
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title

Step Truncation Methods for Nonlinear Evolution Equations on Tensor Manifolds

Permalink

https://escholarship.org/uc/item/3227r65w

Author

Rodgers, Abram Kay

Publication Date

2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at https://creativecommons.org/licenses/by-
nc-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3227r65w
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

STEP TRUNCATION METHODS FOR NONLINEAR EVOLUTION
EQUATIONS ON TENSOR MANIFOLDS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

APPLIED MATHEMATICS

by

Abram Rodgers

December 2023

The Dissertation of Abram Rodgers
is approved:

Professor Daniele Venturi, Chair

Professor Qi Gong

Professor Hongyun Wang

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Abram Rodgers

2023

Table of Contents

List of Figures v

List of Tables xii

Abstract xiii

Dedication xiv

Acknowledgments xv

1 Introduction 1

2 Tensor Decompositions 6
2.1 Tensor Decomposition Formats 6

2.1.1 Singular Value Decomposition 7
2.1.2 Hierarchical Tucker Decomposition 8
2.1.3 Tensor Train format . 12
2.1.4 Orthogonalization and Truncation 15

2.2 Distributed Memory Parallel Tensor Decompositions 17
2.2.1 Distributed Memory Tensor Train 19
2.2.2 Tall-Skinny QR Factorization 21
2.2.3 Parallel Orthogonalization and Truncation 22

2.3 Fixed Rank Tensor Manifolds . 25
2.3.1 Tensor Manifold Projections 27

2.4 SVD Tensor Truncation as an Operator 30

3 Step-Truncation Temporal Integrators 34
3.1 The Explicit Euler Method . 36
3.2 The Explicit Midpoint Method 38
3.3 Explicit Linear Multistep Methods 40
3.4 The Implicit Euler Method . 44
3.5 The Implicit Midpoint Method 47

iii

3.6 Selection of Truncation Error Coefficients 49

4 Analysis of Step-Truncation Methods 51
4.1 Linear Stability for Explicit Step-Truncation 52
4.2 Consistency and Convergence for Ordinary Differential Equations 56
4.3 Rank Adaptivity and Tensor Manifolds 59
4.4 Implicit Step-Truncation and Root Finding for Tensor Decomposi-

tions . 61
4.4.1 The Inexact Newton Iteration 63
4.4.2 The Compression Step . 68

4.5 Stability for Implicit Step-Truncation 70

5 Numerical Applications 74
5.1 Fixed Rank Step-Truncation Methods 74

5.1.1 Fixed Rank Adams-Bashforth 74
5.2 Explicit Rank-Adaptive Methods 81

5.2.1 Rank shock problem . 82
5.2.2 Fokker-Planck equation . 85
5.2.3 Two-dimensional Fokker-Planck equation 86
5.2.4 Four-dimensional Fokker-Planck equation 92

5.3 Implicit Rank-Adaptive Methods 96
5.3.1 Allen-Cahn equation . 97
5.3.2 Fokker-Planck equation . 100
5.3.3 Nonlinear Schrödinger equation 105

5.4 Burgers’ Equation with Uncertain Initial State 110

6 Conclusion 118

A Proof of Lemma 1 120

B Proof of Theorem 4 124

C Step-truncation methods for matrix-valued ODEs on matrix man-
ifolds with fixed rank 129

Bibliography 132

iv

List of Figures

1.1 Sketch of implicit and explicit step-truncation integration methods.
Given a tensor fk with multilinear rank r on the tensor manifold
Hr, we first perform an explicit time-step, e.g., with the conven-
tional time-stepping scheme (1.6). The explicit step-truncation in-
tegrator then projects Ψ∆t(G,fk) onto a new tensor manifold Hs

(solid red line). The multilinear rank s is chosen adaptively based
on desired accuracy and stability constraints [92]. On the other
hand, the implicit step-truncation method takes Ψ∆t(G,fk) as in-
put and generates a sequence of fixed-point iterates f [j] shown as
dots connected with blue lines. The last iterate is then projected
onto a low rank tensor manifold, illustrated here also as a red line
landing on Hs. This operation is equivalent to the compression
step in the HT/TT-GMRES algorithm described in [40]. 2

v

2.1 The case of 4 compute nodes for the parallel TSQR algorithm. A
binary tree is formed which outlines the communication pattern
for calculating the R factor. At each level, the node with larger
ID sends its R factor to the tree sibling it connects to. The sibling
then does a QR factorization with a concatenated pair of child R
factors. This process repeats until the final R factor is found at the
root of the tree stored on processor p = 1. We then broadcast this
matrix to all other processors. To get the Q factor, we store the
orthogonal Qi for each tree node i and multiply the parent’s Qi on
the right side of the child’s Q factor, traversing the tree from the
root to the leaves. This results in a distributed memory orthogonal
matrix Q = [Q1;Q2;Q3;Q4]. 23

4.1 Error versus iteration count of inexact Newton’s method in the HT
format. 68

5.1 Two-dimensional PDE (5.2). Operator norm of Lk
∆t (see Eq. (5.3))

versus k for two conditionally stable schemes, namely the second or-
der centered finite-differences and the Fourier pseudo-spectral collo-
cation schemes on a grid with n×n evenly-spaced points in [0, 2π]2,
with n = 4, 8, 16, 32, 64. It is seen that that the Fourier pseudo-
spectral method is less stable than the finite-difference method, in
agreement with well-known results [51]. Here we set ∆t = 0.0025. 75

5.2 Numerical solution of the PDE (5.2) using a Fourier pseudo-spectral
method on a grid with 256 × 256 nodes. The initial condition is
chosen as u0(x1, x2) = sin2(x1 + x2)/(2π2). Shown are the full-
rank solution (left) and the fixed-rank tensor solution (right) we
obtained by limiting the maximum rank to 64. It is seen that the
two solutions diverge by t = 3.8, but stability is maintained as
proven in Theorem 2. 76

vi

5.3 Tensor rank of the numerical solution to the PDE (5.2) versus
time. The spatial derivatives are discretized using a Fourier pseudo-
spectral method on a grid with 256 × 256 nodes. Hence the maxi-
mum rank of the solution tensor is 256. The rank-limited solution
has maximum rank set to 64. Note that just before applying the
truncation operator in a rank-limited scheme, the rank of the iterate
appears to grow at a similar rate to the scheme with no truncation.
The inaccuracies of the rank-truncated solutions shown in Figure
5.2 at t = 3.8 and t = 5 are due to the fact that the solution rank
is much larger than 64 at such times (compare red and blue curves). 77

5.4 Six-dimensional Fokker-Plank equation (5.1). Temporal snapshots
of the marginal PDF u(t, x1). It is seen that the system is highly
diffusive and it yields a solution that can be well approximated by
a low-rank hierarchical Tucker tensor format. 79

5.5 In Lemma 2, we proved that the truncation operator Tr satisfies
the inequality ||Tr(u)||2 ≤ ||u||2. In this figure we plot of the ratio
τr(t) = ||Tr(u)||2/||u||2 versus time. We see that setting max rank
equal to 5 does in fact give us an extra single digit of accuracy in the
nonlinear rank projection. However,τ1(t) and τ5(t) are very close
to 1, which explains why the two plots in Figure 5.4 are visually
identical. 80

5.6 Rank shock problem. Numerical performance of rank-adaptive Eu-
ler method applied to the ODE (5.7)-(5.8). It is seen that the
method accurately tracks the overall shape of the reference solution
rank, which was computed to a singular value threshold of 10−12.
Moreover, the numerical error behaves as expected, decreasing as
steady state is approached. 83

vii

5.7 Numerical solution to the Fokker-Planck equation (5.13) in dimen-
sion d = 2 with initial condition (5.15) obtained using three dis-
tinct methods: rank-adaptive explicit Euler (3.5), two-step rank-
adaptive Adams-Bashforth (3.15), and a reliable reference solution
obtained by solving the ODE (1.2) corresponding to (5.13). The
numerical results are obtained on a 50 × 50 spatial grid. The pa-
rameters for the step-truncation integrators we used in this example
are detailed in Table 5.3. 87

5.8 Fokker-Planck equation (5.13) in dimension d = 2 with initial con-
dition (5.15). L2(Ω) error of rank-adaptive Euler forward, rank-
adaptive AB2, and rank-adaptive Lie-Trotter [31] (with normal vec-
tor threshold 10−4) solutions with respect to the reference solution.
The numerical results are obtained on a 50 × 50 spatial grid. . . 88

5.9 Fokker-Planck equation (5.13) in dimension d = 2 with initial con-
dition (5.15). Rank versus time for rank-adaptive step-truncation
Euler forward, AB2, rank-adaptive Lie-Trotter with normal vector
threshold 10−4 [31], and reference numerical solutions. The numer-
ical results are obtained on a 50 × 50 spatial grid. The reference
solution rank was computed with a singular value tolerance of ε−12

tol . 89
5.10 Fokker-Planck equation (5.13) in dimension d = 2 with initial con-

dition (5.15). L2(Ω) error at T = 1 for the rank-adaptive step-
truncation methods summarized in Table 5.3. The numerical re-
sults are obtained on a 40 × 40 spatial grid. 90

5.11 Marginal probability density function (5.17) obtained by integrat-
ing numerically the Fokker-Planck equation (5.13) in dimension d =
4 with initial condition (5.16) using two methods: rank-adaptive
Euler forward and rank-adaptive AB2. The reference solution com-
puted with a variable time step size RK4 method with absolute
tolerance of 10−14 computed on a grid with 204 = 160000 evenly-
spaced points. 91

viii

5.12 L2(Ω) error of numerical solutions to the Fokker-Planck equation
(5.13) in dimension d = 4 with initial condition (5.16). The pa-
rameters we used for all rank-adaptive step-truncation methods are
summarized in Table 5.4. The rank-adaptive Lie-Trotter method
uses a threshold of 10−2 for the PDE component normal to the
tensor manifold (see [31]). 93

5.13 Rank versus time for the numerical solutions of Fokker-Planck equa-
tion (5.13) in dimension d = 4 with initial condition (5.16) (left
column: 0 ≤ t ≤ 6.25, right column: 0 ≤ t ≤ 0.1). We truncate
the reference solution to εtol in HT format. The rank-adaptive Lie-
Trotter method uses a threshold of 10−2 for the PDE component
normal to the tensor manifold (see [31]). 94

5.14 Fokker-Planck equation (5.13) in dimension d = 4 with initial con-
dition (5.16). L2(Ω) errors at T = 0.1 versus ∆t for different rank-
adaptive step-truncation methods. All tests used the HTucker ten-
sor format. 95

5.15 Error versus time for step-truncation numerical solutions of Allen-
Cahn equation (5.13) in dimension d = 2 with initial condition
(5.19). 97

5.16 Rank versus time for step-truncation numerical solutions of Allen-
Cahn equation (5.13) in dimension d = 2 with initial condition
(5.19). 98

5.17 Allen-Cahn equation (5.18). Comparison between the L2(Ω) er-
rors of explicit and implicit step-truncation midpoint methods for
different ∆t. 100

ix

5.18 Marginal probability density function (5.17) obtained by integrat-
ing numerically the Fokker–Planck equation (5.13) in dimension
d = 4 with σ = 5 and initial condition (5.16) with two methods: i)
rank-adaptive implicit step-truncation Euler and ii) rank-adaptive
implicit step-truncation midpoint. The reference solution is a vari-
able time step RK4 method with absolute tolerance of 10−14. These
solutions are computed on a grid with 20 × 20 × 20 × 20 interior
points (evenly spaced). The steady state is determined for this
computation by halting execution when ∥∂fref/∂t∥2 is below a nu-
merical threshold of 10−8. This happens at approximately t ≈ 10
for the initial condition (5.16). 102

5.19 L2(Ω) error and rank versus time for numerical solutions of Fokker–
Planck equation (5.13) in dimension d = 4 with initial condition
(5.16). The rank plotted here is the largest rank for all tensors
being used to represent the solution in HT format. Rank of the
reference solution is in HT format. 103

5.20 L2(Ω) errors at t = 0.1 for the implicit rank-adaptive step-truncation
implicit Euler and midpoint methods versus ∆t. The reference solu-
tion of (5.13) was computed using a variable time step RK4 method
with absolute tolerance of 10−14. 104

5.21 Double-well potential (5.32)-(5.33) for different values of θ. It is
seen that as θ → 0, the potential barrier at x = 0 and x = π

becomes infinitely high. This is identical to the well-known homo-
geneous boundary conditions for particles trapped in a box. . . . 105

5.22 Marginal probability density functions representing particle posi-
tions generated by the nonlinear Schrödinger equation (5.31) with
ε = 10−4, interaction potential (5.32) and initial condition (5.34). 106

5.23 (a) Maximum tensor rank versus time, and (b) relative error in the
solution mass and Hamiltonian (5.30) for nonlinear Schrödinger
equation (5.31) in dimension d = 6, with ε = 10−4, interaction
potential (5.32) and initial condition (5.34). 107

x

5.24 Left: Local truncation error found by comparing each time step-
ping scheme with its Richardson extrapolation. Right: Numerical
difference of the u(0, t) one-point marginal CDF with Monte-Carlo
estimate with finite difference discretization (5.38) with 8 points
and Step-Truncation methods of dimension N = 8. 110

5.25 Two-point joint CDF of u(0, t) and u(π, t). The CDF is com-
puted by generating numerical solutions to (5.40) for N = 20 and
marginalizing the solution in the remaining 18 variables. We also
show a Monte-Carlo estimate of the joint CDF obtained by sam-
pling 5 × 106 solutions to (5.38). 111

5.26 Left: Highest rank of the TT cores with varying dimension for the
explicit method solutions to equation (5.40). Right: Decreasing
error with increasing dimension for the two-point CDFs shown in
Figure 5.25. 112

5.27 One-point marginal CDF of numerical solutions to (5.40) with vary-
ing dimensionality accompanied with time dependent numerical er-
ror of one-point marginal CDF with varying dimensionality aligned
with each time snapshot. 113

xi

List of Tables

5.1 Free and dependent parameters of the explicit rank-adaptive step-
truncation integrators presented in Chapter 3. 82

5.2 Integration parameters for the rank shock problem (5.7). 84
5.3 Table of parameters for the rank-adaptive step-truncation integra-

tors of the Fokker-Planck equation (5.13) in dimension d = 2 with
initial condition (5.15). The only free parameters are the local error
coefficients. These were heuristically chosen so that the truncation
at each step (to rank r or α) would be considerably smaller than
the time step. 86

5.4 Table of parameters for the rank-adaptive step-truncation integra-
tors of the Fokker-Planck equation (5.13) in dimension d = 4 with
initial condition (5.16). These were heuristically chosen so that the
truncation at each step (to rank r or α) would be considerably
smaller than the time step. The first step of AB2 uses midpoint
with the coefficients listed above. 92

5.5 Allen-Cahn equation (5.18). Comparison between explicit and im-
plicit step-truncation (ST) midpoint methods in terms of compu-
tational cost (CPU-time on an Intel Core I9-7980XE workstation)
and accuracy at final time t = 1. It is seen that the implicit step-
truncation midpoint method is roughly 20 to 30 times faster than
the explicit step-truncation midpoint method for a comparable er-
ror. 101

xii

Abstract

Step Truncation Methods for Nonlinear Evolution Equations on Tensor

Manifolds

by

Abram Rodgers

We develop new adaptive algorithms for temporal integration of nonlinear evo-

lution equations on tensor manifolds. These algorithms, which we call step-

truncation methods, are based on performing one time step with a conventional

time-stepping scheme, followed by a truncation operation onto a tensor manifold.

In particular, we develop a mathematical framework for the analysis of these al-

gorithms which encompasses both explicit and implicit time stepping. With this

framework we prove convergence of a wide range of step-truncation methods, in-

cluding one-step and multi-step methods. These methods rely only on arithmetic

operations between tensors, which can be performed by efficient and scalable

parallel algorithms. Adaptive step-truncation methods can be used to compute

numerical solutions of high-dimensional PDEs, which, have become central to

many new areas of application such optimal mass transport, random dynamical

systems, and mean field optimal control. Numerical applications are presented

and discussed for a linear advection problem, a class of Fokker-Planck equations,

the Allen-Cahn equation, the nonlinear Schrödinger, and a Burgers’ equation with

uncertain initial condition.

xiii

For Grandma and Kevin.

xiv

Acknowledgments

The time I spent in graduate school was not only a profound period in my

life, but a profound period in world history. Namely, my experience was heavily

influenced by the COVID-19 pandemic. Reading the mathematics below does

not tell the human side of this story. Though I do not know if the mathematics

I’ve written will be referred to in the coming decades, I do know that (as in

centuries past) history books will speak about the experiences of scientists during

the pandemic in the same manner that we speak of Newton’s seclusion during

a 1665 pandemic. I have no doubt that in the past few years someone other

than myself had a world-changing breakthrough while sorrowfully staring out the

window at empty streets. I’d like to share what those moments of discovery were

like from a first-hand perspective.

I finished my final graduate coursework and transitioned into dissertation re-

search in the spring of 2020, as COVID-19 came to the United States. The major-

ity of breakthroughs in this work were developed during the various stay-at-home

periods. A number of key mathematical concepts were developed during evacua-

tions that occurred due to the CZU Lightning Complex Fires with Alec Dektor. I

clearly remember packing up many of my belongings and getting in a car with my

housemate Zachary Potter to shelter at his parents’ home in Visalia, California.

Thanks Zach, being trapped with you while the world seemed to unravel was fun.

I remember living in a tiny apartment with you fondly, even though the world

was pretty screwed up basically the whole time we lived together.

Alec and I collaborated mostly by calling over the phone. I would pace in a

guest room in Visalia while verbally going through convoluted algebraic expres-

sions with Alec. I remember working out the formulation of a normal vector to

a fixed rank manifold with him in one of those calls. Eventually the fires ended.

xv

Zach and I returned to our small apartment in downtown Santa Cruz. My long

phone calls with Alec did not stop though. Together we authored two papers

on rank adaptivity for tensor integrators. I can’t properly express how grateful I

am for the experience of collaboration I had with Alec. For me, the highlight of

the experience was during manuscript revision when one reviewer referred to our

work by saying, “The proposed scheme is not very surprising (in fact, it adheres

very closely to the definition of local error) but, as far as I know, it has not been

published or presented before.” I think that the reviewer meant it as a compli-

ment, considering that they recommended publication. However, I’m still unsure.

I laugh about it. It is almost as though the reviewer is saying “Anyone could do

this, but you are the first. Good enough.” That said, I don’t disagree with the

reviewer.

Alec and I were undergraduates in the UC Santa Cruz Mathematics depart-

ment at the same time. We transitioned to graduate students in the Applied

Mathematics department around the same time, under the advising of Daniele

Venturi. Alec, Daniele, the support from the two of you, both academically and

emotionally, made this doctoral dissertation possible. Though this time was in-

tense, I can’t find a way to thank the two of you enough for your influence on me,

professional and personal. Once, when we were taking an advanced undergraduate

course in linear algebra together, Alec asked me if I wanted to do the homework

together with him. I told him I already finished it and needed to work on other

things. Sorry Alec! At least we solved some linear algebra problems together later

on. I’ll say we’re even.

I also have to thank Sarah Mitchell. People don’t tend to have the patience

to listen to so much mathematics they’re not working on. Hopefully you will be

willing to listen to considerably more mathematics you’re not working on.

xvi

Chapter 1

Introduction

Computing the solution of high-dimensional Partial Differential Equations

(PDEs) has become central to many new areas of application such as random

media [102], optimal transport [114], random dynamical systems [112, 113], mean

field games [20], machine learning, and functional-differential equations [109].

These equations take the form

∂f(x, t)
∂t

= G (f(x, t),x) , f(x, 0) = f0(x), (1.1)

where f : Ω × [0, T] → R is a d-dimensional (time-dependent) scalar field defined

on the domain Ω ⊆ Rd (d ≥ 2), and G is a nonlinear operator which may depend

on the variables x = (x1, . . . , xd) and may incorporate boundary conditions. By

discretizing (1.1) in Ω, e.g., by finite differences, finite elements, or pseudo-spectral

methods, we obtain the system of ordinary differential equations

df(t)
dt

= G(f(t)), f(0) = f0. (1.2)

1

Figure 1.1: Sketch of implicit and explicit step-truncation integration methods.
Given a tensor fk with multilinear rank r on the tensor manifold Hr, we first
perform an explicit time-step, e.g., with the conventional time-stepping scheme
(1.6). The explicit step-truncation integrator then projects Ψ∆t(G,fk) onto a new
tensor manifold Hs (solid red line). The multilinear rank s is chosen adaptively
based on desired accuracy and stability constraints [92]. On the other hand,
the implicit step-truncation method takes Ψ∆t(G,fk) as input and generates a
sequence of fixed-point iterates f [j] shown as dots connected with blue lines. The
last iterate is then projected onto a low rank tensor manifold, illustrated here also
as a red line landing on Hs. This operation is equivalent to the compression step
in the HT/TT-GMRES algorithm described in [40].

Here, f : [0, T] → Rn1×n2×···×nd is a multi-dimensional array of real numbers (the

solution tensor), and G is a tensor-valued nonlinear map (the discrete form of

G corresponding to the chosen spatial discretization). The number of degrees of

freedom associated with the solution f(t) to the Cauchy problem (1.2) is Ndof =

n1 · n2 · · · nd at each time t ≥ 0, which can be extremely large even for small d.

For instance, the solution to the Boltzmann-BGK equation on a 6-dimensional

flat torus [14] with 128 points in each variable xi (i = 1, . . . , 6) yields Ndof =

1286 = 4398046511104 degrees of freedom at each time t. As is well known, any

straightforward spacial discretization of (1.1) in this manor inevitably leads to

the so-called curse of dimensionality [11]. I.e. an exponential explosion in the

computational storage cost or execution time to approximate the solution to a

2

given equation. However, not every particular solution to a given PDE requires

that we store an exponentially large amount of data. For example, consider a

linear advection equation with constant coefficients

∂f(x, t)
∂t

= −a · ∇f(x, t), f(x, 0) = f0(x). (1.3)

A standard exercise of introductory partial differential equations is to use the

method of characteristics to show that the solution to the above problem is

f(x, t) = f0(x− at). (1.4)

Therefore, if the initial condition admits a simple representation then so does

the solution to the Initial Value Problem (IVP). E.g, if the solution factors as

f0(x1, x2, . . . , xd) = f 1
0 (x1)f 2

0 (x2) · · · fd
0 (xd) (such as the ansatz of the separation

of variables method) then

f(x1, x2, . . . , xd, t) = f 1
0 (x1 − a1t)f 2

0 (x2 − a2t) · · · fd
0 (xd − adt). (1.5)

As seen in this example, if we are to store a numerical approximation to this solu-

tion, only n1 + n2 + · · · + nd floating point numbers are required. Note the storage

savings: exponential growth is reduced to polynomial growth. We essentially

took a logarithm on the computational storage cost. And so we are motivated;

To what extent is the special case of a separable solution generalizable? One suc-

cessful generalization of this concept are the class of data compression algorithms

known as low-rank tensor formats [63, 39, 24]. In a parallel research effort that

has its roots in quantum field theory and quantum entanglement, researchers have

recently developed a new generation of algorithms based on tensor networks and

3

low-rank tensor techniques to compute the solution of high-dimensional PDEs

[57, 7, 13, 27, 58]. Tensor networks and low-rank tensor decompositions are

essentially factorizations of entangled objects such as multivariate functions or

operators, into networks of simpler objects which are amenable to efficient rep-

resentation and computation. The process of building a tensor network relies on

a hierarchical decomposition that can be visualized in terms of trees, and has

its roots in the spectral theory for linear operators. Such rigorous mathematical

foundations can be leveraged to construct high-order methods to compute the

numerical solution of high-dimensional Cauchy problems of the form (1.2) at a

cost that scales linearly with respect to the dimension d, and polynomially with

respect to the tensor rank.

Upon applying a tensor decomposition approach to a given tensor or a given

initial value problem, we are inherently introducing inaccuracies via the use of

truncated singular value decompositions. In this dissertation we present algo-

rithms to integrate (1.2) on classes of a low-rank tensor manifold which have

rigorous consistency, stability, and convergence properties [93, 33, 92, 32, 58, 109].

These algorithms are known as step-truncation methods and they are based on

integrating the solution f(t) off the tensor manifold for a short time using any

conventional explicit time-stepping scheme, and then mapping it back onto the

manifold using a tensor truncation operation (see Figure 1.1). To briefly describe

these methods, let us discretize the ODE (1.2) in time with a one-step method on

an evenly-spaced temporal grid as

fk+1 = Ψ∆t(G,fk), f0 = f(0), (1.6)

where fk denotes an approximation of f(k∆t) for k = 0, 1, . . ., and Ψ∆t is an

increment function. To obtain a step-truncation integrator, we simply apply a

4

truncation operator Tr(·), i.e., a nonlinear projection [45] onto a tensor manifold

Hr [107] with multilinear rank r to the scheme (1.6). This yields

fk+1 = Tr (Ψ∆t(G,fk)) . (1.7)

The need for tensor rank-reduction when iterating (1.6) can be easily understood

by noting that tensor operations such as the application of an operator to a tensor

and the addition between two tensors naturally increase tensor rank [64]. Hence,

iterating (1.7) with no rank reduction can yield a fast increase in tensor rank,

which, in turn, can tax computational resources heavily.

The dissertation is organized as follows. In Chapter 2, we provide an intro-

duction to the fundamental concepts of low-rank tensor decompositions as well

as the important operators required for the analysis of step-truncation methods.

In Chapter 4 we develop a mathematical analysis of step-truncation methods. In

particular, we provide rigorous results on stability and convergence for explicit and

implicit time stepping algorithms. We also present a variant of Newton’s itera-

tion for the solutions to nonlinear equations on tensor manifolds. In Chapter 3 we

provide a survey of particular step-truncation temporal integrators and show that

each one satisfies the framework established in the prior chapter or a modification

of it. We finish the chapter with an analysis of the various tunable parameters

present in the step-truncation methods. In Chapter 5 we provide a wide array

of applications. We demonstrate the theorems for fixed rank and rank-adaptive

explicit integrators through the numerical solution of advection and diffusion prob-

lems. We also present numerical demonstrations for implicit step-truncation ten-

sor integrators via the Allen-Cahn equation, the Fokker-Planck equation, and

the nonlinear Schrödinger equation. Additionally, we shown an application to a

Burgers’ equation with an uncertain initial condition.

5

Chapter 2

Tensor Decompositions

In this chapter, we cover requisite background material to introduce step-

truncation methods for solving partial differential equations. The topics of this

chapter focus on introducing tensor decompositions and their mathematical prop-

erties. Informally, a tensor decomposition is a data compression algorithm. It

transforms a multidimensional array of real or complex numbers into a list of ar-

rays of smaller dimension. These decompositions are designed with the common

operations of linear algebra in mind, allowing for computations to be done with

these compressed objects without ever computing a decompressed, or full, array.

2.1 Tensor Decomposition Formats

In this work, when we say “tensor decomposition,” or “low rank tensor format,”

we are referring to a method of writing a tensor f ∈ Rn1×n2×···×nd 1 as a sequence of

Kronecker products of matrices with small computer memory storage size. Clearly,

reducing storage cost of an array is extremely useful, effectively allowing us to use a
1We recall that Rn1×n2×···×nd and

⊗d
j=1 Rnj are isomorphic and consider them identical

without confusion.

6

cheaper (monetarily) computer for a more expensive (computationally) problem.

Three well-known tensor decompositions are the Hierarchical Tucker, [45] (HT

henceforth) Tensor Train, [73, 31] (TT henceforth) and the Tucker decomposition

[105]. The HT format is based on using a binary tree data structure to preform

a lossy compression of a tensor via matrix factorizations. TT is a specialization

of HT (See [74], Remark 1) which simplifies the binary tree in use. The memory

scaling is similar to HT, requiring at most dnmaxr2
max real numbers stored. The

Tucker decomposition follows a different setup, requiring up to rmax(dnmax +rd−1
max)

stored real numbers. Due to the exponential memory growth in rank, we will not

go into the detail of the Tucker format.

2.1.1 Singular Value Decomposition

The most straightforward example of what one may refer to as a tensor decom-

position is simply the singular value decomposition (SVD). We recall from [103],

Theorem 5.9, that we can approximate a matrix by its leading singular values and

their vectors.

Theorem 1 (Low Rank Approximation of Matrices). Let f ∈ Rm×n be a rank r

matrix. Let f = UΣV ⊤ be the reduced singular value decomposition 2 of f , and

let 1 ≤ s < r. Then

∥∥∥∥∥f −
s∑

k=1
σkuk ⊗ vk

∥∥∥∥∥ = inf
f̂∈Hs

∥∥∥f − f̂
∥∥∥

=
√√√√ r∑

k=s+1
σ2

k,

where uk,vk are the columns of U and V respectively and
2i.e. U ∈ Rm×r, V ∈ Rn×r, U⊤U = I = V ⊤V and, Σ = diag(σ1, σ2, . . . , σr) where

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

7

Hs = { f ∈ Rm×n | rank(f̂) = s }.

Clearly, this approximation is better whenever the singular values decay ex-

ceptionally fast. It is this property which encourages us to study tensor formats.

In the SVD case, our tensor format is will be the list (U , Σ,V). By explicitly

storing these matrices without further compressions (e.g. Householder reflectors,

storing only the diagonal of Σ, etc.) we can see that the storage cost is exactly

s2 + (m + n)s. So if rank were to be fixed, then we have taken the quadratic-like

cost of mn and reduced it to a linear cost of O(m+n). Higher order tensor spaces

will have decompositions which retain this property.

2.1.2 Hierarchical Tucker Decomposition

The hierarchical Tucker decomposition is a rewriting of a tensor in a recursive

manner which eliminates exponential scaling of memory usage in the order of the

tensor. This format is clearly defined and explained in [45, 46], in which it is

described as an extension of the Tucker decomposition [105]. Since our work is

an application of tensor formats rather than a study of their properties, we will

give the case of an order 3 tensor in HT format. Then we state the general case

memory scaling results and allow the reader to investigate the sources [45, 46, 105]

for further technical detail.

We begin by introducing a few required notations. Let f ∈ Rn1×n2×n3 and

denote its entries by f [i, j, k]. By grouping the indexes as [i, [j, k]] and considering

the tuple [j, k] as a single index symbol κ = [j, k], we see that we can reshape f

into f (1)as

f [i, j, k] = f (1)[i, κ]. (2.1)

This is a called a matricization of f 3. It is defined via a vector space isomorphism
3Also called an array flattening.

8

Rn1×n2×n3 ≃ Rn1 ⊗ Rn2·n3 , which reshapes the high order array f into an order 2

array with the same number of entries. Specifically, this is the mode (1) matri-

cization, hence the notation f (1). Similarly, the mode (23) matricization comes

from treating κ as a row index.

f [i, j, k] = f (23)[κ, i] (2.2)

This corresponds to the isomorphism Rn1×n2×n3 ≃ Rn2·n3 ⊗Rn1 and is a transposed

version of the mode (1) matricization. The implicitly defined inverse isomorphism

is called a dematricization in the corresponding mode. A particularly important

matricization is the vectorization,

vec(f) = f (123), (2.3)

which is just a reinterpretation of f as an element of Rn1·n2·n3 , i.e. a 1-dimensional

array of reals. The HT format uses SVDs of these flattenings in order to construct

an approximation of f . Specifically, we see that f (1) is a matrix and so we apply

Theorem 1. This results in a matrix decomposition

f (1) ≈ U(1)Σ(123)V
⊤

(23), (2.4)

where the approximation has rank r(1). Specifically, we have U(1) ∈ Rn1×r(1) ,

Σ(123) ∈ Rr(1)×r(1) , V(23) ∈ R(n2·n3)×r(1) . There is a visual closely related to the

factorization being performed. We can think of the process as the branching of a

binary tree.

9

Σ(123)

U(1)

n1

V ⊤
(23)

n2 · n3

Linked nodes in the tree represent a summation along an index as a visual aid to

the matrix multiplication in equation (2.4). Unlinked nodes are used to represent

the size of the full tensor. We now count the number of stored matrix entries.

From (2.4), it is immediate that r(1)(n1 + r(1) + n2n3) is our memory cost. We

now would like to compress the f further by projecting V(23). By applying the

following additional singular value decompositions,

f (2) ≈ U(2)Σ(213)V
⊤

(13), (2.5)

f (3) ≈ U(3)Σ(312)V
⊤

(12), (2.6)

we are able to choose different ranks to approximate along each index of f [i, j, k].

We only need to explicitly compute the left singular vectors, which are U(2) ∈

Rn2×r(2) and U(3) ∈ Rn3×r(3) . To find our projected V(23) we compute

B(23) = (U⊤
(3) ⊗K U

⊤
(2))V23 ∈ Rr(2)·r(3)×r(1) , (2.7)

where ⊗K is the Kronecker product of matrices. B(23) is called a transfer tensor.

The binary tree diagram of this step is

10

Σ(123)

U(1)

n1

B(23)

U(2)

n2

U(3)

n3

One of the major theorems of [45] is that by keeping more singular vectors in each

SVD, we can reconstruct an approximation of f as

vec(f) ≈ (((U(3) ⊗K U(2))B(23)) ⊗K U(1)) ⊗K vec(Σ(123)) (2.8)

We can now count the storage cost as n1r(1) + n2r(2) + n3r(3) + r(1)r(2)r(3) + r2
(1),

rather than the uncompressed array cost of n1n2n3. Following this process (called

root-to-leaves truncation) for an order d tensor will result in an overall storage

cost bound by

dnmaxrmax + (d − 2)r3
max + r2

max (2.9)

where nmax = max{n1, n2, . . . , nd} and rmax is the rank of the SVD with the most

saved left singular vectors. If the ranks are near the size of nmax, then clearly this

polynomial beats the exponentially growing storage cost of full tensor storage,

which is nd
min ≤ n1 · n2 · ... · nd ≤ nd

max.

The tree diagrams (called dimension trees) described for the example above

also apply to the higher order tensor case. Here is a tree corresponding to an

order 5 HT decomposition.

11

Σ(12345)

B(123)

B(12)

U(1)

n1

U(2)

n2

U(3)

n3

B(45)

U(4)

n4

U(5)

n5

The reconstruction of this tensor is given by

vec(f) = (((U(5) ⊗K U(4))B(45))⊗K

((U3⊗K((U(2) ⊗K U(1))B(12)))B(123))) ⊗K vec(Σ(12345)).

The general algorithms for approximating a tensor in the HT format correspond-

ing to any desired binary tree are given in [45, 46, 64]. A key property of this

decomposition and all tensor decompositions used in this work is that basic arith-

metic operations between tensors do not require reconstructing the full array.

Using multilinear formulas for operations involving the Kronecker product, one

may create a new HT tensor with equal or higher ranks upon scalar multiplication,

adding HT tensors, or multiplying HT tensors.

2.1.3 Tensor Train format

In this section, we overview the mathematical definition of the Tensor Train

format. Tensor train is a direct simplification of the Hierarchical Tucker format,

making the general case straightforward to present. We provide a number of the

12

arithmetic algorithms for the format as well.

Definition 1 (Tensor Train). A tensor in f ∈ Rn1×n2×···×nd is in Tensor Train

(TT) format if there is an array of positive integers (called the TT rank) r =

(r0, r1, r2, . . . , rd−1, rd) with r0 = 1 = rd and a list of order 3 tensors (called the

TT cores) C = (C1,C2, . . . ,Cd) where Ck ∈ Rrk−1×nk×rk such that the entries of

f may be written as the iterated matrix product

f [i1, i2, . . . , id] = C1[1, i1, :]C2[:, i2, :] · · ·Cd−1[:, id−1, :]Cd[:, id, 1]. (2.10)

Though rather involved at first glance, the above expression may be derived

by writing down a multivariate function series expansion by the method of sep-

aration of variables, rearranging the expression into a finite sequence of infinite

matrix products, truncating the series so that the matrix products are finite, then

discretizing in space so that the multivariate function is sampled on a tensor prod-

uct grid. From this perspective, it becomes apparent that the tensor train cores

represent a 2 dimensional array of functions of a single variable and the ranks

are the number of functions present in a series expansion approximation. A more

concrete exploration of this perspective is given in [32, 33].

Due to the iterated matrix product definition of the format, it becomes ap-

parent that a number of arithmetic operations may be represented in the format

by producing a new TT tensor with different ranks. In particular if f , g have TT

13

Algorithm 1: Left Orthogonalization
Data: A tensor f in TT format with cores (C1,C2, . . . ,Cd).
Result: A tensor g = f in TT format with left orthogonal cores.

Reserve memory for each core Dc, using the sizes of Cc.
D1 = C1
for c = 1, 2, . . . , d − 1 do

[Qc,Rc] = QR(V(Dc))
Hc+1 = RcH(Cc+1)
Dc[:] = Qc[:]
Dc+1[:] = Hc+1[:]

end
Set the cores of g as (D1,D2, . . . ,Dd)

core lists C,D then by a simple inductive argument, we have

f [i1, i2, . . . , id] + g[i1, i2, . . . , id]

=
[
C1[1, i1, :]

∣∣∣ D1[1, i1, :]
] C2[:, i2, :]

∣∣∣ 0

0
∣∣∣ D2[:, i2, :]

 · · ·

· · ·

Cd−1[:, id−1, :]
∣∣∣ 0

0
∣∣∣ Dd−1[:, id−1, :]

C1[:, id, 1]

D1[:, id, 1]

 .

(2.11)

Thus the sum w = f +g is a TT tensor with cores obtained by concatenating

those of f and g. Scalar multiplication is straightforward, just scale any of the

cores of the tensor.

αf [i1, i2, . . . , id] = (αC1[1, i1, :])C2[:, i2, :] · · ·Cd−1[:, id−1, :]Cd[:, id, 1]. (2.12)

In order to perform more sophisticated operations such as tensor truncations,

we must frequently reshape the tensor cores into lower dimensional arrays. Two

14

particularly useful reshapings are the horizontal flattening

H : Ra×b×c −→ Ra×(bc)

C[i, j, k] 7−→ H [i, j + bk],

and the vertical flattening,

V : Ra×b×c −→ R(ab)×c

C[i, j, k] 7−→ V [i + aj, k].

The above maps are two dimensional array analogs of the vectorization of a tensor,

in which we have the coordinates are listed as C[i, j, k] = v[i + aj + abk]. H

and V are also equivalent to the mode-1 matricization and a transposed mode-

3 matricization respectively. Note that when the entries of a tensor are stored

contiguously in computer memory, no memory movement or copying needs to be

done to interpret a tensor as its flattening or vectorization. To undo the flattening

in an algorithm, we denote copying all the entries as C[:] = H [:] or C[:] = V [:].

2.1.4 Orthogonalization and Truncation

The general procedure of truncating the ranks of a TT tensor comes in two

phases. The first phase is to collect all the norm of the tensor into a single

core through a sequence of matrix factorizations, leaving all other cores to have

Frobenius norm 1. Then a sequence of SVDs are applied, multiplying a non-

unitary factor from a tensor train core to its neighboring cores. The first phase is

called orthogonalization of a TT tensor and we now present an algorithm for it.

There are two variants of orthogonalization we will discuss. One is Left-to-

Right orthogonalization and the other Right-to-Left orthogonalization. They are

15

Algorithm 2: Right Orthogonalization
Data: A tensor f in TT format with cores (C1,C2, . . . ,Cd).
Result: A tensor g = f in TT format with right orthogonal cores.

Reserve memory for each core Dc, using the sizes of Cc.
Dd = Cd

for c = d, d − 1, . . . , 2 do
[Lc,Qc] = LQ(H(Dc))
Hc−1 = V(Cc−1)Lc

Dc[:] = Qc[:]
Dc−1[:] = Hc−1[:]

end
Set the cores of g as (D1,D2, . . . ,Dd)

the same algorithm mirrored across the middle core of the tensor train and each

step in one is a transpose of its counterpart in the other. A TT tensor is left

orthogonal if for c = 1, 2, . . . , d − 1, we have V(Cc)⊤V(Cc) = I. Similarly, a

TT tensor is right orthogonal if for c = 2, 3, . . . , d, we have H(Cc)H(Cc)⊤ = I.

One may transform the cores of a TT tensor to be left orthogonal while the full

tensor is unchanged with the same observations seen via the group invariance

introduced in Section 2.3. All we must do is sequentially flatten, orthogonalize by

QR decompoosition, then unflatten each core, until the final one is reached. For

the right orthogonal case, the procedure is largely identical, though we use LQ

factorization, the lower-triangular orthogonalizing decomposition, instead. These

processes are summarized in Algorithm 1 and Algorithm 2.

We now describe one algorithm for truncation of a tensor train given an or-

thogonalized TT tensor. The process is essentially the same as orthogonalization,

we apply a sequence of orthogonal matrix factorizations to each core, multiply-

ing one of the terms into that core’s left or right neighbor. We then replace the

current core with the entries of an orthogonal factor. The difference in this algo-

rithm is that we apply an SVD, rather than QR or LQ factorization. The term

16

Algorithm 3: Left Truncation
Data: A tensor f in TT format with cores (C1,C2, . . . ,Cd) and a

desired accuracy ε.
Result: A tensor g so that ∥g − f∥ ≤ ε in TT format with left

orthogonal cores.

Reserve memory for each core Dc, using the sizes of Cc.
Set (Ĉ1, Ĉ2, . . . , Ĉd) as a right orthogonalization of f by Algorithm 2.
ε̂ = ε/

√
d − 1

D1 = Ĉ1
for c = 1, 2, . . . , d − 1 do

[Uc, Σc,V
⊤

c] = SV D(V(Dc), ε̂) (Truncated SVD with tolerance ε̂.)
Hc+1 = ΣcV

⊤
c H(Ĉc+1)

Dc[:] = Uc[:]
Dc+1[:] = Hc+1[:]

end
Set the cores of g as (D1,D2, . . . ,Dd)

“truncation” comes from truncating the series expansion of a matrix discussed in

Theorem 1 up to a desired tolerance. This truncation is described as the rounding

algorithm in [82]. We present two variants of it here as Algorithms 3 and 4. There

is no clear general rule for preferring one truncation algorithm to the other. They

have identical computational costs and similar formulations. It is possible that

differing runtime will occur based on row major versus column major layout of

the matrices, though this is highly dependent on the specific memory mapping

and workspaces used in the SVD, QR, and LQ calls.

2.2 Distributed Memory Parallel Tensor Decom-

positions

In this section, we provide a discussion of parallel memory layouts of Tensor

decompositions and a presentation of a particular distributed memory layout for

17

Algorithm 4: Right Truncation
Data: A tensor f in TT format with cores (C1,C2, . . . ,Cd) and a

desired accuracy ε.
Result: A tensor g so that ∥g − f∥ ≤ ε in TT format with right

orthogonal cores.

Reserve memory for each core Dc, using the sizes of Cc.
Set (Ĉ1, Ĉ2, . . . , Ĉd) as a left orthogonalization of f by Algorithm 1.
ε̂ = ε/

√
d − 1

D1 = Ĉ1
for c = d, d − 1, . . . , 2 do

[Uc, Σc,V
⊤

c] = SV D(H(Dc), ε̂) (Truncated SVD with tolerance ε̂.)
Hc−1 = V(Ĉc−1)UcΣc

Dc[:] = Uc[:]
Dc−1[:] = Hc−1[:]

end
Set the cores of g as (D1,D2, . . . ,Dd)

the Tensor Train format.

When considering a scalable parallelization of the algorithms for tensor de-

composition arithmetic and truncation, the choice of tensor decomposition itself

becomes quite important. This is in contrast to the mathematical framework for

step-truncation methods. The theory we develop in Chapter 4 is generally ag-

nostic to the choice of dimension tree. On the other hand, operations such as

orthogonalizing and truncating require sequences of QR factorizations and SVDs

which easily cause computational bottlenecks if not properly treated.

Of the possible computer memory layouts, two options are the most apparent.

One option is to note that the dimension tree is a graph. Parallel computing sys-

tems are themselves physical graphs of cables and compute nodes, and so it seems

intuitive to program the computers to mimic the graph of the dimension tree. This

is the approach taken to parallelize the HTucker format in [46]. In this approach,

the truncation algorithms are implemented by having every compute node wait

until it receives a factor from its parent or child as defined by the HTucker tree

18

(see Chapter 2.1.2). This choice does have a number of problems though. Chiefly,

one must use exactly as many compute nodes as there are nodes in the HTucker

tree. One may not over-allocate compute nodes if the dimension of the tensor

being studied is fixed. Additionally, if any individual node has particularly large

multilinear ranks, portions of the parallel computing system will need to wait

on the factorizations (QR or SVD) of that node to complete before continuing

execution. There are also other concerns on this memory layout, including that

the QR, SVD, and matrix products are serial computations. A second approach

is to pick a specific class of dimension trees and then optimize the parallel algo-

rithms to perform well for that class of trees. This is the approach of [30]. They

parallelize the Tensor Train format, which corresponds to an HTucker tree where

tensor multi-indexes are always partitioned into a singleton index and a remainder

multi-index [74]. The approach is to distribute every tensor in the factorization

evenly across all compute nodes, resulting in perfect memory balancing. Then,

all matrix factorization and product algorithms are reformulated with this dis-

tributed layout in mind. Due to the greatly improved computational balancing,

we follow this approach.

2.2.1 Distributed Memory Tensor Train

Among the arithmetic operations performed on the tensor train during the

evolution of the solution to a differential equation, the most costly is the trunca-

tion, due to the fact that it requires data access and editing of every core twice.

Due to the sequential nature of the loops in Algorithms 1 to 4 we see that par-

allelizing the inner loop would be most effective. Since the rank of the tensor

train is expected to change frequently during program execution, we must split

the memory stored on a total of P compute nodes in a manner independent of

19

the tensor rank.

To this end, we introduce a P × d memory partition matrix M with positive

integer values so that for each core Ck ∈ Rrk−1×nk×rk , we have ∑P
p=1M [p, k] =

nk. This matrix describes a block-tensor storage layout for the tensor train

core list. More precisely, for each core Ck, we define an array of core blocks

(C1
k ,C2

k , . . . ,CP
k) with array sizes defined via Cp

k ∈ Rrk−1×M [p,k]×rk so that

Ck[i, :, j] =

C1
k [i, :, j]

C2
k [i, :, j]

...

CP
k [i, :, j]

. (2.13)

Each distributed memory compute node with index p stores the core list (Cp
1 , Cp

2 ,

. . . , Cp
d). This memory layout is designed so that

V(Ck) =

V(C1
k)

V(C2
k)

...

V(CP
k)

and H(Ck) =

[
H(C1

k) | H(C2
k) | · · · | H(CP

k)
]

.

We may therefore compute a flattening of the cores without any memory move-

ments or cross-node communications by reinterpreting the array storage offsets

in column major layout. Additionally, sums and scalar multiplications of tensors

may also be computed in parallel without communications.

This parallel layout also allows for straightforward applications of finite dif-

ference stencils. Consider a finite difference stencil which requires s many points

where the number of 1 dimensional ghost cells required is g = (s−1)/2. Let DF D

be the linear operator for this stencil. To apply a partial derivative in variable k to

20

a TT tensor, we replace the entries of core Ck with the entries of DF D applied to

equation (2.13) for each i, j. To perform the parallel version of this stencil, we first

perform a nonblocking communication to deliver the ghost cells of compute node

p to their neighboring nodes p ± 1. For nodes p = 1 or p = P , we instead rely on

discrete boundary condition formulas, communicating again between nodes p = 1

and p = P if periodic boundary conditions are required. After boundary condi-

tion communications, every processor has an appropriate local version of the finite

difference stencil, which is identical save for the definition of the ghost cells.

Numerical integration is similar, though instead of sharing ghost cells of com-

pute node p with compute node p ± 1, we need only pass the data with compute

node p + 1, due to the one-sided stencil of a cumulative summation formula.

2.2.2 Tall-Skinny QR Factorization

In order to truncate a TT tensor with the described block memory layout, we

must perform a distributed memory QR factorization on a matrix of the form

A =

A1

A2
...

AP

,

or equivalently, perform an LQ factorization on the horizontally concatenated

transpose of A. For mathematical simplicity, we only present the QR variant,

though our associated code has both variants. One such factorization amenable

to this layout is the Tall-Skinny QR (TSQR) factorization [35]. This algorithm

uses a binary tree structure to define a communication pattern for decomposing

the QR factorization of A into a collection of smaller QR factorizations, avoiding

21

Algorithm 5: Parallel Left Orthogonalization,
Data: A tensor f in distributed memory TT format with cores

([Cp
1], [Cp

2], . . . , [Cp
d]).

Result: A tensor g = f in distributed memory TT format with left
orthogonal cores.

Reserve memory for each core block Dp
c , using the sizes of Cp

c .
Dp

1 = Cp
1

for c = 1, 2, . . . , d − 1 do
[Qp

c ,Rc] = TSQR(V(Dp
c))

Hp
c+1 = RcH(Cp

c+1)
Dp

c [:] = [Qp
c [:]

Dp
c+1[:] = Hp

c+1[:]
end
Set the cores of g as ([Dp

1], [Dp
2], . . . , [Dp

d])

communications if possible. By factoring the blocks into their own QR factoriza-

tions, we see that the Q factor may be presented as a sequence of products of

block diagonal matrices. This process is then applied to a recursive binary tree

to track the nesting of the orthogonal Q factor. The final result is an orthogonal

matrix Q = [Q1;Q2; . . . ;QP] distributed in the same block layout as A and an

upper triangular matrix R copied across all compute nodes. See Figure 2.1 for

an algebraic representation of the case P = 4 and its corresponding binary tree

storage structure. The transposed version of this algorithm is called the Wide-Fat

LQ (WFLQ) factorization and has the same tree data storage structure, but every

matrix factorization is transposed.

2.2.3 Parallel Orthogonalization and Truncation

We now introduce a parallelization of Algorithms 1 through 4. It can be seen

that parallelizing the orthogonalization algorithms is as simple as replacing the

QR factorizations with their TSQR variants. However, the truncation requires

22

A1
A2
A3
A4

 =

Q1R1
Q2R2
Q3R3
Q4R4

 =

Q1

Q2
Q3

Q4

R1
R2
R3
R4

 =

Q1

Q2
Q3

Q4

[
R1
R2

]
[
R3
R4

]

=

Q1

Q2
Q3

Q4

[
Q12R12
Q34R34

]
=

Q1

Q2
Q3

Q4

[
Q12

Q34

] [
R12
R34

]

=

Q1

Q2
Q3

Q4

[
Q12

Q34

]
Q1234R1234

[R12;R34] = Q1234R1234

[R1;R2] = Q12R12

A1 = Q1R1

A2 = Q2R2

[R3;R4] = Q34R34

A3 = Q3R3

A4 = Q4R4

Figure 2.1: The case of 4 compute nodes for the parallel TSQR algorithm. A
binary tree is formed which outlines the communication pattern for calculating
the R factor. At each level, the node with larger ID sends its R factor to the
tree sibling it connects to. The sibling then does a QR factorization with a
concatenated pair of child R factors. This process repeats until the final R factor
is found at the root of the tree stored on processor p = 1. We then broadcast this
matrix to all other processors. To get the Q factor, we store the orthogonal Qi

for each tree node i and multiply the parent’s Qi on the right side of the child’s Q
factor, traversing the tree from the root to the leaves. This results in a distributed
memory orthogonal matrix Q = [Q1;Q2;Q3;Q4].

23

Algorithm 6: Parallel Right Orthogonalization
Data: A tensor f in TT format with cores ([Cp

1], [Cp
2], . . . , [Cp

d]).
Result: A tensor g = f in distributed memory TT format with right

orthogonal cores.

Reserve memory for each core block Dp
c , using the sizes of Cp

c .
Dp

d = Cp
d

for c = d, d − 1, . . . , 2 do
[Lc,Q

p
c] = WFLQ(H(Dp

c))
Hp

c−1 = V(Cp
c−1)Lc

Dp
c [:] = Qp

c [:]
Dp

c−1[:] = Hp
c−1[:]

end
Set the cores of g as ([Dp

1], [Dp
2], . . . , [Dp

d])

a bit of manipulation. In order to parallelize this, we first note the following

relationship of the SVD and QR factorizations,

QR = A = UΣV ⊤

R = Q⊤UΣV ⊤.

Thus R has the same singular values as A, and so truncating an SVD of R

produces the same approximation error as truncating A directly. Since the TSQR

algorithm is designed to produce a copy of R on each compute node, we apply

a shared memory SVD redundantly on this copied R to determine the truncated

tensor. This process is formalized in Algorithms 5 through 8.

These algorithms are designed so that the only communications required are

those that are involved in the computation of the QR or LQ factorizations. Each

algorithm is mathematically equivalent to its serial counterpart. The core dif-

ference is the use of a superscript p = 1, 2, . . . , P − 1, to denote which matrices

take on different values within the different compute nodes. Matrices which are

numerically identical across all nodes lack this superscript.

24

Algorithm 7: Parallel Left Truncation
Data: A tensor f in distributed memory TT format with cores

([Cp
1], [Cp

2], . . . , [Cp
d]) and a desired accuracy ε.

Result: A tensor g so that ∥g − f∥ ≤ ε in TT format with left
orthogonal cores.

Reserve memory for each core block Dp
c , using the sizes of Cp

c .
Set ([Ĉp

1], [Ĉp
2], . . . , [Ĉp

d]) as a right orthogonalization of f by Algorithm 6.
ε̂ = ε/

√
d − 1

Dp
1 = Ĉp

1
for c = 1, 2, . . . , d − 1 do

[Qp
c ,Rc] = TSQR(V(Dp

c))
[Uc, Σc,V

⊤
c] = SV D(Rc, ε̂) (Truncated SVD with tolerance ε̂.)

Hp
c+1 = ΣcV

⊤
c H(Ĉp

c+1)
Q̂p

c = Qp
cUc

Dp
c [:] = Q̂p

c [:]
Dp

c+1[:] = Hp
c+1[:]

end
Set the cores of g as ([D1]p, [Dp

2], . . . , [Dp
d])

2.3 Fixed Rank Tensor Manifolds

We now discuss the geometric theory of tensor formats. It was proven in [107]

that imposing rank constraints on the HT format generates a smooth manifold.

An analogous theory for the TT format is presented in [108].

Rather than reproduce those results at length, we follow the case for matrices

described in [2]. Define the sets

St(m, r) = {U ∈ Rm×r | det(U⊤U) ̸= 0} (2.14)

GLr(R) = {A ∈ Rr×r | det(A) ̸= 0} (2.15)

which are the noncompact Stiefel manifold and general linear group respectively4.
4These two manifolds are in fact dense open subsets of Rm×r and Rr×r. Their complements

are level sets of polynomials, i.e. a closed condition. Density comes from a straightforward
application of SVD.

25

Algorithm 8: Parallel Right Truncation
Data: A tensor f in distributed memory TT format with cores

([Cp
1], [Cp

2], . . . , [Cp
d]) and a desired accuracy ε.

Result: A tensor g so that ∥g − f∥ ≤ ε in TT format with right
orthogonal cores.

Reserve memory for each core block Dp
c , using the sizes of Cp

c .
Set ([Ĉp

1], [Ĉp
2], . . . , [Ĉp

d]) as a right orthogonalization of f by Algorithm 5.
ε̂ = ε/

√
d − 1

Dp
d = Ĉp

d

for c = d, d − 1, . . . , 2 do
[Lc,Q

p
c] = WFLQ(H(Dp

c))
[Uc, Σc,V

⊤
c] = SV D(Lc, ε̂) (Truncated SVD with tolerance ε̂.)

Hp
c−1 = V(Ĉp

c−1)UcΣc

Q̂p
c = V ⊤

c Q
p
c

Dp
c [:] = Q̂p

c [:]
Dp

c−1[:] = Hp
c−1[:]

end
Set the cores of g as ([Dp

1], [Dp
2], . . . , [Dp

d])

Now define the set of fixed rank matrices

Mr = {X ∈ Rm×n | rank(X) = r} (2.16)

Every matrix in this set admits a decomposition X = QAZ⊤ (such as by SVD

or Complete Orthogonal Decomposition) where Q ∈ St(m, r), A ∈ GLr(R), and

Z ∈ St(n, r). Due to existence of such a decomposition, we find that there is a

surjective map

ϕ : St(m, r) × GLr(R) × St(n, r) → Mr

ϕ(Q,A,Z) = QAZ⊤.

26

It can be immediately verified that ϕ(Q,A,Z) = ϕ(U ,S,V) whenever

∃W ,E ∈ GLr(R), s.t. Q = UW−1, A = WSE⊤, Z = V E−1. (2.17)

I.e. the level sets of ϕ are orbits of a Lie group action by GLr(R)×GLr(R). (Note

the similarity to a change of basis formula.) It can be shown5 that the differential

of ϕ is a surjective linear map, and therefore ϕ is a submersion. This leads us to

conclude

Mr ≃ (St(m, r) × GLr(R) × St(n, r))/(GLr(R) × GLr(R)) (2.18)

is a manifold embedded in Rm×n. The equivalence classes formed by level sets of

ϕ are the points on the fixed rank manifold Mr.

It is also straightforward to find the closure of Mr. This is found by noting

that a sequence {Ak}∞
k=1 of invertible matrices may converge to a rank deficient

matrix. Thus, we see that

Mr = M≤r = {X ∈ Rm×n | rank(X) ≤ r}. (2.19)

Note that this closure is not a manifold. Using (2.18), we see that each fixed rank

manifold has a different dimension, which depends on r. Thus, there is no way to

make an atlas for M≤r, as it is a finite union of manifolds of differing dimensions.

2.3.1 Tensor Manifold Projections

Denote by Hr ⊆ Rn1×n2×···×nd the manifold of hierarchical Tucker tensors with

multilinear rank r = {rα} corresponding to a given dimension tree α ∈ Td [107].
5E.g. by writing a directional derivative by product rule and arguing linear independence

along each basis vector.

27

Remark 1. Every tensor f ∈ Rn1×n2×···×nd has an exact hierarchical Tucker (HT)

decomposition [45]. Thus, if f is not the zero tensor, then f belongs to a manifold

Hr for some r.

We introduce three maps which are fundamental to the analysis of low-rank

tensor integration. First, we define the nonlinear map

Tbest
r : Rn1×n2×···×nd → Hr,

Tbest
r (f) = argmin

h∈Hr

∥f − h∥2 .
(2.20)

Here, Hr denotes the closure of the tensor manifold Hr and contains all tensors

of multilinear rank smaller than or equal to r 6. The map (2.20) provides the

optimal rank-r approximation of a tensor f ∈ Rn1×n2×···×nd . The second map,

known as high-order singular value decomposition (HOSVD) [46], is defined as a

composition of linear maps obtained from a sequence of singular value decompo-

sitions of appropriate matricizations of the tensor f . Such a map can be written

explicitly as a composition of orthogonal projectors dependent on f ,

TSVD
r : Rn1×n2×···×nd → Hr,

TSVD
r (f) =

∏
α∈T p

d

Pα · · ·
∏

α∈T 1
d

Pαf ,
(2.21)

where T 1
d . . . T p

d are the layers of the dimension tree Td. The orthogonal projectors

Pα are the same ones described in the algorithms of section 2.1. The map (2.21)

provides a quasi-optimal7 rank-r approximation of the tensor f ∈ Rn1×n2×···×nd ,
6The inequality is taken component-wise for the array r. See [107].
7A quasi-optimal truncation is a function Tr(f) satisfying ||f−Tr(f)||2 ≤ C||f−Tbest

r (f)||2
for some C independent of f .

28

and is related to the optimal rank-r truncation by the inequalities [45]

∥∥∥f − Tbest
r (f)

∥∥∥
2

≤
∥∥∥f − TSVD

r (f)
∥∥∥

2
≤

√
2d − 3

∥∥∥f − Tbest
r (f)

∥∥∥
2

. (2.22)

In this work, we will regularly drop the superscript and write Tr referring to the

more computationally practical TSVD
r . The third map we define is an orthogonal

projection onto the tangent space TfHr of Hr at the point f . This projection is

defined by the minimization problem

Pf : Rn1×n2×···×nd → TfHr,

Pfv = argmin
h∈Tf Hr

∥v − h∥2 ,
(2.23)

which is a linear function of v (v is the solution to a linearly constrained least

squares problem). An important fact which appears in later analysis is that the

tangent plane projector is the derivative of Tbest
r . Consider the formal power series

expansion of Tbest
r around f ∈ Hr

Tbest
r (f + εv) = Tbest

r (f) + ε
∂Tbest

r (f)
∂f

v + · · · , (2.24)

where ∂Tbest
r (f)/∂f denotes the Jacobian of Tbest

r at f , v ∈ Rn1×n2×···×nd , and

ε ∈ R is small. Since f ∈ Hr, we have that Tbest
r (f) = f , which allows us to write

(2.24) as

Tbest
r (f + εv) = f + ε

∂Tbest
r (f)
∂f

v + · · · . (2.25)

In the following Lemma we summarize that the Jacobian ∂Tbest
r (f)/∂f coincides

with the orthogonal projection (2.23) onto the tangent space TfHr.

Lemma 1 (Smoothness of the best truncation operator). The map Tbest
r is con-

29

tinuously differentiable on Hr. Moreover,

∂Tbest
r (f)
∂f

= Pf , ∀f ∈ Hr,

where Pf is the orthogonal projection (2.23) onto the tangent space of Hr at f .

This result has been proven in [68] and [1] for finite-dimensional manifolds.

A slightly different proof which holds for finite-dimensional manifolds without

boundary is given in [76]. In Appendix A we provide an alternative proof which is

based primarily on linear algebra rather than differential geometry. With Remark

1 in mind, we can apply Lemma 1 to every tensor except the zero tensor.

2.4 SVD Tensor Truncation as an Operator

In the interest of analyzing stability of temporal integrators, we now consider

the SVD tensor truncation as an operator. The algorithms we present in Chapter

3 all consist of modifying a known method for solving differential equations by

inserting tensor truncations at key steps. By computing the norm of the tensor

truncation operator, we can guarantee that our temporal integrators are stable.

We begin our analysis by recalling the definition of semi-norm of a nonlinear

function T : RN → RM . The semi-norm of T is the same as the norm of a linear

map, but since T need not be continuous, we replace max with sup.

∥T ∥ = sup
z ̸=0

∥T (z)∥
∥z∥

. (2.26)

It can be verified that the above definition obeys triangle inequality and absolute

30

scalability. Moreover, for any w ̸= 0 we have

∥T (w)∥
∥w∥

≤ sup
z ̸=0

∥T (z)∥
∥z∥

by definition of supremum. Multiplying by ∥w∥ the denominator yields an in-

equality that is very similar to Cauchy-Schwartz

∥T (w)∥ ≤ ∥w∥ sup
z ̸=0

∥T (z)∥
∥z∥

= ∥w∥ ∥T ∥ . (2.27)

Now, suppose T satisfies the scalability property, i.e., T (βz) = βT (z), as with

the SVD rank truncation operator. (Refer to definition (2.21). The orthogonal

projections for a fixed rank r are independent of the scaling coefficient β.) Then

we can pass the norm of z into the numerator.

∥T ∥ = sup
z ̸=0

∥T (z)∥
∥z∥

= sup
z ̸=0

∥∥∥∥∥T
(
z

∥z∥

)∥∥∥∥∥ = sup
∥u∥=1

∥T (u)∥ .

In other words, for scalable functions, we can take maximization over the unit

sphere in a given norm. Additionally, the norm here is arbitrary. Now we show

that the operator semi-norm defines a norm on the vector space of scalable func-

tions. Essentially, we need to show that for scalable T , ||T || = 0 implies T is zero

everywhere. To this end, a proof by contradiction is sufficient. Suppose T (w) ̸= 0.

Then ||T (w)|| > 0. Since for any v, we have T (0) = T (0v) = 0T (v) = 0, we

must have w ̸= 0. So the ratio of ||T (w)|| and ||w|| is positive. This implies that

0 <
∥T (w)∥

∥w∥
=
∥∥∥∥∥T

(
w

∥w∥

)∥∥∥∥∥ ≤ ∥T ∥ = 0,

i.e., 0 < 0, a contradiction. Therefore the operator semi-norm (2.26) induces a

norm on the vector space of scalable functions. In other words, the operator norm

31

is well defined for scalable maps.

Remark 2. Suppose the map T is scalable and Lipschitz. Then for any u ̸= 0

∥|T (u) − T (0)∥ ≤ C ∥u− 0∥ ⇒ ∥T (u)∥
∥u∥

≤ C ⇒ sup
∥u∥=1

∥T (u)∥ ≤ C

since T (0) = 0 (T is scalable). This means that the Lipschitz constant of T is

an upper bound for the operator norm.

Up to this point, the discussion has been developed for arbitrary norms. We now

restrict to the 2-norm in particular in order to evaluate the impact of dropping

small singular values. This is the norm computed by squaring all entries of a

tensor, summing, and then taking square root.

The following result characterizes the truncation operator Tr as a bounded non-

linear projection.

Lemma 2. The operator 2-norm of the SVD rank-truncation operator is 1, i.e.,

sup
x̸=0

∥∥∥TSVD
r (x)

∥∥∥
2

∥x∥2
= 1. (2.28)

Lemma 2 states that the errors due to low-rank truncation must shrink the

tensor being truncated or rotate it to another location equidistant from the origin.

Proof. In this proof, we adopt the shorthand TSVD
r = Tr. Recall from 2.3.1 that

Tr(x) =
∏

α∈T p
d

Pα · · ·
∏

α∈T 1
d

Pαx,

where every Pα is an orthogonal projection formed using α-mode matricizations

of x. The particular Pα are dependent on a given x. Recall that this implies the

32

truncation operator is nonlinear, but still scalable. Since all Pα are orthogonal

projections, they all have the property

||Pαv||22 = ⟨Pαv,Pαv⟩ = ⟨P⊤
α Pαv,v⟩ = ⟨PαPαv,v⟩ = ⟨Pαv,v⟩ ≤ ∥Pαv∥2 ∥v∥2 .

(2.29)

Dividing by ∥Pαv∥2, we have
∥Pαv∥2

∥v∥2
≤ 1, (2.30)

for arbitrary v. Therefore, the operator norm is at most 1. Now apply this to the

composition of operators which defines SVD based truncation.

∥Tr(x)∥2 =

∥∥∥∥∥∥∥
∏

α∈T p
d

Pα · · ·
∏

α∈T 1
d

Pαx

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥
∏

α∈T p
d

Pα · · ·
∏

α∈T 1
d

Pα

∥∥∥∥∥∥∥
2

∥x∥2

≤
∏

α∈T p
d

∥Pα∥2 · · ·
∏

α∈T 1
d

∥Pα∥2 ∥x∥2 ≤ ∥x∥2

Dividing by ∥x∥2, we get
∥Tr(x)∥2

∥x∥2
≤ 1. (2.31)

Equality is achieved by noting that Tr(Tr(x)) = Tr(x),

||Tr(Tr(x))||2 = ||Tr(x)||2,
||Tr(Tr(x))||2

||Tr(x)||2
= 1.

33

Chapter 3

Step-Truncation Temporal

Integrators

In this chapter, we provide a survey of several step-truncation algorithms. The

core idea is to incorporate data compression algorithms into solutions for the ODE

df(t)
dt

= G(f(t)), f(0) = f0.

This is achieved by finding an approximate flow map Φ∆t(G,f(0)) ≈ f(∆t)

which incorporates the truncation operations from Chapter 2. For each algorithm

or class of algorithms, we provide the conditions on the rank truncation error

required in order to satisfy the step-truncation convergence theorem, i.e. Theorem

3 of Chapter 4. This convergence theorem states that when the approximate local

flow map Φ∆t(G,f) is consistent with the exact flow map φ∆t(G,f), i.e.

Φ∆t(G,f) = φ∆t(G,f) + O(∆tp+1),

34

and the zero-stability condition

∥∥∥Φ∆t(G, f̂) − Φ∆t(G, f̃)
∥∥∥ ≤ (1 + C∆t)

∥∥∥f̂ − f̃
∥∥∥+ E∆tm+1,

holds for small ∆t, then the method’s iterates are convergent to the exact solution

of our ODE. We also provide a sufficient condition for zero-stability which allows

for a simpler analysis of the explicit methods. For ease of notation, we do not

explicitly write the dependence of the tensor ranks r on time step k as we are

only analyzing one iteration of each scheme to prove satisfaction of the sufficient

consistency and stability conditions. It should be noted, however, that all ranks

are in fact time dependent, and may be alternatively denoted as r = rk.

Zero Stability for Explicit Step-Truncation Methods

Our explicit methods all take the form

fk+1 = Tr(fk + ∆tA∆t(G,fk)), (3.1)

so that the local flow approximation is Φ∆t(G,f) = Tr(f + ∆tA∆t(G,f)). In

this case, zero-stability is determined by the increment function A∆t(G,f). We

summarize this in the following Lemma.

Lemma 3. If for all f iteration (3.1) satisfies

∥Tr(f + ∆tA∆t(G,f)) − (f + ∆tA∆t(G,f))∥ ≤ E∆tm+1,

and A∆t(G,f) satisfies the near-Lipschitz criterion as ∆t → 0

∥∥∥A∆t(G, f̂) − A∆t(G, f̃)
∥∥∥ ≤ (C + ∆tD)

∥∥∥f̂ − f̃
∥∥∥+ E∆tm, (3.2)

35

then (3.1) is zero-stable. Specifically,

∥∥∥Φ∆t(G, f̂) − Φ∆t(G, f̃)
∥∥∥

=
∥∥∥Tr(f̂ + ∆tA∆t(G, f̂)) − Tr(f̃ + ∆tA∆t(G, f̃))

∥∥∥
≤
∥∥∥f̂ + ∆tA∆t(G, f̂) − (f̃ + ∆tA∆t(G, f̃))

∥∥∥+ 2E∆tm+1

≤
∥∥∥f̂ − f̃

∥∥∥+ ∆t
∥∥∥A∆t(G, f̂) − A∆t(G, f̃)

∥∥∥+ 2E∆tm+1

≤
∥∥∥f̂ − f̃

∥∥∥+ (C∆t + ∆t2D)
∥∥∥f̂ − f̃

∥∥∥+ 3E∆tm+1

≤ (1 + max(C, D)2∆t)
∥∥∥f̂ − f̃

∥∥∥+ 3E∆tm+1.

Inequality (3.2) is an easier condition to check. Lemma 3 will save us the effort

of repeating the inequalities above for each explicit method independently.

3.1 The Explicit Euler Method

Our first example is a first order method for solving (1.2) based on Euler

forward. From Theorem 3, we know that the scheme

fk+1 = Tr(fk + ∆tG(fk)) (3.3)

is order one in ∆t, provided the vector field G is Lipschitz and the truncation

rank r at time step k satisfies

∥fk + ∆tG(fk) − Tr(fk + ∆tG(fk))∥2 ≤ M∆t2,

for all k = 1, 2, Applying the nonlinear vector field G to the solution tensor

f can result in a tensor with large rank. Therefore, it may be desirable to apply

a tensor truncation operator to G(f) at each time step. To implement this, we

36

build the additional truncation operator into the increment function

A(G,fk, s, ∆t) = Ts(G(fk)), (3.4)

to obtain the new scheme

fk+1 = Tr(fk + ∆tTs(G(fk))). (3.5)

We now determine conditions for the time dependent ranks s and r which make

the scheme (3.5) first order. To address consistency, suppose f(t) is the exact

solution to (1.2) with initial condition f0 at time t = 0. Then, bound the local

truncation error as

||f(∆t) − f1||2 ≤ ||f(∆t) − (f0 + ∆tG(f0))||2

+ ||f0 + ∆tG(f0) − Tr(f0 + ∆tTs(G(f0)))||2 (3.6)

≤ K∆t2 + ||f0 + ∆tG(f0) − (f0 + ∆tTs(G(f0)))||2

+ ||f0 + ∆tTs(G(f0)) − Tr(f0 + ∆tTs(G(f0)))||2

= K∆t2 + ∆t ||G(f0) − Ts(G(f0))||2

+ ||f0 + ∆tTs(G(f0)) − Tr(f0 + ∆tTs(G(f0)))||2 .

From this bound, we see that by selecting s and r at time tk = k∆t so that

||G(fk) − Ts(G(fk))||2 ≤ M1∆t, (3.7)

||fk + ∆tTs(G(fk)) − Tr(fk + ∆tTs(G(fk)))||2 ≤ M2∆t2, (3.8)

for all k = 1, 2, . . ., yields an order one local truncation error for (3.5). To address

stability, we show that (3.4) satisfies (3.2) with m = 1, assuming G is Lipschitz.

37

Indeed,

∣∣∣∣∣∣Ts(G(f̂)) − Ts(G(f̃))
∣∣∣∣∣∣

2

≤
∣∣∣∣∣∣Ts(G(f̂)) −G(f̂)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣G(f̂) −G(f̃)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣G(f̃) − Ts(G(f̃))

∣∣∣∣∣∣
2

≤ L
∣∣∣∣∣∣f̂ − f̃

∣∣∣∣∣∣
2

+ 2M1∆t,

where L is the Lipschitz constant of G. Now applying Theorem 3 proves that the

rank-adaptive Euler method (3.5) has O(∆t) global error.

3.2 The Explicit Midpoint Method

Consider the following rank-adaptive step-truncation method based on the

explicit midpoint rule (see [50, II.1])

fk+1 = Tα

(
fk + ∆t

(
G

(
fk + ∆t

2 G(fk)
)))

. (3.9)

We have proven in Theorem 3 that (3.9) is order 2 in ∆t, provided the vector field

G is Lipschitz and the truncation rank α at each discrete time tk satisfies

∥ak − Tα(ak)∥2 ≤ M∆t3,

for all k = 1, 2, Here,

ak = fk + ∆t

(
G

(
fk + ∆t

2 G(fk)
))

denotes the solution tensor at time tk+1 prior to truncation. For the same reasons

we discussed in Section 3.1, it may be desirable to insert truncation operators

inside the increment function. For our rank-adaptive explicit midpoint method

38

we consider the increment function

A(G,fk,β,γ, ∆t) = Tβ

(
G

(
fk + ∆t

2 Tγ(G(fk))
))

, (3.10)

which results in the step-truncation scheme

fk+1 = Tα

(
fk + ∆tTβ

(
G

(
fk + ∆t

2 Tγ(G(fk))
)))

. (3.11)

Following a similar approach as in Section 3.1, we aim to find conditions on the

time dependent ranks α, β and γ so that the local truncation error of the scheme

(3.11) is order 2. For ease of notation, let us denote the truncation errors by

εκ = ∥g − Tκ(g)∥2, where κ = α, β, or γ. To analyze consistency, again let f(t)

be the exact solution to (1.2) with initial condition f0 at time t = 0. The local

truncation error of the scheme (3.11) can be estimated as

||f(∆t) − f1||2

≤ εα +
∣∣∣∣∣
∣∣∣∣∣f(∆t) −

(
f0 + ∆tTβ

(
G

(
f0 + ∆t

2 Tγ(G(f0))
)))∣∣∣∣∣

∣∣∣∣∣
2

≤ εα + ∆tεβ +
∣∣∣∣∣
∣∣∣∣∣f(∆t) −

(
f0 + ∆tG

(
f0 + ∆t

2 Tγ(G(f0))
))∣∣∣∣∣

∣∣∣∣∣
2

≤ K∆t3 + εα + ∆tεβ + L∆t2

2 εγ ,

where L is the Lipschitz constant of G. From this bound, we see that if the

truncation ranks α,β and γ are chosen such that

εα ≤ A∆t3, εβ ≤ B∆t2, εγ ≤ G∆t, (3.12)

for some constants A, B, and G, then the local truncation error of the scheme

(3.11) is order 2 in ∆t. Also, if (3.12) is satisfied then the zero-stability require-

39

ment (3.2) is also satisfied. Indeed,

∣∣∣∣∣
∣∣∣∣∣Tβ

(
G

(
f̂ + ∆t

2 Tγ(G(f̂))
))

− Tβ

(
G

(
f̃ + ∆t

2 Tγ(G(f̃))
))∣∣∣∣∣

∣∣∣∣∣
2

≤
(

L + L

2 ∆t
) ∣∣∣∣∣∣f̂ − f̃

∣∣∣∣∣∣
2

+ 2εβ + L∆tεγ (3.13)

holds for all tensors f̂ , f̃ ∈ Rn1×···×nd . To arrive at the above relationship, we

applied triangle inequality several times to pull out the εκ terms and then used

Lipschitz continuity of G multiple times. Thus, if the truncation ranks α,β and

γ are chosen to satisfy (3.12) and the vector field G is Lipschitz, then Theorem 3

proves the method (3.11) has O(∆t2) global error.

3.3 Explicit Linear Multistep Methods

With some effort we can extend the rank-adaptive global error estimates to the

well-known multi-step methods of Adams and Bashforth (see [50, III.1]). These

methods are of the form

fk+1 = fk + ∆t
s−1∑
j=0

bjG(fk−j), (3.14)

where s is the number of steps. A rank-adaptive step-truncation version of this

method is

fk+1 = Tα

fk + ∆tTβ

s−1∑
j=0

bjTγ(j) (G(fk−j))
 . (3.15)

In order to obtain a global error estimate for (3.15), we follow the same steps as

before. First we prove consistency, then we prove stability, and finally combine

these results to obtain a global convergence result. For consistency, let f0 = f(t0),

f1 = f(t1), . . . , fs−1 = f(ts−1) be the exact solution to (1.2) given at the first s

40

time steps. Also, define the truncation errors εκ = ∥g − Tκ(g)∥2, where κ = α,

β, γ(j), j = 0, . . . , s − 1. The local error admits the bound

||f(ts) − fs||2

≤ εα +

∣∣∣∣∣∣
∣∣∣∣∣∣f(ts) −

fs−1 + ∆tTβ

s−1∑
j=0

bjTγ(j) (G(fs−1−j))
∣∣∣∣∣∣

∣∣∣∣∣∣
2

≤ εα + ∆tεβ +

∣∣∣∣∣∣
∣∣∣∣∣∣f(ts) −

fs−1 + ∆t
s−1∑
j=0

bjTγ(j) (G(fs−1−j))
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ εα + ∆tεβ + ∆t
s−1∑
j=0

|bj|εγ(j) +

∣∣∣∣∣∣
∣∣∣∣∣∣f(ts) −

fs−1 + ∆t
s−1∑
j=0

bjG(fs−1−j)
∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

The last term is the local error for an order-s Adams-Bashforth method (3.14).

Therefore, the local error of the step-truncation method (3.15) is also of order s

if the truncation ranks α, β, and γ(j) are chosen such that

εα ≤ A∆ts+1, εβ ≤ B∆ts, εγ(j) ≤ Gj∆ts. (3.16)

To address stability, we first need to generalize the zero-stability condition (3.2)

to the increment function

A(G,f1,f2, . . . ,fs, ∆t) = Tβk

s−1∑
j=0

bjTγk(j) (G(fk−j))
 (3.17)

for the multi-step method (3.14). A natural choice is

∣∣∣∣∣∣A(G, f̂1, f̂2, . . . , f̂s, ∆t) − A(G, f̃1, f̃2, . . . , f̃s, ∆t)
∣∣∣∣∣∣

2
≤

s∑
j=1

Cj

∣∣∣∣∣∣f̂j − f̃j

∣∣∣∣∣∣
2

+ E∆tm. (3.18)

41

Clearly, for s = 1 the criterion (3.18) specializes to the stability criterion given in

(3.2). We have the bound

∣∣∣∣∣∣A(G, f̂1, f̂2, . . . , f̂s, ∆t) − A(G, f̃1, f̃2, . . . , f̃s, ∆t)
∣∣∣∣∣∣

2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣Tβ

s−1∑
j=0

bjTγ(j)
(
G(f̂s−j)

)− Tβ

s−1∑
j=0

bjTγ(j)
(
G(f̃s−j)

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 2εβ + 2
s−1∑
j=0

|bj|εγ(j) +
s−1∑
j=0

|bj|
∣∣∣∣∣∣G(f̂s−j) −G(f̃s−j)

∣∣∣∣∣∣
2

≤ 2εβ + 2
s−1∑
j=0

|bj|εγ(j) +
s−1∑
j=0

L|bj|
∣∣∣∣∣∣f̂s−j − f̃s−j

∣∣∣∣∣∣
2

,

where we used triangle inequality to set aside the εκ terms and subsequently

applied Lipschitz continuity multiple times. From the above inequality, it is seen

that if (3.16) is satisfied, then the stability condition (3.18) is also satisfied with

m = s. With the consistency and stability results for the multistep step-truncation

method (3.15) just obtained, it is straightforward to obtain the following global

error estimate for (3.15).

Corollary 1 (Global error of rank-adaptive Adams-Bashforth scheme). Assume

f0 = f(t0), f1 = f(t1), . . . , fs−1 = f(ts−1) are given initial steps for a convergent

order-s method of the form (3.14), and assume G is Lipschitz with constant L. If

the rank-adaptive step-trunctation method (3.15) is order-s consistent with (1.2),

and the corresponding increment function A defined in (3.17) satisfies the stability

condition (3.18), then the global error satisfies

||f(T) − fN ||2 ≤ Q∆ts,

where Q depends only on the local error constants of the Adams-Bashforth scheme

(3.14).

42

Proof. The proof is based on an inductive argument on the number of steps taken

(N in equation (4.1)), similar to the proof of Theorem 3. First, notice that by

assuming the method (3.15) is order-s consistent, we immediately obtain (3.14)

for the base case N = s. Now, suppose that

||f(tN−k) − fN−k||2 ≤ QN−k∆ts (3.19)

for all k, 1 ≤ k ≤ N −s. Letting ak = fk +∆tA(G,fk, . . . ,fk−s+1, ∆t) denote one

step prior to truncation, we expand the final step error in terms of penultimate

step

||f(T) − fN ||2

=
∣∣∣∣∣∣f(tN) − TrN−1(fN−1 + ∆tA(G,fN−1, . . . ,fN−s, ∆t))

∣∣∣∣∣∣
2

≤ ||f(tN) − aN−1||2 +∣∣∣∣∣∣aN−1 − TrN−1(fN−1 + ∆tA(G,fN−1, . . . ,fN−s, ∆t))
∣∣∣∣∣∣

2

= ||f(tN) − aN−1||2 +
∣∣∣∣∣∣aN−1 − TrN−1(aN−1)

∣∣∣∣∣∣
2

≤ ||f(tN) − aN−1||2 + M∆ts+1

≤ ||f(tN) − (f(tN−1) + ∆tA(G,f(tN−1), . . . ,f(tN−s), ∆t))||2

+ ||f(tN−1) + ∆tA(G,f(tN−1), . . . ,f(tN−s), ∆t) − aN−1||2 + M∆tp+1

≤ ||f(tN−1) + ∆tA(G,f(tN−1), . . . ,f(tN−s), ∆t) − aN−1||2

+ KN−1∆ts+1 + M∆ts+1,

where we explicitly denote rN−1 as the rank at time tN−1 and KN−1 as a local

error constant for the untruncated scheme (3.14). Expanding aN−1 and using the

43

triangle inequality we find

||f(T) − fN ||2 ≤ ||f(tN−1) − fN−1||2

+ ∆t ||A(G,f(tN−1), . . . ,f(tN−s), ∆t) − A(G,fN−1, . . . ,fN−s, ∆t)||2

+ KN−1∆ts+1 + A∆ts+1.

Applying the stability condition (3.18) yields

||f(T) − fN ||2 ≤ ||f(tN−1) − fN−1||2 + ∆t
s∑

j=1
Cj ||f(tN−j) − fN−j||2

+ (KN−1 + A + E)∆ts+1.

The above inequality together with the inductive hypothesis (3.19) implies

||f(T) − fN ||2 ≤ QN−1∆ts + ∆ts+1
s∑

j=1
CjQN−j + (KN−1 + A + E)∆ts+1,

(3.20)

concluding the proof.

Similar to Theorem 3, only the constants Kj appearing in (3.20) depend on

the time step index (note that Qi also depends on Kj). Moreover, the constants

Kj depend only on the multi-step method (3.14), and not on truncation.

3.4 The Implicit Euler Method

Consider the implicit Euler scheme (4.31), with the associated rootfinding

problem

Hk(fk+1) = fk+1 − fk − ∆tG(fk+1) = 0

44

and suppose that the solution of the nonlinear equationHk(fk+1) = 0 is computed

using the inexact Newton method with HT/TT-GMRES iterations as discussed in

Section 4.4.1. Let f [j]
k+1 (j = 1, 2, . . .) be the sequence of tensors generated by the

algorithm and approximating fk+1 (exact solution of Hk(fk+1) = 0). We set a

stopping criterion for terminating Newton’s iterations based on the residual, i.e.,

∥∥∥Hk

(
f

[j]
k+1

)∥∥∥ ≤ εtol. (3.21)

This allows us to adjust the rank of f [j]
k+1 from one time step to the next, depending

on the desired accuracy εtol. Our goal is to analyze convergence of such a rank-

adaptive implicit method when a finite number of Newton steps are taken. To

this end, we will fit the method into the framework of Theorem 3. We begin by

noticing that

∥∥∥fk+1 − f [j]
k+1

∥∥∥ =
∥∥∥H−1

k (Hk (fk+1)) −H−1
k

(
Hk

(
f

[j]
k+1

))∥∥∥ (3.22)

≤ LH−1
k

∥∥∥H (
f

[j]
k+1

)∥∥∥ ≤ LH−1
k

εtol, (3.23)

where LH−1
k

is the local Lipschitz constant of the smooth inverse map H−1
k , the

existence of which is granted by the inverse function theorem. This allows us to

write the local truncation error as

∥∥∥f(∆t) − f [j]
1

∥∥∥ ≤ ∥f(∆t) − f1∥ +
∥∥∥f1 − f [j]

1

∥∥∥ ≤ K1∆t2 + LH−1εtol, (3.24)

where K1 is a local error coefficient. In order to maintain order one convergence,

we require that εtol ≤ K∆t2 for some constant K ≥ 0.

Next, we discuss the stability condition (4.22) in the context of the implicit

step-truncation Euler scheme, assuming that fk+1 can be found exactly by the in-

45

exact Newton’s method, eventually after an infinite number of iterations. Denote

by f̂0, f̃0 two different initial conditions. Performing one step of the standard

implicit Euler’s method yields the following bound

∥∥∥f̂1 − f̃1

∥∥∥ =
∥∥∥(f̂0 + ∆tG(f̂1)

)
−
(
f̃0 + ∆tG(f̃1)

)∥∥∥
≤
∥∥∥f̂0 − f̃0

∥∥∥+ ∆tLG
∥∥∥f̂1 − f̃1

∥∥∥ .

where LG is the Lipschitz constant of G. By collecting like terms, we obtain

∥∥∥f̂1 − f̃1

∥∥∥ ≤ 1
1 − ∆tLG

∥∥∥f̂0 − f̃0

∥∥∥ ≤ (1 + 2∆tLG)
∥∥∥f̂0 − f̃0

∥∥∥ . (3.25)

The last inequality comes by noting that 1/(1 − ∆tLG) ≤ 1 + 2∆tLG when ∆t

is sufficiently small, i.e., ∆t ≤ 1/(2LG). This is our zero-stability condition, i.e.,

a stability condition that holds for small ∆t, which will be used for convergence

analysis. Regarding the behavior of the scheme for finite ∆t, see Section 4.5

for the proof that the implicit step-truncation Euler scheme is unconditionally

stable. Next, we derive a stability condition of the form (3.25) when the root

of Hk(fk+1) = 0 is computed with the inexact Newton’s method with HT/TT-

GMRES iterations. In this case we have

∥∥∥f̂ [j]
1 − f̃ [m]

1

∥∥∥ ≤
∥∥∥f̂ [j]

1 − f̂ [∞]
1

∥∥∥+
∥∥∥f̂ [∞]

1 − f̃ [∞]
1

∥∥∥+
∥∥∥f̃ [m]

1 − f̃ [∞]
1

∥∥∥
=
∥∥∥f̂ [j]

1 − f̂1

∥∥∥+
∥∥∥f̂1 − f̃1

∥∥∥+
∥∥∥f̃ [m]

1 − f̃1

∥∥∥
≤ (1 + 2LG∆t)

∥∥∥f̂0 − f̃0

∥∥∥+ 2LH−1εtol. (3.26)

Thus, the stability condition is satisfied by the same condition on εtol that satisfies

the first order consistency condition (3.24), i.e., εtol ≤ K∆t2. At this point we

apply Theorem 3 with consistency and stability conditions (4.21)-(4.22) replaced

46

by (3.24) and (3.26), respectively, and conclude that the implicit step-truncation

Euler scheme is convergent with order one if εtol ≤ K∆t2.

Remark 3. When G is linear, i.e., when the tensor ODE (1.2) is linear, then we

may apply HT/TT-GMRES algorithm in Section 4.4.1 without invoking Newton’s

method. In this case, the local error coefficient LH−1
k

can be exchanged for the

coefficient of ε at the right side of inequality (4.40).

3.5 The Implicit Midpoint Method

The implicit midpoint rule [49],

fk+1 = fk + ∆tG
(1

2(fk + fk+1)
)

, (3.27)

is a symmetric and symplectic method of order 2. By introducing

Hk (fk+1) = fk+1 − fk − ∆tG
(1

2(fk + fk+1)
)

= 0 (3.28)

we again see the implicit method as a root finding problem at each time step. To

prove convergence of the implicit step-truncation midpoint method we follow the

same steps described in the previous section. To this end, consider the sequence

of tensors f [j]
k+1 generated by the inexact Newton method with HT/TT-GMRES

iterations (see Section 4.4.1) applied to (3.28). The sequence of tensors f [j]
k+1

approximates fk+1 satisfying (3.28). As before, we terminate the inexact Newton’s

iterations as soon as condition (3.21) is satisfied. By repeating the same steps that

led us to inequality (3.22), we have

∥∥∥f(∆t) − f [j]
1

∥∥∥ ≤ K1∆t3 + LH−1
k

εtol. (3.29)

47

Hence, setting the stopping tolerance as εtol ≤ K∆t3 we get second order con-

sistency. We use this to determine the stability condition (4.22). As before, we

derive the condition for when the zero of (3.28) is exact. Denote by f̂0, f̃0 two

different initial conditions. Performing one step of the standard implicit midpoint

method yields the following bound

∥∥∥f̂1 − f̃1

∥∥∥ ≤
(

1 + ∆t
LG
2

) ∥∥∥f̂0 − f̃0

∥∥∥+ ∆t
LG
2
∥∥∥f̂1 − f̃1

∥∥∥ .

By collecting like terms we see that when ∆t ≤ 1/LG,

∥∥∥f̂1 − f̃1

∥∥∥ ≤ 2 + ∆tLG
2 − ∆tLG

∥∥∥f̂0 − f̃0

∥∥∥
≤
(

1 + ∆t
3LG

2

) ∥∥∥f̂0 − f̃0

∥∥∥ . (3.30)

The zero-stability condition for the implicit step-truncation midpoint method can

now be found by repeating the arguments of inequality (3.26). This gives

∥∥∥f̂ [j]
1 − f̃ [m]

1

∥∥∥ ≤
(

1 + ∆t
3LG

2

) ∥∥∥f̂0 − f̃0

∥∥∥+ 2LH−1
k

εtol. (3.31)

Thus, the stability condition is satisfied by the same condition on εtol that satisfies

the second order consistency condition (3.29), i.e., εtol ≤ K∆t3. At this point we

apply Theorem 3 with consistency and stability conditions (4.21)-(4.22) replaced

by (3.29) and (3.31), respectively, and conclude that the implicit step-truncation

midpoint scheme is convergent with order two if εtol ≤ K∆t3.

48

3.6 Selection of Truncation Error Coefficients

In this section we provide a lower bound on the local error coefficients used

throughout this chapter whenever a tensor rank truncation is applied. Specifically,

we analyze the coefficients appearing in Proposition 1, the coefficients in inequal-

ities (3.7,3.8), and their counterparts in the algorithms discussed throughout this

chapter. We relate the error due to truncation to the singular value decay rate

of a tensor. This rate may be used to tune the coefficients appearing in the local

truncation error and zero-stability inequalities. To simplify the presentation we

develop the bounds for the matrix case (d = 2) and note that similar results for

d > 2 can be obtained by using the hierarchical approximability theorem discussed

in [45].

With the local truncation error consistency in mind in particular, let {σi} be

the set of singular values of ak and let ak − Tr(ak) = Ek ∈ Rn1×n2 be the error

matrix due to SVD truncation. Then the local consistency condition of order p

can be written as

∥ak − Tr(ak)∥2
2 = ∥Ek∥2

2

=
min(n1,n2)∑

i=rk+1
σ2

i ≤ M2∆t2p+2.
(3.32)

Equation (3.32) can be used to obtain the following lower bound for the coefficient

M

M ≥ 1
∆tp+1

√√√√√min(n1,n2)∑
i=rk+1

σ2
i . (3.33)

The lower bound can be explicitly computed if we have available the decay rate of

the singular values {σi}. For instance, if the singular values decay exponentially

fast (as in the case of singular values considered in [81]), i.e., σ2
i ≤ Cqi for some

49

C > 0 and q ∈ (0, 1), then by the geometric series formula we have that

∥ak∥2
2 ≤ C

∞∑
i=1

qi = C
q

(1 − q) ,

which yields Cq ≥ (1 − q)∥ak∥2
2. In this case we may bound the local error as

∥Ek∥2
2 ≤ C

∞∑
i=rk+1

qi = C
∞∑

i=1
qi − C

r∑
i=1

qi = C
q − (q − qr+1)

1 − q
= C

qr+1

1 − q
.

Inserting this bound into (3.33) and recalling that Cq ≥ (1−q) ∥ak∥2
2 and ∥ak∥2 ≥

∥Ek∥2 we obtain

M ≥ 1
∆tp+1

√√√√Cqrk+1

(1 − q) ≥ 1
∆tp+1

√√√√(1 − q) ∥ak∥2
2 qr

(1 − q) = ∥ak∥2
√

qr

∆tp+1 . (3.34)

Equation (3.34) establishes a relationship between the local error coefficient M ,

the solution rank r at time step k, the time step ∆t, and the 2-norm of the

solution ak at time step k. A similar relation can be derived for singular values

{σi} decaying algebraically, i.e., σ2
i ≤ Ci−1−2s, where s ∈ N. It was shown in [47]

that this decay rate occurs when discretizing an s-times differentiable bivariate

function. Moreover, it was also shown that

∥E∥2 ≤ K∥ak∥2 (r + 1)−s,

where K is a constant related to the measure of the domain of the aforementioned

s-times differentiable bivariate function. Therefore, if we choose the rank r to

satisfy the inequality M∆tp+1/K ≥ ∥ak∥2(rk + 1)−s then we have the local trun-

cation error consistency condition is also satisfied. An expression for K may be

found in Theorem 3.3 of [47].

50

Chapter 4

Analysis of Step-Truncation

Methods

Here, we present a rigorous analysis of step-truncation methods, including

proofs for convergence and absolute stability. A step-truncation temporal integra-

tion method consists of its two titular components. We begin by first discretizing

the ODE (1.2)

df(t)
dt

= G(f(t)), f(0) = f0,

in time with any standard explicit one-step method on an evenly-spaced temporal

grid

fk+1 = Ψ∆t(G,fk). (4.1)

Here, fk denotes an approximation of the exact solution f(k∆t) for k = 1, 2, ..., N ,

and Ψ∆t is a discrete time approximation of the flow map of an ODE, such as

(1.2). For example, Ψ∆t can be the approximate local flow corresponding to the

51

Euler forward method

Ψ∆t(G,fk) = fk + ∆tG(fk). (4.2)

Secondly, in the interest of saving computational resources when iterating (4.1)

we look for an approximation of fk on a low-rank tensor manifold Hr [107] with

multilinear rank r by the use of the nonlinear SVD truncation operator [45]. This

yields the explicit step-truncation scheme

fk+1 = Tr (Ψ∆t(G,fk)) . (4.3)

The rank r can vary with the time step based on appropriate error estimates as

time integration proceeds [92]. Though some theorems still hold when using the

optimally accurate truncation Tbest
r , such as the core theorem of Section 4.2, the

stability properties may differ. For this reason, we assume the use of the SVD

truncation operator throughout this chapter.

4.1 Linear Stability for Explicit Step-Truncation

The fully discrete method (4.3) is said to be space-stable if for some T > 0 the

solution is bounded for 0 < t < T , for arbitrary initial conditions in some Banach

space, as the number of degrees of freedom (e.g., mesh points or modes) increases.

The notion of bounded stability we are capturing in this section is a variation of

absolute stability, rather than zero stability. Contrasting, zero stability places a

continuity condition on the discrete flow map with respect to initial conditions.

When the differential equation under study is linear and the temporal evolution

scheme is a linear map, these notions’ formulae coincide. However, the low-rank

52

truncation operators break linearity. We are actually using a nonlinear update

step, even when the PDE we are solving is linear. Thus, we study the various

notions of stability independently. In this section we address stability for explicit

discretizations of linear problems. I.e., the (typically nonlinear) discrete time flow

map may be replaced with a linear operator Ψ∆t (G,fk) = L∆tfk. This method

defines a stable method under norm || · || method if

∥(L∆t)n v0 − (L∆t)nw0∥ ≤ CT ∥v0 −w0∥ (4.4)

for any pair of initial states v0,w0. The real number CT ≥ 0 is the Lipschitz

constant of the scheme for a fixed integration time T . CT must be independent of

v0, w0, the spacial resolution in G, as well as ∆t and n if n∆t ≤ T . Reddy and

Trefethen [88] showed that we may instead check if the scheme is power-bounded.

It is easy see by the linearity of L∆t that the above condition is equivalent to the

inequality

∥(L∆t)n z0∥ ≤ CT ∥z0∥ , (4.5)

where z0 = v0 −w0 is arbitrary. Clearly, if z0 = 0 then equality is achieved. So

we lose no generality by imposing z0 ̸= 0. Divide both sides by ||z0|| to obtain

∥(L∆t)n z0∥
∥z0∥

≤ CT . (4.6)

It is immediate that the inequality holds for all z0 ̸= 0 if and only if it holds for

the maximizing z0. Therefore, stability for a linear update is equivalent to the

time stepping operator being power bounded, i.e.,

∥(L∆t)n∥ = max
z ̸=0

∥(L∆t)n z∥
∥z∥

≤ CT . (4.7)

53

If we let || · || = || · ||2, then the operator norm is the spectral radius. Reddy and

Trefethen [88, 89] proved that power bounded property for n → ∞ and fixed ∆t

is equivalent to a statement about the eigenvalues of “nearby” linear operators,

the so-called ε-eigenvalues. Specifically, given any ε > 0, there exists E with

||E||2 ≤ ε satisfying

∥L∆t +E∥2 ≤ 1 + CT ε. (4.8)

They also show that if n → ∞ is changed to the condition n∆t ≤ T , then there is

a direct generalization of the Lax stability inequality [66]. Specifically, given any

ε > 0, there exists E with ||E||2 ≤ ε satisfying

∥L∆t +E∥2 ≤ 1 + KT ε + QT ∆t for all n such that n∆t ≤ T. (4.9)

The inequality above may be interpreted as “the operator L∆t can be perturbed

in a such a way that its eigenvalues grow linearly with time step away from a

slightly enlarged unit disk in the complex plane.” In their paper, the statement is

made in terms of the spectral radius rather than operator norms. We now have

all elements to prove stability of linear integrators on low-rank tensor manifolds.

Theorem 2 (Absolute Stability of for Step-Truncation). Suppose

fk+1 = L∆tfk (4.10)

defines a Lax-stable linear method, i.e. ∥L∆t∥2 ≤ 1 + K∆t. Then the rank-

truncated scheme

fk+1 = Tr(L∆tfk) (4.11)

is bounded with the same stability constant as (4.10).

54

Proof. Recall that the truncation operator under study is TSVD
r = Tr. Moreover,

the theorem holds with an identical proof regardless of whether or not the rank r

is time dependent. (The operator norm of the truncation is not dependent on the

particular rank.) We proceed by induction. For k = 1 the theorem follows from

inequality (2.27). For k > 1 we utilize Lemma 2, and write

∥Tr(L∆tfk)∥2 ≤ ∥L∆t∥k
2 ∥f0∥2 . (4.12)

Then we recall that stability of a linear method in this form is equivalent[88] to

∥∥∥(L∆t)k
∥∥∥

2
≤ CT ∀k∆t ≤ T. (4.13)

Assuming that the linear recurrence (4.10) is Lax-stable, we have

∥∥∥(L∆t)k
∥∥∥

2
≤ ∥(L∆t)∥k

2 ≤ (1 + K∆t)k ≤ eK∆t·k = eKT = CT .

Therefore,

∥fk+1∥2 = ∥Tr(L∆tfk)∥2 ≤ ∥Tr∥2 ∥L∆tfk∥2

≤ ∥L∆tfk∥2

= ∥L∆tTr(L∆tfk−1)∥2

≤ ∥L∆t∥2 ∥Tr(L∆tfk−1)∥2

≤ ∥L∆t∥k
2 ∥f0∥2 (Inductive Hypothesis)

≤ CT ∥f0∥2 .

Thus the iteration remains bounded.

We note that Theorem 2 is a sufficiency condition. This does not exclude the

55

possibility that the truncation operator TSVD
r can stabilize an unstable scheme.

4.2 Consistency and Convergence for Ordinary

Differential Equations

Up to this point, we have studied the effects of an individual truncation on the

iterates of a conventional linear time-stepping scheme. However, a conventional

time-stepping scheme may have stages which are amenable to low-rank tensor

approximations. To illustrate this, a step-truncation explicit Euler method

fk+1 = Tr (fk + ∆tG(fk)) , (4.14)

may be further modified to incorporate additional compressions (truncations) for

further memory savings. E.g., truncating G(f) before applying Ψ∆t yields

fk+1 = Tr2 (fk + ∆tTr1 (G(fk))) . (4.15)

Here r1 and r2 are truncation ranks determined by the inequalities1

∥G(fk) − Tr1 (G(fk))∥ ≤ e1,
∥∥∥f̃k+1 − Tr2

(
f̃k+1

)∥∥∥ ≤ e2, (4.16)

where e1 and e2 are chosen error thresholds. As before, r1 and r2 can change with

every time step. In particular, we are now interested in what error controls on e1

and e2 preserve consistency, stability, and provide convergence of the iterates fk

1Throughout the remainder of this chapter, ∥·∥ denotes the standard tensor 2-norm [45, 64],
or a weighted version of it.

56

to differential equation (1.2). More generally, let

fk+1 = Φ∆t(G,fk, e) (4.17)

be an explicit step-truncation method in which we project all G(fk) and tensors

appearing in the local flow approximation Ψ∆t(G,fk) onto tensor manifolds Hri

by setting suitable error thresholds e = (e1, e2, . . .). For instance, if Ψ∆t is defined

by the explicit midpoint method, i.e.,

Ψ∆t (G,fk) = fk +G
(
fk + ∆t

2 G(fk)
)

(4.18)

then

Φ∆t(G,fk, e) = Tr3

(
fk + Tr2

[
G

(
fk + ∆t

2 Tr1 [G(fk)]
)])

, (4.19)

where e = (e1, e2, e3) is a vector collecting the truncation error thresholds yielding

the multilinear ranks r1, r2 and r3. By construction, step-truncation methods of

the form (4.17) satisfy

∥Ψ∆t(G,f) − Φ∆t(G,f , e)∥ ≤ R(e), (4.20)

where R(e) is the error due to tensor truncation. We close this section with a

general convergence theorem for step-truncation temporal integrators. In Chap-

ter 3, we provide several examples of step-truncation methods which satisfy this

theorem and the conditions required on their truncation accuracy.

57

Theorem 3 (Convergence of step-truncation methods). Let φ∆t(G,f) be the

one-step exact flow map defined by (1.2), and Φ∆t(G,f , e) be the approximate

local flow defining a step-truncation method with local error of order p, i.e.,

∥φ∆t(G,f) − Φ∆t(G,f , e)∥ ≤ K∆tp+1 as ∆t → 0. (4.21)

If there exist truncation errors e = e(∆t) (function of ∆t) and constants C, E > 0

(dependent on G) so that the zero-stability condition

∥∥∥Φ∆t(G, f̂ , e) − Φ∆t(G, f̃ , e)
∥∥∥ ≤ (1 + C∆t)

∥∥∥f̂ − f̃
∥∥∥+ E∆tm+1 (4.22)

holds as ∆t → 0, then the step-truncation method is convergent with order z =

min(m, p).

Proof. Under the assumption that ∆t is small enough for our stability and con-

sistency to hold, we proceed by induction on the number of steps. The one-step

case coincides with the consistency condition. Next, we assume that

∥∥∥φ∆t(N−1)(G,f0) − fN−1

∥∥∥ ≤ QN−1∆tz. (4.23)

Let T = N∆t be the final integration time. By applying triangle inequality and

the semigroup property of the flow map,

∥φT (G,f0) − Φ∆t(G,fN−1, e)∥ ≤∥∥∥φ∆t(G,φ∆t(N−1)(G,f0)) − Φ∆t(G,φ∆t(N−1)(G,f0), e)
∥∥∥

+
∥∥∥Φ∆t(G,φ∆t(N−1)(G,f0), e) − Φ∆t(G,fN−1, e)

∥∥∥ . (4.24)

Using the consistency condition (4.21) we can bound the first term at the right

58

hand side of (4.24) by KN−1∆tp+1, where KN−1 represents a local error coefficient.

On the other hand, using the stability condition (4.22) we can can bound the

second term at the right hand side of (4.24) as

∥∥∥Φ∆t(G,φ∆t(N−1)(G,f0), e) − Φ∆t(G,fN−1, e)
∥∥∥ ≤

(1 + C∆t)
∥∥∥φ∆t(N−1)(G,f0) − fN−1

∥∥∥+ E∆tm+1. (4.25)

A substitution of (4.25) and (4.23) into (4.24) yields

∥φT (G,f0) − Φ∆t(G,fN−1, e)∥ ≤ KN−1∆tp+1 + (1 + C∆t)QN−1∆tz + E∆tm+1.

Recalling that z = min(m, p) completes the proof.

We remark that the above proof may be modified to include explicit step-

truncation linear multi-step methods, i.e., step-truncation Adams methods. To

this end, it is sufficient to replace fk with the vector (fk−s,fk−s+1, . . . ,fk) and

the stability condition (4.22) with a suitable multistep alternative. For a complete

analysis of this for Adams-Bashforth methods, see Section 3.3.

4.3 Rank Adaptivity and Tensor Manifolds

One interpretation of Theorem 3 is “It is sufficient to adapt the rank of a

step-truncation time update in such a way so as to guarantee zero stability and

consistency in order to achieve long-time convergence.” We now provide a partial

converse. If one does not adapt the rank and instead holds it constant, then in

the limit of small time step the velocity of the trajectory f(t) will point tangent

to Hr.

59

Proposition 1 (Geometric interpretation of rank adaptivity). Let g ∈ Hr and

v ∈ Rn1×n2×···×nd. The following are equivalent as ∆t → 0:

∃K ≥ 0 so that ∥(I − Pg)v∥2 ≤ K∆t, (4.26)

∃M ≥ 0 so that
∥∥∥(g + ∆tv) − Tbest

r (g + ∆tv)
∥∥∥

2
≤ M∆t2, (4.27)

∃N ≥ 0 so that
∥∥∥(g + ∆tv) − TSVD

r (g + ∆tv)
∥∥∥

2
≤ N∆t2. (4.28)

Proof. The equivalence between (4.27) and (4.28) is an immediate consequence

of (2.22). We now prove that (4.26) is equivalent to (4.27). For the forward

implication, assume ∥(I − Pg)v∥2 ≤ K∆t. We have

∥∥∥(g + ∆tv) − Tbest
r (g + ∆tv)

∥∥∥
2

≤ ∥(g + ∆tv) − (g + ∆tPgv)∥2 + ∆t2C

= ∆t ∥v − Pgv∥2 + ∆t2C

≤ ∆t2K + ∆t2C,

where C ≥ 0 denotes a constant obtained by a Taylor expansion of Tbest
r (see

(2.24)). Setting M ≥ K + C, proves the forward implication. Conversely, if we

assume
∥∥∥(g + ∆tv) − Tbest

r (g + ∆tv)
∥∥∥

2
≤ M∆t2, then

∥(I − Pg)v∥2 = ∆t−1 ∥g + ∆tv − (g + ∆tPgv)∥2

≤ ∆t−1
(∥∥∥(g + ∆tv) − Tbest

r (g + ∆tv)
∥∥∥

2
+ C∆t2

)
≤ ∆tM + ∆tC.

Setting K ≥ M + C, we prove (4.27) implies (4.26).

The rank increase criterion (4.26) for the tangent space projection offers ge-

ometric intuition which is not apparent from the step-truncation rank criteria

60

(4.27)-(4.28). That is, the solution rank should increase if the dynamics do not

admit a sufficient approximation on the tensor manifold tangent space. Moreover,

the truncation accuracy required for approximating the dynamics depends directly

on the time step size ∆t and the desired order of accuracy. By applying condition

(4.26) to an ordinary differential equation projected tangent to the manifold Hr

at point fk,

fk+1 = Φ∆t (Pfk
G,fk) , f(0) = Tr(f0). (4.29)

it is possible to develop a rank-adaptive version of the step-truncation scheme

proposed in [59]. Specifically, the solution rank r at each time step can be chosen

to satisfy a bound on the component of (4.29) normal to the tensor manifold Hr.

4.4 Implicit Step-Truncation and Root Finding

for Tensor Decompositions

To introduce implicit step-truncation tensor methods, let us begin with the

standard Euler backward scheme

fk+1 = fk + ∆tG(fk+1), (4.30)

and the associated root-finding problem

Hk(fk+1) = fk+1 − fk − ∆tG(fk+1) = 0. (4.31)

Equation (4.31) allows us to compute fk+1 as a zero of the function Hk. This

can be done, e.g., using the Netwon’s method with initial guess f [0]
k+1 = fk. As is

well-known, if the Jacobian of Hk is invertible within a neighborhood of fk, then

61

the implicit function theorem guarantees the existence of a locally differentiable

(in some neighborhood of fk) nonlinear map Θ∆t depending on G such that

fk+1 = Θ∆t (G,fk) . (4.32)

In the setting of Newton’s method described above, the map Θ∆t is computed it-

eratively. An implicit step-truncation scheme can be then formulated by applying

the tensor truncation operator Tr to the right hand side of (4.32), i.e.,

fk+1 = Tr (Θ∆t (G,fk)) . (4.33)

The tensor truncation rank r can be selected based on the inequality

∥Tr(Θ∆t(G,fk)) − Θ∆t(G,fk)∥ ≤ A∆t2. (4.34)

With some additional effort to show that this truncated iteration is zero-stable, it

follows from Theorem 3 that this yields an order one (in time) integration scheme.

Of course, if the Jacobian of Hk in equation (4.31) can be computed and stored

in computer memory, then we can approximate fk+1 = Θ∆t(G,fk) for any given

fk and G using Newton’s iterations. However, the exact Newton’s method is

not available to us in the high-dimensional tensor setting. Hence, we look for

an approximation of Θ∆t(G,fk) computed using the inexact Newton method.

We briefly discuss the general approach of the inexact Newton iteration. The

algorithm dates to a 1982 article [34] by Dembo et al. which allows one to apply

approximate inverses of the Jacobian in exchange for weakening the convergence

rate of the Cauchy sequence being produced. In our case, convergence is either

superlinear or linear rather than quadratic. To illustrate this algorithm, consider

62

the iteration for solving a system of nonlinear equations written as H(f) = 0.

The typical iteration for this would be written as

f [j+1] = f [j] −
(
JH

(
f [j]

))−1
H
(
f [j]

)
,

where JH
(
f [j]

)
is the Jacobian of H evaluated at f [j]. The inexact version of

this iteration replaces the inverse Jacobian term with an approximate solution to a

system of linear equations which must be satisfied up to a specified relative error.

This algorithm was not described in the context of tensor truncations or low-

rank methods originally. It only makes assumptions about the relative accuracy

of the inverse Jacobian operator evaluation. In our work, we apply a matrix-free

approach in which we evaluate the Jacobian by representing it as a function which

gives a new HT tensor as its output. For the inexact matrix inverse step, we apply

the relaxed TT-GMRES algorithm described in [40]. This is an iterative method

for the solution of linear equations which makes use of an inexact matrix-vector

product defined by low-rank truncation. Though the algorithm was developed for

TT tensors, it may be also applied to HT tensors without significant changes.

4.4.1 The Inexact Newton Iteration

We describe the inexact Newton’s method with HT/TT-GMRES iterations

to solve an arbitrary algebraic equation of the form Hk(f) = 0 (e.g., equation

(4.31)) on a tensor manifold with a given rank. The algorithm can be used to

approximate the mapping Θ∆t(G,fk) corresponding to any implicit integrator,

and it returns a tensor which can be then truncated further as in (4.33). A large

class of implicit methods can be equivalently formulated as a root-finding problem

63

for a nonlinear system of algebraic equations in the form

H(f) = 0 (4.35)

at each time step. In this section we develop numerical algorithms to compute

an approximate solution of (4.35) on a tensor manifold Hr with rank r. In other

words, we are interested in finding r so that f ∈ Hr that solves (4.35) with

controlled accuracy. To this end, we combine the inexact inexact Newton method

[34, Thm. 2.3 and Cor. 3.5] with the TT-GMRES linear solver proposed in [40].

Theorem 4 (Inexact Newton method [34]). Let H : RN → RN be continuously

differentiable in a neighborhood of a zero f ∗, and suppose that the Jacobian of

H, i.e., JH(f) = ∂H(f)/∂f , is invertible at f ∗. Given f [0] ∈ RN , consider the

sequence

f [j+1] = f [j] + s[j], j = 0, 1, . . . (4.36)

where each s[j] solves the Newton iteration up to relative error η[j], i.e., it satisfies

∥∥∥JH (f [j]
)
s[j] +H

(
f [j]

)∥∥∥ ≤
∥∥∥H (

f [j]
)∥∥∥ η[j]. (4.37)

If η[j] < τ < 1 for all j, then there exists ε > 0 so that for any initial guess

satisfying
∥∥∥f [0] − f ∗

∥∥∥ < ε, the sequence {f [j]} converges linearly to f ∗. If in

addition, η[j] → 0 as j → ∞, then the convergence speed is superlinear.

The proof is a nontrivial analysis of inserting a relative error of the approximate

Jacobian inverse application into the formula for a Newton iteration. In Appendix

B we present a proof of Theorem 4 by modifying the proof of [34, Thm. 2.3] to

analyze the effect of a relative error term dependent on the iteration number. The

64

next question is how to compute an approximate solution of the linear system

JH
(
f [j]

)
s[j] = −H

(
f [j]

)
(4.38)

satisfying the bound (4.37), without inverting the Jacobian JH
(
f [j]

)
and as-

suming that s[j] ∈ Hrj
, i.e., that s[j] is a tensor with rank rj. To this end we

utilize the relaxed HT/TT-GMRES method discussed in [40]. HT/TT-GMRES is

an adapted tensor-structured generalized minimal residual (GMRES) method to

solve linear systems in a tensor format. The solver employs an indirect accuracy

check and a stagnation restart check in its halting criterion which we summarize

in the following Lemma.

Lemma 4 (Accuracy of HT/TT-GMRES [40]). Let Jf = b be a linear system

where f , b are tensors in HT or TT format, and J is a bounded, invertible linear

operator on f . Let {f [0],f [1], . . .} be the sequence of approximate solutions gen-

erated by HT/TT-GMRES algorithm in [40], and ε > 0 be the stopping tolerance

for the iterations. Then

∥∥∥Jf [j] − b
∥∥∥ ≤ m∥J∥∥J−1∥∥b∥ε, (4.39)

where m is the number of Krylov iterations performed before restart. Similarly,

the distance between f [j] and the exact solution f can be bounded as

∥∥∥f [j] − f
∥∥∥ ≤ m∥J∥∥J−1∥2∥b∥ε. (4.40)

The proof of Lemma 4 is a rather trivial manipulation of the error terms present

in GMRES with inexact operator application. In [40], the result is simply derived

in a section of the work and not given its own theorem. We can now combine

65

the HT/TT-GMRES linear solver with the inexact Newton method, to obtain an

algorithm that allows us to solve nonlinear algebraic equations of the form (4.35)

on a tensor manifold.

Theorem 5 (HT/TT Newton method). Let H : Rn1×n2×···×nd → Rn1×n2×···×nd be

a continuously differentiable nonlinear map which operates on HT or TT tensor

formats, and let f ∗ be a zero of H. Suppose that the Jacobian of H, denoted as

JH(f), is invertible at f ∗. Given an initial guess f [0], consider the iteration

f [j+1] = Tr
(
f [j] + s[j]

)
(4.41)

where s[j] is the HT/TT-GMRES solution of JH
(
f [j]

)
s[j] = −H

(
f [j]

)
satisfying

∥∥∥JH (f [j]
)
s[j] +H

(
f [j]

)∥∥∥ ≤ 1
2
∥∥∥H (

f [j]
)∥∥∥ η[j], (4.42)

where η[j] is the relative error, which can be any value satisfying 0 ≤ η[j] < τ < 1.

Then the Newton iteration converges linearly so long as for each j the rank r of

the truncation operator Tr is chosen to satisfy

∥∥∥Tr (f [j] + s[j]
)

− f [j] − s[j]
∥∥∥ ≤

∥∥∥H (
f [j]

)∥∥∥
2 ∥JH (f [j])∥η[j]. (4.43)

Proof. Let f [0] be an initial guess. Consider the sequence

f̃ [j+1] = f [j] + s[j] j = 0, 1, . . . (4.44)

where s[j] is the HT/TT-GMRES solution of JH
(
f [j]

)
s[j] = −H

(
f [j]

)
obtained

with tolerance

εj <
η[j]

2m ∥JH (f [j])∥
∥∥∥J−1

H (f [j])
∥∥∥ , (4.45)

66

and 0 ≤ η[j] < 1. The next step is to truncate f̃ [j+1] to a tensor

f [j+1] = Tr(f̃ [j+1]) (4.46)

with rank r chosen so that

∥∥∥f [j+1] − f̃ [j+1]
∥∥∥ <

∥∥∥H (
f [j]

)∥∥∥
2 ∥JH (f [j])∥η[j]. (4.47)

Then the error in solving the Newton iteration this step is

r̃[j] = JH
(
f [j]

) [
f [j+1] − f̃ [j+1] + sj

]
+H

(
f [j]

)
, (4.48)

which we constructed to satisfy the bound

∥∥∥r̃[j]
∥∥∥ ≤

∥∥∥JH (f [j]
)
s[j] +H

(
f [j]

)∥∥∥+
∥∥∥JH (f [j]

) [
f [j+1] − f̃ [j+1]

]∥∥∥
<
∥∥∥H (

f [j]
)∥∥∥ η[j].

Hence, the inexact HT/TT-GMRES Newton method converges linearly. This

completes the proof.

An Example

Let us provide a brief numerical demonstration of the inexact Newton method

with HT/TT-GMRES iteration. To this end, consider the cubic function

H(f) = 1.5f + 0.5f0 + 0.125(f + f0)3 (4.49)

where all products are computed using the approximate element-wise Hadamard

tensor product with accuracies set to 10−12, and f0 is a given tensor which cor-

67

Figure 4.1: Error versus iteration count of inexact Newton’s method in the HT
format.

responds to the initial condition used in Section 5.3.1 truncated to an absolute

tolerance of 10−4. The Jacobian operator is easily obtained as

JH(f)s = 1.5s+ 0.375(f + f0)2s. (4.50)

We set the relative error of the matrix inverse to be η = 10−3. In Figure 4.1 we

plot the results of the proposed inexact Newton method with HT/TT-GMRES

iterations. We see that the target tolerance of 2.2×10−8 is hit in just 12 iterations.

4.4.2 The Compression Step

While increasing the tensor rank may be necessary for convergence of the HT/TT-

GMRES iterations, it is possible that we raise the rank by more than is required

for the desired order of accuracy in a single time step. Therefore, it is convenient

to apply an additional tensor truncation after computing, say, j steps of the HT

inexact Newton’s method which returns f [j]
k+1. This is the same as the “compres-

sion step” at the end of HT/TT-GMRES algorithm as presented in [40]. This

68

gives us our final estimate of f((k + 1)∆t) as

fk+1 = Tr
(
f

[j]
k+1

)
,

∥∥∥Tr (f [j]
k+1

)
− f [j]

k+1

∥∥∥ ≤ er. (4.51)

Regarding the selection of the truncation error er we proceed as follows. Suppose

that Ψ∆t(G,fk) is an explicit integration scheme of the same order (or higher)

than the implicit scheme being considered. Then we can estimate the local error

as

∥∥∥f [j]
k+1 − f((k + 1)∆t)

∥∥∥ ≤
∥∥∥f [j]

k+1 − Ψ∆t(G,fk)
∥∥∥+ ∥Ψ∆t(G,fk) − f((k + 1)∆t)∥

=
∥∥∥f [j]

1 − Ψ∆t(G,fk)
∥∥∥+ O(∆tp+1), (4.52)

Thus, we may roughly estimate the local truncation error and set this as the

chosen error for approximation to HT or TT rank r using

er =
∥∥∥f [j]

k+1 − Ψ∆t(G,fk)
∥∥∥ . (4.53)

We may drop more singular values than needed, especially if the choice of ∆t is

outside the region of stability of the explicit scheme Ψ∆t(G,fk). However, this

estimate guarantees that we do not change the overall convergence rate. More-

over, it cannot impact stability of the implicit step-truncation integrator since

the compression step has operator norm equal to one, regardless of the rank cho-

sen. (Recall Section 4.1.) In our numerical experiments we use the explicit step-

truncation midpoint method to estimate local error, i.e., Ψ∆t(G,fk) in (4.53) is

set as in (4.18).

69

4.5 Stability for Implicit Step-Truncation

We now address absolute stability of the proposed implicit step-truncation meth-

ods. The study on absolute stability allows us to determine whether the time

stepping scheme is robust to perturbations due to finite ∆t and finite tensor trun-

cation tolerance. As is well-known, absolute stability analysis of classical time

integration schemes allows us to claim stability over a large number of iterations

for finite ∆t and for specific linear prototype problems. For step-truncation inte-

gration on tensor manifolds, we have additional perturbations due to the tensor

truncation induced by nonzero HT/TT-GMRES stopping tolerance. To study

absolute stability of implicit step-truncation schemes for finite ∆t and truncation

tolerances, consider the following linear initial value problem

df

dt
= Lf , f(0) = f0 (4.54)

where L is a linear operator with eigenvalues in the left half complex plane. After

applying any standard implicit time stepping scheme, we end up with a system of

linear equations of the form

Afk+1 = Wfk. (4.55)

Specifically, for the implicit Euler we have A = I − ∆tL, W = I while for the

implicit midpoint method we have A = I − 0.5∆tL, W = I + 0.5∆tL. As is well

known, both implicit Euler and implicit midpoint are unconditionally stable, in

the sense that for any ∆t > 0, ∥fk∥ → 0 as k → ∞. One way of proving this is

by noting that whenever the eigenvalues of L have negative real part, we get

∥A−1W ∥ < 1, (4.56)

70

and therefore the mapping A−1W is contractive. This implies the sequence of

fk defined by (4.55) converges to zero. The following theorem characterizes what

happens when we exchange exact matrix inverse A−1 with an inexact inverse

computed by tensor HT/TT-GMRES iterations.

Theorem 6 (Absolute stability of implicit step-truncation methods). Consider

an implicit scheme of the form (4.55), and suppose that ∥A−1W ∥ < 1. Denote

by f̂k the solution of Af̂k = Wf̂k−1 (k = 1, 2, . . .) obtained with the HT/TT-

GMRES tensor solver described in Section 4.4.1, with m Krylov iterations and

stopping tolerance η. If

∥∥∥Af̂k −Wf̂k−1

∥∥∥ ≤ m∥A∥∥A−1∥η, (4.57)

then the distance between f̂k and the exact solution fk = A−1Wfk−1 can be

bounded as ∥∥∥f̂k − fk

∥∥∥ ≤ m∥A∥∥A−1∥2

1 − ∥A−1W ∥
η. (4.58)

Note that (4.58) implies that
∥∥∥f̂k

∥∥∥ = O(η) as k → ∞. In the context of

HT/TT-GMRES iterations, the number η can be controlled by setting the stop-

ping tolerance in Lemma 4 (Section 4.4.1) as

εk = η∥∥∥Wf̂k

∥∥∥ (4.59)

at each time step k.

71

Proof. The proof follows from a straightforward inductive argument. For k = 1

we have

f̂1 − f1 = A−1Af̂1 −A−1Wf0

= A−1
(
Af̂1 −Wf0

)
. (4.60)

By using (4.57), we can bound
∥∥∥f̂1 − f1

∥∥∥ as

∥∥∥f̂1 − f1

∥∥∥ ≤ m∥A∥∥A−1∥2η. (4.61)

For k = 2 we have

∥∥∥f̂2 − f2

∥∥∥ ≤
∥∥∥f̂2 −A−1Wf̂1

∥∥∥+
∥∥∥A−1Wf̂1 − f2

∥∥∥
=
∥∥∥f̂2 −A−1Wf̂1

∥∥∥+
∥∥∥A−1Wf̂1 −A−1Wf1

∥∥∥
≤ m∥A∥∥A−1∥2η + ∥A−1W ∥

∥∥∥f̂1 − f1

∥∥∥
≤
(
1 + ∥A−1W ∥

)
m∥A∥∥A−1∥2η,

where the last inequality follows from (4.61). More generally, let the inductive

hypothesis be

∥∥∥f̂k−1 − fk−1

∥∥∥ ≤ m∥A∥∥A−1∥2η
k−2∑
j=0

∥A−1W ∥j. (4.62)

Repeating the string of inequalities above and replacing the right sum with the

inductive hypothesis, we obtain

∥∥∥f̂k − fk

∥∥∥ ≤ m∥A∥∥A−1∥2η
k−1∑
j=0

∥A−1W ∥j ≤ m∥A∥∥A−1∥2

1 − ∥A−1W ∥
η, (4.63)

which completes the proof.

72

The stability region of an explicit step-truncation method is the same as the

corresponding method without truncation [93, 92]. Theorem 6 shows that the sta-

bility region of an implicit step-truncation method is identical to the corresponding

method without truncation, though by relaxing accuracy we see that instead our

iterates decay to within the solver tolerance of zero rather than converging to zero

in an infinite time horizon. In other words, an implicit step-truncation method

will be unconditionally stable. However, if the tolerance of HT/TT-GMRES is set

too large, then we could see poor stability behavior akin to an explicit method.

73

Chapter 5

Numerical Applications

In this section, we showcase the algorithms outlined above. We exhibit the

differing behavior of fixed rank and adaptive rank methods, as well as the differing

performance of the implicit and explicit methods.

5.1 Fixed Rank Step-Truncation Methods

We present stability preservation for fixed rank explicit step truncation meth-

ods. These examples do not attempt to truncate to preserve consistency, but do

satisfy Theorem 2.

5.1.1 Fixed Rank Adams-Bashforth

In this section we provide demonstrative examples of fixed rank truncated

tensor methods applied to variable-coefficient advection-diffusion PDEs of the

form

∂

∂t
u(t,x) = −

d∑
k=1

∂

∂xk

(
fk(x)u(t,x)

)
+

d∑
k=1

d∑
q=1

∂2

∂xk∂xq

(Γkq(x)u(t,x)), (5.1)

74

Second order centered finite differences Fourier pseudo-spectral collocation

Figure 5.1: Two-dimensional PDE (5.2). Operator norm of Lk
∆t (see Eq. (5.3))

versus k for two conditionally stable schemes, namely the second order centered
finite-differences and the Fourier pseudo-spectral collocation schemes on a grid
with n×n evenly-spaced points in [0, 2π]2, with n = 4, 8, 16, 32, 64. It is seen that
that the Fourier pseudo-spectral method is less stable than the finite-difference
method, in agreement with well-known results [51]. Here we set ∆t = 0.0025.

where f(x) = [f1(x) f2(x) . . . fd(x)]T is the drift vector field and Γ(x) = [Γkq(x)]

is the symmetric positive definite diffusion matrix. As is well-known, the PDE

(5.1) governs the evolution of the probability density function corresponding to

an ODE driven by multiplicative white noise [90]. We approximate the solution

of (5.1) in the spacial domain Ω = [0, 2π]d with periodic boundary conditions. In

particular, we look at the growth of matrix rank in the case of a 2D hyperbolic

PDE. Additionally, we provide examples of Theorem 2 in the case of higher-

dimensional advection-diffusion PDEs. The C++/MPI hierarchical Tucker code

we developed to study these examples is available at [91].

Two Dimensional Hyperbolic PDE

Let us consider the two-dimensional hyperbolic PDE

∂

∂t
u(t,x) = − ∂

∂x1

(
sin(x2) · u(t,x)

)
− ∂

∂x2

(
cos(x1) · u(t,x)

)
. (5.2)

75

Full-rank solution Low-rank solution

t = 1.2

t = 2.5

t = 3.8

t = 5.0

Figure 5.2: Numerical solution of the PDE (5.2) using a Fourier pseudo-spectral
method on a grid with 256 × 256 nodes. The initial condition is chosen as
u0(x1, x2) = sin2(x1 + x2)/(2π2). Shown are the full-rank solution (left) and the
fixed-rank tensor solution (right) we obtained by limiting the maximum rank to
64. It is seen that the two solutions diverge by t = 3.8, but stability is maintained
as proven in Theorem 2. 76

Figure 5.3: Tensor rank of the numerical solution to the PDE (5.2) versus time.
The spatial derivatives are discretized using a Fourier pseudo-spectral method on
a grid with 256 × 256 nodes. Hence the maximum rank of the solution tensor
is 256. The rank-limited solution has maximum rank set to 64. Note that just
before applying the truncation operator in a rank-limited scheme, the rank of the
iterate appears to grow at a similar rate to the scheme with no truncation. The
inaccuracies of the rank-truncated solutions shown in Figure 5.2 at t = 3.8 and
t = 5 are due to the fact that the solution rank is much larger than 64 at such
times (compare red and blue curves).

We discretize (5.2) in space on an evenly spaced grid with n × n points in

[0, 2π]2. Specifically we will consider both Fourier spectral methods and second

order finite-differences discretization. In the two-dimensional setting we consider

here, the semi-discrete form (1.2) involves two-dimensional arrays, i.e. matrices.

Hence, hierarchical rank is the same as matrix rank in this case, since the rank

of a matrix and its transpose coincide. Applying the two-step Adams-Bashforth

method yields a linear recurrence relation of the form (4.10), with

L∆t =

−∆t

2 G+ I 3
2∆tG

I 0

 , (5.3)

77

and

G = − (D ⊗ I) diag[sin(x2)] + (I ⊗D) diag[cos(x1)]. (5.4)

Here, sin(x2) and cos(x1) are vectorizations of sin(x2) and cos(x1) evaluated on

an evenly-spaced 2D spacial grid, and D is the first order (one-dimensional) dif-

ferentiation matrix.

In Figure 5.1 we plot the typical behavior of the operator norm
∥∥∥Lk

∆t

∥∥∥ ver-

sus k for two conditionally stable schemes, namely the Fourier pseudo-spectral

and the second order centered finite-difference schemes on a n × n grid, with n =

4, 8, 16, 32, 64. It is seen that
∥∥∥Lk

∆t

∥∥∥ grows as k2, in the case of the Fourier pseudo-

spectral method, making it considerably less stable than the finite-difference

method, in agreement with well-known results [51].

In Figure 5.2 we plot the numerical solution of (5.2) we obtained with an

accurate Fourier spectral method. The initial condition is chosen as u0(x1, x2) =

sin2(x1 + x2)/(2π2). It is seen that the low-rank tensor solution obtained by

capping the maximum rank to 64 slightly differs from the full rank solution at

t = 3.8 and t = 5. However, stability is maintained as proven in Theorem 2.

In Figure 5.3 we show that the solution rank grows in time. Such growth is

determined by the fact that that solution to the hyperbolic problem (5.2) becomes

harder to resolve as time increases (see Figure 5.2). In particular, in Figure 5.3

we see that just before applying the truncation operator, the rank of the iterate

appears to grow at a similar rate to the tensor scheme with no truncation.

Six Dimensional Parabolic PDE

We now demonstrate a higher dimensional example which is both highly diffu-

sive and very well approximated by a low-rank numerical solution tensor. To this

end, we consider the Fokker-Planck equation (5.1) with d = 6. For our numerical

78

Max rank 1 Max rank 5

Figure 5.4: Six-dimensional Fokker-Plank equation (5.1). Temporal snapshots
of the marginal PDF u(t, x1). It is seen that the system is highly diffusive and it
yields a solution that can be well approximated by a low-rank hierarchical Tucker
tensor format.

demonstration, we consider the following drift and diffusion coefficients

f(x) =
[
cos(x2) sin(x3) cos(2x4) sin(2x5) cos(3x6) sin(3x1)

]⊤

+ 6
[
1 1 1 1 1 1

]T

,

Γ(x) =

5 cos2(x6) sin(x1) cos(x2) sin(x3) cos(x4) sin(x5)

sin(x1) 5 cos2(3x3) sin(5x2) cos(2x1) sin(4x6) cos(x1)

cos(x2) sin(5x2) 5 cos2(3x5) sin(2x3) cos(6x2) sin(x6)

sin(x3) cos(2x1) sin(2x3) 5 cos2(x3) sin(x1) cos(4x4)

cos(x4) sin(4x6) cos(6x2) sin(x1) 5 cos2(5x5) sin(x6)

sin(x5) cos(x1) sin(x6) cos(4x4) sin(x6) 5 cos2(7x6)

+ 6I.

The matrix of drift coefficients was chosen to encourage mixing between different

variables and the diffusion coefficients were chosen so that the symmetric matrix

79

Figure 5.5: In Lemma 2, we proved that the truncation operator Tr sat-
isfies the inequality ||Tr(u)||2 ≤ ||u||2. In this figure we plot of the ratio
τr(t) = ||Tr(u)||2/||u||2 versus time. We see that setting max rank equal to 5
does in fact give us an extra single digit of accuracy in the nonlinear rank pro-
jection. However,τ1(t) and τ5(t) are very close to 1, which explains why the two
plots in Figure 5.4 are visually identical.

is diagonally dominant. Therefore, Γ will always be positive definite ensuring

that (5.1) is a bounded diffusion problem. We discretize (5.1) in space using the

Fourier pseudo-spectral collocation method as in 5.1.1. Specifically, we construct

an evenly-spaced grid in [0, 2π]6 with 31 points in each variable. In principle this

yields 316 degrees of freedom, which require 110 MB (Mega Bytes) of storage if

a tensor product representation in double precision floating point arithmetic is

utilized. However, if we employ a rank r hierarchical Tucker tensor format the

memory footprint is reduced to [r(31×6)+4r3 +r2]/8 Bytes. For instance, a rank

40 hierarchical Tucker tensor format in 6 dimensions on a grid with 31 points in

each variable requires only 33 kB (kilo Bytes) of storage. By using the identity

∂2/∂xk∂xq = ∂2/∂xq∂xk, we see that we can just apply the strict upper triangle

part of Γ once and then double the result. The matrix G at right-hand side of

80

(1.2) in this case has a rather involved expression and therefore it is not reported

here. We supplement (5.1) with the initial condition

u(0,x) = 1
π6

6∏
j=1

sin(xj)2. (5.5)

Note that (5.5) is positive and it integrates to one over the hyper-cube [0, 2π]6, i.e.,

it is a probability density function. In Figure 5.4 we plot the temporal evolution

of the marginal PDF

u(t, x1) =
∫

[0,2π]5
u(t,x)dx2 · · · dx6 (5.6)

It is seen that the PDE (5.1) is highly diffusive and it yields a solution that can

be well approximated by a low-rank hierarchical Tucker tensor format. In Figure

5.5 we provide a numerical verification of our Lemma 2. To this end, we plot

the ratio τr(t) = ||Tr(u)||2/||u||2 versus time, and verify that is always smaller

than one for any choice of rank. Note that both τ1(t) and τ5(t) are very close to

1, which explains why the two plots in Figure 5.4 are visually identical. In our

simulations we found that the hierarchical ranks of the HT tensor solution do not

grow monotonically as in the two-dimensional advection problem (see Figure 5.3).

Instead, they reach a peak very quickly in time. This is because the solution is

well approximated by a rank one tensor (see Figure 5.5).

5.2 Explicit Rank-Adaptive Methods

In this section we present and discuss numerical applications of the proposed

explicit rank-adaptive step-truncation methods. We have seen that these methods

are defined by parameters summarized in Table 5.1. To choose such parameters in

81

Integration Method Free Parameters Dependent Parameters
Rank-adaptive Euler

(Sec. 3.1)
∆t, M1, M2

εr = M1∆t2,

εs = M2∆t

Rank-adaptive midpoint
(Sec. 3.2)

∆t, A, B, G

εα = A∆t3,

εβ = B∆t2,

εγ = G∆t

Two-step rank-adaptive
Adams-Bashforth

(Sec. 3.3)
∆t, A, B, G0, G1

εα = A∆t3,

εβ = B∆t2,

εγ(0) = G0∆t2,
εγ(1) = G1∆t2

Table 5.1: Free and dependent parameters of the explicit rank-adaptive step-
truncation integrators presented in Chapter 3.

each numerical example we proceed as follows: We first choose the time step ∆t so

that the scheme without tensor truncation is stable. Theorem 3 then guarantees

convergence of the rank-adaptive step-truncation scheme for any selection of the

other parameters, e.g., M1 and M2 in the rank-adaptive Euler scheme listed in

Table 5.1. For guidance on how to select the remaining parameters one may apply

the results of Section 3.6, which are based on the knowledge of the singular values

of the solution. An alternative heuristic criterion is to select the free parameters

roughly inverse to the time step so that the local error parameters, e.g., εr and εs

in Table 5.1, do not exceed a specified threshold ε∗, i.e., εr ≤ ε∗ and εs ≤ ε∗.

5.2.1 Rank shock problem

In this section we test ability of the proposed rank-adaptive schemes to track

accuracy and rank for a problem where the rank of the vector field suddenly jumps

to a higher value. To this end, consider the following matrix-valued ordinary

82

Solution Rank Adaptive Euler Error

Figure 5.6: Rank shock problem. Numerical performance of rank-adaptive Euler
method applied to the ODE (5.7)-(5.8). It is seen that the method accurately
tracks the overall shape of the reference solution rank, which was computed to
a singular value threshold of 10−12. Moreover, the numerical error behaves as
expected, decreasing as steady state is approached.

differential equation

df
dt

= Af + fA⊤ + v(t), t ∈ [0, 20], f(0) ∈ RN×N , (5.7)

where A is a symmetric negative definite matrix and v(t) a forcing term that

switches between a low rank and high rank matrix

v(t) =

vhigh, t ∈ (5, 15)

vlow, t ̸∈ (5, 15)
. (5.8)

In equation (5.7)Af+fA⊤ is a stabilizing term which is tangent to the fixed rank

manifold at all time while v(t) steers the solution off of the fixed rank manifold.

83

Integration Method Free Parameters Dependent Parameters
Rank-adaptive Euler

(Sec. 3.1)
∆t = 2 × 10−3,

M1 = M2 = 102

εr = 4 × 10−4,

εs = 2 × 10

Table 5.2: Integration parameters for the rank shock problem (5.7).

For our numerical experiment we let A take the form

A =

−b a 0 0 . . . 0

a −b a 0 . . . 0
...

0 . . . 0 a −b a

0 . . . 0 0 a −b

a, b ∈ R, (5.9)

which is a finite difference stencil with shifted eigenvalues. We set a = 1 and b = 3

to ensure the matrix A is diagonally dominant with negative eigenvalues. This

guarantees that the initial value problem (5.7) will be stable regardless of how

large the N × N matrix size is; for our demonstration we set N = 100. For the

forcing term v(t) we set

vlow =
rlow∑
j=1
ϕjψ

⊤
j , vhigh =

rhigh∑
j=1

σjψjϕ
⊤
j , (5.10)

with ranks rlow = 6 and rhigh = 25. Here, ψj[i] = sin(2πij/N), ϕj[i] = cos(2πij/N)

and σj = (3/4)j. Since the vector field is discontinuous in time, we apply the or-

der 1 rank-adaptive Euler method with parameters summarized in Table 5.2. For

quantification of the numerical error, we use the root mean square error of matrices

84

(Frobenious norm)

∥g − f∥RMS =

√√√√√ N∑
i=1

N∑
j=1

(g[i, j] − f [i, j])2

N2 . (5.11)

To obtain a reference solution fref we simply integrate (5.7) using RK4. As seen

in Figure 5.6, the numerical solution successfully tracks the overall shape of the

reference solution’s rank over time. The numerical error also behaves as expected,

decreasing as a steady state is approached.

5.2.2 Fokker-Planck equation

In this section we apply the proposed rank-adaptive step-truncation algorithms

to a Fokker-Planck equation with space-dependent drift and constant diffusion,

and demonstrate their accuracy in predicting relaxation to statistical equilibrium.

As is well-known, the Fokker-Planck equation describes the evolution of the prob-

ability density function (PDF) of the state vector solving the Itô stochastic dif-

ferential equation (SDE)

dXt = µ(Xt)dt + σdWt. (5.12)

Here, Xt is the d-dimensional state vector, µ(Xt) is the d-dimensional drift, σ is

a constant drift coefficient and Wt is a d-dimensional standard Wiener process.

The Fokker-Planck equation that corresponds to (5.12) has the form

∂f(x, t)
∂t

= −
d∑

i=1

∂

∂xi

(µi(x)f(x, t)) + σ2

2

d∑
i=1

∂2f(x, t)
∂x2

i

, f(x, 0) = f0(x),

(5.13)

85

Integration Method Free Parameters Dependent Parameters
Adaptive Euler

(Sec. 3.1)
∆t = 6.25 × 10−4,

M1 = M2 = 102
εr = 3.90625 × 10−5,

εs = 6.25 × 10−2

Adaptive Midpoint
(Sec. 3.2)

∆t = 6.25 × 10−4,

A = B = 103,

G = 102

εα = 2.44140625 × 10−7,

εβ = 3.90625 × 10−4,

εγ = 6.25 × 10−2

Two-step rank-adaptive
Adams-Bashforth (HT Format)

(Sec. 3.3)

∆t = 6.25 × 10−4,

A = B = 103,

G0 = G1 = 102

εα = 2.44140625 × 10−7,

εβ = 3.90625 × 10−4,

εγ(0) = 3.90625 × 10−5,

εγ(1) = 3.90625 × 10−5,

Table 5.3: Table of parameters for the rank-adaptive step-truncation integrators
of the Fokker-Planck equation (5.13) in dimension d = 2 with initial condition
(5.15). The only free parameters are the local error coefficients. These were
heuristically chosen so that the truncation at each step (to rank r or α) would be
considerably smaller than the time step.

where f0(x) is the PDF of the initial state X0. In our numerical demonstrations,

we set σ = 2,

µi(x) = (γ(xi+1) − γ(xi−2))ξ(xi−1) − ϕ(xi), i = 1, . . . , d, (5.14)

where the functions γ(x), ξ(x), and ϕ(x) are 2π-periodic. Also, in (5.14) xi+d = xi.

We solve (5.13) on the flat torus Ω = [0, 2π]d with dimension d = 2 and d = 4.

5.2.3 Two-dimensional Fokker-Planck equation

Set d = 2 in (5.13) and consider the initial condition

f0(x1, x2) = 1
m0

[
esin(x1−x2)2 + sin(x1 + x2)2

]
, (5.15)

where m0 is a normalization factor. Discretize (5.15) on a two-dimensional grid of

evenly-spaced points and then truncate the initial tensor (matrix) within machine

accuracy into HT format. Also, set γ(x) = sin(x), ξ(x) = cos(x), and ϕ(x) =

86

Adaptive Euler Adaptive AB2 Reference

t = 0

t = 0.05

t = 0.15

t = 0.25

Steady State

Figure 5.7: Numerical solution to the Fokker-Planck equation (5.13) in di-
mension d = 2 with initial condition (5.15) obtained using three distinct meth-
ods: rank-adaptive explicit Euler (3.5), two-step rank-adaptive Adams-Bashforth
(3.15), and a reliable reference solution obtained by solving the ODE (1.2) corre-
sponding to (5.13). The numerical results are obtained on a 50 × 50 spatial grid.
The parameters for the step-truncation integrators we used in this example are
detailed in Table 5.3. 87

Figure 5.8: Fokker-Planck equation (5.13) in dimension d = 2 with initial condi-
tion (5.15). L2(Ω) error of rank-adaptive Euler forward, rank-adaptive AB2, and
rank-adaptive Lie-Trotter [31] (with normal vector threshold 10−4) solutions with
respect to the reference solution. The numerical results are obtained on a 50 × 50
spatial grid.

exp(sin(x))+1 for the drift functions in (5.13). In Figure 5.7, we plot the numerical

solution of the Fokker-Planck equation (5.13) in dimension d = 2 corresponding

to the initial condition (5.15). We computed our solutions with four different

methods:

1. Rank-adaptive explicit Euler (3.5);

2. Two-step rank-adaptive Adams-Bashforth (AB) method (3.15);

3. Rank-adaptive tensor method with Lie-Trotter operator splitting[31];

4. RK4 method applied to the ODE (1.2) corresponding to a full tensor product

discretization of (5.13). We denote this reference solution as fref.

The parameters we used for the rank-adaptive step-truncation methods 1. and

2. are summarized in Table 5.3. The steady state was determined for this compu-

88

Figure 5.9: Fokker-Planck equation (5.13) in dimension d = 2 with initial con-
dition (5.15). Rank versus time for rank-adaptive step-truncation Euler forward,
AB2, rank-adaptive Lie-Trotter with normal vector threshold 10−4 [31], and refer-
ence numerical solutions. The numerical results are obtained on a 50 × 50 spatial
grid. The reference solution rank was computed with a singular value tolerance
of ε−12

tol .

tation by halting execution when ∥∂fref/∂t∥L2(Ω) was below the numerical thresh-

old 10−13. This occurs at approximately t ≈ 24 for the initial condition (5.15).

The numerical results in Figure 5.7 show that the step-truncation methods listed

above match all visual behavior of the reference solution. Observing Figures 5.8

and 5.9, we note that while the rank-adaptive AB2 methods nearly double the

digits of accuracy (in the L2(Ω) norm), only a modest increase in rank is required

to achieve this gain in accuracy. This is because the rank in each adaptive step-

truncation scheme is determined by the increment function A (which defines the

scheme), the nonlinear operator G, and the truncation error threshold (which

depends on ∆t). More precisely, the closer A(G,f , ∆t) is to the tangent space of

the manifold Hr at fk, the less the rank will increase in the next time step. In our

demonstration, this occurs as the solution fk approaches steady state, since, as

89

Figure 5.10: Fokker-Planck equation (5.13) in dimension d = 2 with initial
condition (5.15). L2(Ω) error at T = 1 for the rank-adaptive step-truncation
methods summarized in Table 5.3. The numerical results are obtained on a 40×40
spatial grid.

the rate at which the probability density evolves in time slows down, the quantity

∥A(G,f , ∆t)∥2 tends to zero. Consequently, ∥(I − Pg)A(G,f , ∆t)∥2 will also

tend towards zero since I − Pg is a bounded linear operator. For fixed ∆t, this

means that the rank increase conditions (4.26)-(4.28) will have a smaller likelihood

of being triggered. As we shrink ∆t, the truncation error requirements for consis-

tency (4.26)-(4.28) become more demanding, and thus a higher solution rank is

expected. In Figures 5.8 and 5.9 we also see that the rank-adaptive tensor method

with Lie-Trotter integrator proposed in [31] performs better on this problem than

rank-adaptive step-truncation methods, especially when the solution approaches

the steady state. However, it should be noted that the rank-adaptive method

with operator splitting and normal vector control is considerably more involved

to implement than the step-truncation methods, which are essentially slight mod-

ifications of a standard single-step or multi-step method. In Figure 5.10 we

90

Adaptive Euler Adaptive AB2 Reference

t = 0

t = 0.3

t = 0.4

t = 0.47

Steady State

Figure 5.11: Marginal probability density function (5.17) obtained by integrat-
ing numerically the Fokker-Planck equation (5.13) in dimension d = 4 with ini-
tial condition (5.16) using two methods: rank-adaptive Euler forward and rank-
adaptive AB2. The reference solution computed with a variable time step size RK4
method with absolute tolerance of 10−14 computed on a grid with 204 = 160000
evenly-spaced points.

91

Integration Method Free Parameters Dependent Parameters
Adaptive Euler (HT & TT Formats)

(Sec. 3.1)
∆t = 10−3,

M1 = M2 = 102
εr = 10−4,

εs = 10−1

Adaptive Midpoint (HT Format)
(Small Threshold)

(Sec. 3.2)

∆t = 10−3,

A = B = 103,

G = 102

εα = 10−6,

εβ = 10−3,

εγ = 10−1

Two-step rank-adaptive
Adams-Bashforth (HT Format)

(Small Threshold)
(Sec. 3.3)

∆t = 10−3,

A = B = 103,

G0 = G1 = 102

εα = 10−6,

εβ = 10−3,

εγ(0) = 10−4,

εγ(1) = 10−4

Two-step rank-adaptive
Adams-Bashforth (HT Format)

(Large Threshold)
(Sec. 3.3)

∆t = 10−3,

A = B = 4 × 104,

G0 = G1 = 4 × 102

εα = 4 × 10−5,

εβ = 4 × 10−2,

εγ(0) = 4 × 10−3,

εγ(1) = 4 × 10−3

Adaptive Midpoint (HT Format)
(Large Threshold)

(Sec. 3.2)

∆t = 10−3,

A = B = 5 × 104,

G = 5 × 103

εα = 5 × 10−5,

εβ = 5 × 10−2,

εγ = 5

Table 5.4: Table of parameters for the rank-adaptive step-truncation integrators
of the Fokker-Planck equation (5.13) in dimension d = 4 with initial condition
(5.16). These were heuristically chosen so that the truncation at each step (to
rank r or α) would be considerably smaller than the time step. The first step of
AB2 uses midpoint with the coefficients listed above.

demonstrate numerically the global error bound we proved in Theorem 3. The

error scaling constant Q turns out to be Q = 2 for rank-adaptive AB2, Q = 5 for

rank-adaptive midpoint, and Q = 0.6 for rank-adaptive Euler forward.

5.2.4 Four-dimensional Fokker-Planck equation

Next, we present numerical results for the Fokker-Planck equation (5.13) in

dimension d = 4. In this case, the best truncation operator (2.20) is not explicitly

known. Instead, we use the explicit step-truncation methods of Chapter 3, with

truncation operator TSVD
r defined in (2.21) (see [45, 64] for more details). We set

92

Figure 5.12: L2(Ω) error of numerical solutions to the Fokker-Planck equation
(5.13) in dimension d = 4 with initial condition (5.16). The parameters we used
for all rank-adaptive step-truncation methods are summarized in Table 5.4. The
rank-adaptive Lie-Trotter method uses a threshold of 10−2 for the PDE component
normal to the tensor manifold (see [31]).

the initial condition as

f0(x1, x2, x3, x4) = 1
m0

L∑
j=1

(4∏
i=1

sin((2j − 1)xi) + 1
22(j−1) +

4∏
i=1

exp(cos(2jxi))
22j−1

)
,

(5.16)

where m0 is a normalization constant. Clearly, (5.16) can be represented exactly

in a hierarchical Tucker tensor format provided we use an overall maximal tree

rank of r0 = 2L. For our numerical simulations we choose L = 10. We change

the drift functions slightly from the two-dimensional example we discussed in the

previous section. Specifically, here we set γ(x) = sin(x), ξ(x) = exp(sin(x)) + 1,

and ϕ(x) = cos(x) and repeat all numerical tests presented in Section 5.2.3, i.e.,

we run three rank-adaptive step-truncation simulations with different increment

functions: one based on Euler forward (3.5) and one based AB2 (3.15). The

parameters we used for these methods are summarized in Table 5.4.

For spatial discretization, we use the Fourier pseudo-spectral method with

204 = 160000 points. We emphasize that a matrix representing the discretized

93

Figure 5.13: Rank versus time for the numerical solutions of Fokker-Planck
equation (5.13) in dimension d = 4 with initial condition (5.16) (left column:
0 ≤ t ≤ 6.25, right column: 0 ≤ t ≤ 0.1). We truncate the reference solution to
εtol in HT format. The rank-adaptive Lie-Trotter method uses a threshold of 10−2

for the PDE component normal to the tensor manifold (see [31]).

94

Figure 5.14: Fokker-Planck equation (5.13) in dimension d = 4 with initial
condition (5.16). L2(Ω) errors at T = 0.1 versus ∆t for different rank-adaptive
step-truncation methods. All tests used the HTucker tensor format.

Fokker- Planck operator at the right hand side of (5.13) would be very sparse and

require approximately 205 gigabytes in double precision floating point format.

The solution vector requires 1.28 megabytes of memory (160000 floating point

numbers in double precision). The HTucker format reduces these memory costs

considerably. The large threshold solution of Figure 5.13 is only 25 kilobytes

when stored to disk using the HTucker Matlab software package [64]. The spatial

differential operator for the Fokker-Planck equation can also be represented in

HTucker format, and costs only 21 kilobytes. The storage savings are massive, so

long as the rank is kept low. In Figure 5.11, we plot a few time snapshots of the

marginal PDF

f12(x1, x2, t) =
∫ 2π

0

∫ 2π

0
f(x1, x2, x3, x4, t)dx3dx4 (5.17)

we obtained by integrating (5.13) in time with rank-adaptive Euler forward and

rank-adaptive AB2. In Figure 5.13 we plot the solution rank versus time for all

rank-adaptive step-truncation integrators summarized in Table 5.4. The results

largely reflect those of the two dimensional domain. However, a notable difference

95

is the abrupt change in rank. This is because the density function in this case

relaxes to steady state fairly quickly. Numerically, the steady state is determined

by halting execution when ∥∂fref/∂t∥2 is below the numerical threshold 10−8. This

happens at approximately t ≈ 6.25 for the initial condition (5.16). As the rate of

change in the density function becomes very small, we see that the rank no longer

changes. This happens near time t = 0.1 (see Figure 5.13).

The proposed rank-adaptive step-truncation methods can provide solutions

with varying accuracy depending the threshold, i.e., the parameters summarized

in Table 5.4. To show this, in Figure 5.13 we compare the rank dynamics in the

adaptive AB2 simulations obtained with small or large thresholds. Note that the

solution computed with a large error threshold is rather low rank (see Figure 5.13).

We also see that the rank can be kept near the rank of the initial condition, if

desired (again see Figure 5.13). Finally, in Figure 5.14 we plot the L2(Ω) error at

T = 0.1 versus ∆t for two different rank-adaptive step-truncation methods, i.e.,

Euler and AB2. It is seen that the order of AB2 is slightly larger than 2. This

can be explained by noting that the error due to rank truncation is essentially a

sum of singular values. Such singular values can be smaller than the truncation

thresholds εκ (κ = r, s,α, ...), suggesting the theoretical bounds may not be

tight.

5.3 Implicit Rank-Adaptive Methods

In this section we study the performance of the proposed implicit step-truncation

methods in three numerical applications involving time-dependent PDEs. Specifi-

cally, we study the Allen-Cahn equation [78] in two spatial dimensions, the Fokker-

Planck equation [90] in four dimensions, and the nonlinear Schrödinger equation

[104] in six dimensions. Our code was built on the backbone of the HTucker Mat-

96

ST Implicit Euler ST Implicit Midpoint

Figure 5.15: Error versus time for step-truncation numerical solutions of Allen-
Cahn equation (5.13) in dimension d = 2 with initial condition (5.19).

lab package [64]. All tensor operations for the step-truncation schemes described

in Chapter 3 use function calls to the HTucker Matlab library.

5.3.1 Allen-Cahn equation

The Allen-Cahn equation is a reaction-diffusion equation that describes the pro-

cess of phase separation in multi-component alloy systems [3, 4]. In its simplest

form, the equation has a cubic polynomial non-linearity (reaction term) and a

diffusion term [56], i.e.,
∂f

∂t
= ε∆f + f − f 3. (5.18)

In our application, we set ε = 0.1, and solve (5.18) on the two-dimensional flat

torus Ω = [0, 2π]2. We employ a second order splitting [42] method to solve the

Laplacian ∆f as a fixed rank temporal integration and cubic f − f 3 term using

our rank adaptive integration. The initial condition is set as

f0(x, y) = u(x, y) − u(x, 2y) + u(3x + π, 3y + π) − 2u(4x, 4y) + 2u(5x, 5y), (5.19)

97

ST Implicit Euler ST Implicit Midpoint

Figure 5.16: Rank versus time for step-truncation numerical solutions of Allen-
Cahn equation (5.13) in dimension d = 2 with initial condition (5.19).

where

u(x, y) =

[
e− tan2(x) + e− tan2(y)

]
sin(x) sin(y)

1 + e| csc(−x/2)| + e| csc(−y/2)| . (5.20)

We discretize (5.18) in space using the two-dimensional Fourier pseudospectral

collocation method [51] with 257 × 257 points in Ω = [0, 2π]2. This results in a

matrix ODE in the form of (1.2). We truncate the initial condition to absolute

and relative SVD tolerances of 10−9, which yields an initial condition represented

by a 257 × 257 matrix of rank 90. We also computed a benchmark solution of

the matrix ODE using a variable step RK4 method with absolute tolerance set

to 10−14. We denote the benchmark solution as fref . In Figure 5.15 we observe

the transient accuracy of our order one and order two implicit methods. The

stopping tolerance for inexact Newton’s iterations is set to εtol = 2.2×10−8, while

the HT/TT-GMRES relative error is chosen as η = 10−3. Time integration was

halted at t = 14. After this time, the system is close to steady state and the errors

stay bounded near the final values plotted in Figure 5.15. Similarly, the rank also

levels out around t = 14. In Figure 5.16, we plot temporal evolution of the rank

for both the implicit step-truncation Euler and midpoint methods.

98

Due to the smoothing properties of the Laplacian, the high frequencies in the

initial condition quickly decay and, correspondingly, the rank drops significantly

within the first few time steps. Due to the rapidly decaying rank for this problem,

we have plotted it in log scale. In Figure 5.17, we provide a comparison between

the rank-adaptive implicit step-truncation midpoint method we propose here and

the rank-adaptive explicit step-truncation midpoint method

fk+1 = Tr3

(
fk + ∆tTr2

(
G

(
fk + ∆t

2 Tr1(G(fk))
)))

, (5.21)

of Section 3.2. Figure 5.17 shows that the explicit step-truncation midpoint

method undergoes a numerical instability for ∆t = 10−3. Indeed it is a con-

ditionally stable method. The explicit step-truncation midpoint method also has

other issues. In particular, in the rank-adaptive setting we consider here, we have

that in the limit ∆t → 0 the parameters εr1 , εr2 and εr3 all go to zero (see equation

(3.12)). This implies that the truncation operators may retain all singular values,

henceforth maxing out the rank and thereby giving up all computational gains of

low-rank tensor compression. On the other hand, if ∆t is too large, then we have

stability issues as discussed above. Indeed, we see both these problems with the

explicit step-truncation midpoint method, giving only a relatively narrow region

of acceptable time step sizes in which the method is effective.

In Table 5.5 we provide a comparison between explicit and implicit step-

truncation midpoint methods in terms of computational cost (CPU-time on an

Intel Core I9-7980XE workstation) and accuracy at time t = 1. It is seen that

the implicit step-truncation midpoint method is roughly 20 to 30 times faster

than the explicit step-truncation midpoint method for a comparable error. More-

over, solutions with a large time step (∆t > 10−3) are impossible to achieve with

the explicit step-truncation method due to time step restrictions associated with

99

ST Explicit Midpoint ST Implicit Midpoint

Figure 5.17: Allen-Cahn equation (5.18). Comparison between the L2(Ω) errors
of explicit and implicit step-truncation midpoint methods for different ∆t.

conditional stability.

5.3.2 Fokker-Planck equation

Consider the Fokker-Planck equation

∂f(x, t)
∂t

= −
d∑

i=1

∂

∂xi

(µi(x)f(x, t)) + σ2

2

d∑
i=1

∂2f(x, t)
∂x2

i

(5.22)

on a four-dimensional (d = 4) flat torus Ω = [0, 2π]4. The components of the drift

are chosen as

µi(x) = (γ(xi+1) − γ(xi−2))ξ(xi−1) − ϕ(xi), i = 1, . . . , d, (5.23)

where γ(x) = sin(x), ξ(x) = exp(sin(x)) + 1, and ϕ(x) = cos(x) are 2π-periodic

functions. In (5.23) we set xi+d = xi. For this particular drift field, the right side

of (5.22) can be split into a component tangential to the tensor manifold Hr and

100

ST Explicit Midpoint
∆t Runtime (seconds) ∥f − fref∥

1.0 × 10−3 Did not finish Unstable
5.0 × 10−4 2.2946 × 102 6.0713 × 10−3

2.5 × 10−4 4.7828 × 102 5.2628 × 10−4

1.0 × 10−4 1.2619 × 103 5.3648 × 10−5

5.0 × 10−5 2.7354 × 103 1.1723 × 10−5

ST Implicit Midpoint
∆t Runtime (seconds) ∥f − fref∥

1.0 × 10−1 5.3097 2.5652 × 10−2

5.0 × 10−2 1.0495 × 101 7.7248 × 10−3

2.5 × 10−2 1.8987 × 101 2.0977 × 10−3

1.0 × 10−2 3.8025 × 101 6.7477 × 10−5

5.0 × 10−3 7.6183 × 101 3.6012 × 10−6

Table 5.5: Allen-Cahn equation (5.18). Comparison between explicit and im-
plicit step-truncation (ST) midpoint methods in terms of computational cost
(CPU-time on an Intel Core I9-7980XE workstation) and accuracy at final time
t = 1. It is seen that the implicit step-truncation midpoint method is roughly 20
to 30 times faster than the explicit step-truncation midpoint method for a com-
parable error.

a component that is non-tangential as

∂f(x, t)
∂t

=
d∑

i=1

(
−γ(xi+1)ξ(xi−1)

∂f(x, t)
∂xi

+ γ(xi−2)ξ(xi−1)
∂f(x, t)

∂xi

)
︸ ︷︷ ︸

Not tangential

+

(
∂

∂xi

ϕ(xi)f(x, t) + σ2

2
∂2f(x, t)

∂x2
i

)
︸ ︷︷ ︸

tangential

. (5.24)

We solve (5.24) using an operator splitting method. To this end, we notice that

there are 3d many terms in the summation above, and therefore we first solve the

first d time dependent PDEs which are tangential to the tensor manifold Hr, i.e.,

∂gi

∂t
= ∂

∂xi

ϕ(xi)gi + σ2

2
∂2gi

∂x2
i

, i = 1, . . . , d. (5.25)

101

ST implicit Euler ST implicit midpoint Reference

t = 0

t = 0.1

t = 10

Figure 5.18: Marginal probability density function (5.17) obtained by integrat-
ing numerically the Fokker–Planck equation (5.13) in dimension d = 4 with σ = 5
and initial condition (5.16) with two methods: i) rank-adaptive implicit step-
truncation Euler and ii) rank-adaptive implicit step-truncation midpoint. The
reference solution is a variable time step RK4 method with absolute tolerance of
10−14. These solutions are computed on a grid with 20 × 20 × 20 × 20 interior
points (evenly spaced). The steady state is determined for this computation by
halting execution when ∥∂fref/∂t∥2 is below a numerical threshold of 10−8. This
happens at approximately t ≈ 10 for the initial condition (5.16).

Then we solve the non-tangential equations in two batches,

∂uj

∂t
= γ(xi+1)ξ(xi−1)

∂uj

∂xi

, j = 1, . . . , d (5.26)

∂uk

∂t
= γ(xi−2)ξ(xi−1)

∂uk

∂xi

, k = 2, . . . , 2d. (5.27)

102

Transient Error Maximal Rank

Figure 5.19: L2(Ω) error and rank versus time for numerical solutions of Fokker–
Planck equation (5.13) in dimension d = 4 with initial condition (5.16). The rank
plotted here is the largest rank for all tensors being used to represent the solution
in HT format. Rank of the reference solution is in HT format.

This yields the first order (Lie-Trotter) approximation f(x, ∆t) = u2d(x, ∆t) +

O(∆t2). We also use these same lists of PDEs for the second order (Strang)

splitting integrator. For each time step in both first- and second order splitting

methods, we terminate the HT/TT-GMRES iterations by setting the stopping

tolerance εtol = 10−9. We set the initial probability density function (PDF) as

f0(x1, x2, x3, x4) = 1
F0

M∑
j=1

(4∏
i=1

sin((2j − 1)xi − π/2) + 1
22(j−1) +

4∏
i=1

exp(cos(2jxi + π))
22j−1

)
,

(5.28)

where F0 is a normalization constant. This gives an HTucker tensor with rank

bounded by 2M . We set M = 10 to give ranks bounded by 20. We discretize

(5.22)-(5.28) in Ω with the Fourier pseudospectral collocation method [51] on a

tensor product grid with N = 20 evenly-spaced points along each coordinate xi,

giving the total number of points (N + 1)4 = 194481. This number corresponds

to the number of entries in the tensor f(t) appearing in equation (1.2). Also, we

set σ = 5 in (5.22).

103

Figure 5.20: L2(Ω) errors at t = 0.1 for the implicit rank-adaptive step-
truncation implicit Euler and midpoint methods versus ∆t. The reference solution
of (5.13) was computed using a variable time step RK4 method with absolute tol-
erance of 10−14.

In Figure 5.18 we compare a few time snapshots of the marginal PDF

f12(x1, x2) =
∫ 2π

0

∫ 2π

0
f(x1, x2, x3, x4)dx3dx4, (5.29)

we obtained with the rank-adaptive implicit step-truncation Euler and midpoint

methods, as well as the reference marginal PDF. The solution very quickly relaxes

to nearly uniform by t = 0.1, then slowly rises to its steady state distribution by

t = 10.

In Figure 5.19 we study accuracy and rank of the proposed implicit step-

truncation methods in comparison with the rank-adaptive explicit Adams-Bashforth

(AB) method of order 2 (see [92]). The implicit step-truncation methods use a time

step size of ∆t = 10−3, while step-truncation AB2 uses a step size of ∆t = 10−4.

The highest error and lowest rank come from the implicit step-truncation midpoint

method with ∆t = 10−2. The highest rank and second highest error go to the step-

truncation AB2 method, which runs with time step size 10−4 for stability. This

causes a penalty in the rank, whence time step is made small, hence the rank must

increase to maintain convergence order. (See Chapter 3 for detailed rank increase

104

θ = 0.1 θ = 0.01

Figure 5.21: Double-well potential (5.32)-(5.33) for different values of θ. It is
seen that as θ → 0, the potential barrier at x = 0 and x = π becomes infinitely
high. This is identical to the well-known homogeneous boundary conditions for
particles trapped in a box.

requirements.) The implicit step-truncation midpoint method performs the best,

with error of approximately 10−6 and rank lower than the step-truncation AB2

method at steady state. Overall, the proposed implicit step-truncation methods

perform extremely well on linear problems of this form, especially when the right

hand side is explicitly written as a sum of tensor products of one dimensional

operators. In Figure (5.20) we show a plot of the convergence rate of implicit

step-truncation Euler and midpoint methods. For this figure, we set σ = 2. The

convergence rates are order one and order two respectively, verifying Theorem 3.

5.3.3 Nonlinear Schrödinger equation

The nonlinear Schrödinger equation is a complex-valued PDE whose main appli-

cations are wave propagation in nonlinear optical fibers and Bose-Einstein con-

105

t = 0 t = 2.5 t = 5

p(x1, x2, t)

p(x3, x4, t)

p(x5, x6, t)

Figure 5.22: Marginal probability density functions representing particle po-
sitions generated by the nonlinear Schrödinger equation (5.31) with ε = 10−4,
interaction potential (5.32) and initial condition (5.34).

densates [95, 104]. The equation can be written as1

∂ϕ(x, t)
∂t

= i

2∆ϕ(x, t) − iV (x)ϕ(x, t) − iε|ϕ(x, t)|2ϕ(x, t). (5.31)

where V (x) is the particle interaction potential. In our example, we consider

6 particles trapped on a line segment in the presence of a double-well potential
1As is well-known, the nonlinear Schrödinger equation (5.31) is a Hamiltonian PDE which

can be derived as a stationary point of the energy density (Hamilton’s functional)

H(ϕ) =
∫

Ω

(
1
4∥∇ϕ∥2 + 1

2V (x)|ϕ|2 + ε

4 |ϕ|4
)

dx. (5.30)

106

(a) (b)

Figure 5.23: (a) Maximum tensor rank versus time, and (b) relative error in the
solution mass and Hamiltonian (5.30) for nonlinear Schrödinger equation (5.31) in
dimension d = 6, with ε = 10−4, interaction potential (5.32) and initial condition
(5.34).

defined as

V (x) = 50
6∑

k=1
W (xk), W (xk) =

[
1 + ecos(xk)2 + 3

4
(
1 + esin(xk)2)]

ηθ(xk).

(5.32)

Here, W (xk) is a potential with barriers at xk = 0 and xk = π (see Figure 5.21).

The function ηθ(xi) is a mollifier which converges weakly to 1 + δ(xi) + δ(xi − π)

as θ → 0. One such mollifier is

ηθ(x) = 1 + 1√
2πθ

(
exp

[
− x2

2θ2

]
+ exp

[
−(x − π)2

2θ2

])
. (5.33)

As θ → 0, the weak limit of ηθ translates to zero Dirichlet boundary conditions

on the domain Ω = [0, π]6. The Dirichlet conditions naturally allow us to use a

discrete sine transform to compute the Laplacian’s differentiation matrices. We

discretize the domain Ω on a uniform grid with 35 points per dimension. This

gives us a tensor with 356 = 838265625 entries, or 14.7 Gigabytes per temporal

solution snapshot if we store the uncompressed tensor in a double precision IEEE

107

754 floating point format. We choose a product of pure states for our initial

condition, i.e.,

ϕ(x, 0) =
6∏

k=1

61/64k

2kπ − sin(2πk) sin(kxk), (5.34)

The normalizing constant 61/64k/(2kπ − sin(2πk)) guarantees that the wavefunc-

tion has an initial mass of 6 particles. We now apply an operator splitting method

to solve (5.31). The linear components are all tangential to the tensor manifold

Hr, and have a physical interpretation. Specifically,

∂gk

∂t
= i

2
∂2gk

∂x2
k

− 50iW (xk)gk, k = 1, . . . , 6, (5.35)

is a sequence of one-dimensional linear Schrödinger equations. The non-tangential

part reduces to
du

dt
= iε|u|2u, (5.36)

which may be interpreted as an ODE describing all pointwise interactions of the

particles. Here we set ε = 10−4 to model weak iteractions. Clearly, the linear

terms in (5.31) have purely imaginary eigenvalues. Therefore to integrate the

semi-discrete form of (5.31) in time we need a numerical scheme that has the

imaginary axis within its stability region. Since implicit step-truncation Euler

method introduces a significant damping, thereby exacerbating inaccuracy due to

discrete time stepping, we apply the implicit step-truncation midpoint method.

For this problem, we set ∆t = 5 × 10−2 and the tensor truncation error to be

constant in time at 100∆t3 to maintain second order consistency. Tolerance of

the inexact Newton method was set to 5 × 10−5 and the HT/TT-GMRES relative

error to 5 × η = 10−4. In Figure 5.22 we plot the time-dependent marginal

probability density functions for the joint position variables (xk, xk+1), k = 1, 3, 5.

108

Such probability densities are defined as

p(x1, x2, t) = 1
6

∫
[0,1]4

ϕ∗(x, t)ϕ(x, t)dx3dx4dx5dx6, (5.37)

and analogously for p(x3, x4, t) and p(x5, x6, t). It is seen that the lower energy

pure states (position variables (x1, x2)) quickly get trapped in the two wells, os-

cillating at their bottoms. Interestingly, at t = 2.5 it appears that particle x3 is

most likely to be observed in between the two wells whenever the particle x4 is in

a well bottom.

In Figure 5.23(a), we plot the rank over time for this problem. The rank also

has physical meaning. A higher rank HT tensor is equivalent to a wavefunction

with many entangled states, regardless of which L2(Ω) basis we choose. In the

example discussed in this section, the particles interacting over time monotonically

increase the rank. We emphasize that the nonlinearity in (5.31) poses a significant

challenge to tensor methods. In fact, in a single application of the function iε|u|2u,

we may end up cubing the rank. This can be mitigated somewhat by using the

approximate element-wise tensor multiplication routine. Even so, if the inexact

Newton Method requires many dozens of iterations to halt, the rank may grow

very rapidly in a single time step, causing a slowing due to large array storage.

This problem is particularly apparent when ε ≈ 1 or if ∆t is made significantly

smaller, e.g. ∆t = 10−4. A more effective way of evaluating nonlinear functions on

tensors decompositions would certainly mitigate this issue. In Figure 5.23(b), we

plot the relative error of the solution mass and the Hamiltonian (5.30) over time.

The relative errors hover around 10−11 and 10−6, respectively. It is remarkable

that even though the additional tensor truncation done after the inner loop of

the implicit solver in principle destroys the symplectic properties of the midpoint

method, the mass and Hamiltonian are still preserved with high accuracy.

109

Local Truncation Error Transient Error

Figure 5.24: Left: Local truncation error found by comparing each time stepping
scheme with its Richardson extrapolation. Right: Numerical difference of the
u(0, t) one-point marginal CDF with Monte-Carlo estimate with finite difference
discretization (5.38) with 8 points and Step-Truncation methods of dimension
N = 8.

5.4 Burgers’ Equation with Uncertain Initial State

In this section, we present an application to the Burgers’ equation with reaction

term
∂u

∂t
+ u

∂u

∂x
= γ

∂2u

∂x2 + R(u), (5.38)

and an uncertain initial condition u(x, 0), R(u) = α sin(πu), and 2π periodic

boundary conditions. When u is bound between 0 and 1, i.e. the roots of R,

the reaction term pulls the extreme points of u near the roots of R. Meanwhile,

advection-diffusion terms of the Burger’s equation smooth and flatten out the

solutions. We solve the PDF equation corresponding to this problem. What

110

t = 0.0 t = 0.04 t = 0.08 t = 0.12

MC
CDF

ST
CDF

MC
PDF

Figure 5.25: Two-point joint CDF of u(0, t) and u(π, t). The CDF is computed
by generating numerical solutions to (5.40) for N = 20 and marginalizing the
solution in the remaining 18 variables. We also show a Monte-Carlo estimate of
the joint CDF obtained by sampling 5 × 106 solutions to (5.38).

follows is the Liouville-type linear hyperbolic conservation law

∂

∂t
p(t, u1, u2, . . . uN) =

−
N∑

i=1

∂

∂uj

 N∑
j=1

−uiD
(1)
ij uj + δijR(uj)γD

(2)
ij uj

p(t, u1, u2, . . . uN)
,

(5.39)

where δij is the Kronecker delta. In the above PDF equation, D
(1)
ij and D

(2)
ij

turn out as differention matrix coefficients. In our numerical experiments, we use

the second order finite difference matrix on a periodic domain. From here, it is

possible to write down a numerical tensor method to solve the parital differential

equation. However, we assumed through the analysis of tensor methods is that the

111

Maximal TT core rank Two-Point Marginal Error

Figure 5.26: Left: Highest rank of the TT cores with varying dimension for
the explicit method solutions to equation (5.40). Right: Decreasing error with
increasing dimension for the two-point CDFs shown in Figure 5.25.

solution to the PDE is in L2(Ω). It is clear that need not be the case in (5.39).

For example, if we ignore the reaction term and select homogeneous boundary

conditions, the solution to (5.38) decays to zero. Thus p converges to a Dirac

delta distribution and our tensor truncation algorithms fail inside of the SVD

evalution of Algorithm 8, where the L2(Ω) norm is checked.

To remedy this, we integrate p to obtain the Cumulative Distribution Function

(CDF). Doing so results in an integro-partial differential equation. Specifically,

∂F

∂t
=

N∑
i,j=1

(uiD
(1)
ij uj − γD

(2)
ij uj − δijR(uj))

∂F

∂ui

−
N∑

i,j=1
i ̸=j

(D(1)
ij ui − γD

(2)
ij)

∫ uj

−∞

∂F

∂ui

dµj (5.40)

may be derived by integrating the right side of (5.39) and applying several integration-

by-parts formulae with the integration dummy-variables µ1, µ2, . . . , µN . In order

to apply a discretized tensor-train method to equation (5.40), we seek a discretiza-

tion of the domain. We choose a square high-dimensional cube centered at the

112

t = 0.0 t = 0.04

t = 0.08 t = 0.12

Figure 5.27: One-point marginal CDF of numerical solutions to (5.40) with
varying dimensionality accompanied with time dependent numerical error of one-
point marginal CDF with varying dimensionality aligned with each time snapshot.

origin which covers the support of p. On the boundary of this cube, it is straight-

forward to show that the derivative of F normal to the cube boundary is zero.

Therefore we may apply outflow boundary conditions to the space-like derivatives

of our tensor integrator.

We discretize the ui space-like variables of (5.40) on a uniform box [−1.3, 1.3]N

with ni = 64 points per axis. We replace the integral with a trapezoidal rule

113

cumulative summation formula and the partial derivatives with centered second

order finite difference matrices. For the initial condition, we set the CDF to be

a multivariate Gaussian with standard deviation σ = 0.25. In our numerical

examples, the value of the PDF on the boundary of the computational domain

is less than 10−48, and so we treat it to be numerically zero. We then compute

the CDF using numerical integration of the TT tensor and normalize by the value

in the entry F0[n1, n2, . . . , nN]. This normalization is also performed after each

iteration of the temporal integrators as well.

With this prototype equation fully discretized, we perform a comparison of

time-stepping methods to verify temporal accuracy of order 1 and order 2. To

stabilize the explicit methods, we add in numerical diffusion proportional to the

roundoff error in ∆t to the right hand side in a similar manner to the Lax-Wendroff

method [67]. In order to guarantee that we are accurately capturing second and

first order errors in time, we must ensure that the semidiscrete PDE we are solving

for our reference solution matches that of our step-truncation integrators. To

this end, we compute the local truncation errors of each scheme by computing

its difference with a Richardson extraplolation (See [50], II.4) of it to 1 order

higher. I.e. we take two steps of size ∆t/2 and combine it with a step of size

∆t to create a more accurate estimate for the purposes of comparing it to a

single step of size ∆t. To quantify transient error, we compare our methods

with an empirically obtained CDF Monte-Carlo simulation and a Kernel Density

Estimator (KDE)[17]. To generate the data for Monte-Carlo, we run 5 × 106

simluations of equation (5.38) with second order accuracy in space and 8 points.

The initial conditions are sampled from the same distribution described above.

The results of this numerical experiment are captured in the right side of Figure

5.24. We compare the error of the marginal CDF of u(x, t) at x = 0. Time steps

114

were chosen as 10−3. The low rank truncation error coefficients were chosen as

10−1 for all methods.

The norm chosen for low-rank truncation error control was the root-mean-

square (RMS) tensor norm. This is achieved by weighting every TT core Ci by√
1/64 = 1/8 before computing any inner products or truncations. TT-GMRES

stopping tolerance for all simulations was set as 5 × 10−6 in first order estimates

and 5×10−7 for order 2 estimates. The second order methods perform better than

either first order method, but similarly to one another in terms of accuracy and

so we opt to use the explicit midpoint method in higher dimensional simulations.

For higher dimensional step-truncation simulation we study the convergence

of the solutions to our CDF equations as the physical space finite difference stencil

becomes finer. For step-truncation temporal evolution, we chose the explicit mid-

point method due to its favorable performance in Figure 5.24. As a comparison

benchmark in the higher dimensional case, we create a Monte-Carlo estimation us-

ing Fourier pseudospectral collocation to discretize the Burgers’ equation in space.

For the higher dimensional reference MC data, we use a periodic grid with N = 20

points. We again produce 5 × 106 trajectories from the same initial distribution

discussed above. Storing a time snapshot of the Burgers’ equation solution every

temporal grid point tk = k∆t = k10−3 results in over 100 gigabytes of reference

data. In contrast, our stored Tensor Train solution snapshots for all numerical

experiments total less than 44 gigabytes. From this MC data we create approx-

imations of the two-point CDFs at (x0, xN/2) = (0, π) and one-point at x0 = 0.

These may be found in Figures 5.25 and 5.27 respectively. We see that all two

dimensional results are in visual agreement with the Monte-Carlo estimate.

In Figure 5.27 we plot the one-point marginal CDF of a simulation with N =

8, 12, 16, 20 at x = 0. Here we can see the effects of increasing N on the numerical

115

solution, with the most qualitative matching with the KDE found in the higher

order tensors. In Figure 5.26 we display the numerical difference between the

Monte-Carlo benchmark simulation and the various step-truncation methods. We

see considerable improvement of accuracy as the dimension is increased. Runtime

increases considerably with dimension though. Once the solution rank surpasses

100, the N = 20 case requires over 45 minutes per time step with ∆t = 10−3 on our

Intel i9-7980xe workstation. This indicates that high dimensionality continues to

be a major barrier to accurate simulations. An alternative would be to discretize

the operators D
(k)
ij acting on physical space with high accuracy approximation,

such as the pseudospectral method used in the KDE benchmark data. However,

this raises the number of nonzero entries in the operator and increases computation

time by considerably raising the rank of the operator on the RHS of (5.40). In

the case of a psedudospectral approximation, we go from linearly many nonzero

terms to over N2 nonzero terms in the right side of (5.40).

We now make a remark on memory savings in the largest dimensional cases.

The TT numerical solutions require at most 690 megabytes, or 6.9×108 bytes, per

time step in the highest rank cases we have studied. This constitutes compressing

a multidimensional double precision floating point array of size 6420, which would

normally contain approximately 1022 petabytes, or 1037 bytes. That is to say

that we capture O(10−2) accuracy of the data while achieving a data compression

ratio of 1.44 × 1026% and data space savings of approximately 100%. Of course,

690 megabytes is not negligible on practical computing systems. It is essentially

nothing compared to the decompressed data though.

We now discuss structure preservation of the solutions. Though our schemes

are qualitatively accurate to an empirically obtained solution and convergence

is supported by the above theoretical and numerical investigations, close inspec-

116

tion of Figure 5.27 and the TT simulation data shows that the methods are not

monotonicity preserving.

Implementation of numerical tensor methods for very high dimensional prob-

lems also have a number of technical complexities. In particular, the number

of entries of the decompressed tensor train grow exponentially. While this is no

problem for the storage of the TT cores or the representation of the tensors, it

does pose numerical problems when computing the floating point arithmetic. The

RMS norm, for instance, is both required to avoid floating point overflow (since

the unweighted norm is typically larger than the inverse of floating point preci-

sion) and also needs careful formulation to avoid underflow (since the weight n−N

is typically smaller than machine precision). Similar consideration is also required

when formulating the TT-GMRES solver.

117

Chapter 6

Conclusion

We have presented step-truncation methods for the solutions to initial value

problems on tensor manifolds. These methods are centered around the concept of

stepping off of a tensor manifold with a conventional time-stepping scheme, then

truncating the solution tensor back to a lower rank. The mathematical framework

developed here is centered around analyzing semi-discrete PDEs. As is common

in numerical analysis, we rely heavily on concepts from finite dimensional analysis

to prove statements about our algorithms. We are able to provide guarantees

of types of both stability and convergence. In particular, we show that it is

possible to produce step-truncation methods of any order in time. The analysis

is carried out for both explicit and implicit methods. To this end we developed

an algorithm based on Newton’s method for the solution to nonlinear equations

on tensor manifolds.

A number of numerical experiments are provided as well, verifying the proven

convergence rates. We provide applications to advection problems, Fokker-Planck

equations, the Nonlinear Schrödinger equation, and a Burgers’ equation with un-

certain initial condition. All applications indicate that these methods have fa-

vorable accuracy and stability. However, no schemes are proven to be structure

118

preserving. Moreover, we are essentially following a method-of-lines style of analy-

sis. In essence, we prove that if one has a tensor valued ODE, then that ODE may

be approximated via step-truncation method with whatever accuracy is desired.

Further analysis of step-truncation integrators should include the combination

of low-rank truncation with the space-discretization as well as the temporal dis-

cretization. Such an analysis would quantify how the roundoff error in space would

relate to the low-rank truncation error. This would possibly shine light on the

ability to construct structure preserving integrators fitting into the convergence

theorems presented in this thesis.

119

Appendix A

Proof of Lemma 1

In this section, we present a proof of Lemma 1 which is specific to Hr. First,

we start by constructing an open set centered about a point with known rank.

Lemma 5. Let f ∈ Hr be a point on the hierarchical Tucker manifold of constant

rank. Let v ∈ TfHr be an arbitrary vector in the tangent plane of Hr at f . Then

there exists η > 0 such that for all ε satisfying 0 ≤ ε ≤ η, we have f + εv = g ∈

Hr. As a consequence, if Uf ⊆ TfHr is a closed and bounded set containing the

origin, then there exists an open subset Vf ⊆ Uf such that f + h ∈ Hr, for all

h ∈ Vf .

Proof. First, consider a simpler problem, in which we have two matrices A,B ∈

Rn×m, where A is full column rank. Consider the function

p(η) = det
(
(A+ ηB)⊤(A+ ηB)

)
. (A.1)

Clearly, p(η) is a polynomial and thus smooth in η. Moreover, p(0) ̸= 0 since A is

full column rank. Since p is smooth, there exists some η > 0 such that p(ε) ̸= 0 for

all ε ∈ [0, η]. Since the full-rank hierarchical Tucker manifold is defined via the full

column rank constraints on an array of matrices corresponding to matricizations of

120

the tensor [107], we can apply the principle above to every full column rank matrix

associated with the tree, using addition of a point and a tangent as referenced in

Proposition 3 of [29]. We have now proved the part one of the lemma where η is

taken to be the minimum over the tree nodes. As for existence of an open set,

suppose Uf is open and bounded. Now we apply the above matrix case to the

boundary ∂Uf , giving us a star shaped set Sf ⊆ Uf . Letting Vf = Sf \ ∂Sf be

the interior, completes the proof of the lemma.

We use the open set constructed above to prove smoothness using the same

techniques as [76].

Proof. (Lemma 1) Let f ∈ Hr ⊆ Rn1×n2×···×nd . By Lemma 5, there exists an open

norm-ball B(f , κ) located at f with radius κ > 0 so that

f + v ∈ Hr ∀v ∈ Pf (B(f , κ)) . (A.2)

Let Uf = Hr ∩ B(f , κ) be a set which is open in the topology of Hr. Also, let

(qf , q−1
f (Uf)) be a local parametrization at f . For the parametrizing coordinates,

we take an open subset q−1
f (Uf) = Vf ⊆ TfHr of the tangent space embedded in

Rn1×n2×···×nd . This means that the parametrization qf takes tangent vectors as

inputs and maps them into tensors in Hr, i.e.

qf : TfHr → Hr. (A.3)

Moreover, we assume that the coordinates are arranged in column major ordering

as a vector. This allows for the Jacobian ∂qf/∂v to be a basis for the tangent

space TfHr. Note that ∂qf/∂v is a (n1n2 · · · nd) × dim(TfHr) matrix with real

coefficients. Now, let M(f) be a matrix of column vectors spanning the space

orthogonal to TfHr in Rn1×n2×···×nd . Since the two linear spaces are disjoint, we

121

have a local coordinate map for the ball B(f , κ), given by

C(v, g) = qf (v) + [M (qf (v))]g, (A.4)

where v is tangent and g is normal (both column vectors). By construction,

Tbest
r (C(v, g)) = qf (v) (A.5)

is smooth in both v and g. Therefore, we can take the total derivative on the

embedded space and apply the chain rule to obtain the Jacobian of Tbest
r (f).

Doing so, we have

∂

∂(v, g)T
best
r (C(v, g)) = ∂Tbest

r

∂C

∂C

∂(v, g)

= ∂Tbest
r

∂C

∂qf
∂v

+
n⊥∑
i=1

∂Mi(qf (v))
∂v

gi

∣∣∣∣∣M(qf (v))
 , (A.6)

where the symbol [·|·] denotes column concatenation of matrices, n⊥ is the dimen-

sion of the normal space (TfHr)⊥, Mi is the i-th column of M , and gi is the i-th

component of g. We can take g = 0 since the above expression extends smoothly

from the embedding space onto Hr. Hence, the Jacobian of Tbest is the solution

to the linear equation

∂Tbest
r

∂C

[
∂qf
∂v

∣∣∣∣∣M (qf (v))
]

=
[

∂qf
∂v

∣∣∣∣∣0
]

. (A.7)

Since the right factor of the left hand side has a pair of orthogonal blocks, we can

122

write the inverse using the pseudo-inverse of the blocks, i.e.,

[
∂qf
∂v

∣∣∣∣∣M (qf (v))
]−1

=

[
∂qf
∂v

]+

[M(qf (v))]+

 . (A.8)

The right hand side is the block concatenation of the rows of each pseudo-inverse.

Plugging the above expression into (A.7), we find

∂Tbest
r

∂C
= ∂qf

∂v

[
∂qf
∂v

]+

, (A.9)

which is exactly the expression for the orthogonal projection onto the tangent

space [74]. This completes the proof.

123

Appendix B

Proof of Theorem 4

Before proceeding, we state the following Lemma for use in the proof of the

theorem.

Lemma 6. Let 0 < h ≤ t < 1. Then there exists 0 < e ≤ h so that

(1 + e)[h(1 + e) + 2e] ≤ t.

This follows from

(1 + e)[h(1 + e) + 2e] = h + (1 + h)2e + (1 + h)2e2 ≤ h + 4e + 4e2,

which is bound by t if 4e + 4e2 ≤ M = min(h, t − h). I.e., whenever

e ≤ −1 +
√

1 + M

2 .

We also recall the definition of a superlinearly convergent sequence. This

definition is useful in the proof of Theorem 4.

Definition 2. A sequence f [j] converges superlinearly to f ∗ if there exists a se-

124

quence of real numbers τj → 0 as j → ∞ such that

∥f [j+1] − f ∗∥ ≤ τj∥f [j] − f ∗∥. (B.1)

Clearly, such a sequence is convergent since there exists an iteration number k

so that τj < α = 1/2 for any j > k, so the distance from the point f ∗ shrinks at

least as fast as O(αj) as j → ∞. The same claim can be made for any 0 < α < 1,

and so the sequence converges faster than any linear recurrence relation. We now

restate the theorem before proving it.

Theorem (Inexact Newton method [34]). Let H : RN → RN be continuously

differentiable in a neighborhood of a zero f ∗, and suppose that the Jacobian of

H, i.e., JH(f) = ∂H(f)/∂f , is invertible at f ∗. Given f [0] ∈ RN , consider the

sequence

f [j+1] = f [j] + s[j], j = 0, 1, . . . (B.2)

where each s[j] solves the Newton iteration up to relative error η[j], i.e., it satisfies

∥∥∥JH (f [j]
)
s[j] +H

(
f [j]

)∥∥∥ ≤
∥∥∥H (

f [j]
)∥∥∥ η[j]. (B.3)

If η[j] ≤ τ < 1 for all j, then there exists ε > 0 so that for any initial guess

satisfying
∥∥∥f [0] − f ∗

∥∥∥ < ε, the sequence {f [j]} converges linearly to f ∗. If in

addition, η[j] → 0 as j → ∞, then the convergence speed is superlinear.

Proof. The proof will come in two segments. We first analyze the effect of a single

step of the iteration, proving that the convergence speed is at least linear. In the

second segment, we show superlinear convergence.

Let J∗ = JH(f ∗) and J [k] = JH(f [k]) Since J∗ is invertible, we have the

125

following from equivalence-of-norms

µ−1∥g∥ ≤ ∥J∗g∥ ≤ µ∥g∥ (B.4)

with µ = max(∥J∗∥, ∥(J∗)−1∥). Since η[0] ≤ τ0 = τ , by Lemma 6 there exists

γ0 ≤ µ−1η[0] so that

(1 + µγ0)[η[0](1 + µγ0) + 2µγ0] ≤ τ0

We now begin the base case of an inductive argument. We constrain the tolerance

of the initial guess f [0]. Let ε > 0 be sufficiently small so that for all g, satisfying

∥g − f ∗∥ ≤ µ2ε we have

∥JH(g) − JH(f ∗)∥ ≤ γ0, (B.5)∥∥∥JH(g)−1 − JH(f ∗)−1
∥∥∥ ≤ γ0, (B.6)

∥H(g) − JH(f ∗)(g − f ∗)∥ ≤ γ0 ∥g − f ∗∥ . (B.7)

Inequality (B.5) may be satisfied by assumption of continuous differentiability.

Inequality (B.6) follows from continuity of the inverse Jacobian guaranteed via

the inverse function theorem. Inequality (B.7) is an appeal to the definition of

the operator derivative at the root f ∗ where H(f ∗) = 0. Assume the initial guess

satisfies ∥f [0] − f ∗∥ ≤ ε · min(1, µ2). We now analyze the effect of the first step

of the iteration. We can expand one iteration of the scheme’s residual in terms of

(B.5) through (B.7). Doing so yields

J∗
(
f [1] − f ∗

)
=
(
I + J∗

((
J [0]

)−1
−
(
J∗
)−1

))(
r[0] +

(
J [0] − J∗

) (
f [0] − f ∗

)
−H

(
f [0]

)
+ J∗(f [0] − f ∗)

)
, (B.8)

126

where r[j] = JH
(
f [j]

)
s[j] +H

(
f [j]

)
is the residual in the linear solve step of the

Newton iteration. Note that a similar relationship holds between step f [j+1] and

f [j]. In the J∗ norm, denoted ∥ · ∥∗, we have

∥∥∥f [1] − f ∗
∥∥∥

∗
≤
(

1 + ∥J∗∥
∥∥∥∥(J [0]

)−1
−
(
J∗
)−1

∥∥∥∥)(∥∥∥r[0]
∥∥∥+

∥∥∥J [0] − J∗
∥∥∥ ∥∥∥f [0] − f ∗

∥∥∥
+
∥∥∥H (

f [0]
)

− J∗(f [0] − f ∗)
∥∥∥). (B.9)

By substituting in the relative accuracy bound ∥r[0]∥ ≤ η[0]
∥∥∥H (

f [0]
)∥∥∥ and appeal-

ing to the three continuity conditions (B.5) through (B.7) as well as the operator

norm µ, we have

∥∥∥f [1] − f ∗
∥∥∥

∗
≤ (1 + µγ0)

(
η[0]

∥∥∥H (
f [0]

)∥∥∥+ 2γ0

∥∥∥f [0] − f ∗
∥∥∥) (B.10)

The residual
∥∥∥H (

f [0]
)∥∥∥ may be bound in terms of condition (B.7), through an

appeal to the triangle inequality. Specifically,

∥∥∥H (
f [0]

)∥∥∥ ≤
∥∥∥f [0] − f ∗

∥∥∥
∗

+
∥∥∥H(f [0]) − J∗(f [0] − f ∗)

∥∥∥
≤
∥∥∥f [0] − f ∗

∥∥∥
∗

+ γ0

∥∥∥f [0] − f ∗
∥∥∥ . (B.11)

Combining (B.10) and (B.11) then appealing to the equivalence principle (B.4)

we have the bound

∥∥∥f [1] − f ∗
∥∥∥

∗
≤ (1 + µγ0)

(
η[0] (1 + γ0µ) + 2γ0µ

) ∥∥∥f [0] − f ∗
∥∥∥

∗
. (B.12)

The coefficient of the norm on the right side is bound by τ < 1. Therefore

∥∥∥f [1] − f ∗
∥∥∥ ≤ τµ

∥∥∥f [0] − f ∗
∥∥∥

∗
≤ µ2τ

∥∥∥f [0] − f ∗
∥∥∥ < µ2

∥∥∥f [0] − f ∗
∥∥∥ ≤ µ2ε.

127

Applying the inductive hypothesis
∥∥∥f [j] − f ∗

∥∥∥
∗

≤ τ j
∥∥∥f [0] − f ∗

∥∥∥
∗

we find

∥∥∥f [j+1] − f ∗
∥∥∥ ≤ τµ

∥∥∥f [j] − f ∗
∥∥∥

∗
≤ µτ j+1

∥∥∥f [0] − f ∗
∥∥∥

∗
≤ µ2τ j+1

∥∥∥f [0] − f ∗
∥∥∥ .

Thus the iteration converges to the root at rate O(τ j) as j → ∞.

We now begin the second segment, in which we show that the rate is superlinear

so long as η[j] → 0. We define the following quantities

∥∥∥JH(f [j]) − JH(f ∗)
∥∥∥ = αj, (B.13)∥∥∥JH(f [j])−1 − JH(f ∗)−1
∥∥∥ = βj, (B.14)∥∥∥H(f [j]) − JH(f ∗)(f [j] − f ∗)
∥∥∥

∥f [j] − f ∗∥
= κj. (B.15)

Since the sequence of f [j] is convergent, continuity implies αj → 0 and βj → 0 as

j → ∞. Additionally, the definition of the derivative requires that κj → 0, as the

higher order error terms must be o
(∥∥∥f [j] − f ∗

∥∥∥) as j → ∞. By inserting these

quantities into the inequality (B.9) for step j to j + 1 we have

∥∥∥f [j+1] − f ∗
∥∥∥

∗
≤ (1 + µβj)

(
η[j]

∥∥∥H(f [j])
∥∥∥+ (αj + κj)

∥∥∥f [j] − f ∗
∥∥∥) .

Now we appeal to (B.11) to arrive at
∥∥∥H(f [j])

∥∥∥ ≤
∥∥∥f [0] − f ∗

∥∥∥
∗

+ κj

∥∥∥f [0] − f ∗
∥∥∥.

The error bound becomes

∥∥∥f [j+1] − f ∗
∥∥∥

∗
≤ (1 + µβj)

(
η[j](1 + µκj) + µ(αj + κj)

) ∥∥∥f [j] − f ∗
∥∥∥

∗

= τj

∥∥∥f [j] − f ∗
∥∥∥

∗
. (B.16)

When η[j] → 0, τj = (1 + µβj)
(
η[j](1 + µκj) + µ(αj + κj)

)
converges to zero as

j → ∞, thereby satisfying Definition 2 in the J∗ norm.

128

Appendix C

Step-truncation methods for

matrix-valued ODEs on matrix

manifolds with fixed rank

To make Lemma 1 concrete, in this Appendix we write down Tbest
r and its

Jacobian Pf for problems where f ∈ Rn1×n2 is a matrix. In this situation, the

tree rank r is just a single integer r. One can see from the accuracy inequalities

for best truncation proven in [45] that the Tbest
r is obtained from truncating the

smallest min(n1, n2)−r singular values and singular vectors. For simplicity, we will

write down the best truncation scheme for (1.2) using the Euler forward method.

This gives

fk+1 = Tbest
r (fk + ∆tG(fk)). (C.1)

Assuming that we are fixing rank to be the same as the initial condition for all k,

we have that Tbest
r (fk) = fk. Now we can apply SVD perturbation theory [71, 100]

to express the best truncation operator in terms of a power series expansion in

∆t. Representing our decomposition as a tuple of matrices (Σk,Qk,Vk), where

129

fk = QkΣkV
⊤

k is the reduced singular value decomposition, we have that

Σk+1 = Σk + ∆tdiag(Q⊤
kG(fk)Vk) + O(∆t2), (C.2)

Qk+1 = Qk + ∆tQk(Hk ⊙ (Q⊤
kG(fk)VkΣk + ΣkV

⊤
k G(fk)⊤Qk))

+ ∆t(I −QkQ
⊤
k)G(fk)VkΣ−1

k + O(∆t2), (C.3)

Vk+1 = Vk + ∆tVk(Hk ⊙ (ΣkQ
⊤
kG(fk)Vk + V ⊤

k G(fk)⊤QkΣk))

+ ∆t(I − VkV
⊤

k)G(fk)⊤QkΣ−1
k + O(∆t2). (C.4)

Here, ⊙ denotes the element-wise (Hadamard) product of matrices, and the matrix

Hk[i, j] = 1/(Σk[j, j]2 − Σk[i, i]2), i ̸= j,

Hk[i, j] = 0, i = j,

(C.5)

is skew-symmetric and stores information about the differences of the singular

values. The diag(·) operation zeros out all elements off of the diagonal. The

tangent space projection operator is the coefficient of the ∆t terms. From here,

we can see that the evolution equation corresponding to (C.1) is

d
dt

Σ = diag(Q⊤G(f)V), (C.6)
d
dt
Q = Q(H ⊙ (Q⊤G(f)V Σ + ΣV ⊤G(f)⊤Q)) + (I −QQ⊤)G(f)V Σ−1,

(C.7)
d
dt
V = V (H ⊙ (ΣQ⊤G(f)V + V ⊤G(f)⊤QΣ)) + (I − V V ⊤)G(f)⊤QΣ−1.

(C.8)

By setting U = QΣ it can be verified that the pair (U ,V) satisfy the dynamically

bi-orthogonal equations of [23]. It should be noted that this is not the only

parametrization of the fixed-rank solution f = QΣV ⊤. Of particular interest is

130

the closely related projection method given by the DDO approximation

d
dt
A = W⊤G(f)B, (C.9)

d
dt
W = (I −WW⊤)G(f)BA−1, (C.10)

d
dt
B = (I −BB⊤)G(f)⊤WA−⊤. (C.11)

The above equations are equivalent to the SVD equations in the sense that

W (t)A(t)B⊤(t) = f(t) = Q(t)Σ(t)V ⊤(t) (C.12)

as long as the singular values are distinct and the equation holds at t = 0. A

comparison of methods for fixed rank initial value problems is given in [79].

131

Bibliography

[1] P-A Absil and Jérôme Malick. Projection-like retractions on matrix mani-
folds. SIAM J. Optim., 22(1):135–158, 2012.

[2] P-A Absil and Ivan V Oseledets. Low-rank retractions: a survey and new
results. Computational Optimization and Applications, 62(1):5–29, 2015.

[3] S. M. Allen and J. W. Cahn. Ground state structures in ordered binary
alloys with second neighbor interactions. Acta Metall., 20(3):423–433, 1972.

[4] S. M. Allen and J. W. Cahn. A correction to the ground state of FCC binary
ordered alloys with first and second neighbor pairwise interactions. Scripta
Metallurgica, 7(12):1261–1264, 1973.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[6] W. Austin, G. Ballard, and T. G. Kolda. Parallel tensor compression for
large-scale scientific data. In IPDPS’16: Proceedings of the 30th IEEE In-
ternational Parallel and Distributed Processing Symposium, pages 912–922,
May 2016.

[7] M. Bachmayr, R. Schneider, and A. Uschmajew. Tensor networks and hi-
erarchical tensors for the solution of high-dimensional partial differential
equations. Found. of Comput. Math., 16(6), 2016.

[8] J. Baldeaux and M. Gnewuch. Optimal randomized multilevel algorithms
for infinite-dimensional integration on function spaces with ANOVA-type
decomposition. SIAM J. Numer. Anal., 52(3):1128–1155, 2014.

[9] V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial in-
terpolation on sparse grids. Advances in Computational Mechanics, 12:273–
288, 2000.

132

[10] C. Beck, W. E, and A. Jentzen. Machine learning approximation algo-
rithms for high-dimensional fully nonlinear partial differential equations and
second-order backward stochastic differential equations. J. Nonlinear Sci.,
2019.

[11] R. E. Bellman. Dynamic programming. Princeton University Press, 1957.

[12] M. J. Beran. Statistical continuum theories. New York: Interscience Pub-
lishers, 1968.

[13] A. M. P. Boelens, D. Venturi, and D. M. Tartakovsky. Parallel tensor meth-
ods for high-dimensional linear PDEs. J. Comput. Phys., 375:519–539, 2018.

[14] A. M. P. Boelens, D. Venturi, and D. M. Tartakovsky. Tensor methods for
the Boltzmann-BGK equation. J. Comput. Phys., 421:109744, 2020.

[15] A M.P. Boelens, D. Venturi, and D. M. Tartakovsky. Parallel tensor methods
for high-dimensional linear PDEs. J. Comput. Phys., 375:519–539, 2018.

[16] R. Borrelli and S. Dolgov. Expanding the range of hierarchical equations of
motion by tensor-train implementation. The Journal of Physical Chemistry
B, 2021.

[17] ZI Botev, JF Grotowski, and DP Kroese. Kernel density estimation via
diffusion. The Annals of Statistics, pages 2916–2957, 2010.

[18] H. J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269,
2004.

[19] Y. Cao, Z. Chen, and M. Gunzbuger. ANOVA expansions and efficient
sampling methods for parameter dependent nonlinear PDEs. Int. J. Numer.
Anal. Model., 6:256–273, 2009.

[20] R. Carmona and F. Delarue. Probabilistic theory of mean field games with
applications II. Springer, 2018.

[21] G. Ceruti and C. Lubich. An unconventional robust integrator for dynamical
low-rank approximation. ArXiv, (2010.02022):1–19, 2020.

[22] Y. Chen, L. Zhang, H. Wang, and W. E. Ground state energy functional
with Hartree-Fock efficiency and chemical accuracy. J. Phys. Chem. A,
124(35), 2020.

[23] M. Cheng, T. Y. Hou, and Z. Zhang. A dynamically bi-orthogonal method
for time-dependent stochastic partial differential equations I: Derivation and
algorithms. J. Comput. Phys., 242:843–868, 2013.

133

[24] A. Chertkov and I. Oseledets. Solution of the Fokker-Planck equation by
cross approximation method in the tensor train format. arXiv preprint
arXiv:2102.08143, 2021.

[25] F. Chinesta, R. Keunings, and A. Leygue. The Proper generalized decom-
position for advanced numerical simulations. Springer, 2014.

[26] A. Chkifa, A. Cohen, and C. Schwab. High-dimensional adaptive sparse
polynomial interpolation and applications to parametric PDEs. Found.
Comput. Math., 14:601–633, 2014.

[27] H. Cho, D. Venturi, and G.E. Karniadakis. Numerical methods for high-
dimensional probability density function equations. J. Comput. Phys.,
305:817–837, January 2016.

[28] H. Cho D. Venturi, T. P. Sapsis and G. E. Karniadakis. A computable evo-
lution equation for the joint response-excitation probability density function
of stochastic dynamical systems. Proc. R. Soc. A, 468:759–783, 2011.

[29] Curt Da Silva and Felix J Herrmann. Optimization on the hierarchical
Tucker manifold-applications to tensor completion. Linear Algebra and its
Appl., 481:131–173, 2015.

[30] H. Al Daas, G. Ballard, and P. Benner. Parallel algorithms for tensor train
arithmetic. SIAM J. Sci. Comput., 44(1):C25–C53, 2022.

[31] A. Dektor, A. Rodgers, and D. Venturi. Rank-adaptive tensor methods
for high-dimensional nonlinear PDEs. Journal of Scientific Computing,
88(36):1–27, 2021.

[32] A. Dektor and D. Venturi. Dynamically orthogonal tensor methods for high-
dimensional nonlinear PDEs. J. Comput. Phys., 404:109125, 2020.

[33] A. Dektor and D. Venturi. Dynamic tensor approximation of high-
dimensional nonlinear PDEs. J. Comput. Phys., 437:110295, 2021.

[34] Ron S. Dembo, Stanley C. Eisenstat, and Trond Steihaug. Inexact newton
methods. SIAM Journal on Numerical Analysis, 19(2):400–408, 1982.

[35] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou.
Communication-optimal parallel and sequential qr and lu factorizations.
SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

[36] G. Di Marco and L. Pareschi. Numerical methods for kinetic equations.
Acta Numerica, 23:369–520, May 2014.

134

[37] S. Dolgov. A tensor decomposition algorithm for large odes with conser-
vation laws. Computational Methods in Applied Mathematics, 19(1):23–38,
2019.

[38] S. Dolgov and B. Khoromskij. Tensor-product approach to global time-
space-parametric discretization of chemical master equation. 2012.

[39] S. Dolgov, B. Khoromskij, and I. Oseledets. Fast solution of parabolic prob-
lems in the tensor train/quantized tensor train format with initial applica-
tion to the Fokker–Planck equation. SIAM J. Sci. Comput., 34(6):A3016–
A3038, 2012.

[40] S. V. Dolgov. TT-GMRES: solution to a linear system in the structured
tensor format. Russian Journal of Numerical Analysis and Mathematical
Modelling, 28(2):149–172, 2013.

[41] W. E, J. Han, and Q. Li. A mean-field optimal control formulation of deep
learning. Res. Math. Sci., 6(10):1–41, 2019.

[42] István Faragó and Agnes Havasiy. Operator splittings and their applications.
Nova Science Publishers, 2009.

[43] J. Foo and G. E. Karniadakis. Multi-element probabilistic collocation
method in high dimensions. J. Comput. Phys., 229:1536–1557, 2010.

[44] W. Gangbo, W. Li, S. Osher, and M. Puthawala. Unnormalized optimal
transport. J. Comput. Phys., 399:108940, 2019.

[45] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM
J. Matrix Anal. Appl., 31(4):2029–2054, 2010.

[46] L. Grasedyck and C. Löbbert. Distributed hierarchical SVD in the hierar-
chical Tucker format. Numer. Linear Algebra Appl., 25(6):e2174, 2018.

[47] Michael Griebel and Guanglian Li. On the decay rate of the singular values
of bivariate functions. SIAM J. Numer. Anal., 56(2):974–993, 2018.

[48] W. Hackbusch. Tensor spaces and numerical tensor calculus. Springer, 2012.

[49] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration,
volume 31 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, second edition, 2006. Structure-preserving algorithms for
ordinary differential equations.

[50] E. Hairer, G. Wanner, and S. P. Nørsett. Solving ordinary differential equa-
tions I: Nonstiff problems, volume 8 of Springer Series in Computational
Mathematics,. Springer Berlin Heidelberg, second edition, 1993.

135

[51] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-
dependent problems. Cambridge University Press, 2007.

[52] S. Holtz, T. Rohwedder, and R. Schneider. On manifolds of tensors of fixed
TT-rank. Numer. Math., 120(4):701–731, 2012.

[53] E. Hopf. Statistical hydromechanics and functional calculus. J. Rat. Mech.
Anal., 1(1):87–123, 1952.

[54] A. Karimi and M. R. Paul. Extensive chaos in the Lorenz-96 model. Chaos,
20(4):043105(1–11), 2010.

[55] L. Karlsson, D. Kressner, and A. Uschmajew. Parallel algorithms for tensor
completion in the CP format. Parallel compting, 57:222–234, 2016.

[56] A.-K. Kassam and L. N. Trefethen. Fourth-order time stepping for stiff
PDEs. SIAM J. Sci. Comput., 26(4):1214–1233, 2005.

[57] B. N. Khoromskij. Tensor numerical methods for multidimensional PDEs:
theoretical analysis and initial applications. In CEMRACS 2013–modelling
and simulation of complex systems: stochastic and deterministic approaches,
volume 48 of ESAIM Proc. Surveys, pages 1–28. EDP Sci., Les Ulis, 2015.

[58] E. Kieri and B. Vandereycken. Projection methods for dynamical low-
rank approximation of high-dimensional problems. Comput. Methods Appl.
Math., 19(1):73–92, 2019.

[59] E. Kieri and B. Vandereycken. Projection methods for dynamical low-rank
approximation of high-dimensional problems. Comput. Methods in Appl.
Math., 19(1):73–92, 2019.

[60] V. I. Klyatskin. Dynamics of stochastic systems. Elsevier Publishing Com-
pany, 2005.

[61] O. Koch and C. Lubich. Dynamical tensor approximation. SIAM J. Matrix
Anal. Appl., 31(5):2360–2375, 2010.

[62] Othmar Koch and Christian Lubich. Dynamical low-rank approximation.
SIAM J. Matrix Anal. Appl., 29(2):434–454, 2007.

[63] T. Kolda and B. W. Bader. Tensor decompositions and applications. SIREV,
51:455–500, 2009.

[64] D. Kressner and C. Tobler. Algorithm 941: htucker – a Matlab toolbox for
tensors in hierarchical Tucker format. ACM Transactions on Mathematical
Software, 40(3):1–22, 2014.

136

[65] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[66] P. Lax and R. D. Richtmyer. Survery of the stability of linear finite difference
equations. Communications on pure and applied mathematics, 9:267–293,
1956.

[67] Peter Lax and Burton Wendroff. Systems of conservation laws. Technical
report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States),
1958.

[68] Adrian S Lewis and Jérôme Malick. Alternating projections on manifolds.
Math. of Operations Res., 33(1):216–234, 2008.

[69] G. Li and H. Rabitz. Regularized random-sampling high dimensional model
representation (RS-HDMR). J. Math. Chem., 43(3):1207–1232, 2008.

[70] L. Li, J. Qiu, and G. Russo. A high order semi-Lagrangian finite differ-
ence method for nonlinear Vlasov and BGK models. Comm. Appl. Math.
Comput., 5:170–198, 2023.

[71] Jun Liu, Xiangqian Liu, and Xiaoli Ma. First-order perturbation analysis
of singular vectors in singular value decomposition. IEEE Trans. on Signal
Process., 56(7):3044–3049, 2008.

[72] Edward N Lorenz. Predictability: A problem partly solved. In Proc. Semi-
nar on predictability, volume 1, 1996.

[73] C. Lubich, I. V. Oseledets, and B. Vandereycken. Time integration of tensor
trains. SIAM J. Numer. Anal., 53(2):917–941, 2015.

[74] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken. Dynamical
approximation by hierarchical Tucker and tensor-train tensors. SIAM J.
Matrix Anal. Appl., 34(2):470–494, 2013.

[75] Christian Lubich and Ivan V. Oseledets. A projector-splitting integrator
for dynamical low-rank approximation. BIT Numer. Math., 54(1):171–188,
2014.

[76] Thomas Marz and Colin B Macdonald. Calculus on surfaces with general
closest point functions. SIAM J. Numer. Anal., 50(6):3303–3328, 2012.

[77] X. Meng, Z. Li, D. Zhang, and G. Karniadakis. Ppinn: Parareal physics-
informed neural network for time-dependent PDEs. Computer Methods in
Applied Mechanics and Engineering, 370:113250, 10 2020.

137

[78] H. Montanelli and Y. Nakatsukasa. Fourth-order time-stepping for stiff
PDEs on the sphere. SIAM J. Sci. Comput., 40(1):A421–A451, 2018.

[79] Eleonora Musharbash, Fabio Nobile, and Tao Zhou. Error analysis of the
dynamically orthogonal approximation of time dependent random PDEs.
SIAM J. Sci. Comput., 37(2):A776–A810, 2015.

[80] A. Narayan and J. Jakeman. Adaptive Leja sparse grid constructions for
stochastic collocation and high-dimensional approximation. SIAM J. Sci.
Comput., 36(6):A2952–A2983, 2014.

[81] Mark R. Opmeer. Decay of singular values of the gramians of infinite-
dimensional systems. In 2015 European Control Conference (ECC), pages
1183–1188, 2015.

[82] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, 2011.

[83] I. V. Oseledets. TT-Toolbox 2.3. GitHub Repository,
https://github.com/oseledets/TT-Toolbox, 2014.

[84] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Springer,
second edition, 2007.

[85] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning
of nonlinear partial differential equations. J. Comput. Phys., 357:125–141,
2018.

[86] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural
networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations. J. Comput. Phys.,
378:606–707, 2019.

[87] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

[88] S. C. Reddy and L. N. Trefethen. Lax stability of fully discrete spectral
methods via stability region and pseudo-eigenvalues. Computer methods in
applied mechanics and engineering, 80:147–164, 1990.

[89] S. C. Reddy and L. N. Trefethen. Stability of the method of lines. Numer.
Math., 62:235–267, 1992.

138

[90] H. Risken. The Fokker-Planck equation: methods of solution and applica-
tions. Springer-Verlag, second edition, 1989. Mathematics in science and
engineering, vol. 60.

[91] A. Rodgers. htucker-mpi. https://github.com/akrodger/htucker-mpi,
2019.

[92] A. Rodgers, A. Dektor, and D. Venturi. Adaptive integration of nonlinear
evolution equations on tensor manifolds. J. Sci. Comput., 92(39):1–31, 2022.

[93] A. Rodgers and D. Venturi. Stability analysis of hierarchical tensor methods
for time-dependent PDEs. J. Comput. Phys., 409:109341, 2020.

[94] T. Rohwedder and A. Uschmajew. On local convergence of alternating
schemes for optimization of convex problems in the tensor train format.
SIAM J. Numer. Anal., 51(2):1134–1162, 2013.

[95] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-driven
discovery of partial differential equations. Science Adv., 3(4):e1602614, 2017.

[96] L. Ruthotto, S. Osher, W. Li, L. Nurbekyan, and S. W. Fung. A machine
learning framework for solving high-dimensional mean field game and mean
field control problems. PNAS, 117(17):9183–9193, 2020.

[97] Themistoklis P Sapsis and Pierre FJ Lermusiaux. Dynamically orthogonal
field equations for continuous stochastic dynamical systems. Physica D:
Nonlinear Phenomena, 238(23-24):2347–2360, 2009.

[98] R. Schneider and A. Uschmajew. Approximation rates for the hierarchical
tensor format in periodic sobolev spaces. Journal of complexity, 30(2):56–71,
2014.

[99] T. Shi, M. Ruth, and A. Townsend. Parallel algorithms for computing the
tensor-train decomposition. ArXiv, (2111.10448):1–23, 2021.

[100] Gilbert W Stewart. Perturbation theory for the singular value decomposi-
tion. Technical report, 1998.

[101] J. C. Strikwerda. Finite difference schemes and partial differential equations.
SIAM, second edition, 2004.

[102] S. Torquato. Random heterogeneous materials, microstructure and macro-
scopic properties. Springer, 2002.

[103] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.
Siam, 1997.

139

[104] A. Trombettoni and A. Smerzi. Discrete solitons and breathers with dilute
Bose-Einstein condensates. Phys. Rev. Lett., 86:2353–2356, 2001.

[105] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[106] A. Uschmajew. Local convergence of the alternating least squares algorithm
for canonical tensor approximation. SIAM J. Matrix Anal. Appl., 33(2):639–
652, 2012.

[107] A. Uschmajew and B. Vandereycken. The geometry of algorithms using
hierarchical tensors. Linear Algebra Appl., 439(1):133–166, 2013.

[108] André Uschmajew and Bart Vandereycken. Geometric methods on low-
rank matrix and tensor manifolds. In Handbook of Variational Methods for
Nonlinear Geometric Data, pages 261–313. Springer, 2020.

[109] D. Venturi. The numerical approximation of nonlinear functionals and func-
tional differential equations. Phys. Reports, 732:1–102, 2018.

[110] D. Venturi. The numerical approximation of nonlinear functionals and func-
tional differential equations. Physics Reports, 732:1–102, 2018.

[111] D. Venturi and A. Dektor. Spectral methods for nonlinear functionals and
functional differential equations. Research in the Mathematical Sciences,
8(27):1–39, 2021.

[112] D. Venturi and G. E. Karniadakis. Convolutionless Nakajima-Zwanzig equa-
tions for stochastic analysis in nonlinear dynamical systems. Proc. R. Soc.
A, 470(2166):1–20, 2014.

[113] D. Venturi, T. P. Sapsis, H. Cho, and G. E. Karniadakis. A computable evo-
lution equation for the joint response-excitation probability density function
of stochastic dynamical systems. Proc. R. Soc. A, 468(2139):759–783, 2012.

[114] C. Villani. Optimal transport: old and new. Springer, 2009.

[115] Gerhard Wanner and Ernst Hairer. Solving ordinary differential equations
II. Springer Berlin Heidelberg, 1996.

[116] S. Weinberg. The quantum theory of fields: volume I. Cambridge University
Press, 2002.

[117] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and un-
certainty quantification without labeled data. J. Comput. Phys., 394:56–81,
2019.

140

[118] J. Zinn-Justin. Quantum field theory and critical phenomena. Oxford Univ.
Press, fourth edition, 2002.

141

