
Lawrence Berkeley National Laboratory
Recent Work

Title
THE GIANT El RESONANCE FOR DEFORMED NUCLEI

Permalink
https://escholarship.org/uc/item/32308186

Authors
Nilsson, S.G.
Sawicki, J.
Glendenning, N.K.

Publication Date
1961-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32308186
https://escholarship.org
http://www.cdlib.org/


UCRL 9803  
c 4  

UNIVERSITY OF 
CALIFORNIA 

ernest: 

TWO-WEEK IOAN COPY 

This is a library Circulating Copy 

which may be borrowed for two weeks. 
For a personal retention copy, call 

Tech. Info. DIvision, Ext. 5545 

BERKELEY, CALIFORNIA 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



TJCRL -98O 

UNIVSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 

Berkeley, California 

Contract No. W-705-eng-8 

THE GIANT El RESONANCE FOR DEFORI'IED NUCLEI 

S. G. I\Iilsson, J. Sawicki, and N. K. Giendenning 

September 1961 



111 
	 ucRL-98O3 

THE GIAIIT El RESONA10E FOR DEFORMED JYJTJCLEI 

Contents 

Introduction.................................1 

The Randon-Phase-Approximation Treatment of the Residual Interactions 	. 

Detailed Calculations ................................11 

Residual Interaction Employed .......................... 14 

Results of Calculations 	........................... 14 

a. 	Excitation spectra ......................... 

1. 	Discussion of sum rules .........................16 

Acknowlednents ......................................18 

TableLegends ..................................19 

Appendix . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 32 

References...................................... 37 



-1-. 	 UCRL-98O 

THE GIANT El RESONANCE FOR DEFORMED ]JUCLEI * 

xx 
S. G. Niisson, 	J. Sawicki, and N. K. Glendenning 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

INTRODUCTION 

The giant El photo-nuclear resonance has now been studied for a large 

number of nuclides •. In particular, there appears to be experimental indication 

that the giant El resonance exhibits'a split peak in strongly deformed nuciei. '  

Danos2  and Okamoto explained this effect qualitatively in terms of a hydro-

dynamic model with different characteristic frequencies along the major and 

minor axis of.the nuclear spheroid. This effect was then also calculated on 

the basis of the independent-particle picture by Wilkinson and by Mottelson 

and Nilsson7  using the single-particle wave functions of an anisotropc har-

monic oscillator. 

Such a simple description of the El giant resonance in terms of pure 

unperturbed single-particle excitations now appears to be contradicted by the 

empirical fact that the characteristic resonance energy is of the order of a 

factor of 1.7 larger than the spacing between two oscillator shells, 

Already several years ago.Ellitt and Flowers 7  were able to explain the photo- 

16 
excitation spectrum of.O bythe perturbation of the simple shell-model states 

by a residual two-body force of finite range and containing exchange mixture. 

- 	The resulting mixing of configurations is associated with the pushing of the 

l states with T=l generally above hw and the T=O states below hw on the aver-

age. In particular, the two, highest-lying El states were found to absoib al-

most all of the El oaciflator strength. and thus together constitute a .true 

giant state.  

* Work done under the auspices of the U.S. Atomic Energy Coiission and in part 
(.s.) supported by the United States Air Force under Contract No. AF-49 
(68)-27 monitored by the Air Force Office of Scientific Research of the 
Air Research and Development Conmiand. 

** On leave of absence from the University of Lund, Sweden. 
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Recently, Brown and Boisterli proposed a very schematic but suggestive 

picture of the uxierlying mechanism of shell-model configuration mixing causing 

the El resonance to occur. In a representation of single-particle states where 

all El single-particle matrix elements are of equal sign (furthermore provided 

the matrix elements are of roughly equal magnitude) a coherent excited state, 

collecting te main El oscillator strength, is obviously the linear combination 

of single-particle excitations with the amplitudes being roughly equal and all 

of one relative sign. Such an excited state of one-particle character is in-

deed also the highest-lying 1 state provided all matrix elements of the resi-

du.l:iLjjteraction are of the same magnitude and sign in this representation. 

Brown and Boisterli treated the case of a residual Wigner force of zero range. 

However, the specific isobaric spin character Of the El state as well as the 

antisyminetrjsation of the nuclear wave function are neglected in the first of 

the papers of Ref. 8. Anjecud::baeof the over-all sign of the interaction 

matrix elements qualitatively cOmpensates for the mentioned effects. 

Recently the approach based on the Random-Phase-Approximation has been 

applied with success to the study of certain types of collective states of 

nuclei. The employed formalism, was first developed in the early papers by 

Sawada9  and his collaborators in order to treat the eJectron gas problem. The 

corresponding methods were introduced into nuclear physics independently by 

Takagi,10 	 , 	 , Fallierosll Mottelson 12  and others1 This latter type of theory 

has the distinction relative to the shell-model calculations that it accounts 

approximately for the effects of correlations in the ground state. These ef-

fects are sometimes disCussed in terms of the so-called backward-going graphs 

means that single-particle deexcitations are considered. in addition to the 

excitations, i.e. the lifting of a particle from below the Fermi surface to 

above.it , as considered in shell-model calculations.. 
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In the present paper we shall employ the density matrix forinulation' 

which is especially suitable for the study of higher order nonlinearity effects. 

As the specific T=l character of the giant resonance state appears to 

be of primary importance, it is of particular interest to study nuclei with 

such a  low Z- value that the isobaric spin is a good constant of the motion. 

24 
Therefore Jour :first, choice. has :.beefl.. 	hich :is. a prolté nu.c:• 

leus and for which the adiabatic coupling scheme seems well established. In 

addition, as an example of a possibly oblate.. nucleus, we have considered C 12 . 

THE RANDOM-PHASE-APPROXIMATION TREATMENT OF THE RESIDUAL INTERACTIONS 

We consider a Hamiltonian of the form 

H = H +V 
0 

where 

H 	 (2) 

is the single-particle part of the Hamiltonian, including'the shell-model field, 

and where 

AV = 1/2 	Z (aIVatt ) a a 	 () 
aat 

tsthe residual interaction, i.e. the part of the interaction that is not al-

ready included in the field. - 	 . 

The two-body interaction V refers to space, spin and isobaric-spin 

quantum states of both particles involved in the Interaction . 	. 

v 	 (l) 	(i) , 	( 2) 	(2) .(2)) 	
(Ii.)cr 

(1) 
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In the absence of a residual interaction, LV, the ground state is an 

(fLgenvector of H  corresponding to a sharp Fermi surface in terms of the she 11-

model wave functions. In the presence of a residual interaction the ground 

state may contain correlations. As seen from (3), v scatters particles out 

of the Fermi sea. Obviously such hole-particle pair excitations have to comply 

with parity and angu.lar-momentum conservation of the ground state. 

Our main interest is, however, not the ground state but the excited 

giant El state As the ground state appears to be a complicated linear com-

bination of various one-two- etc. particle excitations, also the El state may 

have a complicated structure. However, we are concerned only with its relation 

to the ground state. We will see that the simple Random-Phase-Approximation 

largely 
is/equivajent to the contention that, relative to the correlated ground state, 

denoted O), the ttcollective state t' E)is of the simple type 

JE) = 
	= 	cE 	JJo) 	 (7) 

vvl vv 

where cLt  should be considered as variational parameters and where 
VV 

A 	+ 
PVV = a,a 	 (6) 

is the density matrix operator connected with the promotion of a particle from 

the state v to another state y r. 

The "collective" states.thus correspond to a Jinear combination of one-

particle excitations relative to the ground state. The.assumption of a state 

of this particular character to approximate the physical state in a way already 

employs some empirical knowledge about the collectivetate. As this state 

(or narrow group of a few states) may be reached from the ground state by an 

El excitation that to a large extent exhausts the total sum rule strength, 

and as the electromagnetic interaction can excite only one particle at a time 
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to lowest order in .e 2/c, the character of the collective excitation is 

empirically rather well specified as being dominantly of the type expressed 

by Eq. (5. 

The problem of finding the coefficients cEt  is equivalent to the 
VV 

problem of finding the matrix elements of.p t between the ground state 10) 
Vv 

and the ?TcollectiveU  state IE). 

The operators IN 
 P 	fulfill the equations of motion VV 

vv' 	
[vvt, 

H]= 	 vJ 	 (7)
VV 

TI- first commutator on the right hand side is easily evaluated to be 

PVV 	
H] = (E: V  - 
	) 

	
(8) 

The details of the evaluation of the second commutator may be found in Ref. 13. 

Equation (7) multiplied by (El from the left and by 10) from the right 

takes the form 

11  

	

(C  V 	
E- E) (El 	Jlo)= 

KKS SV) 

	

(sKIIVIVIKEIV5KKtII0)) 	 ( 9) 

- 	where 

(vK!lVlSK = f*(1) (2)v(i) K12 	
(10) 

This equation thus relates the matrix elements of one p to those of a 

product of tWOptS.  By exactly the same procedure an analogous equation can 

be formed relating two-p aggregates to three-p aggregates, etc. In the simple 

Random-Phase-Approximation (RPA) one 'confines oneself to Eq. (9), which is 

then linearized according to a certain prescription. In this way Eq. (13) is 

obtained (see below). Thus quadratic terms of matrix elements of PVV1 with 
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v'v are neglected as being small of a higher order. Although there are 

many of these terms, they are assumed to be negligible as •bhey::occur. incober- 

* 
ently, i.e •, with random phases. Furthermore the Fermi surface is considered 

as nearly sharp and fluctuations in occupation numbers are neglected. 

Although Eq. (9) is an exact equation that is valid for a more general 

state jE) than that assumed in Eq. (5), the assumption of the appropriateness 

of the linearization procedure is±välttO the assumption of a more simple 

collective state IE) in accordance with Eq. (5). 

Obviously Eq. (9) simplifies for the amplitudes (Ej 	,Ijo) with IE) 

defined from Eq. (5), as no=egligible matrix elements on the right hand side 

of Eq0 (9)for an approximately sharp Fermi surface 

(E J A 	 (U) 

can occur only if one of the indices of the destruction operators equals one 

of 'the:.indices of the creation operators. In such a case apparently two of 

the Fermi operators together represent an occupation number operator for a 

particular single-particle state.., 

* 
The effect of such two-pair excitations neglected in the EPA could be 

examined, e.g. by an extension of the Random-Phase-ApproximatLon - the 

"Higher EPA" - consisting of a closed system of equations of motion also 

connecting the two- and, three-operator products where the three-p aggre-

gates are in turn linearized. In general thee are many more two-ty aggre-

gates than one-p. , However, as the components most important in the El 

problem are connected with the basic energy bso, the two-pair transitions 

will mostly correspond to a basic energy '5t1a.  Therefore on the average 

the latter are discriminated against energetically. Furthermore, as pointed 

out above, it is generally conjectured that they occur with random phases, 

which would ensure their rather small net contribution. 
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In the further approximation that the Fermi surface is nearly sharp 

and the true" ground state IC) can be considered aneigenvector of the oc-

cupation operator, the amplitude (11) with e.g., s=.;v' reduces to 

(EIKK,TIIO) 	::fl 	(EKjIO) 	 (12) 

where n, is the occupation number of the single-particle state V T . (For the 

second term on the right hand side of Eq. (ii) we furthermore assume that also 

IE) behaves approximately as a sharp Fermi surface when acted upon by the 

occupation number operator '' •.) 

	

The fact that an occupation number operator 	can occur in 

alternatively if the sunmiation index •s equaisv t  or if the summation index K 

equals v', gives rise to the usual exchange matrix elements of V, well-known 

from shell-model calculations. In the usual procedure for linearizing the 

bilinear Eq. (11) to obtain Eq. (13) a factorization of this two-p product 

that takes the Pauli principle properly into account is referred to as a 

Hartree-Fock factorization. 

The complete linearized equation can thus be written in terms of the 

amplitudes (El' 110), which we will denote 	for the sake of typographicalVVI  PVV

simplicity 

€ - 

+n 
 K 	

12j I K' K~
p K V1 
	 (K I KIV 	 K)p Kj' 

(13) 
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The terms on the second line of Eq. (i) are self-energy terms car-

responding to the contribution from the self-energy part of the interaction 

Hamiltonian 

Aself = 
1/2 	(sK1V1sK).aatá:a 	 (14) 

It appears reasonable to assume that terms of such.origin are already 

effectively included, in the shell-model field from which the single-particle 

exrgies (€ have been determined, although we have obviously not attempted 
V 

to relate the self-energy parts of V to the single-particle energies through 

a Hartree-Fock procedure or thtough any other self-consistent method. 

After the exclusion of the self-energy terms,Eq. (l) takes the 

simple form 

(€- 
E- ('vn) 	(vKT1V(1_2)1vtKpKKt 	(15) 

Another question also related to the arbitrariness in the problem of 

hcw 	self-consistent field. is defined concerns, the RPA elements of Eq, (17) 

that are diagonal in the particle hole-pairs, name1y ,(vy IV(1-P12 ) Iv'v). 

Those obviously correspond to elastic scattering of particle-hole pairs (vv ), 

and the problem arises whether they also should be thought of as being already 

included, in the single-particle potential. Ordinarily such terms are not 

included in a Hartree-Fock calculation based on the Brueckner reaction matrix. 

Unless one employs another type of reaction matrix (see e.g. Sawada 15 ) in 

finding €, such terms should be retained in the corresponding EPA (calcu-

lation). However, in the present calculations we have assumed a "phenomeno-

logical" shell-model field to supply [). Probably the mentioned terms of 
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the elastic-scattering type are included in this field on the average. How-

ever, individual fluctuations relative to this average may be significant 

and displaying effects of correlations; For most ofour calculations we 

have chosen to include these diagonal terms, but for some case's they have 

been excluded. Probably the wave functions and oscillator strength values 

corresponding to the former case are to be considered as somewhat more plausi-

ble. All the energies should, however, probably be lowered by an average 

2 - 3 Mev in the former case,, corresponding to a subtraction of the average 

diagonal particle-hole-pair interaction energy. 

It should.finally be emphasized that for the case of an uncorrelated 

ground state (i.e. when deexcitations, or annihilations of hole-particle pairs 

are excluded) Eq. (15) leads.exactly to the eigenvalue problem occurring in 

the shell-model calculations. TA latter type.of calculations are obviously 

limited to including only .the very simplest hole-particle pair graphs (one 

hole-particle pair being exchanged for another hole-particle pair in the 

interaction process). 

As our occupation factors n and n , in the approximation employed, 

hive the values 1 and 0, corresponding to a sharp Fermi surface, we also 

confine ourselves to excited states that, relative to the ground state, re-

present transitions of a particle across the Fermi surface. Thereby obvious-

ly a transition of a particle originally being above the Fermi surface in 

the correlated ground state to another state above the Fermi' surface is 

excluded. ' The same thing holds .true for, a hole transition below the Fermi 

surface. However, this formalism allows for both'creation and destruction 

of hole-particle' pairs relative 'to the correlated ground state. 
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Equation (13) is an eigenvalue equation in terms of the matrix 

elements of the density matrix p 
W

. The correspoding transposed matrix 

uon holds for the coefficients c, which are the componeiits of the 
VV 

"collective" eigenvector IE) defined in Eq. (5). This equation may be 

18 
ritten in the fo±m 

B)  (u 

E E) (i6) 

where u corresponds :to creation of a hole-artic1e pair relative to the  

ground state while v corresponds to the annihilation of such a pair relative 

to the ground state. Thus ina pure sheflniodel calculation v 0. The 

matrix B is obviously associated with the coupling between the excitations 

and the de-excitätions. While both of the matrices A and B are Hermitian, 

the total matrix is non-Herniitian. 

The re.1itr of E depends on the actual strength of interaction and is 

for the present case always very well ensured. It is easy to verify that 

Eq. (16) has the smmpleproperty that to each positive eigenvalue E there 

corresponds a negative and unphysical eigCnalue - E, which may be ruled out 

by imposing the extra cbndition on the.corelated ground state 

0. 
	 (ri) 

Also, as the tpicai matrix elements of B ae of the order of, or less than, 

1 Mev for the light nuclei considered.compared to a separation of the roots 

of A and -A by a magnitude of the order. of 2 .hw, the amount of mixture of 

de-excitations in the eigenfunctions of (16) is expected to be rather small 

in the treated cases. This is also born out in the explicit calculation 

(see below). * 
* In view of this fact the effects of the neglected interactions of particle-

particle and hole-hole pair type neglected in the EPA approximation may 
appear equally worthy of a special investigation. 
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As a result of the non-hermiticity of the secular problem the corres-

ponding eigenvectors satisfy the orthonormality and completeness relations 

characteristic of an indefinite metric: 

* 
 n 	m [() 	G) c.] = i 	mn 	 (18) 

	

(c.) 	
KKm 

	n 	
= 6 8 	 (19) 

i 	 ' 	IE 	VK V'K' E,EfO 	 n n m 

where the sum over v in (18) runs over all single-particle states below the 

Fermi surface and the suni over v' includes all such states above it. 

DETAILED CALCULATIONS 

In our calculations we have considered the self-conjugate nuclei Mg 2  

and C12  having T=O ground states. Excitations relative to the ground state 

of El character have thus the isobaric spin T=l and are generated by the 

* 
operators 

	

( 	
- 	

•) 	 (20) 
vv 	- 	vv t 	vv t 	 - 

where, from here on, v and v label only the space and spin coordinates 

but not the charge of the state. If we rewrite Eq. (17) in terms of 	, it 

takes the form: 	'3 	- 

- 	(- E-.E)=(n-n) .(VK UIvK 	KK 	
(21)

V.VV 

where (vK I UI v K) is the matrix element of v(i-p ) in terms of the T=1 wave 

functions (see Eq.'(20)  * 
That only T=1 states are excited is associated with the fact that for such 
self-conjugate nuclei considered here the effective charges of the proton 
and neutron are e/2and-e/:2, respectively. Physically the T=1 state, as 
seen from Eq. (20) corresponds to neutrons and protons moving 1800  out of 
phase relative to each other, a pictue which retains an essential feature 
of the original Goldhaber and Teller 1  two-fluid model. 
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Restricting ourselves to an interaction of the form 

V = J(r12 )(w+ bP°+ mP 
+ pr(Y) 	 (22) 

and. introducing the integrals 

W 	I ' * (') * 
K , ( 2Y J V ,(l)  K(2) 	dT1 dT2  (2a) 

B = i) *r(2) JP 	') 	K(2) 	dT1 dT2  (23b) 

M = dT1dT2 (2c) 

H = 	5 
* 
(l) 

* 
Kt(2) , 	(i) 	dT 	d 12  (23d) 

we may write 

(VK'IUIV'K) 	- wH - bM - mB ,- hW. 	 (24) 

The calculation of the interaction- matrix elements as well as the El 

transition matrix elements is particularly simple if one uses the asymptotic" 

wave functions, 5  valid in the limit that the quadrupole part of the shell 

model field is large relative to the spin-orbit coupling. In this limit 

appropriate at large deformations only the diagonal parts of the spin-orbit 

interaction is retained. In the Appendix we present the results of such 

calculations applied to the C12  nucleus. Unfortwiately the applicability of 

not only the adiabatic coupling scheme but in particular the asymptotic wave 

functions to the nucleus is very uncertain, and the results obtained are only 

of interest as illucidating the general mechanism behind the calculations that 

employ the more detailedwave functions of Ref.  . 17. They should thus not be 

directly compared with the empirical data. 

In the coupling scheme appropriate to deformed nuclei, there are two 

separate modes of excitations corresponding to K=O and K=1. These are ba-

sically characterized by the two different oscillator frequencies w z and 
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where w z < W for prolate nuclei as Mg2 and u >CDj for ablate nuclei, of 

12 
which we have assumed C to be an example. Within each of the KO and K=l 

groups of states a giant El excitation is then formed. 

Furthermore in the case of deformed nuclei, an El transition from 

the ground state populates only the lowest member of a K=1 rotational band 

and. only the.I=1 member of a K=O rotational band. There is thus in this case 

no sharing of the intrinsic El strength on different rotational states. The 

transition probability is therefore given exclusively in terms of the intrin-

sic wave functions 

Most of the degeneracy of the spherical problem is now removed by 

the distortion of the nuclear field. The remaining degeneracy associated 

w±tth the time reversal degeneracy of the single-particle orbitals may be 

exploited to reduce the secular matrix in the K=O case by the introduction 

of the new state vectors generated by 

I 	
j- 	

ab 	-a-b' 	
(27) 

ct 	 - 	) 	 (26) 
II 	• ab 	,-a-b -12 

It is easily seen that the matrix elements of V vanish between states of 

those two different types. Furthermore it is also easy to verify that the 

secondgroup of states are associated with a vanishing El matrix element 

with the ground state and therefore can be left out of the discussion. 

In calculating the strength of the Kl.transition we will have to 

remember to double their relative strength corresponding to the additional 

• degeneracy of the K=1 states (the angular momentum component may be ±1 or 

-1). • 
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RESIDUAL. INTERACTION EMPLOYED 

In these calculations we have limited ourselves to considering a 

phenomenological interaction V simulating the "actual" nuclear force. We 

have chosen.the "empirical" force employed by Ferrell and Visscher, having 

a Gaussian radial shape and a particular exchange mixture. 

In addition we have also considered a force of the same radial 

dependence but with the exchange parameters of a "Rosenfeld mixture".. 

(We will somewhat inadequately label this potential as "Rosenfeld" in the 

tables.) The parameters characterizing these forces may be found in Table 1. 

Furthermore, to isQiate the effects due to exchange mixtures, we 

have also considered the case of a pure Wigner force in some instances. 

RESULT5 OF CALCULATIONS 

a. Excitation spectra 

The effects of the inclusion of the backward-going graphs are, as 

pointed out, rather small as fax as the positions of the roots and the rela-

tive distribution of El strength is concerned. Generally the resonances 

are slightly lowered by some tens or hundreds of key. 

Of more interest is the way in which the sum rules are affected. 

This will, however, be discussed later in this paragraph. 

For Mg2, due to numerical difficulties with the computer program, 

calculations are so far complete only for the case where B is put equal to 

zero, i.e. ground state correlations are neglected. The results are exhib- 
24 

ited in Table 4. Some incomplete calculations also exist for Mg , KO 

(where such correlation effects should be the largest) and can be studied 

inTable.7. For C12  calculations are complete and the results, particularly 

concerning effects of ground state correlations, may be studied in Table 6. 
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-The matrix elements-computed numerically on the-IBM 709 of Lawrence 

Radiation Laboratory exhibit, many of the features conjectured in, e.g., Ref. 8. 

Thus, for instance, the-effective interaction for Tl in most .cases is repul-

sive, thereby generally puhing the roots above their single-particle values. 

The matrix e1ement. are -in, no way, however, constant and fluctuations in their 

size is of decisive importance. Instead the single-parti1e excitations, that 

originally carry most of the El oscillator strength (asymptotically unhindered) 

also have.the large interaction matrix elements in between themselves. It is 

effectively on.one or two of the states in this smaller group of states that 

most of the El strength is collected - as they are being pushed upwards due to- 

the 'interaction. 	-- - 	 - 	 - 	 - 	 -. 	 - 	 -.- - 

- - Thus,. e.g..., for Mg2 the single-partic,le excitations carrying most of 

the El -  oscillator strength scatter in energy around bw or say 11-13 Mev- for 

K=0 and around hw l .or about 15-17 Mev for K=l (with the well parameters assumed 

as Tj=i- and K=0,08). - 	 -- 	 - 	- 	- 	 - - 	- 

- - - The one or two states - collecting the giant strength are now pushed 

upwards by amounts of about 7 Mev for K=l and about 5-6 Mev for K=P-.. These 

figures refer specifically to the- Ferrell and Visscher.case with diagonal - 

elements retained. .-Note 'that, in the total spectrum- of states reached by El 

excitations the giant states are by no means the highest-lying as in the 

spherical case. TIis for the mentioned case of Mg24 with K=l (as exhibited 

in Table li-b) the highest-lying root is more than 5_Ivlev above the K=l giant 

resonance peak, and- for iC=0 about II Mev above the corresponding giant peak. 

Indeed in the latter case the giant peak is found in the lower part of the 

energy spectrum. 	- 
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One inayalsonote that the interaction mechanism described tries to 

enlarge the splitting between the two pea.s,.even relativeto the basic eher.y 

difference 	 which latter for the employed case of the distortion 

parameter17  E= 0.3 ( : ) equmis  (159 - 11.) = . 5 Mev. This should be 

compared with the energy splitting existing after the inteaction has been 

turned on, which is aboUt 6.5 Mev,  

A caculation where a pure Wigner force: was assumed, failed to give a 

strong resonance peak for K=14. Instead the strength was distributed over 

several states several Mev apart. This force in the case of a finite range 

is obviously of the "wrong specificity. (CfMot.telson, Ref. 1.2.) 

Turning the attention to the case of C 12 (Table 6), where the whole 

coupling scheme may be very much Jess appropriate, we notice that the clear 

separation encounred in Mg2 into two peaks of K=0 and K=1, respectively, 

24 	 12 
does not occur here. In analogy with the prolate Mg , the oblate C would 

be expected to exhibit a low-lying K=1 peak and a higher-lying K=0 peak with 

a splitting of order &rn 12 In C there is indeed for K=l a strong low-lying 

peak. However, 7 Mev higher there is still another peak for K=1 which may be 

a remnant of the spherical coupling scheme, from .whidh we are much less dis-

tant in C12  (with i=: -2) than in.Mg2  (with). IFor K=0 there is essenti-

ally one, high-lying peak in C .: . 

b. Discussion of sum iiules 

It is obvious that a pure shell model calculation (ground state cor-

relations not considered,, of. Table 4_6) retins the oscillator strength 

unchanged. The Thomas-Ku1-Reiche sum proportional to Z EnIMn2 will in the 

shell model case exceed the sum re value , derived for non-exchange in-

teractions, as the energy values E. are pushed upwards relative to the inde-

pendent-particle case. The effect is usually larger with the. mixtures 
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considered that contain exchange components. However, also the Wigner inter-

action treated in the approximation where backward-going graphs are neglected 

violates the sum rule, due to the fact that only a particular set of graphs 

are included in the conventional shell model treatment of this interaction. 

This •is borne but in Table Li., although the diagonal interaction matrix elements 

are neglected in the calculation; the more interesting case of these being 

retained would lead to an even larger violation. 

Now the inclusion of tI backward-going graphs increases the oscil-

lator strength sum by about (1020)% for C12  and by as muchas 30% for Mg2, 

K=0. Although the energies are somewhat lowered when the backward-going 

graphs are included, still the TKR-sum rule is increased due to the increase 

in oscillator strength. This is a somewhat surprising result as it has been 
*** 

shown that the random-phase approximation without inclusion of t?directtl 

graphs leads to this sum rule being exactly obeyed. The effects of increase 

in the sum rule have thus to be attributed to these usually neglected t?direct 

graphs. 

* Private communication from B. R. Mottelson (Ce also Ref. 19). 

** 
The exclusion of "direct" graphs here.implies that only such.interaction 

graphs are included where a hole-particle pair with its spin coupled to 

1 is destroyed or created. 
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TABLE LEGEa'TDS 

Table 1.. Parameters of the shell-model potential appropriate to deformed 

nuclei. For the parameters see Ref. 17. 

Table 2. The exchange mixture parameters of the force V (w-i-bP -i-mPr+hPr Py ) 

exp-() where. V0  = -71.9 Mev and a = 1.732 fin. 

Table 3. Elementary single-particle excitations for ivig2; Table 3a referring 

to K=0 and Table 3b to K=1. The energy values are taken from Ref. 17. 

In this reference the N=0, 1, 2 shells are calculated with an assumed 

'= (coéffiëient of.2 2  -part of potential), but p. is assumed =0.35 

for N=3 The energy elgenvalues of the N=3 shell-  are now a posteriorl 

corrected to correspond to p.=0 while the wave functions calculated 

.for p.=0.35 are left as before. This inconsistency as well as the 

slightly inaccurate energy adjustment does not affect the total oscil-

lator strength. (The table lists the. pure single-particle matrix 

elements of z and 	in units of/ 
	and 	respectively.) How- 

MWL 
ever, it affects somewhat the distribution on the different states 

and is responsible for the fact that the Thomas-Kubn-Reiche sum rule 

= ! (for K=1, 	, as both K=1 and -1 are included) is some- 

what exceeded . in the independent-particle case. The matrix elements 

are defined for negative angular-momentum states with .a phase that 

&2-1/2 
differs from the timereversal convention bya factor (-).. 	. By 

this convention the following relation holds - ()) 
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TABLE LEGEDS (Cone t) 

Table I. Shell-model ca1cu1atibis for 4g2k :K=0(a) and K=l(b) The energies.. 

of the calculated 1 states are given in column one. The squared 

matrix elements 1M12 of z and 	(x+iy) in terms of the basic linear 

combinations of Eq. (20) and (25) are iistèd.in.colun two in units 

of -K/MD andi/Mw, respectively. The sum of matrix elen nts is 

compared with the single-particle sums of the included single-

particle excitations. Column three lists the dipole strength (the 

quantity occurring in the Thornas-Kuhn-Reiche, sum), eon' which for 

K=O 	 (l/L where the factor 1/1 comes from the 

effective charge. The f sums may be compared with the estimate on 

NZ/A. For K=l, as we have added the contribution from 	(x±iy) 

and 	(x-iy), the comparison should be made with the estimate 

2 NZ/A. Colunm four, lists the gamma widths F = 2 (e2/i)n2/Mc3 f.on 

In a separate row in the table the integrated photo-absorption cross 

section is given in. units of Mev-mb. For a discussion of the listed 

:cases of the diagonal hole-pairinteraction matrix elements being 

alternatively excluded and retained, see the main text. The small 

deviation of the sum of squared matrix elements IM 2  from the single-

particle sum is a'eflection of the inaccuracy of the wave-functions 

obtained in the matrix diagonalization. 

Table 5. The effect of the inclusion of the "backward-going graphs" for Mg2, 

K=O. The organization of the table is the same as that of Table Ii., 

where the different entries are explained. In the present table 

the results with backward-going graphs excluded and retained are 

exhibited for the case of Mg2, K=0. In this calculation only the 



-21- 	 UCRL-98O 

TABLE LEGEIWS (C on t t) 

roughly most important seven of the basic twelve elementary excita-

tions of Table 3a are included (corresponding to only the lowest 

half of the N=5 shell considered). The calculations still, however, 

serve well the purpose of illustrating the effects of the backward-

going graphs. 

Table 6.. Results of calculations for C K=O and K=l. For a detailed explan-

ation see •caption of Table I•  This table also exhibits the inclusion 

of the effects of the ground state correlation. Only the Ferrell-

Visscher force is considered in the case of C 
2  The number of 

elementary excitations is not quite complete. Three transitions 

associated with very weak El matrix elements are left out for K=l 

and two for K=O. This is the reason why we fall short of the TKR 

sum rule by a few percent in the independent-particle case. 

Table A-i.. The . KO matrix eiement of J(r) with the C 12  "asymptotic tt  wave 

functions expressed in terms of the Talmi integrals 

Table A-2. The T=l, S=O, odd-parity states of the K=O and K=l groups and 

their respective El strengths for the C12  nucleus computed with the 

'Tasymptotic tT  wave functions. Results for two different interaction 

potentials and two values of the deformation parameter, q= -2 and 

= _)i., are compared. 
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K 	 Co  

(Mev) 	 (Mev) 

-2 (_Li) 	0.10 	 20 	 16.8 

Mg2 4 	 0.08 	 11. 	 15.9 

C 
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Table 3a. 

	

Hole-particle excitation 	€
v -€v Single- 	C1assif 	(IzI)2 	on 

Hole state Particle state (Mev) particle according 
[NnAc] 	[NnAc] 	. 	 matrix 	toasynipt. 

Z 	 elements rule 
(Izi) 

[no 1/21 [211.1/2] 17.59 0.169 h 0.029 0.09 

[110 1/21 [200 1/21 21.61 0.0181 h 0.000 0.00 

1101 /21 [202 /21 19.9 0.1815 0.033 0.12 

[101 1/21 [211.1/2] 11.06 o.6645 u 0.442 0.86 

[101 1/21 [200 1/21 .15.08 0.3017 h 0.091 0.24 

[220 1/21 1330 1/21 12.31  1.1278 u 1.272 2.76 

[2.11 3/21 13213/21 11.21 0.9528 u 0.908 1.79 

[211 3/21 1312 3/21 18. 11. 11. 0.2215 h 0.011.9 0.17 

[211 3/21 1301 3/21 22. 11.3 -0.1008 . 	 h 0.010 0.00 

[220 1/21 1321 1/21 16.92 0.3669 . h 0 .135 OJ1.O 

[220 1/21 1310 1/21 21.25 -0,177 h 0.032 0.12 

[220 1/21 1301 1/21 28.54 -0.0125 h 0.000 0.00 
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Table 3b. 

Ho1e-articieexCitatiOfl 
Hole state 	Particle state 
1NnI\] 	[Nn] 

£ 

(N) 

Single- 
particle 
matrix 
elements 

/x+iy\ 

Classified 	/ 	x+iy \ç 
according 	

/ to asyinpt. 
rule 

r °n  

[110-1/2] [211 1/21 1759 -0.50 U 0.28 0.97 

[110-1/2] [200 1/21 21.61 -0.11 h 0.013 0.0 

1101 3/21 [202 5/21 1.78 1.0000 u 1.000 1.86 

{10-13/2] [21--1/2] 13.76 -0.2919 h .  0.085. 0.15 

[10-1-3/2] [200-1/2] 17.78 o.627 u O.13 0.92 

[211 1/21 11.06 0.1297 h 0.017 0.02 

[10-11/2] [200 1/21 15.08 -0.697 u 0.83 .0.92 

[ioi 1/2.1 [202 3/21 17.24 0.9809 u 0.962 2.09 

[220 -1/21 1330 1/21 12.34 0.3898 h 0.152 0.23 

[220 1/21 1321 3/21 14.86 0723 u 	. 0.551 1.03 

[21-1-3/2] [330-1/2] 8.70 0.2012 h 0.O1 0.04 

[211 13/21 	. 1312 5/21 	. 17.15 . .1.0l2 u 1.029 2.22 

[220-1/2] 1321 1/21 16.92 -0.5839 u 0.31 0.73 

[2201/2] 1310 1/21 21,25 .-o.o667 h ., 0.004 0.01 

[2201/2] 1301 1/21 28.54 o.o61 h 0.005 0.02 

[220 1/21 [312 3/2]. 22.08 - -0.0534 h 0.003 0.01 

[220 1/21. 1301 3/21 26.07 -0.0772 h o.006 0.02 

[21-1-3/2] [32-1-1/2] 13,421.  -0 2381 h 0.057 0.10 

[21-1-3/2] 	., [310-1/2] 17.66 o67 u 0.03 0.89 

[21-1-3/2] [30-1-1/2] 2.90 0.0019 h 0.000 . 	0 

[211 	3/21.1 	. 1303 5/21 23.94 -0.0667 h 0.004 0.01 

Sum=2:c5.997 12.26 
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Table 5 

.Ferrelland Visscher "Rosenfeld' t  

.Shell-model calculations Shell-inodelcalculations. 	Correlations incIluded 

..E. [MI 2  f IT 1M1 2  r. on r' . 	 IMI f °' . 	 I,  
. °' 

v) ('iev) (iv) (M) (v) (Mev) 

2184 022 022 16 2171 023 023 16 2187 008 008 06 

20.77 0.12 0.12 0.8 20.71 0.23 0.22 1. 21.21 0.16 0.17 1.0 

17.10 0.02 0.02 0.1 17.06 0.01 0.01 0.0 	. 16.83 0.00 0.00 0.0 

15.18 6.1 .l0 1.7 1.80 4.o8 2.66 9.1 15.11 7.62 3.74 13.3 

13.87 4 .56 2.78 8.3 13.5 lo.4o 6.16 .17.3. 13.68 5.20 3.12 9.1 

lo.46 0.00 0.00 0.0 10.37 0.00 OIOO 0.0 10.55 0.00 0.00 0.0 

.9.61 0.02 0.01 0.0 9.59 0.00 0.00 0.0 9.78 .0.02 0.01 0.0 

Sum 	.11.08 7.25 . l.95 9.28 . 11.08 7.10 

Indep. 
P6 sum 

. 

11.08 5.86 
. 

11.08 5.86 11.08 5.86 

fdE 526 (Mév-mb) 557 (Mev-mb) 27(Mev-mb) 
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Table A-1 . 

(000 110 J (r) I 110 000) 1/2 (I_I) 

(000 no I• (r) 1.000 110) = 1/2 (I+I) 

(900 211  1 J (r) I 110 ioi) = 1/4 (10_12) 

(000 211 I J (r) I 	101 110) i/ (10_12) 

(000 101 I (r)  I 	211 110) = 1/1 (10-211+12) 

(101 211 I J (r) I 	211 101) = 1/4 I0_I1+I2_I) 

(101211 I (r)  I 	101 211) = l/ (Io+I1+II3) 

(101 21-11 J (r),I10-1: 211) = 1/4 I0_I1_12+13) 

( 
101 10-1 	r (r) I21T1 211) = 1/4 (IQ_Il+I2_I) 
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Table A-2 

DIAGONAL DIPOLE 

NUCLIDE r FORCE 
MATRIX 
ELEMENTS K (Mev) 

STRENGTH 
r on  

v -  € 

(Mev) 

28.5 5.31 
- 

20 	- 21.6 0.07 
INCLUDED  

22.1 9.68 
1o.8 =hwjL  

FERREIJJ 18.1 0.02 
and - 

VISSCKER - 

24.3 4.86 
2 	.3 17.2 0.00 

EXCLUDED - - 

18.2 1  168 14.8 0.28 

C12  
6 

0  20.3 
22.7 0.17 

INCLUDED  

1 21.5 8.75 168 
ELLIOTT 18.8 0.16 

and  
FLOWERS 

EXCLUDED 
' 

23.6 3.86 
20.3 17.9 0.00 

- 

1 i80. 7.8 16.8 
15.3 0.20 

• 

FERRELL 
0 5.05 22 .7 24.0 •• 0.11 

- • 	and INCLUDED  

1 21.1. 
17.1 

9.94 
15 8 VISSCHER 

0.02 
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PYPEDIX 

Calculations with the Asymptotic Wave Functions 

In the limit when the deformation energy is large compared to the 

off-diagonal elements of the spin-orbit coupling we can use the' approximation 

5, 14  in, which the spin motion is decoupled from the orbital motion. 

In this approximatiOn we shall use the harmonic oscillator wave 

functions ?J/Nn (P,z,q) in.the representation of the (dimensionless) cylin-

cirical coojirtes (=/k2+ 2 , z, ; x, y ='M 	x',yt;z =j: zt)
:  

%

where A has the meaning of the projection of the orbital angular momeitum £ 

on the body the oscillator quantum numbers referring 

to oscillations parallel to the z'-axis and perpendicular to it, respectively. 

Using the above wave functions it is easy to eliminate the degenerate 

spin substates from the equation of motion (Eq.(L5)'). For a general collective 
A: 

state of isotopic spin T and spin S and with the two-body interaction .V. of 

Eq. (22) we obtain the EPA "equation of motion t' of thep,'s in the form: 

x 	(-v)  

(Al) 

x J. ZZ) +(  Sç, (rtyi.L) +  

+ 
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- Here 	 means a p 1-component with the ,(a,at) pair characterized 

by the charge state T and-spin btate.Z. In the giant El problem, i.e., for 

S = 0, T = 1 we have.: 	•. 	. 	., 	.. i . 	. 

(-E,,--E) X g=(P1s7ty)Z F<(I #X)' ( <-1I (1xb"> 	(3) 
xt 	 )c S4-2)] 'X, 

Here the matrix elements are expressed in terms of spacial wave functions only 1  

i.e. the subscripts refer specifically to .spacial states. 

Our wave functions given in cylindrical representation can be expanded 

in the spherical functions as 

YN (A1 ) 

The matrix element (oj d 	are now obviously 

7;L  NL! 

	

 Ave 	(A5) 

Sometimes it is convenie'nt to use the Talmi method of separation of 

the center of mass and the re1áti.re coordinates of the particles 	and "2". 

• This method is especially useful when the radial shape of (r12) is complicated 

and it is difficult to employ an electronic compute±' for the evaulation of 

) of E. (A7). We can expand the product ((,)(rl(7)(r2) as: 

=  A el Ap)y A 

)( 	
(A6) 
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where the "transformation bracketst' ( I) are defined and extensively tabulated. 

2 	 . 	. 
by Moshinsky and Brody. 	The relative motion (nl)-.and center of mass motion 

(J(L) wave functions and the "ket" I nt ,%L,Xp. ) are as defined in Ref. 20. 

Using Eq. (A6) we can now express (8cty) as: 

.(çAXi) 

	

< 	'i//j( ) I/•n-> 	. 	. 	. . 	 . () 

where the reduced radial integral (n'.€IJ(r)IIni) can be expressed in terms of 

the Ta]ini integrals. I 
P 
 as: 

(ne Il 1 r)lIe> = 	B(n.,' iP)I 
	

(A8) 

where the coefficients B (n2, n'2,p) are tabulated in Ref. 20. 

We have performed explicit computations for the problem of the 1, 

12 	 . 	 i 	. 
T=i, states. in.0 . We have employedtwo different nteractions: 

2 13 

	

) 	V Tr 	... 	 67, 132/O1(A9a) 

w 	0.317, m = 0.5, b = 0, ,h = 083 •. 

—identical with the interaction listed.inTable 2 

	

'/] 	
3N= 	/Oc(A96) 

w = -0.13,. m = 0.93, b = 0.6, h = 

i:.e.. the Rosenfeld mixture used by Elliott and Flowers. 7  

In the C 2  .piob1em we have the "occupied" (n.= 1) states [NnA]. = [000], 

[10±1] and the unfiIled tT (nv= o) states [110], [20], [21±1],and [200], 

where the ±A states are degenerate in energy. In this problem we have also 
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evaluated the self-energy terms (second line of Eq. (i)). The.above states, 

denoted I), are expressible in terinsof spherieal.saes, denoted I,)) (where 

the phase convention of the radial wave, function is that of Ref. 17,i.e.such 

that the sign of the term of highest power in the radial polynomial, is always 

positive) as follows: 

1000)= IN=o,120,A=0)), 

110±1) = IN = 1, 	2 = l,A =±i)), 

lllo)= IN=l,:2=1,A'=O)), 

120±2) = IN = 2, 	= 2, A =±2))', 

121±1) IN = 2, 4 2, A =±i)), 	" 

1200 ) 	'-"IN =  2, 
J-2 

= 2, 	A= 0 )) + 	IN 	= 2 	= 'A 	0)) 

In the EPA the secular matrix for the K = 0 El modes is 6x6, and the K = 1 

modes have a secular 4x4 matrix 

In Table Al we give the explicit expressions for the relevant matrix 

elements for the case K = 0 in te rms  of  the TaJini integrals I. 21*  The basic 

single particle El matrix elements (atlzla) are in 	 ts , ofj h  of 
MW 

(110 ± I:000)=. (21ilIi0i)= (21-J4zj10.1)= 	j; the (\atiIc elements in 

units of 	: 202 xj. 
	ioi)= 

 ~10 _i 	20_2) = 1; 	 I10_1)= 

( ioi x 	1200 )= li[. The computed oscillator strengths and dipole 
".12 

strengths for K = 1 have to be doubled to take account of the two 

nuclear '.spin' projections: 	± 1. 	Our final numerical results are dis- 

played in Table A2. The computations were performed for ,  two values of the 

* 
For the range of force considered here 10  is the dominant term,which together 
with 'Our choice of parameters w, rn, b, and h in (A3) ensures that all the 
occurring.matrix elements are of about eq.ual magnitude and have one and the 
same sign. The condition for 10  to be dominant is that a <<I/Muo. In 
the limit of an extremely long range interaction we have instead 10= 11=I2etc. 
The interaction matrix elements then all vanish, as seen from Table Al, 
except the diagonal ones. Thus in this limit the coherence is again des-
troyed. 
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oblate deforniation"q = -2 and q = 4. The splitting of the giant El states 

corresponding. to K = 0 and K = 1 is roughly in agreement with the more detailed 

calculations. The second K = 0 'giant peak occurring in the latter calcula-

tions 'does not appear in the asymptotic .limit:.and is obviously associated with 

the fact that the wave functions of Ref. 17 are intermediate between the 

spherical shell-model wave functions and the asymptotic ones. 

Our results for the Rosenfeld mixture of Elliott and Flowers 7  with 

a Yukawa well (Eq. (A9b) ) are quite similar to those for the rather different 

interaction of Ferrell and Visscher (Eq. (A9a) ). 

We have also computed the self-energy terms originating' from the self -

energy hamiltonian Eq. (ia.  Some of them are veiy large (of the order of 

-i-o Mev for the interaction of Eq. (A9a)). This indicates that a self-consist-

ency calculation for the single particle energy spectrum, or, conversely, a 

self-consistent determination of the residual interaction for.a given single-

particle model is generally important. 
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