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Abstract

We apply a newly developed Wannier-Koopmans method (WKM), based on density functional

theory (DFT), to calculate the electronic energy level alignment at an interface between a molecule

and metal substrate. We consider two systems: benzenediamine on Au (111), and a bipyridine-

Au molecular junction. The WKM calculated level alignment agrees well with the experimental

measurements where available, as well as previous GW and DFT+Σ results. Our results suggest

that the WKM is a general approach that can be used to correct DFT eigenvalue errors, not only

in bulk semiconductors and isolated molecules, but also hybrid interfaces.
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Many physical processes in nanoscience that impact device function take place at the

interfaces between molecules and metal electrodes [1], such as charge transfer in organic

solar cells[2], charge transport across molecular junctions[3], and chemical reactions relevant

to photocatalysis such as water splitting[4]. Underlying the mechanisms of these dynamical

processes is interfacial electronic energy level alignment: the difference between a frontier

molecular orbital energy and the Fermi level of the metal electrode. Energy level alignment

is related to the barrier for charge transfer across the interface and therefore can dictate

efficiency of the dynamical processes mentioned above. An accurate description and cal-

culation of level alignment at interfaces is thus crucial for understanding, controlling, and

predicting dynamical properties at the interfaces.

Complementary to experimental techniques such as photoemission spectroscopy (PES)[5],

first-principles electronic structure calculations have provided critical understanding of the

level alignment based on the quasiparticle energies of molecules in chemical contact with

metal electrodes. The systems involved in molecule-metal interface modeling usually consist

of hundreds of atoms. Due to the complexity of such systems, density functional theory

(DFT) [6, 7] is often used as the starting point in approaching this problem. Although

DFT with common approximate exchange-correlation functionals can in general be accurate

for total energy related properties such as geometries and forces, there is no fundamental

theorem in DFT that guarantees the validity of Kohn-Sham (KS) eigenvalues as quasiparticle

energies [8], at least other than the highest occupied KS eigenvalue. In practice, with local or

semi-local functionals, KS eigenvalues can differ from quasiparticle energies by a few eV’s,

leading to significant errors in gaps of semiconductors and level alignment at interfaces.

Many-body perturbation theory (MBPT) within the GW approximation [9, 10] (G stands for

the Green’s function, W for the screened Coulomb interaction) is a formally rigorous way to

compute quasiparticle energies and level alignment. However due to its high computational

cost, it is still not often used in routine calculations. Simplified model GW approaches [11],

such as DFT+Σ [12–14], are applicable for weakly interacting interfaces in specific limits,

which allows the treatment of metal substrate and molecule separately. However, a more

unified theoretical tool that, at a reasonable computational cost, is accurate for both band

gaps of bulk semiconductors and level alignments of complex systems, is desirable, and would

have a broad range of applications.

In this work, we generalize a recently developed computational approach[15], based on
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DFT, to calculate electronic energy level alignment at the interfaces. This method (the

Wannier-Koopmans method, WKM) uses Wannier functions to enforce compliance with the

generalized Koopmans’ theorem [16]. Our previous study [15] has already demonstrated the

prediction of accurate band gaps of common semiconductors, as well as charged excitations

of gas-phase molecules. However, as these are single component systems, it remains to be

seen whether the same approach can work for heterogenous systems, especially for the level

alignment between constituents at an interface. Organic molecules adsorbed on a metal

substrate is an extreme example of such a heterostructure.

Here, we examine the WKM method for two prototypical metal-molecule interfaces: (a)

benzenediamine (BDA) adsorbed on Au(111) surface, and (b) a bipyridine(BP)-Au junction.

System (a) has been well studied by experiment [17], GW [18], and DFT+Σ [18, 19]; and

system (b) has been studied in the context of charge transport through molecular junctions

[20–22], with both break-junction experiments and DFT+Σ. The atomic geometries [23] of

these two systems are first optimized using DFT with the Perdew-Burke-Ernzerhof (PBE)

functional [24] as implemented in SIESTA [25], shown in Fig. 1. In system (a), the BDA

molecule is resting flat on a Au(111) substrate, thus the interaction between the molecule and

the Au(111) surface is extremely short-ranged. The energy level associated with the highest

occupied molecular orbital (HOMO) is deep inside the valence band of the Au (e.g., the

HOMO energy is much lower than the Au Fermi energy, EF ). Photoemission spectroscopy

[17] has been used to measure the HOMO resonance energy relative to the Au Fermi level.

Prior GW calculations[18] have obtained results similar to the experiments. On the other

hand, DFT calculations using the PBE functional yield resonance energies about 1.5 eV

different from the experiments. We also note that very recently, Ref. [19] reported a linear

chain phase for the BDA molecules on the Au(111) surface, which is energetically favored

compared to the geometry studied in Ref. [18] and this work. However, as it is of primary

interest in this work to compare the performance of the WKM method with other methods

such as DFT+Σ and GW for this system, we adopt the same geometry here as in Ref.

[18]. In system (b), a BP molecule is interfaced on both sides by Au electrodes, as in a

single-molecule break-junction experiment. Using a DFT+Σ calculation as in previous work

[20, 21], corroborated by experiments [22], predicted that the lowest unoccupied molecular

orbital (LUMO) energy of BP is about 1.5 eV above the Au electrode Fermi level. The

above two systems allow us to examine two different molecule-metal environments: the first
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FIG. 1. Geometries of the two prototypical interface systems studied in this work: (a) BDA

adsorbed on Au(111) surface; and (b) BP-Au junction.

consists of only one surface and features a HOMO resonance near EF , while the second is

a junction and features a LUMO resonance near EF . In addition, in the first system, the

molecule is adsorbed flat on the surface, while in the second system, the molecule is bound

on either side to a motif consisting of a Au trimer.

In the WKM, the total energy of the system is expressed as:

E = EPBE +
∑
l

Ẽl(sl) , sl ∈ [0, 1], (1)

with EPBE being the total energy of the system calculated from conventional DFT (using

PBE [24] in this work), and Ẽl(sl) = [El(N ± 1)− E(N)]× sl − [El(N ± sl)− E(N)] (“+”

for adding electrons to an unoccupied Wannier orbital φl, and “−” for removing electrons

from an occupied Wannier orbital φl). El(N ± sl) is the total energy calculated from PBE

after adding/removing sl electrons associated with the φl orbital. Note: sl =
∑

i |〈φl|ψi〉|2fi,

where the ψi is the KS orbital with occupation number fi. Thus, minimizing E with respect

to ψi, we obtain a modified KS equation{
HPBE +

∑
l

λl|φl〉〈φl|

}
|ψi〉 = εi|ψi〉, (2)

with λl = ∂Ẽl(sl)/∂sl|sl=0, the magnitude of the corrections to the KS eigenvalues.

In the above equations, the {φl} are Wannier functions constructed from the occupied

and unoccupied subspaces of the molecule. The modified KS equation provides eigenvalues
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which can better approximate quasiparticle energies. The above procedure differs from the

commonly used ∆SCF method in that it employs Wannier functions φl, instead of the KS

eigenstates.

One major step in the WKM is to calculate λl, which is obtained from Ẽl(sl), the total

energy of the system when φl is occupied with sl electrons. For each l, a special self-consistent

field (SCF) algorithm is used to calculate Ẽl(sl) for a given sl, much like in the calculation

of the usual ground state energy. However, in this special SCF procedure, the density is

expressed as:

ρ(r) = αl|φl(r)|2 +
∑
j

|ϕj(r)|2, (3)

where for l in the valence band, αl = 1− sl and for l in the conduction band, αl = sl. The

sum over j is for all fully occupied orbitals ϕj, i.e., N − 1 for l in the valence band and N

for l in the conduction band. Notice that ϕj is only used in the calculation of Ẽl(sl) and is

not to be confused with ψi in Eq. (2). For technical details, please see Ref. [15]. In this

special SCF procedure, for each l, we keep φl fixed and enforce 〈φl|ϕj〉 = 0, allowing ϕj to

change variationally to minimize El(N ± sl). Our SCF calculation captures the screening

effects of all the other electrons on the sl fractional charge in the l-th Wannier orbital.

Besides the ground-state energy, for each Wannier function φl, typically two such special

SCF calculations are needed to compute Ẽl(sl) in order to get λl: one with sl = 0 (sl = 1)

for occupied (unoccupied) Wannier function φl, and one for sl greater than but close to 0

(smaller than but close to 1).

The Wannier functions on the molecules are constructed using the Wannier90 [26] package

with the atomic orbital projection method. One of such constructed occupied Wannier

functions for system (a) [Fig. 1(a)] and an unoccupied Wannier function for system (b)

[Fig. 1(b)] are shown in Fig. 2(a) and (b), respectively. For the Wannier function shown in

Fig. 2(a), it contributes most to BDA HOMO, i.e., |〈φl|ψHOMO〉|2 is largest (=0.274) among

all {φl}. For the Wannier function shown in Fig. 2(b), it contributes most to BP LUMO,

|〈φl|ψLUMO〉|2 = 0.396, more than all the other Wannier functions in the calculation.

Our SCF calculations are performed in a supercell with periodic boundary conditions.

Such SCF calculations are similar to a defect total energy calculation with charged or un-

charged defect states (here the defect state is the Wannier orbital), and thus techniques [27]

to correct the artificial image charge interactions due to the finite size of the supercell can
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FIG. 2. (a) The occupied Wannier function for the BDA molecule adsorbed on Au(111) that

contributes most to BDA HOMO. (b) The unoccupied Wannier function for the BP molecule in

the junction that contributes most to BP LUMO. For details, see text.

be applied here. When we remove a partial electron from the Wannier function in Fig. 2(a),

or add a partial electron in the Wannier function in Fig. 2(b), the supercell is no longer

charge neutral, and the image-image interaction of the extra charge due to the finite size of

the supercell becomes significant. However, we note that in a semi-infinite system, the extra

sl charge on the molecule will be completely compensated by the metal surface charge of

opposite sign and a dipole is formed near the surface [28]. In practice, we mimic this situa-

tion in our calculation using a finite Au slab. We use overall neutral systems, but subtract

the dipole-dipole image interaction energy from the total energy Ẽl(sl). We calculate the

dipole moment along the z-axis of the system as d =
∫
z∆ρ(r)d3r, here ∆ρ(r) is the SCF

charge density change due to the placing (or removing) of the sl electron on the Wannier

orbital. The dipole-dipole image interaction energy is then calculated as 2
∑

i d
2/|Ri−R0|3,

where |Ri − R0| is the distance between neighboring images and the factor of 2 appears

since the charge in the metal can be approximated as a delocalized surface charge, instead

of a localized point charge. After these corrections, for BDA in Fig. 1(a), the dipole-dipole

image correction is about 0.2 eV, and for BP in Fig. 1(b), the dipole correction is negligible

due to the symmetry of the system.

Having performed total energy calculations for Ẽl(sl), we then calculate λl for the Wannier

functions. For example, the λl for the Wannier function of BDA shown in Fig. 2(a) is 2.1

eV, while the λl for the Wannier function of BP shown in Fig. 2(b) is 0.64 eV. We then
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FIG. 3. (a) Projected density of states for BDA adsorbed on Au(111) surface. Experimental results

from RESPES and UPS are shown as a range between two vertical lines. Theoretical results from

PBE, GW*, and WKM are shown. WKM result is from this work, and all others are taken from

Ref. [18]. Orange shaded region shows the density of states of Au. (b) Projected density of states

(PDOS) peaks for BP in a junction. Experimental estimation is shown as a range between two

vertical lines, Results from DFT+Σ, PBE, and WKM are shown. WKM result is from this work,

and all others are taken from Refs. [20, 22].

solve Eq. (2) for the corrected eigenvalues for the molecules. Note, we have not included the

λl term in Eq. (2) for states in the Au electrode. This is because the Au pseudopotential in

this study has been carefully tuned to yield the correct work function for Au(111) surface

[29], thus a PBE calculation will yield the correct Au Fermi energy.

The results of our calculation are shown in Fig. 3. For BDA, the PBE HOMO energy

is at -0.25 eV below the Au Fermi energy as shown in Fig. 3(a). Ultraviolet photoelectron

spectroscopy (UPS) measurements place this level at around -1.4 eV below Au Fermi energy,

while the resonant photoelectron spectroscopy (RESPES) measurement indicates that the

molecule level should be within the window of -1.8 to -1.4 eV as shown in Fig. 3(a) [18].

Thus, the PBE energy alignment is more than 1 eV away from the experimental result. The

WKM HOMO level is at about -1.7 eV below the Au Fermi energy, within the range mea-

sured by RESPES. We note that there is always the geometry uncertainty when comparing

calculations to experiments, and a recent work Ref. [19] found a more energetically favorable

structure than the one used here, as discussed before. We also show additional theoretical

results from Ref. [18] for comparison. After the post hoc correction (see Ref. [18]), the final
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GW result [GW* in Fig. 3(a)] is above 0.15 eV higher than the WKM result, also agrees

well with the experiments. The advantage of the WKM compared to GW* is its much lower

computational cost.

For the case of BP, the PBE LUMO level is at 0.3 eV above the Au Fermi energy [Fig.

3(b)]. However, the transport measurements suggest [20, 22] that the LUMO level should

be about 1.2-1.6 eV above the Au Fermi energy [Fig. 3(b)]. the WKM LUMO is at about

1.2 eV above the Au Fermi energy, in good agreement with experiments. We have also

calculated the level alignment using our previous DFT+Σ method [12, 13] as applied in

Refs. [20, 22]. The result is shown in Fig. 3(b). Compared to the DFT+Σ, the current

WKM approach does not need the use of a classical image charge model for the surface

polarization and therefore can be extended beyond flat geometries. The surface polarization

is calculated self-consistently at the DFT level with fractional charges in a single step in the

WKM.

Thus, in conclusion, we found that the WKM method works well for level alignment

of both HOMO-dominated and LUMO-dominated metal-molecule interfaces, and also for

both the case where the molecule is very close to a flat surface and the case where the

molecule is bound to a trimer and forms a junction with two electrodes. Compared with our

previous DFT+Σ approach, the WKM can treat dielectric screening effects more accurately

(especially when the molecule is very close to the substrate), and compared with the GW

method, it is much cheaper. We thus shows that, the WKM method not only works well for

bulk semiconductor and isolated molecules, but is also successful in predicting energy level

alignment of heterogeneous interfaces.
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