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Abstract

Advanced Sliding Mode Control and its Application to Autonomous Vehicle at the Limits
of Handling

by

Yi-Wen Liao

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

Model uncertainty is one of the most challenging areas of control theory. It is the key reason
for using feedback control in order to achieve safety and performance. High-gain feedback is
the simplest solution to improve performance. However, it comes at the price of instability
and constraints violation. In particular, in sliding mode control, it manifests itself as an
undesirable chattering. This dissertation addresses this issue by focusing on the development
of advanced sliding mode control and demonstrating its effectiveness for autonomous vehicles
under the limits of sensing and driving capabilities. First, a new adaptive sliding mode
control (ASMC) strategy is proposed to reduce the control action to its minimum possible
value while guaranteeing robust stability. Then, integral sliding model predictive control
is introduced by merging the concept of ASMC with a robust model predictive control
formulation for nonlinear constrained systems. Motivated by the ever-growing interests in
autonomous vehicles, we apply the proposed control techniques to control an autonomous
vehicle at the limits of handling. Different extreme driving scenarios such as large side slip
angle estimation, path tracking with a large model mismatch and drifting maneuvers are
considered and solved with the proposed control algorithms. Successful experimental results
support the effectiveness of the developed control method.
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Chapter 1

Introduction

1.1 Motivation

Model uncertainty is one of the most challenging areas of control theory. It is the key
reason for using feedback in the control design that enables the system to adjust its output
and meet a desired response. However, even with a feedback structure, there still exist
certain limitations that will constrain the performance as not all the design objectives are
achievable. For example, we should always consider system's robust stability and take a
trade-off between control bandwidth and tracking precision into account while designing
the control algorithm. Our goal for robust stability is to design a controller such that the
performance or characteristics of the closed-loop system can be maintained for all allowable
uncertainties. To deal with this problem, several control methods has been developed in the
last three decades in the community.

Among all of the control methods, robust control is one of the powerful approaches that
explicitly deals with unconstructed uncertainty and has been studied since 1980s. Note that
unconstructed uncertainty is uncertainty about which there is no information available ex-
cept the upper bound of its magnitude. The control goal is to achieve optimal performance
and stability in the presence of modeling errors with a fixed control law. That is to say, once
the controller is designed, the control policy will not change over the time and the track-
ing performance can be guaranteed. Several examples of modern robust control techniques
including loop shaping, H∞ control and sliding mode control (SMC) can be found in the
literature [2–4]. The simplicity of their design procedures and comprehensive analysis ap-
proaches have attracted a wide variety of applications for robust control [5,6]. Especially for
SMC, it is a relatively easily understandable nonlinear control technique that requires a low
computational cost with the guarantee of robustness against uncertainties. Although robust
control has been remarkably successful in dealing with uncertainty, it still has a drawback
that the system usually does not work at optimal status under normal circumstances since
the design is typically based on the worst-case condition of uncertainties. An alternative
method to address this problem is adaptive control [7, 8]. Adaptive control is a control
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technique that enables the control system to modify itself based on some system identifi-
cation techniques to obtain a model of the process and its environment from input-output
experiments. The main differences between adaptive and robust controls are that adaptive
control does not require a priori information about the uncertainty and the control law is
time-varying. The adaptive algorithm will help minimize the undesirable deviations from
the prescribed closed-loop plant behavior and make the control input less aggressive.

Although robust and adaptive controls benefit the overall performance by considering
uncertainty in the control design, they are challenging in dealing with input/state constraint
satisfactions. On the other hand, model predictive control (MPC) [9] starts to gain more
attentions since 1990s as it has the ability to account for complicated system dynamics,
forecasted environment information, and system constraints. MPC is a form of control in
which the current control action is obtained by solving an on-line constrained optimization
problem. At each sampling instant, a finite horizon open-loop optimal control problem is
solved for an optimal control sequence and the first control input is applied to the system.
Since the open-loop prediction of the model is required in MPC design, the control algorithm
that can provide deterministic guarantees on robustness for uncertain systems then becomes
important. However, the optimization problem is usually computationally intractable when
handling systems with uncertainties. This has driven research in robust model predictive
control (RMPC) [10–12] and motivated the work of this dissertation.

As mentioned before, SMC has an advantage of a low computational cost guaranteeing the
robustness against uncertainties and MPC has the potential for handling system constraints.
Inspired by these complementary characteristics of each controller, this dissertation proposed
an idea of merging these two control strategies together. The resulting control scheme
is called adaptive discrete-time integral sliding model predictive control (ADISMPC). We
first introduce a new adaptive sliding mode control (ASMC) for the purpose of reducing
the control action to its minimum possible value and improving the robust performance.
Then, expand the work to develop ADISMPC for constrained systems by combining the
technique of MPC into an integral sliding mode control strategy (ISMC) with the proposed
ASMC algorithm. Due to the sharp growth in autonomous vehicle market, the study of the
vehicle at the limits of handling for emergency safety maneuver becomes more and more
important. Different extreme driving scenarios such as large side slip angle estimation, path
tracking with a large model mismatch and drifting maneuvers) are studied and solved with
the proposed control algorithms. Successful experimental results support the effectiveness
of the developed control method.

1.2 Main Contributions

This work contributes the developments of various adaptation algorithms in control system
and studies its applications to different autonomous driving scenarios. The dissertation first
introduces a new adaptive sliding mode control (ASMC) for the purpose of obtaining the
minimum possible value of control action to address the well-known problem of chattering



CHAPTER 1. INTRODUCTION 3

phenomenon in the traditional sliding mode control. It has the advantages of allowing
adjusting the control gains dynamically without knowledge of uncertainty bounds while
guaranteeing the robustness performance in the same time. The design procedure is simple
and easy to implement with nonlinear and MIMO systems. Part of this work was published
in [13]. Real applications to autonomous driving for path tracking under extreme scenarios
of large model mismatches and drifting maneuvers are conducted to verify the feasibility of
the proposed control laws. A successful and good performance in each case study supports
the attractiveness of the control algorithm used in a variety of practical applications.

Subsequently, expanding on the work of the proposed adaptive sliding mode control, this
dissertation develops an approach of adaptive discrete-time integral sliding model predictive
control for a wide class of nonlinear systems and exploits the robust property of a constrained
system. It combines the technique of discrete-time model predictive control (MPC) into an
integral sliding mode control strategy (ISMC). Under the structure of ISMC, the control
signal is composed by two parts; one is generated by MPC and the other one is generated by
ASMC. The first part assigns the original system trajectory controlled by MPC as a sliding
surface and the second part is used to reject the effect of uncertainties or disturbances.
Overall, the control has a better convergent performance compared with traditional robust
MPC because of the adaptivity. It requires a simpler approach and a thinner amount in
constraint tightening that results more flexibility to cope with any changing condition while
doing the on-line optimization. Some relative works are published in [14–16]

Finally, the adaptive approach of vehicle’s side slip angle, road bank angle and sensor
bias estimations is proposed under the limit of only using the sensors that are available on
current commercial vehicles. The algorithm is implemented into real vehicles and verified
with several experimental tests. Part of this work has been accepted for publication in the
IEEE Transactions on Vehicular Technology.

1.3 Dissertation Outline

The structure of this dissertation is organized as follows. It contains two main subjects
that include a theoretical development of advanced sliding mode control (Part I) and its
applications to autonomous vehicle driving (Part II).

For Part I, a new methodology of adaptive sliding mode control is introduced in Chap-
ter 2. It shows that the adaptation algorithm based on the concept of the boundary layer
enables the determination of an adequate gain with respect to the current uncertainty while
keeping the property of finite-time convergence into the sliding band. Later, an extension
of combining this algorithm with model predictive control (MPC) into a robust formula-
tion is proposed in Chapter 3. According to the convergent property of adaptive sliding
mode control proposed in Chapter 2, the new method simplifies the need of computing the
robust invariant set for traditional robust MPC problem. For Part II, the applications of
autonomous vehicle under limits of sensing and driving capacities are discussed. Chapter 4
considers the sensor-limited case for the side slip and bank angle estimations using currently
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available sensors in production vehicles. Chapter 5 considers the case of path following
with large model uncertainties under severe driving scenarios. Finally, Chapter 6 considers
the extreme case, drifting, to the adaptive control design for steady state circling and path
following.



Part I

Advanced Sliding Mode Control Theory
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Chapter 2

Adaptive Sliding Mode Control

2.1 Introduction

Sliding mode control [17] has been recognized as one of the effective nonlinear control meth-
ods due to its robustness to uncertainties and its guarantee of finite time convergence. How-
ever, the design procedure requires the knowledge of the bound on the uncertainties, which,
from a practical point of view, is usually hard to acquire. This results in an uncertainty
bound that is often overestimated and hence leads to an undesirable large control gain in
the discontinuous sliding term. Consequently, the system will suffer from large magnitude
chattering behaviors [18].

To reduce this kind of “zig-zag” motion, several methods have been proposed, which
include the boundary layer technique [19] and the “equivalent” control method [20,21]. The
first, proposed by Yao and Tomizuka, approximates the discontinuous signum function by a
high-slope saturation function with a desired thickness of the boundary layer. The second,
shown by Utkin as well as Tseng and Chen, replaces the discontinuous signum function with
a low-pass filter. Although we can get a continuous sliding controller from these methods,
the guarantee of global asymptotic stability is sacrificed [22]. In addition, both of these
approaches require prior knowledge of the bound on the uncertainties. To avoid this, we
can make use of the adaptive control strategy [23] to estimate the unknown parameters.
Common methods of estimation include recursive least squares and gradient descent. A
more direct way is to derive the update laws from Lyapunov stability theory and analyze the
convergence performance. The update laws will use the current information to modify the
control input in real time. Because of the advantage of not overestimating the bound on the
uncertainties, many adaptation approaches combined with sliding mode control have been
developed to tune the sliding gains. The adaptation law proposed in [24] is proportional to
the tracking error. It shows that the system will converge to the sliding surface within a
finite time. However, the sliding gain will approach infinity since the ideal sliding mode does
not exist. In [25], neural networks model the uncertainties of the system and the resulting
controller is implemented on a two-tank level control system. The results show that it
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can enable a lower switching gain and eliminate the chattering with a thin boundary layer.
However, it requires an off-line training process and cannot guarantee stability. Another
gain-adaptation algorithm is proposed by using a sliding mode disturbance observer [26],
but it has the drawback of requiring the knowledge of uncertainty bounds. The objective
of this paper is to provide an adaptive control methodology for a class of nonlinear systems
with uncertainties. Note that the uncertainties should be bounded but the prior knowledge
of the bound is unknown.

This chapter is organized as follows. First, we review two adaptive sliding mode control
strategies proposed in [27] in Section 2.2. Then, a new adaptive sliding mode control is intro-
duced in Section 2.3 and the stability analysis is provided. Several practical implementation
issues including each parameter tuning are discussed afterwards in Section 2.4. Finally, the
performance of the proposed method is demonstrated with two examples and compared with
one of the existing methods.

2.2 Preliminaries

2.2.1 Problem Statement

Consider a nonlinear system given by:{
ẋ(t) = f(x, t) + l(x, t)u(t)

y(t) = c(x, t)
x(0) = x0, t ≥ 0 (2.1)

where x(t) = [x1(t), x2(t), ..., xn(t)]T ∈ X ⊂ Rn is the state vector, u(t) ∈ R is the control
input and y(t) ∈ R is the system output. f(x, t) and l(x, t) are bounded and sufficiently
smooth functions which describe the model of the system. Assume that both of them contain
unmeasured model uncertainties which satisfy the “matching condition” for conventional
sliding mode control [28]. Additionally, to guarantee controllability, l(x, t) should be 6= 0 for
all (x, t) ∈ X × R+.

The common goal of the control problem is to guide the output y(t) along a desired
trajectory, yd(t), or around the origin. To design the sliding mode control, first we define a
stable sliding surface s(x, t) [4] with a relative degree equal to 1 with respect to u(t). Then,
we obtain the time derivative of s(x, t) as

ṡ(x, t) =
∂s(x, t)T

∂x
ẋ+

∂s(x, t)

∂t
= h(x, t) + g(x, t)u(t) (2.2)

where

h(x, t) =
∂s(x, t)

∂t
+
∂s(x, t)T

∂x
f(x, t)

g(x, t) =
∂s(x, t)T

∂x
l(x, t).
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To handle the modeling uncertainties and unknown disturbances, we rewrite the model (2.2)
with an addictive time-varying function, ∆f(x, t):

ṡ(x, t) = h(x, t) + g(x, t)u(t) + ∆f(x, t).

The term of ∆f(x, t) represents the overall uncertainty of the system and satisfy the following
inequality:

|∆f(x, t)| ≤ ς(x, t) ≤ µ

where µ is the unknown upperbound. The objective in this paper is to design a control
law which can adapt the time-varying uncertainty, ς(x, t), in order to reduce the chattering
behavior in conventional sliding mode control, but still preserve its own strength in the
guarantee of robustness and stability.

2.2.2 Adaptive Sliding Mode Control Review

As is common for sliding mode control, the controller is designed as

u = −Ksgn(s) (2.3)

where the controller gain, K, is the design parameter which should be greater than or equal
to the uncertainty bound, µ.

sgn(s)
.
=


1 if s > 0

−1 if s < 0

0 if s = 0

is the discontinuous switching function [29]. As mentioned in the introduction, having a
poor estimation on the upperbound, µ, will lead to a larger chattering behavior in the
system response. Thus, the main goal of the adaptive sliding mode control is to reduce the
magnitude of the controller gain, K, to its minimum admissible value. In other words, the
controller gain is not a constant anymore; instead, it can be tuned and modified with time.
The method proposed in [27] is based on the use of “equivalent” control: once sliding mode
occurs, the uncertainty magnitude can be evaluated and adequately tuned by a low-pass
filter:

[sgn(s)]eq
.
= z ∈ (0, 1) : τ ż + z = sgn(s(x, t)). (2.4)

To preserve sliding mode and minimize the chattering, the ideal gain K(t) should tend to
∆f(t) and be slightly greater than ∆f(t). So, the design idea of the adaptation would be:

K(t) ≈ |∆f(t)|/α, α ∈ (0, 1)
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where α is very close to 1. According to this, the minimal possible value of the gain K can
be found using the following adaptation algorithm:

K̇ = νKsgn(δ)−M [K −K+]+ +M [ε−K]+ (2.5)

with

δ
.
= |[sgn(s(x, t))]eq| − α, α ∈ (0, 1)

[z]+
.
=

{
1 if z ≥ 0

0 if z < 0,
M > νK+, K+ > µ, ν > 0.

ε > 0 is a preselected minimal value of K and K+ is the uncertainty bound. Once sliding
mode with respect to s(x, t) is established, the adaptation law (2.5) allows the gain K to
vary in the range of [ε,K+] and to be slightly greater than the current uncertainty ∆f(t).
This guarantees an ideal sliding motion.

Another strategy is proposed in [1] which is similar to what we have just introduced
above. Instead of using the “equivalent” control method to estimate the boundary of the
uncertainties, consider the adaptation law:

K̇ =

{
K̄|s(x, t)|sgn(|s(x, t)| − ε) if K > κ

0 if K ≤ κ
(2.6)

with K̄ > 0, ε > 0 and a small enough value of κ > 0 that ensures a positive value of K.
According to (2.6), K will decrease if |s(x, t)| < ε. In other words, the gain K will be kept at
the smallest level that allows a given certain amount of accuracy which means we can only
guarantee semi-global stability of the system. However, the big advantage of this method is
that it does not require the knowledge of the uncertainty bound.

2.3 New Adaptive Sliding Mode Control

2.3.1 Motivation and Design Idea

Although the method proposed in [1] has a big advantage for not requiring the knowledge
of the uncertainty bound, the adaptation algorithm (2.6) will introduce a discontinuous
changing rate in control u(t) at |s(x, t)| = ε, which is not realistic for many actuators.
Another problem is that the adaptation law is a linear function of |s(x, t)|, which makes the
adaptation rate (increasing and decreasing) not even. In other words, the adaptive rate will
become unreasonably large or too small when s(x, t) is in the reaching phase or converging
around zero. As a result, the common problem of the sliding mode control, chattering
behaviors, will be easily exhibited in the steady state. To overcome this, we propose another
methodology incorporated with the concept of the boundary layer. Using the similar idea
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Figure 2.1: Comparison between the standard delta function with linear saturation function
sat(s/φ) and the proposed delta function s∆.

that the gain will increase outside and decrease inside the small region around the sliding
surface, we introduce a special delta function which “roughly” denotes the distance of s from
the boundary layer. The function is defined as:

s∆(x, t)
.
= s− 2sφ

|s|+ φ
(2.7)

where φ > 0 is a design parameter indicating the thickness of the boundary layer.
It is worth noting that, in comparison with the classical delta function defined by the

saturation function sat(s/φ), the new delta function has a similar shape but with nonzero
values inside the boundary layer (See Fig. 2.1). There are three main advantages of using
s∆(x, t) to derive the adaptation law. First, instead of blindly tuning a time constant τ of the
low-pass filter in (2.4) or the adaptation gain K̄ in (2.6), the new adaptation law provides a
smooth adaptation process based on the feedback information from s∆(x, t). Second, unlike
the chattering behavior in many adaptive sliding mode control algorithms, it can alleviate
the chattering with a simple parameter tuning method. Finally, the stability proof can be
done in a clean and relatively easy way.

2.3.2 New Adaptation Control Law

Consider the same problem described in Section 2.2.1 with the sliding surface s(x, t) defined
in the same way as listed in (2.2). The following theorems describe the stability property
with the adaptation law based on the delta function we proposed.

Theorem 2.3.1. Given the system (2.1) implemented with the following feedback control
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Figure 2.2: The plot of Ψ(s) with varying thicknesses of the boundary layer φ. The dotted
red lines indicate the upper and lower bounds of 1 and −1.

and adaptive update laws:

u = − 1

g(x, t)
[h(x, t) + ks+ µ̂sgn(s)]

˙̂µ =

{
1
ρ

[
1− 2φ2

(|s|+φ)2

]
if µ̂ ≥ 0

0 if µ̂ < 0
µ̂(0) = µ̂0

(2.8)

where ρ > 0 is the adaptation gain, k > 0 is the feedback control gain and µ̂0 > 0 is the
initial guess of the sliding gain. The closed-loop state s will approach the boundaries of the
domain S = {s ∈ R, |s| ≥ η} for η = (

√
2− 1)φ.

Proof. We first calculate the time derivative of the sliding surface s and s∆ from (2.1) and
(2.8) as follows:

ṡ = ∆f − µ̂sgn(s)− ks

ṡ∆ = ṡ

[
1− 2φ2

(|s|+ φ)2

]
.

Consider the following Lyapunov function candidate:

V (s, µ̂) = sgn(s)s∆ +
1

2
ρ(µ− µ̂)2. (2.9)

We obtain the time derivative of V along the closed-loop system trajectories except s = 0 as

V̇ (s, µ̂, t) = sgn(s)ṡ∆ − ρ ˙̂µ(µ− µ̂)

= (∆fsgn(s)− µ̂− k|s|)Ψ(s)− ρ ˙̂µ(µ− µ̂) (2.10)

where Ψ(s) is defined by

Ψ(s) = 1− 2φ2

(|s|+ φ)2



CHAPTER 2. ADAPTIVE SLIDING MODE CONTROL 12

for the sake of simplicity in later expressions. Fig. 2.2 shows a plot of Ψ(s) with varying
thicknesses of the boundary layer. As we can see, the function Ψ(s) intersects zero at the
points s = ±η. Moreover, it is positive when s ∈ S and negative outside. First, we consider
the case of Ψ(s) ≥ 0 which is s ∈ S. V̇ (s, µ̂, t) becomes

V̇ (s, µ̂, t) ≤ (µ− µ̂− k|s|)Ψ(s)− ρ ˙̂µ(µ− µ̂)

= (µ− µ̂)
[
Ψ(s)− ρ ˙̂µ

]
− k|s|Ψ(s). (2.11)

By setting ˙̂µ = Ψ(s)/ρ, we can eliminate the first term on the right hand side of equation
(2.11) and get the result of

V̇ (s, µ̂, t) ≤ −k|s|Ψ(s) ≤ 0 s ∈ S. (2.12)

Notice that the result only gives us the update law of ˙̂µ = Ψ(s)/ρ without the condition of µ̂
being non negative. If we substitute ˙̂µ = 0 into (2.10), V̇ will be indefinite. However, since
˙̂µ ≥ 0 with µ̂0 > 0 for s ∈ S, µ̂ can never be less than zero. In summary, we now have

• V (s, µ̂) is monotonically increasing and bounded from below.

• V̇ (s, µ̂, t) ≤ W (s, µ̂) = −k|s|Ψ(s) ≤ 0 is negative semidefinite.

for (s, µ̂) ∈ S × R+. Note that Barbalat’s Lemma is not applicable since we did not make
any assumption on the uniformly continuity of the uncertainty. Alternatively, we can ap-
ply LaSalle’s invariance principle (Theorem 2.2) from Barkana [30] for the nonautonomous
system. Based on satisfaction of assumption 1 in Section 2.3 in [30] for the boundedness of
uncertainty (i.e. |∆f | ≤ µ), we can conclude that all system trajectories are bounded and
contained within the domain Ω = {(s, µ̂) ∈ S| k|s|Ψ(s) = 0} which implies

(s, µ̂)→ (±η, R+) (2.13)

Now switch to the case of Ψ(s) < 0 for domain S ′ = {s ∈ R, |s| < η}. Substituting
˙̂µ = Ψ(s)/ρ into (2.10), we have:

V̇ (s, µ̂, t) = (∆fsgn(s)− k|s| − µ)Ψ(s)

≤ −(2µ+ k|s|)Ψ(s) ≤ 2µ+ k|s| > 0

where V̇ is indefinite in the domain S ′\{0} and undefined at s = 0. Here, we cannot make
any statement when s ∈ S ′. However, based on the result in (2.13), we can know that s will
approach |s| = η when it is in S.
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2.3.3 Convergence and Stability Analysis

In Section 2.3, Theorem 2.1, we only prove the convergence of s to the boundary of S
whenever s ∈ S. However, there is no clear stability conclusion that can be drawn with
respect to µ̂. Since Ψ(s) is always positive in S, it is possible that µ̂→∞ if |s| never reaches
the boundary within finite time. In this section, we show that s(t) will reach the boundary
of S with a finite µ̂ in finite time. Moreover, we can guarantee the trajectories of s and µ̂
are bounded in steady state.

Theorem 2.3.2. Given the system (2.1) implemented with (2.8) with initial conditions (s0 6=
0, µ̂0 > 0) satisfying:

|s0|+
1

k
µ̂0 = V ′0 > σ/k, σ = µ+

1

kρ
(2.14)

there exists a finite time T such that

|s(t)|+ 1

k
µ̂(t) ≤ b, ∀t ≥ T =

1

k
ln
V ′0 − σ/k
b− σ/k

where b is any number such that σ/k < b < V ′0 .

Proof. Select another Lyapunov candidate:

V ′(t) = |s(t)|+ 1

k
µ̂(t)

which is locally Lipschitz at s = 0 and µ̂ = 0. Since V ′(t) is not differentiable everywhere,
the upper right Dini derivative, D+V ′(t), is introduced [31]. By the assumptions of l(x, t)
and f(x, t) in Section II.A, we know that the solution of equations (2.2) and (2.8) exists and
is absolutely continuous. Therefore, D+V ′(t) is defined and the upper bound can be derived
as:

D+V ′(t) = D+

[
|s(t)|+ 1

k
µ̂(t)

]
≤ |∆f | − µ̂− k|s|+ 1

kρ
max{Ψ(s), 0}

≤ µ− µ̂− k|s|+ 1

kρ
(2.15)

according to the fact that Ψ(s) is always bounded within the range of [−1, 1]. Rewrite (2.15)
into D+V ′(t) ≤ −kV ′(t) + σ. Then, the upper bound of the solution is given by

V ′(t) ≤ e−ktV ′0 + σ

t∫
0

e−k(t−τ)dτ

=⇒ |s(t)|+ 1

k
µ̂(t) ≤ b, ∀t ≥ T =

1

k
ln
V ′0 − σ/k
b− σ/k

(2.16)

where b is any number such that σ/k < b < V ′0 .
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Remark: As stated in Theorem 2.3.1, s is converging to the boundary |s| = η. From
(2.16), we can know that the sum of |s(t)| and µ̂(t) is uniformly ultimately bounded [29] with
ultimate bound b after T . Therefore, we conclude that the s(t) will reach the boundary of
S with a finite µ̂ in finite time. Also, choosing the initial conditions satisfying (2.14) is not
an issue in the implementation, since Ψ(s) is always positive in S and the condition (2.14)
will be met eventually for any initial setting of s0 and µ̂0.

Theorem 2.3.3. Given the system (2.1) implemented with the adaptation control law (2.8)
the trajectories of s are bounded within |s(x, t)| < δ after it first time reaches the domain S ′,
where

δ =

√
(2η)2 +

µ2

m
− η (2.17)

and m can be any value satisfying the following inequalities:

m <

√
2

ρφ
and µ

√
m ≤ 1

ρ
Ψ(η +

µ√
m

). (2.18)

Proof. According to the proof of Theorem 2.1 and 2.2, we get the result that s will reach
the boundary of S with a finite µ̂ in finite time. To estimate the overshoot of s after the
first time it reaches the domain S ′, without loss of generality, consider the scenario when
s0 = η+. Then, we choose an affine function to lower bound the original nonlinear adaptation
law ˙̂µ = Ψ(s)/ρ between the range s = (η, η + µ/

√
m) and set µ̂0 = 0, k = 0 in order to get

the worst case response of s. The system dynamics can be written as:{
ṡ = −µ̂+ µ
˙̂µ = ms−mη

. (2.19)

This yields

s(t) = (s0 + η) cos(
√
mt) +

µ− µ̂0√
m

sin(
√
mt)− η

≤
√

(2η)2 +
µ2

m
− η ≤ η +

µ√
m
. (2.20)

With this result, the requirements of m in (2.18) then are set. Because the slope of the
adaptation law is equal to

√
2/ρφ at s = η, the first requirement is set to allow the affine

function to lower bound the nonlinear adaptation law between the range s = (η, η+µ/
√
m).

Then, the second requirement is set to ensure the validity of the dynamics (2.19) within the
range we claim.
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2.4 Implementation Issues and Parameter Tuning

In Section 2.3, we have introduced three parameters φ, k, ρ for the new adaptation control
strategy. Although the semi-global stability has been proven for all of them being positive
in continuous-time, an adequate choice between each parameter is still needed for a good
performance based on different scenarios. Another problem would be the implementation
issue. Since nowadays many control algorithms are implemented using digital computers, an
approximated discrete-time controller is commonly applied to the system. An inappropriate
way of discretizing the control law may degrade the performance and even cause instability
[32]. Therefore, to prevent the divergence of the adaptation gain in our algorithm after
discretization, the trade off between the tracking precision and the control bandwidth is
discussed.

2.4.1 Practical Implementation Issues

To guarantee the idea of the adaptation process works after discretization (i.e. forward Euler
discretization), we need to make sure that s can reach inside the domain S ′ with sampling.
Consider the case when s is approaching ±(

√
2−1)φ. At this moment, the system dynamics

can be approximately described as

|∆s|
∆t
≈ µ̂+ k(

√
2− 1)φ. (2.21)

Following the basic rule of thumb of allowing the system to sample roughly four times inside
the domain S ′, we then substitute ∆s = ±2(

√
2− 1)φ as the total traveling distance across

the domain S ′ into (2.21). This brings out the requirement for the sampling time

ts ≤
∆t

4
=

(
√

2− 1)φ

2(µ̂+ k(
√

2− 1)φ)
. (2.22)

By rearranging (2.22) into

0 < µ̂ ≈ µ ≤ (1− 2kts)(
√

2− 1)φ

2ts
, (2.23)

we then obtain the upper bound of the adaptation gain.

2.4.2 On the φ-tuning

According to Theorem 2.3.1, the system trajectories will evolve around the boundary of the
domain S (i.e. ±(

√
2− 1)φ) which implies that φ is a design parameter of steady accuracy.

Ideally, we can set φ as small as possible to have good tracking performance. However, in
the real implementation, φ is limited by µ, ts and k

φ ≥ 2tsµ

(
√

2− 1)(1− 2kts)
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Figure 2.3: The uncertainty functions ∆f1(t) and ∆f2(t) vs. time

according to (2.23). Since the overall uncertainty, µ, is unknown, it is hard to check if the
inequality is satisfied. In a lot of cases, the sampling time is limited by the bandwidth of
sensors or actuators. So, if the closed-loop system is not robustly stable after discretization,
the only thing we can do is to relax the accuracy requirement. Another thing that should
be noticed is that setting φ too small will induce a large adaptation gain and cause a high
frequency chattering in both state responses and the control input. We can observe that
the slope of function Ψ(s) around ±(

√
2 − 1)φ becomes steeper as φ decrease in Fig. 2.2.

Therefore, we also need to trade off between the performance and minimizing the chattering
by choosing an adequate φ.

2.4.3 On the k-tuning

Compared with the standard sliding mode control law (2.3), the new one described in (2.8)
has an additional term ks, where k is the design parameter for the feedback gain. Having
this additional control term benefits the overall performance since it will help speed up the
convergence and smooth out the adaptation process. Therefore, a higher value of k ideally
would be desired. However, in practice it should be limited by both actuator/unmodeled
dynamics and the boundary thickness of S. A high-gain control can easily excite unmodeled
dynamics that could adversely affect the stability. For the second limitation of the boundary
thickness, the condition of

0 ≤ k ≤ 1

η

is required, since having too large of a feedback gain may lead to the system trajectories
becoming confined inside an even smaller region of S. Under this condition, the adaptation
process will be terminated eventually as µ̂ goes to zero.
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Figure 2.4: The adaptation performance for the smooth uncertainties ∆f1(t)

2.4.4 On the ρ-tuning

ρ is the adaptation gain which is tuned based on the varying speed of the unknown uncer-
tainties. Choosing a smaller ρ allows a faster learning rate that can improve the adaptation
process with high frequency uncertainties. However, we should notice that the smallest value
of ρ is limited by the actuation rate in application.

In conclusion, having smaller or larger values in both φ and ρ or k may be preferable, but
all of them should be carefully chosen with suitable values to effectively avoid high control
activity during the reaching phase and the adaptation process.

2.5 Simulation

Two examples will be investigated in this section. First, we apply the adaptive control law
given in (2.8) to a simple first-order system for a regulation problem in order to clearly
demonstrate the properties of the new method. Then, we again apply the control law to
a higher order system with both multiplicative and additive uncertainties to a tracking
problem.

2.5.1 Regulation Problem

Consider the following system:

ẋ = ∆f(t) + u (2.24)

with ∆f(t) being bounded and unknown. Then, look for two different uncertainties (see in
Fig. 2.3) applied to this system: one is a smooth continuous function ∆f1(t); the other is a
sequence of square signals ∆f2(t).
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Figure 2.6: The changing rate of the adaptation gain, ˙̂µ for the smooth uncertainties ∆f1(t).

To implement the new adaptive control law, we first define the sliding surface as s = x =
0. Then, we choose the parameters φ = 0.01, ρ = 1, k = 2, µ̂0 = 0.001, x0 = 1 for the case
with ∆f1(t) uncertainty and φ = 0.03, ρ = 0.7, k = 9, µ̂0 = 0.001, x0 = 0.1 for the other
case. Since the varying rates of the uncertainties are different, we choose a smaller ρ in order
to have a faster learning rate for the case of the square uncertainties. The effect is clearly
seen. Fig. 2.4 and Fig. 2.7 demonstrate the adaptation process works well under both low
and high frequency uncertainties. The control input follows the external perturbation well
particularly for slowly-varying uncertainties. Fig. 2.5 and Fig. 2.8 show the response of state
trajectories and the adaptation gain. We can see that in steady state, the sliding variable
will evolve around the boundary of S (dotted orange line) without infinitely high frequency
chattering. Since there are two convergence values ±(

√
2 − 1)φ for the sliding variable, a

connection between the convergence value of the sliding variable and the adaptation gain
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Figure 2.7: The adaptation performance for the square uncertainties ∆f2(t)
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Figure 2.8: The convergence value of the sliding variables s(t) vs. the adaptation gain µ̂ for
the square uncertainties ∆f2(t).

can be found in the figures. Because we restrict the adaptation gain to be always positive,
the sliding variable will converge to the negative value of the boundary layer whenever the
adaptation gain has the opposite sign of the current uncertainty.

The learning rates of the adaptation gain are shown in Fig. 2.6 and Fig. 2.9. We can
notice that ˙̂µ is always bounded within the region of [−1/ρ, 1/ρ] since |Ψ(s)| < 1 ∀s ∈ R.
Actually, it is one of the advantages of the proposed adaptation law compared with other
methods. The main difference is that the update law is not a linear feedback law with
respect to the sliding variable. The learning rate is limited and can be tuned by ρ. During
the reaching phase, the state will converge with the auxiliary feedback term ks instead
of speeding up the increasing rate of the sliding gain. This can help us smooth out the
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Figure 2.9: The changing rate of the adaptation gain, ˙̂µ for the square uncertainties ∆f2(t).

Figure 2.10: The sliding variable trajectories for the smooth uncertainties with a small
feedback gain k = 0.0001

adaptation process and eliminate the oscillation behavior. We can verify the performance
from Fig. 2.10 and Fig. 2.11 for the case of smooth uncertainties. The parameter setting is
the same except k = 0.0001. The results show that both the state response and the control
input signal perform worse when k is small.

2.5.2 Tracking Problem

Next, consider the following nonlinear system:

ẋ1 = x2

ẋ2 = [x1∆x1(t)]x2 + sin(x1∆x1(t)) + d1(t) + u

y = x1
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Figure 2.11: The control input for the smooth uncertainties with a small feedback gain
k = 0.0001

0 5 10 15 20 25

-0.5

0

0.5

d 
(t)

0 5 10 15 20 25
time (sec)

0.2

0.6

1

Δ
 x

1(t)

Figure 2.12: The multiplicative and additive uncertainties, ∆x1(t) and d(t).

with one multiplicative uncertainty, ∆x1(t), and one additive uncertainty, d(t), described in
Fig. 2.12. The control objective is to apply the robust control law such that the output, y,
tracks a reference signal, yd = 3 sin(0.4πt). We first define e = y − yd and design a stable
sliding surface as

s = ė+ λe, λ = 6

Then, apply the adaptive control law as
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Figure 2.13: The tracking performance for the new proposed method.

u = −x1x2 − sinx1 + ÿd − λ(x2 − ẏd)− ks− µ̂sgn(s)

˙̂µ =

{
1
ρ

[
1− 2φ2

(|s|+φ)2

]
if µ̂ ≥ 0

0 if µ̂ < 0
µ̂(0) = µ̂0.

Assume the initial conditions of the states are all zero, x1 = x2 = 0 and the parameters are
set as ρ = 0.7, k = 5, µ̂0 = 0.001 and φ = 0.3

Fig. 2.13 demonstrates the tracking performance. As we can see in the second plot in
Fig. 2.13, the sliding variable, s, evolves around the boundary of S after it reaches the
domain S ′. Additionally, since we have the result of

s = 6e ≈ (
√

2− 1)φ

in the steady state for ė ≈ 0, we can know that the tracking error, e, will exhibit similar
behavior as the sliding variable but with a scale of 1/6. Fig. 2.14 shows the simulation results
of the adaptation gain and the control input. Although the overall uncertainty is unknown,
we still can obtain a smooth adaptation process. Moreover, according to the analysis of the
connection between the convergence value and the adaptation gain in the first example, we
can even roughly reconstruct the overall uncertainty from the plots. The learning rate of
the adaptation gain is shown in Fig. 2.15. We can clearly see that ˙̂µ is smooth and always
bounded within the range of [−1/0.7, 1/0.7].

2.6 Comparison

In this section, we compare the proposed adaptive sliding mode control with the one intro-
duced in [1] by using the regulation example in Section 2.5.1. Although the design concepts
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Figure 2.14: The adaptation gain µ̂ and the control input of the tracking problem for the
new proposed method.
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Figure 2.15: The changing rate of the adaptation gain, ˙̂µ, of the tracking problem for the
new proposed method.

of these two methods are similar, the new one stands out for its smooth adaptation process
without a high gain (i.e. 1/ρ). We implement the adaptation law (2.6) in the case with the
continuous uncertainty by setting the parameters K̄ = 3000 and κ = 0.01. Moreover, we
choose ε = 0.01(

√
2 − 1) in order to have the same convergence standard for the compar-

ison of these two methods. The simulation results in Fig.2.16-2.18 display the closed-loop
performance of the adaptive controller proposed in [1]. It appears that undesired chattering
behaviors are introduced in both the control input and the sliding variable responses because
of the large discontinuous switching rate in the adaptation gain (shown in Fig. 2.18).

One suggestion for the alleviation of the chattering is to set the parameter K̄ small,
but as stated in Section 2.3, the linear adaptation law with a smaller gain will make the
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Figure 2.16: The adaptation performance for the method proposed in [1].
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Figure 2.17: The convergence value of the sliding variables s(t) vs. the adaptation gain µ̂
for the method proposed in [1].

decreasing rate even more insignificant inside the domain of |s(x, t)| < ε, which fails to
address the problem. Fig. 2.19 and Fig. 2.20 show the control effects with K̄ = 150.
Although the changing rate of the adaptation gain becomes much smaller (Fig. 2.20), the
chattering behaviors of the state and control input responses are not suppressed and even
made worse with the small K̄ (Fig. 2.19).

2.7 Conclusion

This chapter proposed a new methodology of adaptive sliding mode control for a class of un-
certain nonlinear systems. The algorithm utilizes the concept of the boundary layer. Based
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Figure 2.18: The changing rate of the adaptation gain, ˙̂µ for the method proposed in [1].
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Figure 2.19: The performance of the control input canceling the uncertainty and the response
of the s(t) with a smaller K̄.

on the property that the system will hover inside and outside around the boundary region
of S, the adaptation law is designed such that the sliding gain will decrease and increase
accordingly. Numerical examples illustrated the effect of the adaptation process. The pro-
cess enables the determination of an adequate gain with respect to the current uncertainty.
Semi-global stability of the closed-loop system with the adaptation gain is also guaranteed.
Overall, this method achieves the minimum possible value of time-varying sliding mode con-
trol input and reduces the high-frequency chattering behavior without requiring knowing
any knowledge of the uncertainties.
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Figure 2.20: The changing rate of the adaptation gain, ˙̂µ for a smaller K̄.
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Chapter 3

Adaptive Integral Sliding Model
Predictive Control

3.1 Introduction

In many industrial applications, most of control systems require robust stability and optimal
performance. Research in these areas continues to grow. Over the past few decades, a
number of control strategies have been extended to address robustness and adaptation,
especially, in model predictive control (MPC) and in sliding mode control (SMC). MPC is a
well-known control method for optimizing the performance of constrained systems. However,
it becomes computationally demanding when dealing with system uncertainty or unknown
disturbances [10]. A number of approaches for robust MPC have been proposed in the
literature [33,34].

One popular approach is min-max MPC [35], where an optimal control problem is solved
with respect to the worst case disturbance. This method is effective with systems that have
a few number of states, or systems with slow dynamics. It demands a high computational
cost for large systems. Another approach is constraint tightening MPC, which remains as
computationally complex as the nominal problem by tightening the original constraints.
Based on this idea, different tightening policies have been proposed [36, 37]. The drawback
of this method is that the tightened sets have to be time-invariant, and thus may be too
conservative because of considering the worst case disturbance off-line. To remove some of
these restrictions, tube MPC [11, 34] introduces extra degrees of freedom in the controller
design by using a sequence of time-varying “tubes” determined from the disturbance invariant
set [38]. The disturbance invariant set is defined as the set of all possible state deviations
introduced by disturbance with the stable feedback controller. The associated feedback
controller introduced in tube MPC can ensure the actual states converging to the nominal
states.

On the other hand, compared with MPC, SMC [39] has been recognized as one of the ef-
fective robust control strategies for systems with disturbances or uncertainty conditions. Its
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main idea is to design a discontinuous control law that leads the system towards a custom-
made stable sliding surface, with relative degree equal to one. Unlike robust MPC, SMC
requires a low computational cost and has the guarantee of the finite-time convergence. How-
ever, SMC fails to address problems of optimal performance and constrained satisfactions.
Due to the complementary strengths of MPC and SMC, there are many different approaches
of combining these two control strategies. For example, in [40] and [41], the authors use the
idea of robustness from discrete-time SMC in a constrained optimal control discrete-time
MPC. Instead of regulating the system states directly to zero, the optimal control algorithm
regulates the designed sliding surface near to zero. This is done by introducing the custom-
made stable sliding surface into the objective function of MPC. Since the sliding surface is
designed to be stable, the state trajectory will stay within the sliding band and converge into
an area around the origin. Another approach introduced in [12] is to combine the technique
of continuous-time MPC into integral SMC (ISMC) [42]. Under the structure of ISMC, the
control signal is composed by two parts; one that is generated by MPC and one that is
generated by SMC. The first part makes the order of sliding surface equal to the order of
the original system and the second part is used to reject the effect of a bounded unknown
disturbance. Due to the discrepancy between the nominal and perturbed evolutions of the
system, the state and input constraints are tightened beforehand. Hence, the MPC strategy
can be implemented into system without considering the disturbance.

Robust MPC has been extensively studied. However, many of the existing robust MPC
approaches ( [35], [11] and [12] etc.) require iterative computations for the robust invariant
set. This may present a challenge for large systems. In this chapter, we introduce a simple
approach to tighten the original constraints of the optimal problem without computing the
robust invariant set. Based on the idea presented in [12], the robust control strategy in
this paper is to modify the concept of discrete-time ISMC [43] into a discrete-time MPC
problem. The chapter is organized as follows. We first briefly review over discrete-time
ISMC and discrete-time robust MPC. Then, the method of discrete-time integral sliding
model predictive control (DISMPC) and adaptive DISMPC are proposed with a simple
constraint tightening approach. The properties of robustness and stability are discussed
afterwards. Finally, the performances are compared with the method of robust invariant
tube MPC with a numerical simulation.

3.2 Preliminaries

3.2.1 Problem Statement

Consider a nonlinear discrete-time system with an affine control input described as follow:

xk+1 = f(xk) + g(xk)(uk + dk) (3.1)

where xk ∈ Rn, uk ∈ Rm are the state and control input vectors at time step k. f(xk) ∈ Rn

and g(xk) ∈ Rn are the state transition and input distribution functions. The vector dk ∈ Rm
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is an unknown matched disturbance/uncertainty which is bounded by

W = {dk ∈ Rm, 0 < ‖dk‖∞ ≤ α}.

The system (3.1) is subject to the following set of hard constraints:

uk ∈ U and xk ∈ X (3.2)

where U , X are polytopes and contain the origin as an interior point. Assume that the
system is locally accessible within the operation region (xk,uk) ∈ X × U and (0,0) is the
corresponding desired equilibrium pair for the nominal system:

xk+1 = f(xk) + g(xk)uk. (3.3)

To control the system (3.1) and guarantee its robustness under uncertainties, several control
approaches are proposed in the literature. Among all of these, an integral sliding mode
control (ISMC) and robust model predictive control (RMPC) are the control strategies which
have their own strength and weakness. The former one has the capability to handle a system
subject to disturbances and uncertainties, but does not consider the problems of optimal
performance and constraints. On the other hand, RMPC is a well-known control method
for optimizing the performance of constrained systems but requires high computational cost
when dealing with robustness [10]. We will briefly discuss each of methods in the following
sections in order to motivate the proposed adaptive discrete-time integral sliding model
predictive control (ADISMPC).

3.2.2 Discrete-Time Integral Sliding Mode Control (DISMC)
Review

Discrete-time sliding mode control (DSMC) method is a mature technique for the robust con-
troller design of uncertain system. The motion of DSMC includes two phases: the reaching
phase and the quasi-sliding phase. During the reaching phase, the system is moving in the
direction of the sliding surface. After the closed-loop system is driven into the quasi-sliding
band, the control law will maintain the states within the quasi-sliding band. The design
procedure for DSMC can be divided into two steps:

1. Choose a sliding surface

sk = Cxk ∈ Rm (3.4)

which has stable dynamics and Cg(xk) 6= 0.

2. Establish a sliding control term in the control law as [44]:

uk = −Msgn(sk)

where M ∈ Rm×m is defined to be positive definite [42]. This ensures that the closed-
loop system is driven towards the sliding surface and stays within the quasi sliding
band.
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However, in DSMC, we can only guarantee the robustness of the system during the quasi-
sliding phase. To improve the control performance, the concept of discrete-time integral
sliding control (DISMC) is proposed in [43]. Different from the conventional DSMC, the
reaching phase of DISMC is eliminated by choosing the dimension of the sliding surface
equal to that of the state space. We can further initialize the system trajectory to the
sliding surface. Therefore, the robustness can be guaranteed throughout an entire response
of the system. The design procedure for DISMC is divided into two steps:

1. Choose the control law in the form of

uk = ūk + u′k

where ūk is the ideal control which can stabilize the nominal system (3.3) and u′k is an
additional sliding control input designed for disturbance rejection.

2. Design a discrete-time integral sliding surface as

sk = s0(xk) + σk with σ, s and s0 ∈ Rm (3.5)

where the first part of the discrete-time integral sliding surface s0(xk) is designed as
the linear combination of the states, similar to (3.4); while the second part of the
discrete-time integral sliding surface σk is introduced as a summation term, which is
similar to the integral term z in [42].

3.2.3 Robust Model Predictive Control (RMPC) Revisit

Model predictive control (MPC) is an attractive control strategy for systems with input and
state constraints. This strategy has been widely adopted in many industrial applications.
The basic idea of MPC is to approximate an infinite-time optimal control problem by a
finite horizon one (N-step look-ahead). At each time step k, the optimization is solved in
real-time to obtain a sequence of control inputs, Uk = {u0|k,u1|k, ...,uN−1|k}. However, only
the control input at the current time step, ūk = u∗0|k, is implemented at time k. Define

I = {0, 1, ..., N − 1}, the MPC law is obtained by solving:

min
Uk

xTN |kPxN |k +
N−1∑
i=0

(xTi|kQxi|k + uTi|kRui|k)

s.t. xi+1|k = f(xi|k) + g(xi|k)ui|k, ∀i ∈ I
xi|k ∈ X , ∀i ∈ I (3.6)

ui|k ∈ U , ∀i ∈ I
xi|N ∈ Xf , x0|k = xk

where Q = QT � 0, P = P T � 0 are positive semi-definite and R = RT � 0 is positive
definite. The subscript i|k is used for representing the prediction steps of time k + i at the
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sampling time k. According to Lyapunov stability theory, the closed-loop system (3.3) is
asymptotical stable under the condition of setting the terminal constraint, Xf , as a control
invariant set of the system (3.1) with constraints (3.2) and the terminal cost, xTN |kPxN |k is a

strictly Lyapunov function as shown in Theorem 13.2 in [9] for system (3.1). The closed-loop
system with MPC can be expressed as

xk+1 = f(xk) + g(xk)ūk (3.7)

The above MPC algorithm assumes a perfect system without model uncertainties and
external disturbances. To address the robustness, the finite-time constrained optimal control
problem (3.6) can be rewritten into the following formulation by taking the worst case
scenario into account for every admissible uncertainties/disturbance sequence:

min
Uk

xTN |kPxN |k +
N−1∑
i=0

(xTi|kQxi|k + uTi|kRui|k)

s.t.

xi+1|k = f(xi|k) + g(xi|k)(ui|k + di|k),
xi|k ∈ X ,
ui|k ∈ U ,
xi|N ∈ Xf , x0|k = xk.

∀di|k ∈ W , ∀i ∈ I (3.8)

Compared with the differences in the nominal case, the optimization is over the state and
control constraints satisfied for all disturbance sequences. To ensure a robust stability and
persistent feasibility, first we need to set the terminal constraint, Xf , as a robust control
invariant set and the terminal cost being a strictly Lyapunov function as defined in Theorem
16.9 in [9]. Second, we can choose the optimization being over either open-loop control poli-
cies or some feedback policies ui|k = πi|k(xi|k) ∈ U . Both of them can be solved as a nominal
control problem with tighter constraints on states and inputs. The main differences between
these two are that the open-loop formulation tries to counteract any feasible disturbance
at time steps k+i with one single control sequence and the feedback formulation takes into
account that the disturbance and the control play one move at a time. In practical point of
views, the open-loop formulation is easier to implement but the unbounded propagation of
uncertainties over the prediction horizon may easily lead the problem infeasible. On the other
hand, the feedback formulation is more applicable, since the tightening is less conservative.
However, the evaluation of the robust MPC law through optimization in space of feedback
policies is general computationally intractable and not practical for complex systems.

Based on the above statements, we know that having uncertainties included in the optimal
control design will vastly increase the complexity for the robust MPC. This motivates us to
find a powerful predefined “inner loop” control law which can help eliminate or, at least,
reduce the disturbance for system (3.1) to its minimal value so that we can rely on the
inherent robustness of the nominal MPC [45]. As we mentioned in the introduction, sliding
mode control stands out by its strength of a low computational cost for a robust stability
guarantee. We then combine this technique into designing the control algorithm to overcome
the disadvantage of large computational demands in RMPC.
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Figure 3.1: Block diagram of discrete-time integral model predictive control (DISMPC)
strategy

3.3 Discrete-time Integral Sliding MPC (DISMPC)

3.3.1 Design Procedure

In this section, a discrete-time integral sliding model predictive control (DISMPC) algorithm
for robust MPC is proposed. Since the state trajectory obtained by MPC is asymptotically
stable for the nominal system without disturbance, it can be considered as a candidate of
our discrete-time integral sliding surface in DISMC. With DISMC, the entire state response
will not exceed the range of the quasi sliding band. According to this property, the con-
straint tightening in the open-loop formulation than can be simplified. Figure 3.1 shows the
block diagram of the implementation for the control strategy and the procedure of designing
DISMPC are listed as follows:

1. Recall that the Pontryagin difference of setsA andB is defined asA	B := {x | x+B ⊆
A}. Calculate the tightened constraint sets

Ū = U 	 V , X̄ = X 	 Z (3.9)

where Z is the quasi sliding band along the boundary of X and V is the sliding input
control set.

2. At each time k, according to the current feedback state, solve the following constrained
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finite-time optimal control problem:

min
Uk

xTN |kPxN |k +
N−1∑
i=0

(xTi|kQxi|k + uTi|kRui|k)

s.t. xi+1|k = f(xi|k) + g(xi|k)ui|k, ∀i ∈ I
xi|k ∈ X̄ , ∀i ∈ I \ {0} (3.10)

ui|k ∈ Ū , ∀i ∈ I
xi|N ∈ Xf , x0|k = xk ∈ X .

where the terminal constraint, Xf , is set to be a robust control invariant set and
the terminal cost is a strictly Lyapunov function as defined in Theorem 16.9 in [9].
Note that it is generally impossible to obtain an explicit characterization of P and Xf ,
especially for a nonlinear system. Several approximation methods have been introduced
in the literature [46,47].

3. Then, based on the solution of tightened MPC, ūk = u∗0|k, design a discrete-time
integral sliding surface as:

sk = Cxk + σk

σk+1 = σk + C(xk − f(xk)− g(xk)ūk)

σ0 = −Cx0

(3.11)

where σk, sk ∈ Rm and the matrix Cg(xk) � 0 [42].

4. Set the disturbance rejection control input as

u′k = −Msgn(sk)

where M is positive definite and the element of matrix M are large enough to reject
the disturbance.

5. Implement the control law as

uk = ūk + u′k (3.12)

6. Repeat the procedure 2) to 4) at next time instant.

3.3.2 Optimal Discrete-time Sliding Surface

It can be noticed that s0 = 0 in (3.11), which means the states start on the sliding surface
at the beginning of the time step. Moreover, from (3.1) and (3.11), we can know that

sk+1 − sk = Cxk+1 − Cxk + σk+1 − σk
= C(f(xk) + g(xk)(uk + dk))− Cxk + σk+1 − σk
= Cg(xk)(uk − ūk + dk). (3.13)
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To obtain the discrete-time integral sliding surface, we first set sk+1 − sk = 0 and solve for
the equivalent control law on the discrete-time integral sliding surface:

ueq = ūk − dk (3.14)

By substituting (3.14) into (3.1), we then find out the discrete-time integral sliding surface:

xk+1 = f(xk) + g(xk)ūk (3.15)

By comparing (3.7) with (3.15), it is natural to see that the discrete-time integral sliding
surface defined in (3.5) is the same as the state trajectories solved by optimal MPC problem
(3.10). Therefore, we can guarantee the state response will asymptotically converge to certain
area near the equilibrium point.

3.3.3 Sliding Mode Control Design and Stability Analysis

To analyze the stability property, we first substitute (3.12) into (3.13) to obtain the dynamics
of sliding variables

sk+1 = sk + Cg(xk)u
′
k + Cg(xk)dk (3.16)

which provides a guidance on designing the sliding term. By observing (3.16), it is easy to
tell that several control strategies can be implemented to guarantee the robust stability of
(3.16). The most intuitive one would be the deadbeat control:

u′k = −(Cg(xk))
−1sk (3.17)

which allows the smallest amount of tightening in the state constraints. However, it may
introduce an unnecessary increasing of unmatched disturbances (if the system has one) and
will require the largest amount of tightening in the control constraints. As we know that
the nominal MPC has its own inherent robustness, therefore, to balance the performance,
we then choose the control strategy as

u′k = −α(Cg(xk))
−1‖Cg(xk)‖∞ sgn(sk) (3.18)

which minimizes the tightening in U to allow a maximal control capacity in the nominal
MPC.

Theorem 3.3.1. To ensure the reachability of the specified discrete-time integral sliding
surface (3.11), we design the DISMPC control law as:

uk = ūk − α(Cg(xk))
−1‖Cg(xk)‖∞ sgn(sk) (3.19)

where ūk is the first optimal control signal derived from (3.10) with the tightened constraints.
‖Cg(xk)‖∞ denotes the matrix ∞-norm of Cg(xk) for all xk ∈ X . With the control law
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defined by (3.19), the system’s state then is guaranteed to stay in the quasi-sliding band, 4,
along the state trajectories defined by tighten MPC:

4 = { |sk(j)| ≤ ς, ς = 2α‖Cg(xk)‖∞, ∀j ∈ J } (3.20)

where J = {1, ...,m} is the set of sliding surface indices and sk(j) represents the jth element
of the vector sk.

Proof. Substituting (3.19) into (3.13) yields

sk+1 = sk − α‖Cg(xk)‖∞ sgn(sk) + Cg(xk)dk (3.21)

Since the initial state is already on the sliding surface, we can separate the proof into two
cases.

1. 0 ≤ sk(j) ≤ ς = 2α‖Cg(xk)‖∞ :

For any time step k ≥ 1, since the disturbance is bounded as 0 ≤ ‖dk‖∞ ≤ α, the
equation (3.21) becomes:

sk+1(j) ≤ sk(j) − α‖Cg(xk)‖∞ + ‖Cg(xk)‖∞‖dk‖∞
≤ 2α‖Cg(xk)‖∞ = ς

sk+1(j) ≥ sk(j) − α‖Cg(xk)‖∞ − ‖Cg(xk)‖∞‖dk‖∞
= sk(j) − 2α‖Cg(xk)‖∞ ≥ −ς

2. 0 > sk(j) ≥ −ς = −2α‖Cg(xk)‖∞ :

For any time step k ≥ 1, the equation (3.21) becomes:

sk+1(j) ≥ sk(j) + α‖Cg(xk)‖∞ − ‖Cg(xk)‖∞‖dk‖∞
≥ −2α‖Cg(xk)‖∞ = −ς

sk+1(j) ≤ sk(j) + α‖Cg(xk)‖∞ + ‖Cg(xk)‖∞‖dk‖∞
= sk(j) + 2α‖Cg(xk)‖∞ < ς

Combining cases 1) and 2), we can deduce the result of

4 = { |sk(j)| ≤ ς, ς = 2α‖Cg(xk)‖∞, ∀j ∈ J } (3.22)
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3.3.4 Control Input Constraint Tightening

From the aforementioned argument, there is an additional disturbance rejection control input
designed as:

u′k = −α(Cg(xk))
−1‖Cg(xk)‖∞ sgn(sk) (3.23)

Each element of this additional control input u′k(j) has the upper bound of

‖u′k‖∞ = α‖Cg(xk)‖∞‖(Cg(xk))
−1sgn(sk)‖∞

≤ α‖Cg(xk)‖∞‖(Cg(xk))
−1‖∞‖sgn(sk)‖∞

= α‖Cg(xk)‖∞‖(Cg(xk))
−1‖∞ = ακ(Cg(xk))

where κ(•) is the condition number defined in∞-norm. To minimize the amount of tighten-
ing, we can further choose C = (gT (xk)g(xk))

−1gT (xk) for the system with full rank matrix
g(xk). This makes Cg(xk) = I � 0, and hence κ(Cg(xk)) = 1. From this result, the
disturbance rejection input control polytope can then be introduced as:

V = {u′k | |u′k(j)| ≤ α , ∀j ∈ J } (3.24)

Therefore, to satisfy the actual control input constraints (3.2), the new tightened control
input constraint for optimal MPC problem is found as

Ū = U 	 V (3.25)

3.3.5 State Constraint Tightening

The actual state constraint, X , is set to be a closed polytope, which can be expressed as the
following inequality equations:

X = {xk ∈ Rn | Gxk ≤ W, ∀k ∈ Z+}

Since the motion equation in the integral sliding surface has a dimension of n, it can be
arbitrarily assigned in the state space. Therefore, to tighten the state constraints, we consider
the worst case of a sliding surface S lying on the boundaries of X :

S = {xk ∈ Rn | glxk − wl = 0 , ∀l ∈ L, ∀k ∈ Z+}

where L = {1, ..., p} indicates the set of constraint indices. According to (3.22), the integral
quasi-sliding domain Z for S can then be expressed as:

Z = {xk | − ς ≤ glxk − wl ≤ ς , ς = 2α‖Gg(xk)‖∞ }
= {xk | (wl − ς) ≤ glxk ≤ (wl + ς)} (3.26)

∀l ∈ L, ∀k ∈ Z+. As a result, we obtain the new tightened state constraint as:

X̄ = {x ∈ Rn | glxk ≤ (wl − 2α‖Gg(xk)‖∞) , , ∀l ∈ L, ∀k ∈ Z+}
= X 	 Z (3.27)



CHAPTER 3. ADAPTIVE INTEGRAL SLIDING MODEL PREDICTIVE CONTROL37

3.4 Adaptive Discrete-time Integral Sliding MPC

(ADISMPC)

3.4.1 Algorithm improvement

Although the control law proposed in (3.19) simplifies the constraint tightening procedure
in the robust MPC formulation (3.8), the “bang-bang” logic in the control law design may
easily introduce a “zig-zag” motion in the state response. To overcome this drawback, we
can increase the inner loop’s sampling rate for the integral sliding controller, since the critical
limitation in computation time comes from solving the MPC optimization problem. As we
know that for an ideal sliding mode control designed with continuous time, we can guarantee
asymptotic tracking with zero steady-state error. Therefore, under the assumptions of having
an infinitely large sampling rate and fast actuators, we can completely eliminate the matched
disturbance term so that the RMPC problem (3.8) becomes a nominal MPC problem (3.6)
after tightening the control constraints. However, there is no such actuator exists in practice,
and hence a chattering phenomenon will still be introduced when implemented using any
discretization approximation. The controller can no longer guarantee zero steady-state error.
Instead, it guarantees ultimate boundedness with a quasi-sliding band.

To improve the robust performance, we then incorporate the adaptive sliding mode con-
trol strategy proposed in Chapter 2 to replace the additional sliding term, u′k, for disturbance
rejection. We will use a forward Euler discretization to approximate the controller. Suitable
parameters of ts, φ, k and ρ are chosen to balance between actuator capacity and steady
state performance based on the discussion in Section 2.4. This can help us guarantee not
only a thin quasi-sliding band for state constraint tightening but also an avoidance of a large
chattering phenomenon as it allows a higher sampling rate and the sliding gain is adapted.
Assume t is the current time instant. Specify two sampling systems: tm and ts where t = tmk
is for tightened MPC controller and t = tsn is for adaptive ISMC controller. The proposed
DISMPC can be updated as follows:

1. Calculate the tightened constraint sets

Ū = U 	 V ′, X̄ = X 	 Z ′ (3.28)

where Z ′ is the new quasi sliding band along the boundary of X and V ′ is the adaptive
sliding input control set.

2. At each sampling time k, according to the current feedback state, solve the following



CHAPTER 3. ADAPTIVE INTEGRAL SLIDING MODEL PREDICTIVE CONTROL38

constrained finite-time optimal control problem:

min
Uk

xTN |kPxN |k +
N−1∑
i=0

(xTi|kQxi|k + uTi|kRui|k)

s.t. xi+1|k = f(xi|k) + g(xi|k)ui|k, ∀i ∈ I
xi|k ∈ X̄ , ∀i ∈ I \ {0} (3.29)

ui|k ∈ Ū , ∀i ∈ I
xi|N ∈ Xf , x0|k = xk ∈ X .

where the terminal constraint, Xf is set to be a robust control invariant set and the
terminal cost is a strictly Lyapunov function as defined in Theorem 16.9 in [9].

3. Given the newest updated solution of tightened MPC, ūk, design a discrete-time inte-
gral sliding surface at sampling time step n:

sn = Cxn + σn

σn+1 = σn + C(xn − f ′(xn)− g′(xn)ūk)

σ0 = −Cx0

(3.30)

where σn, sn ∈ Rm. f ′(xn) and g′(xn) are the system’s state transition and input
distribution functions with a smaller sampling time, ts. The matrix C is chosen to be
equal to (g′T (xn)g′(xn))−1g′T (xn) such that Cg′(xn) = I.

4. Update the sliding gain followed by the discretized adaptation law (2.8):

µ̂n+1(j) = µ̂n(j) +
ts
ρ(j)

[
1−

2φ2
(j)

(|sn(j)|+ φ(j))2

]
∀j ∈ J , µ̂0(j) = µ̂(j)(0) (3.31)

and saturate it between [0, µ̄(j)].

5. Set the additional sliding control input as

u′n = −N ∈ Rm×1

with the jth element equal to µ̂n(j)sgn(sn(j)) + k(j)sn(j) and obtain the control law:

un = ūk + u′n. (3.32)

6. Repeat the procedure from 2) if a new MPC control input is updated, otherwise con-
tinue from 3) at next time instant.
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3.5 Simulation

In this section, we apply both DISMPC and adaptive DISMPC control laws to a disturbed
linear time-invariant system. To verify the effectiveness of the proposed control strategies,
we further compare the simulation results of invariant tube MPC introduced in [48]. Each
of the methods has its own pros and cons. Detail discussions are provided in the following
sections. Note that it is our purpose to choose a linear system as an example to gain insight
for the benefits of adaptive DISMPC. As a matter of fact, the method we proposed can be
easily implemented into a nonlinear disturbed system as well.

3.5.1 Numerical Example

Consider a linear time-invariant continuous time system given by

ẋ(t) =

[
0 10
0 0

]
x(t) +

[
0
10

]
u(t) +

[
0
10

]
d(t) (3.33)

where d(t) = 0.05 cos(25t) + 0.03 sin(5t)− 0.025 cos(10t + 2) + 0.01 cos(t + 2) such that the
constraint of

d(t) ∈ D = {d(t) | ‖d(t)‖∞ ≤ α = 0.1}

is satisfied. Assume that the system starts from x(0) = [−5, − 2]T where the state, control
input constraints are bounded and shown as follows:

x(t) ∈ X = {x(t) | Gx(t) ≤ 2, G = [0 1]}
u(t) ∈ U = {u(t) | − 1 ≤ u(t) ≤ 1}.

To implement all the control logics using invariant tube MPC, DISMPC, and adaptive
DISMPC, starting from formulating the problem into a robust MPC (3.8), we first obtain a
discrete time model by a zero order hold method with a sample time of tk = 0.1 sec. The
discrete time system can be described as follows:

xk+1 = Akxk +Bk(uk + dk) (3.34)

where

Ak =

[
1 1
0 1

]
; Bk =

[
0.5
1

]
. (3.35)

Then, set the horizon length N = 9 and the corresponding positive definite weighting ma-
trices

Q =

[
1 0
0 1

]
; R = 0.1.

Next, to compare all the simulation results, we will first introduce tube MPC. Then, imple-
ment DISMPC and adaptive DISMPC control algorithms later in the following sections.



CHAPTER 3. ADAPTIVE INTEGRAL SLIDING MODEL PREDICTIVE CONTROL40

3.5.2 Disturbance Invariant Tube MPC

Starting from implementing disturbance invariant tube MPC, we first need to iteratively
calculate a disturbance invariant set, Z tube, for the closed-loop system

xk+1 = Afxk +Bkdk (3.36)

where Af = Ak + BkK. The detail procedure is provided from Algorithm 19 in [49]. The
feedback matrix K = [0.6167, 1.2703] is chosen based on the solution of discrete algebraic
Riccati equation for the unconstrained LQR problem to stabilize the matrix Af . In other
words, the eigenvalues of the matrix Af should be all in the unit circle. Recall that the
multiplication of a set by a matrix denotes the mapping of the elements in the set

AB = {c | ∃ b ∈ B, c = Ab}.

Define the disturbance invariant set as

Z tube = {xk | Afxk +Bkdk ∈ Z tube, ∀xk ∈ Z tube and ∀ Bkdk ∈ W}.

whereW = BkD. With this definition, the tightened constraints of the disturbance invariant
tube MPC then can be expressed as:

X̄ tube = X 	 Z tube

Ū tube = U 	KZ tube

X̄f
tube

= Xf 	Z tube.

Then, having Xf as the control invariant set and the terminal cost being the value function
calculated from the original nominal system, finally, we can implement the feedback control
law of disturbance invariant tube MPC with the following form

uk = ūk +K(xk − x̄∗0|k)

where ūk = u∗0|k is the first optimal control signal obtained from the tightened MPC problem
which includes the initial state as a decision variable and x̄∗0|k is the first solution of the
associated optimal state sequence for the tightened MPC.

The simulation results of the phase trajectories from (−5, 2) for tube MPC is shown in
Fig. 3.2. The solid line is the actual trajectory which is simulated through out the continuous
time model (3.33) with the control input holding at each sample value for one time interval.
The dash line is the sequence of optimal initial states {x∗0|k(x(ktk))} for k = 0, 1, 2, ....

As we can see, the set Z tube is robustly exponentially stable for the controlled uncertain
system. However, we should notice that the set of x∗0|4 ⊕Z tube violates the state constraint.
This is because we didn’t include the model mismatch introduced by discretization into the
disturbance model. To avoid this, we should further increase the upper bound of W .
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Figure 3.2: Phase trajectories from (−5, 2) for tube MPC

3.5.3 Discrete-time Integral Sliding MPC

Following the design procedure listed in Section 3.3.1, to implement DISMPC, we need
to first calculate the tightened constraints. As mentioned in Section 3.3.4, we will choose
C = (BT

k Bk)
−1BT

k = [0.4, 0.8] to minimize the amount of tightening for control input
constraints. Then, according to equation (3.26), we know that ς = 2α‖GBk‖∞ = 0.2.
Therefore, the sets of V and Z can be obtained from (3.24) and (3.26):

V = {u′k | − 0.1 ≤ u′k ≤ 0.1 }
Z = {xk | − ς ≤ Gxk − 2 ≤ ς, ς = 0.2}

and the tightened state and control input constraints become

Ū = {u | − 0.9 ≤ uk ≤ 0.9} (3.37)

X̄ = {x | Gxk ≤ 1.8}. (3.38)

The next step is solving the tightened MPC for ūk. Before doing this, we need to design
the terminal constraint, Xf , as a robust control invariant set and the terminal cost being a
strictly Lyapunov function for robust stability guarantee. Here, we choose P = P∞ as the
solution of the algebraic Riccati equation for unconstrained LQR problem by knowing that
there exists a sublevel set of xk defined by positive constants c1 and c2 such that

c1|xk|2 ≤ xTkP∞xk ≤ c2|xk|2 (3.39)

will satisfy the assumption A3 listed in [9]. For the terminal constraint, we approximate the
robust control invariant set by calculating the positive invariant set of the nominal system
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Figure 3.3: Phase trajectories from (−5, 2) for DISMPC

under LQR control law with the original state and tightened control constraints, X and Ū .
Then, tighten the set by Z afterwards. Once we obtain ūk, the integral sliding surface can
be defined as: 

sk = Cxk + σk

σk+1 = σk + C(xk − Akxk −Bkūk)

σ(0) = −Cx0

where xk is the current state feedback of x(ktk). Finally, we can implement the DISMPC
control law as:

uk = ūk + 0.1sgn(sk).

The simulation results are shown in Fig. 3.3. As already mentioned, we can see that the
initial state starts on the integral sliding surface (s0 = 0) and the state trajectory remains
close to the discrete-time integral sliding surface represented by the orange dash line. The
tightened state constraint is marked by the dotted line and the actual state trajectory (solid
line) satisfies the original state constraint, X .

3.5.4 Adaptive Discrete-time Integral Sliding MPC

Following from the result shown in Fig. 3.3, we can see that the convergence performance of
DISMPC is worst than the one provided from the tube MPC. It is what we can expect as
already mentioned in Section 3.4.1 and, therefore, we have the adaptive DISMPC proposed.

To implement adaptive DISMPC, we need to define another faster sampling system for
the integral sliding mode controller. By choosing ts = 0.01 sec which is 10 times faster than
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tk = 0.1 sec, we obtain another discrete time system described as follows:

xn+1 = Anxn +Bn(un + dn) (3.40)

where

An =

[
1 0.1
0 1

]
; Bn =

[
0.005
0.1

]
. (3.41)

Then, we choose the matrix C = (BT
nBn)−1BT

n = [0.4988, 9.9751], and tune the design
parameters of k = 0.1, ρ = 0.8, φ = 0.2 and µ̄ = 0.14 for the adaptation law (3.31). To
obtain these parameters, we first initialize φ = 0.2 by inferring from sn being bounded within
the quasi-sliding band for ς = 2α‖CBn‖∞ = 0.2 without the adaptation. Since φ is set to
be equal to 0.2, we can roughly guess the upper bound of sn as 0.4 by equation (2.20) and
further increase it for taking the errors induced from the discretization into account:

sn ≤ (
√

2− 1)φ+
µ√
m
≤ 0.4. (3.42)

Then, the equivalent disturbance upper bound, αeq, can be calculated as 0.2 according to

2αeq‖CBn‖∞ = 2αeq ≈ 0.4

by knowing that C is chosen to let ‖CBn‖∞ = 1. With this result, we have the new quasi-
sliding band along the boundary of X and the adaptive sliding input control set as:

V ′ = {u′k | − µ̄ ≤ u′k ≤ µ̄, µ̄ = α + 2kαeq = 0.14}
Z ′ = {xk | − ς ≤ Gxk − 2 ≤ ς, ς = 2αeq‖GBn‖∞ = 0.04}.

Therefore, the new tightened state and control input constraints become:

Ū = {u | − 0.86 ≤ uk ≤ 0.86} (3.43)

X̄ = {x | Gxk ≤ 1.96}. (3.44)

Next, follow the same procedure to obtain the terminal constraint and the terminal cost as
shown in Section 3.5.3. Design the integral sliding surface as:

sn = Cxn + σn

σn+1 = σn + C(xn − Anxn −Bnūk)

σ(0) = −Cx0

where xn is the current state feedback of x(ntn) and ūk is the newest control input calculated
from the tightened MPC. Finally, we can implement the adaptive DISMPC control law:

un = ūk + µ̂nsgn(sn) + ksn (3.45)
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Figure 3.4: Phase trajectories from (−5, 2) for adaptive DISMPC
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where µ̂n is the adaptation gain obtained from (3.31) with an initial value µ̂0 = 0.001.
Again, we run the simulation with the control input holding at constant during the

sampling time of 0.01 sec. Fig. 3.4 illustrates the performance of adaptive DISMPC. As
expected, it has a smaller spread of state trajectories compared with the one obtained from
DISMPC. The responses of sliding variable and the adaptation gain are shown in Fig. 3.5.
We can see that the sliding variable is always bounded within the quasi-sliding band of ±0.4
and the adaptation gain has a trend to follow the additive disturbance d(t).
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3.6 Comparison

For comparison, we have all corresponding simulation results of tube MPC, DISMPC and
adpative DISMPC shown in Fig. 3.6 - 3.8. As displayed in Fig. 3.6, there is no doubt that
the robust performance of DISMPC is the worst and adaptive DISMPC stands out from
the others with smallest convergent region and less amount of tightening in state constraint.

However, according to Fig. 3.7, the state response of implementing adaptive DISMPC
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Figure 3.8: Control inputs for DISMPC, tube MPC, and adaptive DISMPC

converges slower than the others and the one using tube MPC is the fastest. This is because
tube MPC is the only controller uses out the maximum control capacity in the beginning of
the response. Comparing all the control input shown in Fig. 3.8, we can see that tube MPC
achieves the maximum control input in the first quarter second. Since it incorporates the
initial state as a decision variable in the optimal control problem, the current state feedback
will always lie on the extreme point of x∗0|k⊕Z tube before the optimal initial state converges to
zero. Therefore, the additional control input for disturbance rejection in tube MPC will not
equal to zero at the starting time. Although this is the advantage of tube MPC, one thing
we should bring out is that adaptive DISMPC allows a smaller control constraint tightening
compared with tube MPC which gives more flexibility to cope with any changing condition
during on-line optimization. Comparing the tightened constraints of

Ū tube = {u | − 0.7226 ≤ uk ≤ 0.7226} (3.46)

X̄ tube = {x | Gxk ≤ 1.75}. (3.47)

to the one of DISMPC described in (3.43) and (3.44), we can see that tube MPC is more
conservative than DISMPC even under the case of not considering the errors introduced
by the discretization. Another advantage of the adaptive DISMPC is that it can effectively
eliminate the disturbance for both linear and nonlinear system which further gains the inherit
robustness of nominal MPC after the tightening. Although it does not simplify the analysis
and the on-line implementation complexity into that of conventional MPC as tube MPC, it
eliminates the need to compute the disturbance invariant set for a constrained system which
is generally a significant practical issue in most of the problem.
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3.7 Conclusion

In this Chapter, a method for robust model predictive control named adaptive DISMPC
has been presented. Similar to the disturbance invariant tube MPC strategy, the feedback
control law of adaptive DISMPC contains two parts: one is an optimal feedback control input
solved from the tightened MPC problem; the other one is an additional adaptive sliding
mode control input for disturbance rejection. By introducing the concept of quasi-sliding
band, we need to tighten the constraints before solving the MPC problem. Compared with
other alternative robust MPC formulations, adaptive DISMPC has a better convergence
performance. Although it does not simplify the analysis and the on-line implementation
complexity into that of conventional MPC as tube MPC, it eliminates the need to compute
the disturbance invariant set for a constrained system. A simpler approach and a thinner
amount in constraint tightening are its advantages. This results in having more flexibility
to cope with any changing condition while doing the on-line optimization.
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Chapter 4

Adaptive Sideslip Angle Estimation:
Sensor-limited Conditions

4.1 Motivation

A number of active safety features have been introduced in the automotive industry in the
past 30 years to prevent accidents such as braking assistance, traction and electronic stability
control systems [50–53]. The main goals of these systems are to maintain vehicle stability
and to improve vehicle handling. To implement these functions, vehicle states, parameters
and road conditions need to be measured or estimated. Among all of these, sideslip angle,
the angle between the longitudinal direction of the vehicle and the velocity vector, is one
of the most important variables which heavily influences vehicle dynamics and is required
by a number of active safety controllers. Although it can be directly measured by sensors
such as optical sensors [54] or GPS sensors [55, 56], these solutions are not implemented by
OEMs because of cost and reliability. Therefore, the estimation of sideslip angle based on the
sensors available in production vehicles is an important topic that has been widely discussed
in the literature [57–73]. Most of the approaches in the literature are model-based and can
be classified into three main categories: kinematics model-based, dynamics model-based and
a combination of the two.

The kinematics model-based approach proposed in [57, 58] constructs an observer based
on the longitudinal and lateral translation kinematics of a point mass model. This method
has the advantage of not requiring the vehicle parameters, tire model and road friction coef-
ficient. It can provide an accurate sideslip estimate in a number of cases. However, it suffers
from a drifting issue in small yaw rate maneuvers and the estimated result is sensitive to
disturbance and measurement noise such as bank angles or sensor bias when the longitudinal
and lateral accelerations are small. The dynamics model-based approach constructs an ad-
vanced state observer (i.e. an extended Kalman filter or an unscented Kalman filter) by using
a bicycle model or its variations [59–65]. These models consider the effect of forces applied to
vehicle mass and rotation inertia which provides a relatively robust estimate to acceleration
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Figure 4.1: Lateral dynamics for bicycle model.

measurement noise compared to the one from the kinematics model. However, an estima-
tion bias is often observed due to the model uncertainties associated to variations of vehicle
mass and the tire cornering stiffnesses. Existing literature has also focused on developing
algorithms for estimating the sideslip angle and vehicle model system parameters simulta-
neously. In [63–66], Lyapunov-based observers have been proposed for the tire cornering
stiffness identification. Although these techniques can improve the estimation results, they
require persistent input excitations and the adaptation performance becomes worse beyond
the linear tire model region. Alternative studies have proposed learning-based techniques
to assist the traditional adaptation methods [67–69]. However, the estimated performance
is hard to validate in the region when data is limited. The third category of algorithms
tries to merge kinematics and dynamics models into a hybrid solution [70–73]. The concept
is to switch between these two estimators and to exploit their respective advantages. This
method might look attractive, however the switching will cause a discontinuity in the sideslip
estimation. Motivated by the idea of the hybrid solution [70–73] and parameter adaptation,
in this paper, we develop a novel sideslip estimation algorithm which only relies on the
dynamics model for the estimation but utilizes the strength of the kinematics observer to
adapt the front and rear tire cornering stiffnesses. In this way, we maintain the advantage of
the dynamics model-based observer and further improve the estimator performance in the
nonlinear tire region. In addition, the proposed approach does not need rich input excitation
as required in traditional adaptation methods.

The chapter is organized as follows. We first introduce commonly used models for kine-
matics and dynamics-based observer designs. Then, modifications with bank angle and
sensor bias effects are considered and included into each of the models. A recursive adap-
tation algorithm is derived and the stability property is discussed afterwards. Finally, the
performance is validated with different scenario tests and compared with existing methods.
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4.2 Modeling

Many of the conventional sideslip angle estimation methods are model-based. In this section,
we are going to introduce two different models which have been frequently used in the
literature [68]: a 2-DOF point mass rigid body kinematics model and a bicycle dynamics
model. Each of them has its own strengths and weaknesses in the observer design. Details
are discussed in the following sections.

4.2.1 Kinematics model

Kinematics is the study of motion which treats the movement of components without consid-
ering the forces. To describe the general motion of a rigid body, we first introduce two coor-
dinate systems followed by the ISO convention: one is fixed in the inertial space {X̂0, Ŷ0.Ẑ0}
and the other one is fixed to the body {x̂b, ŷb, ẑb} (see Fig. 4.1). Then, considering the
vehicle as a single rigid body constrained to move in the X̂0Ŷ0-plane, the translation motion
is described as:

ax = v̇x − rvy
ay = v̇y + rvx

(4.1)

where ψ is the yaw angle, r
∆
= ψ̇ is the yaw rate of the vehicle. ax and vx denote the inertial

acceleration and velocity resolved in the longitudinal x̂b-direction. ay and vy denote the same
physical quantities but resolved in the lateral ŷb-direction. Define the sideslip angle as

β = tan−1(vy/vx).

We write the system (4.1) into a standard state space form as:

ẋk = Ak(t)xk +Bk(t)uk

yk = Ck(t)xk
(4.2)

where xk = [vx, vy]
T is the state vector, uk = [ax, ay]

T is the control input vector, yk = vx
is the measurement output vector and the system, input and output matrices are

Ak(t) =

[
0 r(t)
−r(t) 0

]
, Bk(t) =

[
1 0
0 1

]
Ck(t) =

[
1 0

]
.

(4.3)

As explained in [74], using the kinematics model is advantageous as it allows a sideslip
angle estimation without requiring vehicle parameters. All we need is r, ax, ay and vx
which can be directly obtained from sensors available in commercial vehicles. However, the
estimation is sensitive to sensor noise which is substantial for ax and ay. Moreover, the
convergence of the estimation error can be guaranteed only when yaw rate is not equal to
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zero. In fact, the system (4.2) is not observable when the yaw rate is equal to zero and the
poor conditioning of the observability matrix causes a drifting problem. This can be avoided
by resetting the estimated states to zero every time when yaw rate is less than a threshold
value.

4.2.2 Dynamics model

A variety of dynamics models have appeared in the literature. The so-called lateral bicycle
model shown in Fig. 4.1 is a widely used and rather simple model that neglects the coupling
of the roll, pitch and longitudinal dynamics. By using Newton’s law of motion, the lateral
dynamics of the bicycle model is described as follows [75]:

may = m(v̇y + vxr) = Fyf cos δf + Fyr

Iz ṙ = LfFyf cos δf − LrFyr
(4.4)

where m is the vehicle mass, Iz is the equivalent yaw moment of inertia, δf is the front
steering angle and Lf , Lr are the distance from the vehicle center of gravity (COG) to the
front and rear axles. To further simplify the model, we assume small tire slip and front
steering angles. Then, the front and the rear lateral tire forces Fyf , Fyr can be approximated
by a linear function:

Fyf cos δf ≈ Fyf = Cf

(
δf −

vy + Lfr

vx

)
Fyr = Cr

(
−vy + Lrr

vx

) (4.5)

where Cf and Cr are the front and rear tire cornering stiffnesses. Substituting (4.5) into (4.4),
we then obtain a nonlinear model. Assume that the vehicle is traveling with slowly varying
longitudinal velocity. At each step, a linearization process will be applied to approximate
the nonlinear system (4.4)-(4.5) with a linear time varying system shown as follows:

ẋd = Ad(t)xd +Bd(t)ud

yd = Cd(t)xd +Dd(t)ud
(4.6)

where xd = [vy, r]
T is the state vector, ud = δf is the control input vector and yd = [ay, r]

T

is the measurement output vector.

Ad(t) =

[ −Cf−Cr

mvx(t)
−vx(t)− LfCf−LrCr

mvx(t)

−LfCf+LrCr

Izvx(t)

−L2
fCf−L2

rCr

Izvx(t)

]
,

Cd(t) =

[
−Cf−Cr

mvx(t)
− LfCf−LrCr

mvx(t)

0 1

]
,

Bd(t) =

[
Cf

m
LfCf

Iz

]
, Dd(t) =

[
Cf

m

0

]
.

(4.7)
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Using the dynamics bicycle model to estimate the sideslip angle has several advantages.
First, the estimator can be tuned to be less sensitive to acceleration measurement noise
compared to the one based on the kinematics model. Also, drifting and observability issues
of the kinematics model are not present. However, the estimated accuracy is affected by the
vehicle parameters in the matrices (4.7). First, since we use a linear tire model, the sideslip
estimate will be accurate only in the linear tire region. Second, compared to m, Iz, Lf
and Lr, it is hard to find a good initial condition for the tire cornering stiffness coefficients.
To mitigate this issue, on-line adaptation algorithms have been introduced to identify the
cornering stiffness [64, 65]. We will also use this idea in our method.

4.3 Sideslip Estimation Method

The method proposed in this paper relates to the idea of [71] which merges the kinematics
and dynamics model observers into a hybrid solution. Since the estimated state from the
kinematics model is unaffected by the parameter uncertainties, in [71], the observer is built
to mainly rely on it but will switch to the dynamics model when the absolute value of the
yaw rate is less than a threshold value rt to avoid unobservability and the drifting issue.
Although this method addresses the drifting issue, relying on the kinematics model leads to
noisy estimates. Moreover, the switch between the kinematics and dynamics models for the
observer often introduces a discontinuous estimate during the transition.

To overcome these issues and keep the benefits of hybrid models, we propose a new
method which is based on a dynamics model but adapts on-line the front and rear tire
cornering stiffnesses using information derived from the kinematics model. Compared with
the traditional adaptation algorithm proposed in [64, 65], the proposed approach does not
need persistent excitation in the control input and also improves the adaptation performance
in the nonlinear tire region. For the observer design, we further include the road bank angle
disturbance and lateral acceleration sensor bias into the system model in order to minimize
possible modeling and estimation errors. This is discussed in next.

4.3.1 Augmented Models

4.3.1.1 Dynamics model augmented with the road bank angle and sensor bias

We consider the bicycle model and include the gravitational force to the lateral dynamics:

m(v̇y + vxr) = Fyf cos δf + Fyr −mg sinφ (4.8)

where φ is the road bank angle with the sign convention shown in Fig. 4.2. Then, combining
the yaw dynamics in (4.4) with (4.8), we rewrite the first equation of (4.6) as:

v̇y =
−(Cf + Cr)

mvx
vy − (vx+

LfCf − LrCr
mvx

)r − g sinφ+
Cf
m
δf . (4.9)
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The measurement model should also be corrected with the bank disturbance and sensor bias
as well. Note that the lateral accelerometer measures the right hand side of (4.8) divided by
m and plus the component of gravity in ŷb direction. We obtain the measurement model of
the lateral acceleration as:

aseny = ay + g sinφ+ d = v̇y + vxr + g sinφ+ d (4.10)

=
−(Cf + Cr)

mvx(t)
vy −

LfCf − LrCr
mvx(t)

r + d+
Cf
m
δf .

where d is the sensor bias. By augmenting the system with a constant bank angle disturbance
and the sensor bias, the state vector and measurement output are xd = [vy, r, sinφ, d]T

and yd = [aseny , r]T . The system state space matrices which replace the one in (4.7) are

Ad(t) =


−Cf−Cr

mvx(t)
−vx(t)− LfCf−LrCr

mvx(t)
−g 0

−LfCf+LrCr

Izvx(t)

−L2
fCf−L2

rCr

Izvx(t)
0 0

0 0 0 0
0 0 0 0

 ,
Cd(t) =

[
−Cf−Cr

mvx(t)
−LfCf−LrCr

mvx(t)
0 1

0 1 0 0

]
, (4.11)

Bd(t) =


Cf

m
LfCf

Iz

0
0

 , Dd(t) =

[
Cf

m

0

]
.

To implement the extended Kalman filter using a digital controller, we further discretized
model (4.11) using a forward Euler method as:

x̂d[k + 1] = (Ad[k]∆t+ I4)x̂d[k] +Bd[k]∆tud[k] + wd[k]

yd[k] = Cd[k]x̂d[k] +Dd[k]ud[k] + vd[k] (4.12)

where ∆t is the sampling period and [·] represent the discrete time instant. wd[·] and vd[·]
are the process and measurement noises satisfying the typical assumptions of the extended
Kalman filter.

4.3.1.2 Kinematics model augmented with the road bank angle

For the kinematics model, we only include the bank angle disturbance into the lateral motion
by noting that the system is not observable if the model of the sensor bias is added. The
model becomes:

ax = v̇x − rvy
aseny = v̇y + rvx + g sinφ. (4.13)
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Figure 4.2: Sign convention for bank angle.

Then, having the same extended Kalman filter structure shown in (4.12), we re-define the
state vector xk = [vx, vy, sinφ]T , the output vector uk = [ax, a

sen
y ]T and the system state

space matrices as

Ak(t) =

 0 r(t) 0
−r(t) 0 −g

0 0 0

 , Bk(t) =

[
1 0
0 1

]
,

Ck(t) =
[

1 0 0
]
.

(4.14)

The above model is, again, discretized into:

x̂k[k + 1] = (Ak[k]∆t+ I3)x̂k[k] +Bk[k]∆tuk[k] + wk[k]

yk[k + 1] = Ck[k + 1]x̂k[k + 1] + vk[k + 1]. (4.15)

4.3.2 Adaptation for the tire cornering stiffness

In the previous section, we have introduced two observer models (4.12) and (4.15). Next,
we will show how we merge both observers by using v̂y,k, the lateral velocity estimated from
(4.15), to adapt the front and rear tire cornering stiffnesses in the dynamics model (4.12).
The sideslip estimation will then calculate by using this updated dynamics model.

4.3.2.1 Regression model

The adaptation is formulated as a regularized weighted least square (RWLS) problem [76,77].
To build up the adaptation algorithm, we first specify the regression model as

Y = ΦT θ (4.16)
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where θ is the parameter to be estimated; Φ and Y are the input and output measurements.
Substituting equation (4.13) into (4.9), the ay measurement can be expressed as follows:

aseny = v̇y + vxr + g sinφ

=
−(Cf + Cr)

mvx
vy −

LfCf − LrCr
mvx

r +
Cf
m
δf . (4.17)

Then, combining (4.17) with the yaw rate dynamics, we define the regression model as:

ΦT =

[
−L2

f r−Lf v̂y,k

vx
+ Lfδf

−L2
rr+Lr v̂y,k
vx

−Lf r−v̂y,k
vx

+ δf
Lrr−v̂y,k

vx

]
,

Y =

[
Iz ṙ
masen

y

]
, θ =

[
Cf
Cr

] (4.18)

where the unknown lateral velocity is replaced by v̂y,k estimated from the kinematics model.
Observe that all the other time-varying variables in the input and output measurements can
be directly obtained from the standard sensors for yaw stability control system. The angular
acceleration is obtained by differentiating the yaw rate: (r[k]− r[k− 1])/∆t with a low-pass
filter.

4.3.2.2 Adaptation algorithm

Considering all the input and output data sampled at time instant i∆t, where i = 1, 2, ...k
is the time step, we want to minimize the sum of the squared prediction errors:

J(θk) =
k∑
i=1

λ(k−i) ∥∥Yi − ΦT
i θk
∥∥2

2
+ δ

∥∥θk − θ+
∥∥2

2
(4.19)

where 0 � λ < 1 is the forgetting factor and θ+ = [C+
f C+

r ]T is the nominal values of
the front and rear tire cornering stiffnesses. Comparing (4.19) with a standard least square
problem, we have included an additional 2-norm regularized term with δ > 0 in order to
improve the estimate robustness when the data is less informative or too noisy. By setting
the partial derivative of J(θk) with respect to θk to zero, the optimal solution, θ∗k, can be
derived as follows:

θ∗k =

(
k∑
i=1

λk−iΦiΦ
T
i + δI2

)−1(
δθ+ +

k∑
i=1

λk−iΦiYi

)
which implies

θ̃∗k =

(
k∑
i=1

λk−iΦiΦ
T
i + δI2

)−1 k∑
i=1

λk−iΦiỸi (4.20)

where θ̃i := θi − θ+, θ̃∗k := θ∗k − θ+

Ỹi := Yi − ΦT
i θ

+ = ΦT
i θ̃i.
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The expression in (4.20) is called the batch formulation since it processes the available data
set all at once. For simplicity, we can further rewrite the solution in a recursive way as:

θ̃∗k = θ̃∗k−1 + (Rk + δI2)−1
[
δ(λ− 1)θ̃∗k−1 + Φkek

]
. (4.21)

where Rk =
k∑
i=1

λk−iΦiΦ
T
i = λRk−1 + ΦkΦ

T
k (4.22)

ek = Ỹk − ΦT
k θ̃
∗
k−1

and k = 1, 2, ...,∞. Notice that (Rk+1 + δI2)−1 in (4.21) is a simple 2-by-2 matrix inversion
and the existence of the solution is guaranteed by the regularization term. The recursive
formula in (4.22) of the adaptation gain Rk will help us better understand the stability
properties of the adaptation algorithm [78]. More details will be discussed in Section 5. In
the next section, we summarize the new proposed algorithm for the sideslip angle estimation.

4.3.3 Proposed sideslip angle estimation algorithm

We have presented the discrete-time dynamics and kinematics observer models in (4.12) and
(4.15), respectively. At each time step, both of the estimated states will be updated using the
extended Kalman filters [79]. The dynamics model is used for estimating the sideslip angle
and the kinematics model is used for estimating the tire cornering stiffnesses by applying
the adaptation law (4.21). Notice that we will enable the adaptation process only when the
absolute value of the yaw rate is greater than a certain threshold, rt, in order to have a valid
estimated v̂y,k from the kinematics model. The pseudo code of the estimation algorithm is
provided in Algorithm 1.

4.4 Stability and Convergence Analysis

In this section, we study the stability of the proposed adaptation algorithm. In other words,
we want to study the convergence property of the tire cornering stiffness estimation error.
The energy-based hyperstability approach [80] is used as it addresses the problem nonlinear-
ity. The analysis will follow three steps.

A. Formulate the adaptation algorithm (4.21) as a nonlinear feedback systems shown in
Fig. 4.3 where vk will be linked to the error between the measured output Yk listed in
(4.18) at time k and the one predicted according to the adaptation law ΦT

k θ
∗
k.

B. Prove that vk converges to 0 for k → ∞ by using the sufficient conditions of the
hyperstability listed in Appendix A.

C. Use the previous results to prove the convergence of the estimated tire cornering stiff-
nesses to a neighbourhood of the true ones.
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Algorithm 1 Sideslip Angle Estimation (Algorithm 1)

1: initialize:
2: x̂k[0]← [vx[0] vy[0] 0]T , x̂d[0]← [vy[0] r[0] 0 0]T , θ̃∗0 ← 0, R0 ← 0, θ∗0 ← θ+ + θ̃∗0,
3: Pk[0]← Pk,0, Pd[0]← Pd,0 // initialize prior means and estimate error covariance matrices for EKF

4: for i = 1 to k+1 do
5: x̂d[i]← EKFupdate(x̂d[i−1],ud[i−1],ud[i],yd[i], Pd[i−1], θ∗i−1) // dynamics model (4.12)

6: x̂k[i]← EKFupdate(x̂k[i− 1],uk[i− 1],yk[i], Pk[i− 1])) // kinematics model (4.15)

7: if |ri| ≥ rt then
8: Ri = λRi−1 + ΦiΦ

T
i // obtain the input measurement Φi from (4.18)

9: θ∗i ← θ++ AdaptationUpdate(Ri, θ̃
∗
i−1) // apply a recursive update law (4.21)

10: else
11: θ∗i ← θ∗i−1

12: x̂k[i]← [vx[i] v̂y,d[i] sin φ̂d[i]]
T // update the state estimates of the EKF for model (4.15)

13: Pk[i]← diag(0, Pd[i](1, 1), Pd[i](3, 3)) // update the error covariance matrix for model (4.15)

14: end if
15: β[i]← tan−1(v̂y,d[i]/vx[i]) // calculate the sideslip angle

16: end for

4.4.1 Nonlinear feedback formulation of the adaptation
algorithm

We start by formulating the adaptation algorithm (4.21) as a nonlinear feedback system. We
first derive a recursive law for the adaptation gain, (Rk + δI2)−1. Define Fk = (Rk + δI2)−1

and substitute Rk as defined in (4.22). We obtain:

Fk = [λF−1
k−1 + δ(1− λ)I2 + ΦkΦ

T
k ]−1. (4.23)

Figure 4.3: Nonlinear feedback system.
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Then, denote (σ1,k,u2,k), (σ2,k,u2,k) as the first and the second pairs of the singular value
and the left singular vector of the matrix Φk. We can rewrite ΦkΦ

T
k as

ΦkΦ
T
k =

2∑
j=1

σ2
j,kuj,ku

T
j,k =

2∑
j=1

φj,kφ
T
j,k

and further represent δ(1− λ)I2 + ΦkΦ
T
k as:

δ(1− λ)I2 + ΦkΦ
T
k =

2∑
j=1

µj,kφj,kφ
T
j,k (4.24)

with µj,k =
σ2
j,k + δ(1− λ)

σ2
j,k

≥ 1 for j = 1, 2.

Here, µj,k is guaranteed to be finite and always exist because σj,k > 0. From the expression
of ΦT

k in (4.18), we observe that ΦT
k is always full rank with exception of singular cases

which can be easily discarded in real applications. Combing (4.23) and (4.24), we obtain a
measurement updated law of the adaptation gain by applying the matrix inverse lemma:

Fk = [λF−1
k−1 + µ1,kφ1,kφ

T
1,k + µ2,kφ2,kφ

T
2,k]
−1

= F ′k −
F ′kφ2,kφ

T
2,kF

′
k

µ−1
2,k + φT2,kF

′
kφ2,k

(4.25)

where F ′k =
1

λ

(
Fk−1 −

Fk−1φ1,kφ
T
1,kFk−1

λµ−1
1,k + φT1,kFk−1φ1,k

)
. (4.26)

Notice that the updated law of the adaptation gain (4.25)-(4.26) contains two parts. First,
Fk−1 is updated with the first singular vector of the input measurement data, φ1,k to yield F ′k.
Then F ′k is updated based on the second singular vector, φ2,k. For this reason, the original
sampling time k = 1, ..., T is now converted into n = 1, ..., 2T , where k = dn

2
e. This will

allow us to use the hyperstability theorem which is formulated for SISO systems (Appendix).
Substitute (4.25) into (4.21) to obtain:

θ̃∗n = θ̃∗n−1 − βnfnφnφTn θ̃∗n−1 + fnφnỹn

= θ̃∗n−1 + fnφn(ỹn − βnφTn θ̃∗n−1) (4.27)
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where f−1
n = αnf

−1
n−1 + βnφ

T
nφn, f−1

0 = 0

fn =
1

αn

(
fn−1 −

fn−1φnφ
T
nfn−1

αnβ−1
n + φTnfn−1φn

)
(4.28)

ỹn = φTn θ̃n, θ̃∗0 = 0, α1 = 1.

φn =

{
φ1,dn

2
e,

φ2,dn
2
e,

βn =

{
µ1,dn

2
e,

µ2,dn
2
e,

αn =

{
λ, if n is odd

1, if n is even.

(4.29)

Notice that ỹn is the measured output and φTn θ̃
∗
n−1 is the predicted one according to (4.27).

We then define

εn = ỹn − βnφTn θ̃∗n (4.30)

εon = ỹn − βnφTn θ̃∗n−1

as a “scaled” a-posteriori and a “scaled” a-priori predicted measurement errors, respectively.
Right multiplying φn+1 to fn in equation (4.28), we obtain

fnφn =
fn−1φn

αn + βnφTnfn−1φn
(4.31)

and the adaptation law (4.27) becomes

θ̃∗n = θ̃∗n−1 +
fn−1φn

αn + βnφTnfn−1φn
εon. (4.32)

Then, again left multiplying −βnφTn to (4.32) and adding ỹn to both sides of the equation
lead to:

εn =
αn

αn + βnφTnfn−1φn
εon. (4.33)

With this relation, we can express the adaptation law (4.32) using the a-posteriori predicted
measurement error εn as follows:

θ̃∗n = θ̃∗n−1 +
1

αn
fn−1φnεn. (4.34)

Define the “scaled” parameter estimation error as

∆θ̃n = βnθ̃
∗
n − θ̃n, (4.35)
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Figure 4.4: Block diagram of the adaptation algorithm for stability analysis.

with θ̃0 = 0 and β0 = 1. We can rewrite (4.30) and (4.34)-(4.35) into the following error
dynamics: {

εn = φTn θ̃n − βnφTn θ̃∗n = −φTn∆θ̃n

∆θ̃n = βn
βn−1

∆θ̃n−1 + βn
αn−1

fn−1φnεn + en
(4.36)

where en = βn
βn−1

θ̃n−1 − θ̃n is treated as an external bounded disturbance. Finally, we can
represent this error dynamics into the block diagram of Fig. 4.4 which is equivalent to the
nonlinear feedback system as shown in Fig. 4.3.

4.4.2 Hyperstability analysis

Theorem 4.4.1. The nonlinear feedback system depicted in the block diagram of Fig. 4.4
with the error dynamics described in (4.36) without the external disturbance term en is asymp-
totically hyperstable (i.e. εn → 0) if

2− αn+1

βn
− 1

βn−1

≥ 0 ∀n = 1, 2, ...∞. (4.37)

Proof. To prove the theorem we use the concept of hyperstability [80] briefly summarized in
Appendix. Next, we prove that the sufficient conditions listed in Theorem 4.8.1 are satisfied.
First, we notice that the forward linear system is the identity, which is obviously strictly
positive real. However, the nonlinear block of the adaptation algorithm does not satisfy the
Popov inequality. Therefore, we further modify the system and rewrite it as the one shown
in the block diagram of Fig. 4.5. Since the same signals have been added and subtracted in
the feedback system, the stability property will not change.

We now again check the sufficient conditions for the modified system. Start with the
requirement of the nonlinear feedback block satisfying Popov inequality. Considering System
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A in the block diagram of Fig. 4.5 with input (sn) and output (wn) signals, we have

wn = ∆θ̃Tnφn, sn = εn +
αn+1

2
∆θ̃Tnφn

φnφ
T
n = β−1

n (f−1
n − αnf−1

n−1)

φnεn =
αn
βn
f−1
n−1∆θ̃n −

αn
βn−1

f−1
n−1∆θ̃n−1 (4.38)

from equations (4.28) and (4.36) without considering the external disturbanceen. Define

ηn =
2− αn+1

βn
− 1

βn−1

for the sake of simplicity in later expression. The sum of the product of wn and sn can be
calculated as:

2k∑
n=1

wnsn =
2k∑
n=1

∆θ̃Tnφn(εn +
αn+1

2
∆θ̃Tnφn)

=
2k∑
n=1

αn
2

1

βn−1

(∆θ̃Tn −∆θ̃Tn−1)f−1
n−1(∆θ̃n −∆θ̃n−1)

+
2k∑
n=1

αn+1

2βn
∆θ̃Tnf

−1
n ∆θ̃n −

αn
2βn−1

∆θ̃Tn−1f
−1
n−1∆θ̃n−1

+
2k∑
n=0

ηnαn
2

∆θ̃Tnf
−1
n−1∆θ̃n

=
2k∑
n=1

αn
2βn−1

(∆θ̃Tn −∆θ̃Tn−1)f−1
n−1(∆θ̃n −∆θ̃n−1)

+
α2k+1

2β2k

∆θ̃T2kf
−1
2k ∆θ̃2k −

α1

2β0

∆θ̃T0 f
−1
0 ∆θ̃0

+
2k∑
n=1

ηnαn
2

∆θ̃Tnf
−1
n−1∆θ̃n. (4.39)

Since all the variables of αn, βn are positive as defined in (4.29), we can know that the sum
of the product of wn and sn will have a lower bound

2k∑
n=1

wnsn ≥−
α1

2β0

∆θ̃T0 f
−1
0 ∆θ̃0 = 0

and satisfy the Pupov inequality with a condition of

ηn ≥ 0 ∀n = 1, 2, ..., 2k. (4.40)
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Figure 4.5: Equivalent system of the block diagram in Fig. 4.4 for stability analysis.

Next, considering the time varying linear System B in the block diagram of Fig. 4.5, we find
that it also satisfies the Popov inequality since

1

2
(ρ− αn+1) ≥ 0 for choosing 1 ≤ ρ < 2. (4.41)

Then, the overall nonlinear feedback system as shown in the block diagram of Fig. 4.5 satisfies
the Popov inequality since it is made by a feedback connection of two passive systems, A
and B. Finally, the linear feedforward system for the modified system, 1 − ρ/2, is strictly
positive real for having 1 ≤ ρ < 2. Now, we know that the adaptation system is hyperstable.
In other words, |(1 − ρ/2)wn| < ∞ is bounded. This will further imply that the output of
the nonlinear feedback system, wn < ∞, is bounded as well. Therefore, having all of three
requirements listed in Appendix A, we can conclude that the adaptation system without the
external disturbance is asymptotic hyperstable εn → 0.

We start from the analysis in Theorem 4.4.1 and consider the effect of the external
disturbance en.

Theorem 4.4.2. Assume that the two norm of the difference of the true parameter θ̃k between
two consecutive steps is bounded:

‖θ̃k−1 − θ̃k‖2 ≤ Λ ∀k = 1, 2, ...,∞.

Consider the regularized weighted least square problem (4.19) with the regression model de-
scribed in (4.18). Then, there exists a set of parameters δ > 0, 0 � λ < 1 satisfying the
condition:

σ2
1,kσ

2
2,k + δ(2− λ)σ2

2,k − δσ2
1,k ≥ 0 ∀k = 1, 2, ...,∞ (4.42)

which guarantees ε2k ∈ R(Λ) for R(Λ) being a ball of radius Λ centred in the origin.
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Proof. We use the same steps as in Theorem 4.4.1. Consider the input signal εn of System
A with

φnεn =
αn
βn
f−1
n−1(∆θ̃n+θ̃n)− αn

βn−1

f−1
n−1(∆θ̃n−1 + θ̃n−1)

deriving from (4.36). We can derive the same Popov inequality as shown in (4.39) for System
A but with an extra term of

2k∑
n=1

αn∆θ̃Tnf
−1
n−1(

1

βn
θ̃n −

1

βn−1

θ̃n−1). (4.43)

Therefore, the same requirement of ηn = 2−αn+1

βn
− 1

βn−1
≥ 0 in Theorem 4.4.1 is necessary for

hyperstability. From this, we can easily infer the condition of (4.42) by expanding out βn−1,
βn and αn+1 using (4.29). Next, combining the first term in the right hand side of (4.39)
together with (4.43), we can conclude that System A will satisfy Pupov inequality under the
conditions:

ηn
2

∆θ̃Tnf
−1
n−1∆θ̃n + ∆θ̃Tnf

−1
n−1(

1

βn
θ̃n −

1

βn−1

θ̃n−1) ≥ 0

∀n = 1, 2, ..., 2k

=⇒ ‖∆θ̃n‖2 ≥
2κ(f−1

n−1)

ηn

∥∥∥∥ 1

βn
θ̃n −

1

βn−1

θ̃n−1

∥∥∥∥
2

∀n = 1, 2, ..., 2k (4.44)

where κ(·) denotes the condition number of the positive definite matrix f−1
n−1. Since the rate of

θ̃ is bounded by the assumption, the existence of the right hand side in (4.44) is guaranteed.
Then, based on passivity theorem [81], we know that there exists a time-varying energy
function which is positive definite and is dissipating over time in the region of

‖∆θ̃‖2 ≥ max
n

2κ(f−1
n−1)

ηn

∥∥∥∥ 1

βn
θ̃n −

1

βn−1

θ̃n−1

∥∥∥∥
2

. (4.45)

Equation (4.45) implies the boundedness of the predicted measurement error εn in the adap-
tation algorithm.

Remark: Some considerations can be drawn from the analysis in Theorem 4.4.1 and Theo-
rem 4.4.2. First, the boundedness of the adaptation error depends on the time-varying rate

of change of θ̃. According to the result shown in (4.45), a larger value in
∥∥∥ 1
βn
θ̃n − 1

βn−1
θ̃n−1

∥∥∥
2

will lead to a larger bound in the predicted measurement error. Therefore, we can expect
a better adaptation performance under non-extreme driving scenarios. Second, the bound-
edness of the adaptation error shrinks as the condition number of f−1

n−1 decreases. This
highlights the importance of input measurement matrices, ΦT

i , being well-conditioned in the
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regression model. By observing (4.18), we can infer that the conditional number of ΦT is
roughly equal to the ratio of it’s (2, 1) and (2, 2) components, since Lf ≈ Lr for a vehicle.
In order to avoid a bad adaptation performance, we should add an additional condition of

1

ct
≤
∣∣∣∣ΦT (2, 1)

ΦT (2, 2)

∣∣∣∣ ≤ ct (4.46)

to enable the adaptation process in our proposed sideslip angle algorithm where ct > 0 is the
maximum allowed conditional number of measurement data. Third, according to (4.39), ηn
is the energy dissipation rate of the system. Therefore, a larger value of ηn results in a faster
convergence rate. Based on an further analysis in the condition of ηn ≥ 0, we can obtain a
good starting value of the regularization weight

δ ≈ 1 / (
1

σ2
2,k

− 1

σ2
1,k

) (4.47)

This is derived by rewriting (4.42) into the following form:

2− λ ≥ σ2
1,k

(
1

σ2
2,k

− 1

δ

)
for 0� λ < 1. (4.48)

4.4.3 Convergence of the estimated cornering stiffness

Theorem 4.4.3. The asymptotical hyperstability of the nonlinear feedback system depicted
in Fig. 4.4 with en = 0 guarantees that the estimated parameters converge to 1

βn
θ̃n

lim
n→∞

θ̃∗n →
1

βn
θ̃n

Proof. In Theorem 4.4.1, the stability proof shows the convergence of εn without the distur-
bance term.

εn = φTn (θ̃n − βnθ̃∗n)→ 0. (4.49)

Then, recalling from (4.33), we know that ε0
n will also converge to zero for a bounded φn.

We have

ε0
n+1 = φTn+1(θ̃n+1 − βn+1θ̃

∗
n)→ 0

which can be further rewritten as

φTn+1(θ̃n − βnθ̃∗n)→ 0 (4.50)

by substituting θ̃n+1 = βn+1

βn
θ̃n under the assumption of no external disturbance.

Combining the results of (4.49) and (4.50) and using the fact that θ̃n − βnθ̃∗n cannot be
orthogonal to φn and φn+1 since φn and φn+1 span the whole state space, we can conclude
that θ̃n − βnθ̃∗n will approach zero as n→∞.
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Table 4.1: Model Parameters

vehicle mass m 2300.132 kg
vehicle rotational inertia Iz 4400 kgm2

distance from COG to front axle Lf 1.505 m
distance from COG to rear axle Lr 1.504 m

front tire conering stiffness Cf 160776 N/rad2

rear tire conering stiffness Cr 254100 N/rad2

gravity g 9.80665 m/s2

Table 4.2: Estimator Parameters (Algorithm 1)

sampling time ∆t 0.01 sec
covariance matrix of wk[k] Wk diag([0.2, 0.6, 0.05])
covariance matrix of vk[k] Vk 0.05
covariance matrix of wd[k] Wd diag([6, 0.5, 0.1, 0.0002])
covariance matrix of vd[k] Vd diag([0.1, 0.01])

forgetting factor λ 0.975
regularized term weighting δ 0.02

yaw rate threshold rt 0.1 rad/s

From Theorem 4.4.2 and Theorem 4.4.3 we can conclude that the estimated tire cornering
stiffness coefficients will converge to a neighbourhood of the true values when we include the
external disturbance en term in the proof.

4.5 Algorithm Improvement

In this section, the proposed estimation algorithm is evaluated with real experimental tests.
We first conducted a slalom and a severe single lane changing tests at Hyundai-Kia Motors
California Proving Ground. The first test setting consists of eleven lined up cones, separated
by 18 m. The vehicle is driven through the course in a slalom pattern at constant speed,
50 km/hr. The second one is a standardized maneuver which generates a peak lateral
acceleration of approximately 0.6g. A further analysis and a small modification of Algorithm
1 are provided based on the estimation results.

4.5.1 Experimental Setup

Our experimental vehicle is a 5th generation Hyundai Genesis equipped with a differential
global positioning system (dGPS) Oxford TR3000. A real-time kinematics (RTK) technology
is adopted to allow an accuracy down to 2-4 cm for position measurement. We will consider
the measured sideslip angle provided from dGSP as a ground truth to validate the estimated
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Figure 4.6: Performance comparison of Algorithm 1 and Algorithm 2 for a slalom test.

performance. The realtime computations are performed on a dSPACE DS1401 Autobox
system which consists of a IBM PowerPC 750GL processor running at 900 MHz. The
aforementioned hardware components communicate through a CAN bus and the estimation
algorithm is executed at 100 Hz.

Table 4.1 shows the nominal model parameters of the test vehicle and Table 4.2 shows
the estimation parameters for Algorithm 1. We initialize the measurement noise covariances
by processing the measurement outputs while they are held constant. Since the values of
the noise covariances are all small, we then apply a reasonable scaling factor to avoid the
numerical issue before the tuning. The process noise covariance matrix is picked based on
the unmodeled dynamics. According to the results shown in Table 4.2, we can see that the
process noise covariance of the vy equation is chosen to be relative bigger than other states
since the coupling of the roll dynamics has been ignored and the gravity effect causes more
influence on vy dynamics. Similarly, we choose the process noise covariance of the sensor bias,
d, to be significantly small because we believe that the offset is “nearly” constant. In other
words, we can treat the dynamics of d as arbitrarily-slowly time-varying. For the forgetting
factor, since it determines the rate of change of the weighting factors of the regression errors,
we start with the value vary close to 1 for the fact that the tire cornering stiffness varies
with the maneuver and our sampling rate is way fast enough to capture its varying speed.
Then, we gradually decrease the value to allow more weighting on recent data to improve
the performance.
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Figure 4.7: Performance comparison of Algorithm 1 and Algorithm 2 for a severe single lane
changing.

4.5.2 Motivation

The estimation results of a slalom and a severe single lane changing tests are shown in the
upper plots of Fig. 4.6 and Fig. 4.7 respectively. Note that the light green background
represents the condition of |r| > rt indicating that the adaptation algorithm is active. Com-
paring with the solid blue (βdGPS) and the dashdotted red (βest) lines, we can see that the
proposed method performs well. However, there is still room for improvement in the region
highlighted with gray dashed lines. In these regions the estimated sideslip angle (v̂y,k) pro-
vided from the kinematics model (4.15) is noisy. This affects the output measurements Φ
in the regression model which is used for the cornering stiffness adaptation. To address this
issue, we proposed a small modification for Algorithm 1 which is described next.

4.5.3 Modification to Algorithm 1

In this section, we improve Algorithm 1 proposed in the previous section. We will show the
performance of the new algorithm. However, the convergence analysis is harder to establish
because of the tightly coupling between two observers.

According to the discussion above, we want to improve the estimation of the kinematics
model by considering the bank angle effect. Start by deriving from the lateral dynamics
(4.9) and the lateral acceleration models (4.10). We can get the following relation:

v̇y = −vxr + aseny − g sinφ− d. (4.51)
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Algorithm 2 Sideslip Angle Estimation (Algorithm 2)

1: initialize:
2: x̂k[0]← [vx[0] vy[0] 0]T , x̂d[0]← [vy[0] r[0] 0 0]T , θ̃∗0 ← 0, R0 ← 0, θ∗0 ← θ+ + θ̃∗0,
3: Pk[0]← Pk,0, Pd[0]← Pd,0 // initialize prior means and estimate error covariance matrices for EKF

4: for i = 1 to k+1 do
5: x̂d[i]← EKFupdate(x̂d[i−1],ud[i−1],ud[i],yd[i], Pd[i−1], θ∗i−1) // dynamics model (4.12)

6: x̂k[i]← EKFupdate(x̂k[i− 1],uk[i− 1],yk[i], Pk[i− 1])) // kinematics model (4.15)

7: uk[i]← [ax[i] aseny [i]− g sin φ̂d[i]− d̂d[i]]T
8: if |ri| ≥ rt and 1/ct ≤ |ΦT

i (2, 1)/ΦT
i (2, 2)| ≤ ct then

9: Ri = λRi−1 + ΦiΦ
T
i // obtain the input measurement Φi from (4.18)

10: θ∗i ← θ++ AdaptationUpdate(Ri, θ̃
∗
i−1) // apply a recursive update law (4.21)

11: else
12: θ∗i ← θ∗i−1

13: x̂k[i]← [vx[i] v̂y,d[i] sin φ̂d[i]]
T // update the state estimates of the EKF for model (4.15)

14: Pk[i]← diag(0, Pd[i](1, 1), Pd[i](3, 3)) // update the error covariance matrix for model (4.15)

15: end if
16: β[i]← tan−1(v̂y,d[i]/vx[i]) // calculate the sideslip angle

17: end for

Then, based on the result shown in (4.51), the original kinematics model (4.15) in Algorithm
1 can be modified into:

Ak(t) =

[
0 r(t)

−r(t) 0

]
, Bk(t) =

[
1 0
0 1

]
,

Ck(t) =
[
1 0

]
.

(4.52)

with the estimated state and the input vectors defined as:

x̂k =

[
vx
vy

]
, uk =

[
ax

aseny − g sin φ̂d − d̂d

]
.

We can see that the measured lateral acceleration in uk is added with an additional term,
−g sin φ̂d− d̂d, where sin φ̂d and d̂d are the estimated values from the dynamics model (4.12).
With this modification, the kinematics model (4.52) does not remain unaffected by the vehicle
parameters anymore. However, we can claim that the estimated term of −g sin φ̂d− d̂d from
the dynamics model is relatively less sensitive to the model error in the normal driving
situations for v̇y being small and slowly varying since

−g sin φ̂d − d̂d = ˆ̇vy,d + vxr̂ − aseny . (4.53)

By observing (4.53), we can expect that −g sin φ̂d− d̂d will mostly depend on the error of ˆ̇vy,d
because r̂ and aseny are directly relevant to the values measured from the sensors. Although
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it will be bias more when v̇y is large, we still can expect it with a similar trend and without
too much difference from the true value.

The modified version of the estimator is provided in Algorithm 2. Moreover, we add an
additional condition listed in (4.46) to guarantee well-conditioned measurement data for tire
cornering stiffness adaptation. The estimated performance of Algorithm 2 is shown in the
bottom plots of Fig. 4.6 and Fig. 4.7. We can see a significant improvement in the estimated
value of v̂y,k.

4.6 Experimental Verification

Having a modified version of the estimator (Algorithm 2), to evaluate its robustness, three
more different tests of severe and normal steering maneuvers under different road conditions
are conducted and all the tests are listed as follows:

1) a slalom test on a low friction flat road,

2) a severe single lane changing on a normal flat road,

3) a steady circular motion test on a normal flat road,

4) a double lane changing test on a road with significant bank angle, and

5) a stop-N-turn test on a normal road.

To display the advantage of Algorithm 2, we further compare the experimental results with
other two methods:

1) Dynamics observer: a dynamics estimator with a state augmented with bank angle
and sensor bias without cornering stiffness adaptation, and

2) Hybrid observer: a hybrid estimator switching between the dynamics model and a
kinematics model described in Algorithm 2.

All parameters required in Algorithm 2 are the same as Algorithm 1 listed in Table 4.2 except
that the covariance matrix of wk[k] is set to be diag([0.2, 0.6]) and the maximum conditional
number, ct, is 20.

4.6.1 Experimental results for Algorithm 2

The experimental results are shown in Fig. 4.9-4.18 and the comparison of RMS error
performances can be found in Fig. 4.8. As we can see, both the hybrid and dynamics
observers exhibit a large RMS value under some driving situations. Algorithm 2 provides
superior performances in all scenario tests.
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Figure 4.8: The root mean square errors of the proposed method compared with the existing
methods.

Starting from slalom, severe single lane changing and steady circular motion tests, we
can see that Fig. 4.9, Fig. 4.11 and Fig. 4.13 demonstrate the effectiveness of the proposed
estimator. For the dynamics model-based approach, it is obvious that there is a big disparity
between the true and the estimated sideslip angle when the vehicle enters the nonlinear tire
region. As expected, for the method switching between dynamics and kinematics models, we
can see a discontinuous estimating during the transition. The longitudinal velocity, adapted
tire cornering stiffnesses, estimated bank angle and sensor bias for all scenario tests are shown
in Fig. 4.10, Fig. 4.12 and Fig. 4.14. The adapted cornering stiffnesses becomes smaller
for a low friction road condition or entering the nonlinear tire region. Since the estimated
bank angle is affected by the vehicle roll angle, we can conclude that all the estimated bank
angle resulting within -4◦- 4◦ may be questionable. However, we still trust the estimation
for large bank angles. Fig. 4.15 and Fig. 4.16 shows the experimental results of double
lane change tests on a road with a large bank angle. The estimate performance of the
switching algorithm is poor since the kinematics model is sensitive to the lateral acceleration
measurement disturbance introduced from the bank angle. Fig. 4.16 confirms the ability
of the proposed algorithm to estimating the bank angle, with the estimated value of the
bank angle converging to the true value of 14◦. The adapted cornering stiffnesses remain
unchanged because of the mild driving condition. Finally, we evaluate the performance of
Algorithm 2 by conducting a stop-N-turn test for a varying low speed condition (Fig. 4.17
and Fig. 4.18). Again, the results are very promising.

In summary, the proposed algorithm stands out for its robustness in model error and
measurement disturbance. It can be used for any driving situation with different road con-
ditions. In addition, reliable estimates for bank angle and sensor bias are also available.
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Figure 4.9: Comparison of the sideslip angle estimation for a slalom test.

4.7 Conclusion

This paper developed a real-time algorithm for estimation of sideslip angle using inexpensive
sensors normally available for electronic stability control (ESC) applications. The algorithm
utilizes a kinematics observer to improve the estimation based on a vehicle dynamics model.
It also provides estimates of road bank angles, lateral acceleration sensor bias and tire cor-
nering stiffness. The algorithm performance is evaluated through several experimental tests
and the results indicate that the algorithm provides a good estimate of the vehicle sideslip
angle both in normal and extreme maneuvers with different road conditions.

4.8 Appendix

4.8.1 Asymptotic Hyperstability and Strictly Positive Real [82]

Definition 1. The feedback system shown in Fig. 4.3 is asymptotically hyperstable if the
state xk of the linear time invariant system converges to zero for k →∞

Theorem 4.8.1. The feedback system shown in Fig. 4.3 is asymptotically hyperstable if and
only if

1. the linear time invariant system is strictly positive real.
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Figure 4.10: Slalom test results for Algorithm 2: longitudinal velocity; adapted cornering
stiffnesses; estimated bank angle and sensor bias.

2. the nonlinear feedback block satisfies Popov inequality:

∃ γ > 0,

k1∑
k=1

wTk vk ≥ −γ2 ∀k1 ≥ 0

3. the output signal, wk, of the nonlinear block is bounded.

Theorem 4.8.2. A single input single output discrete-time system, G(z), is strictly positive
real if

1. the system does not possess any pole outside of or on the unit circle on z-plane.

2. ∀ |ω| < π, G(e−jω) +G(ejω) > 0
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Figure 4.11: Comparison of the sideslip angle estimation for a severe single lane changing
maneuver.
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adapted cornering stiffnesses; estimated bank angle and sensor bias.
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Figure 4.13: Comparison of the sideslip angle estimation for a steady circular motion.
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Figure 4.14: Steady circular motion test results for Algorithm 2: longitudinal velocity;
adapted cornering stiffnesses; estimated bank angle and sensor bias.
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Hybrid

Figure 4.15: Comparison of the sideslip angle estimation for double lane changing on a bank.
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Figure 4.16: On-bank double lane changing test results for Algorithm 2: longitudinal velocity;
adapted cornering stiffnesses; estimated bank angle and sensor bias.
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Hybrid

Figure 4.17: Comparison of the sideslip angle estimation for a stop-N-turn motion.
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Figure 4.18: Stop-N-turn test results for Algorithm 2: longitudinal velocity; adapted corner-
ing stiffnesses; estimated bank angle and sensor bias.
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Chapter 5

Autonomous Figure-8 Tracking

This chapter presents a performance assessment of the adaptive sliding control algorithm
introduced in Chapter 2 with an example of Figure-8 tracking.

5.1 Modeling and Trajectory Planning

This section introduces a vehicle model and a trajectory planning of Figure-8 tracking that
will be utilized throughout the remainder of this chapter.

5.1.1 Vehicle Model in Terms of Body-fixed and Inertial
Coordinates

Consider a model of a “front-wheel-drive” vehicle with two degrees of freedom depicted
in Fig. 5.1. Given an inertial and a body-fixed coordinate systems defined as {X̂0, Ŷ0.Ẑ0}
and {x̂b, ŷb, ẑb}, we can describe a dynamics bicycle model using the following nonlinear
differential equations:

v̇x =
1

m
(Fxf cos δf − Fyf sin δf ) + rvy (5.1)

v̇y =
1

m
(Fyf cos δf + Fxf sin δf + Fyr)− rvx (5.2)

ṙ =
1

Iz
(LfFyf cos δf + LfFxf sin δf − LrFyr) (5.3)

ψ̇ = r (5.4)

Ẋ = vxcosψ − vysinψ (5.5)

Ẏ = vxsinψ + vycosψ (5.6)

where m and Iz denote the vehicle mass and the equivalent yaw moment of inertia, respec-
tively. Lf and Lr denote the distances from the vehicle’s center of gravity (CoG) to the front
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Figure 5.1: Dynamics bicycle model in terms of body-fixed and inertial coordinates of a
front-wheel-drive vehicle.

and rear axles, respectively, and δf denotes the front steering angle. vx and vy denote the
longitudinal and lateral velocities represented in the body fixed coordinate system, respec-
tively, and r denotes the yaw rate. X and Y denote the inertial coordinates of the vehicle,
and ψ is the angular heading. The longitudinal tire force is Fxf and the corresponding front
and rear lateral tire forces are represented by Fyf and Fyr.

To simplify the model, we assume that the terms of Fyf sin δf and Fxf sin δf are negli-
gible because they are relatively small to others for a small front steering angle. Then, the
equations (5.1), (5.2) and (5.3) can be rewritten into:

v̇x =
1

m
Fxf cos δf + rvy

v̇y =
1

m
(Fyf cos δf + Fyr)− rvx

ṙ =
1

Iz
(LfFyf cos δf − LrFyr).

(5.7)

The magic formula are used to model the lateral tire forces described as follows [83]:

Fy? = 2D? sin

(
C? tan−1

((
1− E?

)
B?α? + E? tan−1

(
B?α?

)))
(5.8)

where the symbol ? is either f or r representing the front or rear tire. B?, C?, D?, and E?
are the corresponding empirical coefficients that characterize the tire model. Finally, the
front and rear tire side slip angles are defined as

αf = δf − tan−1(
vy + Lfr

vx
) (5.9)

αr = − tan−1(
vy − Lrr

vx
). (5.10)
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Figure 5.2: The lemniscate for Figure-8.

5.1.2 Trajectory Planning (Figure-8)

The test scenario is a Figure-8 path following maneuver which has the form of a lemniscate
as shown in Fig. 5.2. In algebraic geometry, a lemniscate can be any of several Figure-8 or
∞-shaped curves [84]. Here, we just choose the most common one that has the form of:

(X2
r + Y 2

r )2 = a2(X2
r − Y 2

r ) (5.11)

represented in Cartesian space where a is the width in the major axis. Note that choosing
this type of track has several advantages. One is that it provides greater complexity than a
steady state cornering and a double lane changing as it contains more featured maneuvers.
Another one is its continuity in curvature. Since our work is not focusing on the motion
planning, having this property can help us reduce a significant amount of work in smoothing
out the path [85]. Finally, the most important one is that it can be parameterized by one
parameter, z, which helps simplify the process of finding the vehicle’s projection point on
the path (reference) in real time. To obtain the parametric equation of (5.11), we fist switch
it to polar coordinate system, (r, θ) as:

r2 = a2 cos(2θ). (5.12)

where the angles, θ, is defined in the ranges of−π
4
< θ < π

4
and 3π

4
< θ < 5π

4
. Then, transform

the variable tan θ = sin z for z = [π
2
, 5π

2
]. The parametric equations of the lemniscate become

Xr(z) =
a cos(z)

1 + sin2(z)
(5.13)

Yr(z) =
a sin(z) cos(z)

1 + sin2(z)
(5.14)
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and the arc length can be given by

s(z) =
√

2a

∫ z

0

(
3− cos(2z)

)−1/2

dz = aF (z,−1) (5.15)

where F (z,−1) is an elliptic integral of the first kind. Generally, this integration cannot
be expressed as an explicit function. However, the entire arc length of Figure-8 can still be
approximated by

s(2π) = aF (2π,−1) ≈ 5.244a. (5.16)

The curvature and tangential angle can also be expressed as a function of z:

κr(z) =
3
√

2 cos(z)

a
√

3− cos(2z)
(5.17)

ψr(z) =

{
tan−1

(
sin z

)
+ π

2
π if 3π

2
≤ z ≤ 5π

2

tan−1
(

sin z
)
− 5π

2
π if π

2
≤ z < 3π

2
.

(5.18)

Having the above properties, our next step is to plan how the vehicle should move based
on the velocity and time so that the resulting trajectory will be dynamically feasible and
tracked by the lower level controller. Given a fixed path of a predefined a, we can plan the
desired acceleration, velocity and travel length along the path as a function of time, t. In
our case, we choose

sr(t) = −AT
2

4π2
sin
(2π

T
t
)

+
(AT

2π
+ v0

)
t (5.19)

vr(t) = −AT
2π

cos
(2π

T
t
)

+
AT

2π
+ v0 (5.20)

ar(t) = A sin
(2π

T
t
)

(5.21)

where T is the entire arc’s traveling time. A is the amplitude of the acceleration and v0 is
the initial velocity. All of them are the design parameters such that s(T ) = 5.244a. Fig. 5.3
shows an example of the desired profiles of the trajectories for a = 50. Note that reasonable
choices of the shapes in ar(t) and vr(t) have been made for the purpose of consistency in the
lap. Finally, we need to represent equations (5.20) and (5.21) as a function of z as well for the
use of on-line referencing. To do this, we can sample the travel length and numerically solve
the planned velocity and acceleration off-line to construct the static maps of v(z) and a(z).
In summary, now we have all the references, Xr, Yr, κr, ψr, vr, ar parameterized as a function
of z. According to this, we can definitely consider more detailed plans in the side slip angle,
βr = vxr/vyr, with a constraint of v2

xr + v2
yr = v2

r for some special cases (i.e. a drifting case).
However, since we just plan to have a normal driving situation, we then assume that βr = 0
all the times and κ̇r are too small to be negligible.
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Figure 5.3: The desired profiles of the trajectories for Figure-8.

Figure 5.4: Block diagram of the autonomous vehicle feedback control loop.

5.2 Control Design for Path Following

In this section, our task is to develop a nonlinear control architecture for a path following
problem. Although the system we introduced in Section 5.1.1 has already included a certain
amount of nonlinearity, a high variant of the tire-road condition may still introduced large
uncertainties into the model. This will easily degrade the control performance unless we can
on-line estimate the road friction coefficient. According to the above discussion, a controller
that is able to handle a wide range of situations would be desirable. Therefore, an adaptive
sliding mode control becomes a reasonable candidate for our design.
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5.2.1 Control System Architecture

Fig. 5.4 presents the structure of the feedback control system which is designed to be hierar-
chical with two levels: one is the motion planning block and the other one is the upper level
controller. In our case, the algorithm in the motion planning will be relatively simple, since
the path and the reference trajectories are all parameterized into one variable, z, as shown
in Section 5.1.2. Therefore, the only thing we need to do becomes how to find the variable
z of the vehicle’s projection point on the path. The details explanation will be introduced
in Section 5.2.2.

Once we obtain all the references, we can implement an adaptive control law introduced
in Chapter 2. Note that since it is not efficient to include the entire nonlinear tire model
into the control design, we will first treat the lumped tire forces as the control inputs. Then,
implement the inversed tire model to obtain the desired front steering angle and the desired
acceleration as our test vehicle has the setup of the control authority in the Electronic Power
Steering (EPS) and the Adaptive Cruise Control (ACC) system.

5.2.2 Reference Generation

As already mentioned in the previous section, we need to find the vehicle’s projection point,
P = [Xp, Yp]

T , to get the references (see Fig. 5.1). The idea is simply based on an orthogonal
projection of the vehicle to the desired path, S, which can be formulated as the following
optimization problem:

P ∗ = arg min
P∈S
‖C − P‖2

F . (5.22)

where C = [X, Y ]T is the current feedback position of the vehicle. Several approximation
methods have been proposed to solve this problem in the literature [86]- [87]. In our case,
since all the references have been parameterized into one variable, z, the problem become
one dimensional and can be easily solved by the Newton’s method on-line. Consider the
optimization problem of minz f(z) where

f(z) =
[
X − a cos(z)

1 + sin2(z)

]2

+
[
Y − a sin(z) cos(z)

1 + sin2(z)

]2

. (5.23)

The Newton’s method is applied to find the roots of f ′(z∗) = 0. By observing (5.23), we
can know that there could be multiple solutions for f ′(z∗) = 0. To simplify the problem
and guarantee a right convergence value, we need to initialize the algorithm based on the
previous optimal solution. Define a new function

h(z) = −2aY − 2aX sin3 z + 6aY sin2 z + 6aX sin z − 2a2 sin(2z) (5.24)

such that h(z) = 0 is equivalent to f ′(z) = 0. The on-line algorithm can be obtained in
Algorithm 3.
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Algorithm 3 Newton’s Method (An Orthogonal Projection of the Vehicle to the Path)

1: initialize: z∗0 = π/2
2: for k = 1,2,... do
3: initialize: z0 = z∗k−1

4: for i = 0,1,2,... do
5: if h2(zi) ≤ ε then
6: z∗k = zi; return wrap(z∗k) //wrap z∗k to the interval of [π/2, 5π/2]

7: end if
8: zi+1 = zi − h(zi)/h

′(zi)
9: if |zi+1 − zi| ≤ ε then
10: z∗k = zi+1; return wrap(z∗k) //wrap z∗k to the interval of [π/2, 5π/2]

11: end if
12: end for
13: end for

5.2.3 Adaptive Sliding Mode Control Algorithm

In this section, our goal is to design an adaptive controller to track a path with the desired
velocity and acceleration trajectories. Consider the dynamics bicycle model described in Sec-
tion 5.1.1 with “Fyf cos δf” and “Fxf cos δf” defined as a control input. Given the references
of Xr, Yr, ψr, κr, vr and ar calculated from z∗, we define eX = X − Xr, eY = Y − Yr and
eψ = ψ − ψr and design the stable sliding surfaces, sY , sX and sψ as:

sX = ėX + λXeX = vx cosψ − vy sinψ − Ẋr + λXeX (5.25)

sY = ėY + λY eY = vx sinψ + vy cosψ − Ẏr + λY eY (5.26)

sψ = ėψ + λψeψ = ψ̇ − ψ̇r + λψeψ (5.27)

where λX > 0, λY > 0 and λψ > 0 are the design parameters to determine the error
convergence rates on the sliding surfaces and

Ẋr = vxr cosψr − vyr sinψr = vr cosψr (5.28)

Ẏr = vxr sinψr + vyr cosψr = vr sinψr (5.29)

ψ̇r = vrκr. (5.30)

Then, applying the time derivative to sX , sY and sψ, we can obtain the following adaptive
sliding mode control law proposed in Chapter 2 as:

ṡ? = ë? + λ?ė? = −k?s? − µ̂?sgn(s?) (5.31)

˙̂µ? =

{
1
ρ?

[
1− 2φ2?

(|s?|+φ?)2

]
if µ̂? ≥ 0

0 if µ̂? < 0
, for ? ∈ {X, Y, ψ}. (5.32)
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Note that ëY , ëX and ëψ can be derived from equations (5.5), (5.6) and (5.7) as:

ëY =
Fxf cos δf

m
sinψ +

Fyf cos δf
m

cosψ +
Fyr
m

cosψ − ar sinψr − v2
rκr cosψr (5.33)

ëX =
Fxf cos δf

m
cosψ − Fyf cos δf

m
sinψ − Fyr

m
sinψ − ar cosψr + v2

rκr sinψr (5.34)

ëψ =
Fyf cos δf

Iz
Lf −

Fyr
Iz
Lr − arκr − vrκ̇r (5.35)

where Fyr is calculated from the magic formula (5.8) based on the current state feedback. The
adaptive control parameters k?, ρ? and φ? are chosen to be positive as discussed in Chapter 2.
Finally, by rearranging (5.31) into a linear system with 2 variables and 3 algebraic equations,
Au = b, for

A =

 cosψ
m

− sinψ
m

sinψ
m

cosψ
m

0
Lf

Iz

 ; u =

[
Fxf cos δf
Fyf cos δf

]

b =


Fyr sinψ

m
+ ar cosψr − v2

r sinψrκr − λX ėX − kXsX − µ̂Xsgn(sX)
−Fyr cosψ

m
+ ar sinψr + v2

r cosψrκr − λY ėY − kY sY − µ̂Y sgn(sY )
LrFyr

Iz
+ arκr − λψėψ − kψsψ − µ̂ψsgn(sψ)

 ,
(5.36)

we can obtain the control inputs with the left inverse of A as u = (ATA)−1AT b. By observing
(5.36), the control inputs is a least square solution that cannot guarantee all the designed
sliding variables’ dynamics be satisfied. This will result in an ultimate boundedness for the
error responses. According to this, we can introduce an additional weighting matrix:

W =

WX 0 0
0 WY 0
0 0 Wψ

 � 0 (5.37)

into the controller design to enable the tuning of the relative weight on each sliding surface’s
dynamics. Therefore, the resultant solution becomes

u =

[
u1

u2

]
= (ATW TWA)−1ATW TWb. (5.38)

5.2.4 Inverse Tire Model

According to the description in Section 5.2.1, our test vehicle has the control authority in
the front steering angle, δf , and the longitudinal acceleration, ax, through EPS and ACC
systems. To obtain the input commands to the lower level system, we need to convert the
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Table 5.1: Tire parameters used in the simulation and the controller design

simulation used controller used simulation used controller used
Bf 9.0930 12.0930 Br 7.5335 14.5669
Cf 1.8068 1.2068 Cr 1.4038 1.2893
Df 4476.4 5819.3 Dr 3754.5 5117.8
Ef -0.9585 -0.9585 Er -0.3107 0.8420

Table 5.2: Vehicle Parameters

vehicle mass m 1830.59 kg
vehicle rotational inertia Iz 3477 kgm2

distance from COG to front axle Lf 1.1521 m
distance from COG to rear axle Lr 1.6929 m

gravity g 9.80665 m/s2

desired tire forces into the desired front steering angle, δ∗f , and acceleration, a∗x. Therefore,
given the solution from (5.38), we want to solve the following algebraic equations:

u1 = Fxf cos δ∗f = ma∗x cos δ∗f (5.39)

u2 = Fyf cos δ∗f = Cαf

[
δ∗f − tan−1(

vy + Lfr

vx
)
]

(5.40)

where Cαf = 2DfCfBf is the cornering stiffness of the front tire. We should notice that a
linear tire model is used as a matter of guaranteeing an existence of the solution in equation
(5.40). However, ignoring the saturation nonlinearity in the controller design is not a good
idea. Although an adaptive control algorithm might cover some problems of the model
mismatch, for the safety issue, it is still better to set up a saturation bound in the tire slip
angle in the real implementation.

In conclusion, to obtain the desired references for the lower level controller, we can first
apply the Newton’s method to obtain δ∗f from (5.40) then calculate a∗x accordingly. Define
an error function as

e(δf ) = u2 − Fyf cos δ∗f = Cαf

[
δ∗f − tan−1(

vy + Lfr

vx
)
]
. (5.41)

The on-line algorithm is provided in Algorithm 4.

5.3 Simulation Results

This section demonstrates the application of the control system architecture proposed in
Section 5.2 for a Figure-8 tracking. The controller is connected in closed-loop with a vehicle
model that has different tire models used in the control design. As shown in Fig. 5.5, we set
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Algorithm 4 Newton’s Method (Inverse Tire Model)

1: initialize: δ∗0 = 0
2: for k = 1,2,... do
3: initialize: δ0 = δ∗k−1

4: for i = 0,1,2,... do
5: if e2(δi) ≤ ε then
6: δ∗k = δi; a∗k = u1k/(m cos δ∗k); return δ∗k, a

∗
k

7: end if
8: δ1+1 = δi − e(δi)/e′(δi)
9: if |δ1+1 − δi| ≤ ε then
10: δ∗k = δi+1; a∗k = u1k/(m cos δ∗k); return δ∗k, a

∗
k

11: end if
12: end for
13: end for

Table 5.3: Control Parameters Used in the Simulation

X Y ψ X Y ψ
µ̄? 10 10 20 λ? 1 1 1
ρ? 0.04 0.04 0.04 k? 3.2 3.2 2
φ? 0.35 0.35 0.08 W? 1 1 1

up quite a lot amounts of mismatch in both the front and the rear tire models compared to
the real system. The main purposes of doing this are to show how effectively the modeling
errors can be captured by the adaptation algorithm and what would be the possible trade-off.
All the tire parameters used in the simulation and the controller are provided in Table 5.1
and the vehicle parameters are chosen to be the same as the test vehicle (described in Table
5.2). The sampling time of the controller design is set to dt = 0.01 sec and the Runge-Kutta
method with a variable time step integration is utilized for numerically simulating the vehicle
dynamics. To demonstrate the control performance at its dynamic limits in the nonlinear
region, we further planned our trajectories with high centrifugal acceleration almost reaching
1G during the cornering (see Fig. 5.6).

Simulations are conducted in MATLAB. Fig.5.7 - Fig. 5.10 illustrate the overall perfor-
mance. All the tuned parameters in the controller can be found in Table 5.3. Note that the
results of the proposed controller are compared with that of the controller which sets the
adaptation gains being zero all the times. In other word, the sliding controller is used as
the baseline controller. Fig. 5.7 and Fig. 5.8 show the basic tracking results of the position
and velocity references. As we can see, the adaptation algorithm proposed in Section 5.2.3
receives a better performance with smaller tracking errors. The responses of the sliding vari-
ables and the tracking errors of X, Y and heading angle are shown in Fig. 5.9. As discussed
in Chapter 2, we can expect that each of the error response will exhibit similar behavior as
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Figure 5.5: Comparison of the tire model error.
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Figure 5.6: Comparison of the tire model error.

its sliding variable but with roughly k? scaled. The time evolution of the adaptation gains for
each sliding variable are presented in Fig. 5.10. An important point to be noted is that the
response of the adaptation gains is a good indicator of the adaptation performance. Having
them go up and down means the sliding variables are converging around the boundary layer
defined in Theorem 2.3.1. Therefore, we can always tune the control parameters based on
the response behavior of the sliding gain. The front and the rear tire side slip angles of both
adaptive and baseline controllers are shown in Fig.5.11. According to the plot, it is obvious
that the adaptive controller is able to use more tire capacities as it reaches out larger tire
side slip angles in both the front and the rear tires. The control commands from the upper
level controller of the desired acceleration and the desired front steering angle are shown in
Fig. 5.12. We can see that the command provided from the adaptive controller displays an
oscillation behavior in the acceleration meaning that the passenger will experience a more
aggressive maneuver in driving. So, if we leave the matter of the feasibility for the lower level
actuators, we should always be aware of the trade-off between the comfort and the tracking
performance while applying the adaptive controller.
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5.4 Experimental Verification

5.4.1 Experimental Setup

Real-world experiments were carried out at the Hyundai-Kia Motors California Proving
Grounds in California City, CA, USA. The test vehicle is a 5th generation Hyundai Grandeur
provided by the Hyundai Motor Company equipped with the actuators and sensors essential
for fully autonomous driving (see Fig. 5.13). An Oxford Technical Solutions (OxTS) RT 3000
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Figure 5.9: Comparison of tracking errors for the adaptation and non-adaptation controllers.
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Figure 5.10: The response of the adaptation gain.

sensing system containing an on-board inertial measurement unit (IMU) and a differential
global positioning system (dGPS) with real time kinematic (RTK) precision enhancement are
used to provide the state information of the vehicle. Details on the accuracy of the sensing
system are provided in table 5.4. The setup enables control authority over the front steering
angle and longitudinal acceleration. The Electronic Power Steering (EPS) system is utilized
for controlling the desired steering angle and the desired acceleration is commanded through
the built-in adaptive cruise control (ACC) system on the vehicle. On-line computations are
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Figure 5.11: Comparison of tire side slip angle for the adaptation and non-adaptation con-
trollers.
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Figure 5.12: Comparison of the control inputs for the adaptation and non-adaptation con-
trollers.

performed on a dSPACE MicroAutoBox II real-time computer (900 MHz IBM PowerPC
processor). All the sensors, actuators and computing platform on the vehicle communicate
via a CAN bus and the control algorithm is executed at 100 Hz. Note that we add a first
order filter before the desired steering signal and the desired acceleration commanded to the
actuator to avoid the disengagement of ACC system for emergency. Also, we planned the
trajectory less aggressive compared to the scenario that used in the simulation for the safety
issue in the real experiment.
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Figure 5.13: The control algorithm is implemented in the test vehicle, a 5th generation
Hyundai Grandeur.

Table 5.4: Specifications for the dGPS measurement system

sensor type Oxford RT3000
position accuracy 2× 10−2 m
heading accuracy 1× 10−1 deg

angular rate accuracy 0.2 %
velocity accuracy 0.1 %

Table 5.5: Tire parameters used for the experiment.

nominal controller used nominal controller used
Bf 6.0504 6.0504 Br 7.5335 10.5469
Cf 1.2071 1.2071 Cr 1.4038 1.2634
Df 4640.9 6497.3 Dr 3754.5 5256.3
Ef 0.4431 -0.9585 Er -0.3107 -0.3418

5.4.2 Experimental Results and Discussion

Table 5.5 shows the nominal tire parameters of the test vehicle. They are identified from
the experimental data using a standard nonlinear least-squares regression approach. The
final control parameters tuning are given in Table 5.6 and the experimental results are
presented in Fig. 5.14 - Fig. 5.16. They are quite consistent with the results shown in the
simulation. The adaptive controller has better performance in the position and the heading
angle tracking. However, we can see that the baseline controller has a smoother maneuver
in both the longitudinal acceleration and the front steering angle.
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Table 5.6: Control Parameters Used in the Simulation

X Y ψ X Y ψ
µ̄? 5 5 5 λ? 0.8 0.8 0.8
ρ? 0.28 0.28 0.4 k? 2 2 2
φ? 1.2 1.2 0.08 W? 1 1 0.5

-60 -40 -20 0 20 40 60
X (m)

-20

-15

-10

-5

0

5

10

15

20

25

30

Y
 (

m
)

 reference
 adaptive
 non-adaptive

Figure 5.14: Comparison of the path tracking performances for the adaptation and non-
adaptation controllers in the experimental run.

5.5 Conclusion

In this chapter, we implement an adaptive sliding mode control algorithm introduced in
Chapter 2 for a Figure-8 tracking problem with huge modeling errors in the tire forces. The
experiments involve aggressive maneuvers with a high centrifugal force which demonstrate
the ability of the control algorithm to adapt the modeling errors in real time. Although
the algorithm presented in Chapter 2 is only for a SISO system, it can be easily extended
to a MIMO system as shown in Section 5.2. Successful experimental results confirm that
the proposed nonlinear control structure can be run in real-time on embedded computing
platforms despite the fast sampling time necessary for highly dynamic vehicle maneuvers. As
a result, this work is relevant for ensuring that an adaptive sliding mode control algorithm
meets sufficient stability levels even with a large modeling mismatch. Hence, it could be an
alternative design approach for any time-varying system.
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Chapter 6

Autonomous Drifting: Circling and
Figure-8 Tracking

6.1 Motivation

”Drifting” is a driving technique that the driver intentionally oversteers the vehicle while
maintaining control and driving the vehicle through the entirety of a corner. It can be
characterized by a large side slip angle with the rear tires deeply saturated and the front
wheels counter-steered. Simpling speaking, high side slip corresponds to ‘sideways’ motion
of the vehicle and counter-steering means that the direction of rotation is opposite that of
the steering angle. Having a vehicle traveling “sideway” is intriguing because it is a nonholo-
nomic system from dynamics perspective. However, it is challenging in both predicting and
controlling the vehicle under this kind of scenarios compared to normal driving situations as
it works on a high nonlinear region of the state space. The studying of drifting has recently
gained popularity in academic circle due to the sharp growth in autonomous vehicle market.
Several advantages can be gained from fundamentally understanding the vehicle dynamics
and control beyond the limits of the tire capacities. It may become useful if the knowledge
can be implemented into the decision making and the motion planning during the emergency
situations.

Many examples in the literature show that steady-state drifting is an unstable equilibrium
point [88, 89] and the maneuver is just purely a regulation problem [90]. However, two
fundamental limitations make the control quiet challenging. One is that the equilibrium is
needed to pre-calculate according to the model. This increases the difficulty in generating the
reference trajectory when it comes to the tracking problems. The other one is the indirect
controllability of the rear tire’s lateral force. Since we do not have the control authority
in the rear wheel steering, the only way to control the lateral tire force is to utilize the
longitudinal force via the saturation property. This makes the control system very sensitive
to the model uncertainty and the closed-loop system may easily become unstable. To improve
the robustness, we then implement the adaptive sliding mode control proposed in Chapter
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Figure 6.1: Dynamics bicycle model of a rear-wheel-drive vehicle.

2 to the problem of steady-state drifting and further extend the control idea proposed in
Chapter 5 to a Figure-8 drifting. For safety purposes, we conduct the experiment by using
a 1/10 scale RC vehicle platform built by students at UC Berkeley to verify the control
algorithm instead of using a full scale vehicle.

The chapter is organized as follows. We first introduce the vehicle model used for the
autonomous drifting. Then, a switched adaptive control structure is introduced based on the
idea proposed in [88]. An further extension of the control design from Chapter 5 to Figure-8
drifting is discussed in Section 6.3.2. All simulation and experimental results are presented
in the end.

6.2 Modeling and Design Idea

6.2.1 Vehicle Model

According to the discussion, different levels of complexity for the model used in drift control
design has been considered in the literature [91, 92]. They can be ranged from a simple
two-state bicycle model to a high-fidelity four-wheel model that includes the load transfer
and relatively complex tire models. To balance between simplicity of the control design
and sufficient model fidelity, in this chapter, we choose a three-state rear-wheel-drive bicycle
model depicted in Fig. 6.1. Given an inertial and a body-fixed coordinate systems defined as
{X̂0, Ŷ0.Ẑ0} and {x̂b, ŷb, ẑb}, the model can be described in the following nonlinear differential
equations:
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v̇x =
1

m
Fxr + rβvx (6.1)

β̇ =
1

mvx
(Fyf cos δf + Fyr)− r (6.2)

ṙ =
1

Iz
(LfFyf cos δf − LrFyr). (6.3)

where m is the mass of the vehicle, Iz is the equivalent yaw moment of inertia, and Lf and
Lr are the distances from the vehicle’s center of gravity (CoG) to the front and rear axles,
respectively. vx, β and r are the states which denote the longitudinal velocity, the side slip
angle and the yaw rate of the vehicle, respectively. The side slip is defined as β ≈ vy/vx
denoting the angle difference between the heading and moving directions of the vehicle. δf
and Fxr are the control inputs denote the front steering angle and the longitudinal force
provided from the rear tire, respectively. Fyf and Fyr are the lateral forces on the front
and rear tires respectively. A Nonlinear magic formula is used to consider the tire’s linear
behavior at small slip angles and its nonlinear behavior at large slip angles:

Fy? = 2η?D? sin

(
C? tan−1

((
1− E?

)
B?α? + E? tan−1

(
B?α?

)))
. (6.4)

Note that the symbol ? is either f or r representing the front or rear tire. B?, C?, D?, and E?
are the corresponding empirical coefficients that characterize the “pure” lateral tire model.
αr and αr are the front and rear tire side slip angles defined as

αf = δf − tan−1(β +
Lfr

vx
) (6.5)

αr = − tan−1(β − Lrr

vx
). (6.6)

η? is a derating factor that accounts for the reduction of the lateral tire force when the
longitudinal force is applied. Here, we have ηf = 1 and

ηr =

√
(2Dr)2 − F 2

xr

2Dr

(6.7)

because a rear-wheel-drive vehicle is considered for the control design.

6.2.2 Design Idea Generation

Inspired by the control structure introduced in [88], the design method proposed in this
work utilizes the dynamics surface control technique [93] with a small modification. The
main difference is that, in our methodology, it is not required to calculate the equilibrium
point in advance to design the control law for steady cornering and path tracking. A detail
explanation will be provided in the remainder of this chapter.
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As mentioned in Section 6.1, drifting is characterized by a large side slip angle with the
rear tires being saturated while doing the cornering. The maneuver is initiated by the vehicle
losing the traction in the rear tires or all tires. Then, to hold the vehicle traveling sideway
without spinning out, the driver needs to balance between the front steering angle and the
throttle to alter the attitude of the vehicle. Based on the above statements, the main task
of designing a drift controller is first to make the vehicle spin then to maintain a desired yaw
rate and velocity in the direction of travel.

To start the maneuver, an oversteer condition should be induced while entering the turn.
This technique is very basic that can be achieved by either pulling the hand brake or pressing
the throttle to induce rear traction loss. Once oversteer has been provoked, the controller
should recover the vehicle from spinning out by applying a right amount of yaw moment.
This is achievable by pointing the front steering angle along the traveling direction if the
front tires are not saturated. However, when the front tires already reach their physical
limits of the friction circle, it is impossible to generate an enough lateral force to resist the
spinning moment. Therefore, to generate a right amount of the yaw moment and to maintain
the handling ability of the front steering wheel, the only way is to reduce the lateral tire
force from the rear tire. This would be easy if the rear wheel steering is enabled. But, since
a four-wheel steering vehicle is a not-quite-ready technology in the modern market, the only
way to reduce the later tire force is to increase the longitudinal tire force of the rear tires.
This can be inferred by knowing the fact that the total vector sum of the longitudinal and the
lateral tire forces generated cannot exceed the tire normal load. By applying this idea in the
control design, we can sustain the desired large side slip angle of the vehicle. However, one
thing should be notice is that if the control of the throttle is used to generate the desired yaw
moment, the vehicle will lose the control authority in the velocity and become underactuated.
This so-call the stability-controllability trade off and is the fundamental limitation of the
drift control design. With this in mind, the proposed controller then has a structure of two
switching conditions.

6.3 Control Design

6.3.1 Control Structure - Steady State Circling

Continuing from the above discussion, the primary objective of the control design would be
to track a desired large side slip angle and the secondary objective will be managing the
desired velocity. The control structure is built based on the idea presented in the previous
section. Start from observing the side slip dynamics of the bicycle model in (6.2):

β̇ =
1

mvx
(Fyf cos δf + Fyr)− r. (6.8)

To control the side slip angle, it is nature to treat the yaw rate as a synthetic input for the
reason that it appears linearly in (6.8). Then, follow the design procedure of the dynamics
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surface control [93] and combine the adaptive sliding mode control algorithm proposed in
Chapter 2. Given any desired pair of the side slip angle and the longitudinal velocity,
(βr, vxr), we define two sliding surfaces as

sβ = β − βr (6.9)

svx = vx − vxr (6.10)

and represent the problem into the following error dynamics:

ṡβ =
1

mvx
(Fyf cos δf + Fyr)− r (6.11)

ṡvx =
1

m
Fxr + rβvx. (6.12)

by assuming β̇r = 0 and v̇xr = 0 are the equilibrium. Overall, there are two sliding surfaces
to be stabilized. Start from equation (6.11). Define the synthetic input of rd such a way
that

τ ṙd + rd =
1

mvx
(Fyf cos δf + Fyr) + kβsβ + µ̂βsgn(sβ) (6.13)

for kβ > 0, τ > 0 and µ̂β followed with the adaptation law (2.8). Then, we can construct
another dynamics surface of sr = r − rd and obtain another error dynamics by taking the
time derivative:

ṡr =
1

Iz
(LfFyf cos δf − LrFyr)−

1

τ

( 1

mvx
(Fyf cos δf + Fyr) + kβsβ + µ̂βsgn(sβ)− rd

)
.

(6.14)

With the result above, the control law then can be established based on the adaptive control
algorithm:

ṡr = −krsr − µ̂rsgn(sr) (6.15)

for kr > 0 and µ̂r followed with the adaptation law (2.8). Substitute (6.14) into (6.15) and
collect like terms. We can write down the control law in the form of

h1Fyf cos δf + h2Fyr = −krsr − µ̂rsgn(sr) +
1

τ

(
kβsβ + µ̂βsgn(sβ)− rd

)
(6.16)

with h1 = Lf/Iz − 1/mvxτ , h2 = −Lr/Iz − 1/mvxτ and Fyr calculated from (6.4) according
to the current feedback states and the rear longitudinal tire force. Then, the desired front
steering command can be obtained by solving

Fyf (δ
∗
f ) cos δ∗f =

1

h1

[
− h2Fyr − krsr − µ̂rsgn(sr) +

1

τ

(
kβsβ + µ̂βsgn(sβ)− rd

)]
= u1
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Algorithm 5 Newton’s Method (Inverse Nonlinear Tire Model)

1: Define ϕ = tan−1(β + Lfr/vx)
2: initialize: α0 = 0
3: for i = 0,1,2,...,11 do
4: if e2(αi) ≤ ε then
5: α∗ = αi;
6: δ∗f = α∗ + ϕ return δ∗f
7: end if
8: αi+1 = αi − e(αi)/e′(αi)
9: if i > 10 then
10: δ∗f = αm + ϕ
11: return δ∗f
12: end if
13: end for

using the inverse tire model (6.4). Define an error function as

e(α) = u1 − Fyf (α) cos(α + ϕ) for ϕ = tan−1(β +
Lfr

vx
). (6.17)

The on-line algorithm is applied by the Newton’s method as shown in Algorithm 5. If the
solution exists, then we know that the control law (6.15) is satisfied without the front tire
saturated. Therefore, we have an authority in using Fxr as a control input to stabilize the
longitudinal error dynamics (6.12).

F ∗xr = −mβvxr −mkvxsvx −mµ̂vxsgn(svx) (6.18)

for kvx > 0 and µ̂vx followed with the adaptation law (2.8). On the other hand, if the solution
does not exist, we need to coordinate Fyr together with the front steering angle to make the
desired control law (6.16) valid. Consider equation (6.16) as a weighted sum of the front and
the rear lateral tire forces for a desired yaw moment. We then set the front tire force, Fyf ,
to its maximum value and calculate the required lateral force in the rear tire.

F ∗yr =
1

h2

[
− h1Fyf (α

∗) cos(α∗ + ϕ)− krsr − µ̂rsgn(sr) +
1

τ

(
kβsβ + µ̂βsgn(sβ)− rd

)]
for α∗ = αmaxsgn(u1) where αmax is the tire slip angle at which maximum lateral force is
obtained. At first, this control law might seem unrealizable for the reason of not having a
direct access to control Fyr. However, it is actually achievable through the longitudinal tire
force. Having the fact that the total vector sum of the force generated by the tire cannot
exceed its normal load, we can control the desired lateral force by enforcing the real tire
saturated via Fxr. Therefore, the final control commands can be constructed as follows.

F ∗xr =
√

(2Dr)2 − (F ∗yr)
2

δ∗f = α∗ + ϕ.
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Figure 6.2: An example of a velocity profile for Figure-8 with a = 23 m.

In summery, the control structure contains two different modes that are switched based
on the front tire force’s capacity. If there is quiet amount of cornering force available in the
front tire, then we have a spare control in the rear longitudinal force to track the desired
velocity. This mode can be treated as an intention to stabilize the system around the drift
equilibrium point with no control inputs being saturated. On the other hand, if the front
tire has already reached its maximum capacity, we then need to coordinate the longitudinal
tire force with the front steering command to track the desired side slip angle first instead of
vxr. We can characterize this mode as deepening the vehicle into more oversteer condition
to allow the front tire to catch up from losing the control.

6.3.2 Control Structure - Figure-8 Drifting

As shown in the previous section, steady state drifting is just a regulation design problem for
an unstable equilibrium point. However, extending the task into a tracking problem poses
a challenge for several reasons. The most important one is that the control works around
the region that both the front and rear tires are almost saturated. This already makes
the control for steady state drifting hard as knowing that the desired longitudinal velocity
will be scarified when the front tire is saturated. Therefore, adding an additional tracking
reference can only make the problem even worst. Many researchers has proposed different
approaches to deal with this problem. One is to add additional control inputs to address
the underactuated issue [94]. Another one is to limit the trajectory to two references and
assign them to each actuator independently [95]. Finally, the most intuitive one is to treat
the trajectory as a sequence of drift equilibriums [96]. Unlike all of these approaches, in this
section, we extend the idea of the trajectory planning introduced in Chapter 5 and combine
the two control algorithms together into a Figure-8 drifting problem.

There are three main things need to be altered. Start from the trajectory planning.
Having a similar approach provided in Section 5.1.2, given a fix path of Figure-8 to track, we
need to first plan the velocity profile along the trajectory. However, according to the above
discussion, it is impossible to randomly assign a desired trajectory for drifting. It needs to
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Figure 6.3: An example of a desired side slip angle profile for Figure-8 with a = 23.

be set as a sequence of feasible equilibriums for a perfect tracking. To reduce the amount of
work, here, we roughly guess a reasonable velocity by knowing that the drift happens around
the limit of driving capacity.

‖vguess
r ‖2

2 ≈ ς
µg

max(κr)
(6.19)

where µ is the tire-road friction coefficient, max(κr) is the maximum curvature of the turn
and 0 � ς < 1 is a derating factor. An example of a desired velocity profile for a Figure-8
is shown in Fig. 6.2 with a = 23 m, max(κr) = 0.1304, µ = 0.9 and ς = 0.9. It is specified
as a sine shape function varying from 7 to 9 m/s during the entire track based on the guide
of |vhuess

r | ≈ 7.8051 m/s.
Next, we need to change the heading angle references according to the desired side slip

angle, βr, to enforce the drift.

ψdriftr (z) = ψr(z)− βr(z). (6.20)

where ψr(z) is the original heading reference tangent to the Figure-8 track listed in (5.18).
An example of a desired side slip angle profile can be found in Fig. 6.3 where the drift is
planned to happen during cornering. Finally, with all the references ready, we now can
follow the same procedure as described in Section 5.2.3 to design the adaptive control law.
Again, this will result in the same linear system with 2 variables and 3 algebraic equations
for Au = b as listed in (5.36) but u = [Fxr, Fyf cos δf ]

T because we have a rear-wheel-drive
vehicle. The desired tire forces can be obtained from

u = (ATW TWA)−1ATW TWb (6.21)

as listed in (5.38). One thing we should notice is that since we are generally more care
about the X-Y tracking than the heading angle in the normal driving situation, it will make
sense to choose Wψ be relatively small to the other two while the drift maneuver is the
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Figure 6.4: The state response of the vehicle for the non-adaptive controller in simulation.

opposite. To distinguish different driving scenarios, we further separate the control logic
into two different modes according to the desired side slip angle: one is the normal driving
mode (βr = 0); the other one is the drift mode (βr 6= 0). Each mode will have different
control tunings and different weightings on WX , WY and Wψ. Once we obtain the desired
tire forces by solving the linear system (6.21), the final control commands can be obtained
via the inverse tire models. Then, follow the design idea proposed in Section 6.3.1 for the
drift control. If the desired front tire force is saturated in the drift mode, we will discard the
tracking performance in X-Y and rearrange the third algebraic equation in (5.36) to obtain
the desired input of the rear tire’s lateral force as:

F ∗yr =
Iz
Lr

[
− Lf
Iz
Fyf (α

∗) cos(α∗ + ϕ)− arκr + λψėψ + kψsψ + µ̂ψsgn(sψ)
]

(6.22)

and map it to a throttle command via the friction circle relation. As a result,

F ∗xr =
√

(2Dr)2 − (F ∗yr)
2

δ∗f = α∗ + ϕ.
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Figure 6.5: The control input response for the non-adaptive controller in simulation.

Table 6.1: Vehicle Parameters (Simulation)

vehicle mass m 2237 kg
vehicle rotational inertia Iz 5519.2 kgm2

distance from COG to front axle Lf 1.5 m
distance from COG to rear axle Lr 1.52 m

gravity g 9.80665 m/s2

Table 6.2: Tire Parameters Used in the Controller Design (Simulation)

Bf 14.3987 Br 14.3758
Cf 1.5157 Cr 1.5158
Df 5154.5 Dr 5096.5
Ef 0.0001 Er 0.0001

6.4 Simulation Results

In this section, we first validated the proposed control strategy in simulation using MAT-
LAB. The controller is connected in closed-loop with a high fidelity vehicle model containing
sophisticated nonlinear tire models. Note that we choose a normal scale vehicle as a plant
since we don’t have full nonlinear 3D model for the RC car. The nominal model and tire pa-
rameters used in the control design are summerized in Table 6.1 and Table 6.2. The control
is executed at 100Hz and a moving average filter is added before the steering and longitu-
dinal tire force sent to the plant. This helps smooth out unrealizable chattering commands
induced by the switch.
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Table 6.3: Control Parameters Used in the Simulation (Steady State Drifting)

β r vx
µ̄? 5 5 5
ρ? 20 1 5 5
φ? 0.05 0.5 0.5
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Figure 6.6: The state response of the vehicle for the adaptive controller proposed in Section
6.3.1.

6.4.1 Steady State Drifting

To verify the functionality of the control idea in steady state drifting, we first run the
simulation by setting up the adaptation gains equal to zero and the control parameters be
kr = 4.25, kβ = 1.7, kvx = 1.7 and τ = 0.4. The desired side slip angle and the longitudinal
velocity are given as βr = −0.5236 rad (−30◦) and vxr = 6 m/s. The vehicle states and
control inputs during simulation are shown in Fig. 6.4 and Fig. 6.5. The red lines in Fig. 6.4
show the simulation measurements and the blue dotted lines show the desired references.
It can be seen that the control try to manipulates the longitudinal rear tire force with the
front steering wheel to achieve the desired side slip angle. However, there is a 10◦ steady
state error in the side slip angle and the front tire is not counter steered (see Fig. 6.5). More
aggressive control gains can be tuned to improve the performance. However, this leads the
system become unstable in the end.
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Figure 6.7: The control input response for the adaptive controller proposed in Section 6.3.1.
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Figure 6.8: The measured path of the vehicle in the steady state drifting.

To improve the robustness and the tracking performance, the control design with an
adaptation law proposed in Section 6.3.1 then is applied. Fig. 6.6 - Fig. 6.9 show the
simulation results. As expected, the controller incorporates with the adaptation algorithm
has better performances that the states converge closely to the desired values and the front
steering wheel counter-steered (see Fig. 6.7). Fig. 6.8 shows the measured path of the vehicle
for the entire simulation run. We can see that it converges to a circle and hence reaches a
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steady state drifting. The convergence of the responses in the adaptation gains shown in
Fig. 6.9 denote how effective the modeling error can be adapted. The control parameters
are set to kr = 1, kβ = 1, kvx = 0.5 and τ = 0.4 and the rest in the adaptation law are listed
in Table 6.3.

We also implement the side slip angle estimation algorithm proposed in Chapter 4 to
verify how well the observer would perform under such an extreme maneuver like drift. The
observer is run aside with the state feedback control loop and the estimated side slip angle
can be found in Fig. 6.6 denoted by the yellow dashed dotted line. As we can see, the
estimate performance is quiet good but has a small discrepancy (3◦ - 6◦) in the extreme case
in the steady state.

6.4.2 Figure-8 Drifting

This section demonstrates the application of the control design in Figure-8 drifting with
a = 23 m. The desired velocity and side slip angle profiles are chosen as shown in Fig. 6.2
and Fig. 6.3. All the references are built by following the same procedure introduced in
Section 5.2.2. The simulation results are shown in Fig. 6.10 - Fig. 6.12. Different control
parameters are tuned and chosen under two driving scenarios, the normal drive mode and
the drift mode (see Table 6.4). As expected, Fig. 6.10 shows that the vehicle cannot track
the path exactly with the drift maneuver during the cornering. It has a trade-off between
tracking a high side slip angle and following the X-Y path precisely in the same time. The
control performance of the side slip angle and the longitudinal velocity can be found in
Fig. 6.11 and Fig. 6.12. It is obvious that the control will take the initiative to track the side
slip angle and discard the velocity reference while in the drift mode. The entire maneuver
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comes along with a high longitudinal throttle command to induce the oversteer and results
in a front wheel counter steering accompanied with huge braking to recover from the drift.
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for Figure-8 drifting.

Table 6.4: Control Parameters Used in the Simulation (Figure-8 Drifting)

X Y ψ X Y ψ
µ̄? 1 1 1 µ̄?(0) 0.01 0.01 0.01
ρ? 0.8 0.8 0.8 φ? 0.2 0.2 0.1

k? (normal) 2 2 0.5 k? (drfit) 1.1162 1.116 2.407
W? (normal) 1 1 0.6 W? (drift) 1 1 20
λ? (normal) 2 2 0.1 λ? (drift) 0.93 0.93 2.324

6.5 Experimental Verification

6.5.1 Experimental Platform

To do the experiment, we used a 1/10 scale rear-wheel-drive RC vehicle platform named
Berkeley Autonomous Race Car (BARC) developed by students in UC Berkeley (see Fig. 6.13).
The model identification and state estimation methods are based on previous work [90]. The
parameters of the RC vehicle and tires are summarized in Table 6.5 and Table 6.6. The ve-
hicle is controlled through the use of a micro-controller and a suite of sensors where the front
wheel is steered by a servo motor and the motor is controlled by a Electronic Speed Control
(ESC) unit. An indoor navigation system kit from Marvelmind is used for the localization.
It provides ±2 cm accuracy with an 8 Hz update rate. The code is implemented in Python
using ROS (Robot Operating System).
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Figure 6.13: Berkeley Autonomous Race Car (BARC).

Table 6.5: Vehicle Parameters (BARC)

vehicle mass m 2.076 kg
vehicle rotational inertia Iz 0.02298 kgm2

distance from COG to front axle Lf 0.141 m
distance from COG to rear axle Lr 0.119 m

gravity g 9.80665 m/s2

Table 6.6: Tire Parameters Used in the Controller Design (BARC)

Bf 14.522 Br 7.6747
Cf 1.1993 Cr 1.6916
Df 2.4 Dr 2.6
Ef -0.0584 Er 0.95

6.5.2 Experimental Results - Steady State Drifting

The experiments were conducted in an indoor space. For the time issue, only a steady state
drifting is done to validate the control idea. In order to have reasonable target references for
the side slip angle and the longitudinal velocity, we began the tests by running a steady state
cornering with the velocity and steering inputs increased slowly to make sure that the vehicle
will not collide with the wall. The final target references are set to be βr = 40◦ and vxr = 1
m/s and the tuned control parameters are kr = 0.08, kβ = 0.04 and kvx = 0.08. Fig. 6.14
and Fig. 6.15 show the experimental results of the state response and the control input
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commands. As we can see from the plot of the side slip angle and the yaw rate responses,
the controller can successfully initiate the drift but barely sustain the maneuver over 1 sec
after the intention of a counter steering. There are several possible reasons that cause the
control to be fail in maintaining the drift. One is the slow update rate of the indoor GPS
sensor (8 Hz) and the other one is the delay of the actuator on the longitudinal tire force.
Since we have the motor controlled via the Electronic Speed Control (ESC) unit, an indirect
access of the control to the tire force can easily cause a delay during the switch. As a result,
the system become unstable with an oscillation in the state.

6.6 Conclusion

This chapter implements the adaptive sliding control algorithm proposed in Chapter 2 to
the problem of autonomous drifting. Both of the steady state circling and Figure-8 tracking
maneuvers are considered in the control design. The simulation results show impressive
control performances under certain amount of model uncertainties. A proof of concept in
the experimental test using a low cost RC vehicle platform further ensures the feasibility of
the control logic.
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