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ABSTRACT OF THE DISSERTATION

Numerical and Deep Learning Study of Transpiration Cooling

for Sharp Hypersonic Leading Edge

by

Danny Donghyun Ko

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2023

Professor Y. Sungtaek Ju, Chair

Recent escalating interest in the development of highly maneuverable hypersonic vehicles

demands sharp leading edges. However, sharp leading edges induce severe aerothermal con-

ditions where conventional passive or ablative thermal protection systems fail to protect the

leading edge. This dissertation investigates transpiration cooling employing oxide coolants

as an alternative system to thermally protect sharp leading edges. This dissertation studies

two primary objectives that collectively assess the viability of transpiration cooling. The

first objective is to characterize the performance of transpiration cooling for various coolant

properties, flight conditions, and leading edge radii. We use semi-analytical boundary layer

model to predict the surface temperature, evaporative mass flux, and boiling limit of the

system. Our findings do not readily align with an optimal set of material properties for tran-

spiration cooling. Instead, certain coolant properties are more appropriate for various flight

conditions and leading edge sizes. The second objective is to characterize the liquid coolant

flow through porous media for various hypersonic aerothermal conditions. We experimentally

and numerically obtain the permeability of representative silicon carbide foams to estimate

ii



the necessary pressure gradient and assess the self-pumping capability of various coolants to

meet the mass flow rate demands at the surface. We then utilize computationally efficiency

deep learning models to characterize the porous media at the pore-scale to facilitate the

design of the microstructures of porous leading edge. Our two numerical frameworks cohere

both external and internal aspects of the system to evaluate the performance of transpira-

tion cooling and optimize the coolant properties to effectively protect sharp leading edges,

which are paramount for highly maneuverable hypersonic vehicles, for various hypersonic

applications.
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Chapter 1

Introduction

1.1 Hypersonic Flight

The pursuit of flight at hypersonic speeds has garnered significant attention since the

early 1950s. The safe return of human astronauts from Earth’s orbit in missions such as

Mercury, Gemini, and Apollo served as the original impetus behind the extensive research

in hypersonic flight [3]. Concurrently, investigations into the feasibility of sustained air-

breathing vehicles capable of cruising at hypersonic velocities were prevalent during the

formative years. The application potential of this class of vehicle is substantial, spanning

diverse domains. For example, hypersonic vehicles and jets hold the promise of enabling

rapid target engagement and enforcing the existing defense systems with unparalleled agility

and speed [71, 87]. Furthermore, hypersonic sub-orbital spaceplanes, executing takeoffs

and landings from conventional runways, have the capability to supplant the initial stage of

traditional rockets for delivering payloads into orbit, thus enabling cost-effective and frequent

operations, potentially on a daily basis [60]. Another transformative application lies in

passenger hypersonic aircraft, poised to redefine the benchmarks set by previous passenger

aviation. Early conceptual explorations of hypersonic passenger aircraft, exemplified by

Boeing’s Hypersonic Airliner, suggest the potential to drastically reduce intercontinental
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flight duration to under an hour, enabling global travel within a three-hour timeframe [62, 93].

However, until the present juncture, the domain of sustained air-breathing hypersonic

flight has encountered limited prospects for comprehensive exploration and thorough study,

primarily stemming from the intricate nature of the concomitant challenges and resource

constraints. Development initiatives in the United States experienced recurring termina-

tions during the 1960s and 1990s, primarily due to design prerequisites that surpassed the

technological capabilities of the era [3]. Nonetheless, contemporary escalated demands and

remarkable technological advancements have compelled the aerospace community to em-

bark on the practical realization of systems capable of achieving enhanced velocities and

extended ranges, accompanied by more substantial momentum and unprecedented engineer-

ing intricacies. Consequently, recent breakthroughs in this realm have unveiled a multitude

of possibilities. Notably, the unmanned X-43’s milestone flight in 2004 marked a transient

hypersonic excursion, attaining Mach 10 for approximately 10 seconds, while the X-51’s feat

in 2013 reached Mach 5.1 for a duration slightly under 4 minutes [3, 81].

The pursuit of sustained air-breathing hypersonic flight presents formidable challenges,

primarily arising from the intricate interplay between aerodynamic heating and the im-

perative of maintaining an optimal forebody configuration. A recent development gaining

momentum involves the adoption of sharply defined leading edges, driven by the objective

of bolstering maneuverability and maximizing the lift-to-drag ratio. However, this evolu-

tion introduces an escalating hurdle: as the curvature of the leading edge diminishes, the

severity of aerothermal heating experiences an exponential escalation, as depicted in Fig-

ure 1.1 [95, 21]. The curvature reduction to millimeter scales precipitates an exponential

surge in the incident aerothermal heat flux, approaching magnitudes of 10 MW/m2. This

unprecedentedly extreme heat flux mandates the strategic implementation of an efficient

Thermal Protection System (TPS) to sustain the leading edge within operational tempera-

ture thresholds while simultaneously preserving the sharp geometry essential for unimpeded

aerodynamic performance.

2



Figure 1.1: Magnitude of incident aerothermal heat flux at the stagnation point as a
function of leading edge size. Decrease in leading edge size increases the incident heat flux

quadratically. Adopted from Ref [21].

1.2 Reusable Insulation Tiles

Historically, passive TPS have established their reliability through missions like the Space

Shuttle. These systems employ materials capable of enduring high temperatures and absorb-

Figure 1.2: Image of thermal insulation tiles used for the Space Shuttle.
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ing aerodynamic heat while maintaining surface temperatures below acceptable limits via

radiation [32]. Reinforced carbon-carbon composites were integral to the Space Shuttle, ef-

fectively enduring extreme heating during re-entry and safeguarding the vehicle and crew.

These composite tiles, experiencing temperatures up to 1300◦C, displayed commendable ox-

idation resistance [19]. Notably, the insulation tiles demonstrated reusability, evident from

the successful sequential Shuttle launches, which is a desirable trait for hypersonic vehicles.

However, traditional passive methods may insufficiently address the rigorous aerother-

mal conditions encountered by slender vehicles. Passive insulation tiles are susceptible to

substantial oxidation and weight loss under continuous extreme aerothermal and reactive

conditions, particularly near sharp leading edges. Stagnation temperatures in such circum-

stances can exceed radiation cooling limits, potentially leading to significant mass loss and

oxidation. Consequently, passive insulation tiles are suited for blunt shapes with relatively

large radii of curvature, and it is expected to fail for sharp leading edges.

1.3 Ablative Heat Shields

An alternative TPS approach employs material ablation through chemical reactions and

surface vaporization. In the presence of severe aerothermal heating, this TPS undergoes

endothermic chemical reactions, phase transitions, and thermal decomposition, effectively

absorbing incident heat flux.

Historically, early re-entry vehicles and crewed spacecraft, including intercontinental bal-

listic missiles (ICBMs), Mercury, Gemini, and Apollo, relied on ablative TPS to ensure safe

descent through Earth’s atmosphere [32]. ICBMs experienced brief yet intense heating dur-

ing re-entry, demanding a TPS capable of rapid heat dissipation. Similarly, crewed spacecraft

returning from orbit employed ablative TPS for prolonged re-entry. In more recent times,

interplanetary exploration landers such as Viking, Pathfinder, Curiosity, and InSight inte-

grated aeroshells composed of fiber-reinforced resin to withstand high temperatures during
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transient re-entry and protect the main vehicle [27]. Technological advancements introduced

diverse ablative materials in contemporary re-entry vehicles, while maintaining their funda-

mental function. Various Mars exploration spacecraft utilized aeroshells, often featuring an

ablative heat shield constructed from honeycomb aluminum skeletons sandwiched between

graphite-epoxy fiber-reinforced resin composite sheets at the front end. Some crewed vehicles

adopted phenolic-impregnated carbon ablators (PICA), known for their lightweight nature

and resilience, capable of withstanding over 3000 W/cm2 [92].

Figure 1.3: Image of PICA ablative heat shield typically used in Mars reentry vehicles.

Despite the established success of conventional passive and ablative TPS in numerous

missions, they exhibit intrinsic limitations in terms of utility and reliability. The primary

constraint of traditional TPS lies in maintaining shape and stability under extreme condi-

tions. Vehicles designed for enhanced maneuverability require streamlined profiles through-

out their flight. However, ablative TPS are unable to preserve shape over extended flight

duration due to mass convection away from the surface [32]. Although ablative heat shields

can endure the harsh hypersonic environment, they experience shape alteration. For exam-

ple, typical PICA heat shields demonstrate approximately 5 mm total recession length at
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the stagnation point during brief periods [92], a characteristic unsuitable for serving as TPS

for aerodynamically sharp hypersonic vehicles.

1.4 Transpiration Cooling

Transpiration cooling emerges as a promising technique for efficient thermal safeguard-

ing of hypersonic vehicle leading edges, while concurrently maintaining shape integrity and

achieving high lift-to-drag ratios [120, 116]. This methodology entails a permeable leading

edge structure through which a working fluid is introduced, facilitating heat absorption and

dissipation. The operational principle of transpiration cooling is illustrated in Figure 1.4.

Internal supply of liquid originates either from capillary forces due to surface tension or ex-

Figure 1.4: Schematic of transpiration cooling of a leading edge. Liquid supplied from the
vehicle flows through porous leading edge surface and alleviates heat via evaporation.

ternal forces. Subsequently, the liquid traverses the porous leading edge to the surface where

it experiences phase transition from liquid to vapor driven by the incident aerothermal heat

flux. The resulting vapor is then transported away from the surface, entrained within the

hypersonic flow.

A few recent experimental studies [96, 75, 99, 86, 38, 37] explored transpiration cooling

with liquid coolants, which can take advantage of the high latent heat of phase change. Van

Foreest et al. [96] experimentally demonstrated the effectiveness using a porous porcelain

leading edge cooled with water as the working fluid for heat fluxes up to 2000 MW/m2.
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By supplying the coolant from a pressurized plenum, they maintained the leading edge

temperature below 300K. However, the coolant solidified, changing the leading edge shape

due to excessive coolant flow and the extremely low pressure conditions of the arc-jet facility.

Huang et al. [38] also demonstrated transpiration cooling using water as the working fluid,

driven by capillary action. Although they maintained surface temperature below 373K, their

system reached a maximum heat flux limit of 1 MW/m2 due to the lack of self-pumping

capability of the porous media.

To achieve desired net liquid flow to the surface, sufficient pressure gradient is necessary

to overcome the viscous and inertial losses caused by the fluid movement through porous

media. Complex microscopic geometry of porous media and fluid interaction with it are

often not trivial. Generally, the flow behavior can be characterized at the macroscopic level

by Darcy-Forchheimer equation defined as

dP

dx
=
µuD
K

+
ρuD

2

C
(1.1)

where volume averaged permeability, K, and inertial coefficient, C characterizes the mor-

phology of the porous media. These two parameters characterize the viscous and inertial

regimes, respectively, of the flow which are distinguished by the magnitude of pore Reynolds

number defined as

Rep =
ρupDp

µ
(1.2)

Here, Dp is the average pore diameter and up is the pore velocity defined as up = uD/ε [49].

Figure 1.5 depicts the different flow regimes of porous media as a function of Rep. The creep-

Figure 1.5: Flow regime in porous media as a function of pore Reynolds number. Pore
Reynolds numbers below approximately 10 and 150 indicate viscous and inertial regimes,

respectively. Adapted from [49].
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ing or Darcy flow regime is when Rep is less than approximately 10 and is mainly governed

by viscous interaction. For Rep below approximately 150, inertial effects are significant and

increase flow resistance across the porous media. Higher Rep introduces growth of unsteady

flow and turbulence that induces further flow resistance.

For typical hypersonic flight conditions, the flow is well within the viscous regime. In the

limit of small Rep, Equation 1.1 is simplified to

dP

dx
=
µuD
K

(1.3)

such that the pressure drop across the porous media is proportional to permeability and

liquid viscosity. In a simple one-dimensional model, the driving pressure must be larger than

the pressure loss:

PD ≥
µuD
K

L (1.4)

Here, PD is the driving force per unit area or pressure which can stem from capillary force

or external force. A requisite positive pressure gradient is indispensable to ensure an ample

supply of liquid to the vehicle’s surface. Insufficient liquid provision can induce a recession

of the liquid-vapor interface, creating localized hot-spots and surpassing the leading edge’s

thermal threshold, resulting in thermal runaway. Thus, precise and confident permeability

comprehension proves pivotal to guarantee adequate fluid delivery and avert system failure.

Supplied liquid undergoes evaporation at the surface, harnessing its latent heat during

liquid-vapor phase change to alleviate incident aerothermal heat flux. The amount of allevi-

ated heat is proportional to the rate of evaporated mass flux:

q = ṁhfg (1.5)

The rate of evaporation at the surface relies heavily on hypersonic flow characteristics within

the vehicle’s boundary layer. Mass transfer at the surface establishes functional connections
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with temperature and concentration which are inherently tied to mass transfer rates [85].

The coupled heat and mass transfer dynamics render predicting evaporation rates challenging

without comprehensive insight into the complete boundary layer solution.

1.5 Thesis Objective

This dissertation explores transpiration cooling employing oxide coolants. In this TPS,

solid particles of the coolant may be delivered towards the leading edge using a spring-piston

assembly or similar mechanical systems. The particles melt and then the molten liquid flows

through the high porosity porous leading edge to reach the surface. The liquid evaporates

at the surface to absorb incident heat flux and discharges into the external hypersonic flow.

Figure 1.6 depicts a schematic of transpiration cooling utilizing oxide coolant. Oxide coolants

Figure 1.6: Schematic of transpiration cooling of a leading edge utilizing solid oxide
coolants. Solid supplied from the vehicle melts and flows through the porous leading edge

surface and alleviates heat via evaporation.

provide several advantages over water. High surface energies of molten oxides can increase

the internal capillary force and thereby enhance the capillary driven flow through the porous

leading edge. This reduces or potentially eliminates the need for an external liquid pump-

ing system. Furthermore, oxides provide great chemical resistance against highly energetic

atomic oxygen present in the hypersonic flow. Their wide range of available material prop-
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erties also facilitates material selection that maximizes the for a given flight trajectory or

application.

This dissertation studies two primary objectives that collectively investigate transpiration

cooling. The first primary objective consists of the following sub-objectives:

1. Numerically assess the viability of transpiration cooling employing oxides as an alter-

native TPS to effectively protect sharp leading edges in hypersonic flight.

2. Characterize the surface temperature, evaporative mass flux, and boiling limit of tran-

spiration cooling for different coolant properties, flight conditions, and leading edge

radii to facilitate the optimization of the system.

The second primary objective comprise of the following sub-objectives:

1. Experimentally and numerically characterize the liquid coolant flow through high

porosity porous media for various hypersonic aerothermal conditions to estimate the

pressure gradient and assess the self-pumping capability of various coolants.

2. Develop computationally efficient deep learning models to characterize the flow through

high porosity porous media at the pore-scale and to facilitate the design of the mi-

crostructures of porous leading edge to optimize the performance of transpiration cool-

ing.

These two primary objectives investigate both external and internal aspects of the system and

collectively contributes towards the development and optimization of transpiration cooling

utilizing oxide coolant as an alternative system.
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Chapter 2

Evaporation in Hypersonic Flow

The potential of transpiration cooling using liquid coolant has been demonstrated by

various experimental studies. For example, Van Foreest et al. [96] experimentally showed the

effectiveness of transpiration cooling by subjecting a porous alumina ceramic leading edge in a

simulated hypersonic flow using an arc-jet test facility. They used liquid water as the working

fluid and reduced the maximum stagnation temperature of the leading edge from 1900K to

500K. However, the TPS required an external system to deliver the coolant through the

leading edge which can be expensive and cumbersome for practical hypersonic vehicles. To

eliminate the use of an external pumping system, Huang et al. [38] incorporated transpiration

cooling that solely relies on capillary action to deliver the flow. They subjected a circular

copper coupon equipped with transpiration cooling using liquid water as the coolant and a

hydrophilic porous medium to facilitate the capillary action. They successfully maintained

the maximum temperature of the coupon below 373K. However, their system was limited to

a maximum heat flux of 1 MW/m2 due to the self-pumping capability of the porous media.

To address the above challenges of transpiration cooling using a liquid coolant, we con-

sider oxides as the working fluid in our study. In this TPS, solid particles of the coolant may

be delivered towards the leading edge using a spring-piston assembly or similar mechanical

systems. The particles melt and then the molten liquid flows through the porous medium
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to reach the surface. The liquid evaporates at the surface to absorb incident heat flux and

discharges into the external hypersonic flow. Figure 1.6 depicts a schematic of transpiration

cooling utilizing oxide coolant. Oxide coolants provide several advantages over water. High

surface energies of molten oxides can increase the internal capillary force and thereby en-

hance the capillary driven flow through the porous leading edge. This reduces or potentially

eliminates the need for an external liquid pumping system. Furthermore, oxides provide

great chemical resistance against highly energetic atomic oxygen present in the hypersonic

flow. Their wide range of available material properties also facilitates material selection that

maximizes the for a given flight trajectory or application. Previous study on gas transpi-

ration cooling [104] have shown that certain material properties, such as heat capacity and

molar mass, can significantly influence the capability of TPS. For transpiration cooling using

liquid coolant, other material properties including the latent heat of phase change and the

saturation temperature are also critical.

In this chapter, we numerically investigate the evaporative transpiration cooling under

representative external hypersonic flow conditions and explore its performance and limita-

tions. Many previous works [7, 33, 79, 30, 15, 89, 88] have numerically characterized the

evaporation process in hypersonic flows. However, these studies assumed the evaporating

surface to be in a state of thermodynamic equilibrium. This assumption is only valid when

the maximum mass transfer rate at the surface is limited by the diffusion rate through the

boundary layer. At the stagnation point of sharp leading edges, the maximum mass diffu-

sion rate through the boundary layer can be significant, potentially exceeding the maximum

mass transfer rate predicted by the kinetic theory [85, 13]. The thermodynamic equilibrium

assumption can thereby lead to considerable under-prediction of the surface temperature

[54, 4]. An unexpectedly high surface temperature is of great concern since it can lead

to the two main modes of failure of the TPS: softening or melting of the porous medium

comprising the leading edge and nucleation of vapor bubbles within the porous flow paths

which disrupt the coolant flow to the surface and causes surface dry-out [20, 30]. Recent
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studies of turbulence transition and recession of molten oxide layers during ablation have

considered thermodynamic non-equilibrium conditions at the surface to characterize heat

and mass transfer along hypersonic leading edges [65, 66, 18, 73]. But to our knowledge,

there has been no systematic study of the evaporative transpiration cooling accounting for

thermodynamic non-equilibrium conditions.

We study the evaporative transpiration cooling under thermodynamic non-equilibrium

conditions and examine the effects of coolant material properties, flight conditions, and lead-

ing edge radii on the surface temperature, evaporative mass flux, and boiling. To this end,

we utilize both the 2D axi-symmetric boundary layer theory and direct numerical simula-

tion (DNS) utilizing a third-order 3D shock-fitting finite difference scheme and model the

evaporation process at the stagnation point of a sharp, hemispherical leading edge. In the

following, we parametrically characterize the TPS performance over a wide range of flight

conditions, leading edge radii, and material properties. We then discuss results from DNS

for eight representative flight conditions and a set of seven different materials to validate the

boundary layer model. Our study provides the framework to examine the performance of

evaporative transpiration cooling under various conditions and assess its viability for sharp

leading edges of hypersonic vehicles with superior maneuverability.

2.1 Boundary Layer Model

Boundary layer theory have been utilized by many investigators [21, 85, 104] to solve

viscous, hypersonic flow near a flat surface. This approach provides an accurate, low-

computational cost model to investigate the hydraulic and thermodynamic behavior of the

hypersonic flow at the stagnation point. Hence, we utilize the boundary layer theory at

the stagnation point to investigate the evaporation process over a 2D axi-symmetric sharp,

hemispherical leading edge. The general form of the governing equations of hypersonic flow

are [3]
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Continuity:

∂ρ

∂t
+∇ · (ρV ) = 0 (2.1)

Conservation of Momentum:

ρ
DV

Dt
= −∇P +∇ · τ (2.2)

Conservation of Energy:

ρ
Dh

Dt
=
DP

Dt
−∇ · q + Φ (2.3)

where Φ is the dissipation function, and q is the heat flux vector defined as

~q = −k∇T +
∑
i

ρiUihi (2.4)

Conservation of species i:

∂ni

∂t
+∇ · (niVi) = Ṅi (2.5)

∂ρi
∂t

+∇ · (ρiVi) = ẇi (2.6)

where equations are written in terms of number and mass density, ni and ρi, respectively.

The absolute velocity of species i is defined as

Vi = V + Ui (2.7)

where Ui is the relative velocity of species i and V is the absolute velocity of the mixture.

Hence, Equations (2.5) and (2.10) become

n
DXi

Dt
+∇ · (niUi) = Ṅi +Xi

n

M

DM

Dt
(2.8)

ρ
DCi

Dt
+∇ · (ρiUi) = ẇi (2.9)
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Either Equation (2.8) or (2.9) can be derived from one another using the relationship between

mass and mole fraction:

Ci = Xi
Mi

M
(2.10)

Equation of state:

P = ρ
R

M
T (2.11)

where R is the universal gas constant and the mixture molar mass is defined as

M =
∑
i

XiMi (2.12)

We then reduce the generic governing equations by utilizing the boundary layer theory

assuming that the characteristic length of the body is greater than that of the viscous

boundary layer near the surface. As a result, the simplified set of boundary layer equations

are:

Continuity:

∂

∂x
(ρur) +

∂

∂y
(ρvr) = 0 (2.13)

Conservation of x and y momentum:

ρu
∂u

∂x
+ ρv

∂u

∂y
=
∂P

∂x
+

∂

∂y

(
µ
∂u

∂y

)
(2.14)

∂P

∂y
= 0 (2.15)

Conservation of energy:

ρc̄p

(
u
∂T

∂x
+ v

∂T

∂y

)
= u

∂P

∂x
+ µ

(
∂u

∂y

)2

+
∂

∂y

(
k
∂T

∂y

)
+
∑
i

cpiρiUi
∂T

∂y
(2.16)
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Conservation of species i:

ρu
∂Ci

∂x
+ ρv

∂Ci

∂y
+

∂

∂y
(ρiji) = ẇi (2.17)

which can, again, be written in terms of either the mass or mole fraction using Equation

(2.9). A detailed derivation of boundary layer equations are presented by Anderson [3].

For a mixture of binary species, the diffusive flux follows the Fick’s law of diffusion

closely given that second order diffusion effects such as thermal diffusion, pressure gradient,

and external forces, are negligible. When there are more than two different species in the

flow, diffusive flux takes the following form [35]:

ji =
∑
j 6=i

MiMj

M2
ρDij

∂Xj

∂y
(2.18)

Boundary layer equations are indeed much simpler, but it is still a system of partial

differential equations which, in its current form, cannot be solved without using advanced

numerical method. However, by using similarity technique, a system of partial differential

equations can be transformed into a system of ordinary differential equations which can be

solved semi-analytically. Similarity technique has been the procedure to solve boundary layer

equations in many previous boundary layer analysis [21, 57, 85]. Similarity variables and

Mangler transformations defined previously by Lees [57] are used here. For axi-symmetric

body, the similarity transformations become:

η =
ue√
2ε

∫ y

0

ρrdy (2.19)

ε =

∫ x

0

ρsµsuer
2dx (2.20)

The stream function is, then, defined as:

Ψ = f
√

2ε (2.21)
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such that the stream function readily satisfies the continuity equation:

ρur =
∂Ψ

∂y
and ρvr = −∂Ψ

∂x
(2.22)

We apply the above similarity transformation at the stagnation point in the following

section to obtain a set of ordinary differential equations.

2.1.1 Frozen Flow at the Stagnation Point

Figure 2.1: Depiction of the flow and coordinate system at the axi-symmetric, stagnation
point. Adopted from [85]
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Once the governing boundary layer equations have been transformed into a system of

ordinary differential equations, similar solutions for the boundary layer can be obtained. In

the case of axi-symmetric flow as shown in Figure 2.1, however, similarity transformation

does not completely deduce the boundary layer equations to a set of ordinary differential

equations. As mentioned, a similarity solution is obtainable if and only if the transformed

equations are ordinary differential equations of one similarity variable η. It can be shown

that only under the special case of the stagnation point, transformation results in a complete

set of ordinary differential equations. This is because the change in pressure at the edge of

boundary layer is a function of distance away from the stagnation point. In the problem

of flat plate, for example, set of ordinary differential equations are obtainable for the whole

plate since the free stream pressure is a constant. For a stagnation point analysis, it is

assumed that

x ≈ r (2.23)

such that the angle between the axis of symmetry and radial vector to a position on the

surface is very small. It can be further assumed that the flow velocity near the stagnation

point is nearly zero and the viscous heating is negligible.

Furthermore, the inviscid flow velocity behind a shockwave, or the velocity at the edge

of viscous boundary layer, can be determined by considering an infinitesimal increment of

surface distance from the stagnation point such that

ue = x

(
due
dx

)
x=0

(2.24)

The validity of an assumption that the velocity at the boundary layer edge is linearly propor-

tional along the axi-symmetric surface [3] has been demonstrated. Figure 2.2 illustrates the

normalized velocity as a function of distance from the stagnation point for an axi-symmetric

cone with a spherical nose calculated from more advanced CFD program. The proportion-

ality constant in Equation (2.24) can be related to the pressure distribution using Euler
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Figure 2.2: Velocity distribution for cone with sphere nose at Mach 8 compared with
analytical value obtained by Van Tuyl [97]. q/qo is the normalized velocity and S is the

normalized distance from the stagnation point. Adopted from [3].

equation for inviscid flow

dPe = ρeuedue (2.25)

The pressure distribution over the body is determined using the Newtonian model. This

derivation is not accurate at all for low speed and incompressible flows because it does not

capture the no-slip condition on the surface. However, at extreme hypersonic speeds, the

shock waves are very thin and almost attached to the surface, and the flow behaves as

described in the Newtonian model [3]. Using Newton’s second law, it can be shown that

Cp = 2cos2(φ) (2.26)

where angle φ is the angle between the axis of symmetry and radial vector to a position on

the surface. Subsequent modification of the Newtonian model made by Lees [57] where the
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Figure 2.3: Pressure distribution for cone with sphere nose at Mach 8 compared with
experimental data obtained by Roberts et al. [78]. p/po is the normalized pressure and S is

the normalized distance from the stagnation point. Adopted from [3]

coefficient 2 is replaced by Cp,max defined as

Cp,max =
Po − P∞
1
2
ρ∞V 2

∞
(2.27)

predicts the pressure distribution over the body with greater accuracy. Figure. 2.3 illustrates

the accuracy of modified Newtonian model for pressure distribution when compared to more

recent CFD calculation [3]. Using Equations (2.25) and (2.27), the proportionality constant

can be written as (
due
dx

)
x=0

=
1

RB

√
Cp,max

Pe − P∞
ρe

(2.28)

At hypersonic speeds, dissociation is an important aspect of the flow that must be consid-

ered. However, we assume the flow within the boundary layer is frozen such that the reaction

rate is nearly zero or the characteristic time, of chemical reaction is much larger than that

of advection of species. This is one extreme case of chemically reacting, non-equilibrium

flow that simplifies the problem. The other extreme is in the case of infinite reaction rate
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Figure 2.4: Total heat transfer rate as a function of chemical reaction rate C1. Adopted
from Ref. [21]. Total heat transfer rate at the surface is proportional to Nu/

√
Re.

Figure 2.5: Boundary layer profiles at stagnation point. Adopted from Ref. [21]

which implies that local chemical equilibrium is reached at any point in the flow. However,

as demonstrated from by Fay and Riddell in Figure 2.4, the total rate of heat transfer at the

surface for frozen (C1 → 0) and local equilibrium flow (C1 →∞) does not vary significantly

given that the surface is considered to be fully catalytic. Similarly, the mass diffusion profile

for both frozen and local equilibrium flow does not change noticeably as illustrated in Figure

2.5. Hence, frozen flow and fully catalytic surface assumptions provide a good approximation
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to examine the heat and mass transfer characteristics of in the boundary layer.

At the stagnation point for frozen flow, therefore, the transformed boundary layer equa-

tions become:

Conservation of momentum:

(lf ′′)
′
+ ff ′′ +

1

2

(
ρe
ρ
− f ′2

)
= 0 (2.29)

Conservation of energy:

(
l

P r
cpθ
′
)′

+ fcpθ
′ − l

P r

θ′

M2

∑
i

cp,iMi

(∑
j 6=i

MiLeijX
′
j

)
= 0 (2.30)

Conservation of species i:

Mi

M
f

(
M ′

M
Xi −X ′i

)
+

(
l

P r

1

M2

∑
j 6=i

MiMjLeijX
′
j

)′
= 0 (2.31)

Equations (2.29-2.31) are a set of ordinary differential equations in terms of the similarity

variable η that governs the hypersonic boundary layer. It can be solved using accessible

ordinary differential equation solver given appropriate boundary conditions.

2.1.2 Boundary Conditions

Typical hypersonic flows over a sharp leading edge have high Reynolds number in which

the shock distance from the surface is much larger than the boundary layer thickness. As

discussed by Anderson et al. and Fay and Riddell [3, 21], the viscous boundary layer thickness

is inversely proportional to Reynolds number whereas the shock distance is only a function of

Mach number. Therefore, we assume the flow condition at the edge of the viscous boundary

layer to be in chemical equilibrium. We use the normal shock properties summarized by

Wittliff and Curtis [107] for air at chemical equilibrium to calculate the boundary conditions

at various altitudes and flight speeds. To calculate the equilibrium concentration of air
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species, we use the tabulated results by Hilsenrath and Klein [34].

When evaporation occurs at the surface of the leading edge, additional species must be

considered in the governing equations and the flow model. For simplicity, the gas mixture

in this problem is considered to be a ternary mixture consisting of molecular air, dissociated

atomic air, and vaporized species. For ternary mixture, two equations of conservation of

species are required and one overall mass continuity equation. As a result, the problem

becomes a boundary value problem with a set of nine ordinary differential equations re-

quiring nine appropriate boundary conditions to fully close the formulation. The boundary

conditions for frozen flow near the stagnation point are

η = 0 : f = fs η →∞ : f ′ = 1

f ′ = 0 θ = 1

θ = θs CA = CA,e

CA = 0 CK = 0

CK = CK,s

In order to solve the boundary value problem using numerical ordinary differential equa-

tion solver, shooting method [6] is utilized to reduce the problem into an initial value problem.

Boundary conditions that must be satisfied at η → ∞ are converted to initial conditions

such that the set of initial conditions are

η = 0 : f = fs f ′′ = x1

f ′ = 0 θ′ = x2

θ = θs C ′A = x3

CA = 0 C ′K = x4

CK = CK,s
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Initial values, x1, x2, x3, and x4 are iterated until the boundary conditions at η → ∞ is

satisfied.

Lastly, the non dimensional stream function at the wall can be related to the mass transfer

rate teat the wall by definition:

ṁs = −fs

√
2
ρs
µs

(
due
dx

)
x=0

(2.32)

Mass transfer rate at the wall can also be expressed in terms of the sum of absolute fluxes

of each component. For a ternary mixture considered in this problem

ṁs = (ρAVA + ρMVM + ρKVK)s (2.33)

Under the assumption that the surface is fully catalytic and is impermeable to molecular

and atomic air, mass balance must hold true such that

(ρAVA)s = −(ρMVM)s (2.34)

Thus, the mass transfer rate at the wall simplifies to

ṁs = (ρkVK)s (2.35)

and in terms of diffusive flux of vaporizing species K, it can be written as

ṁs =
jK,s

1− CK,s

(2.36)

because, by definition, the diffusive flux is related to the absolute flux by

ṁK,s = CK,sṁs + jK,s (2.37)
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Consequently, the non-dimensional stream function at the wall requires either the mass

transfer rate or the mass fraction of vaporizing species specified as a known quantity in

order to obtain the solution. As a result, we impose two additional surface constraints

based on conservation of energy and thermodynamics. First, we impose that the influx of

aerodynamic heating is equal to evaporative heat flux at the stagnation point:

kT
∂T

∂y
+ ṁA (hM − hA) = σεT 4 + ṁK

L

MK

(2.38)

where kT is the thermal conductivity, hM and hA are heat of formation of molecular and

atomic air, respectively, and hfg is the latent heat of vaporization. Second, we use the Hertz-

Knudsen equation [4, 66, 18] derived from Kinetic theory to model the evaporation process

under thermodynamic non-equilibrium condition. For evaporating species i, the evaporation

rate at the surface is:

ṁ = α

√
M

2πRT
Ps (Xeq −X) (2.39)

where the superscript ∗ refers to the saturation condition at the stagnation point, and X∗s is

calculated by the integral form of Clausius-Clapeyron equation:

Xeq =
P ∗

Ps

exp

[
L

R

(
1

T ∗
− 1

Ts

)]
(2.40)

where the superscript * denotes the saturation state at the standard pressure of 1 atm,

R is the specific gas constant. The accommodation coefficient α represents the impact of

molecular collisions at the interface on the rate of evaporation. We assume α to be equal to

one which is typical for most liquids [85]. We also assume that the latent heat of evaporation

L is a constant at the saturation condition at the standard pressure. By incorporating the

Hertz-Knudsen equation, the evaporation rate at the surface depends on temperature and

the mole fraction which are related to the adjacent hypersonic flow conditions.
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2.1.3 Transport and Thermodynamic Properties

Material properties are estimated using theoretical derivations to the best ability. The-

oretical models presented by Hirschfelder et al. [35] are primarily used to calculate the

transport properties. Transport properties of molecular air are calculated using Lennard-

Jones 6:12 potential model. Properties of atomic air, because of their monatomic structure,

are estimated using simple rigid sphere Kinetic theory [35]. Molecular constants used for

molecular and atomic air are presented in Table 2.1.

Table 2.1: Molecular constants for molecular and atomic air

Species σ(A) M(g/mol) ε/k
Molecular air 3.557 29 113

Atomic air 2.92 14.5 -

Similarly, the properties of vaporizing species are also determined using simple kinetic

theory due to lack of understanding of molecular constants and chemistry of vaporized refrac-

tory metal oxides available. Collision diameter is obtained through crude linear regression

assuming that it is linearly proportional to the molar mass. Again, it is recognized that

simple, rigid sphere model provides adequate estimation of material properties and should

not affect the results significantly. We also assume that the diffusivity of each species is

equal to the mixture diffusivity determined by a constant Schmidt number of 0.5 [64]. We

then calculate the mixture viscosity and thermal conductivity using Wilke’s semi-empirical

relationships [106].

We consider a range of constant latent heats of evaporation from 100 kJ/mol to 800

kJ/mol, molar masses from 10 g/mol to 200 g/mol, and T ∗ from 1500 K to 3500 K. This

range encompasses most oxides, as shown by the dashed area in Figure 2.7.

To validate the boundary layer theory results, we a set of seven different hypothetical

materials, marked with symbols in Figure 2.7, using direct numerical simulation (DNS).

The DNS model utilizes a 3rd-order finite difference scheme with a shock-fitting algorithm.
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Figure 2.6: Kinetic diameter of typical gases obtained from Ref. [10]. Linear regression is
used to relate the Kinetic diameter to molar mass.

Figure 2.7: 3 Ranges of the material properties considered in our models. (a) latent heat
vs. T ∗ (b) latent heat vs. molar mass. Values within the dashed rectangles are used to

perform parametric study using the boundary layer model. Hypothetical materials marked
as symbols are used in DNS. Material properties of typical oxides are obtained from [29]

Details of the model can be found in [65, 64, 66]. The properties of these seven materials

are tabulated in Table 2.2.
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Table 2.2: Material used in DNS to emulate the properties of typical metals and oxides.

Material L M Tbp
[kJ/mol] [g/mol] [K]

Material A 300 30 2773
Material B 600 90 3273
Material C 300 150 2273
Material D 150 90 2273
Material E 300 90 3273
Material F 300 150 2773
Material G 600 90 2273

2.2 Parametric Analyses for Frozen Flows

We now present the effect of material properties, flight conditions, and leading edge radii

on evaporative transpiration cooling. We quantify the performance of the TPS using three

metrics: surface temperature, evaporative mass flux, and boiling limit factor of safety. The

operating surface temperature of a TPS sets the limit on the materials that can be used

to construct the leading edge skin or the porous medium. A small evaporative mass flux

may be desired to reduce the risk of dry-out at the surface and lower the cost and weight

of TPS. The temperature within the porous leading edge must not exceed the saturation

temperature of the coolant at the stagnation pressure to avoid nucleation that could block

the flow and disrupt continuous coolant delivery to the surface. To assess this, we define the

boiling limit factor of safety, Fs, as the ratio between the saturation temperature and the

surface temperature at the stagnation point, Ts:

Fs =
Teq
Ts

(2.41)

Teq is calculated using the Clausius-Clapeyron equation (equation 2.40) rearranged as follows:

Teq =

[
−R
L

ln

(
Ps

P ∗

)
+

1

T ∗

]−1
(2.42)

28



When the value of Fs is equal to or less than one, vapor nucleation within the porous leading

edge can occur and disrupt the coolant flow to the surface.

2.2.1 Material Properties

We first discuss the effect of the coolant material properties: the latent heat of evap-

oration, molar mass, T ∗ of the coolant. These three material properties govern the heat

and mass transfer behavior at the surface (equations 2.39 and 2.40). We vary the latent

heat of evaporation from 100 kJ/mol to 800 kJ/mol, the molar mass from 10 g/mol to 200

g/mol, and T ∗ from 1500 K to 3500 K to encompass the properties of typical oxides. To

isolate the effect of variation in the material properties, we fix the altitude, the speed, and

the leading edge radius as constants at 30 km, Mach 15, and 3.1 mm, respectively, here.

Figures 2.8 through 2.13 illustrate the surface temperature, evaporative mass flux, and Fs as

a function of the three material properties. The DNS results are also shown as the symbols

for comparison.

shows the relationship between the surface temperature of the leading edge and the three

material properties. We find that the surface temperature is relatively independent of the

latent heat and the molar mass. One might expect from equations 2.39 and 2.40 that a higher

latent heat would lower the surface temperature since one can achieve a higher evaporative

heat flux for a given evaporative mass flux. However, as shown in Figure 2.9, higher latent

heat leads to lower mole fraction of evaporating species at the surface. A lower mole fraction

at the surface reduces the vapor shielding effect, which thereby leads to an increase in the

incident heat flux as shown in Figure 2.10. This increase in the incident heat flux requires

higher evaporative heat flux, and thereby, higher surface temperature. These two opposing

effects counteract each other, and the latent heat appears to have negligible impact on the

surface temperature. Similar to the case for the latent heat, one might expect a lower molar

mass would lower the surface temperature since the evaporative heat flux is proportional to

M−1/2. However, as shown in Figure 2.11, the incident heat flux increases as molar mass
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Figure 2.8: Predicted surface temperature as a function of the (a) latent heat of
evaporation, (b) molar mass, and (c) T ∗. Line colors and dash types represent the variation
in material properties not shown in the axis. Symbols are obtained from DNS and have less

than 2% difference with the boundary layer model results.

decrease because heavier species enhance the thermal shielding effect since the diffusivity of

gas molecules is proportional to M−1/2. This increase leads to higher evaporative mass flux,

and thus, higher surface temperature. Again, these two opposing behaviors make the surface
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Figure 2.9: Predicted color contour of mole fraction for (a) material B and (b) material E.
Material B has higher latent heat than material E. The left most boundary of the contour
is immediately behind the shock, and the right most boundary of the contour is the leading
edge surface. X is the distance from the shock, and Y is the distance from the stagnation

line.

Figure 2.10: Predicted incident and evaporative heat flux at the surface as a function of
the latent heat. Molar mass and T ∗ of the material is 90 g/mol and 2773 K, respectively.

temperature nearly independent of the molar mass. The predicted surface temperature in

contrast is proportional to T ∗ of the coolant material. Because the mass transfer rate is

proportional to exp(1/T ∗−1/Ts), the surface temperature must be very close to T ∗ to have

meaningful mass transfer rate.

These relationships suggest that T ∗ of the coolant material has a dominant effect on the

operating surface temperature of the TPS. The porous media comprising the leading edges
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Figure 2.11: Predicted incident and evaporative heat flux at the surface as a function of the
molar mass. Latent heat and T ∗ of the material is 300 kJ/mol and 2773 K, respectively.

must be able to tolerate temperature rises to at least T ∗ under a given flight condition.

Figure 2.12 shows the relationship between the evaporative mass flux and the three

material properties. We find that evaporative mass flux is influenced by all three properties.

A higher latent heat or a lower molar mass increases the specific latent heat of the material,

reducing the mass transfer rate needed to absorb a given amount of incident energy. Although

a higher latent heat and a lower molar mass increase the incident heat flux by approximately

50%, as shown in Figures 2.10 and 2.11, the change in the specific latent heat is greater (a

factor of 8 to 10), resulting in lower evaporative mass fluxes. The evaporative mass flux also

slightly decreases as T ∗ increases. Since the surface temperature is proportional to T ∗, higher

T ∗ leads to a lower incident heat flux by reducing the temperature gradient and promoting

thermal radiation at the surface. Hence, the coolant material with a higher specific heat and

a higher T ∗ is desired to minimize the required evaporative heat flux of the TPS. However,

increasing the latent heat beyond approximately 500 kJ/mol gives a diminishing return in

reducing the evaporative mass flux due to increase in the incident heat flux at the surface

as shown in Figure 2.10.

Figure 2.13 shows the relationship between Fs and the three material properties. We find

that Fs is nearly independent of the molar mass since molar mass does not significantly affect

the surface temperature or the saturation condition as illustrated in Figure 2.8 and equation
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Figure 2.12: Predicted evaporative mass flux as a function of the (a) latent heat of
evaporation, (b) molar mass, and (c) T ∗. Line colors and dash types represent the variation
in material properties not shown in the axis. Symbols are obtained from DNS and have less

than 8% difference with the boundary layer model results.

2.42. The surface temperature is also nearly independent of the latent heat; however, a higher

latent heat decreases Teq as given by equation 2.42 leading to an increase in Fs. We also find

that higher T ∗ leads to an increase in Fs. Surface temperature, which is the numerator of Fs,
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Figure 2.13: Predicted Fs as a function of the (a) latent heat of evaporation, (b) molar
mass, (c) and T ∗. Line colors and dash types represent the variation in material properties
not shown in the axis. Symbols are obtained from DNS and have less than 2% difference

with the boundary layer model results.

is approximately proportional to T ∗, as shown in Figure 2.8. However, the denominator of

Fs is proportional to T ∗/ (1− T ∗) as given by equation 2.42. Because the magnitude Teq of

grows faster than Ts, the factor of safety increases as T ∗ increases. From these relationships,
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a coolant material with a lower latent heat and a higher T ∗ may be preferable to reduce the

risk of nucleation of vapor bubbles within the porous leading edge.

From the viewpoint of leading edge engineering, it may be desirable to reduce the peak

temperature to avoid thermomechanical failures, to reduce the evaporative heat flux to de-

crease the cost and weight of the coolant, and to increase Fs to reduce the risk of surface

dry out. However, the rather complex relationships presented above do not lend themselves

readily to an optimal set of the material properties that satisfy all three requirements. For

example, TPS utilizing a coolant with a lower T ∗ would achieve a low operating surface

temperature of the TPS, but also result in a low Fs. TPS utilizing a coolant with a higher

latent heat of evaporation would achieve a lower evaporative flux, but also a lower Fs.

2.2.2 Flight Conditions

One additional set of parameters one must account for in selecting a coolant material is

the vehicle flight trajectory. We assess a range of flight conditions to examine their effects on

the performance of the TPS and thereby guide the selection of the coolant properties. We

consider flight altitudes from 20 km to 40 km and Mach numbers from 10 to 20. We choose

these ranges to emulate the flight trajectories of typical hypersonic vehicles. Figure 2.14

shows altitudes and Mach numbers of typical hypersonic flight trajectories and the ranges

that we considered.

In Figure 2.15, we show the surface temperature, evaporative mass flux, and Fs as a func-

tion of the altitude and Mach number to elucidate the relationship among them. The solid

lines illustrate the boundary layer model results, and the symbols represent the DNS results.

We consider a leading edge with a fixed radius of 3.1 mm. From our results presented in the

previous section, we note that the predicted evaporative flux showed the largest differences

between the two models. We therefore consider material D, which has the lowest specific

latent heat among the seven materials, to help compare the two models for a wide range of

evaporative mass fluxes at the surface. The maximum difference between the two models is
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Figure 2.14: The velocity-altitude map showing the trajectories of typical hypersonic
vehicles and a range of flight conditions used in this study. The range within the dashed

rectangles are studied using the boundary layer model and the discrete conditions shown in
symbols using DNS. The flight trajectories of typical hypersonic vehicles are adopted from

[3]

below 5% for the surface temperature and Fs and below 25% for the evaporative mass flux.

At high Mach numbers, the severity of the aerothermal conditions is exacerbated due to the

high stagnation enthalpy of the hypersonic flows. Figure 2.15 indeed shows higher surface

temperature, higher evaporative mass flux, and lower Fs as the Mach number increases.

A higher Mach number significantly increases the incident heat flux which correspondingly

requires an increase in the evaporative mass flux to absorb the excess energy. As a result,

the surface temperature increases, approaching Teq and thereby decreasing Fs. We note,

however, that the changes in the evaporation rate are significantly higher than the changes

in the other two parameters. For the range of Mach numbers illustrated in Figure 2.15, the

evaporative mass flux changes by an order of magnitude whereas the surface temperature

changes less than 50% due to the exponential relationship, as given in equations 2.39 and

2.40. Fs experiences an even smaller change less than 15% due to the increase in both surface

temperature and Teq at higher Mach numbers. Therefore, for vehicle trajectories with high

Mach numbers, coolant materials with high specific latent heats can significantly reduce the

evaporative mass flux. However, higher specific latent heats would decrease Fs. The reduc-

tion in Fs may be acceptable since the decrease in Fs at higher Mach numbers is relatively
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Figure 2.15: Predicted (a) surface temperature, (b) evaporative mass flux, and (c) Fs as a
function of altitude and Mach number for material D and a 3.1 mm leading edge radius.

Solid lines are obtained from boundary layer model and symbols from DNS.

small.

Conversely, an increase in the flight altitude partly alleviates the severity of the aerother-

mal condition due to lower densities. Figure 2.15 shows a decrease in the surface temperature

37



and evaporative mass flux at higher altitudes. However, Fs decreases with increasing alti-

tudes. This is because, at higher altitudes, the stagnation pressure lower, which reduces

the Teq of the coolant material. Similar to the results from varying Mach numbers, the

evaporative mass flux changes significantly (by a factor of 3) compared to that in the tem-

perature which varies less than 50%. Fs again experiences a smaller change below 15% due

to the decrease in both the surface temperature and Teq at higher altitudes. Because the

relationship between Fs and the flight altitude is opposite of those for the surface temper-

ature and the evaporative mass flux, different material properties would need to get more

emphasis at different altitudes. For instance, a vehicle designed for high-altitude flight may

utilize coolants with low specific latent heats and high T ∗ to increase Fs at the expense of

higher surface temperatures and evaporative mass fluxes. Alternatively, a vehicle designed

for low-altitude flights may utilize coolants with high latent heats and low T ∗ to decrease the

surface temperature and evaporative mass flux at the expense of lower Fs, which is already

relatively high at low altitudes.

2.2.3 Leading Edge Radius

Another parameter one must account for in selecting a coolant material is the leading edge

radius. Sharp leading edges are essential in achieving superior aerodynamic performance

and maneuverability. However, a sharper leading edge quadratically increases the rate of

aerothermal heating [95] which can drastically change the performance of the TPS. Hence,

we assess the performance of transpiration cooling TPS for sharp leading edges with radii

from 5 mm to 0.1 mm and illustrate their impact on the surface temperature, evaporative

mass flux, and Fs. We fix the flight condition at 30 km altitude and Mach 15 and use

material D.

Figure 2.16 illustrates the relationship between the leading edge radius and the three

performance parameters. Due to significant increase in the incident heat flux, sharper leading

edges exacerbate the aerothermal heating. As a result, the surface temperature and the
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Figure 2.16: Predicted (a) surface temperature, (b) evaporative mass flux, and (c) Fs as a
function of leading edge radius for 30 km altitude and Mach 15 using material D.

evaporative mass flux increase while Fs decreases. However, similar to the results in Section

2.2.2, the change in the evaporative mass flux is much greater compared with those in the

surface temperature and Fs. Reducing the leading edge radius from 5 mm to 0.1 mm, the

evaporation rate increases by a factor of 10, while the changes in the surface temperature
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and Fs are below 4%. This behavior is again due to the non-linear relationship between

the surface temperature and the evaporative mass flux as given by equations 2.39 and 2.40.

However, the changes in the surface temperature and Fs are much less compared with the

results in Section 2.2.2 because the change in the leading edge radius does not affect the

flow conditions at the stagnation point. Hence, the change in the surface temperature is

only affected by the change in the evaporative mass flux, and the change in Fs is solely

due to the change in the surface temperature. Because the change in surface temperature

and Fs are almost negligible, the evaporative mass flux is the limiting factor of the TPS

for very sharp leading edges. Hence, coolant materials with high specific latent heats would

significantly reduce the evaporative mass flux at the expense of marginally higher surface

temperature and Fs. We also note that evaporative transpiration cooling may be able to

effectively protect very sharp leading edges with a radius of 0.1 mm as long as the necessary

evaporative mass flux is achieved at the surface.

2.3 Summary and Conclusion

In this chapter, we investigated the viability of transpiration cooling employing oxide

coolants as an alternative system to thermally protect sharp leading edges. We paramet-

rically characterize the performance of transpiration cooling for various coolant properties,

flight conditions, and leading edge radii using 2D axi-symmetric, semi-analytical boundary

layer model incorporating thermodynamic non-equilibrium conditions which we validated

with 3rd-order shock-fitting DNS. We quantified the performance of the TPS using three

metrics: the surface temperature, the evaporative mass flux, and the boiling limit. We

showed that the surface temperature depends solely on the saturation temperature of the

coolant material, the boiling limit is independent of molar mass, and the evaporative mass

flux is affected by all three material properties. We also illustrated that high Mach numbers

and small leading edge sizes exacerbate the aerothermal condition resulting in higher surface
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temperature and evaporative mass flux and lower boiling limit factor of safety. Low altitude

flights also increase the surface temperature and evaporative mass flux but result in higher

boiling limit factor of safety.

Our numerical results demonstrated that transpiration cooling employing oxide coolants

may effectively cool the surface temperature to below the saturation temperature of the

coolant material even for very sharp leading edges with radius of 0.1 mm and in extreme

hypersonic conditions of Mach 20 and 20 km altitude, where incident heat fluxes are of the

order of 85 MJ/m2, as long as the necessary amount of coolant is supplied to the surface.

Our results do not lend themselves readily to a single optimal set of the material properties

for transpiration cooling. Rather, different coolant properties are better suited for different

flight conditions and leading edge sizes. Vehicles with high Mach number and low altitude

trajectories or small radius of curvature of the leading edge may utilize coolant materials with

high specific latent heats to significantly reduce the evaporative mass flux. Alternatively,

vehicles with low altitude trajectories may benefit from coolants with low specific latent heats

to avoid vapor nucleation within the porous leading to which they are more susceptible at

higher altitudes.
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Chapter 3

Permeability of High Porosity

Reticulated Foams

In order to effectively protect the sharp leading edges of hypersonic vehicles, the amount

of liquid evaporated must be replenished to avoid dry out at the surface. Lack of evaporation

caused by surface dry out could lead to failure by formation of local hot spots above melting

point of porous structure. To achieve a net liquid flow to the surface, the driving pressure

must be larger than the pressure loss through the porous medium:

PD ≥
µuD
K

L (3.1)

The pressure gradient is proportional to the inverse of the permeability of the porous

media. Hence, it is important to accurately know the permeability of porous media to

accurately predict the viscous pressure loss.

3.1 Experimental Measurement

Here, we characterize the permeability of porous media by measuring the flow rate for

a given pressure gradient. Using Equation 1.1, we estimate the permeability and inertial

42



coefficient of the reticulated foams by least squares regression analysis.

3.1.1 Experimental Setup

We constructed the test facility, illustrated in Figure 3.1, using 3/4” diameter Polyvinyl

chloride (PVC) pipes. The set up can be divided into three sections: inlet, sample hous-

Figure 3.1: Experimental setup used to measure the pressure gradient across porous media
samples at fixed flow rate.

ing, and outlet sections. The inlet section is connected to a pressurized air supply. The

length of the inlet is sufficiently long to ensure fully developed flow. Sample housing sec-

tion is connected to the inlet and outlet by threaded PVC pipe fittings with rubber o-rings.

Threaded connection allows easy access to the samples foam and testing of different samples.

Fluid is then discharged into ambient through the outlet. We control and measure the air

flow rate using two rotameters (King Instrument Company Model 2C-02 and Dwyer Model

RMC-103-SSV) with different full scales, 1.8 SCFH and 4 SCFH, respectively. Air flow rate

is measured at the location upstream of the inlet. We use a differential pressure transducer

(Dwyer 648C) to measure the pressure gradient at the beginning and end of the sample

housing section. Two pressure taps are drilled into the PVC pipes, and they are connected

with 1/8” diameter plastic tubing to the differential pressure transducer. Plastic tubing are
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secured using bonding adhesive to prevent leakage.

3.1.2 Sample Preparation

High porosity, reticulated silicon carbide (SiC) ceramic foams are provided by Ultramet.

SiC Foams were manufactured using chemical vapor deposition (CVD) of SiC on to vitreous

carbon preform constructed from pyrolyzing resin impregnated polyurethane foam. We use

three samples with different pore densities: 80, 65, and 45 pores per inch (PPI). Foam

samples are cut into cylinders with 3/4” diameter and 1” length as depicted in Figure 3.2.

After cutting the samples, they are cleaned by vigorously shaking in acetone and water by

Figure 3.2: Image of prepared 3/4” x 1” cylindrical SiC reticulated foam sample. SiC
foams were provided and manufactured by Ultramet using chemical vapor deposition onto

preforms.

hand to clean off residual powders and dust. Samples are then dried with pressurized dry

air. Finally, each sample is wrapped in Teflon tape around its perimeter to fill the small

gaps between it and the pipe to prevent leakage around the sample.

3.1.3 Experimental Results

For each experimental run, flow rate is gradually increased until 40 standard cubic feet

per hour (SCFH) to ensure laminar flow in the system. Figure 3.3 illustrates the measured

differential pressure for a given flow velocity. The pressure gradient shows quadratic rela-

tionship with the flow velocity for all samples. For the range of pore Reynolds number in
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Figure 3.3: Measured differential pressure as a function of flow velocity for the three SiC
samples. Quadratic relationship is observed in accordance with the Darcy-Forchheimer

equation (equation 1.1)

our experiments, the flow through porous media is in inertial regime [49]. In this regime, the

pressure gradient is related to the flow velocity by Darcy-Forchheimer equation (Equation

1.1, repeated here for convenience):

dP

dx
=
µuD
K

+
ρuD

2

C
(3.2)

Here, the pressure gradient is proportional to the square of flow velocity which is in agreement

with our experimental results. We perform least squares regression analysis to obtain the best

quadratic fit to our experimental data and calculate permeability and inertial coefficient using

the Darcy-Forchheimer equation. Obtained values of permeability and inertial coefficients are

tabulated in Table 3.1. We also observe that higher pore density increases the flow resistance

of the porous media which agrees with previous studies. This behavior is expected since both

permeability and inertial coefficient are proportional to the pore diameter [77].

45



Table 3.1: Experimentally measured permeability and inertial coefficient

Pore density Permeability, K (m2) Inertial Coefficient, C (m)
45 PPI 5.3 x 10−9 2.4 x 10−4

65 PPI 4.3 x 10−9 7.3 x 10−4

80 PPI 2.6 x 10−9 1.9 x 10−4

3.2 Numerical Simulations

With recent advances in imaging and digital reconstruction of porous media, one can ob-

tain local, pore-scale details of flow through porous media using numerical simulations. Xu

et al. [111] utilized CFD to solve the velocity field for a unit cell consisting of tetrakaidecahe-

dron, a polygon with 14 faces, is often used to represent the structure of metal and ceramic

foams. They compared their simulation with the experimental results from Lacroix et al.

[55] and found relatively good agreement in the low Reynolds number regime. Their results

showed larger deviation in the permeability at higher Reynolds number. Wu et al. also

utilized tetrakaidecahedron geometry with blended surfaces at the ligament joints to create

a smooth connection. Their model was able to adjust the radius of curvature of the blended

surfaces at the ligament joints to manipulate the porosity and pore diameter of the foam.

They also performed experiments on different ceramic foams but did not directly compare

the two results. Although these numerical models predict the macroscopic characteristics

reasonably, use of homogeneous porous media often experiences difficulty with a variety of

reticulated foams who are highly heterogeneous with complex morphology.

For complex, heterogeneous reticulated foams, X-ray micro-computer tomography (mu-

CT) images have been utilized to perform numerical simulations on the physical microstruc-

tures of the reticulated foams [69, 112, 113]. A digitally reconstructed 3D geometry from

a series of 2D tomography images serves as the computational domain. Diani et al. [17]

utilized X-ray µm-CT images to reconstruct reticulated copper foams with four different

pore densities between 5 to 40 PPI. Their numerical simulation using digitally reconstructed
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foams demonstrated good agreement with experimental measurements obtained using air

flow. Ranut et al. [74] incorporated similar methodology to numerically simulate aluminum

foams with three different pore densities between 10 to 30 PPI to estimate the permeabil-

ity. However, their results were not validated with experiments. Recently, Wu et al. [108]

numerically simulated fluid and heat transport through a digitally reconstructed ceramic

foam of 0.85 porosity and 30 PPI pore density. Numerically simulated pressure gradient and

convective heat transfer rate agreed well with experimental results.

Numerical simulation provides advantages in estimating the macroscopic parameters,

such as permeability and inertial coefficient, without conducting experiments which can

be cumbersome. They can also provide details of the fluid flow which cannot be obtained

experimentally to characterize the porous media flow at the microscopic scale. Here, we adopt

a similar approach to numerically simulate the fluid flow through digitally reconstructed SiC

reticulated foams from X-ray µ-CT images. We demonstrate the capability and accuracy of

our numerical simulations by validating with experimental results.

3.2.1 Geometric Reconstruction

X-ray tomography is a non-invasive method that allows imaging and reconstruction of

opaque materials. A sample is placed and rotated between an X-ray source and a detector.

Projections at the detector are then taken at an incremental angle of rotation and is used

to reconstruct into 2D planar images of the sample [74]. X-ray tomography images of SiC

samples were obtained using SkyScan 1172, Bruker with a pixel resolution of 13.3 µm, and

reconstruction of the X-ray images were performed using NRecon software (Bruker). Figure

3.4 shows the X-ray and reconstructed image for SiC sample. A set of 2D planar images were

used to reconstruct a 3D binary array that consists of voids, ”0”, and solids, ”1”. 3D binary

array is then converted to a 3D mesh using open source MATLAB script [2]. Converted 3D

mesh consisted of approximately 50,000 triangle surfaces to represent the solid voxels in the

3D binary array. Figure 3.5 illustrates the reconstructed and decimated surface mesh for
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Figure 3.4: X-ray projection of the cylindrical SiC sample and 2D binary planer image

SiC foam.

Figure 3.5: Reconstructed 3D surface mesh of SiC foam

3.2.2 Representative Elementary Volume

3D reconstruction can provide detailed description of microscopic structure of porous

media. However, currently available computational time and resources significantly limit

the ability to simulate the porous media at the macroscopic scale. To overcome this is-

sue, geometric and transport parameters are calculated using a Representative Elementary

Volume (REV). REV are sized at the microscopic scale, much smaller than the size of the

entire physical domain, that is considered to represent the average macroscopic geometric
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and transport parameters for the entire domain [5]. Many studies have constructed REV

of different porous media and of different sizes to investigate the relationship between REV

size and geometric and transport parameters. Zhang et al. [114] studied porous media

made of crushed glass beads and sandstone using X-ray tomography images for geometric

and Lattice-Boltzmann method for transport parameters. They calculated the statistical

average and standard deviation of porosity, specific surface area, and permeability for all

divided domains with varying sizes. Consistent with traditional, qualitative description of

REV [67, 5], they found that as size increased, the average and standard deviation values

converged. They observed statistically insignificant change for sizes beyond approximately

2.6 mm and 0.27 mm for medium porosity crushed glass beads and low porosity sandstone,

respectively. Recently, Panerai et al. [69] studied fibrous foams such as carbon and rayon felt

using similar methodology to assess the thermal conductivity. They also found that as REV

size is increased (above 1 mm), porosity and thermal conductivity values converged. Using

similar method, Ozelim and Cavalcante [68] found consistent results by studying porous

media made of glass beads and sands. In study by Rossetto et al. [17], they heuristically

determined that the size of REV for high porosity copper foam is approximately 5 to 10

times larger than average pore size using numerical and experimental results.

We choose the size of REV to be approximately 3.3mm x 3.3mm x 3.3mm or 2503 voxels

such that size of REV is approximately 10 times larger than the largest average pore size

possible, consistent with previous study by Rossetto et al. [17]. However, high heterogeneity

are present within the SiC foams, as depicted in Figure 3.6, likely caused due to chemical

vapor infiltration (CVI) process during the manufacturing process where gas reactants that

develop ligament structure are depleted as it travels through the preforms. The gradient

length scale of pore characteristics spans across the entire sample and is much larger than

the typical length scale permitted by computational resources. Consequently, we analyze the

average pore characteristics of SiC samples to determine the appropriate location of our REV.

We investigated three geometric parameters directly from the X-ray tomography images:
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Figure 3.6: Positional variation in the porosity and average pore size along the stream-wise
direction of the SiC foam samples due to their high heterogeneity.

porosity, average pore size, and tortuosity. Porosity and average pore sizes are calculated

using open source code PoreSPY [25]. The porosity is calculated as the ratio of number of

void voxels per the total number of voxels assuming that there were no closed pores. The

average pore size is calculated using porosimetry method. The tortuosity is calculated using

the fast marching algorithm [28] implemented in open source MATLAB library by Kroon

[53]. Time of flight through the domain is calculated by setting planes perpendicular to the

flow directions as inlet (source) and outlet (destination). Due to computational limitations,

the entire sample is divided into several sub-domains of equal size for which the parameters

were calculated. Overall average parameters are shown in Table 3.2. The location of REV

is chosen such that the ratio of porosity, average pore size, and tortuosity given by equation

K ∼
εd2p
τ − 1

(3.3)

is within 5% of that for the overall sample. The ratio in Equation 3.3 follows the derivation

by Du Plessis et al. in which the permeability is a function of porosity, average pore size,

and tortuosity. For all three samples, the location of the REV is approximately at the center

of the sample.
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Table 3.2: Average porosity, pore size, and tortuosity of SiC samples used to locate
appropriate REV.

Pore density Porosity ε Average pore size dp (µm) Tortuosity τ
45 PPI 0.829 323.5 1.0043
65 PPI 0.798 290.4 1.0048
80 PPI 0.759 146.1 1.0072

3.2.3 CFD Simulation

We next perform CFD simulations to numerically solve the steady-state Stokes equations

using (ANSYS Fluent 18.2):

∇ ·V = 0 (3.4)

∇P = µ∇2V (3.5)

We neglect gravitational and body forces and assume constant fluid transport properties.

Periodic boundary conditions are imposed at the inlet and the outlet. The computational

domain is mirrored about the inlet plane perpendicular to the stream-wise direction to

impose a velocity-periodic boundary condition. The pressure gradient is specified along

the stream-wise direction. No-slip conditions are applied on the solid surfaces. Symmetry

boundary conditions are applied to the side surfaces parallel to the stream-wise direction.

Computational domain and boundary conditions are summarized in Figure 3.7. We perform

a grid independence study such that increasing the number of elements resulted in less

than 1% error in the permeability. A typical computational grid consisted of 5 million

unstructured elements. We consider convergence is achieved when the relative change in the

predicted permeability over 10 iterations is below 0.1%. We also perform a grid independence

study such that decreasing the element size by half resulted in less than 0.1% error in the

permeability.

Numerical simulation results are illustrated in Figure 3.8. The simulated results show a

good agreement with the differential pressure values within 10% of those from our experi-
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Figure 3.7: Computational domain for velocity field simulation. Periodic boundary
condition was applied in the flow direction by mirroring the domain. No-slip condition was

applied on the solid surfaces. Symmetric condition was applied on the boundaries of the
computational domain.

Figure 3.8: Pressure difference as a function of flow velocity obtained from numerical
simulations. Computational results are within 10% of the experimental results.

ments for given flow velocities. We believe the difference between numerical simulation and

experimental results is likely due to the limitations of REV that cannot represent the com-
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plete macroscopic flow behavior of the entire sample. Ideally, fluid flow through the entire

sample must be solved to obtain accurate result, however, it would require unprecedented

amount of computational resources and time.

3.3 Estimate of Viscous Pressure Loss

As described earlier, the driving pressure must be larger than the pressure loss through the

porous medium to achieve net flow to the surface. Here, we estimate the viscous pressure loss

using a 1-D model through a porous leading edge made of SiC reticulated foams characterized

above. As given in equation 3.1, the viscous pressure loss is defined as

Ploss =
µṁ

ρK
L (3.6)

We estimate the pressure losses as a function mass flux through the porous media. We also

consider a coolant with a density of 4000 kg / m3 and viscosity of 0.1 Pa s to simulate the

extremes of typical oxide properties as shown in Table 3.3. Estimated viscous pressure loss

Table 3.3: Density and viscosity of typical oxides

Material Density (kg/m3) Viscosity (Pa·s)
Al2O3 3950 0.066
FeO 5740 0.051

MgSiO3 4103 0.0082
MgO 3580 0.0037

are illustrated in Figure 3.9 for a wide range of mass flow rate. Depending on the pore

density of the reticulated foam, the necessary driving pressure to achieve a high flow rate

of 20 kg/m2s can range approximately from 200 Pa/mm to 100 Pa/mm. Based on this

analysis, reticulated foams with low pore density is desired to minimize the viscous pressure

loss through the porous leading edge volume.
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Figure 3.9: Estimated viscous pressure loss as a function of mass flux for different pore
densities of reticulated foam.

3.4 Capillary Self-Pumping Capability

One promising advantage of evaporative transpiration cooling is its ability to sufficiently

self-pump the liquid coolant to the surface. Oxide coolants have an advantage in this aspect

since they typically possess high surface energy, and thereby, surface tension. We use a 1-D

model using the permeability obtained in this chapter and Young-Laplace equation given as

Pcap =
4σcos (θ)

Dp

(3.7)

to calculate the ratio of capillary pressure and viscous pressure loss. The ratio is illustrated

in Figure 3.10 for the three pore densities considered. The surface tension and the contact

angle are assumed to be 0.1 N/m and 45 degrees, respectively, which are typical for most

oxides. We find that porous leading edge with the lowest pore density achieves the highest

ratio of the two pressures. This result suggests that low pore density is still favorable to

maximize the capillary pumping capability of the porous leading edge. We hypothesize that
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Figure 3.10: Ratio of capillary pressure and viscous pressure loss as a function of mass flux
through a porous leading edge.

this behavior is because the capillary pressure linearly depends on the pore diameter whereas

the permeability is proportional to the square of the pore diameter. Hence, the porous leading

edge that maximizes the permeability also maximizes the capillary pumping capability. We

also note that the reticulated foams that we considered cannot sustain necessary flow rate

beyond approximately 10 kg/m2 by relying solely on capillary pumping, requiring external

means of pressure or force to deliver the fluid.

3.5 Summary and Conclusion

In this chapter, flow through porous leading edge is characterized at the macro-scale to

predict the necessary driving pressure for estimated properties of typical oxides. We exper-

imentally and numerically characterized the permeability of SiC foams with three different

pore densities. Experimental method used differential pressure transducers and flow meters

to obtain the permeability for various air flow rates. Numerical method utilized X-ray micro-

tomography images to reconstruct the representative elemental volume of porous media and
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CFD to solve the fluid flow. The permeability values of all SiC foams agreed well between

the two methods. The permeability values are then used to estimate the necessary driving

pressure. The porous media with the lowest pore density showed the minimum pressure

gradient to achieve a given mass flow rate. We also assess the capillary pumping capability

of the porous media and demonstrate that it is maximized using the porous media with the

lowest pore density porous. Therefore, a porous leading edge consisting of low pore den-

sity is desired to minimize the necessary driving pressure and maximize the self-pumping

capability.

56



Chapter 4

Deep Learning Prediction of

Pore-scale Flow Using Synthetic

Porous Media

To address the limitations of conventional simulations, data-driven deep learning (DL)

models have been developed to predict flow through porous media [43, 22, 16, 45]. Different

DL model architectures have been explored to study the flow characteristics of porous media.

For instance, the physics-informed neural network (PINN) uses an autoencoder, consisting

of multi-layer perceptrons (MLP), to predict velocity and pressure fields as a function of

position and time [61, 31, 42, 12, 11]. The PINN incorporates the governing equations,

boundary conditions, and initial conditions, which limits its applicability to specific compu-

tational domains and increases the computational cost of training. Similarly, the PointNet

[72, 48] performs a direct mapping between the vertices of a computational grid and the

corresponding velocity and pressure values using MLP. It has been used to predict the per-

meability of sandstones [45] as well as velocity fields using a similar approach as the PINN

[46, 47].

The convolutional neural network (CNN) consists of convolutional layers that recognize

57



patterns in an image and is suited for image-based flow field reconstruction. CNN has been

widely used to predict flows through porous media [109, 119, 100, 91]. Sudakov et al. [90]

used a combination of CNN and MLP to predict the permeability of certain sandstones

with a small average error of approximately 4%. Similarly, Kamrava et al. [44] used a

combination of CNN and MLP to predict the permeability of 3D sandstones with porosities

of approximately 0.2. Zhang et al. [115] also used a mix of CNN and MLP to predict

the permeability of 2D synthetic porous media of porosity between 0.4 and 0.8 using low-

resolution images obtained via bi-cubic interpolation [50].

Unlike the above models, which only provided an integrated property, other recent CNN

models were designed to predict pore-scale 3D velocity fields. Santos et al. [83] presented

a CNN model to predict the velocity field, although only in the stream-wise direction, of

various sandstones. Their model was trained using disordered packs of spherical grains with

porosity between 10% and 30%. Their model showed errors as low as 1% in permeability,

but it required four precomputed inputs: the Euclidean distance, the maximum inscribed

sphere, and the time of flight in two directions, and was not trained to satisfy the law of

mass conservation. The same group [84] reported a CNN model that extracts the relationship

between the porous media microstructure and the velocity fields at different length scales.

Wang et al. [102], presented a CNN model to predict 2D and 3D velocity fields in synthetic

porous media created using the algorithm described by Liu and Mostaghimi [59] where they

segment a field of uniformly distributed random numbers after applying a Gaussian blurring

kernel of different sizes. Their model related the binary image and the Euclidean distance

to the velocity field. The model predicted the permeability within 1% error for 2D synthetic

porous media with permeability ranging from 1 × 10−19m2 to 1 × 10−12m2. However, the

error increased by more than 10% for 3D synthetic porous media with permeability ranging

from 1× 10−14m2 to 1× 10−12m2. They similarly observed larger voxel-wise errors in the 3D

velocity fields.

In this chapter, we utilize CNN and implement a physics-informed loss function to predict
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the 3D velocity field of real reticulated foams from only its binary images. To our knowledge,

a reasonable prediction of the full 3D velocity field at the pore-scale using only the binary

image has not yet been reported. An ideal model should not require precomputation, which

can be cumbersome. Moreover, the prediction of the 3D velocity field in both stream-wise

and span-wise directions is essential for accurate transport analysis. The result of heat

transfer analysis without the span-wise velocity is erroneous as shown in Figure 4.1.

Figure 4.1: Example of the results from heat transfer analysis. Using only the stream-wise
velocity field shows significant error in the temperature field as the upstream information

cannot propagate through the tortuous paths of the porous media.

We also study complex, inhomogeneous reticulated foams which have microstructures

significantly different from typical porous media considered in previous studies. Reticulated

foams have high porosity, large specific surface area, mechanical robustness, and light weight,

which are advantageous in many engineering applications including filtration [94, 70], cat-

alytic reactions [14, 58, 23], latent energy storage [117, 39, 118], and heat-exchangers [9, 40].

Their unique pore-scale characteristics can increase the learning difficulty for deep learning

models.

We design our model to have separately trained submodels that learn the 3D spatial

relationship of each velocity component and a main model that enforces the law of mass

conservation. We demonstrate that our model provides comparable accuracy to the tra-
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ditional CFD methods both at the macro-scale and pore-scale, and our physics-informed

loss function significantly reduces the divergence of the velocity fields. The prediction using

our deep learning model only takes a few seconds on modern workstations while traditional

CFD methods require a few hours. Our design is also memory efficient, so that the training

process can be handled by a single Graphical Processing Unit (GPU). We further utilize our

model in heat transfer analysis to demonstrate its accuracy and advantage in consecutive

transport analysis for various engineering applications. The overall workflow is presented in

Figure 4.2.

Figure 4.2: Workflow to predict the velocity field directly from the binary image of porous
media using the deep learning model. Prediction of the velocity field takes only a few

seconds using our deep learning model. Using our deep learning model, we perform heat
transfer analysis to assess the accuracy and advantages of our deep learning model.

4.1 Neural Network Architecture

Our neural network (Figure 4.3) uses the convolutional U-Net structure [80]. It utilizes a

series of stacked convolutional layers to extract both high- and low-level features and recon-

struct the output. Our model decomposes the velocity field into component-wise submodels.

It is similar to a previous work by [76] where the velocity components were trained sepa-

rately [101]. However, we incorporate the submodels at the encoding branch of the U-Net

to extract component-wise hierarchical features. Each submodel processes the input binary

data S representing a porous medium and outputs a velocity field Vn, where subscript n
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Figure 4.3: Schematic of our deep learning model. The model incorporates three separately
trained submodels. Outputs from the submodels are used to enforce the law of mass
conservation in incompressible flow. Red dashed arrows indicate skip-connections.

denotes the velocity component in either x, y, or z direction such that:

Vn = Fn (S; wn,bn) (4.1)
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Here, Fn is the trained submodel with optimized weights wn and biases bn for each velocity

component. The outputs of the submodels are combined within the trained model G such

that:

V = G ([Vx, Vy, Vz] ; w,b) (4.2)

where weights w and biases b are optimized to enforce the physics-informed loss function

as described in Section 4.2. We use the batch normalization layer and the dropout layer to

help generalize the model and prevent over-fitting. We use the scaled exponential linear unit

(SeLu) [52] as the non-linear activation function instead of the rectified linear unit because

the velocity can be negative in the span-wise direction.

We tuned the hyperparameters using a method of discrete grid search. We used the

default parameters for all batch normalization layers. We used a dropout rate of 0.2 for x

and y directions and 0.1 for z direction. A lower dropout rate of 0.001 was used for the main

model. To train, we used the Adam optimizer for all models with different learning rates of

0.0008 for x and y directions and 0.0006 for z direction. We trained the main model with a

default learning rate of 0.001. We used the TensorFlow library [1] to construct and train our

model. We used a mini-batch size of four. We also applied early stopping criterion with 50

learning iterations to prevent preemptive stoppage and over-fitting. Each training run did

not exceed 8 hours. We trained using a single NVIDIA V100 GPU with 16GB of memory.

A major challenge in deep learning is the amount of required memory for training [84].

All model parameters, including weights and biases, the inputs, and the outputs must be

locally stored during training. Even a single batch consisting of 120 × 120 × 120 tensor

for the input and the output can consume considerable amount of the memory. Previous

studies had to compensate with either reduction in the resolution of the velocity field or in

the number of training data [83, 102]. We believe that our approach of decomposing the

velocity into its components helps reduce the memory required to train our model. However,

the batch size remains constrained by the limitations imposed by GPU memory. The total

number of trainable parameters of our model is approximately 5 million which is an order
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of magnitude less than previously reported model [102].

4.2 Physics-Informed Loss Function

We implement a physics-informed loss function (PIMSE) that incorporates the differential

form of the law of mass conservation for incompressible flows as part of the general mean

squared error (MSE) loss function:

PIMSE =
1

N

N∑
i

(
x,y,z∑
n

∣∣Vn,i −V∗n,i
∣∣2 + α |∇ ·V∗i |

)
(4.3)

Here, N is the total number of voxels (L3), super script ∗ denotes the predicted value, and α

is a penalty coefficient. The divergence of velocity field is calculated using the second-order

central difference scheme.

Our PIMSE expands upon the previous work by [102], which only balanced the 2D

planar mass flux. [63] have implemented the divergence free condition directly into the

neural network. However, we implement the divergence free condition into the loss function

to simplify the model. We choose to impose the divergence free condition for all voxels with

an equal weight, and hence, define the divergence loss with L1 penalization. The weighting

factor α is chosen to be 3 such that the values of the MSE and the divergence error are

comparable at the start of the training and that the learning process is not dominated by

one metric.

We choose the MSE loss function over the mean absolute error or the mean absolute

percent error which can be problematic when the velocity distribution spans several orders of

magnitude with large number of voxels with near-zero velocity. It also puts more emphasis on

the voxels with relatively higher velocity that govern the dominant flow paths and transport.

For training the sub-models, we use the general MSE loss function (equation (5.5) with

α = 0) since the divergence free condition cannot be imposed on a single velocity component.

We also use the MSE loss function to train our model for comparison purposes.
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4.3 Data Set Generation

For training and validation purposes, we generated synthetic porous media with ran-

domly dispersed spherical pores to emulate the stochastic nature of the reticulated foams

(Figure 4.4). We used the overlapping spheres function in open-source library PoreSpy [25]

Figure 4.4: Example of (a) digitally reconstructed reticulated foam and (b) generated
synthetic porous medium with randomly dispersed spheres. Insert images show the planar
binary image of each porous medium where the black and the white represent the solid and

the void, respectively.

to distribute spherical pores with radii of a specified mean value and standard deviation.

The final porosity values varied from 70% to 80%. We chose the parameters of the synthetic

porous media such that the range of normalized permeability (see equation (4.5)) is similar

to that of our reticulated foams. To assess our model, we used SiC foams with experimentally

and numerically characterized in Chapter 3. We used two REV, with at least five pores, for

each target pore densities. Relevant pore characteristics of the synthetic porous media and

the reticulated foams are summarized in Table 4.1.

We next performed CFD simulations to obtain the ground-truth velocity fields following

the approach described in Chapter 3. We normalize the velocity fields before they are
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Table 4.1: Summary of pore characteristics for the synthetic porous media and the
reticulated foams used in this chapter. The porous media are named in the decreasing

order in the normalized permeability.

Porous Normalized
Media Porosity Tortuosity Permeability

Synthetic 1 0.77 1.0186 11.5
Synthetic 2 0.79 1.0117 11.5
Synthetic 3 0.74 1.0155 10.2
Synthetic 4 0.75 1.0176 10.1
Synthetic 5 0.73 1.0191 8.6
Synthetic 6 0.76 1.0189 8.4
Synthetic 7 0.75 1.0143 7.7
Synthetic 8 0.69 1.0259 7.2
Synthetic 9 0.69 1.0284 7.1

Foam 1 0.85 1.178 11.5
Foam 2 0.78 1.207 10.4
Foam 3 0.75 1.202 9.1
Foam 4 0.81 1.159 8.2
Foam 5 0.83 1.170 7.8
Foam 6 0.79 1.168 6.6

provided as inputs to our deep learning model. Darcy’s law [105] states that

dP

dz
=

µ

K
Vz (4.4)

where K is the permeability of the porous media and assumed to be a constant. According

to the Carman-Kozeny relation, which is a good approximation for a wide variety of porous

media [121, 56, 49], the permeability scales as the square of the pore length scale. Based on

these relations, we normalize the 3D velocity fields using the following equation:

Ṽ =
µ

dP/dz

1

R2
V (4.5)

where the normalized velocity vector is denoted as Ṽ and the image spatial resolution as R.

Our normalization scheme allows us to have a consistent physical length scale across all data

which is crucial in image-based learning. Since Ṽ is simply a multiple of V for a given image
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spatial resolution and flow conditions, we interchangeably refer to the normalized velocity

as V. The normalized velocity is then scaled to have a maximum value of 10 for training.

To create our training data, we performed 3D image augmentation on the original solid

data and the full 3D velocity fields. We obtained 270 training data for the sub-models

(270× 120× 120× 120× 1). We obtained a second set of training data consisting of 135

samples for the main model (135× 120× 120× 120× 3). The total number of training data

is reduced to accommodate three velocity components. We applied random shifts along x

and y directions. We also applied random flips about x and y axis to ensure that the network

sees the different orientations of the data during training. We changed the velocity direction

for the x and the y components accordingly to ensure the symmetric boundary condition.

We randomly assigned 10% of the training data for validation and another 10% for testing.

4.4 Results and Discussion

4.4.1 Microstructure of Reticulated Foams

No previous studies to our knowledge have considered high porosity reticulated foams.

Due to their unique pore characteristics, the reticulated foams are very different from typical

porous media such as sandstones and bead packs, which can make the training process more

difficult. As an example, we compare four pore characteristics of the reticulated foams

and of Fontainbleau sandstone [83] to highlight the differences in Figure 4.5. The four pore

characteristics are the Euclidean distance, the diameter of maximum inscribed sphere (MIS),

and the detrended time of flight in directions along and against the flow. The Euclidean

distance provides a compact representation of space available for fluid flow. The maximum

inscribed sphere provides information about the local pores. The detrended time of flight

provides information on the tortuous flow path within the porous media.

The histograms of the Euclidean distance and the maximum inscribed sphere are much

wider than those of the sandstones. The wider distributions are due to the high porosity
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Figure 4.5: Comparison of the histogram of the four pore characteristics for the reticulated
foams and Fontainbleau sandstone. The histograms of the Euclidean distance and the

maximum inscribed sphere for the reticulated foams show much wider range with larger
values. On the contrary, the histograms of the time of flight for the reticulated foams show

a much narrower range with smaller values.

and large pore sizes. The reticulated foams have a porosity between 75% and 85%, as

summarized in Table 4.1, while the Fontainbleau sandstones have a porosity between 5%

and 40%. The pore sizes of the reticulated foams are on the order of 100µm, but the pore

sizes of Fontainbleau sandstones are on the order of 1µm. High porosity and large pore sizes

of reticulated foams cause considerable amount of the volume to serve as flow paths as shown

in Figure 4.6. Figure 4.7 shows the distribution of the absolute velocity in each direction for

the reticulated foams. The wide distribution of the magnitude of the velocity component

can complicate the learning process. The oscillation in the probability at very low velocity
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Figure 4.6: Velocity profiles of a reticulated foam at the cross-section orthogonal to the z
direction. High porosity and large pore sizes cause a considerable amount of the volume to
contribute to the fluid flow. The x and y velocity components also have orders of magnitude
comparable to the z velocity component in both the positive and the negative directions.

is due to the limited accuracy of the numerical solver.

In contrast, the distributions of detrended time of flight are significantly skewed towards

the minimum because of the low tortuosity of the reticulated foams. Fontainbleau sandstones

have tortuosity above 1.5, and our reticulated foams have it around 1.2, as summarized in

Table 4.1. However, the heterogeneity of the reticulated foams results in high velocities

in the span-wise direction, as shown in Figure 4.6 and 4.7. The velocity distributions in

both positive and negative directions are also identical, as shown in Figure 4.8. The two

equal distributions exacerbate the nonunique spatial-velocity relationship that exacerbates

the learning difficulty.

We believe that incorporating component-wise submodels helps the model to learn the

spatial-velocity relationship considerably. We illustrate the averaged convolutional features
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Figure 4.7: Distribution of the absolute velocity for each velocity component for the
reticulated foams. Due to the high porosity, the distribution of the z velocity spreads

across a wide range of velocity. The x and the y velocity components have comparable
orders of magnitude as the z velocity component.

Figure 4.8: Distribution of the x and y velocity components in the negative and positive
directions. The two distributions are identical due to the heterogeneity of the reticulated

foams, which further complicates the non-unique spatial-velocity relationship.

at the cross-section orthogonal to the z direction after the first and last convolutional blocks

of the encoding branch for each velocity component in Figure 4.9. The corresponding solid

image and velocity field of the reticulated foam are also shown. The features extracted at the

end of the first convolutional block mostly retain the binary image of the reticulated foam.
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Figure 4.9: Extracted convolutional features for each velocity component at the end of the
first and the last convolutional blocks of the submodels. The features are averaged and

illustrated at the cross-section orthogonal to the z direction. The extracted features of each
component show activations at different locations for different velocity components,

suggesting that component-wise models help the learning process.

We expect this behavior since the first convolutional block needs to guide the reconstruction

of the velocity field in the decoding branch through the skip-connection. We note that,

however, they still show slightly different weights and biases.

Conversely, the low-level features illustrate a clear difference suggesting that the weights

and biases of a submodel are optimized to fit the spatial-velocity relationship for the corre-

sponding direction. Although the distributions of the x and y velocity components are nearly

identical, the extracted 3D features show a difference. Because the two velocity components

are rotated 90◦ from each other, a different spatial dependency is expected. It may be possi-

ble to merge the two submodels, but it would require further modification and is beyond the
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scope. We also mention that the low-level features do not completely resemble the velocity

fields since the majority of the reconstruction is performed within the decoding branch. By

incorporating component-wise submodels, we extract unique spatial-velocity relationships

for each component and ensure efficient training of the model.

4.4.2 Permeability

We first quantify the accuracy of our model at the macro-scale. Figure 4.10 shows the

comparison between the ground-truth and the predicted permeability for the test data of

synthetic porous media and reticulated foams. The model shows excellent agreement in

Figure 4.10: Comparison of the permeability of the synthetic porous media and reticulated
foams. The predicted permeability is in excellent agreement with an average error of 1%

and 3% for the synthetic porous media and reticulated foams, respectively.

predicting the permeability for both porous media. We obtain an average error of 1% and a

maximum error of 2% for the synthetic porous media. For the reticulated foams, we obtain

an average error of 3% and a maximum error of 6%.

We also compare the scaled total absolute flow error (STAFE) in Figure 5.8. The STAFE
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is defined as [102]:

STAFE =

x,y,z∑
n

|qn − q∗n|
qz

(4.6)

where qn is the planar flow rate in the n direction defined as

qx =
N∑
j

N∑
k

Vx|i,j,k, qy =
N∑
i

N∑
k

Vy|i,j,k, qz =
N∑
i

N∑
j

Vz|i,j,k. (4.7)

The STAFE accounts for error in the predicted mass flow rate in each direction and reflects

additional details of the flow at the pore-scale than the permeability [102]. The average

Figure 4.11: STAFE for the synthetic porous media and reticulated foams. The average
STAFEs are 0.04 and 0.14, respectively. The STAFEs for the reticulated foams are slightly

larger than those for the synthetic porous media due to the difference in the
microstructures.

STAFE for the synthetic porous media is 0.04, and the average STAFE for the reticulated

foams is 0.14. The average STAFE of our model are orders of magnitude smaller than that

reported by [102] which signifies its accuracy. We note that the STAFE is slightly higher

for the reticulated foams likely due to the intrinsic difference in the microstructures between

the two porous media. The cellular structure of the reticulated foam is governed by energy
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minimization [24], and the pores typically take a tetrakaidecahedron (14-sided polygon)

shape [77] which differs from randomly dispersed spherical pores. Porosity and tortuosity

are slightly different even though normalized permeability is similar as summarized in Table

4.1. The velocity distributions also indicate a slight difference at moderate and high velocity,

as shown in Figure 4.12.

Figure 4.12: Histogram of the ground-truth velocity fields for the synthetic porous media
and the reticulated foams. The two distributions show a slight difference at moderate and

high velocity suggesting a subtle difference in the microstructures.

Our results are consistent with the previous studies [83, 84] where larger errors were

reported for porous media that are different from the training data. Our training data can be

expanded to cover various microstructures and permeability ranges; however, computational

power is often the limitation.

4.4.3 Pore-Level Velocity Fields

We now consider the pore-scale accuracy of our model. Here, we focus on the reticulated

foams. Figure 4.13 visualizes the pore-scale velocity fields. A good agreement is shown

between the ground-truth and the predicted velocity fields. Figure 4.14 illustrates the 2D

planar velocity fields to visualize the details. The planar velocity fields also show good

qualitative agreement. We observe that no voxels exhibit a difference in the velocity direction,

and only a few voxels show a difference in the velocity magnitude.
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Figure 4.13: Visualization of the ground-truth and predicted velocity field for the
reticulated foams. The velocity fields show good qualitative agreement.

A comparison of the velocity distribution for each component is illustrated in Figure

4.15. The distributions show excellent agreement at high velocity. However, the accuracy

degrades at low velocity, below approximately two orders of magnitude of the maximum. We

believe this trend is due to the use of MSE loss function that focuses on the region with larger

velocity which allows very accurate predictions in the permeability and the STAFE. We note

that most of the errors at very low velocity reside in the solid region where the velocity is

zero. The model predicts small finite velocity in the solid region since the difference has

negligible impact on the learning process. Hence, we apply a binary mask corresponding to

assess the voxel-wise accuracy.
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Figure 4.14: Velocity profiles of reticulated foam 1 at the cross-section orthogonal to the z
direction. The two velocity profiles for each component show good qualitative agreement.

No voxels exhibit a difference in direction. Only a few voxels show a difference in
magnitude.

We also plot the velocity histogram in both the negative and positive direction for the

x and y components in Figure 4.16 to assess the prediction in the direction of the velocity.

The velocity fields in both positive and negative directions show excellent agreement at high

velocity and demonstrate that the model can predict the velocity directions. But the model

shows larger deviation at low velocity.

We emphasize that the required computational time and resources are significantly re-

duced by using our deep learning model. In this chapter, a complete CFD simulation required

approximately 6 hours of CPU time (Intel Xeon Gold 6128) and maximum of 16 GB of mem-

ory. On the other hand, our deep learning model only required 11 seconds and a negligible
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Figure 4.15: Distributions of the absolute ground-truth and predicted velocity. The
comparison shows excellent agreement at high velocity and disagreement at low velocity.
We apply a binary mask corresponding to the solid to eliminate errors at low velocity.

amount of memory on the same CPU. With a GPU equipped workstation, the inference time

of our deep learning model is significantly reduced, taking less than a second, as compared

to the order of ten minutes required by GPU-based LBM-RMT [103]. The deep learning

model provides a significant advantage in conducting optimization and parametric study of

porous media where computational speed is crucial.

4.4.4 Effect of the PIMSE

We train an equivalent model using the MSE loss function to compare and analyze the

effect of our PIMSE loss function (Equation (5.5)). Figure 4.17 shows the divergence of the

predicted velocity field for the reticulated foams. We find that it is significantly reduced by

almost a factor of 10 when using the PIMSE loss function. Figure 4.18 shows the STAFE of

models with different loss functions. We observe a slight improvement of 6% on average when

using the PIMSE. Figure 4.19 illustrates the distribution of the velocity field. The velocity

distributions, however, do not show a significant difference between the two models. We

hypothesize that it may be due to the lack of depth and complexity of our model. The loss

curve throughout the learning process (Figure 4.20(a)) indicates a slight under-fit. However,

increasing the depth and complexity would exceed our available computational limit. Figure
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Figure 4.16: Distributions of the ground-truth and predicted velocity in span-wise
direction. An excellent agreement is shown at high velocity. Model shows larger deviation

at low velocity.

4.20(b) shows that the final loss values for the two models are comparable suggesting that

the model with MSE loss function may already predict close to the expectation for the given

complexity and depth of the model. The values for PIMSE are slightly higher due to the

addition of the divergence free condition.

Another possible reason is due to the coarse uniform used in our deep learning model.

In this work, a typical size of the computational domain for CFD simulations required

approximately 5 million unstructured grids due to the complex geometry and tortuous paths.

On the contrary, the computational domain used for our deep learning model consisted only

of approximately 2 million uniformly structured grids. Figure 4.21 compares the number

77



Figure 4.17: Divergence of the velocity field between models with different loss functions.
We observe an order of magnitude decrease when the PIMSE is utilized as the loss function.

Figure 4.18: The STAFE of the predicted velocity field for models with different loss
functions for the reticulated foams. STAFEs improved by an average of 6% when using the

PIMSE.

of elements as a function of velocity. The 120 × 120 × 120 computational domain size of

the deep learning model is inadequate to fully represent the computational domain of CFD

simulations, especially at moderate velocity magnitudes. The pixelation [48] caused by the
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Figure 4.19: Distributions of the absolute ground-truth and the absolute predicted velocity
fields using models with different loss functions. No significant difference is observed

between the two models for all velocity components.

Figure 4.20: (a) Averaged loss curve for three identical models with the PIMSE loss
function trained with different initialization states. It indicates a slight under-fit due to the

lack of complexity and depth of our model. (b) Loss curve of the validation data for two
models. The final loss values are comparable

transition to uniform structured grid and the reduction in the total number of elements may

hinder accurate enforcement of the divergence free condition in complex geometries. While

increasing the voxel resolution of the training data may enhance the benefits of PIMSE, it

would exceed our computational capacity. We note that [84] proposed a multi-scale approach

that performs inferences on a larger domain size than the training data and thereby could

circumvent this limitation. They demonstrated accurate predictions of permeability for

domain sizes of up to 5123 from a training dataset of 2563. However, it is worth noting
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Figure 4.21: Histogram comparing the number of elements of computational domains for
CFD and the deep learning model as a function of the velocity. The deep learning model

lacks grid resolution, especially at moderate velocities, which could hinder accurate
enforcement of divergence free condition.

that this approach may impact the effectiveness of PIMSE and requires further detailed

investigation.

Nevertheless, we demonstrate that incorporating PIMSE significantly reduces the diver-

gence of the velocity fields and improves the STAFE by an average of 6%. Our results

demonstrate that physical laws can be enforced in the loss function to guide the learning

process of image-based CNN models.

4.4.5 Heat Transfer Analysis

Here, we capitalize on the advantages of our deep learning model to perform heat transfer

analysis of the reticulated foams as presented in Figure 4.2. We first performed similar

CFD simulations (ANSYS Fluent 18.2) to obtain the ground-truth temperature fields of

the reticulated foams. We numerically solved the Equation of conservation of energy under

steady-state, negligible viscous dissipation, and no volumetric heat generation assumptions:

ρCp (V · ∇T ) = ∇ · (k∇T ) (4.8)
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where Cp is the fluid specific heat, T is the temperature, and k is the fluid thermal conduc-

tivity. We also assumed that the fluid properties are independent of temperature. We chose

the fluid properties such that the Peclet number, defined as

Pe =
ρCp

k
VzDp (4.9)

where Dp is the average pore diameter, is approximately on the order of thousands to em-

phasize the effect of convection. Hot and cold constant temperature boundary conditions

were applied at the solid surfaces and at the inlet, respectively. Symmetry boundary con-

dition was applied to the side surface parallel to the stream-wise direction. Computational

domain and boundary conditions for the numerical simulation are shown in Figure 4.22. We

Figure 4.22: Computational domain for heat transfer analysis. Hot and cold constant
temperature boundary conditions were applied at the solid surfaces and at the inlet,

respectively. Symmetry boundary condition was applied to the side surface parallel to the
stream direction.

considered a heat transfer problem where the velocity field is fully developed before energy

with the porous media. This type of problem is relevant in many thermal applications such

as in heat-exchanger systems.

We first compare the Nusselt number, Nu, for each of the reticulated foams defined as

Nu =
hDp

k
(4.10)
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where h is the overall heat transfer coefficient defined as

h =
ρV Ac

As

To − Ti
T∞ − Ts

(4.11)

where V̄ is the average stream-wise velocity, Ac is the cross-sectional area, As is the solid

surface area, To and Ti are the mean fluid temperature at the outlet and inlet, respectively,

T∞ is the cold inlet temperature, and Ts is the hot solid surface temperature. The Nusselt

number describes the volume-averaged thermal performance of the porous media. Figure

4.23 presents the comparison of the Nusselt number obtained using the ground-truth and

predicted velocity. We find a good agreement in the Nusselt number with an average error

Figure 4.23: Comparison of the Nusselt number obtained using the ground-truth and
predicted velocity. It shows good agreement with an average error of 11.6%.

of 11.6%. The Nusselt numbers show a slight over-prediction due to the over-prediction in

the velocity, especially for the x and y components (Figures 4.15 and 4.16).

We now consider the accuracy of temperature fields at the pore-scale. Figure 4.24 illus-

trates the temperature fields at the cross-section parallel to the z direction for reticulated

foam 2 which had the largest STAFE error. The corresponding planar ground-truth and

predicted velocity fields are also presented. The temperature fields show good qualitative

agreement. However, noticeable number of voxels show a difference due to the errors in the

velocity field. To investigate in more detail, we compare the temperature profile at the center
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Figure 4.24: Temperature profile at the cross-section parallel to the z direction obtained
using the ground-truth and predicted velocity fields. Corresponding planar ground-truth
and predicted velocity fields are also shown. Temperature profiles show good qualitative

agreement.

line through the computational domain in the stream-wise direction for all reticulated foams

in Figure 4.25. The temperature fields using deep learning model adequately characterizes

the overall transport of energy for all reticulated foams. However, we observe voxel-wise

errors where the temperature values are both under and over predicted. This behavior is

also reported by [102] where the voxel-wise errors in the velocity field cause under- and

over-accumulation of species concentration in solving the mass transport problem.

Nonetheless, we drastically increase the computational speed to perform heat transfer

analysis of the reticulated foams while demonstrating good agreement in the Nusselt number

and temperature fields. Our approach can expand to other transport analysis where the

knowledge of the velocity field is crucial such as filtration, solute transport, and mass transfer.

4.5 Summary and Conclusion

In this chapter, we designed a deep learning model to predict the velocity fields of reticu-

lated foams from only their binary images and incorporated a physics-informed loss function
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Figure 4.25: Temperature distribution at the center line of the computational domain (x =
60 voxels and y = 60 voxels) in the stream-wise direction. Temperature profiles

qualitatively agree well. However, the voxel-wise errors in the predicted velocity fields
directly translate to the voxel-wise errors in the temperature fields.

to enforce the law of mass conservation for incompressible flows. We demonstrated that our

model, trained only with synthetic porous media, showed excellent accuracy in permeability

with less than 6% and in STAFE with less than 0.2 although it decreased at the pore-scale.

We also showed that our physics-informed loss function significantly reduced the divergence

of the velocity fields by a factor of 10 and improved STAFE by 6% although the improve-

ment in the was minor at the pore-scale. We further illustrated that our deep learning model

provides accurate velocity fields as inputs to subsequent heat transfer analysis. We obtained

an average error of 11.6% for the Nusselt number, but the voxel-wise error in the velocity
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field directly affected those in the temperature fields.

We also demonstrated a significant reduction in the amount of computational resources

and time required to characterize the flow and transport through complex porous media.

We shortened the computation time from more than 6 hours to 11 seconds. Our approach

is advantageous in parametric and optimization for various engineering applications where

hydrodynamic and transport behavior are essential such as filtration, solute transport, mul-

tiphase flow, and mass transfer.

85



Chapter 5

Deep Learning Prediction of

Pore-scale Flow Using Periodic

Structures

Past studies, and our results in Chapter 4 suggest that the CNN architecture is promising

in predicting pore-scale flow fields in complex heterogeneous porous media. We have demon-

strated a significant reduction in the amount of computational resources and time required

to characterize the flow and transport through complex porous media. We shortened the

computation time from more than 6 hours to 11 seconds while demonstrating good accuracy

in the results. However, training a DL model requires a large set of accurate numerical sim-

ulation data, which are computationally very expensive to obtain, to serve as ground-truth.

For example, Santos et al. [84] devoted five hours of computing cluster with 96 cores to

create training data. A reasonable compromise may be to train DL models using simulation

results from periodic unit cells which can be obtained analytically or numerically at a very

small computational cost. Many engineering applications, including thermal insulation [110],

heat exchangers [9, 40], and filtration [8, 98], utilize cellular structures, such as reticulated

foams, whose microstructures exhibit a certain level of periodicity. Pores of the reticulated
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foams take the shape of Kelvin’s tetrakaidecahedron in periodic manner to maximize space-

filling. But other factors influence the orientation and connectivity of the pores, introducing

heterogeneity [24].

In this chapter, we investigate the ability of CNN models trained in this manner to

predict pore-scale velocity fields in complex heterogeneous porous media. We generate a set

of training data using unit cells containing different sizes of mono-sized spherical pores in

simple cubic, body-centered cubic, face-centered cubic, and end-centered cubic arrangements.

We also consider more complex unit cells derived from crystal lattice structures. Accurate

flow fields in periodic unit cells can be obtained analytically or numerically at a very small

computational cost. We utilize synthetic porous media consisting of randomly dispersed

spherical pores and real reticulated foams to demonstrate that our DL model accurately

predicts the permeability and pore-scale velocity field of both porous media. Finally, we

explore the potential of using the predicted velocity fields from our DL model as initial

guesses to speed up the convergence of numerical simulation.

5.1 Periodic Unit Cell

We obtain training data for our DL models using periodic unit cells with mono-sized

spherical pores. We generate four basic periodic unit cells using the simple cubic, body-

centered cubic, face-centered cubic, and end-centered cubic arrangement, as illustrated in

Figure 5.1(a). Starting from the minimum pore radius, we systematically increased the

radius to generate data with uniformly distributed porosity. A total of ten unit-cells are

generated for each arrangement with the porosity varying from 0.5 to 0.95. The correspond-

ing permeability values, obtained from the numerical simulation described in Section 5.2,

range from 5× 10−11m2 to 2× 10−7m2 as shown in Figure 5.1(b).

We also generate four additional complex unit cells that consist of poly-sized spherical

pores arranged in different lattice structures, which are intended to further emulate het-
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Figure 5.1: (a) Four basic unit cells used to generate the training data. The blue spheres
represent the pores. A total of 10 unit cells were generated for each arrangement. (b) The

porosity and the predicted permeability for the basic unit cells. The pore sizes are
systematically varied to obtain uniform range of porosities.

erogeneity of porous media. The lattice structures we use are those of fluorite (CaF2),

perovskite (CaTiO3), cesium chloride (CsCl), and sodium chloride (NaCl), as illustrated in

Figure 5.2. The fluorite arrangement introduces spherical pores at the (±1/4 ,±1/4, ±1/4)

Figure 5.2: (a) Four complex unit cells that we use to generate training data. The spheres
represent the pores. A total of 10 unit cells are generated for each lattice structure.

Reprinted from [Unit Cells, 2023][26] (b) The porosity and the predicted permeability for
the complex unit cells. The pore sizes are systematically varied to obtain uniform range of

porosities.
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location of the unit cell with two different pore radii. The perovskite arrangement combines

the body-centered cubic and face-centered cubic arrangements and has three different pore

radii. Similarly, the sodium chloride arrangement combines the body-centered cubic and the

face-centered cubic arrangements with additional pores on each edge of the unit cell and has

two different pore radii. Lastly, the cesium chloride arrangement is a body-centered cubic

arrangement with two different pore radii. We again start from the minimum pore radius

and systematically increase the radius to obtain data with uniformly distributed porosity.

We change the size of one pore while fixing the other and repeat the procedure for all pores.

A total of ten complex unit cells are generated for each type of arrangement with the poros-

ity ranging from 0.6 to 0.98 which corresponds to permeability, obtained from the numerical

simulation described in Section 5.2, of 2 × 10−10m2 to 1 × 10−7m2 as illustrated in Figure

5.2(b).

We vary the number of pores in each computational domain to produce additional training

data. A single unit cell of a given arrangement is repeated two or four times in each direction

to vary the number of pores and thereby the physical length scale of the pores, as illustrated

in Figure 5.3. For example, a domain where unit cells are repeated twice in each direction

Figure 5.3: Cross-sectional binary images of simple cubic unit cells repeated two or four
times to vary the number of pores. The black represents the solid, and the white represents

the pore. They are denoted with the corresponding number of repeats.
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is denoted as LS-2. Since our computation domain remains periodic, numerical simulation

is performed using only a single unit cell to obtain flow fields. Figure 5.4 shows the the

predicted permeability as a function of the porosity for the computational domains with

different numbers of pores. A much wider range of permeability values, some as low as

Figure 5.4: Plot of porosity and permeability for (a) the four basic arrangements and (b)
the four complex arrangements after modifying the length scale by repeating the unit cell

two and four times in each direction. Change in the length scale allows a wider variation in
the permeability as low as 1× 10−11.

1×10−11m2, is obtained. We down-select unit cells with permeability values within one order

of magnitude from those of the heterogeneous porous medium described in Section 4.3. The

additional training data also help represent wider varieties of pore-scale flow characteristics,

which in turn helps improve the accuracy of 3D velocity fields predicted using our DL models

for complex heterogeneous porous media as discussed further in Section 5.5. To assess the

accuracy of our DL model for complex, we utilize the synthetic porous media and reticulated

foams used in Chapter 4.

5.2 CFD Simulation

We generate ground-truth velocity fields to train and test our DL models using numerical

simulation outlined in Chapter 3. Since the unit cells are periodic, the computational domain
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did not required to be mirrored. Our numerical simulation domain and boundary conditions

for periodic unit cells are summarized in Figure 5.5.

Figure 5.5: Numerical simulation domain for periodic unit cells. The primary flow
direction is in the positive z direction.

The same convergence and grid independence criteria as those described in Chapter 3

were used. We note once again the computational efficiency of simulating flows in unit cells.

A numerical simulation domain of a single unit cell requires less than 1% of the total number

of grid points than that used for our reticulated foams. A numerical simulation run for the

former only takes a few seconds, whereas a numerical simulation for the latter takes up to 7

hours on the same workstation.

5.3 CNN Architecture

Our neural network employs the convolutional U-Net architecture [80]. It utilizes a series

of convolutional layers that is stacked with pooling layers to extract hierarchical features and

to perform mapping from the input to the output. The present CNN model F , shown in

Figure 5.6, takes a 3D binary data X that represents the microstructure of a porous media

as its input and outputs a 3D velocity field Y using the trained pt and non-trainable pn
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Figure 5.6: The architecture of the CNN model used in the present study to perform
mapping between the 3D binary data that represents the microstructure of a porous media

and the 3D velocity field

hyperparameters:

Y = F (X; pt,pn) (5.1)

We use the convolutional, batch normalization, nonlinear activation, and dropout layers

in series to build each convolutional block. The convolutional layer performs the convolu-

tional operation:

y = k ∗ x + bc (5.2)

where x is the input, y is the output, k is the 3D convolutional kernel with a size of

Nk × Nk × Nk and a stride of Sk, and bc is the bias. The batch normalization layer [41]

applies a transformation that maintains the mean and the standard deviation of the output

close to 0 and 1, respectively:

y = γ
x− x̄√
V (x) + ε

+ bb (5.3)

where γ is the scaling factor, x̄ is the mean of the input, V represents the variance, and ε
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is a small constant used to avoid division by zero. The nonlinear activation layer applies

a nonlinear activation function σ(x). We use the rectified linear unit (ReLU) activation

function for stream-wise velocities and the scaled exponential linear unit (SeLU) activation

function for span-wise velocities, which can be negative. Finally, the dropout layer randomly

sets a fraction, r, of the values to zero to prevent over-fitting of the model.

For each convolutional block, we incorporate two iterations of the group of layers de-

scribed above. We set Sk = 2 for the second convolutional layer in each block such that it

also performs either the down-sampling or the up-sampling operation. The encoding and

decoding branches of our U-Net consist of four down-sampling and up-sampling levels. Each

level consists of a single convolutional block that is skip-connected between the branches at

the same level.

5.4 Model Training

We train our CNN models using the training data discussed in Section 5.1 through Section

5.2. Two separate sub-models are trained to predict either the stream-wise (z) or span-wise

(x and y) velocity fields. For brevity, we refer to the combination of these two submodels

as one DL model. A summary of our models that are trained using different subsets of the

training data is presented in Table 5.1.

We first train a baseline model (model A) using the simple unit cells with LS-4 to be

consistent with the average number of pores in a representative elementary volume of the

reticulated foams. We add complex unit cells for model B. We add domains with different

numbers of pores to model C. Finally, model D includes both simple and complex unit cells

and two different physical pore length scales in the training data.

We augment our training data further through 3D image rotation and shift operations

to create 200 training data and 20 validation data for each model. The size of a single data

is 128× 128× 128. We apply random rotations between 0 and 90 degrees and shifts between
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Table 5.1: A summary of training data that we use to train different deep learning models.

Name Direction Arrangement Length scale
Model A-1 Stream-wise Basic LS-4
Model A-2 Span-wise Basic LS-4
Model B-1 Stream-wise Basic + Complex LS-4
Model B-2 Span-wise Basic + Complex LS-4
Model C-1 Stream-wise Basic LS-4 + LS-2
Model C-2 Span-wise Basic LS-2 + LS-1
Model D-1 Stream-wise Basic + Complex LS-4 + LS-2
Model D-2 Span-wise Basic + Complex LS-2 + LS-1

0 and L/2 for the stream-wise models. For the span-wise models, we only perform shift

operations between 0 and L/8. The velocity fields are normalized using

V =
V ∗ − cmin

cmax − cmin

(5.4)

where V ∗ is the velocity, V is the normalized velocity and cmin and cmax are constants. To

keep the maximum magnitude of the velocity below 10, we use cmax = 3 × 10−9 for the

stream-wise velocity, cmax = 1.6 × 10−9 for the span-wise velocity, and cmin = 0 for both

velocity directions.

We use the mean squared error function as our loss function [109, 36, 82, 83, 102, 45]:

Loss =
1

N

N∑
i

(Vi − Vt,i)2 (5.5)

Here N is the total number of voxels in a batch of training data, V is the predicted velocity,

and Vt is the ground-truth velocity obtained from the CFD simulations. It is often considered

advantageous to optimize a model that predicts pore-scale velocity fields using the mean

squared error function because it puts more emphasis on the higher magnitude velocities

that govern the dominant flow paths and scalar transport in porous media.

We tune the hyperparameters using discrete grid search for the baseline model (model A).

The same hyperparameters are used for other models. For training, we use Adam optimizer
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[51] with a constant learning rate of 7 × 10−5. We use NVIDIA A100 graphics processing

units with 80 gigabytes of RAM. We use a mini-batch size of four and apply early stopping

criterion with 50 learning iterations to prevent preemptive stoppage and over-fitting. Each

training run did not exceed 5 hours.

5.5 Results and Discussion

5.5.1 Macro-scale Performance

We first quantify the accuracy of our DL models at the macro-scale by comparing the

predicted and ground-truth permeability (Figure 5.7). All models predict the permeability

Figure 5.7: A comparison of predicted and ground-truth permeability for all (a) synthetic
porous media and (b) reticulated foams. The errors in the permeability of the two porous

media are similar.

with good accuracy. The average percent errors for synthetic porous media and reticulated

foams are less than 10% and 9%, respectively, across all models. Despite the differences in

the training data, all models show similar accuracy in predicting the permeability with the

maximum difference in error below 5% and 4% for synthetic porous media and reticulated

foams, respectively. However, we observe slightly lower accuracy for synthetic porous media.

A possible explanation is that periodic unit cells better represent the structure of reticulated
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foams, which is quasi-periodic [24]. This is consistent with past studies [83, 84], although

the difference in our work is small, that reported larger deviation when predicting porous

media that are different from the training data.

We also compare the scaled total absolute flow error (STAFE) as defined by Wang et al.

[102]:

STAFE =

x,y,z∑
m

∑
n|qm,n − q∗m,n|∑

k qz,k
(5.6)

where qn is the planar flow rate vector in the direction n defined as:

qx,i =
N∑
j

N∑
k

Vx|i,j,k qy,j =
N∑
i

N∑
k

Vy|i,j,k qz,k =
N∑
i

N∑
j

Vz|i,j,k (5.7)

where i, j, and k represents the x, y, and z locations. The STAFE accounts for error in

the predicted mass flow rate in each direction and reflects additional details of the flow on

the pore scale than permeability [102]. The STAFE for all the reticulated foams are shown

in Figure 5.8. The average STAFE for synthetic porous media and reticulated foams are

Figure 5.8: The STAFE of the predicted and ground-truth velocity fields for (a) synthetic
porous media and (b) reticulated foams. The STAFEs of the two porous media are similar

0.41 and 0.31, respectively, across all models. Similar to the permeability, difference in the

average STAFE among the models is relatively small, less than 0.07. We again observe

slightly higher STAFE for synthetic porous media as seen in the prediction of permeability.
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5.5.2 Pore-scale Performance

We next assess the accuracy of our DL models at the pore-scale. We focus our analysis

on the reticulated foams as the results obtained from both heterogeneous porous media are

similar. Additionally, reticulated foams are more representative of the complex heterogeneous

porous media commonly utilized in various engineering applications. Figures 5.9 and 5.10

show the probability density functions of the predicted and ground-truth velocity fields in

the stream-wise and span-wise directions, respectively. Only the x-direction velocity fields

are presented in the span-wise direction since nearly identical results are obtained for the

y-direction velocity fields.

Figure 5.9: Probability density functions of the predicted and ground-truth velocity fields
of all reticulated foams in the stream-wise direction
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Figure 5.10: Probability density functions of the predicted and ground-truth velocity fields
of all reticulated foams in the span-wise direction.

For the stream-wise direction (Figure 5.9), we find that adding the complex unit cells

helps to better capture the velocity distribution, especially at small velocity magnitudes.

This can be qualitatively explained by the fact that the complex unit cells provide a better

representation of the pore distribution in the reticulated foams. To examine this further,

we show the distribution of the maximum inscribed sphere diameter for the basic unit cells

(model A) and the complex unit cells (model B) in Figure 5.11. The basic unit cells offer

a relatively narrow distribution of the maximum inscribed sphere diameter. The complex

unit cells offer a wider distribution, especially for smaller pores, which are better suited to

capture the distribution of the reticulated foams.

Computational domains with smaller numbers of pores and hence larger physical pore
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Figure 5.11: Distribution of the maximum inscribed sphere diameters for the training data
with (model B) and without (model A) the complex unit cells. The distribution of one of

the reticulated foams is also shown for comparison.

length scales (LS-2 or LS-1) have larger permeabilities and correspondingly wider velocity

ranges. Larger pores serve as dominant high-velocity flow paths. Going from model A

to model C leads to better prediction at higher velocity, but the difference is small. The

maximum normalized velocity of approximately 10 for the computational domains with LS-2

is already comparable to that of approximately 8 for the computational domains with LS-4.

Nonetheless, model D, which includes both training data with the complex unit cells and

the larger physical pore length scales, performs best in predicting the velocity probability

distribution of the reticulated foams.

In porous media with relatively high permeability, such as reticulated foams, heterogene-

ity in pore size, connectivity, and distribution results in large velocities even in the span-wise

directions. Such relatively large span-wise velocities are not present in computational do-

mains with LS-4. Indeed, we find significant errors in the predicted probability distributions

for models A and B (Figure 5.10), which use computational domains with LS-4 for their

training data. In contrast, the predicted probability density functions agree better with the

ground-truths for models C and D, whose training data include those from computational

domains with a smaller number of pores and hence larger physical pore length scales (LS-2

and LS-1).

We note that the larger span-wise velocity magnitudes of the reticulated foams stem
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mainly from the length scales of the flow path and not from constricted paths with high

tortuosity. In Figure 5.12, we compare the numerically predicted streamlines for a reticulated

foam and a simple cubic unit cell with different pore length scales. Qualitatively, the span-

Figure 5.12: Visualization of the streamlines through the reticulated foam and the
computational domain with unit cells at different physical length scales. The magnitude of
the streamlines are shown in rainbow color scale with red corresponding to high velocity

and blue corresponding to low velocity.

wise flow through the reticulated foams involves flow paths that have only one or two turns

and whose curvatures are comparable to the size of the computational domain. Unit cells with

fewer pores and larger physical pore length scales (LS-2 and LS-1) are a better representation

of the span-wise flow behavior through the reticulated foams than those with smaller length

scales (LS-4).

In contrast to the stream-wise direction, the addition of the complex unit cells in gener-

ating training data has little impact in the span-wise direction. Figure 5.13 shows that the

change in the tortuosity is negligible when the complex unit cells are included. Tortuosity

represents the ratio between the magnitude of the flow in the span-wise and stream-wise
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direction and is defined as:

τ =
L

Lo

(5.8)

Here L is the length of the actual flow path and Lo is the shortest possible length through

the porous media. We utilize the fast-marching algorithm [28] to obtain the time of flight

through porous media with a uniform velocity field of unity, which is then used to calculate

the tortuosity. The predicted tortuosity values for Model A are comparable to those for

Model B, both of which are appreciably smaller than those of the reticulated foams.

Figure 5.13: Computed tortuosity with (model B) and without (model A) the complex unit
cells. The tortuosity of the reticulated foams is also shown for comparison.

5.5.3 Voxel-wise Accuracy of Predicted Velocity Fields

The accuracy of the predicted 3D velocity fields from our DL models can be affected by

large voxel-wise errors, partly due to misalignment in the velocity fields [102].To evaluate the

voxel-wise accuracy of our models, we compared the predicted and ground-truth 3D velocity

fields for all reticulated foams (Figure 5.14). Qualitatively, the predicted 3D velocity fields

exhibited good overall agreement for all foams, accurately capturing the dominant flow

paths. However, noticeable voxel-wise errors are present in the predicted velocity fields. To

illustrate the details, we present Figures 5.15 and 5.16, which display the 2D planar velocity

fields predicted from model D for the span-wise and stream-wise directions, respectively, of

reticulated foam 5. This foam had the largest difference in permeability and STAFE. In
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Figure 5.14: Visualization of the DL model-predicted and ground-truth 3D velocity fields
of all the reticulated foams. The renderings are in blue monochromatic scale where lower

opacity represents higher velocity magnitude.

Figure 5.15, we observe that almost no voxels exhibit a difference in the velocity direction.

However, a few pores show a noticeable difference in the velocity magnitude. Similarly, a

few pores in Figure 5.16 show difference in the velocity magnitude. We also note that the

absolute errors for stream-wise direction are considerably smaller than those for span-wise

direction, consistent with Figures 5.9 and 5.10.

We also quantify the voxel-wise errors by calculating the mean absolute percentage error

for all voxels with velocity magnitudes above the average for each reticulated foam. We

impose the threshold to prevent those voxels with very small magnitudes of velocity from

dominating the calculated percent errors. Table 5.2 shows the voxel-wise mean absolute

percentage error averaged across all reticulated foams. We observe a similar relationship

102



Figure 5.15: Span-wise velocity profiles of reticulated foam 5 at different cross-sections
orthogonal to the stream-wise direction. Absolute errors are also shown for comparison.

Table 5.2: The mean absolute percentage error for all the deep learning models. The errors
are averaged across all reticulated foams.

Model Stream-wise Span-wise
Name [%] [%]

Model A 33 83
Model B 32 81
Model C 30 46
Model D 25 45

among the models to what we presented earlier in Figures 5.9 and 5.10. The additions of the

complex unit cells and larger physical pore length scales reduce the voxel-wise errors in the

stream-wise direction. In contrast, only the addition of the larger physical pore length scales

results in significant improvement in the span-wise direction. Model D shows the best accu-

racy with the mean absolute percentage error of 25% in the stream-wise direction and 45%

in the span-wise direction. Relatively large voxel-wise errors due to the misalignment in the

velocity fields were also observed in other CNN-based deep learning studies [83, 102], which
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Figure 5.16: Stream-wise velocity profiles of reticulated foam 5 at different cross-sections
orthogonal to the stream-wise direction. Absolute errors are also shown for comparison.

suggests a limitation of the convolutional neural network architecture for this application.

5.5.4 DL Model Assisted CFD Simulations

We have shown that our DL models, trained using unit cells, can capture overall flow

behavior in real heterogeneous porous media. Although the voxel-wise accuracy of 3D veloc-

ity fields predicted from our DL models may not be sufficient in certain applications, they

can still be useful serving as an initial guess for rigorous numerical simulation to accelerate

its numerical convergence. Figure 5.17 shows the number of iterations required to reach a

convergence for the reticulated foams with and without the assistance of our DL model. Ko

represents the ground-truth permeability. We notice a considerable decrease in the required

number of iterations, by a factor of 3 on average and by a factor of 7 in some cases, when

utilizing our deep learning model. This improvement is comparable to a model trained using

104



Figure 5.17: Convergence of the numerical simulation runs with and without the assistance
from the deep learning model prediction. Ko represents the ground-truth permeability

obtained from CFD.

synthetic porous media [102]. We emphasize that our deep learning model is trained using

unit cells whose numerical simulations require very little computational time and resources.

The past study also initialized their numerical simulation using the pressure field, which was

predicted by a separately trained deep learning model, as well as the velocity fields. Here,

the pressure fields are initialized as zero.
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5.6 Summary and Conclusion

In this chapter, we assessed the accuracy of CNN models trained solely on periodic unit

cells for predicting the velocity fields of complex heterogeneous porous media. We considered

various unit cell arrangements, including simple cubic, body-centered cubic, face-centered

cubic, and end-centered cubic structures, as well as more complex unit cells derived from

crystal lattice structures and varying physical length scales. Our models accurately predicted

the permeability and pore-scale flow behavior of synthetic porous media and real reticulated

foams, with improved predictions observed in the stream-wise direction when using complex

unit cells and in the span-wise direction when varying the physical length scale. We also

showed that the predictions from our model can be used as initial guesses to significantly

improve the convergence of numerical simulations.

By eliminating the need for computationally intensive simulations of heterogeneous porous

media, our approach enhances computational efficiency and can facilitate the use of rigorous

numerical simulations for exploring a large batch of complex porous media. Our results have

potential applications in modeling the pore-scale hydrodynamic and transport behavior of

porous media for various engineering applications.
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Chapter 6

Conclusion

6.1 Thesis Conclusion

The primary objective of this thesis was to explore the viability of transpiration cooling

employing oxide coolants as an alternative system to thermally protect sharp leading edges.

This transpiration cooling injects solid oxide into the leading edge that melt and flow to the

surface and absorb incident heat fluxes. Two primary objectives were sought in this thesis

that collectively investigate the transpiration cooling. The first objective focused on the

evaporation at the surface and the interaction with the external flow. The second objective

sought to characterize the internal liquid flow through porous media.

We first parametrically characterized the performance of transpiration cooling for various

coolant properties, flight conditions, and leading edge radii using 2D axi-symmetric, semi-

analytical boundary layer model incorporating thermodynamic non-equilibrium conditions,

which we validated with 3rd-order shock-fitting DNS. We quantified the performance of

the TPS using three metrics: the surface temperature, the evaporative mass flux, and the

boiling limit. We showed that the surface temperature depends solely on the saturation

temperature of the coolant material, the boiling limit is independent of molar mass, and

the evaporative mass flux is affected by all three coolant properties. We also illustrated
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that high Mach numbers and small leading edge sizes exacerbate the aerothermal condition

resulting in higher surface temperature and evaporative mass flux and lower boiling limit

factor of safety. Low altitude flights also increase the surface temperature and evaporative

mass flux, however, result in higher boiling limit factor of safety. Our parametric results do

not lend themselves readily to an optimal set of coolant properties. Rather, different coolant

properties are better suited for different flight conditions and leading edge sizes. For instance,

vehicles with high Mach number and low altitude trajectories or small radius of curvature of

the leading edge may utilize coolant materials with high specific latent heats to significantly

reduce the evaporative mass flux. Alternatively, vehicles with low altitude trajectories may

benefit from coolants with low specific latent heats to avoid vapor nucleation within the

porous leading to which they are more susceptible at higher altitudes. Our findings in this

chapter demonstrated that transpiration cooling employing oxide coolants may effectively

cool the surface temperature to below the saturation temperature of the coolant material

even for very sharp leading edges with radius of 0.1 mm and in extreme hypersonic conditions,

where incident heat fluxes are of the order of 85 MJ/m2, as long as the necessary amount of

coolant is supplied to the surface.

We then characterize the liquid flow through high porosity reticulated foams, which

are potential leading edge material for transpiration cooling, to assess their capability in

achieving the necessary flow rate required by evaporation at the surface. We numerically

and experimentally obtain the permeability of silicon carbide reticulated foams with three

different pore densities: 45 PPI, 65 PPI, and 80 PPI. The numerical approach utilized

reconstructed X-ray micro-tomography images and computational fluid dynamics to solve

the governing equations for laminar Stokes flow through the porous media. The experimental

approach measured the pressure gradient across the porous media subject to air flow. The

two approaches agreed well and resulted in permeability of the order of 5×10−9m2. We found

that the porous media with the lowest pore density showed the minimum pressure gradient

to achieve a given mass flow rate. A maximum of 100 Pa/mm is necessary to achieve the
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highest flow rate predicted by the semi-analytical model in Chapter 2. We also assessed

the capillary pumping capability of the porous media, which is enhanced by high surface

energies of the molten oxides and low permeability of the reticulated foams. Our results

demonstrated that the capillary pumping is most effective when using the porous media

with the lowest pore density porous. For the lowest pore density that we characterized (45

PPI), we estimate that capillary pumping alone can drive sufficient flow to the surface for

moderate altitudes and Mach numbers, but it would fail at low altitudes and high Mach

numbers.

We further designed deep learning models to characterize the flow through porous media

at the pore-scale from only their binary images, eliminating the need for computationally

intensive CFD simulations of heterogeneous porous media. We developed two models: the

first model consisted of more complex training data and architecture as described in Chapter

4, and the second model comprised of simpler training data and architecture as described

in Chapter 5. The complex model utilized synthetic reticulated foams to train and a model

that incorporated the law of mass conservation. This model showed excellent accuracy in

predicting the permeability, with less than 6% difference with the CFD results, as well as

in predicting the pore-scale velocity field, with STAFE less than 0.2. The simpler model

employed periodic, homogeneous unit cells to train a model without incorporating any con-

servation laws. This model accurately predicted the permeability, with 10% difference with

the CFD results, as well as the pore-scale velocity field, with STAFE less than 0.4. By

eliminating the need for computationally intensive simulations of heterogeneous porous me-

dia, deep learning models facilitate rigorous characterization of the porous media which are

crucial in designing and optimizing the porous leading edge that can support transpiration

cooling.
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6.2 Thesis Objectives

In summary, this thesis achieved the following objectives:

1. Demonstrated the viability of transpiration cooling employing oxides as an alternative

TPS to effectively protect sharp leading edges in hypersonic flight.

2. Characterized the surface temperature, evaporative mass flux, and boiling limit of

transpiration cooling for different coolant properties, flight conditions, and leading

edge radii to facilitate the optimization of the system.

3. Experimentally and numerically characterized the liquid coolant flow through high

porosity reticulated foams to predict the necessary pressure gradient that ensures con-

tinuous coolant flow to the surface and to assess self-pumping capability using capillary

forces.

4. Developed computationally efficient deep learning models to characterize the flow

through high porosity reticulated foams at the pore-scale and to facilitate the design of

the microstructures of porous leading edge to optimize the performance of transpiration

cooling.

By achieving these objectives, this thesis demonstrated that transpiration cooling employing

oxide coolants may effectively cool the surface temperature even for very sharp leading edges

in extreme hypersonic conditions as long as the necessary amount of coolant is supplied to

the surface. It also provides two numerical frameworks that coherently characterize both

the external and internal aspect of transpiration cooling which facilitate the design and opti-

mization of transpiration cooling utilizing oxide coolant for various hypersonic applications.
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6.3 Future Works

One advantage of transpiration cooling employing oxide coolants is its ability to suffi-

ciently self-pump the liquid coolant to the surface. However, even with high surface energy of

oxide and high permeability of reticulated foams, capillary forces alone cannot drive the nec-

essary flow under certain hypersonic conditions as shown in Section 3.4. We note, however,

that capillary forces rising from interfacial forces are surface phenomena, whereas the op-

posing viscous pressure loss is a volumetric phenomenon that occurs throughout the porous

leading edge. One may take advantage of these characteristics to construct a hybrid mi-

crostructure where the high pore density foams form the skin of the leading edge to increase

the capillary forces and low pore density foams form the core of the leading edge to mini-

mize the viscous pressure loss. Figure 6.1 illustrates a potential design of the hybrid foam

for porous leading edges. Following a similar analysis presented in Section 3.4, the ratio of

Figure 6.1: A potential design of porous leading edge using a hybrid reticulated foam
consisting of both high and low pore density foams.

capillary pressure and viscous pressure loss is calculated and illustrated in Figure 6.2. The

surface tension and the contact angle are assumed to be 0.1 N/m and 45 degrees, respec-

tively, which are typical for most oxides. By increasing the interfacial capillary pressure

using high pore density foam at the surface and reducing the permeability throughout the

volume, hybrid foams amplify the ratio of the two pressures and can achieve self-pumping

without any necessary external forces for, even for relatively large mass flow rate. How-

ever, the microstructure of the hybrid foam can significantly impact the flow behavior at
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Figure 6.2: Ratio of capillary pressure and viscous pressure loss as a function of mass flux
through a porous leading edge.

the pore-scale, especially near the surface since the length scale of the flow is comparable to

that of the high pore density porous media. Hence, it is crucial to characterize the capillary

interaction of the fluid with the microstructure at the pore-scale to accurately assess the

self-pumping ability.
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Appendix A 

 

The data that support the findings of the study in Chapter 4 is openly available in Dryad: 

https://datadryad.org/stash/dataset/doi:10.5068/D19Q37 

 

The data that supports the findings of the study in Chapter 5 is openly available in Dryad: 

https://datadryad.org/stash/dataset/doi:10.5068/D16108 

 

The source code that supports the work in Chapter 4 and Chapter 5 are openly available in GitHub 

repository: 

https://github.com/dko1217/DeepLearning-PorousMedia 
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Appendix B 

The source code used to develop and train the deep learning model in Chapter 4 is provided as 

plain text here. 

 

Initialization 

 

System Information 

 

    !cat /proc/cpuinfo 

 

    gpu_info = !nvidia-smi 

    gpu_info = '\n'.join(gpu_info) 

    print(gpu_info) 

 

Load Libraries 

 

    !pip install hdf5storage 

    from hdf5storage import loadmat 

 

    import numpy as np 

    from numpy.random import seed 

    from numpy.random import default_rng 

 

    from matplotlib import pyplot as plt 

    import os 
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    import scipy 

    from scipy import io 

 

    import tensorflow as tf 

    from tensorflow.keras.callbacks import ModelCheckpoint 

    from tensorflow.compat.v1.keras.backend import set_session 

 

    from tensorflow.keras.models import Model 

    from tensorflow.keras.models import load_model 

    from tensorflow.keras.models import save_model 

 

    from sklearn.model_selection import train_test_split 

 

    tf.random.set_seed(280675) 

    np.random.seed(280675) 

 

    from google.colab import drive 

    drive.mount('/content/drive') 

 

    %cd /content/drive/My\ Drive/DarcyUnet Unit Cell/ 

 

    print('tensorflow version : {}'.format(tf.__version__)) 

 

Functions 
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    def minmax_transform(x, x_min=0, x_range=1): 

      x = ( x - x_min ) / x_range 

      return x 

 

 

    def shift_augmentation(my_solid, my_vel, shift_range, vel_dir): 

 

      my_aug_solid = np.ones_like(my_solid) 

      my_aug_vel = np.ones_like(my_vel) 

 

      shift_x = shift_range[0] 

      shift_y = shift_range[1] 

 

      if(shift_x < 0): 

        my_aug_solid[:shift_x,:,:] = my_solid[-1*shift_x:,:,:] 

        my_aug_solid[shift_x:,:,:] = np.flip(my_solid, axis=0 )[:-1*shift_x,:,:] 

 

        my_aug_vel[:shift_x,:,:] = my_vel[-1*shift_x:,:,:] 

        if(vel_dir[0] == 'x'): 

          my_aug_vel[shift_x:,:,:] = np.flip(-1*my_vel, axis=0 )[:-1*shift_x,:,:] 

        elif(vel_dir[0] == 'y'): 

          my_aug_vel[shift_x:,:,:] = np.flip(my_vel, axis=0 )[:-1*shift_x,:,:] 

        else: 

          my_aug_vel[shift_x:,:,:] = np.flip(my_vel, axis=0 )[:-1*shift_x,:,:] 

 

      elif(shift_x > 0): 
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        my_aug_solid[:shift_x,:,:] = np.flip(my_solid, axis=0 )[-1*shift_x:,:,:] 

        my_aug_solid[shift_x:,:,:] = my_solid[:-1*shift_x,:,:] 

 

        if(vel_dir[0] == 'x'): 

          my_aug_vel[:shift_x,:,:] = np.flip(-1*my_vel, axis=0 )[-1*shift_x:,:,:] 

        elif(vel_dir[0] == 'y'): 

          my_aug_vel[:shift_x,:,:] = np.flip(my_vel, axis=0 )[-1*shift_x:,:,:] 

        else: 

          my_aug_vel[:shift_x,:,:] = np.flip(my_vel, axis=0 )[-1*shift_x:,:,:] 

        my_aug_vel[shift_x:,:,:] = my_vel[:-1*shift_x,:,:] 

      else: 

        my_aug_solid = my_solid 

        my_aug_vel = my_vel 

 

      my_solid = my_aug_solid 

      my_vel = my_aug_vel 

 

      my_aug_solid = np.ones_like(my_solid) 

      my_aug_vel = np.ones_like(my_vel) 

 

      if(shift_y < 0): 

        my_aug_solid[:,:shift_y,:] = my_solid[:,-1*shift_y:,:] 

        my_aug_solid[:,shift_y:,:] = np.flip(my_solid, axis=1 )[:,:-1*shift_y,:] 

 

        my_aug_vel[:,:shift_y,:] = my_vel[:,-1*shift_y:,:] 

        if(vel_dir[0] == 'x'): 
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          my_aug_vel[:,shift_y:,:] = np.flip(my_vel, axis=1 )[:,:-1*shift_y,:] 

        elif(vel_dir[0] == 'y'): 

          my_aug_vel[:,shift_y:,:] = np.flip(-1*my_vel, axis=1 )[:,:-1*shift_y,:] 

        else: 

          my_aug_vel[:,shift_y:,:] = np.flip(my_vel, axis=1 )[:,:-1*shift_y,:] 

           

      elif(shift_y > 0): 

        my_aug_solid[:,:shift_y,:] = np.flip(my_solid, axis=1 )[:,-1*shift_y:,:] 

        my_aug_solid[:,shift_y:,:] = my_solid[:,:-1*shift_y,:] 

 

        if(vel_dir[0] == 'x'): 

          my_aug_vel[:,:shift_y,:] = np.flip(my_vel, axis=1 )[:,-1*shift_y:,:] 

        elif(vel_dir[0] == 'y'): 

          my_aug_vel[:,:shift_y,:] = np.flip(-1*my_vel, axis=1 )[:,-1*shift_y:,:] 

        else: 

          my_aug_vel[:,:shift_y,:] = np.flip(my_vel, axis=1 )[:,-1*shift_y:,:] 

        my_aug_vel[:,shift_y:,:] = my_vel[:,:-1*shift_y,:] 

      else: 

        my_aug_solid = my_solid 

        my_aug_vel = my_vel 

 

      return my_aug_solid, my_aug_vel 

 

 

    def flip_augmentation(my_solid, my_vel, vel_dir, axis): 
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      my_aug_solid = np.flip(my_solid, axis=axis) 

 

      if(vel_dir[0] == 'x'): 

        if(axis == 0): 

          my_aug_vel = np.flip(-1*my_vel, axis=axis) 

        else: 

          my_aug_vel = np.flip(my_vel, axis=axis) 

      elif(vel_dir[0] == 'y'): 

        if(axis == 1): 

          my_aug_vel = np.flip(-1*my_vel, axis=axis) 

        else: 

          my_aug_vel = np.flip(my_vel, axis=axis) 

      else: 

        my_aug_vel = np.flip(my_vel, axis=axis) 

 

      return my_aug_solid, my_aug_vel 

 

Custom Loss 

 

    def div_loss1(y_true, y_pred): 

 

      scale = 1 

 

      mse = tf.math.reduce_mean( tf.math.square(y_true - y_pred) ) 

       

      dVxdx_true = (y_true[:,2:,1:-1,1:-1,0] - y_true[:,:-2,1:-1,1:-1,0])/2 
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      dVydy_true = (y_true[:,1:-1,2:,1:-1,1] - y_true[:,1:-1,:-2,1:-1,1])/2 

      dVzdz_true = (y_true[:,1:-1,1:-1,2:,2] - y_true[:,1:-1,1:-1,:-2,2])/2 

      div_true = dVxdx_true + dVydy_true + dVzdz_true 

 

      dVxdx_pred = (y_pred[:,2:,1:-1,1:-1,0] - y_pred[:,:-2,1:-1,1:-1,0])/2 

      dVydy_pred = (y_pred[:,1:-1,2:,1:-1,1] - y_pred[:,1:-1,:-2,1:-1,1])/2 

      dVzdz_pred = (y_pred[:,1:-1,1:-1,2:,2] - y_pred[:,1:-1,1:-1,:-2,2])/2 

      div_pred = dVxdx_pred + dVydy_pred + dVzdz_pred 

 

      div_loss = tf.math.reduce_mean( tf.math.abs(div_true - div_pred) ) 

 

      loss = mse + div_loss*scale 

       

      return loss 

 

 

    def div_loss2(y_true, y_pred): 

 

      scale = 3 

 

      mse = tf.math.reduce_mean( tf.math.square(y_true - y_pred) ) 

       

      dVxdx_pred = (y_pred[:,2:,1:-1,1:-1,0] - y_pred[:,:-2,1:-1,1:-1,0])/2 

      dVydy_pred = (y_pred[:,1:-1,2:,1:-1,1] - y_pred[:,1:-1,:-2,1:-1,1])/2 

      dVzdz_pred = (y_pred[:,1:-1,1:-1,2:,2] - y_pred[:,1:-1,1:-1,:-2,2])/2 

      div_pred = dVxdx_pred + dVydy_pred + dVzdz_pred 
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      div_loss = tf.math.reduce_mean( tf.math.abs(div_pred) ) 

 

      loss = mse + div_loss*scale 

       

      return loss 

 

PolySphere Data 

 

    dir_data = 'Data/PolySphere' 

 

    data_size = 120 

 

    """ 

    X : ('x') 

    Y : ('y') 

    Z : ('z') 

    """ 

    #velocity_dir = ('x') 

    #velocity_dir = ('y') 

    #velocity_dir = ('z') 

    velocity_dir = ('x', 'y', 'z') 

 

    domainRange = [1,2,3,4,5,6,7,8,9] 

 

    channel_size = len(velocity_dir) 
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    uc_solid = np.zeros( (1,data_size, data_size, data_size) ) 

    uc_vel = np.zeros( (1,data_size, data_size, data_size, len(velocity_dir)) ) 

 

    for i in range(len(domainRange)): 

       

        uc_solid_load = loadmat( '{}/PolySphere_domain{}_deci.mat'.format(dir_data, 

domainRange[i]) )['solid'].astype('int') 

        uc_solid_load = uc_solid_load < 1 

        uc_solid = np.append( uc_solid, np.expand_dims(uc_solid_load, axis=0), axis=0 ) 

        del uc_solid_load 

 

        uc_vel_load = np.zeros( (1, data_size, data_size, data_size, channel_size) ) 

        for j in range(channel_size): 

          if(velocity_dir[j] == 'z'): 

            uc_vel_load[0,:,:,:,j] = loadmat( '{}/PolySphere_domain{}_vfield{}.mat'.format(dir_data, 

domainRange[i], '') )['vfield'].astype('float32') 

          else: 

            uc_vel_load[0,:,:,:,j] = loadmat( '{}/PolySphere_domain{}_vfield{}.mat'.format(dir_data, 

domainRange[i], velocity_dir[j]) )['vfield'].astype('float32') 

        uc_vel = np.append( uc_vel, uc_vel_load, axis=0 ) 

        del uc_vel_load 

 

 

    uc_solid = uc_solid[1:,:,:,:] 

    uc_vel = uc_vel[1:,:,:,:,:] 
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    print('Image size : {}\nNumber of Data : {}  {}'.format(data_size, uc_solid.shape, uc_vel.shape)) 

 

    from scipy.ndimage import distance_transform_edt 

    from scipy.ndimage import distance_transform 

    uc_solid_edt = distance_transform_edt(uc_solid) 

 

    """ Normalization 

    """ 

    res = 20e-6 

 

    x_min = 0 

    x_max = 8 

 

    uc_vel_norm = uc_vel/(res**2)*0.333/9270 

 

    print( '\nMean velocity : {}'.format( uc_vel_norm.mean() ) ) 

    print( '\nMin velocity : {}'.format( uc_vel_norm.min() ) ) 

    print( '\nMax velocity : {}'.format( uc_vel_norm.max() ) ) 

 

    print('\nX_min : {} and X_max : {}'.format(x_min, x_max)) 

 

    uc_vel_minmax = minmax_transform(uc_vel_norm, x_min=x_min, x_range=x_max-x_min) 

 

    print( '\nMean velocity : {}'.format( uc_vel_minmax.mean() ) ) 

    print( '\nMin velocity : {}'.format( uc_vel_minmax.min() ) ) 
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    print( '\nMax velocity : {}'.format( uc_vel_minmax.max() ) ) 

 

    augGen_seed = 10 

 

    aug_iter = 15 

 

    shift_range = 2 

    flip_range = 5 

 

    aug_uc_solid = np.zeros( (1, data_size, data_size, data_size) ) 

    aug_uc_vel = np.zeros( (1, data_size, data_size, data_size, channel_size) ) 

 

    """ Shift and Flip augmentation 

    """ 

 

    shift = data_size//shift_range 

    rnd_num_gen = default_rng(augGen_seed) 

    rnd_num = rnd_num_gen.integers(low=-shift, high=shift, size=(uc_solid.shape[0],aug_iter,2), 

endpoint=True) 

    rnd_num2 = rnd_num_gen.integers(low=0, high=10, size=(uc_solid.shape[0],aug_iter,2)) 

 

    for i in range(uc_solid.shape[0]): 

 

      my_solid = uc_solid[i,:,:,:] 

      my_vel = uc_vel_minmax[i,:,:,:,:] 
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      for j in range(aug_iter):  

        if(channel_size <= 1): 

 

          my_aug_solid, my_aug_vel = shift_augmentation(my_solid, my_vel[:,:,:,0], rnd_num[i,j,:], 

velocity_dir) 

          if(rnd_num2[i,j,0] >= flip_range): 

            my_aug_solid, my_aug_vel = flip_augmentation(my_aug_solid, my_aug_vel, velocity_dir, 

0) 

          if(rnd_num2[i,j,1] >= flip_range): 

            my_aug_solid, my_aug_vel = flip_augmentation(my_aug_solid, my_aug_vel, velocity_dir, 

1) 

 

          aug_uc_solid = np.append(aug_uc_solid, np.expand_dims(my_aug_solid,axis=0), axis=0) 

          aug_uc_vel = np.append(aug_uc_vel, 

np.expand_dims( np.expand_dims(my_aug_vel,axis=0), axis=-1 ), axis=0) 

 

        elif(channel_size == 3): 

 

          my_aug_solid, my_aug_vel_x = shift_augmentation(my_solid, my_vel[:,:,:,0], 

rnd_num[i,j,:], ('x')) 

          my_aug_solid, my_aug_vel_y = shift_augmentation(my_solid, my_vel[:,:,:,1], 

rnd_num[i,j,:], ('y')) 

          my_aug_solid, my_aug_vel_z = shift_augmentation(my_solid, my_vel[:,:,:,2], 

rnd_num[i,j,:], ('z')) 

 

          if(rnd_num2[i,j,0] >= flip_range): 
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            my_aug_solid, my_aug_vel_x = flip_augmentation(my_aug_solid, my_aug_vel_x, ('x'), 0) 

            my_aug_solid, my_aug_vel_y = flip_augmentation(my_aug_solid, my_aug_vel_y, ('y'), 0) 

            my_aug_solid, my_aug_vel_z = flip_augmentation(my_aug_solid, my_aug_vel_z, ('z'), 0) 

          if(rnd_num2[i,j,1] >= flip_range): 

            my_aug_solid, my_aug_vel_x = flip_augmentation(my_aug_solid, my_aug_vel_x, ('x'), 1) 

            my_aug_solid, my_aug_vel_y = flip_augmentation(my_aug_solid, my_aug_vel_y, ('y'), 1) 

            my_aug_solid, my_aug_vel_z = flip_augmentation(my_aug_solid, my_aug_vel_z, ('z'), 1) 

 

          my_aug_vel = np.append( np.append(np.expand_dims(my_aug_vel_x,axis=-1), 

np.expand_dims(my_aug_vel_y,axis=-1), axis=-1), np.expand_dims(my_aug_vel_z,axis=-1), 

axis=-1 ) 

 

          aug_uc_solid = np.append(aug_uc_solid, np.expand_dims(my_aug_solid,axis=0), axis=0) 

          aug_uc_vel = np.append(aug_uc_vel, np.expand_dims(my_aug_vel,axis=0), axis=0) 

 

 

    aug_uc_solid = aug_uc_solid[1:,:,:,:] 

    aug_uc_vel = aug_uc_vel[1:,:,:,:,:] 

 

    total_number = aug_uc_solid.shape[0] 

 

    val_perc = 0.1 

    test_perc = 0.1 

 

    train_index, val_test_index = train_test_split(np.arange(total_number), test_size = val_perc + 

test_perc, random_state = augGen_seed) 
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    val_index, test_index = train_test_split(val_test_index, test_size = 

test_perc/(val_perc+test_perc), random_state = augGen_seed) 

 

    print( 'Number of training samples : {}\nNumber of validation samples : {}\nNumber of test 

samples : {}\n'.format(len(train_index),len(val_index),len(test_index)) ) 

 

    train_data_solid = np.expand_dims(aug_uc_solid[train_index], axis=-1) 

    val_data_solid = np.expand_dims(aug_uc_solid[val_index], axis=-1) 

    test_data_solid = np.expand_dims(aug_uc_solid[test_index], axis=-1) 

 

    train_data_vel = aug_uc_vel[train_index] 

    val_data_vel = aug_uc_vel[val_index] 

    test_data_vel = aug_uc_vel[test_index] 

 

    print(train_data_solid.shape) 

    print(val_data_solid.shape) 

    print(test_data_solid.shape) 

 

    print(train_data_vel.shape) 

    print(val_data_vel.shape) 

    print(test_data_vel.shape) 

 

Data Check 

 

Mass loss check 
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    uc_solid_temp = uc_solid[0,:,:,:] 

    uc_solid_temp = np.expand_dims(uc_solid_temp, axis=(-1)) 

 

    uc_vel_temp = uc_vel_minmax[0,:,:,:,:] 

 

    dVxdx = (uc_vel_temp[2:,1:-1,1:-1,0] - uc_vel_temp[:-2,1:-1,1:-1,0])/2 

    dVydy = (uc_vel_temp[1:-1,2:,1:-1,1] - uc_vel_temp[1:-1,:-2,1:-1,1])/2 

    dVzdz = (uc_vel_temp[1:-1,1:-1,2:,2] - uc_vel_temp[1:-1,1:-1,:-2,2])/2 

    div = dVxdx + dVydy + dVzdz 

 

    plt.imshow(uc_solid_temp[:,:,59,0]) 

    plt.show() 

 

    plt.imshow(uc_vel_temp[:,:,59,2]) 

    plt.colorbar() 

    plt.show() 

 

    plt.imshow(div[:,:,59], vmin=-0.3, vmax=0.3) 

    plt.colorbar() 

    plt.show() 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.3,0.3,100)) 

    plt.show() 

 

    print(np.mean( np.abs(div_flat) ) ) 
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    xversion = 'X1-3' 

    x_model_name = 'UnetRS_Modelv{}'.format(xversion) 

    x_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(x_model_name, x_model_name ) ) 

 

    yversion = 'Y1-1' 

    y_model_name = 'UnetRS_Modelv{}'.format(yversion) 

    y_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(y_model_name, y_model_name ) ) 

 

    zversion = 'Z1-4' 

    z_model_name = 'UnetRS_Modelv{}'.format(zversion) 

    z_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(z_model_name, z_model_name ) ) 

 

    vx_test_pred = np.float32( x_model.predict( x=[np.expand_dims(uc_solid_temp,axis=0)] ) )/2 

    vy_test_pred = np.float32( y_model.predict( x=[np.expand_dims(uc_solid_temp,axis=0)] ) )/2 

    vz_test_pred = np.float32( z_model.predict( x=[np.expand_dims(uc_solid_temp,axis=0)] ) ) 

 

    vpred_test_temp = np.append(vx_test_pred, np.append(vy_test_pred, vz_test_pred,axis=-

1),axis=-1 ) 

    print(vpred_test_temp.shape) 

 

    temp_vel = np.multiply(vpred_test_temp[0,:,:,:,:],uc_solid_temp[:,:,:,:]) 

    #temp_vel = vpred_test_temp[0,:,:,:,:] 
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    dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

    dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 

    dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

    div = dVxdx + dVydy + dVzdz 

 

    print(uc_solid_temp.shape) 

    plt.imshow(uc_solid_temp[:,:,59,0]) 

    plt.show() 

 

    plt.imshow(temp_vel[:,:,59,2]) 

    plt.colorbar() 

    plt.show() 

 

    plt.imshow(div[:,:,59],vmin=-0.3,vmax=0.3) 

    plt.colorbar() 

    plt.show() 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.3,0.3,100)) 

    plt.show() 

 

    print(np.mean( np.abs(div_flat) ) ) 

 

    temp_div_loss = div_loss1(np.expand_dims(uc_vel_temp,axis=0), 

np.expand_dims(temp_vel,axis=0)) 
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    print(temp_div_loss) 

 

Augmentation test 

 

    from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

    temp = np.zeros( (1,20,20,1) ) 

    temp[0,15:,:,0] = 10 

 

    plt.imshow(temp[0,:,:,0]) 

    plt.show() 

 

    augGenTemp = ImageDataGenerator(#rotation_range=45,  

                                  #width_shift_range=(data_size//4,  

                                  height_shift_range=(5,5), 

                                  fill_mode='reflect') 

 

    iterator_temp = augGenTemp.flow(temp) 

 

 

    temp2 = iterator_temp.next() 

    print(temp2.shape) 

 

    plt.imshow(temp2[0,:,:,0]) 

    plt.show() 
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    temp = np.zeros( (20,20,20) ) 

    temp[13:,13:,:] = 10 

 

    plt.imshow(temp[:,:,9]) 

    plt.show() 

 

    rnd_num_gen = default_rng(10) 

 

    # 1: height (x)  

    # 2: width (y) 

    #rnd_num = rnd_num_gen.integers(low=-shift_range, high=shift_range, size=2, endpoint=True) 

    rnd_num = (-10,-10) 

 

    my_solid = temp 

    my_aug_solid = np.ones_like(temp) 

 

    if(rnd_num[0] < 0): 

      my_aug_solid[:rnd_num[0],:,:] = my_solid[-1*rnd_num[0]:,:,:] 

      my_aug_solid[rnd_num[0]:,:,:] = np.flip(my_solid, axis=0 )[:-1*rnd_num[0],:,:] 

    else: 

      my_aug_solid[:rnd_num[0],:,:] = np.flip(my_solid, axis=0 )[-1*rnd_num[0]:,:,:] 

      my_aug_solid[rnd_num[0]:,:,:] = my_solid[:-1*rnd_num[0],:,:] 

 

    my_solid = my_aug_solid 

    my_aug_solid = np.ones_like(temp) 
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    if(rnd_num[1] < 0): 

      my_aug_solid[:,:rnd_num[1],:] = my_solid[:,-1*rnd_num[1]:,:] 

      my_aug_solid[:,rnd_num[1]:,:] = np.flip(my_solid, axis=1 )[:,:-1*rnd_num[1],:] 

    else: 

      my_aug_solid[:,:rnd_num[1],:] = np.flip(my_solid, axis=1 )[:,-1*rnd_num[1]:,:] 

      my_aug_solid[:,rnd_num[1]:,:] = my_solid[:,:-1*rnd_num[1],:] 

 

    plt.imshow(my_aug_solid[:,:,9]) 

    plt.show() 

 

    plt.imshow(my_solid[:,:,9]) 

    plt.show() 

 

    rnd_num = (10,10) 

 

    if(rnd_num[1] < 0): 

      my_aug_solid[:,:rnd_num[1],:] = my_solid[:,-1*rnd_num[1]:,:] 

      my_aug_solid[:,rnd_num[1]:,:] = np.flip(my_solid, axis=1 )[:,:-1*rnd_num[1],:] 

    else: 

      my_aug_solid[:,:rnd_num[1],:] = np.flip(my_solid, axis=1 )[:,-1*rnd_num[1]:,:] 

      my_aug_solid[:,rnd_num[1]:,:] = my_solid[:,:-1*rnd_num[1],:] 

 

    plt.imshow(my_aug_solid[:,:,9]) 

    plt.show() 
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    temp = np.array([1,2,3,4,5,6,67,7,8,9]) 

 

    print(temp[:-3]) 

 

    #temp = np.zeros( (20,20,20) ) 

    #temp[13:,13:,:] = 10 

 

    temp = uc_solid[0,:,:,:] 

    temp_v = uc_vel[0,:,:,:,0] 

 

    plt.imshow(temp[:,:,9]) 

    plt.show() 

 

    plt.imshow(temp_v[:,:,9]) 

    plt.show() 

 

    my_aug_solid = np.flip(temp, axis=0) 

    my_aug_vel = np.flip(-1*temp_v, axis=0) 

 

    plt.imshow(my_aug_solid[:,:,9]) 

    plt.show() 

 

    plt.imshow(my_aug_vel[:,:,9]) 

    plt.show() 

 

Save training data 



135 
 

 

    data_num = 1 

 

    np.save('Hoffman Cluster/train data/train_solid_randomsphere_data{}'.format(data_num), 

train_data_solid) 

    np.save('Hoffman Cluster/train data/train_vel{}_randomsphere_data{}'.format(velocity_dir, 

data_num), train_data_vel) 

 

    np.save('Hoffman Cluster/train data/val_solid_randomsphere_data{}'.format(data_num), 

val_data_solid) 

    np.save('Hoffman Cluster/train data/val_vel{}_randomsphere_data{}'.format(velocity_dir, 

data_num), val_data_vel) 

 

    np.save('Hoffman Cluster/train data/test_solid_randomsphere_data{}'.format(data_num), 

test_data_solid) 

    np.save('Hoffman Cluster/train data/test_vel{}_randomsphere_data{}'.format(velocity_dir, 

data_num), test_data_vel) 

 

    velocity_dir = 'x' 

 

    augGen_seed = 10 

    aug_iter = 15 

 

    train_data_solid = np.load('Hoffman Cluster/train 

data/train_solid_randomsphere_augGenSeed_{}_AugIter_{}.npy'.format(augGen_seed, 

aug_iter)) 
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    train_data_vel = np.load('Hoffman Cluster/train 

data/train_vel{}_randomsphere_augGenSeed_{}_AugIter_{}.npy'.format(velocity_dir, 

augGen_seed, aug_iter)) 

 

    val_data_solid = np.load('Hoffman Cluster/train 

data/val_solid_randomsphere_augGenSeed_{}_AugIter_{}.npy'.format(augGen_seed, aug_iter)) 

    val_data_vel = np.load('Hoffman Cluster/train 

data/val_vel{}_randomsphere_augGenSeed_{}_AugIter_{}.npy'.format(velocity_dir, 

augGen_seed, aug_iter)) 

 

    test_data_solid = np.load('Hoffman Cluster/train 

data/test_solid_randomsphere_augGenSeed_{}_AugIter_{}.npy'.format(augGen_seed, aug_iter)) 

    test_data_vel = np.load('Hoffman Cluster/train 

data/test_vel{}_randomsphere_augGenSeed_{}_AugIter_{}.npy'.format(velocity_dir, 

augGen_seed, aug_iter)) 

 

    print(train_data_solid.shape) 

    print(val_data_solid.shape) 

    print(test_data_solid.shape) 

 

    print(train_data_vel.shape) 

    print(val_data_vel.shape) 

    print(test_data_vel.shape) 

 

Data Check 
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    vrange = np.linspace(0,10,100) 

    vel_norm_nvoxel = np.zeros(vrange.shape[0]-1) 

 

    test_data_vel_flat = test_data_vel.flatten() 

 

    for i in range(vel_norm_nvoxel.shape[0]): 

 

      vel_norm_nvoxel[i] = np.sum( test_data_vel_flat[ (test_data_vel_flat >= vrange[i]) & 

(test_data_vel_flat < vrange[i+1]) ] ) 

 

    plt.bar(vrange[:-1], vel_norm_nvoxel) 

    plt.xlabel('V') 

    plt.ylabel('Number of voxels') 

    plt.show() 

 

    # Voxel histogram of minmax velocity 

 

    percentile = np.linspace(-10,10,200) 

    vel_nvoxel = np.zeros(percentile.shape[0]-1) 

 

    for i in range(vel_nvoxel.shape[0]): 

 

      vel_masked = np.ma.masked_outside(uc_vel_minmax[2,:,:,:], percentile[i], percentile[i+1]) 

      vel_filled = np.ma.filled(vel_masked, fill_value=0) 

      vel_nvoxel[i] = vel_filled[vel_filled != 0].shape[0] 
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    plt.bar(percentile[:-1], vel_nvoxel) 

    plt.xlabel('V') 

    plt.ylabel('Number of voxels') 

    plt.show() 

 

    raw_data_perm = np.zeros( (5, uc_solid.shape[0]) ) 

    norm_data_perm = np.zeros( (5, uc_solid.shape[0]) ) 

 

    x_max = 50 

    res = 20e-6 

 

    for i in range(raw_data_perm.shape[1]): 

      norm_data_perm[0,i] = uc_vel_minmax[i,:,:,:].mean() 

      raw_data_perm[0,i] = norm_data_perm[0,i]*x_max*(res**2) 

      raw_data_perm[1,i] = uc_vel_minmax[i,:60,:60,:].mean()*x_max*(res**2) 

      raw_data_perm[2,i] = uc_vel_minmax[i,:60,60:,:].mean()*x_max*(res**2) 

      raw_data_perm[3,i] = uc_vel_minmax[i,60:,:60,:].mean()*x_max*(res**2) 

      raw_data_perm[4,i] = uc_vel_minmax[i,60:,60:,:].mean()*x_max*(res**2) 

 

 

    plt.hist(raw_data_perm[0,:], bins=20) 

    plt.title('Permeability') 

    plt.show() 

    plt.hist(norm_data_perm[0,:], bins=20) 

    plt.title('Normalized Permeability') 

    plt.xlim([0.14, 0.24]) 
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    plt.show() 

 

    plt.subplot(221) 

    plt.hist(raw_data_perm[1,:], bins=10) 

 

    plt.subplot(222) 

    plt.hist(raw_data_perm[2,:], bins=10) 

 

    plt.subplot(223) 

    plt.hist(raw_data_perm[3,:], bins=10) 

 

    plt.subplot(224) 

    plt.hist(raw_data_perm[4,:], bins=10) 

    plt.show() 

 

    train_data_perm = np.zeros( (5, train_data_solid.shape[0]) ) 

    train_data_norm = np.zeros( (5, train_data_solid.shape[0]) ) 

 

    for i in range(train_data_perm.shape[1]): 

      train_data_norm[0,i] = train_data_vel[i,:,:,:,0].mean() 

      train_data_perm[0,i] = train_data_norm[0,i]*x_max*(res**2) 

      train_data_perm[1,i] = train_data_vel[i,:60,:60,:,0].mean()*x_max*(res**2) 

      train_data_perm[2,i] = train_data_vel[i,:60,:60,:,0].mean()*x_max*(res**2) 

      train_data_perm[3,i] = train_data_vel[i,:60,:60,:,0].mean()*x_max*(res**2) 

      train_data_perm[4,i] = train_data_vel[i,:60,:60,:,0].mean()*x_max*(res**2) 
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    plt.hist(train_data_perm[0,:], bins=10) 

    plt.title('Raw Permeability') 

    plt.show() 

 

    plt.hist(train_data_norm[0,:], bins=10) 

    plt.title('Normalized Permeability') 

    plt.show() 

 

    plt.subplot(221) 

    plt.hist(train_data_perm[1,:], bins=10) 

    plt.title('I') 

 

    plt.subplot(222) 

    plt.hist(train_data_perm[2,:], bins=10) 

    plt.title('II') 

 

    plt.subplot(223) 

    plt.hist(train_data_perm[3,:], bins=10) 

    plt.title('III') 

 

    plt.subplot(224) 

    plt.hist(train_data_perm[4,:], bins=10) 

    plt.title('IV') 

 

    plt.show() 
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Illustrations 

 

    # Raw data 

    sample_number = 2 

 

    slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 

 

    vel_magnitude = 1e-4 

 

    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(uc_solid[sample_number,:,:,slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 

      axs[0,j].set_title('%s Solid' % (fig_title[j])) 

 

      im=axs[1,j].imshow(uc_vel[sample_number,:,:,slice[j],0], clim=(0,vel_magnitude), 

cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

      axs[1,j].set_title('%s Velocity' % (fig_title[j])) 

 

    # Norm data 

    sample_number = 0 
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    slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 

 

    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(uc_solid[sample_number,:,:,slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 

      axs[0,j].set_title('%s Solid' % (fig_title[j])) 

 

      im=axs[1,j].imshow(uc_vel_norm[sample_number,:,:,slice[j]], clim=(0,40), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

      axs[1,j].set_title('%s Velocity' % (fig_title[j])) 

 

    # Minmax data 

    sample_number = 5 

 

    slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 

 

    vel_magnitude = 10 
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    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(uc_solid[sample_number,:,:,slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 

      axs[0,j].set_title('%s Solid' % (fig_title[j])) 

 

      im=axs[1,j].imshow(uc_vel_minmax[sample_number,:,:,slice[j],0], clim=(0,vel_magnitude), 

cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

      axs[1,j].set_title('%s Velocity' % (fig_title[j])) 

 

    # Data check - train data 

    sample_number = 2 

 

    slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 

 

    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(train_data_solid[sample_number,:,:,slice[j],0], clim=(0,1), 

cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 
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      axs[0,j].set_title('%s Solid' % (fig_title[j])) 

 

      im=axs[1,j].imshow(train_data_vel[sample_number,:,:,slice[j],0], clim=(-2,2), 

cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

      axs[1,j].set_title('%s Velocity' % (fig_title[j])) 

 

Darcy Unet Training 

 

Unet Model 

 

    from tensorflow.keras.models import * 

    from tensorflow.keras.layers import Input, Conv3D, Conv3DTranspose, BatchNormalization, 

Activation, Concatenate, Dropout, Multiply 

 

    from numpy import floor, ceil 

 

    def encoder_block(inputs, strides, filter_num, filter_size, activation, momentum, rate): 

 

      path = Conv3D(filter_num, filter_size, padding='same', strides=strides)(inputs) 

      path = BatchNormalization(momentum=momentum)(path) 

      path = Activation(activation=activation)(path) 

      path = Dropout(rate)(path) 

 

      return path 
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    def decoder_block(inputs, strides, filter_num, filter_size, activation, momentum, rate): 

 

      path = Conv3DTranspose(filter_num, filter_size, padding='same', strides=strides)(inputs) 

      path = BatchNormalization(momentum=momentum)(path) 

      path = Activation(activation=activation)(path) 

      path = Dropout(rate)(path) 

 

      return path 

 

 

    def UnetV1(input_shape, filter_num = 5, filter_size = 3, activation = 'selu', momentum = 0.99, 

rate = 0.2): 

 

      inputs = Input(shape = input_shape) 

 

      skip_connection = [] 

 

      for i in range(8): 

         

        if(i <= 0): 

          path_encoder = encoder_block(inputs, 1, filter_num*(2**floor(i/2)), filter_size, activation, 

momentum, rate) 

        else: 
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          if(i % 2 == 1): 

            path_encoder = encoder_block(path_encoder, 1, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

            skip_connection.append(path_encoder) 

          else: 

            path_encoder = encoder_block(path_encoder, 2, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

 

      for i in reversed(range(6)): 

 

        if(i >= 5): 

          path_decoder = decoder_block(path_encoder, 2, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

          path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 

        else: 

 

          if(i % 2 == 0): 

            path_decoder = decoder_block(path_decoder, 1, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

          else: 

            path_decoder = decoder_block(path_decoder, 2, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

            path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 

 

 

      path = Conv3D(filter_num, filter_size, padding='same')(path_decoder) 
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      path = Conv3D(1, 1, padding='same')(path) 

 

      #for version 2 

      #path = Multiply()([inputs, path]) 

 

      return Model(inputs=inputs, outputs=path) 

 

 

    def UnetV2(input_shape, x_model, y_model, z_model, filter_num = 5, filter_size = 3, activation 

= 'selu', momentum = 0.99, rate = 0.2): 

 

      v_scale = 1 

       

      inputs = Input(shape = input_shape) 

 

      x_input = tf.math.multiply( x_model(inputs, training=False), 0.5*v_scale ) 

      y_input = tf.math.multiply( y_model(inputs, training=False), 0.5*v_scale ) 

      z_input = tf.math.multiply( z_model(inputs, training=False), 1*v_scale ) 

 

      path = Concatenate()( [x_input, y_input, z_input] ) 

 

      skip_connection = [] 

 

      for i in range(8): 

       

        if(i <= 0): 
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          path_encoder = encoder_block(path, 1, filter_num, filter_size, activation, momentum, rate) 

        else: 

 

          if(i % 2 == 1): 

            path_encoder = encoder_block(path_encoder, 1, filter_num, filter_size, activation, 

momentum, rate) 

            skip_connection.append(path_encoder) 

          else: 

            path_encoder = encoder_block(path_encoder, 2, filter_num, filter_size, activation, 

momentum, rate) 

 

      for i in reversed(range(6)): 

 

        if(i >= 5): 

          path_decoder = decoder_block(path_encoder, 2, filter_num, filter_size, activation, 

momentum, rate) 

          path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 

        else: 

 

          if(i % 2 == 0): 

            path_decoder = decoder_block(path_decoder, 1, filter_num, filter_size, activation, 

momentum, rate) 

          else: 

            path_decoder = decoder_block(path_decoder, 2, filter_num, filter_size, activation, 

momentum, rate) 

            path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 
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      path = Conv3D(filter_num, filter_size, padding='same')(path_decoder) 

      path = Conv3D(3, 1, padding='same')(path) 

 

      return Model(inputs=inputs, outputs=path) 

 

Model Training 

 

    version = 'Z1-4-Seed3' 

 

    model_name = 'UnetRS_Modelv{}'.format(version) 

 

    dir_save   = 'RandomSphere Model/{}'.format(model_name) 

    try: 

      os.mkdir(dir_save) 

    except OSError as error: 

      print(error) 

 

    filter_size = 4 

    num_filters = 10 

 

    learning_rate = 0.0006 

    batch_size    = 4 

 

    momentum = 0.9 
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    rate = 0.1 

 

    epochs        = 1000 

    patience_training = 50 

 

    metrics=['MAE', 'MSE'] 

    optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate) 

 

    model = UnetV1( input_shape = (data_size, data_size, data_size, 1), filter_num = num_filters, 

filter_size = filter_size, activation = 'selu', momentum = momentum, rate = rate) 

 

    #model.summary(line_length = 250) 

 

    model.compile( loss = tf.keras.losses.mean_squared_error, optimizer=optimizer, 

metrics=metrics[:] ) 

 

    nan_terminate = tf.keras.callbacks.TerminateOnNaN() 

    early_stop    = tf.keras.callbacks.EarlyStopping(monitor ='val_loss', min_delta = 0, 

                                                  patience = patience_training,  

                                                  verbose = True, mode = 'auto', baseline = None) 

 

    csv_logger = 

tf.keras.callbacks.CSVLogger("{}/training_log_{}.csv".format(dir_save,model_name)) 

 

    checkpoint = ModelCheckpoint('{}/{}.ckpt'.format(dir_save,model_name),  

                                 monitor = 'val_loss',  
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                                 verbose = 1,  

                                 save_best_only = True,  

                                 mode = 'min', save_weights_only = False) 

 

    callbacks_list = [nan_terminate, 

                      early_stop, 

                      checkpoint, 

                      csv_logger] 

 

    from keras.utils.vis_utils import plot_model 

 

    imgtype = ('LR','TB') 

    for i in imgtype: 

      plot_model(model, to_file='RandomSphere Model/Model 

Image/{}_{}.jpg'.format(model_name, i), rankdir = i, show_layer_names = False) 

 

    from timeit import default_timer as timer 

    from datetime import timedelta 

 

    start = timer() 

 

    model.fit( x = train_data_solid, y = train_data_vel,  

               epochs = epochs, batch_size = batch_size, 

               validation_data = (val_data_solid, val_data_vel), 

               validation_freq = 1, 

               verbose = 1, 
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               callbacks = callbacks_list) 

 

    end = timer() 

    print('Elapsed time for training : {}'.format(timedelta(seconds=end-start)))    

 

XYZ Model Training 

 

    version = 'XYZ1-8-Seed3' 

 

    model_name = 'UnetRSXYZ_Modelv{}'.format(version) 

 

    dir_save   = 'RandomSphere XYZ Model/{}'.format(model_name) 

    try: 

      os.mkdir(dir_save) 

    except OSError as error: 

      print(error) 

 

    filter_size = 3 

    num_filters = 9 

 

    learning_rate = 0.001 

    batch_size    = 4 

 

    momentum = 0.99 

    rate = 0.0001 
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    epochs        = 1000 

    patience_training = 50 

 

    metrics=['MAE', 'MSE'] 

    optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate) 

 

 

    version_x = 'X1-3' 

    x_model_name = 'UnetRS_Modelv{}'.format(version_x) 

    x_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(x_model_name, x_model_name ) ) 

    x_model._name = 'xmodel' 

    x_model.trainable = False 

 

    version_y = 'Y1-1' 

    y_model_name = 'UnetRS_Modelv{}'.format(version_y) 

    y_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(y_model_name, y_model_name ) ) 

    y_model._name = 'ymodel' 

    y_model.trainable = False 

 

    version_z = 'Z1-4' 

    z_model_name = 'UnetRS_Modelv{}'.format(version_z) 

    z_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(z_model_name, z_model_name ) ) 

    z_model._name = 'zmodel' 
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    z_model.trainable = False 

 

    model = UnetV2( input_shape = (data_size, data_size, data_size, 1), x_model = x_model, 

y_model = y_model, z_model = z_model, 

                    filter_num = num_filters, filter_size = filter_size, activation = 'selu', momentum = 

momentum, rate = rate) 

 

    #model.summary(line_length = 250) 

 

    #model.compile( loss = tf.keras.losses.mean_squared_error, optimizer=optimizer, 

metrics=metrics[:] ) 

    model.compile( loss = div_loss2, optimizer=optimizer, metrics=metrics[:]) 

 

    nan_terminate = tf.keras.callbacks.TerminateOnNaN() 

    early_stop    = tf.keras.callbacks.EarlyStopping(monitor ='val_loss', min_delta = 0, 

                                                  patience = patience_training,  

                                                  verbose = True, mode = 'auto', baseline = None) 

 

    csv_logger = 

tf.keras.callbacks.CSVLogger("{}/training_log_{}.csv".format(dir_save,model_name)) 

 

    checkpoint = ModelCheckpoint('{}/{}.ckpt'.format(dir_save,model_name),  

                                 monitor = 'val_loss',  

                                 verbose = 1,  

                                 save_best_only = True,  

                                 mode = 'min', save_weights_only = False) 
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    callbacks_list = [nan_terminate, 

                      early_stop, 

                      checkpoint, 

                      csv_logger] 

 

    from keras.utils.vis_utils import plot_model 

 

    imgtype = ('LR','TB') 

    for i in imgtype: 

      plot_model(model, to_file='RandomSphere Model/Model 

Image/{}_{}.jpg'.format(model_name, i), rankdir = i, show_layer_names = False) 

 

    from timeit import default_timer as timer 

    from datetime import timedelta 

 

    start = timer() 

 

    model.fit( x = train_data_solid, y = train_data_vel,  

               epochs = epochs, batch_size = batch_size, 

               validation_data = (val_data_solid, val_data_vel), 

               validation_freq = 1, 

               verbose = 1, 

               callbacks = callbacks_list) 

 

    end = timer() 
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    print('Elapsed time for training : {}'.format(timedelta(seconds=end-start)))    

 

Model Evaluation 

 

    #version = 'Z1-4' 

    #eval_model_name = 'UnetRS_Modelv{}'.format(version) 

    #eval_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(eval_model_name, eval_model_name ) ) 

 

    version = 'XYZ1-0' 

    eval_model_name = 'UnetRSXYZ_Modelv{}'.format(version) 

    eval_model = tf.keras.models.load_model( 'RandomSphere XYZ 

Model/{}/{}.ckpt'.format(eval_model_name, eval_model_name ) ) 

    #eval_model = tf.keras.models.load_model( 'RandomSphere XYZ 

Model/{}/{}.ckpt'.format(eval_model_name, eval_model_name ), custom_objects = {'div_loss2': 

div_loss2} ) 

 

    for i in range(test_data_solid.shape[0]): 

      print('\nSample number : {}'.format(i+1)) 

      eval_model.evaluate(test_data_solid[i:i+1,:,:,:,:], test_data_vel[i:i+1,:,:,:,:]) 

 

    vz_test_pred = np.float32( eval_model.predict( x=[test_data_solid] ) ) 

 

    print(vz_test_pred.shape) 

 

    # Overall Permeability 
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    perm_true = test_data_vel[:,:,:,:,2].mean(axis=(1,2,3)) 

    perm_pred = vz_test_pred[:,:,:,:,2].mean(axis=(1,2,3)) 

 

    perm_error = abs( perm_true - perm_pred )/abs(perm_true)*100 

 

    print( 'Overall permeability error : {:.3f}\n'.format(perm_error.mean()) ) 

 

    fig = plt.figure() 

    ax = fig.add_axes([0,0,1,1]) 

    ax.bar(np.arange(perm_error.shape[0]), perm_error) 

    plt.title('Permeability Error') 

    plt.show() 

 

    """ 

    fig = plt.figure() 

    ax = fig.add_axes([0,0,1,1]) 

    ax.bar(np.arange(perm_error.shape[0]),test_data_vel[:,:,:,:,0].mean(axis=(1,2,3))) 

    plt.title('Average velocity') 

    plt.show() 

    """ 

 

    print(perm_error) 

 

    # Voxel-wise MAPE Absolute value velocity 

    v_max = 5 
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    channel = 2 

 

    vel_true_flat = test_data_vel[:,:,:,:,channel].flatten() 

    vel_pred_flat = vz_test_pred[:,:,:,:,channel].flatten() 

 

    v_range = np.linspace(0.0001,v_max,100) 

 

    vel_true_flat_nonzero = vel_true_flat[ (vel_true_flat < 0) | (vel_true_flat > 0)] 

    vel_pred_flat_nonzero = vel_pred_flat[ (vel_true_flat < 0) | (vel_true_flat > 0)]  

 

    vel_mape_flat = (vel_true_flat_nonzero - vel_pred_flat_nonzero)/vel_true_flat_nonzero*100 

 

    plt.plot(vel_true_flat_nonzero, 

vel_mape_flat,'bo',markersize=0.1,figure=plt.figure(figsize=[8,6])) 

    plt.ylim(-100,100) 

    plt.show() 

 

 

    vel_mape_flat_range = np.zeros_like(v_range) 

 

    for i in range(v_range.shape[0]-1): 

      if(v_range[i] != 0): 

        vel_mape_flat_vrange = np.abs( vel_mape_flat[ (np.abs(vel_true_flat_nonzero) > v_range[i]) 

& (np.abs(vel_true_flat_nonzero) < v_range[i+1]) ] ) 

 

      if(vel_mape_flat_vrange.shape[0] > 0): 
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        vel_mape_flat_range[i] = np.mean(vel_mape_flat_vrange) 

 

    plt.plot(v_range[:-1], vel_mape_flat_range[:-1], 

'bo',markersize=4,figure=plt.figure(figsize=[8,6])) 

    plt.ylim(0,100) 

    plt.xlabel('velocity') 

    plt.ylabel('% error') 

    plt.show() 

 

 

    threshold = 9.17/x_max 

 

    vel_mape_flat_threshold = vel_mape_flat[ (vel_true_flat_nonzero <= (-1*threshold)) | 

(vel_true_flat_nonzero >= (1*threshold)) ] 

    print("% Error above threshold : 

{}".format(np.mean(vel_mape_flat_threshold[vel_mape_flat_threshold > 0]))) 

 

    #print(v_range) 

    #print(vel_mape_flat_range) 

 

    test_sample = 1 

    print( 'Maximum Sample Number : {}'.format(test_data_solid.shape[0] - 1) ) 

 

    mySolid = test_data_solid[test_sample,:,:,:,0] 

    mySolid_mask = np.ma.masked_less(mySolid,1) 
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    myVel_true = test_data_vel[test_sample,:,:,:,2] 

    myVel_true = np.ma.array( myVel_true, mask=np.ma.getmask(mySolid_mask) ) 

 

    myVel_pred = vz_test_pred[test_sample,:,:,:,2] 

    myVel_pred = np.ma.array( myVel_pred, mask=np.ma.getmask(mySolid_mask) ) 

 

    myVel_true = myVel_true*x_max 

    myVel_pred = myVel_pred*x_max 

 

    test_slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=3, ncols=3,figsize=(20,20) ) 

 

    vel_range = (0,50) 

 

    for j in range(3): 

 

      im=axs[j,0].imshow(mySolid[:,:,test_slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,0],fraction=0.05) 

      axs[j,0].axis('off') 

      #axs[j,0].set_title('{} Solid'.format(fig_title[j])) 

 

      im=axs[j,1].imshow(myVel_true[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,1],fraction=0.05) 

      axs[j,1].axis('off') 
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      #axs[j,1].set_title('{} Simulation'.format(fig_title[j])) 

 

      im=axs[j,2].imshow(myVel_pred[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,2],fraction=0.05) 

      axs[j,2].axis('off') 

      #axs[j,2].set_title('{} Prediction'.format(fig_title[j])) 

 

    div = np.zeros( (vz_test_pred.shape[0],118,118,118) ) 

    for i in range(vz_test_pred.shape[0]): 

 

      temp_vel = vz_test_pred[i,:,:,:,:] 

 

      dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

      dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 

      dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

      div[i,:,:,:] = dVxdx + dVydy + dVzdz 

 

    print( np.mean( np.abs(div), axis=(1,2,3)) ) 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.1,0.1,100)) 

    plt.show() 

 

    print(np.mean( np.abs(div_flat) )) 

 

    #temp_vel = vz_test_pred[0,:,:,:,:]*test_data_solid[0,:,:,:,:] 
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    temp_vel = vz_test_pred[0,:,:,:,:] 

 

    dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

    dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 

    dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

    div = dVxdx + dVydy + dVzdz 

 

    plt.imshow(test_data_solid[0,:,:,59,0]) 

    plt.show() 

 

    plt.imshow(temp_vel[:,:,59,2]) 

    plt.colorbar() 

    plt.show() 

 

    plt.imshow(div[:,:,59]) 

    plt.colorbar() 

    plt.show() 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.1,0.1,100)) 

    plt.show() 

 

    print(np.mean( np.abs(div_flat) )) 

 

    temp_vel = test_data_vel[0,:,:,:,:] 
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    dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

    dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 

    dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

    div = dVxdx + dVydy + dVzdz 

 

    plt.imshow(test_data_solid[0,:,:,5,0]) 

    plt.show() 

 

    plt.imshow(temp_vel[:,:,5,2]) 

    plt.colorbar() 

    plt.show() 

 

    plt.imshow(div[:,:,5]) 

    plt.colorbar() 

    plt.show() 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.1,0.1,100)) 

    plt.show() 

 

Evaluate SiC Data 

 

Load SiC Data 

 

    sic_dir_data = 'Data/SiC Data' 

    data_size = 120 



164 
 

 

    denRange = [45, 65, 80] 

    domainRange = [1, 2] 

 

    # X : 'x' 

    # Y : 'y' 

    # Z : '' 

    #velocity_dir = ('x') 

    #velocity_dir = ('y') 

    #velocity_dir = ('z') 

    velocity_dir = ('x', 'y', 'z') 

 

    channel_size = len(velocity_dir) 

 

    sic_solid = np.zeros( (1,data_size,data_size,data_size,1) ) 

    sic_vel = np.zeros( (1,data_size,data_size,data_size,channel_size) ) 

 

    for i in range(len(denRange)): 

      for j in range(len(domainRange)): 

 

        sic_solid_load = loadmat( '{}/{}PPI_domain{}_deci.mat'.format(sic_dir_data, denRange[i], 

domainRange[j]) )['solid'].astype('int') 

        sic_solid_load = sic_solid_load <= 0 

        sic_solid = np.append( sic_solid, np.expand_dims(sic_solid_load, axis=(0,-1)), axis=0 ) 

 

        sic_vel_load = np.zeros( (1,data_size,data_size,data_size,channel_size)) 
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        for k in range(channel_size): 

          if(velocity_dir[k] == 'z'): 

            sic_vel_load[0,:,:,:,k] = loadmat( '{}/{}PPI_domain{}_vfield{}.mat'.format(sic_dir_data, 

denRange[i], domainRange[j], '') )['vfield'].astype('float32') 

          else: 

            sic_vel_load[0,:,:,:,k] = loadmat( '{}/{}PPI_domain{}_vfield{}.mat'.format(sic_dir_data, 

denRange[i], domainRange[j], velocity_dir[k]) )['vfield'].astype('float32') 

 

        sic_vel = np.append( sic_vel, sic_vel_load, axis=0 ) 

 

    sic_solid = sic_solid[1:,:,:,:] 

    sic_vel = sic_vel[1:,:,:,:] 

 

    print('Image size : {}\nNumber of Data : {}  {}'.format(data_size, sic_solid.shape, 

sic_vel.shape)) 

 

    """ Normalization 

    """ 

 

    res = 26.708e-6 

    res2 = res/2 

 

    x_min = 0 

    x_max = 8 

 

    sic_vel_norm = sic_vel[:4,:,:,:,:]/(res**2)*0.333/9270 
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    sic_vel_norm = np.append(sic_vel_norm,sic_vel[4:,:,:,:,:]/(res2**2)*0.333/9270,axis=0) 

 

    print( '\nMean velocity : {}'.format( sic_vel_norm.mean() ) ) 

    print( '\nMin velocity : {}'.format( sic_vel_norm.min() ) ) 

    print( '\nMax velocity : {}'.format( sic_vel_norm.max() ) ) 

 

    sic_vel_minmax = minmax_transform(sic_vel_norm, x_min=x_min, x_range=x_max-x_min) 

 

    print( '\nMean velocity : {}'.format( sic_vel_minmax.mean() ) ) 

    print( '\nMin velocity : {}'.format( sic_vel_minmax.min() ) ) 

    print( '\nMax velocity : {}'.format( sic_vel_minmax.max() ) ) 

 

SiC Data check 

 

    data_num = 1 

 

    np.save('Data/SiC Data/sic_solid_{}'.format(data_num), sic_solid) 

 

    vrange = np.linspace(-30,30,200) 

    vel_norm_nvoxel = np.zeros(vrange.shape[0]-1) 

 

    sic_vel_norm_flat = sic_vel_norm.flatten() 

 

    for i in range(vel_norm_nvoxel.shape[0]): 
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      vel_norm_nvoxel[i] = np.abs( np.sum( sic_vel_norm_flat[ (sic_vel_norm_flat >= vrange[i]) 

& (sic_vel_norm_flat < vrange[i+1]) ] ) ) 

 

    plt.bar(vrange[:-1], vel_norm_nvoxel) 

    plt.xlabel('V') 

    plt.ylabel('Number of voxels') 

    plt.show() 

 

    print(np.sum(sic_vel_norm_flat[sic_vel_norm_flat >= 25])) 

 

    percentile = np.linspace(-5,5,100) 

    vel_norm_nvoxel = np.zeros(percentile.shape[0]-1) 

 

    for i in range(vel_norm_nvoxel.shape[0]): 

 

      vel_norm_masked = np.ma.masked_outside(sic_vel_minmax, percentile[i], percentile[i+1]) 

      vel_norm_filled = np.ma.filled(vel_norm_masked, fill_value=0) 

      vel_norm_nvoxel[i] = vel_norm_filled[vel_norm_filled != 0].shape[0] 

 

    plt.bar(percentile[:-1], vel_norm_nvoxel) 

    plt.xlabel('V') 

    plt.ylabel('Number of voxels') 

    plt.show() 

 

    raw_sic_perm = np.zeros( (5, sic_solid.shape[0]) ) 

    norm_sic_perm = np.zeros( (5, sic_solid.shape[0]) ) 
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    x_max = 50 

    res = 26.708e-6 

 

    for i in range(raw_sic_perm.shape[1]): 

      norm_sic_perm[0,i] = sic_vel_minmax[i,:,:,:].mean() 

      raw_sic_perm[0,i] = norm_sic_perm[0,i]*x_max*(res**2) 

 

    plt.hist(raw_sic_perm[0,:], bins=20) 

    plt.title('Raw Permeability') 

    plt.show() 

    plt.hist(norm_sic_perm[0,:], bins=20) 

    plt.title('Normalized Permeability') 

    plt.xlim([0.1, 0.24]) 

    plt.show() 

 

    # Data check 

    sample_number = 5 

 

    slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    v_max = 9 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 
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    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(sic_solid[sample_number,:,:,slice[j],0], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 

      axs[0,j].set_title('%s Solid' % (fig_title[j])) 

 

      im=axs[1,j].imshow(sic_vel_minmax[sample_number,:,:,slice[j],0], clim=(0,v_max), 

cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

      axs[1,j].set_title('%s Velocity' % (fig_title[j])) 

 

Evaluation 

 

    case_num = 3 

 

    if(case_num == 1): 

      version = 'Z1-4' 

      eval_model_name = 'UnetRS_Modelv{}'.format(version) 

      eval_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(eval_model_name, eval_model_name ) ) 

 

    elif(case_num == 2): 

      version = 'XYZ1-0' 

      eval_model_name = 'UnetRSXYZ_Modelv{}'.format(version) 
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      eval_model = tf.keras.models.load_model( 'RandomSphere XYZ 

Model/{}/{}.ckpt'.format(eval_model_name, eval_model_name ) ) 

 

    elif(case_num == 3): 

      version = 'XYZ1-8' 

      eval_model_name = 'UnetRSXYZ_Modelv{}'.format(version) 

      eval_model = tf.keras.models.load_model( 'RandomSphere XYZ 

Model/{}/{}.ckpt'.format(eval_model_name, eval_model_name ), custom_objects = {'div_loss2': 

div_loss2} ) 

 

    """ 

    for i in range(sic_solid.shape[0]): 

      print('Sample number : {}'.format(i+1)) 

      eval_model.evaluate(sic_solid[i:i+1,:,:,:,:], sic_vel_minmax[i:i+1,:,:,:,:]) 

    """ 

 

    from timeit import default_timer as timer 

    from datetime import timedelta 

 

    start = timer() 

    vz_test_pred = np.float32( eval_model.predict( x=[sic_solid] ) ) 

    end = timer() 

    print('Elapsed time : {}'.format(timedelta(seconds=end-start))) 

 

    print(vz_test_pred.shape) 
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    eval_model.save('Saved Model/{}'.format(eval_model_name)) 

 

    # Overall Permeability 

 

    perm_true = sic_vel_minmax[:,:,:,:,2].mean(axis=(1,2,3)) 

    perm_pred = vz_test_pred[:,:,:,:,2].mean(axis=(1,2,3)) 

 

    perm_error = abs( (perm_true - perm_pred)/perm_true )*100 

 

    print( 'Overall permeability error : {:.3f}\n'.format(perm_error.mean()) ) 

 

    fig = plt.figure() 

    ax = fig.add_axes([0,0,1,1]) 

    ax.bar(np.arange(perm_error.shape[0]),perm_error) 

    plt.title('Permeability Error') 

    plt.show() 

    """ 

    fig = plt.figure() 

    ax = fig.add_axes([0,0,1,1]) 

    ax.bar(np.arange(perm_error.shape[0]), vz_test_pred[:,:,:,:].mean(axis=(1,2,3,4))) 

    plt.title('Average velocity') 

    plt.show() 

    """ 

    print(perm_error) 

 

    # Voxel-wise MAPE Absolute value velocity 
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    v_max = 2 

    channel = 2 

 

    vel_true_flat = sic_vel_minmax[:,:,:,:,channel].flatten() 

    vel_pred_flat = vz_test_pred[:,:,:,:,channel].flatten() 

 

    v_range = np.linspace(0.0001,v_max,100) 

 

    vel_true_flat_nonzero = vel_true_flat[ (vel_true_flat < 0) | (vel_true_flat > 0)] 

    vel_pred_flat_nonzero = vel_pred_flat[ (vel_true_flat < 0) | (vel_true_flat > 0)]  

 

    vel_mape_flat = (vel_true_flat_nonzero - vel_pred_flat_nonzero)/vel_true_flat_nonzero*100 

 

    plt.plot(vel_true_flat_nonzero, 

vel_mape_flat,'bo',markersize=0.1,figure=plt.figure(figsize=[8,6])) 

    plt.ylim(-100,100) 

    plt.show() 

 

 

    vel_mape_flat_range = np.zeros_like(v_range) 

 

    for i in range(v_range.shape[0]-1): 

      if(v_range[i] != 0): 

        vel_mape_flat_vrange = np.abs( vel_mape_flat[ (np.abs(vel_true_flat_nonzero) > v_range[i]) 

& (np.abs(vel_true_flat_nonzero) < v_range[i+1]) ] ) 
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      if(vel_mape_flat_vrange.shape[0] > 0): 

        vel_mape_flat_range[i] = np.mean(vel_mape_flat_vrange) 

 

    plt.plot(v_range[:-1], vel_mape_flat_range[:-1], 

'bo',markersize=4,figure=plt.figure(figsize=[8,6])) 

    plt.ylim(0,100) 

    plt.xlabel('velocity') 

    plt.ylabel('% error') 

    plt.show() 

 

 

    threshold = 8.93/x_max 

 

    vel_mape_flat_threshold = vel_mape_flat[ (vel_true_flat_nonzero <= (-1*threshold)) | 

(vel_true_flat_nonzero >= (1*threshold)) ] 

    print("% Error above threshold : 

{}".format(np.mean(vel_mape_flat_threshold[vel_mape_flat_threshold > 0]))) 

 

    #print(v_range) 

    #print(vel_mape_flat_range) 

 

    test_sample = 5 

    print( 'Maximum Sample Number : {}'.format(sic_solid.shape[0] - 1) ) 

 

    mySolid = sic_solid[test_sample,:,:,:,0] 

    mySolid_mask = np.ma.masked_less(mySolid, 1) 
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    myVel_true = sic_vel_minmax[test_sample,:,:,:,2] 

    myVel_true = np.ma.array( myVel_true, mask=np.ma.getmask(mySolid_mask) ) 

 

    myVel_pred = vz_test_pred[test_sample,:,:,:,2] 

    myVel_pred = np.ma.array( myVel_pred, mask=np.ma.getmask(mySolid_mask) ) 

 

    myVel_true = myVel_true*x_max 

    myVel_pred = myVel_pred*x_max 

 

    test_slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=3, ncols=3,figsize=(20,20) ) 

 

    vel_range = (0,40) 

 

    for j in range(3): 

 

      im=axs[j,0].imshow(mySolid[:,:,test_slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,0],fraction=0.05) 

      axs[j,0].axis('off') 

      #axs[j,0].set_title('{} Solid'.format(fig_title[j])) 

 

      im=axs[j,1].imshow(myVel_true[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,1],fraction=0.05) 
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      axs[j,1].axis('off') 

      #axs[j,1].set_title('{} Simulation'.format(fig_title[j])) 

 

      im=axs[j,2].imshow(myVel_pred[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,2],fraction=0.05) 

      axs[j,2].axis('off') 

      #axs[j,2].set_title('{} Prediction'.format(fig_title[j])) 

 

    div = np.zeros( (vz_test_pred.shape[0],118,118,118) ) 

    for i in range(vz_test_pred.shape[0]): 

 

      temp_vel = vz_test_pred[i,:,:,:,:] 

 

      dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

      dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 

      dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

      div[i,:,:,:] = dVxdx + dVydy + dVzdz 

 

    print( np.mean( np.abs(div), axis=(1,2,3)) ) 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.1,0.1,100)) 

    plt.show() 

 

    print(np.mean( np.abs(div_flat) )) 
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    version_x = 'X1-3' 

    x_model_name = 'UnetRS_Modelv{}'.format(version_x) 

    x_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(x_model_name, x_model_name ) ) 

    x_model._name = 'xmodel' 

    x_model.trainable = False 

 

    version_y = 'Y1-1' 

    y_model_name = 'UnetRS_Modelv{}'.format(version_y) 

    y_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(y_model_name, y_model_name ) ) 

    y_model._name = 'ymodel' 

    y_model.trainable = False 

 

    version_z = 'Z1-4' 

    z_model_name = 'UnetRS_Modelv{}'.format(version_z) 

    z_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(z_model_name, z_model_name ) ) 

    z_model._name = 'zmodel' 

    z_model.trainable = False 

 

    vx_test_pred = np.float32( x_model.predict( x=[sic_solid] ) )/2 

    vy_test_pred = np.float32( y_model.predict( x=[sic_solid] ) )/2 

    vz_test_pred = np.float32( z_model.predict( x=[sic_solid] ) ) 
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    vz_test_pred = np.append(vx_test_pred, np.append(vy_test_pred, vz_test_pred,axis=-1),axis=-

1 ) 

    print(vz_test_pred.shape) 

 

    div = np.zeros( (vz_test_pred.shape[0],118,118,118) ) 

    for i in range(vz_test_pred.shape[0]): 

 

      temp_vel = vz_test_pred[i,:,:,:,:] 

 

      dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

      dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 

      dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

      div[i,:,:,:] = dVxdx + dVydy + dVzdz 

 

    print( np.mean( np.abs(div), axis=(1,2,3)) ) 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.1,0.1,100)) 

    plt.show() 

 

Save prediction 

 

    save_index = 0 

    case_name = '45PPI_domain1_vfield{}'.format(velocity_dir) 
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    scipy.io.savemat( 'Prediction/{}.mat'.format(case_name), {'vfield_ML': 

vz_test_pred[save_index,:,:,:]} )  

 

    # Individual Model 

    case_name = (45, 65, 80) 

 

    for i in range(6): 

      save_name = '{}PPI_domain{}_vfield{}'.format(case_name[i//2], i%2+1, velocity_dir) 

      scipy.io.savemat( 'Prediction/UnetRS_Model/{}.mat'.format(save_name), {'vfield_ML': 

np.squeeze( vz_test_pred[i,:,:,:,:] )} ) 

 

    # Comprehensive Model 

    case_name = (45, 65, 80) 

    vel_dir_save = ('x', 'y', '') 

 

    for i in range(6): 

      for j in range(3): 

        save_name = '{}PPI_domain{}_vfield{}'.format(case_name[i//2], i%2+1, vel_dir_save[j]) 

        scipy.io.savemat( 'Prediction/UnetRS_Model/{}.mat'.format(save_name), {'vfield_ML': 

np.squeeze(vz_test_pred[i,:,:,:,j]) } ) 

 

Divergence check 

 

    sic_solid_temp = sic_solid[1:2,:,:,:,:] 

    temp_vel = sic_vel_minmax[1,:,:,:,:] 
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    dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

    dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 

    dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

    div = dVxdx + dVydy + dVzdz 

 

 

    plt.imshow(sic_solid_temp[0,:,:,59,0]) 

    plt.show() 

 

    plt.imshow(temp_vel[:,:,59,2], vmin=0, vmax=6) 

    plt.colorbar() 

    plt.show() 

 

    plt.imshow(div[:,:,59],vmin=-0.3,vmax=0.3) 

    plt.colorbar() 

    plt.show() 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.3,0.3,100)) 

    plt.show() 

 

    print(np.mean( np.abs(div_flat) ) ) 

 

    sic_solid_temp = sic_solid[1:2,:,:,:,:] 

 

    xversion = 'X1-3' 
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    x_model_name = 'UnetRS_Modelv{}'.format(xversion) 

    x_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(x_model_name, x_model_name ) ) 

 

    yversion = 'Y1-1' 

    y_model_name = 'UnetRS_Modelv{}'.format(yversion) 

    y_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(y_model_name, y_model_name ) ) 

 

    zversion = 'Z1-4' 

    z_model_name = 'UnetRS_Modelv{}'.format(zversion) 

    z_model = tf.keras.models.load_model( 'RandomSphere 

Model/{}/{}.ckpt'.format(z_model_name, z_model_name ) ) 

 

    vx_test_pred = np.float32( x_model.predict( x=[sic_solid_temp] ) )/2 

    vy_test_pred = np.float32( y_model.predict( x=[sic_solid_temp] ) )/2 

    vz_test_pred = np.float32( z_model.predict( x=[sic_solid_temp] ) ) 

 

    print(vz_test_pred.shape) 

 

    temp_vel = np.append(vx_test_pred, np.append(vy_test_pred, vz_test_pred,axis=-1),axis=-1 ) 

    print(temp_vel.shape) 

 

    temp_vel = temp_vel[0,:,:,:,:] 

    dVxdx = (temp_vel[2:,1:-1,1:-1,0] - temp_vel[:-2,1:-1,1:-1,0])/2 

    dVydy = (temp_vel[1:-1,2:,1:-1,1] - temp_vel[1:-1,:-2,1:-1,1])/2 
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    dVzdz = (temp_vel[1:-1,1:-1,2:,2] - temp_vel[1:-1,1:-1,:-2,2])/2 

    div = dVxdx + dVydy + dVzdz 

 

 

    plt.imshow(sic_solid_temp[0,:,:,59,0]) 

    plt.show() 

 

    plt.imshow(temp_vel[:,:,59,2],vmin=0,vmax=6) 

    plt.colorbar() 

    plt.show() 

 

    plt.imshow(div[:,:,59],vmin=-0.3,vmax=0.3) 

    plt.colorbar() 

    plt.show() 

 

    div_flat = div.flatten() 

    plt.hist(div_flat, np.linspace(-0.3,0.3,100)) 

    plt.show() 

 

    print(np.mean( np.abs(div_flat) ) ) 

 

    temp_div_loss = div_loss1(sic_vel_minmax[1:2,:,:,:,:], np.expand_dims(temp_vel,axis=0)) 

 

    print(temp_div_loss) 
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Appendix C 
The source code used to develop and train the deep learning model in Chapter 4 is provided as 

plain text here 

 

System Information 

 

    gpu_info = !nvidia-smi 

    gpu_info = '\n'.join(gpu_info) 

    print(gpu_info) 

 

Initialize Package 

 

    !pip install hdf5storage 

 

    Installing collected packages: hdf5storage 

    Successfully installed hdf5storage-0.1.19 

 

    from hdf5storage import loadmat 

 

    import numpy as np 

    from numpy.random import seed 

    from numpy.random import default_rng 

 

    from matplotlib import pyplot as plt 

    import os 
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    import scipy 

    from scipy import io 

    from scipy.ndimage import zoom 

    from scipy.stats import ks_2samp 

 

    import tensorflow as tf 

    print('tensorflow version : {}'.format(tf.__version__)) 

    from tensorflow.keras.callbacks import ModelCheckpoint 

    from tensorflow.keras.preprocessing.image import ImageDataGenerator 

 

    from tensorflow.keras.models import Model 

    from tensorflow.keras.models import load_model 

    from tensorflow.keras.models import save_model 

 

    from sklearn.model_selection import train_test_split 

 

    seed = 10 

 

    tf.random.set_seed(seed) 

    np.random.seed(seed) 

 

    tensorflow version : 2.11.0 

 

    %cd /content/drive/My\ Drive/DarcyUnet Unit Cell/ 
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    /content/drive/My Drive/DarcyUnet Unit Cell 

 

Functions 

 

    def minmax_transform(x, x_min=0, x_range=1): 

      x = ( x - x_min ) / x_range 

      return x 

 

 

    def shift_augmentation(my_solid, my_vel, shift_range, vel_dir): 

      # my_solid : NxNxN 

      # my_vel : NxNxN 

      # shift_range : 2x1 in voxels 

      # vel_dir : string 

 

      # Augmentation placeholder 

      my_aug_solid = np.ones_like(my_solid) 

      my_aug_vel = np.ones_like(my_vel) 

 

      # Ratio of shift value 

      shift_x = shift_range[0] 

      shift_y = shift_range[1] 

      shift_z = shift_range[2] 

 

      # X Shift 

      if(shift_x < 0): 
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        my_aug_solid[:shift_x,:,:] = my_solid[-1*shift_x:,:,:] 

        my_aug_solid[shift_x:,:,:] = np.flip(my_solid, axis=0 )[:-1*shift_x,:,:] 

 

        my_aug_vel[:shift_x,:,:] = my_vel[-1*shift_x:,:,:] 

        if(vel_dir[0] == 'x'): 

          my_aug_vel[shift_x:,:,:] = np.flip(-1*my_vel, axis=0 )[:-1*shift_x,:,:] 

        else: 

          my_aug_vel[shift_x:,:,:] = np.flip(my_vel, axis=0 )[:-1*shift_x,:,:] 

 

      elif(shift_x > 0): 

        my_aug_solid[:shift_x,:,:] = np.flip(my_solid, axis=0 )[-1*shift_x:,:,:] 

        my_aug_solid[shift_x:,:,:] = my_solid[:-1*shift_x,:,:] 

 

        my_aug_vel[shift_x:,:,:] = my_vel[:-1*shift_x,:,:] 

        if(vel_dir[0] == 'x'): 

          my_aug_vel[:shift_x,:,:] = np.flip(-1*my_vel, axis=0 )[-1*shift_x:,:,:] 

        else: 

          my_aug_vel[:shift_x,:,:] = np.flip(my_vel, axis=0 )[-1*shift_x:,:,:] 

 

      else: 

        my_aug_solid = my_solid 

        my_aug_vel = my_vel 

 

      my_solid = my_aug_solid 

      my_vel = my_aug_vel 
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      # Y Shift 

      my_aug_solid = np.ones_like(my_solid) 

      my_aug_vel = np.ones_like(my_vel) 

 

      if(shift_y < 0): 

        my_aug_solid[:,:shift_y,:] = my_solid[:,-1*shift_y:,:] 

        my_aug_solid[:,shift_y:,:] = np.flip(my_solid, axis=1 )[:,:-1*shift_y,:] 

 

        my_aug_vel[:,:shift_y,:] = my_vel[:,-1*shift_y:,:] 

        if(vel_dir[0] == 'y'): 

          my_aug_vel[:,shift_y:,:] = np.flip(-1*my_vel, axis=1 )[:,:-1*shift_y,:] 

        else: 

          my_aug_vel[:,shift_y:,:] = np.flip(my_vel, axis=1 )[:,:-1*shift_y,:] 

           

      elif(shift_y > 0): 

        my_aug_solid[:,:shift_y,:] = np.flip(my_solid, axis=1 )[:,-1*shift_y:,:] 

        my_aug_solid[:,shift_y:,:] = my_solid[:,:-1*shift_y,:] 

 

        my_aug_vel[:,shift_y:,:] = my_vel[:,:-1*shift_y,:] 

        if(vel_dir[0] == 'y'): 

          my_aug_vel[:,:shift_y,:] = np.flip(-1*my_vel, axis=1 )[:,-1*shift_y:,:] 

        else: 

          my_aug_vel[:,:shift_y,:] = np.flip(my_vel, axis=1 )[:,-1*shift_y:,:] 

 

      else: 

        my_aug_solid = my_solid 
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        my_aug_vel = my_vel 

 

      my_solid = my_aug_solid 

      my_vel = my_aug_vel 

       

      # Z Shift 

      my_aug_solid = np.ones_like(my_solid) 

      my_aug_vel = np.ones_like(my_vel) 

 

      if(shift_z < 0): 

        my_aug_solid[:,:,:shift_z] = my_solid[:,:,-1*shift_z:] 

        my_aug_solid[:,:,shift_z:] = np.flip( my_solid, axis=2 )[:,:,:-1*shift_z] 

 

        my_aug_vel[:,:,:shift_z] = my_vel[:,:,-1*shift_z:] 

        my_aug_vel[:,:,shift_z:] = np.flip( my_vel, axis=2 )[:,:,:-1*shift_z] 

 

      elif(shift_z > 0): 

        my_aug_solid[:,:,:shift_z] = np.flip( my_solid, axis=2 )[:,:,-1*shift_z:] 

        my_aug_solid[:,:,shift_z:] = my_solid[:,:,:-1*shift_z] 

 

        my_aug_vel[:,:,:shift_z] = np.flip( my_vel, axis=2 )[:,:,-1*shift_z:] 

        my_aug_vel[:,:,shift_z:] = my_vel[:,:,:-1*shift_z] 

         

      else: 

        my_aug_solid = my_solid 

        my_aug_vel = my_vel 
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      return my_aug_solid, my_aug_vel 

 

Custom Loss 

 

    def div_loss1(y_true, y_pred): 

 

      scale = 1 

 

      mse = tf.math.reduce_mean( tf.math.square(y_true - y_pred) ) 

       

      dVxdx_true = (y_true[:,2:,1:-1,1:-1,0] - y_true[:,:-2,1:-1,1:-1,0])/2 

      dVydy_true = (y_true[:,1:-1,2:,1:-1,1] - y_true[:,1:-1,:-2,1:-1,1])/2 

      dVzdz_true = (y_true[:,1:-1,1:-1,2:,2] - y_true[:,1:-1,1:-1,:-2,2])/2 

      div_true = dVxdx_true + dVydy_true + dVzdz_true 

 

      dVxdx_pred = (y_pred[:,2:,1:-1,1:-1,0] - y_pred[:,:-2,1:-1,1:-1,0])/2 

      dVydy_pred = (y_pred[:,1:-1,2:,1:-1,1] - y_pred[:,1:-1,:-2,1:-1,1])/2 

      dVzdz_pred = (y_pred[:,1:-1,1:-1,2:,2] - y_pred[:,1:-1,1:-1,:-2,2])/2 

      div_pred = dVxdx_pred + dVydy_pred + dVzdz_pred 

 

      div_loss = tf.math.reduce_mean( tf.math.abs(div_true - div_pred) ) 

 

      loss = mse + div_loss*scale 

       



189 
 

      return loss 

 

 

    def div_loss2(y_true, y_pred): 

 

      scale = 5 

 

      mse = tf.math.reduce_mean( tf.math.square(y_true - y_pred) ) 

       

      dVxdx_pred = (y_pred[:,2:,1:-1,1:-1,0] - y_pred[:,:-2,1:-1,1:-1,0])/2 

      dVydy_pred = (y_pred[:,1:-1,2:,1:-1,1] - y_pred[:,1:-1,:-2,1:-1,1])/2 

      dVzdz_pred = (y_pred[:,1:-1,1:-1,2:,2] - y_pred[:,1:-1,1:-1,:-2,2])/2 

      div_pred = dVxdx_pred + dVydy_pred + dVzdz_pred 

 

      div_loss = tf.math.reduce_mean( tf.math.abs(div_pred) ) 

 

      loss = mse + div_loss*scale 

       

      return loss 

 

Input Parameter 

 

    # Model A-Z1 / A-X1 

    #domainType_ls4 = ['SCC', 'BCC', 'FCC', 'TCC'] 

    #domainRange_ls4 = [ range(1,11), range(1,11), range(1,11), range(1,11)] 
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    # Model B-Z1 / B-X1 

    domainType_ls4 = ['SCC', 'BCC', 'FCC', 'TCC', 'CaF2', 'CaTiO3', 'CsCl', 'NaCl'] 

    domainRange_ls4 = [ range(1,11), range(1,11), range(1,11), range(1,11), range(1,11), 

range(1,11), range(1,11), range(1,11)] 

 

    # Model C-Z1 

    #domainType_ls4 = ['SCC', 'BCC', 'FCC', 'TCC'] 

    #domainRange_ls4 = [ range(2,11),  [2,3,4,7,8,10], [2,3,5,6,7,8,9,10], [1,2,3,6,7,8,9,10] ] 

 

    #domainType_ls2 = ['SCC', 'BCC', 'FCC', 'TCC'] 

    #domainRange_ls2 = [ [1,2,3,4,5,6,7,9,10], [1,2,3,4,6,7,8,10], range(1,11), [1,2,5,6,7,8,9,10] ] 

 

    # Model D-Z1 

    #domainType_ls4 = ['SCC', 'BCC', 'FCC', 'TCC', 'CaF2', 'CaTiO3', 'CsCl', 'NaCl'] 

    #domainRange_ls4 = [ range(2,11),  [2,3,4,7,8,10], [2,3,5,6,7,8,9,10], [1,2,3,6,7,8,9,10], 

[1,2,3,4,5,6,7,8,10], [1,2,3,4,5,6,7,9,10], [1,3,4,5,6,7,8,10], range(1,10)] 

 

    #domainType_ls2 = ['SCC', 'BCC', 'FCC', 'TCC', 'CaF2', 'CaTiO3', 'CsCl', 'NaCl'] 

    #domainRange_ls2 = [ [1,2,3,4,5,6,7,9,10], [1,2,3,4,6,7,8,10], range(1,11), [1,2,5,6,7,8,9,10], 

range(1,11), [1,2,3,4,5,6,7,8,10], range(1,11), range(1,11)] 

 

    # Model E-X1 

    #domainType_ls2 = ['SCC', 'BCC', 'FCC', 'TCC'] 

    #domainRange_ls2 = [ range(2,11),  [2,3,4,7,8,10], [2,3,5,6,7,8,9,10], [1,2,3,6,7,8,9,10] ] 

 

    #domainType_ls1 = ['SCC', 'BCC', 'FCC', 'TCC'] 



191 
 

    #domainRange_ls1 = [ [1,2,3,4,5,6,7,9,10], [1,2,3,4,6,7,8,10], range(1,11), [1,2,5,6,7,8,9,10] ] 

 

    # Model F-X1 

    #domainType_ls2 = ['SCC', 'BCC', 'FCC', 'TCC', 'CaF2', 'CaTiO3', 'CsCl', 'NaCl'] 

    #domainRange_ls2 = [ range(2,11),  [2,3,4,7,8,10], [2,3,5,6,7,8,9,10], [1,2,3,6,7,8,9,10], 

[1,2,3,4,5,6,7,8,10], [1,2,3,4,5,6,7,9,10], [1,3,4,5,6,7,8,10], range(1,10)] 

 

    #domainType_ls1 = ['SCC', 'BCC', 'FCC', 'TCC', 'CaF2', 'CaTiO3', 'CsCl', 'NaCl'] 

    #domainRange_ls1 = [ [1,2,3,4,5,6,7,9,10], [1,2,3,4,6,7,8,10], range(1,11), [1,2,5,6,7,8,9,10], 

range(1,11), [1,2,3,4,5,6,7,8,10], range(1,11), range(1,11)] 

 

 

    # Velocity direction 

    channel = 2 

    data_size = 128 

 

 

    # Normalization 

    x_min = 0 

 

    if channel < 2: 

      x_max = 1.6e-9 

    else: 

      x_max = 3e-9 

 

    res_rs = 18.75e-6 
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    res_uc = 160e-6 

 

 

    # Augmentation 

    rotation = 90 

    shift = 1/2 

 

    aug_sample_total = 240 

 

    val_perc = 0.1 

    test_perc = 0.1 

 

Unit Cell Data 

 

Import data 

 

    # length scale X4 

    dir_data = 'Data/UnitCell' 

 

    uc_solid_ls4 = np.zeros( (1,data_size, data_size, data_size) ) 

    uc_vel_ls4 = np.zeros( (1,data_size, data_size, data_size) ) 

 

    for i in range(len(domainType_ls4)): 

        for j in domainRange_ls4[i]: 
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          uc_solid_load = 

loadmat( f '{dir_data}/{domainType_ls4[i]}_domain{j}_solid.mat' )['solid'].astype('int') 

          uc_solid_ls4 = np.append( uc_solid_ls4, np.expand_dims(uc_solid_load, axis=0), axis=0 ) 

          del uc_solid_load 

 

          uc_vel_load = 

loadmat( f '{dir_data}/{domainType_ls4[i]}_domain{j}_vfield.mat' )['vfield'].astype('float32') 

          uc_vel_ls4 = np.append( uc_vel_ls4, np.expand_dims(uc_vel_load[:,:,:,channel], axis=0), 

axis=0 ) 

          del uc_vel_load 

 

    uc_solid_ls4 = uc_solid_ls4[1:,:,:,:] 

    uc_vel_ls4 = uc_vel_ls4[1:,:,:,:] 

 

    print(f'Solid data : {uc_solid_ls4.shape}\nVelocity data : {uc_vel_ls4.shape}') 

 

    # Length scale X2 

    dir_data = 'Data/UnitCell' 

 

    uc_solid_ls2 = np.zeros( (1,data_size, data_size, data_size) ) 

    uc_vel_ls2 = np.zeros( (1,data_size, data_size, data_size) ) 

 

    for i in range(len(domainType_ls2)): 

        for j in domainRange_ls2[i]: 
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          uc_solid_load = 

loadmat( f '{dir_data}/{domainType_ls2[i]}_domain{j}_solid.mat' )['solid'].astype('int') 

          uc_solid_ls2 = np.append( uc_solid_ls2, np.expand_dims(uc_solid_load, axis=0), axis=0 ) 

          del uc_solid_load 

 

          uc_vel_load = 

loadmat( f '{dir_data}/{domainType_ls2[i]}_domain{j}_vfield.mat' )['vfield'].astype('float32') 

          uc_vel_ls2 = np.append( uc_vel_ls2, np.expand_dims(uc_vel_load[:,:,:,channel], axis=0), 

axis=0 ) 

          del uc_vel_load 

 

    uc_solid_ls2 = uc_solid_ls2[1:,:,:,:] 

    uc_vel_ls2 = uc_vel_ls2[1:,:,:,:] 

 

    print(f'Solid data : {uc_solid_ls2.shape}\nVelocity data : {uc_vel_ls2.shape}') 

 

    # Length scale X1 

    dir_data = 'Data/UnitCell' 

 

    uc_solid_ls1 = np.zeros( (1,data_size, data_size, data_size) ) 

    uc_vel_ls1 = np.zeros( (1,data_size, data_size, data_size) ) 

 

    for i in range(len(domainType_ls1)): 

        for j in domainRange_ls1[i]: 
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          uc_solid_load = 

loadmat( f '{dir_data}/{domainType_ls1[i]}_domain{j}_solid.mat' )['solid'].astype('int') 

          uc_solid_ls1 = np.append( uc_solid_ls1, np.expand_dims(uc_solid_load, axis=0), axis=0 ) 

          del uc_solid_load 

 

          uc_vel_load = 

loadmat( f '{dir_data}/{domainType_ls1[i]}_domain{j}_vfield.mat' )['vfield'].astype('float32') 

          uc_vel_ls1 = np.append( uc_vel_ls1, np.expand_dims(uc_vel_load[:,:,:,channel], axis=0), 

axis=0 ) 

          del uc_vel_load 

 

    uc_solid_ls1 = uc_solid_ls1[1:,:,:,:] 

    uc_vel_ls1 = uc_vel_ls1[1:,:,:,:] 

 

    print(f'Solid data : {uc_solid_ls1.shape}\nVelocity data : {uc_vel_ls1.shape}') 

 

Normalization 

 

    # Raw Velocity normalization to Random Sphere Length Scale 

    # Length scale X4 

 

    uc_vel_norm_ls4 = minmax_transform( uc_vel_ls4*(res_rs**2)/( (res_uc/1)**2 )*0.1/1000, 

x_min=x_min, x_range=x_max-x_min ) 

    print(f'Mean velocity Length scale X4 : {uc_vel_norm_ls4.mean()}') 

 

    # Raw Velocity normalization to Random Sphere Length Scale 
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    # Length scale X2 

 

    uc_vel_norm_ls2 = minmax_transform( uc_vel_ls2*(res_rs**2)/( (res_uc/2)**2 )*0.1/1000, 

x_min=x_min, x_range=x_max-x_min ) 

    print(f'Mean velocity Length scale X2 : {uc_vel_norm_ls2.mean()}') 

 

    # Raw Velocity normalization to Random Sphere Length Scale 

    # Length scale X1 

 

    uc_vel_norm_ls1 = minmax_transform( uc_vel_ls1*(res_rs**2)/( (res_uc/4)**2 )*0.1/1000, 

x_min=x_min, x_range=x_max-x_min ) 

    print(f'Mean velocity Length scale X1 : {uc_vel_norm_ls1.mean()}') 

 

Length Scale 

 

    # Zoom augmentation to create different length scale 

    # Length scale X4 

 

    for i in range(uc_solid_ls4.shape[0]): 

 

      solid_zoom_temp = zoom( uc_solid_ls4[i,:,:,:], (1/4,1/4,1/4) ) 

      vel_zoom_temp = zoom( uc_vel_norm_ls4[i,:,:,:], (1/4,1/4,1/4) ) 

 

      uc_solid_ls4[i,:,:,:] = np.tile( solid_zoom_temp, (4,4,4) ) 

      uc_vel_norm_ls4[i,:,:,:] = np.tile( vel_zoom_temp, (4,4,4) ) 
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    uc_solid_ls4 = np.around(uc_solid_ls4) 

 

    print(f'Solid data : {uc_solid_ls4.shape}\nVelocity data : {uc_vel_norm_ls4.shape}') 

 

    # Zoom augmentation to create different length scale 

    # Length scale X2 

 

    for i in range(uc_solid_ls2.shape[0]): 

 

      solid_zoom_temp = zoom( uc_solid_ls2[i,:,:,:], (1/2, 1/2, 1/2) ) 

      vel_zoom_temp = zoom( uc_vel_norm_ls2[i,:,:,:], (1/2, 1/2, 1/2) ) 

 

      uc_solid_ls2[i,:,:,:] = np.tile( solid_zoom_temp, (2, 2, 2) ) 

      uc_vel_norm_ls2[i,:,:,:] = np.tile( vel_zoom_temp, (2, 2, 2) ) 

 

    uc_solid_ls2 = np.around(uc_solid_ls2) 

 

    print(f'Solid data : {uc_solid_ls2.shape}\nVelocity data : {uc_vel_norm_ls2.shape}') 

 

Augmentation 

 

    # Combine Length scale data 

 

    uc_solid_data = np.zeros( (1,data_size, data_size, data_size) ) 

    uc_vel_data = np.zeros( (1,data_size, data_size, data_size) ) 
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    try: 

      uc_solid_data = np.append(uc_solid_data, uc_solid_ls4, axis=0) 

      uc_vel_data = np.append(uc_vel_data, uc_vel_norm_ls4, axis=0) 

    except NameError: 

      print('No Length scale X4 data') 

 

    try: 

      uc_solid_data = np.append(uc_solid_data, uc_solid_ls2, axis=0) 

      uc_vel_data = np.append(uc_vel_data, uc_vel_norm_ls2, axis=0) 

    except NameError: 

      print('No Length scale X2 data') 

 

    try: 

      uc_solid_data = np.append(uc_solid_data, uc_solid_ls1, axis=0) 

      uc_vel_data = np.append(uc_vel_data, uc_vel_norm_ls1, axis=0) 

    except NameError: 

      print('No Length scale X1 data') 

 

    uc_solid_data = uc_solid_data[1:,:,:,:] 

    uc_vel_data = uc_vel_data[1:,:,:,:] 

 

    print(f'\nSolid data : {uc_solid_data.shape}\nVelocity data : {uc_vel_data.shape}') 

 

    # AUGMENTATION WITH IMAGE DATA GENERATOR 

 

    aug_Generator = ImageDataGenerator(rotation_range = rotation,  
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                                     width_shift_range = shift, 

                                     height_shift_range = shift, 

                                     fill_mode='wrap') 

 

    solid_iterator = aug_Generator.flow(uc_solid_data, seed=seed, batch_size = 

uc_solid_data.shape[0]) 

    vel_iterator = aug_Generator.flow(uc_vel_data, seed=seed, batch_size = 

uc_vel_data.shape[0]) 

 

    aug_solid = np.zeros( (1, data_size, data_size, data_size) ) 

    aug_vel = np.zeros( (1, data_size, data_size, data_size) ) 

 

    while aug_solid.shape[0] < aug_sample_total: 

      aug_solid = np.append(aug_solid, solid_iterator.next(), axis=0)  

      aug_vel = np.append(aug_vel, vel_iterator.next(), axis=0) 

 

    aug_solid = aug_solid[1:,:,:,:] 

    aug_vel = aug_vel[1:,:,:,:] 

 

    aug_solid = np.expand_dims(aug_solid, axis=-1) 

    aug_vel = np.expand_dims(aug_vel, axis=-1) 

 

    print(f'Solid data : {aug_solid.shape}\nVelocity data : {aug_vel.shape}') 

 

    total_number = aug_solid.shape[0] 
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    train_index, val_test_index = train_test_split(np.arange(total_number), test_size = val_perc 

+ test_perc, random_state=seed) 

    val_index, test_index = train_test_split(val_test_index, test_size = 

test_perc/(val_perc+test_perc), random_state=seed) 

 

    print(f'Number of training samples : {len(train_index)}') 

    print(f'Number of validation samples : {len(val_index)}') 

    print(f'Number of test samples : {len(test_index)}') 

 

    train_data_solid = aug_solid[train_index] 

    val_data_solid = aug_solid[val_index] 

    test_data_solid = aug_solid[test_index] 

 

    train_data_vel = aug_vel[train_index] 

    val_data_vel = aug_vel[val_index] 

    test_data_vel = aug_vel[test_index] 

 

Data Check 

 

    # Raw data - XY Plane 

    sample_number = 1 

 

    slice = np.array( [31, 63, 95] ) 

    fig_title = ['Quarter inlet', 'Midpoint', 'Quarter outlet'] 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 
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    vel_mag = (0,3) 

 

    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(uc_solid_ls1[sample_number,:,:,slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 

 

      im=axs[1,j].imshow(uc_vel_norm_ls1[sample_number,:,:,slice[j]], clim=vel_mag, 

cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

 

    # Raw data - YZ Plane 

    sample_number = 1 

 

    slice = np.array( [0, 63, 95] ) 

    fig_title = ['Quarter inlet', 'Midpoint', 'Quarter outlet'] 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 

 

    vel_mag = (0,3) 

 

    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(np.squeeze(uc_solid_ls1[sample_number,slice[j],:,:]), clim=(0,1), 

cmap=plt.cm.hot) 
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      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 

 

      im=axs[1,j].imshow(np.squeeze(uc_vel_norm_ls1[sample_number,slice[j],:,:]), 

clim=vel_mag, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

 

    # Training data 

    sample_number = 21 

 

    slice = np.array( [0, 59, -1] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=2, ncols=3,figsize=(10,10) ) 

 

    vel_mag = (-1,1) 

 

    for j in np.array( [0, 1, 2] ): 

      im=axs[0,j].imshow(test_data_solid[sample_number,:,:,slice[j],0], clim=(0,1), 

cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[0,j],fraction=0.05) 

      axs[0,j].axis('off') 

      axs[0,j].set_title('%s Solid' % (fig_title[j])) 
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      im=axs[1,j].imshow(test_data_vel[sample_number,:,:,slice[j],0], 

clim=(vel_mag[0],vel_mag[1]), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[1,j],fraction=0.05) 

      axs[1,j].axis('off') 

      axs[1,j].set_title('%s Velocity' % (fig_title[j])) 

 

Darcy Unet Training 

 

Unet Model 

 

    from tensorflow.keras.models import * 

    from tensorflow.keras.layers import Input, Conv3D, Conv3DTranspose, 

BatchNormalization, Activation, Concatenate, Dropout, Multiply 

 

    from numpy import floor, ceil 

 

    def encoder_block(inputs, strides, filter_num, filter_size, activation, momentum, rate): 

 

      path = Conv3D(filter_num, filter_size, padding='same', strides=strides)(inputs) 

      path = BatchNormalization(momentum=momentum)(path) 

      path = Activation(activation=activation)(path) 

      path = Dropout(rate)(path) 

 

      return path 
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    def decoder_block(inputs, strides, filter_num, filter_size, activation, momentum, rate): 

 

      path = Conv3DTranspose(filter_num, filter_size, padding='same', strides=strides)(inputs) 

      path = BatchNormalization(momentum=momentum)(path) 

      path = Activation(activation=activation)(path) 

      path = Dropout(rate)(path) 

 

      return path 

 

    # U-Net 

    def UnetV1(input_shape, filter_num = 5, filter_size = 3, activation = 'selu', momentum = 0.99, 

rate = 0.2, output_dim=3): 

 

      inputs = Input(shape = input_shape) 

 

      skip_connection = [] 

 

      for i in range(8): 

         

        if(i <= 0): 

          path_encoder = encoder_block(inputs, 1, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

        else: 

 

          if(i % 2 == 1): 
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            path_encoder = encoder_block(path_encoder, 1, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

            skip_connection.append(path_encoder) 

          else: 

            path_encoder = encoder_block(path_encoder, 2, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

 

      for i in reversed(range(6)): 

 

        if(i >= 5): 

          path_decoder = decoder_block(path_encoder, 2, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

          path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 

        else: 

 

          if(i % 2 == 0): 

            path_decoder = decoder_block(path_decoder, 1, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

          else: 

            path_decoder = decoder_block(path_decoder, 2, filter_num*(2**floor(i/2)), filter_size, 

activation, momentum, rate) 

            path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 

 

 

      path = Conv3D(filter_num, filter_size, padding='same')(path_decoder) 

      path = Conv3D(output_dim, 1, padding='same')(path) 
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      return Model(inputs=inputs, outputs=path) 

 

 

    # U-Net Comprehensive model 

    def UnetV2(input_shape, x_model, y_model, z_model, v_scale, filter_num = 5, filter_size = 3, 

activation = 'selu', momentum = 0.99, rate = 0.2, output_dim=3): 

       

      inputs = Input(shape = input_shape) 

 

      x_input = tf.math.multiply( x_model(inputs, training=False), v_scale ) 

      y_input = tf.math.multiply( y_model(inputs, training=False), v_scale ) 

      z_input = z_model(inputs, training=False) 

 

      path = Concatenate()( [x_input, y_input, z_input] ) 

 

      skip_connection = [] 

 

      for i in range(8): 

       

        if(i <= 0): 

          path_encoder = encoder_block(path, 1, filter_num, filter_size, activation, momentum, 

rate) 

        else: 

 

          if(i % 2 == 1): 
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            path_encoder = encoder_block(path_encoder, 1, filter_num, filter_size, activation, 

momentum, rate) 

            skip_connection.append(path_encoder) 

          else: 

            path_encoder = encoder_block(path_encoder, 2, filter_num, filter_size, activation, 

momentum, rate) 

 

      for i in reversed(range(6)): 

 

        if(i >= 5): 

          path_decoder = decoder_block(path_encoder, 2, filter_num, filter_size, activation, 

momentum, rate) 

          path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 

        else: 

 

          if(i % 2 == 0): 

            path_decoder = decoder_block(path_decoder, 1, filter_num, filter_size, activation, 

momentum, rate) 

          else: 

            path_decoder = decoder_block(path_decoder, 2, filter_num, filter_size, activation, 

momentum, rate) 

            path_decoder = Concatenate()([ path_decoder, skip_connection[int(floor(i/2))] ]) 

 

 

      path = Conv3D(filter_num, filter_size, padding='same')(path_decoder) 

      path = Conv3D(output_dim, 1, padding='same')(path) 
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      return Model(inputs=inputs, outputs=path) 

 

    # 1 layer convolution 

    def UnetV3(input_shape, x_model, y_model, z_model, v_scale, filter_num = 5, filter_size = 3, 

activation = 'selu', momentum = 0.99, rate = 0.2, output_dim=3): 

 

      inputs = Input(shape = input_shape) 

 

      x_input = tf.math.multiply( x_model(inputs, training=False), v_scale ) 

      y_input = tf.math.multiply( y_model(inputs, training=False), v_scale ) 

      z_input = z_model(inputs, training=False) 

 

      path = Concatenate()( [x_input, y_input, z_input] ) 

 

      for i in range(3): 

        path = encoder_block(path, 1, filter_num, filter_size, activation, momentum, rate) 

 

      path = Conv3D(output_dim, 1, padding='same')(path) 

 

      return Model(inputs=inputs, outputs=path) 

 

    # Multi-scale Model 

    def UnetV4(input_shape, x_model, y_model, z_model, v_scale, filter_num = 5, filter_size = 

(3,5,7), num_layers=3, activation = 'selu', momentum = 0.99, rate = 0.2, output_dim=3): 

 



209 
 

      inputs = Input(shape = input_shape) 

 

      x_input = tf.math.multiply( x_model(inputs, training=False), v_scale ) 

      y_input = tf.math.multiply( y_model(inputs, training=False), v_scale ) 

      z_input = z_model(inputs, training=False) 

 

      path = Concatenate()( [x_input, y_input, z_input] ) 

 

      path_small = path 

      path_medium = path 

      path_large = path 

 

      for i in range(num_layers): 

        path_small = encoder_block(path_small, 1, filter_num, filter_size[0], activation, 

momentum, rate) 

        path_medium = encoder_block(path_medium, 1, filter_num, filter_size[1], activation, 

momentum, rate) 

        path_large = encoder_block(path_large, 1, filter_num, filter_size[2], activation, 

momentum, rate) 

 

      path = Concatenate()( [path_small, path_medium, path_large] ) 

      path = Conv3D(output_dim, 1, padding='same')(path) 

 

      return Model(inputs=inputs, outputs=path) 

 

Model Training 
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    version = 'C-Z2' 

 

    model_name = f 'UnetUC_{version}' 

    dir_save   = f 'UnitCell SubModel/{model_name}' 

 

    try: 

      os.mkdir(dir_save) 

    except OSError: 

      print('Path already exists') 

 

    filter_size = 4 

    num_filters = 10 

 

    learning_rate = 0.00007 

    batch_size = 4 

 

    momentum = 0.99 

    rate = 0.05 

 

    epochs = 1000 

    patience_training = 50 

 

    activation = 'relu' 

 

    metrics=['MAE', 'MSE'] 
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    optimizer = tf.keras.optimizers.Adam(learning_rate = learning_rate) 

 

    model = UnetV1( input_shape = (data_size, data_size, data_size, 1), filter_num = num_filters, 

filter_size = filter_size, activation = activation,  

                   momentum = momentum, rate = rate, output_dim=1) 

 

    model.compile( loss = tf.keras.losses.mean_squared_error, optimizer=optimizer, 

metrics=metrics[:] ) 

 

    nan_terminate = tf.keras.callbacks.TerminateOnNaN() 

    early_stop    = tf.keras.callbacks.EarlyStopping(monitor ='val_loss', min_delta = 0, 

                                                  patience = patience_training,  

                                                  verbose = True, mode = 'auto', baseline = None) 

 

    csv_logger = 

tf.keras.callbacks.CSVLogger("{}/training_log_{}.csv".format(dir_save,model_name)) 

 

    checkpoint = ModelCheckpoint('{}/{}.ckpt'.format(dir_save,model_name),  

                                 monitor = 'val_loss',  

                                 verbose = 1,  

                                 save_best_only = True,  

                                 mode = 'min', save_weights_only = False) 

 

    callbacks_list = [nan_terminate, early_stop, checkpoint, csv_logger] 

 

    print('Model ready')       
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    model.summary(line_length = 250) 

 

    from keras.utils.vis_utils import plot_model 

 

    imgtype = ('LR','TB') 

    for i in imgtype: 

      plot_model(model, to_file='UnitCell SubModel/Model 

Image/{}_{}.jpg'.format(model_name, i), rankdir = i, show_layer_names = False) 

 

    from timeit import default_timer as timer 

    from datetime import timedelta 

 

    start = timer() 

 

    model.fit( x = train_data_solid, y = train_data_vel,  

               epochs = epochs, batch_size = batch_size, 

               validation_data = (val_data_solid, val_data_vel), 

               validation_freq = 1, 

               verbose = 1, 

               callbacks = callbacks_list) 

 

    end = timer() 

    print('Elapsed time for training : {}'.format(timedelta(seconds=end-start))) 

 

    best_model = tf.keras.models.load_model( '{}/{}.ckpt'.format(dir_save, model_name) ) 
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    best_model.save(dir_save) 

 

    print('Training complete : {}'.format(version)) 

 

    best_model = tf.keras.models.load_model( '{}/{}.ckpt'.format(dir_save, model_name) ) 

    best_model.save(dir_save) 

 

Model Evaluation 

 

    version = 'A-Z1' 

 

    eval_model_name = f 'UnetUC_{version}' 

    eval_model = tf.keras.models.load_model( f 'UnitCell SubModel/{eval_model_name}/' ) 

    #eval_model = tf.keras.models.load_model( f 'UnitCell SubModel/{eval_model_name}/', 

custom_objects = {'div_loss2': div_loss2} ) 

 

    metric_evaluate = eval_model.evaluate(test_data_solid, test_data_vel) 

 

    vz_test_pred = np.float32( eval_model.predict( x=[test_data_solid] ) ) 

 

    print(vz_test_pred.shape) 

 

    # Overall Permeability 

    channel = 2 

 

    perm_true = test_data_vel[:,:,:,:,channel].mean(axis=(1,2,3)) 
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    perm_pred = vz_test_pred[:,:,:,:,channel].mean(axis=(1,2,3)) 

 

    perm_error = abs( perm_true - perm_pred )/abs(perm_true)*100 

 

    print( 'Overall permeability error : {:.3f}\n'.format(perm_error.mean()) ) 

 

    fig = plt.figure() 

    ax = fig.add_axes([0,0,1,1]) 

    ax.bar(np.arange(perm_error.shape[0]), perm_error) 

    plt.title('Permeability Error') 

    plt.show() 

 

    # Velocity PDF 

 

    channel = 2 

 

    min = 0.001 

    max = 120 

    numbin = 400 

 

    vel_true_flat = np.abs( (test_data_vel[:,:,:,:,channel]).flatten() ) 

    vel_pred_flat = np.abs( (vz_test_pred[:,:,:,:,channel]).flatten() ) 

 

    vel_true_flat_nz = vel_true_flat[ (vel_true_flat > min) & (vel_pred_flat > min) ] 

    vel_pred_flat_nz = vel_pred_flat[ (vel_true_flat > min) & (vel_pred_flat > min) ] 

    vel_true_flat_nz_mean = vel_true_flat_nz.mean() 
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    #log_bins = np.logspace(np.log10(min), np.log10(max), numbin) 

    log_bins = np.linspace(min, max, numbin) 

 

    true_hist = plt.hist( vel_true_flat_nz, bins=log_bins, density=True, histtype='step', 

label='true' ) 

    pred_hist = plt.hist( vel_pred_flat_nz, bins=log_bins, density=True, histtype='step', 

label='pred' ) 

    plt.axvline(vel_true_flat_nz.mean(), color='k', linestyle='dashed', linewidth=1) 

    plt.legend() 

 

    #plt.xscale('log') 

    plt.yscale('log') 

 

    plt.show() 

 

    th_value = 0.1 

    threshold = vel_true_flat_nz_mean*th_value 

    vel_true_flat_nz_th = vel_true_flat_nz[ vel_true_flat_nz > threshold] 

    vel_pred_flat_nz_th = vel_pred_flat_nz[ vel_true_flat_nz > threshold] 

 

    mape_th = np.divide( np.abs(vel_true_flat_nz_th - vel_pred_flat_nz_th), 

vel_true_flat_nz_th).mean()*100 

 

    print(mape_th) 
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    th_value = 1 

    threshold = vel_true_flat_nz_mean*th_value 

    vel_true_flat_nz_th = vel_true_flat_nz[ vel_true_flat_nz > threshold] 

    vel_pred_flat_nz_th = vel_pred_flat_nz[ vel_true_flat_nz > threshold] 

 

    mape_th = np.divide( np.abs(vel_true_flat_nz_th - vel_pred_flat_nz_th), 

vel_true_flat_nz_th).mean()*100 

 

    print(mape_th) 

 

    channel = 2 

 

    min = 0.001 

    max = 20 

 

    vel_true_indflat = np.abs( test_data_vel[:,:,:,:,channel].reshape(len(test_index), 128**3) ) 

    vel_pred_indflat = np.abs( vz_test_pred[:,:,:,:,channel].reshape(len(test_index), 128**3) ) 

 

    vel_true_indflat_nz = np.ma.masked_less(vel_true_indflat, min) 

    vel_pred_indflat_nz = np.ma.masked_less(vel_pred_indflat, min) 

    vel_true_indflat_nz_mean = vel_true_indflat_nz.mean() 

    vel_true_indflat_nz_indmean = vel_true_indflat_nz.mean(axis=1) 

    print(vel_true_indflat_nz_indmean) 

 

    fig = plt.figure() 

    ax = fig.add_axes([0,0,1,1]) 
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    ax.bar(np.arange(vel_true_indflat_nz_indmean.shape[0]), vel_true_indflat_nz_indmean) 

    plt.title('Permeability Error') 

    plt.show() 

 

    th_value = 0.01 

    threshold = vel_true_indflat_nz_mean*th_value 

    print(threshold) 

 

    vel_true_indflat_nz_th = np.ma.masked_less(vel_true_indflat_nz, threshold) 

    vel_pred_indflat_nz_th = np.ma.masked_less(vel_pred_indflat_nz, threshold) 

    mape_th = np.divide( np.abs(vel_true_indflat_nz_th - vel_pred_indflat_nz_th), 

vel_true_indflat_nz_th).mean(axis=1)*100 

 

    print(mape_th) 

 

    test_sample = 0 

    channel = 2 

 

    print( 'Maximum Sample Number : {}'.format(test_data_solid.shape[0] - 1) ) 

 

    mySolid = test_data_solid[test_sample,:,:,:,0] 

    mySolid_mask = np.ma.masked_less(mySolid, 0.5) 

 

    myVel_true = test_data_vel[test_sample,:,:,:,channel] 

    myVel_true = np.ma.array( myVel_true, mask=np.ma.getmask(mySolid_mask) ) 
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    myVel_pred = vz_test_pred[test_sample,:,:,:,channel] 

    myVel_pred = np.ma.array( myVel_pred, mask=np.ma.getmask(mySolid_mask) ) 

 

 

    test_slice = np.array( [0, data_size//2, 72] ) 

    fig_title = ['Inlet', 'Midpoint', 'Outlet'] 

 

    fig, axs = plt.subplots( nrows=3, ncols=3,figsize=(20,20) ) 

 

    vel_range = (0,30) 

 

    for j in range(3): 

 

      im=axs[j,0].imshow(mySolid[:,:,test_slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,0],fraction=0.05) 

      axs[j,0].axis('off') 

      #axs[j,0].set_title('{} Solid'.format(fig_title[j])) 

 

      im=axs[j,1].imshow(myVel_true[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,1],fraction=0.05) 

      axs[j,1].axis('off') 

      #axs[j,1].set_title('{} Simulation'.format(fig_title[j])) 

 

      im=axs[j,2].imshow(myVel_pred[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,2],fraction=0.05) 

      axs[j,2].axis('off') 



219 
 

      #axs[j,2].set_title('{} Prediction'.format(fig_title[j])) 

 

PolySphere Data 

 

    dir_data = 'Data/UnitCell/PolySphere validation' 

 

    domainRange = [1,2,3,4,5,6,7,8,9] 

 

    rs_solid = np.zeros( (1, data_size, data_size, data_size) ) 

    rs_vel = np.zeros( (1, data_size, data_size, data_size) ) 

 

    for i in domainRange: 

       

        rs_solid_load = loadmat( '{}/PolySphere_domain{}_solid.mat'.format(dir_data, 

i) )['solid'].astype('int') 

        rs_solid = np.append( rs_solid, np.expand_dims(rs_solid_load, axis=0), axis=0 ) 

        del rs_solid_load 

 

        rs_vel_load = loadmat( '{}/PolySphere_domain{}_vfield.mat'.format(dir_data, 

i) )['vfield'].astype('float32') 

        rs_vel = np.append( rs_vel, np.expand_dims(rs_vel_load[:,:,:,channel], axis=0), axis=0 ) 

        del rs_vel_load 

 

    rs_solid = rs_solid[1:,:,:,:] 

    rs_vel = rs_vel[1:,:,:,:] 
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    rs_solid = np.expand_dims(rs_solid,axis=-1) 

    rs_vel = np.expand_dims(rs_vel,axis=-1) 

 

    print(f'Solid data : {rs_solid.shape}\nVelocity data : {rs_vel.shape}') 

 

    # Raw Velocity Normalization 

 

    rs_vel_norm = rs_vel*0.333/9270 

 

    rs_vel_norm = minmax_transform(rs_vel_norm, x_min=x_min, x_range=x_max-x_min) 

 

    print(f'Mean velocity Random Sohere : {rs_vel_norm.mean()}') 

 

    # Predict velocity  

    version = 'D-Z1' 

 

    eval_model_name = f 'UnetUC_{version}' 

    eval_model = tf.keras.models.load_model( f 'UnitCell SubModel/{eval_model_name}' ) 

 

    metric_evaluate = eval_model.evaluate(rs_solid, rs_vel_norm) 

 

    vz_test_pred = np.float32( eval_model.predict( x=[rs_solid] ) ) 

 

    print(vz_test_pred.shape) 

 

    # Predict Y velocity using X model 
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    version = 'F-X1' 

 

    rs_solid_xtoy = np.rot90(rs_solid, axes=(1,2)) 

 

    eval_model_name = f 'UnetUC_{version}' 

    eval_model = tf.keras.models.load_model( f 'UnitCell SubModel/{eval_model_name}' ) 

 

    vz_test_pred_xtoy = np.float32( eval_model.predict( x=[rs_solid_xtoy] ) ) 

 

    vz_test_pred = np.rot90(vz_test_pred_xtoy*-1, 3, axes=(1,2)) 

 

    print(vz_test_pred.shape) 

 

    # Overall Permeability 

 

    perm_true = rs_vel_norm.mean(axis=(1,2,3,4)) 

    perm_pred = vz_test_pred.mean(axis=(1,2,3,4)) 

 

    perm_error = abs( perm_true - perm_pred )/abs(perm_true)*100 

 

    print( 'Overall permeability error : {:.3f}\n'.format(perm_error.mean()) ) 

 

    fig = plt.figure() 

    ax = fig.add_axes([0,0,1,1]) 

    ax.bar(np.arange(perm_error.shape[0]), perm_error) 
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    plt.title('Permeability Error') 

    plt.show() 

 

    print(perm_true) 

    print(perm_pred) 

 

    # 3 Channel velocity for STAFE 

 

    dir_data = 'Data/UnitCell/PolySphere validation' 

 

    domainRange = [1,2,3,4,5,6,7,8,9] 

 

    rs_vel_stafe = np.zeros( (1,data_size,data_size,data_size, 3) ) 

 

    for i in domainRange: 

      rs_vel_load = loadmat( '{}/PolySphere_domain{}_vfield.mat'.format(dir_data, 

i) )['vfield'].astype('float32') 

      rs_vel_stafe = np.append( rs_vel_stafe, np.expand_dims(rs_vel_load[:,:,:,:], axis=0), axis=0) 

      del rs_vel_load 

 

    rs_vel_stafe = rs_vel_stafe[1:,:,:,:] 

 

    print(f'Velocity data : {rs_vel_stafe.shape}') 

 

    rs_vel_norm_stafe_x = minmax_transform( rs_vel_stafe[:,:,:,:,0], x_min=0, x_range=1.6e-

9 )*0.333/9270 
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    rs_vel_norm_stafe_y = minmax_transform( rs_vel_stafe[:,:,:,:,1], x_min=0, x_range=1.6e-

9 )*0.333/9270 

    rs_vel_norm_stafe_z = minmax_transform( rs_vel_stafe[:,:,:,:,2], x_min=0, x_range=3e-

9 )*0.333/9270 

 

    version_span = 'F-X1' 

    version_stream = 'D-Z1' 

 

    eval_model_stream = tf.keras.models.load_model( f 'UnitCell 

SubModel/UnetUC_{version_stream}') 

    eval_model_span= tf.keras.models.load_model( f 'UnitCell 

SubModel/UnetUC_{version_span}') 

 

    vx_pred = np.float32( eval_model_span.predict( x=[rs_solid] ) ) 

    vy_pred = np.rot90( -1*np.float32( eval_model_span.predict( x=np.rot90(rs_solid, 

axes=(1,2)) ) ), 3, axes=(1,2) ) 

    vz_pred = np.float32( eval_model_stream.predict( x=[rs_solid] ) ) 

 

    # STAFE 

 

    for i in range(rs_vel_stafe.shape[0]): 

      q_x_true = rs_vel_norm_stafe_x[i,:,:,:].mean(axis=(1,2))  

      q_x_pred = vx_pred[i,:,:,:,0].mean(axis=(1,2)) 

 

      q_y_true = rs_vel_norm_stafe_y[i,:,:,:].mean(axis=(0,2))  

      q_y_pred = vy_pred[i,:,:,:,0].mean(axis=(0,2)) 
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      q_z_true = rs_vel_norm_stafe_z[i,:,:,:].mean(axis=(0,1))  

      q_z_pred = vz_pred[i,:,:,:,0].mean(axis=(0,1)) 

 

      stafe_denom = np.sum( np.abs(q_z_true) ) 

       

      stafe_x = np.sum( np.abs( q_x_true - q_x_pred ) )/stafe_denom 

      stafe_y = np.sum( np.abs( q_y_true - q_y_pred ) )/stafe_denom 

      stafe_z = np.sum( np.abs( q_z_true - q_z_pred ) )/stafe_denom 

 

      stafe = stafe_x + stafe_y + stafe_z 

 

      print(stafe) 

 

    # Velocity PDF 

    vel_true_flat = np.abs( rs_vel_norm.flatten() ) 

    vel_pred_flat = np.abs( vz_test_pred.flatten() ) 

 

    min = 0.001 

    max = 8 

    numbin = 500 

 

    vel_true_flat_nz = vel_true_flat[ (vel_true_flat > min) & (vel_pred_flat > min) ] 

    vel_pred_flat_nz = vel_pred_flat[ (vel_true_flat > min) & (vel_pred_flat > min) ] 
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    lin_bins = np.linspace(min, max, numbin) 

    true_hist = plt.hist( vel_true_flat_nz, bins=lin_bins, density=True, histtype='step', 

label='true' ) 

    pred_hist = plt.hist( vel_pred_flat_nz, bins=lin_bins, density=True, histtype='step', 

label='pred' ) 

 

    plt.legend() 

    plt.xlabel('Velocity') 

    plt.ylabel('Probability') 

    plt.show() 

 

    # Save pdf 

 

    scipy.io.savemat( f 'Prediction Results/UnitCell 

Model/{version}_vel{channel}_RS_true.mat', {'data': vel_true_flat_nz} ) 

    scipy.io.savemat( f 'Prediction Results/UnitCell 

Model/{version}_vel{channel}_RS_pred.mat', {'data': vel_pred_flat_nz} ) 

 

    vel_true_mape = np.abs( sic_vel_norm.flatten() ) 

    vel_pred_mape = np.abs( vz_test_pred.flatten() ) 

 

    vel_true_mape_nz = vel_true_mape[ (vel_true_mape > min) & (vel_pred_mape > min) ] 

    vel_pred_mape_nz = vel_pred_mape[ (vel_true_mape > min) & (vel_pred_mape > min) ] 

 

    vel_true_mape_nz_mean = vel_true_mape_nz.mean() 
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    th1 = vel_true_mape_nz_mean*0.1 

    vel_true_mape_nz_th1 = vel_true_mape_nz[ vel_true_mape_nz > th1 ] 

    vel_pred_mape_nz_th1 = vel_pred_mape_nz[ vel_true_mape_nz > th1 ] 

 

    mape_th1 = np.divide( np.abs(vel_true_mape_nz_th1 - vel_pred_mape_nz_th1), 

vel_true_mape_nz_th1).mean()*100 

 

    th2 = vel_true_mape_nz_mean 

    vel_true_mape_nz_th2 = vel_true_mape_nz[ vel_true_mape_nz > th2 ] 

    vel_pred_mape_nz_th2 = vel_pred_mape_nz[ vel_true_mape_nz > th2 ] 

 

    mape_th2 = np.divide( np.abs(vel_true_mape_nz_th2 - vel_pred_mape_nz_th2), 

vel_true_mape_nz_th2).mean()*100 

 

    print( f 'Threshold 10 % : {mape_th1}\nThreshold 100 % : {mape_th2}' ) 

 

    test_sample = 6 

    channel = 0 

 

    print( 'Maximum Sample Number : {}'.format(rs_solid.shape[0] - 1) ) 

 

    mySolid = rs_solid[test_sample,:,:,:,0] 

    mySolid_mask = np.ma.masked_less(mySolid,1) 

 

    myVel_true = rs_vel_minmax[test_sample,:,:,:,channel] 

    myVel_true = np.ma.array( myVel_true, mask=np.ma.getmask(mySolid_mask) ) 
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    myVel_pred = vz_test_pred[test_sample,:,:,:,channel] 

    myVel_pred = np.ma.array( myVel_pred, mask=np.ma.getmask(mySolid_mask) ) 

 

 

    test_slice = np.array( [data_size//4, data_size//2, 3*data_size//4] ) 

    fig_title = ['Quarterpoint', 'Halfpoint', 'Three Quarterpoint'] 

 

    fig, axs = plt.subplots( nrows=3, ncols=3,figsize=(20,20) ) 

 

    vel_range = (0,8) 

 

    for j in range(3): 

 

      im=axs[j,0].imshow(mySolid[:,:,test_slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,0],fraction=0.05) 

      axs[j,0].axis('off') 

      #axs[j,0].set_title('{} Solid'.format(fig_title[j])) 

 

      im=axs[j,1].imshow(myVel_true[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,1],fraction=0.05) 

      axs[j,1].axis('off') 

      #axs[j,1].set_title('{} Simulation'.format(fig_title[j])) 

 

      im=axs[j,2].imshow(myVel_pred[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,2],fraction=0.05) 
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      axs[j,2].axis('off') 

      #axs[j,2].set_title('{} Prediction'.format(fig_title[j])) 

 

SiC Foam Data 

 

    dir_data = 'Data/UnitCell/SiCFoam validation' 

 

    densityRange = [45, 65, 80] 

    domainRange = [1, 2] 

 

    sic_solid = np.zeros( (1,data_size,data_size,data_size) ) 

    sic_vel = np.zeros( (1,data_size,data_size,data_size) ) 

 

    for i in densityRange: 

      for j in domainRange: 

 

        sic_solid_load = loadmat( f"{dir_data}/{i}PPI_domain{j}_solid.mat" )['solid'].astype('int') 

        sic_solid = np.append( sic_solid, np.expand_dims(sic_solid_load, axis=0), axis=0 ) 

        del sic_solid_load 

         

        sic_vel_load = 

loadmat( f"{dir_data}/{i}PPI_domain{j}_vfield.mat" )['vfield'].astype('float32') 

        sic_vel = np.append( sic_vel, np.expand_dims(sic_vel_load[:,:,:,channel], axis=0), axis=0) 

        del sic_vel_load 

 

    sic_solid = sic_solid[1:,:,:,:] 
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    sic_vel = sic_vel[1:,:,:,:] 

 

    print(f'Solid data : {sic_solid.shape}\nVelocity data : {sic_vel.shape}') 

 

    Solid data : (6, 128, 128, 128) 

    Velocity data : (6, 128, 128, 128) 

 

    # Raw Velocity Normalization 

    res_sic = 26.708e-6 

    res_rs = 20e-6 

 

    sic_vel_norm_high = sic_vel[:4,:,:,:]*(res_rs**2)/(res_sic**2)*0.333/9270 

    sic_vel_norm_low = sic_vel[4:,:,:,:]*(res_rs**2)/((res_sic/2)**2)*0.333/9270 

 

    sic_vel_norm = minmax_transform( np.append(sic_vel_norm_high, sic_vel_norm_low, 

axis=0), x_min=x_min, x_range=x_max-x_min ) 

 

    sic_solid = np.expand_dims(sic_solid,axis=-1) 

    sic_vel_norm = np.expand_dims(sic_vel_norm,axis=-1) 

                                     

    print(f'Mean velocity SiC Foam : {sic_vel_norm.mean()}') 

 

    Mean velocity SiC Foam : 1.1074862054299068 

 

    # Predict velocity  

    version = 'D-Z1' 
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    eval_model_name = f 'UnetUC_{version}' 

    eval_model = tf.keras.models.load_model( f 'UnitCell SubModel/{eval_model_name}' ) 

 

    metric_evaluate = eval_model.evaluate(sic_solid, sic_vel_norm) 

 

    vz_test_pred = np.float32( eval_model.predict( x=[sic_solid] ) ) 

 

    print(vz_test_pred.shape) 

 

    1/1 [==============================] - 17s 17s/step - loss: 0.3111 - MAE: 0.3536 - 

MSE: 0.3111 

    1/1 [==============================] - 1s 1s/step 

    (6, 128, 128, 128, 1) 

 

    # Predict Y velocity using X model 

 

    version = 'F-X1' 

 

    sic_solid_xtoy = np.rot90(sic_solid, axes=(1,2)) 

 

    eval_model_name = f 'UnetUC_{version}' 

    eval_model = tf.keras.models.load_model( f 'UnitCell SubModel/{eval_model_name}' ) 

 

    vz_test_pred_xtoy = np.float32( eval_model.predict( x=[sic_solid_xtoy] ) ) 
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    vz_test_pred = np.rot90(vz_test_pred_xtoy*-1, 3, axes=(1,2)) 

 

    print(vz_test_pred.shape) 

 

    # MASK PREDICTIONS 

 

    sic_solid_mask = np.ma.masked_less(sic_solid, 1) 

 

    sic_vel_mask = np.ma.array( sic_vel_norm, mask=np.ma.getmask(sic_solid_mask) ) 

    vz_test_pred_mask = np.ma.array( vz_test_pred, mask=np.ma.getmask(sic_solid_mask) ) 

 

    print(f'Solid size : {sic_solid_mask.shape}') 

 

    # Overall Permeability 

    #perm_true = sic_vel_mask.mean(axis=(1,2,3,4)) 

    #perm_pred = vz_test_pred_mask.mean(axis=(1,2,3,4)) 

 

    perm_true = sic_vel_norm.mean(axis=(1,2,3,4)) 

    perm_pred = vz_test_pred.mean(axis=(1,2,3,4)) 

 

    perm_error = abs( perm_true - perm_pred )/abs(perm_true)*100 

 

    print( f 'Overall permeability error : {perm_error.mean():.3f}' ) 

 

    sic_perm = [8.15, 11.48, 6.6, 7.76, 9.14, 10.43] 

    plt.scatter(perm_true, perm_error) 
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    plt.xlabel('Normalized Permeability') 

    plt.ylabel('Permebaility Error (%)') 

    plt.show() 

 

    print(perm_true) 

    print(perm_pred) 

 

    # 3 Channel velocity for STAFE 

 

    dir_data = 'Data/UnitCell/SiCFoam validation' 

 

    densityRange = [45, 65, 80] 

    domainRange = [1, 2] 

 

    sic_vel_stafe = np.zeros( (1,data_size,data_size,data_size, 3) ) 

 

    for i in densityRange: 

      for j in domainRange: 

 

          sic_vel_load = 

loadmat( f"{dir_data}/{i}PPI_domain{j}_vfield.mat" )['vfield'].astype('float32') 

          sic_vel_stafe = np.append( sic_vel_stafe, np.expand_dims(sic_vel_load[:,:,:,:], axis=0), 

axis=0) 

          del sic_vel_load 

 

    sic_vel_stafe = sic_vel_stafe[1:,:,:,:] 
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    print(f'Velocity data : {sic_vel_stafe.shape}') 

 

    res_sic = 26.708e-6 

    res_rs = 20e-6 

 

    sic_vel_stafe_high = sic_vel_stafe[:4,:,:,:]*(res_rs**2)/(res_sic**2)*0.333/9270 

    sic_vel_stafe_low = sic_vel_stafe[4:,:,:,:]*(res_rs**2)/((res_sic/2)**2)*0.333/9270 

 

    sic_vel_stafe = np.append(sic_vel_stafe_high, sic_vel_stafe_low, axis=0) 

 

    sic_vel_stafe_x = sic_vel_stafe[:,:,:,:,0] 

    sic_vel_stafe_y = sic_vel_stafe[:,:,:,:,1] 

    sic_vel_stafe_z = sic_vel_stafe[:,:,:,:,2] 

 

    sic_vel_norm_stafe_x = minmax_transform( sic_vel_stafe_x, x_min=0, x_range=1.6e-9 ) 

    sic_vel_norm_stafe_y = minmax_transform( sic_vel_stafe_y, x_min=0, x_range=1.6e-9 ) 

    sic_vel_norm_stafe_z = minmax_transform( sic_vel_stafe_z, x_min=0, x_range=3e-9 ) 

 

    version_span = 'B-X1' 

    version_stream = 'B-Z1' 

 

    eval_model_stream = tf.keras.models.load_model( f 'UnitCell 

SubModel/UnetUC_{version_stream}') 

    eval_model_span= tf.keras.models.load_model( f 'UnitCell 

SubModel/UnetUC_{version_span}') 
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    vx_pred = np.float32( eval_model_span.predict( x=[sic_solid] ) ) 

    vy_pred = np.rot90( -1*np.float32( eval_model_span.predict( x=np.rot90(sic_solid, 

axes=(1,2)) ) ), 3, axes=(1,2) ) 

    vz_pred = np.float32( eval_model_stream.predict( x=[sic_solid] ) ) 

 

    # STAFE 

 

    for i in range(sic_vel_stafe.shape[0]): 

      q_x_true = sic_vel_norm_stafe_x[i,:,:,:].mean(axis=(1,2))  

      q_x_pred = vx_pred[i,:,:,:,0].mean(axis=(1,2)) 

 

      q_y_true = sic_vel_norm_stafe_y[i,:,:,:].mean(axis=(0,2))  

      q_y_pred = vy_pred[i,:,:,:,0].mean(axis=(0,2)) 

 

      q_z_true = sic_vel_norm_stafe_z[i,:,:,:].mean(axis=(0,1))  

      q_z_pred = vz_pred[i,:,:,:,0].mean(axis=(0,1)) 

 

      stafe_denom = np.sum( np.abs(q_z_true) ) 

       

      stafe_x = np.sum( np.abs( q_x_true - q_x_pred ) )/stafe_denom 

      stafe_y = np.sum( np.abs( q_y_true - q_y_pred ) )/stafe_denom 

      stafe_z = np.sum( np.abs( q_z_true - q_z_pred ) )/stafe_denom 

 

      stafe = stafe_x + stafe_y + stafe_z 
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      print(stafe) 

 

    # Velocity PDF 

    vel_true_flat = np.abs( sic_vel_norm.flatten() ) 

    vel_pred_flat = np.abs( vz_test_pred.flatten() ) 

 

    min = 0.001 

    max = 8 

    numbin = 500 

 

    vel_true_flat_nz = vel_true_flat[ (vel_true_flat > min) & (vel_pred_flat > min) ] 

    vel_pred_flat_nz = vel_pred_flat[ (vel_true_flat > min) & (vel_pred_flat > min) ] 

 

 

    lin_bins = np.linspace(min, max, numbin) 

    true_hist = plt.hist( vel_true_flat_nz, bins=lin_bins, density=True, histtype='step', 

label='true' ) 

    pred_hist = plt.hist( vel_pred_flat_nz, bins=lin_bins, density=True, histtype='step', 

label='pred' ) 

 

    plt.legend() 

    plt.xlabel('Velocity') 

    plt.ylabel('Probability') 

    plt.show() 

 

    ks_stats_total = ks_2samp(true_hist[0], pred_hist[0]) 
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    print( f 'KS Statistic : {ks_stats_total[0]}\nP value : {ks_stats_total[1]}') 

 

    # Save pdf 

 

    scipy.io.savemat( f 'Prediction Results/UnitCell Model/{version}_vel{channel}_true.mat', 

{'data': vel_true_flat_nz} ) 

    scipy.io.savemat( f 'Prediction Results/UnitCell Model/{version}_vel{channel}_pred.mat', 

{'data': vel_pred_flat_nz} ) 

 

    vel_true_mape = np.abs( sic_vel_norm.flatten() ) 

    vel_pred_mape = np.abs( vz_test_pred.flatten() ) 

 

    vel_true_mape_nz = vel_true_mape[ (vel_true_mape > min) & (vel_pred_mape > min) ] 

    vel_pred_mape_nz = vel_pred_mape[ (vel_true_mape > min) & (vel_pred_mape > min) ] 

 

    vel_true_mape_nz_mean = vel_true_mape_nz.mean() 

 

    th1 = vel_true_mape_nz_mean*0.1 

    vel_true_mape_nz_th1 = vel_true_mape_nz[ vel_true_mape_nz > th1 ] 

    vel_pred_mape_nz_th1 = vel_pred_mape_nz[ vel_true_mape_nz > th1 ] 

 

    mape_th1 = np.divide( np.abs(vel_true_mape_nz_th1 - vel_pred_mape_nz_th1), 

vel_true_mape_nz_th1).mean()*100 

 

    th2 = vel_true_mape_nz_mean 
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    vel_true_mape_nz_th2 = vel_true_mape_nz[ vel_true_mape_nz > th2 ] 

    vel_pred_mape_nz_th2 = vel_pred_mape_nz[ vel_true_mape_nz > th2 ] 

 

    mape_th2 = np.divide( np.abs(vel_true_mape_nz_th2 - vel_pred_mape_nz_th2), 

vel_true_mape_nz_th2).mean()*100 

 

    print( f 'Threshold 10 % : {mape_th1}\nThreshold 100 % : {mape_th2}' ) 

 

    # Quantitative Visualization of velocity profile (REVISION) 

    test_sample = 4 

 

    mySolid = sic_solid[test_sample,:,:,:,0] 

    mySolid_mask = np.ma.masked_less(mySolid,1) 

 

    myVel_true = sic_vel_norm[test_sample,:,:,:,0] 

    myVel_true = np.ma.array( myVel_true, mask=np.ma.getmask(mySolid_mask) ) 

 

    myVel_pred = vz_test_pred[test_sample,:,:,:,0] 

    myVel_pred = np.ma.array( myVel_pred, mask=np.ma.getmask(mySolid_mask) ) 

 

    threshold = myVel_true.mean() 

 

    #myVel_error = np.abs(np.divide((myVel_true - myVel_pred),myVel_true))*100 

    myVel_error = np.abs(myVel_true - myVel_pred) 

 

    test_slice = np.array( [data_size//4, data_size//2, 3*data_size//4] ) 
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    vel_range = (0,6) 

 

    fig, axs = plt.subplots( nrows=3, ncols=3,figsize=(20,20) ) 

    for j in range(3): 

 

      im=axs[j,0].imshow(myVel_true[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,0],fraction=0.05) 

      axs[j,0].axis('off') 

 

      im=axs[j,1].imshow(myVel_pred[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,1],fraction=0.05) 

      axs[j,1].axis('off') 

 

      im=axs[j,2].imshow(myVel_error[:,:,test_slice[j]], clim=(0,3), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,2],fraction=0.05) 

      axs[j,2].axis('off') 

 

[] 

 

    test_sample = 4 

 

    mySolid = sic_solid[test_sample,:,:,:,0] 

    mySolid_mask = np.ma.masked_less(mySolid,1) 

 

    myVel_true = sic_vel_norm[test_sample,:,:,:,0] 
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    myVel_true = np.ma.array( myVel_true, mask=np.ma.getmask(mySolid_mask) ) 

 

    myVel_pred = vz_test_pred[test_sample,:,:,:,0] 

    myVel_pred = np.ma.array( myVel_pred, mask=np.ma.getmask(mySolid_mask) ) 

 

    test_slice = np.array( [data_size//4, data_size//2, 3*data_size//4] ) 

    fig_title = ['Quarterpoint', 'Halfpoint', 'Three Quarterpoint'] 

 

    fig, axs = plt.subplots( nrows=3, ncols=3,figsize=(20,20) ) 

 

    vel_range = (-4,4) 

 

    for j in range(3): 

 

      im=axs[j,0].imshow(mySolid[:,:,test_slice[j]], clim=(0,1), cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,0],fraction=0.05) 

      axs[j,0].axis('off') 

      axs[j,0].set_title(f'{fig_title[j]} Solid') 

 

      im=axs[j,1].imshow(myVel_true[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,1],fraction=0.05) 

      axs[j,1].axis('off') 

      axs[j,1].set_title(f'{fig_title[j]} Simulation') 

 

      im=axs[j,2].imshow(myVel_pred[:,:,test_slice[j]], clim=vel_range, cmap=plt.cm.hot) 

      fig.colorbar(im,ax=axs[j,2],fraction=0.05) 
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      axs[j,2].axis('off') 

      axs[j,2].set_title(f'{fig_title[j]} Prediction') 

 

    # SAVE X VELOCITY 

 

    case_name = (45, 65, 80) 

 

    for i in range(6): 

        save_name = f'{case_name[i//2]}PPI_domain{i%2+1}_vfieldx' 

        scipy.io.savemat( f 'Prediction Results/UnitCell Model/{version}/{save_name}.mat', 

{'vfield_ML': np.squeeze(vz_test_pred[i,:,:,:,0])} ) 

 

    # SAVE Y VELOCITY 

 

    case_name = (45, 65, 80) 

 

    for i in range(6): 

        save_name = f'{case_name[i//2]}PPI_domain{i%2+1}_vfieldy' 

        scipy.io.savemat( f 'Prediction Results/UnitCell Model/{version}/{save_name}.mat', 

{'vfield_ML': np.squeeze(vz_test_pred[i,:,:,:,0])} ) 

 

    # SAVE Z VELOCITY 

 

    case_name = (45, 65, 80) 

 

    for i in range(6): 
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        save_name = f'{case_name[i//2]}PPI_domain{i%2+1}_vfield' 

        scipy.io.savemat( f 'Prediction Results/UnitCell Model/{version}/{save_name}.mat', 

{'vfield_ML': np.squeeze(vz_test_pred[i,:,:,:,0])} ) 

 

Data Analysis 

 

    # Training data set permeability 

 

    train_data_vel_perm = train_data_vel.mean(axis=(1,2,3,4)) 

 

    train_bins = np.linspace(0, 8, 9) 

    train_hist = plt.hist( train_data_vel_perm, bins=train_bins, density=False, histtype='step', 

label='true' ) 

 

    plt.legend() 

    plt.xlabel('Permeability') 

    plt.ylabel('Probability') 

    plt.show() 

 

    print(train_hist[0]) 

    print(train_hist[1]) 

 

    # Save histogram 

    save_name = 'Model A training data' 

    scipy.io.savemat( f 'Prediction Results/UnitCell Model/{save_name}.mat', {'data': 

train_data_vel_perm} ) 
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    # Training Data PDF 

 

    # Velocity PDF 

    vel_train_flat = np.abs( train_data_vel.flatten() ) 

 

    min = 0.001 

    max = 10 

    numbin = 1000 

 

    vel_train_flat_nz = vel_train_flat[ (vel_train_flat > min) ] 

 

 

    lin_bins = np.linspace(min, max, numbin) 

    train_hist = plt.hist( vel_train_flat_nz, bins=lin_bins, density=True, histtype='step', 

label='pred' ) 

 

    plt.legend() 

    plt.xlabel('Velocity') 

    plt.ylabel('Probability') 

    plt.show() 

 

    print(train_hist[0]) 

 

    # Save histogram 

    save_name = 'ModelD_training' 
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    scipy.io.savemat( f 'Prediction Results/UnitCell Model/{save_name}_bin_vel{channel}.mat', 

{'data': train_hist[1]} ) 

    scipy.io.savemat( f 'Prediction Results/UnitCell Model/{save_name}_pdf_vel{channel}.mat', 

{'data': train_hist[0]} ) 

 

    # SiC PDF 

    vel_true_flat = np.abs( sic_vel_norm.flatten() ) 

 

    min = 0.001 

    max = 8 

    numbin = 1000 

 

    vel_true_flat_nz = vel_true_flat[ (vel_true_flat > min) ] 

 

    lin_bins = np.linspace(min, max, numbin) 

    true_hist = plt.hist( vel_true_flat_nz, bins=lin_bins, density=True, histtype='step', 

label='true' ) 

 

    plt.legend() 

    plt.xlabel('Velocity') 

    plt.ylabel('Probability') 

    plt.show() 

 

    # Save histogram 

    save_name = 'SiCFoam' 
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    scipy.io.savemat( f 'Prediction Results/UnitCell Model/{save_name}_bin_vel{channel}.mat', 

{'data': true_hist[1]} ) 

    scipy.io.savemat( f 'Prediction Results/UnitCell Model/{save_name}_pdf_vel{channel}.mat', 

{'data': true_hist[0]} ) 

 

    !pip install porespy 

 

    import porespy as ps 

 

    uc_solid_mis = np.zeros_like(uc_solid_data) 

 

    for i in range(uc_solid_data.shape[0]): 

      print(i) 

      uc_solid_mis[i,:,:,:] = ps.filters.local_thickness(uc_solid_data[i,:,:,:]) 

 

    scipy.io.savemat( f 'Prediction Results/UnitCell_modelB_mis.mat', {'data': uc_solid_mis} ) 

 

    sic_solid_mis = np.zeros_like(sic_solid) 

 

    for i in range(sic_solid.shape[0]): 

      sic_solid_mis[i,:,:,:] = ps.filters.local_thickness(sic_solid[i,:,:,:]) 

 

    scipy.io.savemat( f 'Prediction Results/sic_mis.mat', {'data': sic_solid_mis} ) 
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M. J. Pyrcz, and N. Lubbers. Computationally Efficient Multiscale Neural Networks

Applied to Fluid Flow in Complex 3D Porous Media. Transport in Porous Media,

140(1):241–272, Oct. 2021.

253



[85] S. M. Scala and G. L. Vidale. Vaporization processes in the hypersonic laminar bound-

ary layer. International Journal of Heat and Mass Transfer, 1(1):4–22, June 1960.

[86] L. Shen, J. Wang, W. Dong, J. Pu, J. Peng, D. Qu, and L. Chen. An experimental

investigation on transpiration cooling with phase change under supersonic condition.

Applied Thermal Engineering, 105:549–556, July 2016.

[87] R. Stone. Need for speed. Science, 367(6474):134–138, Jan. 2020.

[88] H. Su, F. He, J. Wang, Xiaoguang Luo, and B. Ai. Numerical investigation on the

effects of porous cone parameters on liquid transpiration cooling performance. Inter-

national Journal of Thermal Sciences, 161:106743, Mar. 2021.

[89] H. Su, J. Wang, F. He, L. Chen, and B. Ai. Numerical investigation on transpiration

cooling with coolant phase change under hypersonic conditions. International Journal

of Heat and Mass Transfer, 129:480–490, Feb. 2019.

[90] O. Sudakov, E. Burnaev, and D. Koroteev. Driving digital rock towards machine

learning: Predicting permeability with gradient boosting and deep neural networks.

Computers & Geosciences, 127:91–98, June 2019.

[91] S. Takbiri, M. Kazemi, A. Takbiri-Borujeni, and J. McIlvain. A deep learning ap-

proach to predicting permeability of porous media. Journal of Petroleum Science and

Engineering, 211:110069, Apr. 2022.

[92] H. Tran, C. Johnson, D. Rasky, F. Hui, M.-T. Hsu, and Y. Chen. Phenolic Impregnated

Carbon Ablators (PICA) for Discovery class missions. 31st Thermophysics Conference

AIAA, June 1996.

[93] S. Trimble. Hypersonic airliner ”may not be as hard as people think”: Boeing CTO,

Aug. 2018.

254



[94] B. True, W. Johnson, and S. Chen. Reducing phosphorus discharge from flow-through

aquaculture: III: assessing high-rate filtration media for effluent solids and phosphorus

removal. Aquacultural Engineering, 32(1):161–170, Dec. 2004.

[95] E. R. Van Driest. The Problem of Aerodynamic Heating. Inst. of the Aeronautical

Sciences, 1956.

[96] A. van Foreest, M. Sippel, A. Gülhan, B. Esser, B. A. C. Ambrosius, and K. Sudmei-

jer. Transpiration Cooling Using Liquid Water. Journal of Thermophysics and Heat

Transfer, 23(4):693–702, 2009.

[97] A. H. Van Tuyl. The Use of Rational Approximations in the Calculation of Flows with

Detached Shocks. Journal of the Aerospace Sciences, 27(7):559–560, July 1960.
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