
UC Davis
UC Davis Electronic Theses and Dissertations

Title
STraceBert: Source code retrieval using semantic application traces

Permalink
https://escholarship.org/uc/item/32198511

Author
Spiess, Claudio

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32198511
https://escholarship.org
http://www.cdlib.org/


STraceBert: Source code retrieval using semantic application traces

By

CLAUDIO SPIESS
THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Premkumar T. Devanbu

Vladimir Filkov

Cindy Rubio-González
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Abstract

Software reverse engineering is an essential task in software engineering and security, but it can

be a challenging process, especially when artifacts are engineered (adversarially) to resist reverse

engineering.. To address this challenge, we present STraceBERT, a novel approach that utilizes a

Java dynamic analysis tool to record calls to core Java libraries, and pretrain a BERT-style model on

the recorded application traces for effective method source code retrieval from a candidate set. Our

experiments demonstrate the effectiveness of STraceBERT in retrieving the source code compared

to existing approaches. Our proposed approach offers a promising solution to the problem of code

retrieval in software reverse engineering and opens up new avenues for further research in this area.
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CHAPTER 1

Introduction

Software reverse engineering is a critical task in the field of software engineering and security.

A common approach is to re-engineer the source code from the compiled binary code to under-

stand the functionality and vulnerabilities of the software. The task becomes more challenging in

an adversarial setting, where the binary may be intentionally constructed to hinder analysis. A

common example is ransomware, which can be expected to be obfuscated and invoke antianalysis

techniques. A reverse engineer wants to understand how the malware works, so they can dis-

cover weaknesses, capabilities, and vulnerabilities used. Yet, understanding behavior from millions

of assembler instructions is untenable, and practitioners have developed decompiler tools such as

Ghidra1 for native binaries, or Procyon2, CFR3, and Fernflower4 for Java bytecode. However, these

tools are sensitive to obfuscation techniques, and the usefulness of their output is limited in many

such cases.

We hypothesize that while any binary can obfuscate their control flow, variable names, etc,

they cannot hide their system calls without a rootkit. These system calls can be recorded on Unix

systems with the strace5 command. We hypothesize that a complex enough sequence of system

calls can be used to retrieve source similar to that of the system which initiated tem, using an

embedding model and vector database to retrieve the most similar known sequence of calls with

source code. Due to the challenge of aligning method boundaries and source code with system call

sequences, we adapt this problem to the Java ecosystem. We utilize a Java dynamic analysis tool

Jackal, that instruments bytecode on the fly and records events such as method calls, exits, and

field modifications.

1Ghidra: https://github.com/NationalSecurityAgency/ghidra
2Procyon: https://github.com/ststeiger/procyon
3CFR: https://www.benf.org/other/cfr/
4Fernflower: https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/
engine
5strace: https://strace.io/
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We draw an analogy between system calls and calls into Java core libraries i.e. java.*. Using

Jackal, we trace the test suites of a set of open source Java projects, record their true source code,

train a BERT-style model on the sequences of Java calls, embed all sequences, and then evaluate

the similarity of proposed source code candidates for a holdout set. Through our experiments,

we demonstrate the effectiveness of our proposed model in retrieving the source code compared to

existing baselines.
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CHAPTER 2

Background and Motivation

2.0.1. Reverse Engineering & Motivation. The task of reverse engineering is an important

part of software engineering and security. A reverse engineer in a software context attempts to

analyze and understand a piece of software. Usually, this means the original source code is not

available to the reverse engineer. Therefore, the reverse engineer is motivated to produce source

code for the given artifact they are analyzing. The process of returning from low level bytecode or

assembly to a high level language is called decompilation. This is usually done with an analytical

i.e. procedural decompiler that is tailor built to the specific instruction or bytecode set and target

output language.

Reverse engineering is important for various reasons, the most critical of which can be considered

its application in security. When security specialists encounter a piece of malware, whether through

automated submission via antivirus software, or specialist extraction following a high-profile attack

such as Stuxnet or the Colonial Pipeline ransom, their goal is to understand how the malicious

software (“malware”) accomplished its attack and what its capabilities are. With this knowledge,

security companies and operating system developers can fix security vulnerabilities and develop

counter measures. With this goal in mind, reverse engineers usually use a set of common tools

depending on the type of software artifact used during an attack. It is likely that most malware is

written in C/C++ and distributed in binary format, potentially with measures that make reverse

engineering more difficult. Such measures often include obfuscation, which is the process of making

the binary/byte code instructions, or the original code, more complicated. This is usually achieved

by removing or renaming variable names to nonsensical values, adding dummy instructions or

code, complicating control flow, and more. Given that most artifacts are binaries, reverse engineers

use tools such as HexRays disassembler or the NSA’s Ghidra decompiler. Disassemblers focus on

displaying the binary instructions in a more visual and navigable way, while decompilers attempt

to produce source code based off the binary instructions.

3



However, binary instructions are extremely verbose and low level, making it a slow and painstak-

ing process that requires a highly specialized and experienced engineer to understand the workings

of a complicated, adversarial (e.g. obfuscated) piece of software. On the other hand, decompilers

use heuristics to produce code that was likely to produce the instructions, but without a symbol

table (which would likely be removed) cannot produce meaningful variable names. Decompilers

also produce ”unnatural” code, i.e. code that programmers would find difficult to follow. Often,

the code produced is not actually compilable or usable without extensive changes by an engineer.

Therefore, it serves to assist the analysis of the artifact only.

Given these limitations, this work explores a novel approach to reverse engineering. Given that

all software, even malware, must make system calls to achieve basic functionality such as connecting

to the internet or writing to a file. These calls can be monitored with simple tools such as strace.

By recording system calls for known pieces of code, we can produce a database of code, and then

search for the source code of a set of system calls for which the code is desired. The possible

code candidates can then be presented to a reverse engineer as they are working on analyzing the

artifact. This thesis investigates the feasability of this approach.

2.0.2. Tracing: Jackal & Bartok. This work uses Jackal, a dynamic analysis tool devel-

oped in lab by previous members. The tool consists of a modified OpenJDK JVM and a Java

agent. The agent calls the added functions in the custom JVM to achieve low level operations such

as dumping the recorded data to disk. The agent is a piece of Java software that implements the

JavaAgent interface. It is given the bytecode of each class encountered during runtime, which is

then modified to include instrumentation: code that records the values of fields, method calls, etc.

The bytecode is returned to the JVM which then executes it. Once the JVM is closed e.g. when

the program finishes, it dumps all the gathered data to disk. These dumps are then processed to

extract useful data for our task. This is further described in chapter 4 starting on page 7.
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CHAPTER 3

Related Work

We searched for similar works applying dynamic analysis for obtaining or augmenting source

code, decompilation with ML augmentation, and clone detection. There is a line of work that uses

ML methods to improve decompiled code [21, 25] or improve source code retrieval using static

analysis products [1]. Another line of work looks at binary clone detection & binary diffs [10, 12,

18]. Finally, a line of work looks at embedding binary code [8]. We found only some work [30]

which uses dynamic analysis techniques in a similar fashion as this work.

3.0.1. Augmenting Decompiled Code & Static Analysis. This line of work uses the

output of a decompiler as a starting point for producing helpful information to a reverse engineer.

They do not include any dynamic analysis products in their methodologies. Al-Kaswan et al. [21]

extended large pre-trained models of source code to summarize de-compiled binary functions in

C. The goal of this work was to produce natural language descriptions from decompiled code that

closely matched the original documentation of the function in the dataset. They achieved a BLEU-

4 score of 58.82 and 44.21 for decompiled and decompiled obfuscated code respectively. Lacomis

et al. [25] focused on variable name recovery from decompiled source code in C. This approach

predicted identifier names identical to the ground truth 74.3% of the time. Ahmed et al. [1] found

an improvement in the CodeSearchNet [19] code summarization task by few-shot prompting

large language models with static analysis products such as repository metadata, data flow graphs,

and tagged identifiers, suggesting that static analysis products may help guide large models.

3.0.2. Binary Clone Detection & Diffs. The binary clone detection and binary diff tasks

aim to quantify the similarity of two given binaries and produce matchings. Such approaches relate

to this thesis as we also aim to find similar binaries (with associated source code) for a given sam-

ple. Farhadi et al. [12] presented non-probabilistic algorithms for matching binaries i.e. detecting

binary clones. Hu et al. [18] introduced a semantic approach for binary clone detection that utilizes
5



dynamic analysis products as part of their algorithm. Similar to this thesis, they executed a binary

function with its test cases and emulated their execution. Duan et al. [10] introduced an unsu-

pervised code representation learning approach, using code semantics and control flow to generate

block level embeddings, and a greedy matching algorithm. Their approach outperformed previous,

non-neural methods. Koo et al. [24] improved upon Duan et al. [10], reporting an improvement of

49.84% on average, using a BERT-style [7] model on assembler instructions.

3.0.3. Embedding Binary Code. Ding et al. [8] proposed jointly learning lexical semantic

relationships and assembly function vector representations for the clone detection task. They report

that their method outperforms prior work and is robust to obfuscation and compiler optimizations.

3.0.4. Dynamic Analysis. Pei et al. [30] proposes a transfer-learning based approach to

learning execution semantics from function traces, teaching a model the execution semantics of

instruction sequences in a unsupervised pre-training manner. They then fine-tuned the model to

match semantically similar functions. Their results are encouraging as they report an up to 14.3%

improvement in an obfuscated setting over prior work.
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CHAPTER 4

Methodology

4.1. Dataset

Dataset

Open source
projects

Trace test cases
with Jackal

Extract call
sequences with

source code

STraceBERT

Split dataset by
project / FQN

Pretrain on MLM
objective

Embed all trace
sequences

In Practice / Evaluation

Trace unknown
method

Embed call
sequence using

model

Retrieve source
code candidates

Figure 4.1. Overview of the STraceBERT approach.

As our approach is novel, we needed to construct the Java Trace Dataset (JTD) [6]. The JTD

consists of Java application traces obtained from a variety of open-source projects. To produce this

dataset, we gathered a list of top Java projects using the Maven build system on GitHub by number

of stars. See table A.1 on page 35 in the appendix for a full list. The motivation for Maven-only

projects was driven by the existing Jackal infrastructure for Maven projects, and that we avoid

Android specific projects. Additionally, Maven’s Project Object Model (POM) schema allows us

to programmatically add additional plugins, specifically the Maven ProGuard plugin, and remove

plugins that conflict with instrumentation.

To collect the projects, we performed the following steps:

(1) Called the GitHub API to search for repositories that match the following three queries,

sorted in descending order by number of stars:

(a) org:apache OR org:eclipse path:**/pom.xml

(b) topic:java-tutorials

(c) java language:java
7



(2) For the queries (b) and (c), we further processed the first page of results returned by piping

the returned repositories into another search query repo:$REPOSITORY path:**/pom.xml.

Combined with the results of query (a), this produced a list of popular projects that use

the Maven build system.

(3) Used git clone --depth 1 to clone the projects without their entire commit history.

4.1.1. Tracing. We trace the test suites of the individual projects using the Jackal tracing

system. Jackal consists of a modified OpenJDK 13 JVM and a Java agent developed by previous

members of the DECAL lab1. To run many test suites in a parallelized manner, we developed

Bartok, a custom Docker orchestrator written in Python that analyzes a project folder for Maven

test suites, producing a YAML2 file of test suites and their build path with respect to the project

root. The YAML file acts as a configuration file for the next step, which is executing the test suites

in their own respective Docker container instance. Once the YAML file of test suites is finalized,

Bartok executes a three step process:

(1) Project root is built using Maven in a build container, which builds all submodules. This

ensures the project builds and test cases run without instrumentation yet. Critically, all

class files i.e. Java bytecode is built and stored in the project build directory.

(2) If the build succeeds, each test suite specified in the YAML is executed in its own test

container running the Jackal JVM and Java agent attached to the Maven test runner.

The Java agent instruments i.e. injects Java bytecode to record operations into the classes

encountered at runtime. Prior to instrumentation, each class is written to the file system in

a special temporary directory, following the class’ fully qualified name package hierarchy.

As the test suite runs, all method calls and exits are recorded with this mechanism. Once

the test suite terminates, the custom JVM dumps dump-*.zip files to disk, that contain

the Jackal Domain Specific Language (DSL) representation of the execution trace, an

efficient binary representation of the trace events.

(3) If a dump is produced successfully, another Docker container is started that runs the first

post processing script. This script loads the zip file with the DSL and parses it. The goal

1The authors have not publicly released this tool as of writing this manuscript
2YAML: YAML Ain’t Markup Language

8
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of this operation is to reorder the trace into a sequential series of events and output JSON

for further processing.

4.1.2. Processing. Once the JSON representation of a test suite’s trace is available, we begin

by decompiling the pre-instrumentation class files dumped, as described in § 4.1.1. Rather than

using the original source code, as the gold standard to be retrieved, we use the decompiled code

from the Java byte code, because we initially attempted to use a heuristic search to locate the Java

source file containing each instrumented method, but found this challenging due to high diversity

in project directory organization, and largely complicated by the tracing of dependencies as well.

As this primarily serves as a dataset construction task, we deem decompiled code of unobfuscated

classes as similar enough to the ground truth source code to be usable for our task. We perform

a qualitative analysis of source retrieved via our initial heuristic approach and our decompiled

approach, and note that apart from comments and anonymous members, the source code is largely

identical as identifiers are preserved.

To collect method source code, we construct tooling using Tree-sitter3. We parse all de-

compiled source code collected for a project into Abstract Syntax Trees (ASTs), organizing them

according to their package hierarchy. When a method entry event is encountered during the trace

parsing process (described in further detail below), we are able to use the method’s fully qualified

name and signature to search the ASTs for a match. While this may seem a simple task at first, it is

important to note that Java supports both overloading & polymorphism. This presents a challenge

as multiple methods of the same name, in the same class, may have argument and return types

specified in their source code, that are never encountered verbatim during execution. A concrete

example of this issue, is that any non-primitive type in Java is of type Object. Therefore, if the type

encountered in the trace is Object, any method with a signature i.e. arguments of non-primitive

type is a valid candidate.

Subsequently, if a method is matched by name, but a verbatim exact match cannot be found

by argument(s), we apply a best-guess heuristic, ensuring that the number of arguments matches.

Finally, we simply record the source code associated with the function node with the traced method.

3Tree-sitter

9
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To process a trace, a Python script reads the JSON and transforms it to a text representation

suitable for training a large language model. The JSON trace object contains a series of events,

which is either a method entry, method exit, method call, or a reference to another trace in the

same JSON file, representing a different traced method. Method calls represent calls to methods

that are not traced, primarily methods built in to the JVM or Java core libraries. These calls

can be considered “java calls” as they usually call into the java.* namespace. The call graph is

navigated per trace depending on the maximum depth parameter, writing an event string for each

event to the trace’s string representation. The maximum depth parameter can be 0, meaning a

one-to-one mapping is produced of traced method to event sequences. If 1 is specified, only the

method and its child is traversed. If -1 is specified, the call graph is navigated from root to leaf, up

until the maximum depth parameter. Another parameter, the maximum event parameter, specifies

how many events to process. This is necessary as the context window of the downstream language

model is limited, so there is no purpose in printing more events than could realistically fit into a

model. In our experiments, we do not limit the maximum depth, and limit the events viz., calls to

512 at each level.

Method calls are recorded only if they are to the java.* namespace, to maintain our analogy

to system calls e.g. a java.net.Socket call is analogous to a Unix socket(2) system call. If

calls with boundaries is enabled, calls to other methods not in the java.* namespace are de-

noted by a [CALL] token. Method exits are denoted by [EXIT] token. The recursive depth reached

is recorded per trace as the maximum depth feature.

A raw trace fundamentally begins with a test case. As we are not interested in tests themselves,

but rather the behavior of methods being used, we define a trace of a method as beginning when

said method is entered. As we process the raw trace JSON, any method without a caller must be a

test case, and are eliminated accordingly. Then, any method called from the test case is considered

a root method. We hypothesize that root methods do not produce many Java calls e.g. a call

to savefig would call figure rendering methods and ultimately a method or utility to actually

perform the IO operations using java.io.* classes. Therefore, we implement a recursive traversal.

In this approach, each trace of a root method’s calls i.e. children to other (non-java.*) methods

are traversed depth first to produce the sequence of Java calls. Consider a root method that makes

10



an in-project method call (a), invokes some Java core library (b), and then makes another in-project

method call (c): in this case, the Java call sequence produced would be: all Java calls by (a) and

its children, (b), and all Java calls by (c) and its children.

However, it is important to note that we consider any method that originated from a test case

at some point up the call graph. Consider a test case, that calls one method, that calls one method,

and so on until the 10th method in the chain makes a call to java.* and returns. In this case, we

have ten separate traced methods with unique source code, each associated with the Java calls of

its children. In this example, since only one Java call was made at the leaf, all ten traces will have

the same Java calls. This approach was chosen as it would not be feasible to determine which of

the ten methods actually made a system call if one was simply recording raw system calls using

strace. To understand how call boundaries affect discernibility i.e. retrieval, we created two sets

of Java call sequences for each method, one with call boundaries (as discussed above), and one

without.

We removed all duplicate call sequences to ensure there are no exact duplicate call sequences

between traces. We note that for each method, an average of 12 traces were recorded. For such

cases, the call sequence and thus call sequence with boundaries are unique, but the source code

is the same. We then picked four projects Eugenp Tutorials, Eclipse AspectJ, Eclipse

LemMinX, and Apache Struts for which the traces act as the candidates set. We split the

data into three sets: candidates, for which traces of a particular method by fully-qualified name

occur at least once in candidate project traces, and queries, which consists of traces for which the

method was encountered only in non-candidate projects. We create our With Libraries set by

sampling 10,000 random traces from the candidate set without replacement, and create Without

Libraries by sampling 10,000 random traces from the queries set. This leaves us with a candidate

set and two query sets for evaluation: one where we assume the binary under examination uses

common libraries such as Apache Commons, and one that doesn’t. This provides a reasonable

upper and lower bound on expected performance.

For pre-training the STraceBERT models, we used all traces in the candidate set, with or

without associated source code. An example of a call is

11



-> java.lang.String.trim(): java.lang.String. We represent each call signature by one

unique token in our vocabulary, to maximize the number of calls we can ingest in our model, and to

reduce vocabulary size. For sequences with call boundaries, method invocations and exits outside

of the java.* namespace are demarcated by the special tokens [CALL] and [EXIT] respectively.

We do not include the name of the called method to avoid data leakage, as the method names

would be obfuscated in practice.

-> java.lang.String.trim(): java.lang.String -> java.util.Iterator.next():
java.lang.Object -> java.util.Collections.emptySet(): java.util.Set ->
java.util.Map.getOrDefault(java.lang.Object,java.lang.Object): java.lang.Object ->
java.util.Iterator.hasNext(): boolean ...

Figure 4.2. Tokenization of a sequence

-> java.lang.String.trim(): java.lang.String [CALL] [CALL] ->
java.util.Iterator.next(): java.lang.Object [EXIT] [EXIT] ->
java.util.Collections.emptySet(): java.util.Set ->
java.util.Map.getOrDefault(java.lang.Object,java.lang.Object): java.lang.Object ->
java.util.Iterator.hasNext(): boolean ...

Figure 4.3. Tokenization of a sequence with call boundaries, highlighted in red

4.2. Analysis of Dataset

No good machine learning project starts without a solid understanding of the dataset one is

working with. This section, we will gain insight into the Java Trace Dataset.

4.2.1. Dataset Columns.

Java Calls Java Calls with Boundaries Source Code Count
True False False 293,213
True False True 4,872
True True False 26,944
True True True 231,652

556,681

Figure 4.4. Analysis of missing data
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Column Description
Project Project from which trace was recorded
Test Suite Fully Qualified Name of Test Suite
Class Identifier of traced class
Method Name Identifier of traced method
Just Class Name Identifier of traced class with anonymous classes stripped
Just Method Name Identifier of traced method with anonymous methods stripped
Anonymous Classes Anonymous Class Identifiers
Anonymous Methods Anonymous Method Identifiers
Source Code Java source code of method
Java Calls Sequence of Java calls encountered during trace
Calls With Boundaries Sequence of Java calls encountered during trace with method calls

and exits denoted by special tokens
Java Call Count Number of Java calls encountered
Maximum Depth Maximum recursive depth of call graph

Table 4.1. Reference table for columns in dataset.
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Figure 4.5. Distribution of number of Java calls per trace in dataset, split by
source code availability.

4.2.2. Missing Data. As with many datasets, there are missing values as a result of errors

during data collection or processing. To ensure there is no obvious bias in the data as a result of

these missing values, we analyze the number of Java calls and the presence of associated source

code. In Figure 4.5, we see that the missing source code does not corelate strongly with the length of

the trace i.e. number of Java calls. However, shorter traces do tend to have source code associated

more frequently than longer traces.
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Figure 4.6. Distribution of number of Java calls per trace in dataset. Plot covers
only traces for which Java Calls, Java Calls with Boundaries, and Source Code are
available.
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Java Call Count (no empty columns)

Boxplot of Java Call Count (  768)

Figure 4.7. Boxplot of number of Java calls per trace in dataset. Plot covers
only traces for which Java Calls, Java Calls with Boundaries, and Source Code are
available.

4.2.3. Semantics of Java Traces. How are many traces as there per called method name?

Does every called method name have approximately the same number of traces? In Figure 4.6 and

Figure 4.7, we try to answer these questions. We analyze the distribution of the number of Java

calls in the dataset. We note that 36,544 traces exceed a length of 768.

We proceed by gaining insight into the semantics of Java traces. In Figure 4.8b we see that the

method identifier apply has the most traces recorded, with over 25,000 unique (by call sequence)

traces associated. This is approximately 20,000 more than the next most frequent method get. We

note that this distribution has an extremely long tail, which is evident in Figure 4.8a (note the log

scale). Of the 17,219 unique FQNs, the top 100 FQNs account for 32.51% of all traces, the top 308
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Figure 4.8. Fully Qualified Name (FQN) and identifier frequency plots

account for 50%, the top 8,286 account for 95%, and the remaining 8,933 account for just 5% of all

traces.
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Figure 4.9. Java call plots

How are the Java core libraries used? By looking at the distribution of Java calls with respect

to their top level package, down to typed calls, we gain insight into how the Java language is

used. This is presented in Figure 4.9. From Figure 4.9a, the most common operation is on strings:
15



chatAt, which retrieves the character at an index in the string. Unsurprisingly, the iterator meth-

ods hasNext and next are frequent. List operations such as addition, retrieval, and length are

also frequent. This observation is reflected in Figure 4.9b: operations on strings, iterators, and

collections (lists & maps) classes are used very frequently. Interestingly, the boxed form of the

primitive integer type is also commonly used. Finally, Input/Output (IO) operations in the form

of DataInputStream are among the most widely used Java classes.

Finally, we examine how top-level packages are used in Figure 4.9c. lang and util are by far

the most used packages, with other packages such as Java beans paling in comparison.

4.2.4. Project Level Analysis. Where do our traces come from? How do different projects

differ in terms of their trace lengths? These questions are addressed in Figure 4.10. “eugenp tutorials”

provides the most traces by a significant margin. This is likely due to the structure of this project:

many modules consisting of tutorials on how to use a different Java package e.g. Spring Boot. As a

result, many traces extend into dependencies. From Figure 4.10b and Figure 4.10c we observe that

“servicecomb-pack” has the longest traces on average. The top six projects by mean & median Java

call count are the same, but below these we observe differences between the measures of central

tendency. For example, “ozone” has a high median Java call count, but does not make it into the

top ten by median. This suggests various projects have significant differences in how their Java call

counts are distributed. A high mean but lower median implies more outliers.

4.2.5. Token Level Analysis. A Type-Token plot (Figure 4.11a) represents the relationship

between the number of unique tokens (Java calls) and the total number of tokens as one iterates

over all traces, randomly shuffled. In natural text, as more tokens are added i.e. as one “reads”

further through a text, the number of types (unique words, in our case Java calls) increases, but

usually at a diminishing rate. Yet, in the trace context we see that types encountered increases

exponentially. This implies that there are a large number of rare tokens.

On the other hand, Figure 4.11b represents each unique Java call (token) on the x axis, and

the number of times it occurs in the dataset on y. The tokens are sorted in descending order by

number of occurences. This shows again that Java core libraries are not used equally: some are far

more commonly used than others. The plot also elucidates the rare token dilemma: by the 565th
16
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Figure 4.10. Project level Java call plots

token the counts drop under 103 i.e. 1000, under 100 by the 1,129th token, and under 10 by the

1,830th token.

The rare word problem is widely studied in the Natural Language Processing community. To-

kens that occur too rarely are not useful for training of large language models, as they need a
17



large number of examples to adjust their weights effectively. One can expect instability among the

representations of rare tokens: outlier values that have the potential to “confuse” a model due to

their magnitude.

4.2.6. Combinatorics of Traces. Can traces provide enough signal to be useful for retrieval?

We provide some simple analysis using combinatorics. To find the number of possible traces given

our constraints of (i) maximum length N of 768 calls (ii) 2,407 unique Java calls k, we begin by

finding the number of combinations for a sequence of a given length n:

Combinations = kn

Since n may range from 1 to 768, we proceed by finding the sum:

Total combinations =
N∑

n=1
(kn)

We expand the summation to find:

Total combinations = 2407 + 24072 + · · · + 2407768
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As this is a geometric series with first term a = 2407 and a common ratio of r = 2407, we can

find its sum with the closed form:

Sum = a(1 − rn)
(1 − r)

For our N = 768:

Total combinations = 2407(1 − 2407768)
(1 − 2407)

It is evident that the number of possible traces is staggering. We believe the aperture of Java

calls and the average & maximum sequence length provides sufficient distinguishability between

traces that a retrieval task is feasible.

4.3. Obfuscated Tracing

Once a dataset of traces is constructed, we create a set of test suites that have methods with

source code associated. We modify each (sub)module pom.xml programatically to add the ProGuard

Maven plugin4 to the build process. We define new class and test class directories and point the

ProGuard plugin to them. We specify all JVM JMODs and the submodule’s classpath as libraries

for ProGuard to reference. JMODs contain core Java library functions. As part of the ProGuard

configuration, we do not include dependencies (not inlined into obfuscated class directory), we do

not shrink nor optimize, and keep all annotations. We also preserve class names that match the

following regular expressions: **.Test*, **.*Test, **.*Tests, or **.*TestCase. We then rerun

the test suites with the added obfuscation step. This produces traces of the same test suites, but

the methods under test are obfuscated.

4.4. Modeling

Our model is an adapted BERT [7] model with a custom tokenizer designed for call sequences,

which represents each call signature as one unique token. Our model has an attention window size

of 768, an intermediate size of 2048, a hidden size of 512, 8 attention heads, 6 hidden layers, and

dropout of 10%. We first pretrain the model on call sequences from the JTD, using the standard

Masked Language Modeling (MLM) masking technique, and default mask probability of 15%. We

4ProGuard Maven Plugin
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train for 400 epochs. Once the model is pretrained, it produces embeddings for each trace in the

corpus. These embeddings can then be used for the retrieval of the source code.

4.5. Retrieval

Once a model is trained on trace sequences, we pass all trace sequences through the model and

store the embedding of the [CLS] token (short for classification). This token is used in BERT-style

models as a sentence embedding, i.e. a single vector representation of the entire sequence. We store

all embeddings of our candidate set in a FAISS [20] vector database. To retrieve the source code

of an unknown trace, we simply embed the trace using the same methodology, and then retrieve

the k-nearest neighbors of the embedding in the candidate set vector space. As all candidates have

associated source code, this allows us to propose likely source snippets for the unknown trace.

4.5.1. Evaluating Performance. To evaluate the performance of our approach, we perform

the retrieval procedure for each item (query) in the With Libraries and Without Libraries

sets. For each query, we use a code similarity metric to compare the query source code and each of

the k = 10 candidate source codes retrieved. Once all queries have had their candidates retrieved,

we take the average maximum value at k. For example, at @k = 3, for each query, the top score of

the first three candidates is selected, and finally averaged across all queries. The question on how

to best compare code similarity is still an open one in literature. Therefore, we consider three code

similarity metrics, and opt for CodeBLEU and BERTScore (F1) in our evaluations5.

CodeBLEU (Ren et al. [32]): Absorbs the strength of BLEU [29] in the n-gram match, and fur-

ther injects code syntax via abstract syntax trees (AST) and code semantics via data-flow.

Each CodeBLEU score consists of a set weighted components: n-gram match, weighted

n-gram match, syntax match, and dataflow match. We also present our own weighting

Syntax/Dataflow match which gives n-grams no weight, and gives syntax and dataflow

50% respectively. This allows us to compare code similarity in terms of just syntax &

dataflow, while ignoring difference in variable names.

CrystalBLEU (Eghbali et al. [11]): BLEU finds common n-grams in unrelated programs, which

makes distinguishing similar pairs of programs from dissimilar pairs hard. CrystalBLEU

5Figure 5.6b compares CodeBLEU and CrystalBLEU
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mitigates the distinguishability problem. The metric maintains the desirable properties

of BLEU, such as handling partial code, applicability to all programming languages, high

correlation with human judgment, and efficiency, in addition to reducing the effects of the

trivially matched n-grams.

BERTScore (Zhang et al. [39]): BERTScore computes a similarity score for each token in the

candidate sentence with each token in the reference sentence. However, instead of exact

matches, it computes token similarity using contextual embeddings. BERTScore correlates

better with human judgments and provides stronger model selection performance than

existing metrics. We supply the CodeBertBase [13] model to BERTScore and use the 10th

layer for the contextual embeddings. This follows Zhang et al. [39] who determine that

the best layer to use for roberta-base is 10. Given that CodeBertBase is a Roberta [26]

model of the same size, we chose to use the same layer.
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CHAPTER 5

Results

5.1. Analysis of Embedding Space
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Figure 5.1. Paired boxplot for fifty trace samples of method “expand” and fifty
random traces of methods of differing names.

5.1.1. Statistical Testing. In Figure 5.1 we present one example from our t-Test procedure.

In this procedure, we embedded the traces using STraceBert and sampled one-hundred method

names for which there were at least fifty traces. For each method name, we randomly sampled

fifty traces and computed the vector norm of their embedding i.e. the distance of the vector from

the norm (zero) with respect to the average of the samples. For each method name, we randomly

sampled fifty other traces of methods with a different name. We then computed the average and

the norm, and performed a paired t-Test on the two sets of norms, and plotted the distributions

on paired box plots. This produced one-hundred box plots, that consistently showed that traces of

methods of the same name are closer to each other in the high dimensional space than the differing
22



names. This quantitative analysis provides encouraging results that the embedding space captures

the semantic meaning of traces.
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Figure 5.2. t-SNE plot of one-hundred sampled method names, fifty traces per
name. Color denotes class i.e. method name.

5.1.2. Qualitative t-SNE. We subsequently performed a t-distributed stochastic neighbor

embedding (t-SNE) [27] dimensionality reduction on the five thousand traces viz., fifty traces per

one-hundred sampled method names. The goal of t-SNE is to represent datapoints that are near to

each other i.e. have a low Euclidean distance in the high dimensional space, as close to each other

in a low dimensional space, in our case two dimensions. While the results of a t-SNE reduction

depend on hyperparameters such as perplexity, we observe that traces of the same class i.e. method
23



name (denoted by color) are close to each other, forming clusters. This qualitative analysis further

suggests that the embedding space captures the semantic meaning of traces and will be suitable

for a nearest-neighbor retrieval approach.

5.2. Retrieval Performance

Our goal is to retrieve candidate snippets of code for a reverse engineer. We presume that

presenting five examples to the reverse engineer will allow them to better understand the method

they are working with. For this purpose, all metrics are presented in the form of top@k. In

our evaluation, we utilize the CodeBLEU [32] code similarity measure. The metrics are calculated

based on the similarity of the retrieved code snippets against the ground-truth code snippet. When

aggregating a metric, we take the average of the max score at k across all scores. For example,

top@5 would be the average maximum CodeBLEU score in the first 5 candidates retrieved for each

query, across all queries.

To evaluate how useful a retrieved snippet is, we measure code similarity between the query

source code versus each retrieved candidate snippet. For each trace in our evaluation sets (With

Libraries, Without Libraries), we retrieve k nearest-neighbors, where k = 10, from our candi-

date set using FAISS [20] and the trace embedding from our model. We then calculate and record

the similarity metrics.

We present our results in Table 5.1. As a reference, we provide a random baseline where the

candidates are picked randomly, BM25 [33], and Codex. For Codex, we sample 100 queries from

each query set, and create an 8-shot prompt following Nashid et al. [28] by finding the nearest

neighbors of the trace query in the candidate set, filtered to have less than 100 Java calls and

less than 300 characters of source code due to context window limitations. We also compare a

straw-man retrieval using the CodeBERT [13] embedding of the source code. Due to the source

code overlap but no trace sequence overlap, between the With Libraries set and the candidate

set, retrieval via CodeBERT finds exact matches. We then present retrieval performance using

trace embeddings, and find an average CodeBLEU of 86.26 @1. Further analysis showed that the

CodeBLEU values were not a result of exact matches (see subsection 5.2.2), suggesting similar code
24



Candidates Without Libraries With Libraries
Metric CodeBLEU BERTScore F1 CodeBLEU BERTScore F1

Method Top@k
STraceBert 1 22.53 82.07 79.14 95.66

3 27.80 83.72 89.19 97.81
5 30.27 84.37 92.68 98.56
10 32.44 85.09 95.18 99.06

Boundaries 1 23.21 82.28 92.30 98.49
3 26.75 83.44 94.92 99.00
5 28.79 83.94 96.11 99.23
10 30.82 84.58 96.73 99.36

BM25 1 19.73 81.38 43.21 87.95
3 24.49 83.05 55.10 90.48
5 26.50 83.63 60.10 91.68
10 28.98 84.37 66.16 93.02

Codex 1 22.08 - 29.85 -
5 31.45 - 38.39 -

Random 1 16.74 80.22 17.99 80.56
3 23.64 82.75 25.75 83.18
5 26.45 83.63 29.03 84.17
10 29.71 84.54 33.55 85.42

CodeBERT 1 27.70 84.66 93.37 98.71
3 30.32 85.58 96.62 99.27
5 31.26 85.86 97.08 99.36
10 33.52 86.41 98.03 99.60

Table 5.1. Retrieval performance in terms of average maximum CodeBLEU@k.
Codex results for @3 and @10 were not recorded, and BERTScore was not evaluated
as part of separate experiment.

produces similar sequences of calls. This presents strong evidence that our trace embeddings can

be used to find similar code.

5.2.1. Analysis of Retrieval Performance. We present the results from Table 5.1 as a plot

in Figure 5.3. CodeBERT is intentionally omitted as it is retrieving embeddings of source code,

rather than traces.

Unsurprisingly, random candidate retrieval performs worst, performing between 33.55 and

17.99. In contrast, retrieval with Codex only performs slightly better than random, outperforming

only at the top candidate with a score of 29.85. BM25 performs well considering the simplicity

of the approach, but performance quickly drops off as the top candidate pool decreases in size,

going from 66.16 to 43.21. Trace embeddings without boundaries only perform slightly worse than
25
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Figure 5.3. Performance of all methods at top k@10, @5, @3, and @1.

with boundaries, achieving CodeBLEU of 95.18 at ten, down to 79.14 at the top candidate. It is

clear, that embeddings of traces with boundaries consistently perform best, achieving an average

maximum CodeBLEU of 96.73 in the top ten candidates, 96.11 in top five, 94.92 in top three, and

92.30 for the top candidate. This suggests that boundaries are a useful piece of information for

the model. It is also evident, that contrastive training using Easy, Hard, and Semihard triplets did

not have a positive impact for either of the trace embedding models. In the case of hard triplets,

performance decreased significantly for both models. Easy triplets appear to have no impact on

performance.

5.2.2. Retrieval Distribution. We performed our retrieval procedure and analyzed the Code-

BLEU distribution of the retrieved candidates. We present the results in Figure 5.4 as a violin plot.

This plot shows the distribution of the CodeBLEU score of the ground truth source code of the

query trace versus the source code of the top k candidates.

5.2.3. Analysis of Codex prompting methods. In this section we analyze the performance

of Codex with two different prompting mechanisms. “Codex java calls” follows a simple eight-shot
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prompt with random traces as examples, whereas “Codex Ret. Prompt” follows Nashid et al. [28],

where we first retrieve the nearest neighbors from the candidate set, and use their ground truth

source and Java call sequence as examples. Figure 5.5 shows that the approach of Nashid et al.

[28] slightly outperforms the naive few-shot prompting approach. In both cases, we restrict the
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Figure 5.4. Violin plot of CodeBLEU distributions at top 1, top 3, top 5, and top
10 when retrieving with STraceBert embedding in Without Libraries setting.
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Figure 5.5. Codex prompting mechanisms
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few-shot examples to have a source code length of less than 300 characters and less than 100 Java

calls, as described in chapter 5. CodeBLEU values of “Codex java calls” are consistently lower

than “Codex Ret. Prompt”. This suggests that providing known source code of similar traces

helps a large language model produce more relevant code. Despite this, it is evident that few-shot

prompting is not enough for Codex to actively learn trace semantics and produce relevant code in

a known libraries setting.

5.2.4. Code Similarity vs. Embedding Distance. In an ideal embedding space for traces

or source code, the cosine similarity of two given embeddings should correlate highly with their

code similarity scores (CodeBLEU, CrystalBLEU, BERTScore).

In Figures 5.6a to 5.6d we explore this relationship. In Figure 5.6a and Figure 5.6b we explore

the relationship between CodeBLEU and CrystalBLEU respectively, for our CodeBERT strawman.

As CodeBERT is trained directly on source code tokens, we expect its embedding space to better

capture code similarity than trace embeddings do. In both Figures 5.6a and 5.6b, we observe a

decent line of best fit. This suggests two things: (i) CodeBERT embedding distances correlate

highly with code similarity metrics (ii) CrystalBLEU behaves similarly to CodeBLEU.

In contrast, in Figure 5.6c and Figure 5.6d we observe a lower correlation between embedding

cosine similarity and the code similarity metric. This suggests that the trace embedding space does

not capture code similarity as effectively.
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CHAPTER 6

Discussion

6.1. Summary

In summary, our results show that trace embeddings are an effective mechanism for retrieving

source code in a known libraries setting, with the top candidate having an average CodeBLEU

(“performance”) of 79.14 between it and the ground truth query source code. In this setting,

the performance increased over the random baseline of 17.99 CodeBLEU by 339.91%. Including

call boundaries, we observed a 16.63% increase over trace embeddings without boundaries under

the same conditions, resulting in a 413.06% increase over random. Source code retrieval from a

candidate set without libraries demonstrated much weaker performance of 22.53 CodeBLEU, and

23.21 CodeBLEU with call boundaries, exhibiting a mere 3% increase in CodeBLEU between the

two. Nonetheless, an increase over random of 34.59% and 38.65% was observed.

However, this must be brought into context of the random baseline’s average maximum Code-

BLEU at rank five in the Without Libraries setting being 29.03, whereas trace embeddings

with and without boundaries resulting in 28.79 and 30.27 CodeBLEU respectively, implying that

trace embeddings were barely better than random. Surprisingly, the performance of the traces

with boundaries is lower than just call sequences at five. As a [CALL] special token occupies one

position, we hypothesize that the trace embeddings without boundaries capture more valuable in-

formation viz., more calls, than the boundaries in the Without Libraries setting, considering

the limited input window.

Finally, we place these results in context with respect to our upper bound performance repre-

sented by the CodeBERT embedding. In this case, the retrieval is performed on the embedding of

the ground truth source code vs. the embeddings of the candidate source codes. Therefore, in the

Without Libraries setting, an absolute upper bound of 32 CodeBLEU is presumed. Considering

this, the trace embeddings without boundaries performed highly at 30.27 CodeBLEU at five.
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In contrast, our baselines consistently performed worse than trace embeddings in the With Li-

braries setting. The best performing baseline was BM25, achieving 42.21 CodeBLEU, followed by

Codex with 29.85 CodeBLEU, followed by random with 17.99. The upper bound given by the code

embeddings is approximately 93 CodeBLEU. Conversely, the Without Libraries setting at five

yielded more interesting characteristics, where Codex was the best performing model with 31.45

CodeBLEU, followed by trace embeddings with 30.27 CodeBLEU, and then random retrieval with

29.03 CodeBLEU. In both cases, only a slight increase over random was observed, suggesting that

call boundaries were not as significant in this setting, and that large language models of code can

produce code in a few-shot setting that is more similar to the query call sequence than non-library

code in a candidate set. In particular, this final observation is supported by Codex outperforming

CodeBert code embeddings, which represent the upper bound on retrieval performance from the

candidate set.

6.2. Interpretations & Implications

We draw multiple conclusions from these results.

(1) Call sequences can distinguish source code: We demonstrate that call sequences

recorded during dynamic analysis can be mapped to their source code. This implies that the

mere occurrences of calls and their ordering is a distinguishing characteristic of source code.

This opens the doors for future work in not only reverse engineering, but understanding

behavior of source code from runtime observations.

(2) Bidirectional transformers are effective, generalized feature extractors: The

substantial performance gains of embedding-based retrieval over classic term frequency

approaches such as BM25 imply that bidirectional transformers trained using the unsu-

pervised masked language modeling objective are effective at learning and constructing

latent features from their training sequences. If they were not, similar traces in terms

of semantics would not be near each other in the embedding space and thus a low re-

trieval performance would be observed. Additionally, this demonstrates that bidirectional

transformers are by no means limited to natural languages. Such an observation can in-

form future work and practitioners in domains dealing with non-language data e.g. time
31



series analysis, that maybe be able to apply such models to solve previously challenging

problems. Recent work has indicated that transformers excel at vision and audio tasks as

well. [22, 9, 4, 5, 14, 15, 16]

(3) Large language models of code are few-shot learners of execution dynamics:

Despite most likely never having seen a Java call sequence in their training set, the GPT3

based Codex model was able to produce the most relevant source code of all methods

in the Without Libraries setting from just a few examples of call sequence → source

code. The implication is that there is perhaps more to the model’s internal representation

& processing viz., weight matrices, than mere random parroting of code tokens. Perhaps

future work can explore how much such models can “understand” of runtime behavior

of source code. This ties in closely to the symbolic execution task, where a model is

provided source code and tasked with “pretending” to be a virtual machine and produce

the output of the source code. Given that models can perform this task [35], it is plausible

that they develop meaning so complicated that they can “reason” about such internal

representations in complex ways e.g. converting source code to system call sequences, or

vice versa.

6.3. Limitations & Threats to Validity

While our approach is robust, we acknowledge potential problems:

Dataset We restricted our dataset collection to popular, open source Java projects which use

the Maven build system. It is feasible that high quality open source code presents a distribution in

execution semantics that is not representative of all Java code.

Tracing Jackal is an experimental dynamic analysis tool that fails frequently. We were unable

to collect many of the test cases we expected to. One plausible explanation is the time limit on

tracing and data processing, per test case, of 72 hours. It may be, that the collected data represents

only shorter, simpler methods. Other unknown factors may influence whether tracing succeeds or

not, which would negatively affect generalizability.
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CHAPTER 7

Conclusion and Future Work

7.1. Conclusion

In conclusion, the results of our experiments demonstrate the effectiveness of the STraceBERT

approach for the code retrieval task in software reverse engineering. We find that embedding Java

application traces using a BERT-style model allows for effective source code retrieval, outperforming

traditional information retrieval approach BM25, and modern few-shot prompting of Codex in a

known-libraries scenario. Future work includes further examination of robustness of our approach

against obfuscation, and further exploration of the Java Trace Dataset.

7.2. Future Work

Proposed future work extends along multiple axes: (i) development of dynamic analysis in-

frastructure (ii) exploration of the Java Trace Dataset (iii) development of trace learning and

representation (iv) examination of robustness.

During our data collection stage, we encountered frequent failure of the instrumentation frame-

work Jackal. Future work may include examining these failures in detail and developing solutions

for them. Another line may investigate how the performance overhead of this task can be min-

imized, as the tooling results in significant overhead, limiting its practical applications. These

improvements alone would result in significantly more samples in the dataset, which in our setting

would improve performance due to an increased candidate pool.

While we explored the data set characteristics in detail, we primarily centered our work on

the task of embedding and retrieval of source code. Future work may investigate the applicability

of trace sequences for tasks such as defect prediction, clone detection, autoregressive source code

production, or dependency analysis to name a few.

During our study, we also posited whether we could exploit the tree structure of call graphs.

Our token based trace sequences are linearized trees, yet the call graphs observed during runtime
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analysis contain rich information in their edges and implicit hierarchy. Future work may investigate

alternative approaches to trace representations, such as using graph neural networks to embed call

graphs rather than token-based models to embed linearized trees. Additionally, learning objectives

beyond random token masking could be studied. We formulated various tasks in such a regime, such

as parent-node prediction, child-node prediction, sibling-node prediction, cousin-node prediction,

clique prediction, and prediction of sub-graphs i.e. masking of several nodes. Such tasks may help

models learn better representations, and may be combined with tree transformer approaches to

exploit the graph nature of code and call graphs. [2, 3, 17, 23, 31, 34, 36, 37, 38, 40]
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APPENDIX A

Appendix

A.1. List of projects

Table A.1. Table of all gathered projects and commit hash

Organization Project Commit Hash
apache activemq 9956dd6
eclipse ajdt a0e57f1
apache flink d0ba79e27f
apache avro b184c35
eclipse birt 25528861
eclipse californium 397f83a
eclipse californium.actinium f239096
eclipse californium.tools e26c92b
apache camel-kamelets 572d488
eclipse capella bfda3061
eclipse capella-basic-vp ae9df94
apache commons-daemon af00cbc
apache commons-io f8a8069
apache commons-lang 4753c6b
apache cxf-fediz 0ba80c1
eclipse dash-licenses abac0f5
dbeaver dbeaver 9faf767f71
eclipse deeplearning4j 464f1fd
eclipse dirigible 80a5f4a
eclipse ditto dfca359
apache druid b86f2d4
apache dubbo 27fa230
eclipse eclipse-collections 990295a
eclipse deeplearning4j 029b84e2b7
eclipse-vertx vert.x 8377be65e
apache empire-db 69e9a48
eugenp tutorials d6e8da14cd
apache geronimo-config 1e09399
apache geronimo-health fc5ec7b
apache geronimo-metrics 8e3105d
apache geronimo-opentracing 2015e31
apache geronimo-txmanager 8969a23
apache hadoop ec2fd013
apache hbase 5dc663e
eclipse hono b849842
apache incubator-inlong 72c7e90
apache incubator-kyuubi 3cbedea

Organization Project Commit Hash
apache incubator-streampipes a3fc041
jenkinsci jenkins c772d810f6
eclipse jetty.docker ed2952f
eclipse jetty.project 34c21ff
apache jmeter 6196e40
eclipse jnosql 4a052b3
apache kafka 3b534e1
eclipse kapua 36190a2
eclipse kitalpha 4a2be6c3
eclipse lemminx 3ae1f16
apache logging-log4j2 bf21070
eclipse lyo 45b32ad
apache maven-dist-tool ffe2741
apache maven-site f0e4665
eclipse microprofile-config 87ea205
eclipse microprofile-graphql d4ac51a
apache mnemonic eca3dd5
netty netty 1fe29bd
eclipse oneofour 9e6bc67
openzipkin zipkin 7bd40d01e
eclipse org.aspectj 0fe9c68
apache ozone 93631a1
eclipse packager 703bab6
apache pinot 27d690d
eclipse rdf4j 6c2fbb1
eclipse reddeer c5a50ef
apache servicecomb-pack 98da54a
apache spark 43c89dc
apache storm d48b1f0
apache struts 115fef2
eclipse tm4e 3d3f6a2
apache tomcat 5515c06
apache tomee-jakarta 6700451
apache tomee-jakartaee-api 3aad2e4
apache tomee-tck 09f756f
eclipse tycho 6689f64
eclipse winery 6320be7
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