

the method is reminiscent of the structure of a single neuron in a neural network in which

information only propagates forward as opposed to throughout the whole network. In contrast

to deep neural networks, the output at each iteration, r̃, can be interpreted as a vector

indicating to which class a data point x is likely to belong. This iterative strategy also relates

to boosting in that subsequent iterations train on the shortcomings of previous iterations.

Specifically, if points from a given class are misclassified, but produce similarly structured r̃

vectors this pattern may be corrected in the next application of the algorithm.

Figure 6.2: The r̃(g) values from SCB trained to classify digits 0-4 from the MNIST dataset

are plotted. Five digits are considered to ease visualization. One-hundred test points from

each digit are used with points 1-100 corresponding to 0s, 101-200 corresponding to 1s, etc.

r̃(0) values are plotted in red, r̃(1) in blue, r̃(2) in green, r̃(3) in magenta and r̃(4) in black.

The training and testing phases of the proposed ISCB, are detailed in Algorithm 13 and

Algorithm 14. To ease notation, let rk, r̃k, and A(k) be r, r̃, and A from the kth application

of SCB (Algorithm 11 and Algorithm 12). During training, the first iteration in ISCB is

executed as in Algorithm 11. We collect the data X = [̃r1(x1) · · · r̃1(xp)] ∈ RG×p, which will

be used as training data for the next iteration, where xi are training data points. In contrast

to SCB, the iterative algorithm calculates r̃ values for both the training and test data. Note
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that the dimension of the data points is fixed at G after the first application of SCB. For

high dimensional data, we will typically have G� n. This reduction in dimension reduces

the computational cost of some of the required computations, such as Q = sign(AX). One

could also make use of the same measurement matrix A for all iterations after the first. Since

the dimension is much smaller after the first iteration of SCB, one may also need fewer levels

for accurate classification. We leave an exhaustive study of the many possible variations for

future work, and focus here on establishing the mathematical framework of this iterative

approach.

After each application of Algorithm 11, we collect sign information of our data with respect

to a new set of random hyperplanes. Although the dimension of the data for the subsequent

applications lies in RG and thus we expect the size of this data to be manageable, there are

several motivations for taking binary measurements of the data at each application. First,

we can still take advantage of methods for efficient storage of and computation with binary

data. Second, the binary measurements roughly preserve angular information about the data.

For the r̃ values, we are generally interested in the relative sizes of the components, since

these represent the likelihood that a point belongs to a given class. The overall magnitude

of the r̃ values is of less importance and, thus, binary measurements retain the significant

information pertaining to the data. Third, considering binary measurements of the data at

each application maintains consistency between the applications, making the method more

amenable to theoretical analysis, interpretability, and is more in line with sophisticated deep

neural net architectures.

Since the components of r̃ are always non-negative, we restrict the random hyperplanes

to intersect this space after the first application. For example, we can ensure the hyperplanes

intersect this region by requiring that the normal vectors have at least one positive and one

negative coordinate. We do not recenter the data after each application, as the structure of

r̃ can lead to poor performance with recentering. For an example, consider Figure 6.3, in

which the r̃ values follow a roughly linear trend for later applications of the method. Finally,
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after the last application of SCB, for the iterative algorithm, we make the prediction

b̂ = argmax
g∈{1,··· ,G}

r̃K(g).

Algorithm 13 ISCB Training.

Input: binary training data Q ∈ Rm×p, training labels b, number of classes G, number of

levels L, number of applications K.

for k from 1 to K, do

Train learned parameters rk(`, i, t, g) as in Algorithm 11, with input: Q, b, G and L.

Set X = 0 ∈ RG×p.

for j from 1 to p do

Apply Algorithm 12 to Q(j) using learned parameters rk(`, i, t, g) to calculate r̃k.

Set X(j) = r̃k.

end for

Form the random measurement matrix A(k) ∈ Rm×G.

Set Q = sign(A(k)X).

end for

Output: rk(`, i, t, g), and A(k) for k from 1 to K.

6.3 Experimental results

We test ISCB on synthetic and image datasets. The synthetic datasets demonstrate why the

iterative method is effective for certain simple settings and how the data transforms between

iterations. ISCB is also tested on the MNIST dataset of hand-written digits [LCB10], the

YaleB dataset for facial recognition [CHH07b,CHH07a,CHH06,HYH05] and the Norb dataset

for classification of images of various toys [LHB04].

6.3.1 Two-dimensional synthetic data

We further motivate ISCB through examples with two-dimensional synthetic data. For

two-dimensional data with two classes, the dimension of the input data for all applications of
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Algorithm 14 ISCB Testing.

Input: binary test data q ∈ Rm, number of classes G, levels L, and iterations K, learned

parameters rk(`, i, t, g), hyperplane tuples, and A(k) from Algorithm 13.

for k from 1 to K do

Set r̃k = 0.

for ` from 1 to L, i from 1 to m, do

Identify the pattern t∗ to which q corresponds for the ith `-tuple of hyperplanes.

for g from 1 to G do

Update r̃k(g) = r̃k(g) + rk(`, i, t
∗, g).

end for

end for

Set q = sign(A(k)r̃k).

end for

Classify b = argmaxg∈{1,··· ,G} r̃K(g).

SCB is two-dimensional and so we can easily visualize the effect of the iterations on both the

training and testing data. We find that the more easily discerned data points are pushed

out toward the boundary of the positive quadrant, while data points that are closer to the

class boundary linger closer to the line y = x in subsequent iterations and thus has a higher

likelihood of being predicted as the other class at the next iteration.

Consider the data given in the upper left plot of Figure 6.3. There are two times as

many points from the red class considered, both in the training and testing set. Half of the

red points in testing and training lie on either side of the blue data points. Thus, applying

SCB using a single level leads to all of the blue test points being misclassified as red. The

abhorrent misclassification of the blue points is caused by the fact that we are using only a

single level (L = 1) and for any hyperplane at least as many red points as blue lie on either

side of it. The r̃1 values, plotted in the upper right plot of Figure 6.3, have a much nicer

distribution in terms of ease of classification; in fact, they are nearly linearly separable. The

separation in the r̃1 values between the blue and red points occurs since r̃1(red) is generally
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Figure 6.3: The r̃k vectors are plotted for ISCB with varying numbers of iterations k. The

original training and testing data are shown in the upper left plot. Circles indicate training

data and crosses indicate testing data. One level is used for each application of SCB and the

subsequent plots give the r̃k vectors for k = 1, 3, and 7 respectively. The classification rate

after a single application of SCB is 66%. After three iterations the classification rate is 92%

and after seven application the classification rate is 97%.

larger for red points than for the misclassified blue points. That is, the points that truly

belong to the red class are more “confidently” classified as red than are the blue points. If

we consider the r̃1 values as data, applying SCB now classifies the data with much higher

accuracy (92% as compared to 66% for the original training data), while still only using a

single level. By the seventh iterative application of SCB, the accuracy increases to 97%. If

we perform the same experiment, but include a higher density of blue points so that the

total number of red and blue points are the same, we achieve higher accuracy at the first

application of SCB, but again see improved accuracy for later iterations.
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Figure 6.4: Accuracies for classifying MNIST data among 10 classes (left plot), YaleB data

among eight classes (middle plot) and Norb data among five classes (right plot) are given

in terms of the number of applications of SCB used. For the MNIST dataset, the model is

trained with p = 1000 images of each class and tested on 100 images from each class. The

model for the YaleB dataset is trained using p = 40 training images from each class and

applied to 20 test images from each class. For the Norb dataset, the model is trained on

p = 1000 training images and is applied to 200 test images for each class. In each model,

m = 500 measurements are used. Results are averaged over 10 trials.

6.3.2 Image datasets

We test ISCB on the MNIST dataset of hand-written digits [LCB10], the YaleB dataset for

facial recognition [CHH07b,CHH07a,CHH06,HYH05], and the Norb dataset for classification

of images of various toys [LHB04]. Results are shown in Figure 6.4. We generally find both

that increasing the number of levels used in each SCB application of ISCB and increasing the

number of applications leads to improved performance. The classification accuracies typically

level off after only a few applications of SCB, with the largest improvement typically occuring

between the first and second application. These trends are less clear in the YaleB dataset,

but this may be in part due to the limited amount of training data available for this dataset.
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6.4 Alternative iterative method

We motivated ISCB by noting that the r̃ vectors from Algorithm 12 for test data from the

same classes share similar structures. We additionally find that the contributions to the r̃

values coming from different levels admit different patterns as well. We could thus choose to

use

r̂k(`, g) =
m∑
i=1

∑
t∗

rk(`, i, t
∗, g)

as data for the kth application of SCB instead of r̃k(g) as is done in Algorithm 13. Here, t∗

ranges over all observed sign patterns for the ith `-tuple of hyperplanes. We refer to this

method as ISCB with r̂. Note that we have the following relation between r̃k and r̂k,

r̃k(g) =
L∑
`=1

r̂k(`, g).

After the first application of SCB, the dimension of the data for ISCB with r̂ is now RLG.

In certain settings, ISCB with r̂ performs better than ISCB of Subsection 6.2.2. Typically,

using r̂k(`, g) as opposed to r̃k(g) as input to the subsequent applications of Algorithm 11

performs better when the number of levels L used is small. Unfortunately, for higher numbers

of levels L we see drastic declines in performance for later applications when using r̂k(`, g),

as this method is more prone to overfit. These trends are illustrated in Figure 6.5 for the

MNIST dataset. In the left plot of Figure 6.5, ISCB with r̂ leads to improved performance

over ISCB with r̃. As the number of levels L used increases from four to 10, however, this

difference diminishes. For greater than 14 levels, using ISCB with r̂k(`, g) leads to decreasing

performance in the number of applications of SCB (seen in the right plot of Figure 6.5). The

same decrease in performance does not occur when using the r̃k(g) values as data for the

next iteration.

ISCB is relatively prone to overfitting, since the model output at iteration k is used as

input for the (k + 1)st iteration. Thus, any overfitting that occurs at earlier iterations gets

propagated to later iterations. In particular, if we overfit to the training data at iteration k,

then the training and testing data at the next iteration are no longer sampled from similar

distributions. ISCB with r̂ has a much greater propensity to overfit as compared to ISCB
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Figure 6.5: The performance of ISCB using r̃, presented in Subsection 6.2.2, (solid) is

compared with that of the alternative version of ISCB using r̂, presented in Section 6.4,

(dashed) on the MNIST dataset. p = 1000 training and 100 testing images are used for each

digit. Each method uses m = 500 binary measurements of the data at each application of

Algorithm 11. The number of levels L used with each method is indicated in the legend.

with r̃, especially when the number of levels is large. This effect makes intuitive sense since

for longer `-tuples of hyperplanes the testing data is less likely to match the sign patterns of

training data and so the r̂k(`, g) values for training and testing data may diverge for longer

`-tuples and later iterations k. These observations suggest that choosing an appropriate

number of levels is especially critical for ISCB as compared to SCB. Fortunately, if a model

is trained using too many levels, one could simply use the model output from the first

application to arrive at more accurate predictions. In particular, there is no need to re-train

the model.

6.5 Theoretical analysis

We next offer some theoretical analyses pertaining to why we expect performance to improve

through multiple applications of SCB for several simple scenarios. At a high level, the iterative

framework has the opportunity to train on its own output and correct misclassifications that

occur in previous iterations. Qualitatively, as the number of iterations increases, we find that

the data points that are more easily identifiable as belonging to a single class are pushed
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toward extreme points of the range of outputs, while data points that are more difficult to

classify fall in the interior of the range and have the chance to be classified correctly at the

next iteration.

6.5.1 Binary classification of point masses of equal mass

As a first simple but illustrative example, consider a classification task between two classes.

Assume that the training and testing data for each class is concentrated at a single point, i.e.

a point mass, and that each class has the same number of training points or equivalently that

each point mass has the same density. Let j be the number of hyperplanes that separate the

two point masses at the first application of the classification method (j will clearly depend on

the angle between the point masses and can be easily bounded probabilistically). Consider

the simplified setting in which we use a single level; note that in this case, since L = 1, we

have r̃k = r̂k and so ISCB and ISCB with r̂ are equivalent. With this setup, for testing data

in class 1,

r̃1 =

(
m∑
i=1

r(`, i, t∗, 1),
m∑
i=1

r(`, i, t∗, 2)

)
= (j, 0).

For testing data in class 2,

r̃1 =

(
m∑
i=1

r(`, i, t∗, 1),
m∑
i=1

r(`, i, t∗, 2)

)
= (0, j).

Thus, if at least one hyperplane separates the two point masses initially, then at the next

iteration, the angle between data points of class 1 and 2 is π/2 (the best possible). Since the

data are two-dimensional and we restrict the hyperplanes to intersect the positive quadrant

after the first SCB application, then if the model classifies the point masses correctly at the

first iteration, it will correctly classify at all subsequent iterations as well.

6.5.2 Binary classification of point masses

We next consider the slightly more involved setting in which the data from each class is again

concentrated at a single point, however, the number of points in the two classes differ. We

again consider only a single level L and let j be the number of hyperplanes that separate the
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two point masses in the first application of SCB. In expectation, j
m

gives an indication of the

angle separating the two point masses, where m is the number of rows in the measurement

matrix. Let A1 be the number of points in class 1 and A2 be the number of points in class 2.

For testing data in class 1,

r̃1(1) =
m∑
i=1

r(`, i, t∗, 1) = j + (m− j)A1|A1 − A2|
(A1 + A2)2

and

r̃2(2) =
m∑
i=1

r(`, i, t∗, 2) = (m− j)A2|A1 − A2|
(A1 + A2)2

.

For testing data in class 2,

r̃1(1) =
m∑
i=1

r(`, i, t∗, 1) = (m− j)A1|A1 − A2|
(A1 + A2)2

and

r̃2(2) =
m∑
i=1

r(`, i, t∗, 2) = j + (m− j)A2|A1 − A2|
(A1 + A2)2

.

Note that the data for the second application of the method are again two-dimensional. Let

g̃1 be the r̃1 vector for a data point in class 1 and g̃2 be the r̃1 vector for a data point in

class 2. The following formula gives the angle θ between the two point masses at the second

application,

θ = cos−1

(
〈g̃1, g̃2〉

||g̃1||2 · ||g̃2||2

)
. (6.2)

Figure 6.6 shows the angle that separates the point masses of the training data at the second

application in terms of j
m

for various ratios c = A1

A2
. We find that if A1 and A2 are similar

in size, then the expected angle separating the two point masses increases for the second

application, making the point masses “easier” to separate in later applications.

6.5.3 Probabilistic bounds for an angular model

We next consider an analogue to Theorem 1 of [NSW17], although the setting is modified

slightly. Consider two-dimensional data with two classes. Suppose that the data from each

class is distributed within the disjoint wedges, G1 and G2, with angles A1 and A2 respectively.

This setup is illustrated in Figure 6.7. Consider the data points x1 and x2, which lie on the
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Figure 6.6: This plot shows the expected proportion of hyperplanes that separate data at the

second iteration of ISCB given the fraction of separating hyperplanes at the first application

of SCB. The relative sizes of the two classes, given by A1 and A2, are varied as well, as is

indicated by the parameter c = A1

A2
given in the legend.

inside edge of each wedge. Let A12 be the angle between these two points. We aim to find a

lower bound on the angle between the r̃1 vectors for x1 and x2 after a single application of

SCB with a single level L. Again, since we only use a single level, r̂1 = r̃1 for all points x.

Assume that the data is distributed with uniformly random angles within G1 and G2. Let

k1 and k2 be the number of hyperplanes that intersect G1 and G2 respectively and let j be

Figure 6.7: Illustration of data setup for Subsection 6.5.3.
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Hyperplane case Number in event Class Value of r(1, i, t, g)

Separates x1 and x2 j 1 1

2 0

Does not separate x1 and x2 m− j − k1 − k2 1 A1|A1−A2|
(A1+A2)2

or intersect G1 or G2 2 A2|A1−A2|
(A1+A2)2

Intersects G2 k2 1 A1|A1−A2u′|
(A1+A2u′)2

2 A2u′|A1−A2u′|
(A1+A2u′)2

Intersects G1 k1 1 A1u|A1u−A2|
(A1u+A2)2

2 A2|A1u−A2|
(A1u+A2)2

Table 6.1: Contributions to the membership index parameter r for the point x1 and for

hyperplanes of various types. The variables u and u′ are i.i.d. random variables uniformly

distributed between zero and one, indicating the angle at which random hyperplanes intersect

the wedges G1 and G2. A1, A2, G1, G2,x1 and x2 are as shown in Figure 6.7.
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the number of hyperplanes that separate G1 and G2. Note that

Ek1 =
A1

π
, Ej =

A12

π
, and Ek2 =

A2

π
.

Assume that the hyperplanes are also distributed with uniformly random angles within these

wedges. We can then replace Pg|t with angular measures, specifically, Aiuh, where uh ∈ [0, 1]

and depends on the angle at which the hyperplane h intersects Gi. Since the hyperplanes are

uniformly distributed at random within each region, the uh are uniform random variables

between zero and one.

The contribution to the membership index parameter r for SCB with a single level L and

for each possible type of hyperplane in this setup for the point x1 are summarized in Table 6.1.

To simplify calculations, assume that A1 = A2. With this assumption, the membership index

parameters no longer depend on A1 or A2. Summing over all hyperplanes, for x1 we have

r̃1(1) =
m∑
i=1

r(1, i, t∗i , 1) = j +

k1∑
h=1

uh(1− uh)
(uh + 1)2

+

k2∑
h=1

1− u′h
(1 + u′h)

2

and

r̃1(2) =
m∑
i=1

r(1, i, t∗i , 2) =

k1∑
h=1

1− uh
(uh + 1)2

+

k2∑
h=1

u′h(1 + u′h)

(1 + u′h)
2
.

The calculation for x2 is similar. Let g̃1 and g̃2 be the r̃1 vectors corresponding to x1 and x2

respectively. Then at the next application, we have

g̃1 =

(
j +

k1∑
h=1

uh(1− uh)
(uh + 1)2

+

k2∑
h=1

1− u′h
(1 + u′h)

2
,

k1∑
h=1

1− uh
(uh + 1)2

+

k2∑
h=1

u′h(1− u′h)
(1 + u′h)

2

)
(6.3)

and

g̃2 =

(
k1∑
h=1

uh(1− uh)
(uh + 1)2

+

k2∑
h=1

1− u′h
(1 + u′h)

2
, j +

k1∑
h=1

1− uh
(uh + 1)2

+

k2∑
h=1

u′h(1− u′h)
(1 + u′h)

2

)
. (6.4)

The angle between these two vectors is again given by Equation (6.2). The resulting angles

from simulations for various k1 = k2, and j are given in the left plot of Figure 6.8. We make

the simplification k1 = k2 to ease visualization. Unsurprisingly, as j increases so does the

separation between g̃1 and g̃2 at the second iteration. As k1 and k2 increase, for fixed j, the

separation between the two points at the next application decreases.
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Figure 6.8: For various values of k1 = k2 (the number of hyperplanes intersecting the wedges

G1 and G2 respectively) and j (the number of hyperplanes separating the wedges G1 and G2),

the left plot indicates the true angle (in radians) between g̃1 and g̃2 as given in Equations (6.3)

and (6.4). The right plot indicates the angle using the upper bound for cos(θ) given in

Equation (6.5).

Ideally, we would like to find a lower bound on the angle θ between g̃1 and g̃2 that

depends on k1, k2, and j. Unfortunately, the explicit form of the resulting angle is relatively

complicated. We can simplify the denominator of Equation (6.2) by using the bounds

||g̃i||2 ≥ j. We expect this bound to be quite loose, if not trivial, when j is small, but to

provide a reasonable bound for larger j. With this simplification,

cos(θ) ≤

(
j +

∑k1
h=1

uh(1−uh)
(uh+1)2

+
∑k2

h=1

1−u′h
(1+u′h)2

)(∑k1
h=1

uh(1−uh)
(uh+1)2

+
∑k2

h=1

1−u′h
(1+u′h)2

)
j2

+

(∑k1
h=1

1−uh
(uh+1)2

+
∑k2

h=1

u′h(1−u′h)

(1+u′h)2

)(
j +

∑k1
h=1

1−uh
(uh+1)2

+
∑k2

h=1

u′h(1−u′h)

(1+u′h)2

)
j2

.

(6.5)

For this simplified bound, taking an expectation is a straightforward calculation. See

Section 6.A for details. We eventually arrive at the bound

E(cos(θ)) ≤ (k1 + k2)(2 log 2− 1)

j
+

(k2
1 + k2

2)(10(log 2)2 − 14 log 2 + 5)

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(−2/3 + 8 log 2− 10(log 2)2)

j2

(6.6)

Using Markov’s inequality, for a ∈ (0, π/2),

P(θ ≤ a) = P [cos(θ) ≥ cos(a)] ≤ E(cos(θ))

cos(a)
. (6.7)
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Figure 6.9: For various values of k1 = k2 (the number of hyperplanes intersecting the wedges

G1 and G2 respectively), j (the number of hyperplanes separating the wedges G1 and G2),

and angles a, we plot the bound for P(θ ≤ a) given by Theorem 6.5.1. From left to right, the

plots use k1 = 10, 50, and 100 respectively.

Although this bound is relatively loose, for sufficiently small a and large j, the probability

that θ ≤ a is small. We summarize this result in Theorem 6.5.1. More visually appealing,

Figure 6.9 gives the probabilities that result from combining Equation (6.6) and Equation (6.7)

for a variety of hyperplane combinations and angles a.

Theorem 6.5.1. Suppose data is distributed as in Figure 6.7, where points from classes 1

and 2 are uniformly distributed within the wedges G1 and G2 respectively. Suppose that the

angles A1 and A2 are equal. Let k1 and k2 be the number of hyperplanes that intersect G1

and G2 respectively. Let j be the number of hyperplanes that separate G1 and G2. Consider

the points x1 in class 1 and x2 in class 2 as shown in Figure 6.7. The angle θ between the r̃

vectors for x1 and x2 after a single iteration of SCB with one level L satisfies the following

inequality,

P(θ ≤ a) ≤ C1j(k1 + k2) + C2(k2
1 + k2

2) + C3k1k2 + C4(k1 + k2)

j2 cos(a)
,

where

C1 = 2(log 2)− 1, C2 = 10(log 2)2 − 14 log 2 + 5,

C3 = 4(1− log 2)(3 log 2− 2), C4 = −10(log 2)2 + 8 log 2− 2/3.
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6.6 ISCB for data preprocessing and dimension reduction

We remark here briefly about another potential strategy using the output of the SCB approach.

Although this is not the focus of the current work, it may lead to fruitful future directions.

The idea is to use the output from SCB and then apply other established classification

methods such as SVM [CV95] to the r̃ vectors. Considering SVM specifically, we find that

this strategy can perform better than SVM applied directly to the data.

First, consider a simple example with the synthetic data shown in the upper left plot

of Figure 6.10. Applying SVM with a linear kernel [FHT01,CV95] unsurprisingly performs

poorly, achieving an accuracy of 65%. An RBF kernel [Buh03,FHT01] SVM performs much

better, achieving an accuracy of 90%. Applying SVM instead to the r̃1 values of the training

data produced via SCB with a single level L and m = 100 measurements leads to 80%

accuracy using a linear kernel and 97% accuracy using an RBF kernel. Thus, applying SVM

to the r̃1 values as opposed to the original data leads to an improvement in accuracy of 15%

for SVM with a linear and 7% for SVM with an RBF kernel.

For the same initial data, if we increase the number of levels L used in SCB to four and

the number of measurements to m = 200, the accuracies of SVM trained on the resulting

r̃1 values are 97% with a linear kernel and 94% with an RBF kernel (Figure 6.11). The

respective accuracies are improved by 21% and 4% respectively as compared to SVM applied

to the original data. This increase in the number of levels L and measurements m also leads

to improved performance for both SCB and ISCB with two applications. Note that if SCB is

able to perfectly classify the training data points, then SVM with a linear kernel trained on

the r̃1 values of the training points will also perfectly classify the training data points, as the

r̃1 values of the training points will be linearly separable.
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Figure 6.10: The four plots on the left display accuracies and predictions made via various

methods for the data given in the upper left-most plot. In the plots of the training and testing

data, circles indicate training data and crosses indicate test data. Filled markers indicate that

a given method misclassified that particular data point. The methods considered are SCB

and SVM with both a linear and RBF kernel. The right set of four plots display accuracies

and predictions made via the same set of methods applied to the r̃ values from a single

application of SCB with a single level (L = 1) and m = 100 measurements.
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Figure 6.11: The four plots on the left display accuracies and predictions made via various

methods for the data given in the upper left-most plot. In the plots of the training and testing

data, circles indicate training data and crosses indicate test data. Filled markers indicate that

a given method misclassified that particular data point. The methods considered are SCB

and SVM with both a linear and RBF kernel. The right set of four plots display accuracies

and predictions made via the same set of methods applied to the r̃ values from SCB at the

first application. L = 4 levels and m = 200 measurements are used for each application of

SCB.

132



6.7 Conclusion

We have illustrated that iterative applications of SCB of [NSW17] lead to improved classi-

fication accuracies as compared to a single application in a variety of settings. Numerical

experiments on the MNIST, YaleB, and Norb datasets support this claim. Experiments and

theoretical analyses on synthetic data in simple settings demonstrate the effects of multiple

iterations on the data and predictions. These examples also highlight simple situations in

which the ISCB framework excels. We also demonstrate that an application of SCB can be

used as a dimension reduction or data preprocessing technique to improve the performance

of other classification methods such as SVM.
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6.A Detailed calculations for Subsection 6.5.3

In this section, we provide details for calculating Equation (6.6). Let

K11 =

k1∑
h=1

uh(1− uh)
(uh + 1)2

, K12 =

k1∑
h=1

1− uh
(uh + 1)2

, K21 =

k2∑
h=1

1− u′h
(1 + u′h)

2
, K22 =

k2∑
h=1

u′h(1− u′h)
(1 + u′h)

2
,

where uh and u′h are i.i.d. uniformly random variables between zero and one. We can then

rewrite Equation (6.5) as

cos(θ) ≤ (j +K11 +K21)(K11 +K21) + (j +K12 +K22)(K12 +K22)

j2

=
j(K11 +K21 +K12 +K22) +K2

11 + 2K11K21 +K2
21 +K2

12 + 2K12K22 +K2
22

j2
. (6.8)

We then require the expectation of each term in the numerator. Since uh and u′h are i.i.d.,

EK11K21 = EK11EK21. Straightforward integral calculations lead to the following expected
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values:

E
(
uh(1− uh)
(uh + 1)2

)
= 3 log 2− 2, E

(
1− uh

(uh + 1)2

)
= 1− log 2,

E
(
u2
h(1− uh)2

(uh + 1)4

)
= 25/6− 6 log 2, E

(
(1− uh)2

(uh + 1)4

)
= 1/6.

We then have the following expectations:

EK11 = k1(3 log 2− 2)

EK12 = k1(1− log 2)

EK2
11 = k1(k1 − 1)(3 log 2− 2)2 + k1(25/6− 6 log 2)

EK2
12 = k1(k1 − 1)(1− log 2)2 + k1(1/6).

EK22,EK21,EK2
22, and EK2

21 take the same forms with k2 replacing k1.

Taking the expectation of Equation (6.8),

E(cos(θ)) ≤ (k1 + k2)(2 log 2− 1)

j

+
(k2

1 − k1 + k2
2 − k2)(3 log 2− 2)2 + (k2

1 − k1 + k2
2 − k2)(1− log 2)2

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(1/6 + 25/6− 6 log 2)

j2

≤ (k1 + k2)(2 log 2− 1)

j

+
(k2

1 − k1 + k2
2 − k2)(10(log 2)2 − 14 log 2 + 5)

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(13/3− 6 log 2)

j2

≤ (k1 + k2)(2 log 2− 1)

j
+

(k2
1 + k2

2)(10(log 2)2 − 14 log 2 + 5)

j2

+
4k1k2(1− log 2)(3 log 2− 2) + (k1 + k2)(−2/3 + 8 log 2− 10(log 2)2)

j2
,

providing the desired bound.
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CHAPTER 7

Summary

With the current magnitude and prevalence of data collection and analysis, it is important

to have methods that are well-understood and can scale to handle large amounts of data.

Additionally, a wide range of tasks and underlying subroutines must be considered. Related

topics discussed here include inferring missing data entries, optimization, and classification

for compressed data.

For data in which entries with value zero are more likely to be missing, we propose a

regularized matrix completion method to infer the missing entries. Experiments on synthetic

and real data show that the regularized variant improves recovery in such settings.

We analyze a gradient descent method for learning the maximally separating hyperplane

for support vector machines. While other strategies exhibit faster convergence guarantees,

gradient descent is a simple strategy and its variants are extremely popular in practice.

We provide an analysis of the convergence of gradient descent when applied to the non-

smooth hinge loss so that it can be readily compared to other methods of learning maximally

separating hyperplanes. We analyze the convergence rates of adaptive sampling strategies for

sketch-and-project methods and show that greedy adaptive sampling strategies can lead to

improved performance.

Finally, we consider the classification of binary data and extend a recently developed

method to perform hierarchical classification and propose an iterative extension to improve

accuracy. We show that the method can be adapted to hierarchical classification in a way

that reduces computational cost by taking advantage of classes that are easier to identify.

We also show that the proposed iterative extension leads to improved accuracy and provide

theoretical analysis for simple synthetic data.
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Developing methods that can be well-understood mathematically and developing math-

ematics to understand the methods that are used in practice are key to having useful and

trustworthy tools that can be used to understand complex and large data sources.
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