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REGULAR ARTICLE
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Abstract
Background & aim A potential benefit of conserva-
tion agriculture (CA) is soil organic carbon (SOC)
accrual, yet recent studies indicate limited or no
impac t o f CA on to ta l SOC in t rop ica l
agroecosystems. We evaluated biochemical indica-
tors of soil C cycling after 9 years (18 seasons) of
contrasting tillage with and without maize residue
retention in western Kenya.
Methods Potential activities of C-cycling enzymes
(β-glucosidase, GLU; β-galactosidase, GAL;
glucosaminidase, GLM; cellobiohydrolase, CEL),
permanganate-oxidizable C (POXC), and soil organic
matter (SOM) composition (by infrared spectroscopy)
were measured.

Results POXC tended to be greater under reduced till-
age and residue retention, but did not significantly differ
among treatments (≤ 2%of SOC). Despite no significant
differences in SOC concentrations or stocks, activities
of all 4 C-cycling enzymes responded strongly to tillage,
and to a lesser extent to residue management. Activities
of GLU, GAL, and GLM were greatest under the com-
bination of reduced tillage and residue retention relative
to other treatments. Reduced tillage produced an enrich-
ment in carboxyl C = O (+6%) and decreased polysac-
charide C-O (−3.5%) relative to conventional tillage
irrespective of residue management.
Conclusions Though enzyme activities and POXC are
typically associated with SOC accrual, changes in soil C
cycling at this site have not translated into significant
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differences in SOC after 9 years. Elevated enzyme ac-
tivities may have offset potential SOC accumulation
under CA. However, the ratio of C-cycling enzyme
activities to SOC was higher under reduced tillage and
residue retention relative to other treatments, indicating
that stoichiometric scaling of SOC and enzyme activi-
ties does not explain absence of significant differences
in SOC among tillage and residue managements. Poten-
tial factors that may explain the low SOC accrual rates in
this tropical agroecosystem included the low, albeit
realistic, levels of residue retention, nutrient limitations,
and high temperatures favoring decomposition.

Keywords Conservation agriculture . Soil organic
carbon . Enzyme activities . Glucosidase . Kenya .

Tillage . Residue

Introduction

Conservation agriculture (CA) is aimed at improving soil
and water conservation, soil health, and long-term crop
productivity (Andersson and Giller 2012; Hobbs et al.
2008; Powlson et al. 2016). The combined use of re-
duced tillage, maintenance of soil cover, and crop rota-
tion under CA has been reported to promote soil organic
carbon (SOC) accrual (Brouder and Gomez-Macpherson
2014; Lal 2015; Palm et al. 2014). Such increases in soil
C stocks under reduced tillage have been attributed to
reduced soil mixing, aeration and slower turnover of
SOC that is physically protected in soil aggregates
(Chivenge et al. 2007; Janzen 2006; Six et al. 2000,
2002), thus leading to an increase in SOC levels, provid-
ed similar rates of organic matter (OM) inputs are main-
tained. However, recent meta-analyses have pointed out
that long-term field studies comparing SOC stocks in CA
and conventional tillage show variable results, ranging
from increases, to no effect, to decreases in SOC (Gill
et al. 2015; Palm et al. 2014; Powlson et al. 2016).
Understanding the relative importance of different
drivers (e.g. soil type, climate, tillage intensity, quantity
and quality of OM inputs), and how they affect biochem-
ical processes underpinning soil C decomposition, re-
quires further study to explain this variation in response
(Govaerts et al. 2009; Ogle et al. 2005). This is particu-
larly the case in tropical agroecosystems for which there
is a relative lack of studies on CA as well as drivers of C
turnover (Batjes and Sombroek 1997; Ogle et al. 2005;
Palm et al. 2014). In such systems, where there is a strong

need for cropping practices that adequately conserve
soils and maintain productivity, the potential of CA to
enhance SOC as compared to conventional tillage sys-
tems has been questioned (Cheesman et al. 2016; Giller
et al. 2009; Govaerts et al. 2009; Palm et al. 2014;
Powlson et al. 2016). No or limited effect of CA on
SOC has been attributed to highOMdecomposition rates
(Ogle et al. 2005; Palm et al. 2014; Powlson et al. 2016;
Scopel et al. 2013), as well as relatively low levels of
residue input (Paul et al. 2013, 2015) that may limit CA
induced SOC accrual as compared to temperate climates.

Enzyme activities represent potential rates of OM
transformations (Burns et al. 2013; Tabatabai 2003).
Since the stabilization of OM additions into SOC is
mediated by microbial processing (Cotrufo et al.
2013; Kallenbach et al. 2016), the activity of en-
zymes that transform OM has been proposed to be a
fundamental control on SOC accrual (Fontaine and
Barot 2005; Lawrence et al. 2009; Schimel and
Weintraub 2003; Sinsabaugh 2008). As a result, as-
says of soil enzyme activities can be used to help
explain SOC response to managements such as till-
age and OM inputs (Dick 1984; Stott et al. 2010).
Potential activities of C-degrading enzymes have
been shown to be more sensitive to management
impacts than total SOC (e.g., Bergstrom et al. 1998;
Marinari et al. 2006; Roldán et al. 2005; Sotomayor-
Ramírez et al. 2009). Assaying a suite of enzymes
involved in multiple points of decomposition path-
ways (e.g., cellulose to glucose) and diverse OM
components (e.g., cellulose and chitin) can provide
comprehensive understanding of C cycling (de la Paz
Jimenez et al. 2002) which may help detect and
explain management effects on total SOC. For exam-
ple, cellobiohydrolase (CEL) facilitates the first step
in degradation of cellulose, a prominent input to soils
present in crop residues (Bandick and Dick 1999).
Following depolymerization of cellulose, glucosidase
(GLU) and galactosidase (GAL) hydrolyze the
resulting oligosaccharides into low molecular weight
sugars. Glucosaminidase (GLM) is involved in deg-
radation of chitin, a compound present in fungal
biomass, and is sensitive to management practices
such as tillage that influence fungal populations
(Ekenler and Tabatabai 2003; Mbuthia et al. 2015).
Despite the potential of C-cycling enzymes to eluci-
date CA effects on soil C cycling, only one study on
CA to-date has examined such enzymes (GLU,
GLM) in a temperate agroecosystem in which strong
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increases in SOC occurred under reduced tillage and
residue retention (Mbuthia et al. 2015).

Differences in soil enzyme activities are expected to
be reflected by permanganate-oxidizable C (POXC),
because POXC is thought to represent a microbially-
processed, active C fraction – though not necessarily a
labile one – and an early indicator of SOC accrual
(Culman et al. 2012; Hurisso et al. 2016; Lucas and
Weil 2012). POXC is strongly associated with changes
in total SOC (Lucas and Weil 2012) and is sensitive to
management practices that increase total SOC in the
long-term, including tillage and OM additions (Culman
et al. 2012; Hurisso et al. 2016; Quincke et al. 2007;Weil
et al. 2003). In semi-arid regions, POXCwas found to be
more sensitive than total SOC to tillage management,
and was increased under reduced tillage relative to con-
ventional tillage (Melero et al. 2009). However, the
response of POXC to tillage and residue components of
CA has yet to be verified in tropical agroecosystems.

The activity of soil enzymes that drive soil C trans-
formations could also impact the relative abundance
of organic functional groups that constitute SOM
(e.g., carboxyl C = O, ester C-O, aliphatic C-H). For
example, decomposition of polysaccharides such as
cellulose can result in decreased absorbance of poly-
saccharide C-O and greater relative absorbance of the
oxidation product carboxyl C = O (Pérez et al. 2002).
Shifts in SOM composition due to tillage and residue
management can be characterized by diffuse reflec-
tance infrared Fourier transform (DRIFT) spectrosco-
py as relative changes in organic functional groups
(Parikh et al. 2014).

The objective of this study was to evaluate the effect
of tillage and residue management on biochemical indi-
cators in a strongly weathered soil (Typic Rhodiudox) in
western Kenya that could detect and explain differences
in soil C cycling despite a lack of significant differences
in total SOC after 9 years of CA practices (Margenot
et al. 2017; Paul et al. 2013, 2015). This approach would
potentially identify mechanisms explaining soil C re-
sponse to CA in tropical agroecosystems. To this end,
we quantified soil enzyme activities, POXC, and SOM
functional group composition. We expected that bio-
chemical indicators of C cycling would be more sensi-
tive than total SOC to tillage and residue management
and would provide us with a better understanding of
potential changes in SOC accrual. Specifically, we hy-
pothesized that relative to conventional tillage and res-
idue removal, reduced tillage and residue retention

would increase POXC and elevate activities of C-
cycling enzymes, which would be reflected in SOM
functional group composition as enrichment of carboxyl
C = O and a decrease in polysaccharide C-O.

Materials and methods

Site description

Our study was focused on a long-term CA trial in
Nyabeda, western Kenya, which was established in
March 2003 by the African Network for Soil Biology
and Fertility (AfNet) and the International Center for
Tropical Agriculture (CIAT). Extensive information on
this field trial is provided by Paul et al. (2013, 2015).
Briefly, the trial is located at 1320 m above sea level at
0° 7′46.96″N and 34°24′19.15″E, and experiences a
mean annual temperature of 22.5 °C. Mean annual
precipitation is 1727 mm (1997–2013), distributed
bimodally over long rains (March–August) and short
rains (September–January). The soil is a Typic
Rhodiudox (WRB Ferralsol) with clay texture (663 g
clay kg−1, 151 g silt kg−1 silt, 167 g sand kg−1) at 0–
30 cm depth (Jelinski, unpublished).

The trial was established as a randomized block
design with tillage and residue as main factors, each
with two levels: conventional tillage (+T) or reduced
tillage (−T), and residue retention (+R) or residue re-
moval (−R). Each treatment occupied an individual plot
(7 m × 4.5 m) across each of the four blocks. Maize (Zea
mays L.) was cropped during the long rains followed by
soybean (Glycine max L.) during the short rains. All
plots were fertilized with 60 kg N ha−1 as urea, 60 kg P
ha−1 as super triple phosphate (TSP), and 60 kg K ha−1

as muriate of potash per growing season.
Under conventional tillage, the plots were prepared

by hand hoeing to approximately 15 cm soil depth,
mimicking practices used by smallholder farmers in
this region (Kihara et al. 2011). Weeding was per-
formed by hand hoe to 8 cm depth thrice per season.
Under reduced tillage, the seedbed was prepared by
hand hoeing to 3 cm, and hand pulling was used to
weed thrice per season. Beginning in the 2009 long
rainy period, herbicides (glyphosate and 2,4-
dichlorophenoxyacetic acid) were applied to reduced
tillage plots prior to planting, with subsequent
weeding performed manually as described above. Af-
ter harvest, maize residues were collected, dried, and
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stored during the dry season (1 month). Within treat-
ments with residue retention, chopped and dried
maize residues were reapplied at a rate of 2 Mg ha−1

immediately prior to soybean planting, and were in-
corporated by conventional tillage or remained on the
soil surface as mulch under reduced tillage. Maize
residue rates of 2 Mg ha−1 achieve the minimum
30% soil surface coverage recommended by CA,
and given maize yields in the region and competing
demands on residue use (e.g., fodder), these rates are
considered realistic maximums for western Kenya
(Paul et al. 2013). Mean maize residue composition
on an air-dried basis was 40.4% C, 0.36% N, 0.04% P,
0.98% K, with 0.51% polyphenols 4.0% lignin and
5.3% ash (Kihara et al. 2012).

Soil samples obtained by Paul et al. (2015) were
used for additional measurements of POXC, enzyme
activities, and DRIFTS. As described by Paul et al.
(2015), soils were sampled 4 weeks before maize
planting (prior to the long rain period) in year 9
(February 2012), corresponding to 18 cropping sea-
sons since treatment implementation. For SOC, four
soil subsamples per plot were sampled at 0–5, 5–

15 cm and 15–30 cm depths using 5 cm diameter
cores to provide one composite sample per plot that
was air-dried prior to analyses. Total SOC data from
the same soil samples were published by Paul et al.
(2015) and showed that there were no significant
differences in total SOC concentrations nor stocks
among tillage and residue treatments at the time of
sampling, 9 years after trial establishment (Table 1).
Values for SOC and bulk density at 0–15 cm depth
were calculated based on values for 0–5 cm and 5–
15 cm depths. For all other analyses, one composite
soil sample per plot was sampled at 0–15 cm and 15–
30 cm depth.

Permanganate-oxidizable C (POXC)

POXC was determined using the method of Weil et al.
(2003) as modified by Culman et al. (2012). Briefly,
duplicate air-dried and sieved (< 2 mm) 2.50 g soil
samples were oxidized with 0.02 mol L−1 KMnO4 by
2 min shaking followed by 10 min incubation. Non-
reduced Mn7+ was quantified by colorimetry (550 nm)

Table 1 Soil properties in year 9 (2012) of a conservation agriculture trial in western Kenya. Soil organic carbon (SOC) values are derived
from measurements by Paul et al. (2015)

SOC SOC C:N pH

g kg−1 Mg ha−1 (0.01 M CaCl2)

Depth 0–15 cm mean se mean se mean se mean se

−T − R 18.1 0.5 a 29.7 0.5 a 11.2 0.2 a 4.71 0.05 a

−T + R 20.2 1.2 a 32.6 2.0 a 11.3 0.0 a 4.77 0.05 a

+T − R 19.0 0.6 a 29.5 1.4 a 11.3 0.1 a 4.93 0.04 a

+T + R 19.2 0.2 a 29.2 0.9 a 11.3 0.1 a 4.92 0.04 a

Depth 15–30 cm

−T − R 16.1 0.5 a 25.6 1.9 a 10.5 0.3 a 5.16 0.06 ab

−T + R 17.8 1.1 a 29.7 2.6 a 11.0 0.2 a 5.00 0.07 b

+T − R 18.1 0.5 a 30.0 1.0 a 11.0 0.2 a 5.09 0.04 ab

+T + R 18.0 0.4 a 29.6 1.6 a 11.2 0.2 a 5.27 0.03 a

Depth 0–30 cm

−T − R 17.1 0.4 a 55.3 1.8 a 10.9 0.2 a 4.94 0.04 ab

−T + R 19.0 1.2 a 62.3 4.4 a 11.2 0.1 a 4.88 0.06 b

+T − R 18.5 0.5 a 59.5 2.1 a 11.2 0.1 a 5.01 0.03 ab

+T + R 18.6 0.1 a 58.8 2.3 a 11.2 0.1 a 5.10 0.03 a

Different letters indicate significant differences (p < 0.05)

se standard error, +T conventional tillage, –T reduced tillage, +R residue retention, –R residue removal
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and POXC (mg kg−1 soil) was calculated as described
by Culman et al. (2012).

Potential activities of C-cycling enzymes

To determine soil enzyme potential activities, a pa-
ra-nitrophenyl linked substrate specific to an en-
zyme is incubated with soil in a buffered solution,
and the release of para-nitrophenol (pNP) is deter-
mined colorimetrically to estimate the activity of
soil enzyme. Potential activities were assessed for
four C-cycling enzymes, β-glucosidase (Enzyme
Commission 3.2.1.21; GLU), β-galactosidase (EC
3.2.1.23; GAL), glucosaminidase (EC 3.2.1; GLM),
and cellobiohydrolase (EC 3.2.1.91; CEL) based on
the method of Verchot and Borelli (2005), developed
for weathered soils in western Kenya. Briefly, 1 g of
air-dried soil (<2 mm) was incubated at 37 °C (1 h
for GLU, GAL, GLM, and 2 h for CEL) in 50 mmol
L−1 acetate buffer (pH 5.0). While air-drying can
affect soil enzyme activities in some regions
(Sparling et al. 1986) others have reported to the
contrary (Zornoza et al. 2006). Regardless of abso-
lute effects, for a given soil type relative differences
in enzyme activities among treatments are likely to
persist after air-drying (Bandick and Dick 1999;
Hinojosa et al. 2004). In regions with prolonged
dry periods, such as western Kenya, air-drying is
similar to conditions experienced by surface soils
(Hinojosa et al. 2004). Soil enzymes such as GLU
and GAL for which the majority of total activity is
thought to be due to extracellular (matrix-bound)
enzymes have been found to be least sensitive to
air-drying (de Castro Lopes et al. 2015; Marando
et al. 2012), including in weathered soils in the
tropics (de Castro Lopes et al. 2015).

Assays were performed with a final substrate con-
centration of 10mmol L−1 per g soil for GLU, GAL, and
GLM, and 5 mmol L−1 per g soil for CEL. Triplicate
negative controls (no soil) were included. Reactions
were terminated with 4 mL of 0.1 mol L−1

tris(hydroxymethyl)aminomethane (THAM, also re-
ferred to as Tris) buffer (pH 12.0), and 1 mL of
0.5 mol L−1 CaCl2. THAM buffer was used instead of
sodium hydroxide (NaOH) to avoid potential abiotic
cleavage of pNP-linked substrates (Turner and
Haygar th 2005) . Assays were cen t r i fuged
(2113 × RCF, 3 min) to remove sediment and pNP in

the supernatant was quantified colorimetrically using
absorbance at 410 nm. Mean absorbance of the negative
controls was subtracted from absorbance of soil assays.
Potential activities of C-cycling enzymes were
expressed on a soil basis (μmol g−1 h−1) and normalized
to SOC (μmol pNP g C−1 h−1).

Diffuse reflectance infrared Fourier transform (DRIFT)
spectroscopy

Relative changes in SOM composition were evaluated
by DRIFT spectroscopy using an approach previously
applied for soils in western Kenya under differing tillage
management (Verchot et al. 2011). Spectra were collect-
ed on neat soil samples (no KBr dilution) loaded into an
aluminum well. Absorbance spectra were corrected
against a solid aluminum blank in ambient air as the
background using a Nicolet 6700 spectrometer (Thermo
Scientific, Waltham, MA) with a deuterated triglycine
sulfate (DTGS) detector and a diffuse reflectance acces-
sory (Pike AutoDIFF, Pike Technologies, Madison,
WI). Spectra were calculated as the mean of 400 scans
across 4000–650 cm−1 at 4 cm−1 resolution. Triplicate
spectra were collected on separate soil samples to ac-
count for potential heterogeneity in well packing
(Terhoeven-Urselmans et al. 2010) and averaged to
obtain a final spectrum for each soil.

To assess SOM composition, DRIFT spectra were
evaluated for six absorbance bands used in previous
studies to characterize SOM in weathered soils, in-
cluding western Kenya (Lehmann et al. 2007; Verchot
et al. 2011): phenol and/or alcohol O-H and amine N-
H at 3433 cm−1, aliphatic C-H at 2930 cm−1, carbox-
ylic C = O at 1780 cm−1, aromatic C = C with possible
ketone and/or quinone C = O and amide C = O con-
tributions at 1625 cm−1, aliphatic C-H at 1373 cm−1,
and polysaccharide C-O at 1018 cm−1. Though absor-
bance at these bands includes mineral contributions,
constant mineralogy across soil samples allows attri-
bution of relative differences in absorbance to organic
functional groups (Demyan et al. 2012; Margenot
et al. 2016; Verchot et al. 2011). To quantify relative
differences in band absorbance, for each spectrum the
absorbance intensity of each of the six bands was
normalized as the percent absorbance intensity of
the sum of absorbance intensities of the six bands
(Haberhauer et al. 1998; Verchot et al. 2011).
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Statistical analyses

Two-way analysis of variance (ANOVA) was per-
formed to evaluate tillage and residue treatment ef-
fects on soil variables, with two levels each for tillage
(+/−) and residue retention (+/−) using Proc GLM in
SAS v9.4 (Cary Institute, NC). First, an exploratory
model was used to test for tillage × residue interac-
tions (y = tillage residue block tillage × residue). For
variables that did not show a significant (p < 0.05)
interaction of tillage and residue treatments, a
readjusted model excluding this interaction was used.
Soil measures were analyzed independently for two
soil depths (0–15 cm and 15–30 cm). Linear correla-
tion analysis (Pearson’s correlation co-efficient, R)
was used to evaluate relationships of C-cycling en-
zyme activities with POXC and total SOC using Proc
CORR.

Results

Treatment effects on POXC

Tillage and residue management did not influence
POXC concentration, nor the proportion of total SOC
represented by POXC (Table 2). POXC was generally
higher at 0–15 cm depth (mean 386 mg kg−1) than at
15–30 cm depth (mean 306 mg kg−1), and represented
≤2.1% of total SOC.

Treatment effects on C-cycling enzyme activities

Potential activities of all 4 C-cycling enzymes were
impacted by tillage and residue management (Fig. 1).
Enzyme activities responded more strongly to tillage
than residue management, and were greater under re-
duced tillage compared to conventional tillage. The
combination of reduced tillage and residue retention
(−T + R) yielded similar or greater potential activities
of C-cycling enzymes as other treatment combinations,
and the combination of conventional tillage and residue
removal (+T-R) did not necessarily result in the lowest
enzyme activities.

Similar trends in treatment responses occurred at
both depths for GLU, GAL and GLM, and though
activities were higher at 0–15 cm depth, relative differ-
ences among treatments were more pronounced at 15–
30 cm depth. At the 0–15 cm depth reduced tillage

increased potential activities of GLU by 21%
(p = 0.003), GAL by 18% (p = 0.002), GLM by 24%
(p = 0.034), and CEL by 47% (p = 0.007) relative to
conventional tillage. Residue retention impacted en-
zyme activities depending on tillage management. In
tandem with reduced tillage, residue retention stimulat-
ed enzyme activities of GAL by 21% and GLM by 26%
compared to residue removal. Under conventional till-
age, residue retention elevated CEL activity by 97%
compared to residue removal.

The impact of tillage and residue management on C-
cycling enzyme activities extended to 15–30 cm depth.
Reduced tillage increased GLU by 27% (p = 0.051) and
GLM by 52% (p = 0.017) relative to conventional
tillage. Opposite to the trend at 0–15 cm depth, at 15–
30 cm depth residue removal stimulated CEL by 43%
compared to residue retention (p = 0.021) regardless of
tillage (T × R p = 0.20). When combined with reduced

Table 2 Soil permanganate-oxidizable carbon (POXC) in a 9-
year conservation agriculture trial in western Kenya under con-
ventional tillage (+T) and reduced tillage (−T), and residue reten-
tion (+R) and residue removal (−R)

POXC

(mg kg−1) (% of SOC)

mean se mean se

Depth 0–15 cm

− T − R 371 27 2.06 0.19

− T + R 387 13 1.85 0.09

+ T − R 370 17 2.04 0.13

+ T + R 361 7 1.88 0.03

p-value

Tillage 0.862 ns 0.977 ns

Residue 0.554 ns 0.182 ns

Tillage × Residue 0.464 ns 0.870 ns

Depth 15–30 cm

− T − R 284 13 1.77 0.10

− T + R 348 20 1.96 0.11

+ T − R 306 34 1.69 0.17

+ T + R 286 22 1.59 0.12

p-value

Tillage 0.427 ns 0.129 ns

Residue 0.400 ns 0.770 ns

Tillage × Residue 0.083 ns 0.660 ns

se standard error, SOC soil organic carbon, ns not significant at
p < 0.05
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tillage, addition of residues also increased GLM activity
by 57% (T × R p = 0.040).

While POXC was positively correlated with total
SOC (R = 0.59, p = 0.0003), potential activities of C-
cycling enzymes were more strongly associated with
POXC (R = 0.75–0.60) than with total SOC
(R = 0.60–0.36; Table 3). When normalized to SOC
(μmol pNP g C−1 h−1), potential activities of C-cycling
enzymes expressed similar response to tillage and resi-
due managements (Supplementary Fig. 1).

DRIFT spectroscopic characterization of SOM
composition

Tillage, but not residue management alone, produced
small but significant changes in the functional group
composition of SOM (Table 4). At 0–15 cm depth,
reduced tillage decreased polysaccharide C-O

(1018 cm−1) by 3.5% and increased the relative ab-
sorbance of carboxyl C = O (1780 cm−1) by 6%, as
well as aliphatic C-H (2930 cm−1) by 4%. Relative to
conventional tillage, the proportion of phenol and/or
alcohol O-H and amide N-H (3433 cm−1) decreased
by 1.6% under reduced tillage combined with residue
retention at 0–15 cm depth, and by 2.3% under re-
duced tillage at 15–30 cm depth.

Discussion

POXC response to tillage and residue management

Our hypothesis that the combination of reduced tillage
and residue retention would produce greatest mean
POXC, especially at 0–15 cm depth, was not confirmed.
Similar to total SOC, POXC tended to be higher under
the treatment of reduced tillage with residue retention
(CA), but did not differ significantly from other tillage
and residue managements. According to previous stud-
ies, POXC can be an indicator of SOC accrual (Hurisso
et al. 2016; Lucas and Weil 2012; Weil et al. 2003), and
this was confirmed at this site, with no significant
change in either C pool after 9 years of CA, suggesting
little C accrual under any of the treatments.

POXC has been interpreted as a ‘processed’ C frac-
tion based on its strong correlations with fine (53–
250 μm) particulate organic C (POC) and heavy
(>1.7 g cm−3) POC fractions across diverse cropping,
climate and soil conditions in the USA (Culman et al.
2012), and also as an ‘active’ C fraction because it is
strongly correlated with soil respiration and microbial
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Fig. 1 Activities of C-cycling enzymes in a 9-year conservation agriculture trial in western Kenya under conventional tillage (+T) and
reduced tillage (−T), and residue retention (+R) and residue removal (−R)

Table 3 Associations between potential activities of C-cycling
enzymes and C fractions in soils (0–15 and 15–30 cm depths) in
year 9 of a conservation agriculture trial in western Kenya

POXC total SOC

R p R p

GLU 0.75 <0.0001 0.49 0.0042

GAL 0.75 <0.0001 0.60 0.0003

GLM 0.62 0.0002 0.45 0.010

CEL 0.60 0.0003 0.36 0.041

GLU β - g l u co s i da s e , GAL β - ga l a c to s i d a s e , GLM
glucosaminidase, CEL cellobiohydrolase, POXC permanganate-
oxidizable carbon, SOC soil organic carbon
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biomass (Weil et al. 2003) and manure decomposition
(Tatzber et al. 2015). This apparent contradiction re-
flects the fact that decomposition is inherently associat-
ed with C loss through microbial respiration, but at the
same time favors stabilization of C in soil as decompo-
sition products (Cotrufo et al. 2013).

Though POXC did not significantly differ among
treatments at our study site, reduced- or no-tillage and/
or residue retention have been found to increase POXC
in temperate and tropical agroecosystems (Awale et al.
2013; Carbonell-Bojollo et al. 2015; Culman et al. 2012;
López-Garrido et al. 2014; Plaza-Bonilla et al. 2014),
even without increases in total SOC (e.g., Melero et al.
2009). The positive correlation of POXC and C-cycling
enzyme activities may reflect decomposition of OM by
enzymes (Li et al. 2016). POXC has been found to
positively associate with C and N mineralization, mi-
crobial biomass (Culman et al. 2012; Wade et al. 2016),
and maize and vegetable yields across a diversity of

soils and climates (Culman et al. 2013; Hurisso et al.
2016).

Changes in SOM composition

Shifts in organic functional groups in SOM detected by
DRIFT spectroscopy indicate tillage and residue effects
on soil C cycling. Changes in relative absorbance of
organic functional groups were statistically significant,
but minor (<7%). However, even small changes in SOM
composition can reflect alteration of soil C cycling (e.g.,
Erhagen et al. 2013; Haberhauer et al. 2000; Shi et al.
2006). Despite the semi-quantitative nature of DRIFT
spectroscopy, the changes in relative absorbance of se-
lected organic functional groups identify relative differ-
ences in SOM composition that are consistent with soil
enzyme activities. Lower relative polysaccharide C-O
and greater relative carboxyl C = O under reduced
tillage are consistent with elevated activity of

Table 4 Relative absorbance of organic functional groups
assessed by diffuse reflectance infrared Fourier transform
(DRIFT) spectroscopy of soils in a 9-year conservation agriculture

trial in western Kenya. Spectra were collected on neat (no KBr
dilution) samples. Significant differences (p < 0.05) determined by
Tukey’s test are indicatd by *

3433 cm−1 2930 cm−1 1780 cm−1 1625 cm−1 1373 cm−1 1018 cm−1

phenol, alcohol O-H,
amide N-H

aliphatic C-H,
stretch

carboxyl
C = O

aromatic C = C,
amide C = O

aliphatic C-H,
bend

polysaccharide
C-O

mean se mean se mean se mean se mean se mean se

Depth 0–15 cm

− T − R 17.0 0.1 12.9 0.2 11.5 0.3 19.5 0.3 17.4 0.1 21.8 0.1

− T + R 16.7 0.1 13.0 0.3 11.6 0.4 19.3 0.3 17.3 0.1 22.1 0.4

+ T − R 16.9 0.1 12.5 0.1 10.9 0.2 19.5 0.1 17.3 0.1 22.8 0.3

+ T + R 17.1 0.1 12.4 0.2 10.8 0.3 19.7 0.1 17.3 0.1 22.7 0.3

p-value

Tillage 0.150 0.035 * 0.034 * 0.256 0.787 0.022 *

Residue 0.783 1.000 0.898 0.859 0.677 0.638

Tillage × Residue 0.046 * 0.641 0.725 0.327 0.944 0.521

Depth 15–30 cm

− T − R 17.1 0.2 13.0 0.5 11.4 0.7 19.0 0.4 17.0 0.2 22.4 0.8

− T + R 16.9 0.1 12.5 0.2 11.0 0.2 19.3 0.2 17.3 0.2 22.9 0.2

+ T − R 17.4 0.2 13.0 0.3 11.2 0.3 19.3 0.1 17.0 0.2 22.2 0.4

+ T + R 17.5 0.1 12.8 0.4 10.9 0.6 19.3 0.2 17.0 0.0 22.6 0.6

p-value

Tillage 0.013 * 0.739 0.714 0.736 0.318 0.629

Residue 0.755 0.316 0.505 0.576 0.473 0.375

Tillage × Residue 0.280 0.696 0.866 0.607 0.29 0.91

se standard error, T tillage, R residue
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polysaccharide-degrading enzymes (CEL, GLU) be-
cause oxidation of polysaccharides can be detected as
increased absorbance of carboxyl C = O relative to
polysaccharide C-O (Ernakovich et al. 2015; Pérez
et al. 2002).

Relative enrichment in aliphatic C-H absorbance un-
der reduced tillage, independent of residue manage-
ment, has been reported previously (Ding et al. 2002;
Veum et al. 2014). For example, in western Kenya,
minor but significant enrichment in aliphatic C-H
(+0.14%)was detected after 7 years of no-tillage relative
to conventional tillage in coarse, but not fine-textured,
soils (Verchot et al. 2011). The association of aliphatic
C-H with POXC and total SOC could reflect contribu-
tion of microbial biomass and metabolic products
enriched in aliphatic C-H (e.g., lipid bilayer) to SOC
(Cotrufo et al. 2013; Grandy and Neff 2008; Mambelli
et al. 2011; Throckmorton et al. 2015). As aliphatic C-H
and POXC were positively correlated in this and other
studies (Veum et al. 2014; Margenot et al. 2015), ele-
vated aliphatic C-H but not POXC under reduced tillage
at our site could mean that changes in SOM composition
were insufficient to influence this active C fraction.

C-cycling enzyme response to CA practices

A stronger impact of tillage than residue management
on enzyme activities may be explained by the low
residue rates used in this study, because other studies
have found changes in SOC under CA to be most
strongly driven by OM input rates rather than by tillage
(Jat et al. 2012; Mangalassery et al. 2015). In addition to
providing a C source, surface residue retention moder-
ates soil moisture and temperature conditions, which
can increase microbial activity (Govaerts et al. 2007;
Jat et al. 2012). Enzyme activities tended to show sim-
ilar trends by treatments across enzyme types and
depths, with elevated activity under reduced tillage and
residue retention (CA). Though enzyme activities were
lower, a stronger relative response of enzyme activi-
ties (GLU, GAL, GLM) to tillage and residue treatments
at 15–30 cm depth suggests greater sensitivity of soil C
cycling at subsurface depths to CA practices. CEL ac-
tivities exhibited a unique depth-specific pattern, with
low activity under reduced tillage and residue retention
at 0–15 cm depth, yet higher activity at 15–30 cm depth.
It is not clear why CEL activities exhibited this
treatment- and depth-response.

Though bacteria and fungi produce enzymes in the
cellulose degradation pathway (GLU, GAL, CEL), fun-
gi have been proposed to be responsible for the majority
of GLU (Rhee et al. 1987) and CEL (Baldrian and
Šnajdr 2011; Kjøller and Struwe 2002) activities by
secretion of these enzymes, in particular under no-
tillage (van Capelle et al. 2012; Zuber and Villamil
2016). Fungi can further influence GLM indirectly be-
cause this enzyme degrades chitin derived from fungal
biomass (Parham and Deng 2000). Positive associations
of fungal abundance or biomass and GLM activity
(Miller et al. 1998; Rodriguez-Kabana et al. 1983)
may be enhanced under minimal soil disturbance
(Jansa et al. 2003; van Capelle et al. 2012). Activity of
GLM could potentially serve as an early indicator of
SOC accrual, because chitin is more resistant to degra-
dation in soils than cellulose and may contribute to
greater SOC under reduced tillage compared to conven-
tional tillage (Guggenberger et al. 1999; Nakas and
Klein 1979; Schreiner et al. 2014; Six et al. 2006). At
0–15 cm depth, the activity of GAL was most sensitive
to treatments and was more strongly correlated with
total SOC than GLU (R = 0.60 versus 0.49, respective-
ly). Activity of GLU is often used as an indicator of soil
C cycling because it is considered to be in equilibrium
with SOC (i.e., GLU:SOC) in stable systems and tends
to be strongly correlated with SOC (Stott et al. 2010).
Equal or greater sensitivity of activities of other C-
cycling enzymes tomanagement practices that influence
SOC underscores the importance of assaying activities
of multiple enzymes.

In order to improve understanding of management
impacts on soil enzyme activities and C cycling, future
work should consider relationships between soil enzyme
activities and genes encoding these enzymes (Trivedi
et al. 2016). This approach can identify enzyme origins
(e.g., fungal versus microbial; Lagos et al. 2016; Ragot
et al. 2017) and how microbial community response to
management may be implicated in changes in enzyme
activity and soil C (Cui et al. 2015).

Soil C cycling response to CA

Differences in rates of C transformations represented by
enzyme activities can be interpreted in two ways with
respect tominor changes in SOC. Sensu stricto, elevated
enzyme activities indicate higher potential rates of C
turnover. This could antagonize SOC accrual if enzy-
matic transformation rates, a reflection of microbial C
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demand, surpass C input rates. This may well be the
case in this trial given the low, albeit realistic for western
Kenya smallholders (Giller et al. 2009; Guto et al.
2012), rates (2 Mg ha−1) of relatively low quality maize
residues (high C:N). Trends in enzyme activities may
reflect higher decomposition rates under reduced tillage
and with residue retention. At the same time, elevated
enzyme activities signify a greater potential for SOC
accrual because microbial processing products are more
favorably stabilized as SOC (Cotrufo et al. 2013;
Grandy and Neff 2008; Mambelli et al. 2011;
Throckmorton et al. 2015).

A second, compatible interpretation is that potential
enzyme activities scale stoichiometrically with SOC
content (Sinsabaugh 2008; Sinsabaugh et al. 2014;
Sinsabaugh and Follstad Shah 2012). In this view, en-
zyme activities are a response to substrate availability,
and therefore increase with an increase in C substrate.
Even so, the reciprocal microbial-SOC interplay that is
facilitated through enzyme activities means these activ-
ities can serve as sensitive indicators of changes in SOC
(Green et al. 2007; Stott et al. 2010; Tian et al. 2010).
Significant differences in GLU, GAL and GLM activi-
ties among treatments were positively associated with
non-significant trends in POXC and SOC, in support of
previous studies in temperate systems that potential
activities of soil enzymes such has GLU can be early
indicators of SOC accrual (de la Paz Jimenez et al. 2002;
Stott et al. 2010).

However, similar trends in enzyme activities normal-
ized to SOC (μmol pNP g C−1 h−1) among tillage and
residue treatments as on a soil mass basis (μmol pNP g
soil−1 h−1) suggests that enzyme activities did not simply
scale with SOC. It has been proposed that a GLU:SOC
ratio greater than 122 μmol pNP g C−1 h−1 indicates
SOC accrual, 122–72 μmol pNP g C−1 h−1 indicates
SOC equilibrium, and less than 72 μmol pNP g C−1 h−1

indicates SOC loss (Stott et al. 2010). Based on this
index, empirically developed for temperate systems,
GLU:SOC at our tropical site would suggest SOC loss
under all treatments. It is difficult to interpret the values
of GLU:SOC based on the index proposed by Stott et al.
(2010) given strong differences in soil and climate type,
and because the lack of baseline activity of GLU (and
other C-cycling enzymes) when the trial was
established. In order to better ground understanding of
soil enzyme activities as indicators of SOC dynamics,
future research should examine changes in C-cycling
enzyme activities and SOC over time in order to better

understand how changes in enzyme activities corre-
spond to changes in SOC.

Observed differences in enzyme activities and SOM
composition, but not total SOC, could be interpreted as
changes in soil C transformations that have not translat-
ed to significant changes in total SOC. A possible and
obvious explanation is that C inputs (residue rates) are
too low. This mass balance approach is based on the
concept of SOC as the difference between C inputs and
outputs, and so SOC accrual requires that inputs exceed
outputs (Janzen 2006; Kong et al. 2005). However, the
effects of residue rates on SOC are not straightforward,
in particular when residue quality and fertilization are
considered. For example, minimum residue rates for
maintaining SOC tend to be lessened by N fertilization
(Lemke et al. 2010), and fertilizer N inputs at our site are
considered sufficient for maize production (Kihara and
Njoroge 2013).

An additional possibility is limitation of SOC accrual
by non-C nutrient elements, conceptualized as the
Binorganic nutrient cost^ of SOM accrual (Richardson
et al. 2014). In this view, limitation of soil microbes by
N, P, and S leads to mineralization of SOM to access
these nutrients, entailing C loss. Supplying these nutri-
ents averts C mineralization, and can yield rapid in-
creases in stable (fine-fraction) SOC and efficiency of
C stabilization (Kirkby et al. 2013, 2016; Kirkby et al.
2014; Kirkegaard et al. 2014; Manzoni et al. 2012). This
effect is especially aggravated by surface stratification
of nutrients under reduced tillage, as observed for P at
our site (Margenot et al. 2017), and in weathered soils
with inherently low fertility (Kirkby et al. 2014). Back-
ground fertilization at our trial was based on regional
recommendations (KARI 1994; Kihara and Njoroge
2013) of N, P, and K, but even then yielded low avail-
able P levels (Margenot et al. 2017) and did not include
S and Ca despite their likely limitation (Kihara and
Njoroge 2013). Soil nutrient constraints may thus con-
tribute to the observed disparity between greater SOC
accrual under CA in temperate versus tropical
agroecosystems that is typically attributed to differences
in climate-driven rates of OM decomposition (e.g.,
Powlson et al. 2016).

Conclusion

At a 9-year trial in western Kenya, tillage and residue
treatments that yielded non-significant differences in
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total SOC showed no significant differences in POXC.
However, a significant response of soil enzyme activi-
ties as biochemical indicators of soil C cycling was
detected. Greatest potential activities of enzymes oc-
curred under the combination of reduced tillage and
residue retention prescribed by CA, including the se-
quence of decomposition of cellulose to glucose. Con-
sistent with elevated activities of C-cycling enzymes,
SOM enrichment in carboxyl C = O and aliphatic C-H
was detected for this treatment. Strong positive correla-
tions of C-cycling enzyme activities with POXC and
SOC suggest that potential enzyme activities can serve
as indicators sensitive to minor differences in soil C in
weathered soils in tropical climates. These results sup-
port the hypothesis that reduced tillage, and to a lesser
extent residue retention (at relatively low, albeit region-
ally realistic, rates), induce differences in soil C cycling
relative to conventional tillage and residue removal.
Elevated enzyme activities may have offset soil C in-
puts, which would entail greater nutrient ‘functionality’
of SOC. Non-significant trends in SOC after 9 years of
treatment indicate at best a very slow rate of SOC
accrual, which may be explained by low residue quan-
tity and/or nutrient limitation in combination with trop-
ical climatic conditions of high humidity and tempera-
ture. Future research should quantify the extent to which
these potential constraints (co-)limit SOC accrual in
tropical agroecosystems on weathered soils so as to
develop management solutions (e.g., residue retention
rates, N and P availability) that best support long-term
soil fertility and productivity in these systems.
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