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Abstract

Artificial intelligence and machine learning (AI/ML) is becoming increasingly more accessi-

ble to biomedical researchers with significant potential to transform biomedicine through

optimization of highly-accurate predictive models and enabling better understanding of dis-

ease biology. Automated machine learning (AutoML) in particular is positioned to democra-

tize artificial intelligence (AI) by reducing the amount of human input and ML expertise

needed. However, successful translation of AI/ML in biomedicine requires moving beyond

optimizing only for prediction accuracy and towards establishing reproducible clinical and

biological inferences. This is especially challenging for clinical studies on rare disorders

where the smaller patient cohorts and corresponding sample size is an obstacle for repro-

ducible modeling results. Here, we present a model-agnostic framework to reinforce AutoML

using strategies and tools of explainable and reproducible AI, including novel metrics to

assess model reproducibility. The framework enables clinicians to interpret AutoML-gener-

ated models for clinical and biological verifiability and consequently integrate domain exper-

tise during model development. We applied the framework towards spinal cord injury

prognostication to optimize the intraoperative hemodynamic range during injury-related sur-

gery and additionally identified a strong detrimental relationship between intraoperative

hypertension and patient outcome. Furthermore, our analysis captured how evolving clinical
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practices such as faster time-to-surgery and blood pressure management affect clinical

model development. Altogether, we illustrate how expert-augmented AutoML improves

inferential reproducibility for biomedical discovery and can ultimately build trust in AI pro-

cesses towards effective clinical integration.

Introduction

Automated machine learning (AutoML) is a rapidly-developing ML subfield focused on auto-

mating model optimization processes including algorithm selection, feature engineering, and

hyperparameter tuning [1, 2]. AutoML applications produce high-performance models across

diverse sophisticated algorithms and preprocessing methodologies while reducing the overall

need for human input and modeling expertise [3, 4]. Correspondingly, AutoML is lowering

the technical and knowledge barrier impeding ML democratization for various domains

including biomedicine [5–9]. With the growing popularity of artificial intelligence and

machine learning (AI/ML) in clinical research [10–13] and the increasing breadth, depth, and

accessibility of clinical health data [14], AutoML stands to exponentially accelerate clinical ML

applications by empowering scientists and clinicians to train and leverage powerful models

[5]. However, clinical utility requires ML models to be interpretable for biological mecha-

nisms, verifiable by clinicians, and methodologically and inferentially reproducible [15, 16].

Achieving reproducibility is further complicated by the fact that clinical datasets often have

small sample sizes relative to the number of variables collected which can result in unstable

model behavior [17, 18]. This is especially true for rare diseases and disorders with smaller

patient populations, and translation of AutoML from computer-to-clinic thus necessitates

additional approaches beyond maximizing prediction accuracy with “black box” algorithms.

Here, we developed a modeling framework that incorporates explainable and reproducible AI

strategies to predict spinal cord injury (SCI) patient outcome. Furthermore, we demonstrate

how we can improve the inferential reproducibility of ML, augment the process with clinical

knowledge, and effectively leverage AutoML for model optimization.

While SCIs have a comparatively small patient population—about 17,900 new cases a year

and 296,000 patients with chronic disabilities in the US—SCIs are highly debilitating and result

in chronic motor, sensory, and autonomic impairment including paralysis [19]. The severity is

reflected by the total societal cost which is estimated to exceed $267 billion [20]. Alongside the

relatively limited sample size of available clinical SCI datasets, the variety of SCI characteristics

presents significant challenges for reproducible identification of patient outcome predictors

despite the volume of data collected throughout patient hospitalization and treatment [20].

Various prognostic models for SCI outcome have been developed with algorithms ranging

from logistic regression to extreme gradient boosted (XGB) trees and convolutional neural

networks [12, 21, 22]. While such studies bear potential for informing clinical care, algorithm

selection in many SCI ML studies have primarily depended on the researchers’ familiarity with

specific ML algorithms, and prediction accuracy remains the primary metric for comparing

models [23, 24]. Moreover, deciphering the relationships between outcome and predictors is

still difficult with complex algorithms, ultimately dampening clinician enthusiasm about

applying ML tools and results given the inability to interpret and verify such models [25].

In our AutoML application for SCI patient prognosis, we demonstrate:

• A framework for reproducible and explainable modeling that implements (1) a repeated

cross-validation strategy, (2) performance precision and feature instabilitymetrics and
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analyses, (3) model interpretation with permutation feature importance (pFI) and partial

dependence plots (PDPs), (4) stabilized backward feature reduction, and (5) model valida-

tion with population similarity analysis (Fig 1). In particular, repeated cross-validation

allows for model aggregation to account for modeling variability and improve the inferential

reproducibility of the results.

• The importance of integrating domain expertise. We highlight how stabilized pFI and PDPs,

useful model-agnostic explainable AI tools, enable biomedical researchers to draw robust

inferences regarding the relationship between clinical variables and outcome. Furthermore,

we illustrate how augmenting feature selection with domain expertise can improve model

performance beyond deploying ML naively.

• Additional analyses to interpret model validity. Many clinical ML studies with smaller sam-

ple sizes depend on newly collected data for external validation. Investigating the population

similarity between training and validation cohorts provides meaningful information about

model generalizability beyond validation performance and can capture evolving clinical

practices that inevitably affects clinical ML implementation.

By applying this framework to SCI, we identified actionable intraoperative mean arterial

pressure (MAP) thresholds for hypertension and hypotension associated with worse patient

outcome. Additionally, our analysis revealed underlying evolutions of clinical practices, such

Fig 1. A framework for applying Automated Machine Learning (AutoML) for reproducible inferences in biomedical research. After data is

curated, we perform a cyclical model development process utilizing AutoML to optimize an array of models. Reproducible and explainable AI tools and

strategies can be applied to ultimately draw clinical and biological inferences from the models and allow for integration of domain expertise. Critically

for clinical modeling, we also include a feature reduction component to achieve a more parsimonious model. The final models are then validated with

external validation data along with population similarity analysis for further clinical contextualization. By applying this framework, models produced by

AutoML can be stabilized and interpreted for inferential reproducibility and clinical verifiability.

https://doi.org/10.1371/journal.pone.0265254.g001
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as reducing time-to-surgery and hypotension management, that invariably affects model vali-

dation efforts in SCI research. Altogether, we present methods to bolster the interpretability,

reproducibility, and trustworthiness of clinical ML especially as AI/ML and AutoML becomes

increasingly accessible to biomedical researchers.

Results

AutoML model generation

We applied an AutoML platform to investigate clinical predictors of SCI patient outcome

from intraoperative and acute hospitalization records collected between 2005–2011 and

curated by the Transforming Research and Clinical Knowledge for SCI (TRACK-SCI) pro-

gram, one of the largest SCI patient registries in the US [20]. We selected 46 variables (i.e. fea-

tures) as predictors from de-identified data of 74 patients (S1 Table). Of these, 16 features were

summary statistics (i.e. mean, standard deviation, skew, and kurtosis) derived from timeseries

data capturing heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial

pressure (MAP) during SCI surgery. As intraoperative hypertension and hypertension have

been shown to be detrimental to SCI outcome [26, 27], we also calculated the time each patient

spent outside of previously-established upper (104 mmHg) or lower (76 mmHg) MAP thresh-

olds during surgery (time_MAP_Avg_above_104 and time_MAP_Avg_below_76, respectively)

[28]. We defined the prediction target as whether the patient’s ASIA Impairment Scale (AIS)

score, a common SCI outcome assessment [29], improved between time of hospital admission

and time of hospital discharge.

To account for potential instability in model optimization, we applied a repeated 10-fold

cross-validation strategy with 25 repetitions where each had a unique partitioning arrange-

ment (i.e. 25 projects) [30, 31]. We then aggregated the results for analysis. AutoML generated

80–90 blueprints: unique combinations of data preprocessing methods and ML algorithms.

From these, the platform fully optimized 30–40 models, 15 of which had better mean perfor-

mance (lower LogLoss and higher AUC) than the benchmark majority class classifier model

(Fig 2A and 2B).

For the purposes of illustration, we selected two high performance blueprints for further

interpretation and validation. The first was a L2 regularized logistic regression model with a

spline transformation of numeric variables during data preprocessing (BPlog; Fig 2C). BPlog

had the best overall performance by LogLoss (0.67 ± 0.01) and was a top performer by AUC

(0.68 ± 0.02). To apply our framework to a highly complex model use case and given the popu-

larity of XGB in biomedical ML research, we also examined the “eXtreme gradient boosted

trees classifier with unsupervised learning features” blueprint with the best LogLoss perfor-

mance in its class (BPXGB; LogLoss = 0.68 ± 0.01; AUC = 0.67 ± 0.02). Importantly, XGB trees

have gained popularity in biomedical ML research. BPXGB specifically includes a TensorFlow

Variational Autoencoder preprocessing step [32] (Fig 2D) as the “unsupervised learning fea-

ture”, exemplifying the availability of sophisticated methodologies through AutoML platforms.

Feature importance

We utilized a permutation-based approach [33] to quantify feature importance (pFI) for BPlog

and BPXGB. Notably, pFI values from individual models varied significantly; we accordingly

aggregated pFI across the 25 projects for more robust comparisons. While the order of features

by importance for BPlog and BPXGB were different, we observed that many of the high impor-

tance features for both models were the timeseries summary statistics (S1 Fig). Interestingly,

time_MAP_Avg_above_104 and time_MAP_Avg_below_76 were the most important features

for BPlog (S1A Fig) but were 11th and 18th in rank respectively for BPXGB (S1B Fig).
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Performance precision

We observed that different partitioning arrangements resulted in varying model performances

even with the same blueprint. We sought to determine whether aggregating the results of 25

projects significantly improved the precision of model performances (i.e. performance preci-
sion) towards reproducible comparisons between blueprints. In addition to the confidence

intervals (CI) for each blueprint, we additionally defined and calculated the standardized per-
formance CI width: a measure of the performance precision relative to the model’s mean per-

formance (see Methods for formula). For example, the standardized performance CI width

allows us to identify the number of projects needed to obtain a CI width that is within 5% of

the blueprint performance. From the 25 projects in our primary repeated cross-validation

workflow, we observed standardized CI widths of 1.92% by LogLoss and 2.88% by AUC for

BPlog and 1.55% by LogLoss and 2.73% by AUC for BPXGB.

To investigate how performance precision changes with the number of projects aggregated,

we ran 150 projects with BPlog and BPXGB and performed a sampling analysis (see Methods).

Fig 2. AutoML generated 15 models that performed better than the Majority Class Classifier model. Each model consisted of automatically

implemented preprocessing steps and algorithms. Models were assigned names according to the algorithm and encoded by a unique color. Blueprints

of the same algorithm class are numbered for identification across both (A) LogLoss and (B) Area Under Curve (AUC) plots. Two models were selected

for additional analysis: BPlog (blue box) and BPXGB (green box). Aggregating across 25 projects (unique partitioning arrangements of the dataset), BPlog

had an average performance of 0.67 ± 0.01 LogLoss and 0.68 ± 0.02 AUC; BPXGB had an average performance of 0.68 ± 0.01 LogLoss and 0.67 ± 0.02

AUC. (C) BPlog consisted of a regularized logistic regression (L2) algorithm with a notable quintile spline transformation preprocessing step for

numeric variables. (D) BPXGB implemented an eXtreme Gradient Boosted (XGB) trees classifier with unsupervised learning features, which refers to the

TensorFlow Variational Autoencoder preprocessing step for categorical variables.

https://doi.org/10.1371/journal.pone.0265254.g002
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For BPlog, we observed that aggregating 25 projects more than halved the expected standard-

ized performance CI width when compared to only 2 projects: by LogLoss, 5.22 ± 0.24% vs

1.85 ± 0.01% for 2 projects vs 25 projects respectively (S2A Fig) and by AUC, 8.03 ± 0.38% vs

2.79 ± 0.02% respectively (S2B Fig). Analysis of BPXGB performance precision generated simi-

lar results: by LogLoss, 5.42 ± 0.32% vs 2.06 ± 0.04% for 2 projects vs 25 projects respectively

(S2C Fig) and by AUC, 8.36 ± 0.38% vs 2.84 ± 0.02% respectively (S2D Fig). The performance

precision analysis further highlights the variability in model performances by different parti-

tioning arrangements even if the blueprint and training dataset are unchanged.

Feature instability

We similarly observed that different partitioning arrangements resulted in pFI variability (i.e.

feature instability). Given two different pFI lists—for example, from two different modeling

projects or multi-project aggregates with corresponding averaged pFI—we can quantify the

differences between them by calculating the feature rank instability (FRI) (see Methods for for-

mula). The FRI value sums the difference in the pFI-based ranking for each feature shared

between any two pFI lists. Higher FRI indicates more dissimilarity in ranking and thus more

feature instability.

Similar to the performance precision analysis, we performed a sampling analysis with 150

projects to determine the relationship between number of projects aggregated and feature

instability for BPlog and BPXGB (see Methods). We observed extremely high FRI when the

number of aggregated projects is small, suggesting that pFI can differ significantly from one

project to another. When we increased the number of aggregated projects towards 150, FRI

decreased towards 0, indicating that pFI ranking can be stabilized with sufficient project aggre-

gation. At 25 projects, BPlog and BPXGB had average FRI values of 13.03 ± 0.34 and

11.65 ± 0.33 respectively (Fig 3A and 3B). This approximately amounted to a 93% decrease in

instability for both BPlog and BPXGB as compared to when only aggregating across 2 projects.

Automated feature reduction

A component of AutoML is automating feature reduction (i.e. variable selection) to obtain a

more parsimonious feature list [34, 35]. This is particularly important for clinical models since

clinical features often outnumber the observations in biomedical datasets, increasing the dan-

ger of model overfitting [36]. We employed an iterative backward wrapper approach utilizing

pFI to determine and remove the lowest-importance features at each step (see Methods).

Importantly, we needed to ascertain the stability of features to be eliminated. Because our

approach initially removes five features at a time, we accordingly applied our feature instability

analysis to just the five lowest-importance features. With 25 projects, we found that BPlog had

a FRI value of 0.96 ± 0.08 (Fig 3C) and BPXGB had a FRI value of 0.56 ± 0.06 (Fig 3D) for the

bottom five features. In contrast, the bottom five features cumulatively shifted at least eight

ranks on average if we aggregated only two projects. By aggregating across 25 projects, we can

be confident that the least important features are reliably the lowest ranked.

The best-performing parsimonious BPlog had an average LogLoss of 0.55 ± 0.02 and only

nine retained features (Fig 4A). Of these, the highest pFI features included time_MAP_Avg_a-
bove_104, time_MAP_Avg_below_76, and the MRI BASIC score (MRI_1_BASIC_Score), a

neuroimaging score for injury severity collected upon hospital admission (Fig 4B) [37]. The

corresponding mean AUC (0.83 ± 0.02) was also close to the maximum AUC of the feature-

reduced models (S3A Fig).

Interestingly, initial feature reduction with BPXGB removed the time_MAP_Avg_below_76
feature. Given that clinical experts and SCI literature emphasize the correlation between
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hypotension and worse patient outcome [28], we tested if preserving time_MAP_Avg_below_76
during feature reduction would produce better parsimonious model performance. The result-

ing parsimonious BPXGB model included 11 features, had an average LogLoss of 0.48 ± 0.02

(Fig 4C), and was close to the maximum AUC observed (0.87 ± 0.01) (S3B Fig). Notably, this

final performance was better than the best parsimonious model when time_MAP_Avg_be-
low_76 had been eliminated (LogLoss = 0.52 ± 0.02; AUC = 0.87 ± 0.01). Furthermore, time_-
MAP_Avg_below_76 did not end up as the lowest-ranked feature in the final parsimonious

feature list despite requiring user guidance to prevent elimination (Fig 4D). Since time_MA-
P_Avg_below_76 exhibited collinearity with the other surgical timeseries-derived features, the

handling of collinear features by the XGB algorithm is likely why time_MAP_Avg_below_76
was dropped without user intervention. Indeed, we observed higher FRI at each feature reduc-

tion step for BPXGB as compared to BPlog corresponding with larger pFI changes for BPXGB as

collinear features are eliminated (S4 Fig). Additionally of interest, the most important feature of

the parsimonious BPXGB feature list was the AIS score at admission (AIS_ad) which provides

similar context for initial injury severity as the MRI BASIC score [37].

Fig 3. Feature rank instability (FRI) analysis as a function of number of projects aggregated. As the number of projects increased, FRI decreased

(i.e. pFI ranking became more stable). (A, B) Expected FRI calculated for all 46 features. BPlog had an average FRI of 174.40 ± 2.14 with 2-project

aggregation and 13.03 ± 0.34 with 25-project aggregation (A). Similarly, BPXGB started with an average FRI of 153.83 ± 3.06 that decreased to

11.65 ± 0.33 at 25 projects (B). (C, D) Focusing only on the bottom five features by pFI to calculate FRI, BPlog had an average FRI of 20.41 ± 0.75 with

2-project aggregation and decreased to 0.96 ± 0.08 with 25-project aggregation (C). Similarly, BPXGB started with an average FRI of 7.77 ± 0.37 and

decreased to 0.56 ± 0.06 for the bottom five features with 25-project aggregation (D).

https://doi.org/10.1371/journal.pone.0265254.g003
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Feature interpretation

For additional interpretability, we utilized partial dependence plots (PDPs) to quantify the

relationship of each individual features’ values to the model’s prediction [38–40]. PDPs are a

model-agnostic approach and thus can be applied regardless of the preprocessing steps or

Fig 4. Applying an iterative backward feature reduction process to identify parsimonious feature lists that maximize model performance. The

process was performed first by removing the lowest five features by feature importance (step size = 5) and then repeated with step size = 1 within the

feature list size range that contained the best performance. (A) For BPlog, the step size was reduced starting at 16 features with the best performance

observed with the 9-feature parsimonious feature list (LogLoss = 0.55 ± 0.02). (B) The corresponding pFI of the 9-feature parsimonious BPlog model

showed that the MRI BASIC score and the time patients spent outside of the MAP thresholds were the most important features. The remaining features

included other intraoperative timeseries-derived features and the time between hospitalization and surgery (Time_to_OR_a). (C) The feature reduction

for BPXGB was expanded to always preserve the two MAP threshold features. The step size was reduced to one starting at 16 features with the best

performance observed with the 11-feature parsimonious feature list (LogLoss = 0.48 ± 0.02). (D) The corresponding pFI for the parsimonious BPXGB

model showed that the AIS score at admission (AIS_ad) was the most important feature. Non-timeseries-derived features included Cervical_Injury,
Vertebral_Artery_Injury, and TBI_Present. The time_MAP_Avg_above_104 and time_MAP_Avg_below_76 features were ranked 7th and 9th

respectively.

https://doi.org/10.1371/journal.pone.0265254.g004
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algorithm implemented. We aggregated the partial dependence for each feature for BPlog and

BPXGB across the 25 projects (S5 and S6 Figs).

The PDPs of the initial injury severity features–MRI_1_BASIC_Score for BPlog and AIS_ad
for BPXGB–captured nuances between the two (Fig 5A and 5B). We observed that a BASIC

score of 4, which corresponds to severe injuries with notable hemorrhage, reduced the proba-

bility of patient improvement. Similarly, patients classified as AIS A (i.e. complete, severe

SCIs) had the lowest probability of outcome improvement. Both PDPs thus conveyed that the

most severe SCI cases are unlikely to see improvement by the time of hospital discharge. How-

ever, the two scores had different effects for mild injuries: for BPlog, low BASIC scores (0–3) all

increased the probability of improvement whereas AIS D reduced the likelihood of improve-

ment for BPXGB. This underscores the difference in sensitivity and granularity between the AIS

and BASIC scores. AIS D broadly encapsulates mild SCIs and is effectively a ceiling on the

scale since improvement requires full recovery, which is uncommon. BASIC scores of 0–2

cover a range of functionally mild-to-moderate SCIs; indeed, BASIC and AIS scores do not

correlate 1:1 [37]. Overall, the results suggested that patients with moderate SCIs (AIS B and

C; BASIC 2) have the highest likelihood of outcome improvement.

PDPs of time_MAP_Avg_above_104 and time_MAP_Avg_below_76 revealed that the mod-

els predicted worse outcome if a patient exceeded 104 mmHg by more than 70 minutes (Fig

5C and 5D) or dropped below 76 mmHg for more than 150 minutes (Fig 5E and 5F). BPlog

and BPXGB produced similar time_MAP_Avg_above_104 and time_MAP_Avg_below_76
PDPs, though we observed that BPXGB predicted relatively better outcome for patients at the

extreme upper range of time (>115 min for time_MAP_Avg_above_104 and>200 min for

time_MAP_Avg_below_76). This is likely due to the dataset having fewer patients at the

extreme ranges rather than a true clinical effect. Critically, BPlog implemented a spline trans-

formation (Fig 2C) and quintiled the continuous variables; all patients exceeding 70 or 150

minutes outside the upper or lower thresholds respectively were categorized to the same quin-

tile. Accordingly, BPlog would not produce the PDP rebound observed with BPXGB.

MAP threshold validation

We previously found that time outside the MAP range of 76–104 mmHg was associated with

lower probability of AIS improvement as determined by LASSO logistic regression models

testing different MAP ranges while expanding the lower and upper MAP thresholds simulta-

neously [28]. To validate the MAP thresholds, we started with the best-performing parsimoni-

ous feature lists, removed the MAP threshold features, and then swept through various lower

threshold (70–85 mmHg) or upper threshold (95–115 mmHg) features separately to identify

how the threshold affected prediction.

With BPlog, we observed the best performances with lower thresholds of 74–76 or 79

mmHg and with upper thresholds at 103–105 mmHg by LogLoss (Fig 6A). With BPXGB, we

observed the best performances at lower thresholds of 74–76 mmHg and at upper thresholds

at 103–104 mmHg (Fig 6B). The results were similarly reflected with AUC (S7 Fig), corrobo-

rating the thresholds of 76 and 104 mmHg for predicting patient outcome. Our analysis fur-

thermore revealed that the time spent above the upper threshold improved the predictive

performance of the models significantly more, highlighting intraoperative hypertension as an

important correlate and a potential factor for worse SCI recovery.

Model validation

We visualized how each step of the workflow improves AUC and corresponding receiver oper-

ating characteristic (ROC) curves. Starting with BPlog and all our predictors except MAP
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Fig 5. Partial dependence plots (PDPs) for features of interest help interpret how features affect model prediction of BPlog and BPXGB. (A) For

BPlog, an MRI BASIC score of 4 resulted in lower prediction of improved outcome. A MRI BASIC score of 0–3 increased prediction of better outcome

with a MRI BASIC score of 2 leading to the highest probability of improvement. (B) For BPXGB, an AIS score of A or D at admission resulted in lower

probability of patient improvement. AIS scores of B and C both led to higher probability of improvement with AIS score C resulting in the highest

probability. (C) For BPlog and (D) BPXGB, if a patient’s MAP exceeded an upper threshold of 104 mmHg for more than 50–75 minutes, the predicted

probability of improvement decreased significantly. (E) For BPlog and (F) BPXGB, if a patient’s MAP fell below a lower threshold of 76 mmHg for more

than 100–150 minutes, the predicted probability of improvement decreased significantly. Notably, BPXGB PDP for both time_MAP_Avg_above_104 and

time_MAP_Avg_below_76 exhibited a rebound in predicted improvement probability at extreme upper values that was absent on the BPlog PDPs.

https://doi.org/10.1371/journal.pone.0265254.g005
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Fig 6. LogLoss performance plots for investigating different lower and upper MAP thresholds using best-performing parsimonious BPlog and

BPXGB models. (A) With BPlog, we observe that the lower threshold values of 74, 75, 76, and 79 mmHg performed the best of the lower thresholds. The

upper threshold values of 103, 104, and 105 mmHg performed the best of the upper thresholds. Notably, the best-performing upper threshold feature

(104 mmHg) resulted in a larger improvement to model performance compared to the best-performing lower threshold feature (79 mmHg). (B) With

BPXGB, the values of 74, 75, and 76 mmHg performed the best of the lower thresholds, and the values of 103 and 104 performed the best of the upper

thresholds. Similar to BPlog, the best-performing upper threshold feature (104 mmHg) resulted in a larger improvement to model performance

compared to the best-performing lower threshold feature (76 mmHg).

https://doi.org/10.1371/journal.pone.0265254.g006
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threshold features, we achieved an average AUC of 0.63 ± 0.019 (S8A Fig). Inclusion of MAP

threshold features (with 76 and 104 mmHg thresholds) improved AUC to 0.68 ± 0.02 (S8B

Fig), underscoring the importance of intraoperative MAP regulation. The largest improve-

ment to model performance occurred after feature reduction to a more parsimonious feature

list (AUC 0.84 ± 0.02) (S8C Fig). Adjusting the MAP thresholds produced miniscule improve-

ments to AUC (AUC 0.85 ± 0.02) (S8D Fig). Lastly, by repeating the process with BPXGB, pre-

diction performance was improved to AUC 0.87 ± 0.01 (S8E Fig). Altogether, we can improve

model performance by adjusting the feature list and model by leveraging the AutoML work-

flow (S8F Fig). Importantly, the ROC curves from each of the 25 projects notably differ,

emphasizing how varying the dataset partitioning can produce significant model variability.

Critically, the greatest obstacle for translating predictive models into the clinic is the validity

of the models on novel data. While many ML scenarios implement a holdout partition from

the original dataset for validation, clinical datasets often have relatively small sample sizes

where such practices would result in underfitted models, especially for medical fields with

smaller patient populations such as SCI [41]. Clinical model validity is thus often assessed with

an external validation dataset collected from a new cohort of patients. Here, we obtained addi-

tional data for external validation from a prospective (2015 onward) TRACK-SCI cohort of 59

patients. Of these, 14 patients improved in outcome while the remainder 45 did not.

We used the parsimonious BPlog and BPXGB models to predict the probability of AIS

improvement of the validation cohort. We aggregated these values across the 25 projects and

generated plots and confusion matrices using the mean predictions and best F1 thresholds cal-

culated by the AutoML platform. The 9-feature parsimonious BPlog model correctly predicted

13 of the 14 patients who improved but only 15 of the 45 patients who did not (Fig 7A; S9A

Fig). The 11-feature parsimonious BPXGB model correctly predicted only 9 of the 14 patients

with AIS improvement and 14 of the 45 patients without (Fig 7B; S9B Fig). While BPXGB has

higher predictive accuracy on the training dataset, the model did not perform as well on novel

data as the BPlog model.

We hypothesized that the poor validation performance was due to data drift where the vali-

dation patient population no longer resembled that of the training dataset. We accordingly

performed population similarity analysis, starting with population stability index (PSI) assess-

ment for each of the parsimonious features. PSI broadly reflects the differences in value distri-

bution between the two cohorts [42]. We observed that most of the features exhibited

significant (PSI> 0.25) or moderate (PSI> 0.1) drift between training and validation datasets,

and only TBI_Present and Vertebral_Artery_Injury features could be considered to not have

drifted (PSI< 0.1) (S2 Table). The PSI results overall suggested that the training and validation

populations are dissimilar, thus resulting in poor model performance during validation.

To investigate clinical trends underlying data drift, we clustered all the patients by the raw

feature values of the 15 parsimonious features via UMAP and HDB clustering. We observed

notable differences in cluster representation: in particular, the validation cohort was only

sparsely represented in Clusters 1 and 2 as compared to the training cohort (Fig 7C). We sum-

marized the distribution of values within each cluster to better understand the subpopulation

characteristics and found that Cluster 1 was defined by extremely high Time_to_OR and Clus-

ter 2 by extremely high time_MAP_Avg_below_76 (S3 Table). In discussion with clinical

experts, we found that this corresponded with shifting clinical practices to reduce time-to-sur-

gery and prevent intraoperative hypotension [43, 44]. Population similarity analysis thus pro-

vided critical insight into the differences between training and validation populations while

demonstrating the crucial need to validate predictive models and corresponding conclusions

before translating findings to the clinic.
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Overall, we illustrate a framework to augment AutoML for interpretability, reproducibility,

and validity. The process presents opportunities to integrate methods for explainable and

reproducible AI that are essential for biological inferences and evidence-based clinical practice.

Augmenting AutoML to generate verifiable machine intelligence will be critical to building

confidence and trust in powerful AI tools towards advancing biomedical research and preci-

sion medicine.

Discussion

As AutoML become increasingly efficient at optimizing an ever-growing repertoire of data

preprocessing methods and algorithms, biomedical researchers will have more opportunities

to leverage AI/ML to transform their field [4, 6, 9, 45]. Importantly, there remains a parallel,

fundamental need for better evaluation and interpretation of AutoML-derived models for

healthcare where trust in ML requires reproducibly identifying and validating biomedical

inferences before translation to patient care [46]. Here, we demonstrate a framework to

Fig 7. Model validation confusion matrices and clustering analysis to demonstrate differences in patient population between training and

validation datasets. Validation predictions were scored by comparing the average predicted probability of each validation sample against the average

best F1 threshold for the corresponding model. (A) The best parsimonious BPlog model correctly predicted 13 of the 14 true positives (i.e. patient

improved in outcome) and 15 of the 45 true negatives. (B) The best parsimonious BPXGB model correctly predicted 9 of the 14 true positives and 14 of

the 45 true negatives. (C) UMAP and HDB clustering analysis on the combined training and validation data produced six clusters of patients. Notably,

Clusters 1 and 2 showed high representation in the training cohort and low representation in the validation cohort. Conversely, Cluster 3 showed low

and high representation in the training and validation cohorts respectively. Clusters 3, 5, and 6 have no discernable differences between cohorts.

https://doi.org/10.1371/journal.pone.0265254.g007
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improve the reproducibility of ML and AutoML workflows by implementing a repeated cross-

validation strategy, assessing metrics of model stability, directly interrogating and augmenting

the models with clinical knowledge, and applying population similarity analysis to better con-

textualize the findings and generalizability of the models (Box 1; Fig 1). By incorporating such

methods and strategies for model interpretability and inferential reproducibility, biomedical

experts will be empowered to fully leverage their domain expertise into ML processes to con-

struct more trustworthy models and build confidence towards translatable AI/ML

applications.

Repeated cross-validation is an easily applied strategy to reinforce the reproducibility of ML

research and has been well-established for handling variation in partitioning [47, 48]. Yet

despite the focus on confidence intervals, significance, and inference in biomedical research,

repeated cross-validation is not commonly implemented by clinical ML studies. This is likely

due to the associated computational costs, resulting in clinical ML researchers optimizing and

drawing conclusions from a single model instead. We show that different dataset partitions

affected model performance and pFI values; the practice of only relying on a single optimiza-

tion can thus lead to false assumptions that one algorithm is definitively better at prediction or

that specific features are definitively more important. Additionally, combining repeated opti-

mizations can help stabilize subsequent processes; 25 projects was the critical aggregation

Box 1. Key highlights of the framework for reproducible,
interpretable AutoML application in biomedicine

• Perform modeling with a repeated cross-validation strategy. Aggregating across

models mitigates spurious findings due to model variance from implicit modeling

parameters that can lead to model instability with smaller clinical datasets, such as par-

titioning arrangement.

• Stabilize pFI and PDPs for model interpretation by aggregating repeated cross-valida-

tion models to improve inferential reproducibility.

• Characterize performance precision (metrics: performance CI; standardized perfor-

mance CI width) for more robust model comparisons. Performance precision analysis

can be further applied to achieve a target precision in modeling processes.

• Characterize feature instability (metric: pFI CI; feature rank instability) to capture

pFI variability. Feature instability analysis can be further applied to stabilize pFI-

dependent processes such as feature reduction.

• Integrate domain expertise throughout; combining domain expertise and model-

driven feature selection can improve final parsimonious model performance. Any

inferences drawn from modeling should be verified with clinical expertise.

• Investigate data drift (i.e. population similarity analysis) between the training and

external validation datasets during model validation. PSI and clustering analysis can

uncover clinical differences between the cohorts and the underlying evolution of clini-

cal practices that further inform model validation results.
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threshold for our backward feature reduction approach such that the bottom 5 features by pFI

would be reproducibly ranked as the least important. Naturally, selecting the number of repeti-

tions ultimately depends on the dataset, the specific model, and the research question or ML

process of interest. Nevertheless, a repeated k-fold cross-validation strategy to report confi-

dence intervals, performance precision, and feature instability can help contextualize the

reproducibility of results and mitigate spurious conclusions whether applying AutoML or a

single model blueprint.

The variability we observed also reflects the concept of underspecification in ML: that even

with the same model blueprint and training data, different optimizations can produce diver-

gent solutions [49]. Underspecification highlights how seemingly arbitrary modeling choices

—such as implicit modeling parameters and data partitioning—can lead to models with high

accuracy on training data that then fail to perform on novel data. While this emphasizes the

need to validate models, underspecification also underscores an ongoing demand for addi-

tional model evaluation metrics. Repeated cross-validation strategies along with performance

precision and feature instability analyses can be applied to characterize and control for under-

specification factors of model optimization. This can be further extended to deployment appli-

cations: bagging models to account for underspecification can improve model validity, and

precision and instability analyses can help estimate the effective number of models for ensem-

bling. Moreover, the predictions of the individual models underlying an ensemble can provide

useful context about model precision to users and ultimately enhance trustworthiness and

adoption for clinical decision-making.

A major challenge in clinical modeling is obtaining external validation data, especially for

rarer diseases and disorders [20, 41]. Inconsistent data collection methods and standards fur-

ther exacerbate the difficulties. Many clinical ML studies consequently produce accurate mod-

els that remain unvalidated or are later shown to underperform on novel data [50–52]. We

obtained data from a recent patient cohort enrolled in the TRACK-SCI prospective study and

observed that despite the high performance of the final BPlog and BPXGB models on training

data, both performed poorly during validation. Population similarity analysis by PSI revealed

that almost every feature exhibited significant data drift, indicating differences between the

two patient cohorts. We reviewed the PSI and cluster analysis results with TRACK-SCI clini-

cians who validated that the observed changes corresponded with evolving guidelines includ-

ing moving SCI patients into surgery sooner and improving blood pressure management to

avoid hypotension [43, 44]. Indeed, both practices were implemented during the prospective

era, and the overarching findings illustrate the fact that biomedical data inevitably shifts with

ever-updating clinical practices [25]. Furthermore, while all of our data was collected at UCSF,

the phenomenon of data drift can apply to data from different medical centers; clinical ML

studies commonly utilize data from only a single source, and resultant models fail to general-

ize. Thus beyond simply validating models with novel data, the analytical framework for suc-

cessful clinical ML application should also contrast the training and validation populations

with quantitative metrics alongside domain expertise to identify critical clinical context to

inform model validity.

Understanding population similarity can also provide avenues for improving clinical mod-

els: a simplistic approach could be to retrain the model with more recent or representative data

while balancing dataset size and population similarity. Researchers could also directly incorpo-

rate sources of data drift and population dissimilarity into the modeling strategy, such as via

cross-hospital validation, to produce the most generalizable models and inferences [53]. A

third possibility is to combine data across time and centers to obtain a larger sample size, thus

allowing for a holdout partition that better mimics the training dataset. With careful, balanced

representation of patients and feature values in training and holdout partitions, researchers
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could identify common predictive features that are generalizable across a broader clinical pop-

ulation. Specific to SCI, harmonizing data across multiple clinical programs could help rein-

force future ML studies with a more comprehensive patient dataset. Most importantly, once a

model is deployed into clinic, monitoring for data drift will be necessary to determine whether

the model will need to be retrained to keep up with changing medical practices.

Especially for datasets with a small observations-to-features ratio as is common in clinical

research of rare disorders, parsimony can improve performance by decreasing multicollinear-

ity and removing low-signal features while improving interpretability [54]. We deployed an

iterative wrapper approach [35]: backward feature selection based on recalculated pFI rankings

to optimize LogLoss. While the process is model-agnostic, the results are affected by the char-

acteristics of the underlying algorithms; the final parsimonious feature lists differed between

BPlog and BPXGB, and BPXGB exhibited in greater pFI instability between each feature reduc-

tion step. This can be attributed to how regularized regression and tree-based models handle

multicollinearity—a common trait of clinical datasets—which affects pFI as colinear features

are eliminated. Critically, there is no definitive approach to feature selection; clinical verifica-

tion of the final parsimonious feature list is necessary given that the preserved features depend

heavily on the implemented reduction method and models [34, 35]. More broadly, pFI has

been shown to overestimate the importance of colinear features, especially for tree-based mod-

els [55]; future work should refine the framework by employing techniques that better address

feature collinearity, such as Shapley additive explanations or accumulated local effects plots

[56, 57].

We allowed for preselection of features by domain experts during feature reduction, and

because the process inherently optimizes model accuracy, we can determine if preservation of

expert-selected features improves or undermines the final model performance. Here, by pre-

serving the time a patient spent below 76 mmHg MAP, we improved the maximum perfor-

mance for the parsimonious BPXGB model. The process can also be applied to test other

hypotheses, including ones where deliberate experimentation might be difficult or impossible.

For example, whether a SCI patient receives specific treatments is a matter of clinical care

rather than experimental design, but we can compare the impact of excluding or including the

treatment feature on the final model accuracy to glean a relationship between treatment and

outcome. Such findings would provide further insight to the efficacy of clinical practices that

may be difficult to test experimentally and highlight areas for future, targeted clinical research.

Importantly, removed variables are not necessarily unimportant or uninformative; feature

selection ultimately reflects the representation of samples and the limitations of the dataset.

Continual validation and updating of the parsimonious feature list alongside the model are

critical for maintaining and improving clinical models. This aligns with the budding concept

of expert-augmented AI wherein the interaction between human expertise and ML leads to

better models.

Our results also provide more granularity on how intraoperative MAP thresholds relate to

outcome: the time patients spent outside the upper MAP threshold contributed more to model

prediction than the time spent below the lower threshold. Additionally, the corresponding

PDPs reveal that the critical out-of-threshold duration for worse outcome is shorter for hyper-

tension (> ~70 min) than for hypotension (> ~150 min). Previous blood pressure manage-

ment studies have primarily focused on hypotension as a contributor to worse patient

outcome [58–60] despite the increased risk of cardiovascular and cerebrovascular complica-

tions as a result of hypertension [61]. Notably, the importance of perioperative hypertension

for SCI outcome has been observed both clinically and preclinically [26–28, 62]; this is the first

analysis to suggest that hypertension is more predictive of worse outcome than hypotension,

thus proposing that careful MAP management should strive to avoid hypertension while
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minimizing hypotension. Future prospective clinical studies should extend the verifiability of

the findings throughout broader SCI patient care such as during treatment in the emergency

room and intensive care unit. Moreover, the illustrated framework can be similarly applied to

investigate other modifiable components of clinical care as well as identify predictors of other

patient outcome metrics including chronic recovery.

Ultimately, there remains significant untapped potential for AI-driven impact on clinical

practices, precision medicine, and general patient care, especially for rarer diseases and disor-

ders. However, the challenges of achieving inferential reproducibility with AI/ML dictate the

need for parallel development of explainable and reproducible AI methods that augment pow-

erful processes such as AutoML. By unboxing even the most complex models and directly

empowering clinical experts to guide the modeling process, we can build an essential culture

of trust for AI in biomedicine towards a bidirectional relationship where clinicians inform AI

development and AI applications effectively support clinical decision-making to improve

patient care.

Materials and methods

Datasets

The data were collected and de-identified by the Transforming Research and Clinical Knowl-

edge for Spinal Cord Injury (TRACK-SCI) program [20] and contains clinical variables (i.e.

features) collected during acute hospitalization and SCI-related surgery. The training dataset

consisted of 74 clinical records collected between 2005–2011. After implementing our AutoML

workflow, we obtained a second dataset for model validation from TRACK-SCI consisting of

59 clinical records collected after 2015. Protocols for data collection and extraction were

approved by the Institutional Research Board (IRB) at the University of California, San Fran-

cisco under the protocol numbers 11–07639 and 11–06997.

Of note, 18 of the 47 features in the full feature list were derived from time-series data for

intraoperative heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial

pressure (MAP). Each set of time-series data was summarized as mean, standard deviation,

skew, and kurtosis features for each individual patient. Additionally, the total time each patient

spent above or below a MAP threshold (starting with 104 and 76 mmHg respectively) was

derived from the time-series MAP data. The prediction target AIS_is_improved was derived

from the patients’ AIS scores as assessed by clinicians using the International Standards for

Neurological Classification of SCI (ISNCSCI) exam at the time of hospital admission and dis-

charge. Specifically, AIS_is_improved was assigned a value of 0 for no improvement or a value

of 1 if the patient’s AIS score improved between admission (AIS_ad) and discharge (AIS_dis).
Notably, the training data included 39 patients who improved in AIS score while the validation

dataset included 14 such patients. The AIS_dis feature was excluded for model training since it

was used to derive the prediction target and would cause target leakage. The remaining 46 fea-

tures used for modeling are listed in S1 Table.

AutoML model generation and feature importance

Among various available implementations of AutoML, we utilized the DataRobot commercial

AutoML platform for our workflow [5]. Access and application of the platform was done pri-

marily through the API in Python. Performance values (LogLoss and Area Under Curve;

AUC), mutual information between predictors, permutation feature importance (pFI), partial

dependence plot (PDP) values, receiver operating characteristic (ROC) values, model valida-

tion predictions, estimated best F1 thresholds, and population stability index (PSI) values were

downloaded and then analyzed and graphed in R with the tidyverse package [63, 64].
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The training data was uploaded to the platform which generates a new project instance (i.e.

project). Each project encapsulates a specific set of modeling inputs and parameters such as

the training data, the type of ML problem (i.e. regression vs classification), partitioning strat-

egy, and others that define the initial state of the AutoML process. For our projects, we

assigned distinct random seeds which specifically affected the unique partitioning arrange-

ment of the data for modeling. Given that the AutoML platform requires a minimum of 100

observations to perform automated classification modeling, we accounted for the small num-

ber of records in our dataset by duplicating the entry for each patient, thus doubling the dataset

from 74 to 148 records. Importantly, we specified a 10-fold cross-validation strategy while

ensuring that each of the ten partitions had at least one representation of each of the possible

prediction target values and that duplicated records were always partitioned together.

For the first round of modeling, we included 46 features as predictors (S1 Table). The

AutoML platform generated 80–90 possible configurations of data preprocessing steps and

algorithms (i.e. blueprints, with each blueprint being assigned a unique identification num-

ber). Blueprints range from simple (e.g. BPlog: regularized logistic regression model with a

spline transformation preprocessing step) to complex (e.g. BPXGB: extreme gradient boosted

tree with a modified TensorFlow Variational Autoencoder preprocessing step), and the plat-

form automatically performs data preprocessing and algorithm-specific optimization to maxi-

mize the final model performance. To identify the best-performing models, the platform first

trained the blueprints on a small subset of the dataset and selected the top performing blue-

prints according to their validation LogLoss accuracy. The blueprint selection process was

repeated with a larger subset of data for a second round of selection. The remaining blueprints,

numbering between 30–40 total, were then optimized on the full dataset, and cross-validation

accuracy was calculated.

To characterize the stability of the modeling process, we applied the strategy of repeated

10-fold cross-validation with 25 repetitions. Each repetition corresponded to a project with a

unique random seed that determined the unique arrangement of data in the partitions. Each

project implemented the same blueprints for AutoML; we accordingly aggregated the perfor-

mances for each blueprint across all 25 projects by calculating the mean and 95% confidence

interval for the corresponding cross-validation performances (i.e. performance). We arranged

the models according to mean performance and plotted those that outperformed the Majority

Class Classifier benchmark model which simply predicts every patient as having improved—

the majority class of the AIS_is_improved target.

Permutation feature importance (pFI; also termed feature impact on the platform) was cal-

culated through a permutation-based approach by the AutoML platform [33]. In brief, the val-

ues of a single feature were permuted, and the resulting loss in LogLoss accuracy was

calculated. The permutation and performance loss assessment were repeated multiple times to

generate an average accuracy loss. This process was performed on every feature individually.

The platform further normalized the pFI values to the maximum pFI value observed; pFI in

this study thus refers to the normalized values. We aggregated the pFI values across all 25 proj-

ects to calculate the mean pFI and 95% confidence interval for each feature. The features were

then arranged from highest to lowest pFI for visualization.

Performance precision analysis

To characterize the relationship between number of aggregated projects and the precision (i.e.

variability) of model performance as a result of different partitioning arrangements, we created

150 projects, each with a unique random seed and corresponding partitioning arrangement.

We optimized both BPlog and BPXGB in each project with the 46 features using the AutoML
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platform. We collected the resulting cross-validation LogLoss and AUC performance values

for all 150 projects. We then performed the following sampling analysis:

1. Randomly sample one project.

2. Randomly sample another project without replacement. The newly-sampled project and

any previously-sampled projects form the current project aggregate.

3. Calculate the standardized performance CI width with the current project aggregate.

4. Repeat steps 2–3 until all 150 projects have been aggregated.

5. Perform steps 1–4 1000 times.

6. Calculate the expected (i.e. mean) standardized performance CI width with corresponding

95% confidence intervals for each number-of-projects-aggregated.

Standardized performance CI width was calculated with the following formula:

Standardized performance CI width ¼
Observed Confidence Interval Width

Mean Performance
�100

The results were visualized with an emphasis on the 25-project point. The process was

repeated for BPlog and BPXGB as well as for LogLoss and AUC metrics.

Feature instability analysis

To characterize the relationship between number of aggregated projects and feature instability,
we used the same 150 projects as in the performance precision analysis. For each instance of

BPlog and BPXGB, we calculated the normalized pFI values. To obtain the pFI ranks, we ordered

and ranked the pFI values for each specific instance of the model and project from highest to

lowest. As a metric for feature instability, we calculated the feature rank instability (FRI):

Feature Rank Instability FRIð Þ ¼
Xf

i¼1
jFI rankp;i � FI rankq;ij;

where p and q represent two different pFI lists, i is the ith feature, and f is the total number of

features.

We then performed a sampling analysis as follows:

1. Randomly sample one project.

2. Randomly sample another project without replacement. The newly sampled project and

any previously sampled projects form the current project aggregate.

3. Rank the features according to the mean pFI values in the current project aggregate.

4. Calculate FRI between the pFI lists from the previous project aggregate and the current

project aggregate. If only two projects have been aggregated, FRI is calculated between the

pFI list from the first sampled project and the pFI list from the current project aggregate.

5. Repeat steps 2–3 until all 150 projects have been aggregated.

6. Perform steps 1–5 1000 times.

7. Calculate the expected (i.e. mean) FRI with corresponding 95% confidence intervals for

each number-of-projects-aggregated.

The results were visualized with an emphasis on the 25-project point.
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We also performed the sampling analysis on just the ranking of the bottom five features by

pFI (i.e. least important features). In this case, the entire feature list was ranked as before, but

the FRI was only calculated for the five least important features based on the aggregate with

fewer projects (i.e. when comparing 3-project aggregate vs 4-project aggregate, we considered

the bottom 5 features from the pFI values of the 3-project aggregate).

To investigate the feature instability during feature reduction for BPlog and BPXGB, we

applied the FRI quantification to compare the feature list before and after each reduction step.

Specifically, we calculated FRI for the features that remained after elimination. For example, at

feature list size = 41, we calculate the FRI for the 41 features by comparing their rankings

between the 46-feature model (before reduction) and the 41-feature model (after reduction).

Automated feature reduction

We applied an iterative wrapper feature reduction process implementing backward elimina-

tion similar to as historically applied to regression models [34]. Notably, the lowest-ranking

features by pFI were removed; this feature reduction process can be applied to any blueprint

on the AutoML platform. The process is as follows:

1. Start with the full feature list.

2. Calculate average pFI values for each feature across the 25 projects.

3. Remove the 5 features with lowest mean pFI values.

4. Optimize new models on remaining features.

5. Repeat steps 2–4 until no features remain.

6. Identify the range of feature list sizes containing the likely maximum performance.

7. Repeat steps 2–4 within the range identified in step 6 and using a step size of 1.

The initial step size of five was chosen to balance for computational time needed to retrain

25 models at each elimination step. By aggregating across the 25 projects, we were able to stabi-

lize the pFI rankings.

Importantly, identifying the final parsimonious feature list was determined directly by the

resulting model performances. At each elimination step, the model cross-validation perfor-

mance was calculated and averaged across projects for comparison. The mean model perfor-

mance values were used to pinpoint the feature list size range at step 6 as well as identify the

final best-performing parsimonious model and feature list.

To test whether preservation of time_MAP_Avg_below_76 would improve final parsimoni-

ous model performance with BPXGB, we allowed users to preselect features that the process

would never eliminate (equivalent to augmenting feature reduction with expert guidance). If

the preselected features landed in the elimination range of the pFI ranking, the process selected

the next lowest-importance feature instead. We accordingly selected time_MAP_Avg_be-
low_76 to be preserved.

Feature interpretation

The AutoML platform implements partial dependence plots (PDPs) for feature interpretation

[40]. In brief, the platform averaged the outcome predictions for the training dataset while

converting the values of a single feature to a single value. The set value for the feature of inter-

est was then changed, scanning either across the continuous range or all possible categorical

values depending on the feature’s data type. Plotting the average outcome prediction by the
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possible feature values produced the feature’s PDP for the model. We additionally pooled the

partial dependence values across the 25 projects, calculated the mean and 95% confidence

intervals, and created an aggregated PDP for each feature in the parsimonious BPlog and

BPXGB models.

MAP threshold validation

To investigate the MAP thresholds that would be most predictive of patient outcome, we first

removed the MAP threshold features from the final parsimonious feature lists of BPlog and

BPXGB. We then created new lists by including a single MAP threshold feature using a different

lower (in range of 70–85 mmHg) or upper (in range of 95–115 mmHg) threshold. Sweeping

through each possible threshold value, this produced 16 feature lists with a lower MAP thresh-

old feature and 21 feature lists with an upper MAP threshold feature. We additionally included

a feature list with no MAP threshold feature. Across the 25 projects, we optimized models for

each feature list, aggregated the model performance values, and summarized and plotted the

results as mean and 95% confidence intervals. The model performance for the feature lists

including both a lower and upper MAP threshold feature was the resulting parsimonious

model from the feature reduction process prior.

Model validation

To validate the parsimonious BPlog and BPXGB models, we uploaded the validation dataset to

the AutoML platform and predicted the probability of AIS improvement for each patient. The

AutoML platform also calculated the best F1 threshold—the value that maximizes the F1 score

—for each model in each project. We aggregated the predictions for each patient across the 25

projects to calculate mean and 95% confidence intervals. We similarly summarized the best F1

threshold values. To produce the confusion matrices, we compared the mean prediction value

for each patient against the mean best F1 threshold value. Mean prediction values above the

mean F1 threshold were considered positive predictions (i.e. patient improved) and conversely

for negative predictions (i.e. no improvement).

To determine whether there is data drift between the training and validation dataset, we

deployed the parsimonious models on the DataRobot servers to access the data drift feature. In

brief, the platform determines data drift between training and validation datasets by calculat-

ing the population stability index (PSI) for each of the features [42].

Combining both the training and validation datasets, we additionally performed

dimensionality reduction via UMAP (umap R package [65]) for the 15 features preserved in

the parsimonious BPlog and BPXGB models. Importantly, 9 of the 133 samples were missing val-

ues and were thus removed via listwise deletion for clustering analysis prior to UMAP. The

resulting UMAP scores were used to cluster the patients via HDB Clustering (dbscan R pack-

age [66]) with a minimum cluster size of 8. The datapoints were then grouped according to

training vs validation dataset and plotted. The circular borders containing the clusters were

drawn manually for visual clarity. For the numeric features, we calculated the mean and 95%

confidence interval of the distribution within each cluster.

Supporting information

S1 Fig. Normalized permutation feature importance (pFI) of each feature, aggregated

from the 25 projects. (A) Of note, BPlog ranked the time_MAP_Avg_below_76 and time_MA-
P_Avg_above_104 highest. (B) Conversely, the two MAP threshold-related features were

ranked 11th and 18th in pFI by BPXGB. The majority of high pFI features across both models

were features derived from the intraoperative timeseries data for heart rate, diastolic blood
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pressure, systolic blood pressure, and mean arterial pressure (MAP). Both models also highly

ranked a feature encoding initial injury severity: MRI_1_BASIC_Score for BPlog and AIS_ad
for BPXGB.

(TIF)

S2 Fig. Standardized performance precision analysis as a function of number of projects

aggregated. As the number of projects increased, the performance precision improved (i.e.

standardized performance CI width decreased). (A, B) By LogLoss, BPlog started with a stan-

dardized performance precision of 5.22 ± 0.24% with 2-project aggregation and decreased to

an average of 1.85 ± 0.01% with 25-project aggregation (A). By AUC, BPlog started with a per-

formance precision of 8.03 ± 0.38% and decreased to an average of 2.79 ± 0.02% when aggre-

gating 25 projects. (C, D) Similarly by LogLoss, BPXGB started with a standardized

performance precision of 5.42 ± 0.32% and decreased to an average of 2.06 ± 0.04% at 25 proj-

ects (C). By AUC, BPXGB started with a performance precision of 8.36 ± 0.38% and decreased

to an average of 2.84 ± 0.02% when aggregating 25 projects.

(TIF)

S3 Fig. AUC performances for the feature reduction process. (A) Feature reduction of BPlog

showed maximum AUC at the 8-feature parsimonious feature list (AUC = 0.84 ± 0.02). The

9-feature parsimonious feature list had an AUC of 0.83 ± 0.02. (B) Feature reduction of BPXGB

showed maximum AUC at the 9-feature parsimonious feature list (AUC = 0.87 ± 0.01). The

11-feature parsimonious feature list had a similar AUC of 0.87 ± 0.01.

(TIF)

S4 Fig. Feature instability analysis for (A) BPlog and (B) BPXGB during backward feature

reduction process. FRI was calculated by comparing the pFI ranking before and after each fea-

ture reduction step and only summing the features that appeared in both lists (i.e. features that

were not removed at the step). Notably, BPXGB exhibited higher FRI at each step than for

BPlog; elimination of features resulted in more shifting of features by pFI rank for BPXGB.

(TIF)

S5 Fig. Partial dependent plots (PDPs) for additional features from the best-performing

parsimonious feature list for BPlog. In order of highest pFI to lowest: (A) DiaBP_skew, (B)

HR_kurtosis, (C) SysBP_sd, (D)MAP_kurtosis, (E) HR_sd, and (F) Time_to_OR_a. PDPs of

MRI_1_BASIC_Score, time_MAP_Avg_above_104, and time_MAP_Avg_below_76 are shown

in Fig 4.

(TIF)

S6 Fig. Partial dependent plots (PDPs) for additional features from the best-performing

parsimonious feature list for BPXGB. In order of highest pFI to lowest: (A) MAP_kurtosis, (B)

DiaBP_skew, (C) HR_sd, (D) Cervical_Injury, (E) TBI_Present, (F) HR_mean, (G) Vertebra-
l_Artery_Injury, and (H) MAP_mean. PDPs of AIS_ad, time_MAP_Avg_above_104, and

time_MAP_Avg_below_76 are shown in Fig 4.

(TIF)

S7 Fig. AUC performance plots for investigating lower and upper MAP thresholds using

best-performing parsimonious BPlog and BPXGB models. (A) Similar to the LogLoss plots,

the best-performing lower threshold values were 74, 75, 76, and 79 mmHg and the best-per-

forming upper threshold values were 103, 104, and 105 mmHg for BPlog. Of the best-perform-

ing thresholds, inclusion of an upper threshold features produced greater improvement to

AUC than inclusion of an individual lower threshold feature. (B) For BPXGB, the best-perform-

ing lower threshold values were 74, 75, and 76 mmHg, and the best-performing upper
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threshold values were 103 and 104 mmHg. Similar to BPlog, of the best-performing thresholds,

inclusion of an individual upper threshold feature improved AUC performance more than

inclusion of an individual lower threshold feature.

(TIF)

S8 Fig. Receiver operating characteristic (ROC) curves of individual projects and the aver-

aged curve showing improvement in prediction performance through the workflow. (A)

ROC curves of the L2 regularized linear regression model BPlog trained on the initial feature

list with the exclusion of the MAP threshold features. The average model AUC was 0.63 ± 0.02.

(B) ROC curves of BPlog trained on the full feature list including the two MAP threshold fea-

tures. The average AUC was 0.68 ± 0.02. (C) ROC curves after performing feature reduction

with BPlog to find the best-performing parsimonious model (9-feature parsimonious feature

list). The average AUC increased to 0.84 ± 0.02. (D) ROC curves after testing different MAP

thresholds with BPlog and selecting for the best-performing lower (79 mmHg) and upper (104

mmHg) thresholds. The resulting AUC improved incrementally (AUC 0.85 ± 0.02) compared

to using 76 mmHg and 104 mmHg. (E) ROC curves after performing the workflow on the

eXtreme gradient boosted tree model BPXGB. The parsimonious feature list consisted of 11 fea-

tures and the best-performing MAP thresholds were 76 and 104 mmHg. The average model

AUC was 0.87 ± 0.01.

(TIF)

S9 Fig. Model validation plots from performing predictions across the 25 projects with a

validation cohort of 59 patients. Of these, 14 patients improved in AIS score while 45 patients

did not. Best F1 thresholds as calculated by the AutoML platform were also aggregated from

each project (shown in red). (A) Prediction for each validation subject by BPlog. The average

best F1 threshold is 0.41 ± 0.04. (B) Prediction for each validation subject by BPXGB. The aver-

age best F1 threshold is 0.46 ± 0.04.

(TIF)

S1 Table. Features and definitions for the 46 features used for modeling.

(TIF)

S2 Table. Population stability index (PSI) of the parsimonious BPlog and BPXGB model fea-

tures.

(TIF)

S3 Table. Within-cluster mean and 95% confidence interval of numeric features.

(TIF)
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