Lawrence Berkeley National Laboratory

LBL Publications

Title

Excitation Functions for Actinides Produced in the Interactions of 31P with 248Cm

Permalink

https://escholarship.org/uc/item/324143g3

Authors

Leyba, J D Henderson, R A Hall, H L et al.

Publication Date

1990-04-01

Copyright Information

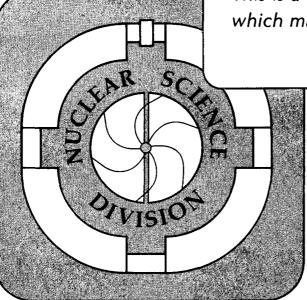
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

坚

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Submitted to Physical Review C


Excitation Functions for Actinides Produced in the Interactions of ³¹P with ²⁴⁸Cm

J.D. Leyba, R.A. Henderson, H.L. Hall, K.R. Czerwinski, B.A. Kadkhodayan, S.A. Kreek, E.K. Brady, K.E. Gregorich, D.M. Lee, M.J. Nurmia, and D.C. Hoffman

April 1990

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Excitation Functions for Actinides Produced in the Interactions of ³¹P with ²⁴⁸Cm.

J.D. Leyba, R.A. Henderson, H.L. Hall*, K.R. Czerwinski
 B.A. Kadkhodayan, S.A. Kreek, E.K. Brady*, K.E. Gregorich
 D.M. Lee, M.J. Nurmia, and D.C. Hoffman

Dept. of Chemistry University of California Berkeley, CA 94720

and

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

April 1990

This work supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Excitation Functions for Actinides Produced in the Interactions of ^{31}P with ^{248}Cm .

J.D. Leyba, R.A. Henderson, H.L. Hall*, K.R. Czerwinski B.A. Kadkhodayan, S.A. Kreek, E.K. Brady*, K.E. Gregorich D.M. Lee, M.J. Nurmia, and D.C. Hoffman

> Dept. of Chemistry University of California Berkeley, CA 94720

> > and

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

ABSTRACT

Excitation functions have been measured for the production of various isotopes of Bk, Cf, Es, and Fm from the interactions of 174- to 239-MeV ³¹P projectiles with ²⁴⁸Cm. The isotopic distributions were symmetric and displayed full-widths at half-maximum of 2.5, 2.5, <1.5, and 2.25 mass units for Bk, Cf, Es, and Fm respectively. The maxima of the isotopic distributions occur for those reaction channels which involve the exchange of the fewest number of nucleons between the target and projectile for which the calculated excitation energy is a positive quantity. The maxima of the excitation functions occur at those projectile energies which are consistent with the calculated reaction barriers based upon a binary reaction mechanism. The effects of the odd proton in the ³¹P projectile on the final isotopic distributions are discussed.

This work supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-ACO3-76SF00098.

I. INTRODUCTION

Transfer reactions continue to be of interest because of their potential usefulness in the production of new neutron-rich actinides. The binary nature of these peripheral reactions makes the production of "cold," neutron-rich actinide nuclei possible. In many instances, the Q values for particular reaction channels are endoergic by 5 MeV or greater. These negative Q values decrease the excitation energy of the targetlike products and afford them a greater probability of surviving fission and/or neutron emission. In addition, the width of the targetlike distributions in A and Z might even make the neutron-rich transactinide region accessible.

Lee et al. 1 initiated a systematic investigation of transfer reactions involving actinide targets and heavy-ion projectiles. The projectile pairs 16,180 and 20,22Ne were chosen to examine the effects of an extra neutron pair on the final isotopic distributions of the reaction products Bk, Cf, Es, Fm, Md, and No. Lee et al. noted that the two neutron excesses of 180 relative to 160 and 22Ne relative to 20Ne were reflected in the final isotopic distributions. As the neutron number of each projectile was increased by two, the corresponding maxima of the mass-yield curves increased by approximately two mass units.

Hoffman et al. 2 sought to extend the study of the influence of neutron excess in the projectile by investigating the effect of the eight neutron excess of 48 Ca relative to 40 Ca on the final isotopic distributions from interactions with 248 Cm. The maxima of the isotopic distributions from the 48 Ca interactions were found to be only 2-3 mass units heavier than the maxima from the 40 Ca interactions. Hence, only a partial effect of the eight neutron excess of 48 Ca relative to 40 Ca was seen in the final isotopic distributions of the above target elements (2 product > 2 target) Bk, Cf, Es, and Fm.

The 44 Ca- 248 Cm system was recently studied by Türler et al.³ 44 Ca was chosen as a projectile because it has a neutron number (N = 24) which is between the neutron numbers of 20 and 28, respectively of the doubly magic nuclei 40 Ca and 48 Ca. 44 Ca

was used to investigate the influence of neutron shell effects on the final isotopic distributions. Increases in the mass numbers of the maxima of the isotopic distributions of 0-2 mass units relative to the maxima from the 40 Ca reactions were found. Consequently, the maxima from the 44 Ca system fell between the maxima from the corresponding curves in the 40 Ca and 48 Ca systems.

Previously we studied the interactions of 40 Ar with 248 Cm. With this system we observed isotopic distributions which were very similar both in magnitude and in shape to the isotopic distributions from the 44 Ca system. In addition, the full-widths at half-maximum of the 40 Ar system were comparable to those from the 40 Ca and 48 Ca systems.

Previous transfer reaction studies using ^{248}Cm as a target have only used projectiles with even numbers of protons. In order to ascertain any projectile pairing effects on the final isotopic distributions of the heavy actinide transfer products, the odd Z projectile ^{31}P (Z = 15) was chosen. Additionally, ^{31}P was chosen as a projectile because it has a neutron-to-proton ratio of 1.07, similar to the 1.00 ratio of ^{40}Ca .

II. EXPERIMENTAL

The bombardments of the 248 Cm target were performed at the Lawrence Berkeley Laboratory 88-Inch Cyclotron with 174-, 190-, 207-, 223-, and 239-MeV 31 P ions. All energies represent the average energy of the 31 P ions in the target in the laboratory frame of reference and have been corrected for the appropriate energy loss in our target system. The 31 P ion beam was collimated by water-cooled graphite and passed through a 1.8-mg/cm² Havar isolation foil which separated the target system from the 88-Inch Cyclotron vacuum system. The beam then passed through 0.2-mg/cm^2 N₂ cooling gas, a 2.75-mg/cm^2 Be target backing foil, and finally the target material.

The target consisted of 0.491-mg/cm² of 248 Cm (97.44% 248 Cm, 0.010% 247 Cm, 2.53% 246 Cm, 0.025% 245 Cm, and 1 x 10⁻⁴% 244 Cm) in the form of Cm₂O₃. The target was prepared by the stepwise

electrodeposition of Cm from an isopropanol solution onto the Be backing. After approximately 0.07-mg/cm^2 had been deposited, the target was baked at $500\,^{\circ}\text{C}$ to convert the Cm to Cm_2O_3 . The target was then assayed at low geometry with a Si(Au) surface barrier detector to determine its thickness. The electrodeposition, baking, and assaying were continued until the desired thickness was reached.

Gold catcher foils (12.26-mg/cm²) were used to stop and collect the recoiling reaction products. The catcher foils subtended all angles forward of 60° with respect to the beam axis. It was assumed that all of the reaction products recoiled out of the target and were stopped in the catcher foils.

Two irradiations were done at each energy. The first irradiation was a one-hour bombardment from which the Au catcher foil was removed and dissolved in 0.25 ml of hot aqua regia to which a known amount of 241 Am tracer had been added. An ether extraction was performed to remove most of the gold. The resulting aqueous solution was heated in a water bath to remove the dissolved ether and was then passed through a 3-mm-diam by $^{10-mm-long}$ column of anion exchange resin (Bio Rad AG-1, X-8, $^{200-400}$ mesh) to remove the remaining gold. The effluent was evaporated to dryness to remove any residual nitric acid and the remaining activity was dissolved in 3M HCl and evaporated on a Pt disc for alpha pulse height analysis. The trivalent actinide chemical yields were determined from the 241 Am tracer.

The second irradiation at each energy lasted between 9.0 and 12.5 hours. The Au catcher foil from each experiment was removed and dissolved in hot aqua regia containing a known amount of $^{241}\mathrm{Am}$ tracer. An ether extraction was performed, the aqueous solution was heated to remove the dissolved ether, and was then passed through an anion exchange column identical to the one used on the Au foils from the short irradiations. The eluate was evaporated to dryness and fumed twice with concentrated HClO_4 to remove any residual organic material. The remaining activity was dissolved in 0.5M HCl and sorbed on a 2-mm-diam by 50-mm-long column of cation exchange resin (Dowex-50, X-12, 7-10 $\mu\mathrm{m}$) maintained at 80 °C. Separate fractions of the trivalent

actinides were eluted with 0.5M ammonium alpha-hydroxyisobutyrate (α -HIB) of pH 3.80. The purified chemical fractions were collected on Pt discs in two-drop increments. Those discs containing the same chemical element were combined on a single piece of Pt for pulse height analysis.

A high-purity Ge gamma-ray spectrometer system was used to assay the purified Bk fractions, while the Cf and Fm fractions were assayed with a fission-alpha spectrometer system utilizing Si(Au) surface barrier detectors. For Es, the alpha, spontaneous fission, and gamma activities were assayed simultaneously by mounting the isolated samples in a vacuum chamber which contained a Si(Au) surface barrier detector. The vacuum chamber was then placed next to a Ge(Li) gamma-ray detector. All samples were counted continuously for four weeks after the end of bombardment and then at suitable intervals to provide sufficient data for nuclide identification.

The alpha spectra from each fraction were summed so that even low intensity peaks could be tentatively identified based upon energy. Regions of interest around each peak were set and a simple computer code⁷ was then used to integrate the peaks. The SAMPO code⁸ was used to analyze the gamma-ray spectra. Decay curve analyses were conducted with the EXFIT⁹ and CLSQ¹⁰ computer codes. The activities at the end of bombardment were calculated for each nuclide from the decay curve analyses.

A given nuclide can be produced directly via a transfer reaction or indirectly by the decay of a parent nuclide produced in the bombardment. Hence, in order to obtain the cross section for the transfer reaction, the amount of the nuclide produced via the indirect route(s) must be subtracted from the amount produced directly. After the appropriate corrections were made to the activities at the end of bombardment, the transfer reaction cross sections were calculated. The calculated production cross sections were then corrected for chemical yield and detector efficiencies to obtain absolute cross sections. Because the chemical procedure for the Au catcher foils from the long irradiations required an additional step involving the transfer of elemental fractions from one piece of Pt to another,

the chemical yields of the four purified chemical fractions could not be assumed to be identical to the chemical yield of the 241 Am tracer. Therefore, the cross sections obtained from the 1-hour irradiations were used to normalize the cross sections from the long irradiations. In addition, cross sections for 250 Fm ($t_{\%} = 30 \text{ m})^{11}$ were obtained from the short irradiations. It is estimated that there is a 12% standard deviation in addition to the statistical standard deviations in the data and decay curve analyses.

III. RESULTS

The production cross sections along with the statistical standard deviation, s, for the measured isotopes of Bk, Cf, Es, and Fm from the interactions of ^{31}P with ^{248}Cm are listed in Table I and are plotted in Figures 1-4. Because the decay scheme of ^{244}Bk has not been measured, its cross sections are based upon the assumption that the abundance of the 217.1 keV gamma ray is 100%; therefore, these values are lower limits only.

A. Excitation energies

The excess energy available for product excitation, E_X (excitation energy), at the Coulomb barrier for several targetlike and projectile-like fragments from the $^{31}\mathrm{P}$ system have been calculated and are listed in Table II. These excitation energies are based upon the entrance and exit channel Coulomb barriers and ground state Q values, assuming two touching spherical nuclei. 12 For reactions with positive excitation energies (of the order of neutron binding energies or fission barriers), the excitation functions should peak near the Coulomb barrier and decrease with increasing projectile kinetic energy. Reactions with negative excitation energies should display excitation functions with maxima at some energy above the Coulomb barrier. The cross sections should then decrease at higher projectile kinetic energy as fission or particle emission becomes energetically possible.

B. Excitation functions

1. Excitation functions for Bk isotopes

Excitation functions for the Bk isotopes 244,245,246,248m, and 250 are shown in Fig. 1. Assuming a binary-type transfer mechanism, the isotope requiring the exchange of the fewest number of nucleons for which E_X is positive (but not large enough to cause fission or neutron emission) should have the highest cross section. 249Bk meets these requirements. This nuclide requires the transfer of just one proton from the projectile to the target and has an E_X of 6.0 MeV. However, the $^{249}\mathrm{Bk}$ cross sections were not included for two reasons. First of all 249Bk is used as a tracer in our laboratory and secondly its measurement is extremely difficult. The difficulty in measurement stems from the fact that the absolute intensities of the most abundant gamma ray and alpha branch from ²⁴⁹Bk are on the order of 1 X 10^{-5} . Since 249 Bk has a 99+% β^- branch, its activity can be determined from the growth of the ²⁴⁹Cf daughter. However, the long half-life of 249 Cf ($t_{1/2}$ = 351 y) makes the detection of this nuclide difficult also. experimental data it can be seen that 248 mBk has the highest cross sections at all energies, with 246Bk next, followed by 250 Bk, 245 Bk, and finally 244 Bk. All of the Bk excitation functions have maxima at about 207 MeV. The shapes of the excitation functions of ^{244}Bk and ^{248}mBk are consistent with their positive excitation energies. $^{245}\mathrm{Bk}$, $^{246}\mathrm{Bk}$, and $^{250}\mathrm{Bk}$ have excitation functions which are very similar in shape. increase by about a factor of three between 174 and 207 MeV and then show a decrease by more than a factor of two over the next The shapes of the excitation functions of 245 Bk and 246 Bk, however, do not appear to be consistent with their calculated positive excitation energies. Since their E_x 's are positive, one would not expect an increase in the cross sections at the lower bombarding energies.

2. Excitation functions for Cf isotopes

Excitation functions for the various Cf isotopes measured in this study are shown in Fig. 2. ²⁵⁰Cf has the highest cross sections, followed by 248Cf, 246Cf, 252Cf, and finally 253Cf. 250 Cf requires the transfer of the fewest number of nucleons, two protons, and additionally it has an E_X of 7.2 MeV. $^{248}\mathrm{Cf}$ has much higher cross sections than 252Cf even though both require the transfer of four nucleons. In fact, ²⁵²Cf can be produced by the transfer of an alpha particle from the projectile to the target. However, 248 Cf has an E_X of 8.8 MeV while 252 Cf has an E_X of only 0.6 MeV. This could explain the lower yields of 252 Cf relative to 248 Cf. The 248 Cf, 250 Cf, and 252 Cf excitation functions have similar shapes, consistent with their positive E_X 's. However, for 253 Cf, the cross section at the Coulomb barrier is near its maximum and decreases with increasing projectile energy, inconsistent with its E_X of -8.1 MeV. Finally, $^{246}\mathrm{Cf}$ has an excitation function which is consistent with a negative E_X value even though this nuclide has an E_X of 6.9 MeV.

3. Excitation functions for Es isotopes

Fig. 3 shows excitation functions for the Es isotopes 251, 252, 253, 254, and 255. The highest cross sections occur for ^{251}Es , the isotope requiring the transfer of the fewest number of nucleons (three protons). As the number of nucleons transferred increases, the cross sections decrease. In addition, the shapes of the excitation functions are consistent with their calculated excitation energies.

4. Excitation functions for Fm isotopes

Excitation functions for various isotopes of Fm are shown in Fig. 4. The shapes of the curves are all similar and again they are consistent with the calculated positive excitation energies. 252 Fm, the Fm isotope requiring the transfer of the fewest number of nucleons (four protons) has the highest cross sections with

 $^{256}{\rm Fm}$, which requires the transfer of eight nucleons, having the lowest cross sections. $^{255}{\rm Fm}$ seems to be an exception in this case. Even though it requires the transfer of seven nucleons, it has higher cross sections at three energies than both $^{254}{\rm Fm}$ and $^{250}{\rm Fm}$ which each require the transfer of six nucleons. The higher cross sections of $^{255}{\rm Fm}$ relative to $^{254}{\rm Fm}$ and $^{250}{\rm Fm}$ cannot be explained on the basis of excitation energies. $^{255}{\rm Fm}$ has an E_X which is 1.9 MeV as compared to 6.2 MeV and 2.4 MeV for $^{254}{\rm Fm}$ and $^{250}{\rm Fm}$ respectively. However, it should be noted that the $^{255}{\rm Fm}$ cross sections have relatively large errors.

C. Calculation of F_t

We have attempted to estimate the fraction, F_t , of the projectile kinetic energy transformed into targetlike fragment excitation energy using the equation

$$F_t = (E_{f,n} - E_X)/(E_M - E_B),$$

where $E_{f,n}$ is the height of the fission barrier 13,14 or the neutron binding energy 15 in MeV, whichever is lower, E_{x} is the excess energy available for product excitation described earlier, E_{M} is the maximum in the experimental excitation functions, and ER is the calculated Coulomb barrier assuming two touching spheres. In using this formula, we are assuming that the maximum in the experimental excitation function occurs when the targetlike product excitation energy is comparable to the fission barrier or neutron binding energy. This calculation is not applicable when the reaction energy is greater than the neutron binding energy or the fission barrier, because enough energy is available to cause depletion of the cross section by fission or neutron emission. Table III lists the calculated F_t values for the ^{31}P system. The F_t 's from the ^{31}P system range in value from 0.01 to 0.69, similar to the values from the $^{40}\mathrm{Ar}$ and $^{44}\mathrm{Ca}$ systems.⁴ No obvious trends in the F_t 's can be seen.

By assuming that the fraction of energy transferred is proportional to the mass transferred, the fraction of energy

transferred, E_t , can be calculated according to the equation

 $E_t = M/A$,

where M is the total number of nucleons transferred and A is the mass number of the projectile. The E_t values are also listed in Table III. There is good agreement between F_t and E_t for 252 Cf, 255 Es, 255 Fm, and 256 Fm. However, there are significant deviations for 250 Bk, 253 Cf, 254 mEs, 250 Fm, and 253 Fm.

D. Isotopic distributions

1. General features

Isotopic distributions for Bk, Cf, Es, and Fm produced from the interactions of 207-MeV (1.17 X Coulomb barrier) 31 P ions with 248 Cm are plotted in Fig. 5. This energy was chosen so that the ³¹P system could be compared to other systems at the same energy relative to the entrance channel Coulomb barrier. All of the data points for each element are connected with lines. These lines are included only to aid the eye in viewing the plot. The isotopic distributions have maxima at ^{248 m}Bk, ²⁵⁰Cf, ²⁵¹Es, and ²⁵²Fm. As stated earlier, all of these nuclides correspond to the isotope requiring the exchange of the fewest number of nucleons for a given element, except in the case of 248 mBk. of the curves appear to be symmetric with full-widths at halfmaximum (FWHM) of 2.5, 2.5, <1.5, and 2.25 mass units for Bk, Cf, Es, and Fm respectively. Since only upper limits were set on the 249 Es, and 250 Es cross sections, only an upper limit can be set on the FWHM of the Es curve. Additionally, the maxima and the widths of the mass-yield curves stay constant over the energy range investigated.

2. Comparison with other systems

The maxima of the isotopic distributions for the ^{31}P , ^{40}Ar , ^{40}Ca , ^{44}Ca , and ^{48}Ca systems are listed in Table IV, 2,3 , 4

along with the neutron-to-proton ratios of the projectiles. All of the systems show maximum cross sections for Bk at mass 248 except for the most neutron-deficient projectile, 40 Ca, for which the maximum occurs at mass 247. The maximum cross section for Cf occurs at mass 250 except for the 40 Ca system again, for which its maximum is at 248. The maxima of the Es curves are at mass 251 for 31 P, 40 Ar, and 44 Ca, at 250 for 40 Ca, and at 252 for 48 Ca. The Fm curves have their maxima around 252 in every case except for 48 Ca which has its maxima at 255. It should be noted that the maximum cross sections from the 40 Ar and 44 Ca systems could not be located with certainty due to insufficient data on the neutron-deficient Fm isotopes.

The values of the FWHM's for the 31 P system agree quite well with those reported previously for other systems. Specifically, Lee et al. reported the FWHM's of the 16,18 O and 20,22 Ne systems to all be about 2.5 mass units, while 2.5 and \approx 2.5 mass units were reported for the 48 Ca and 40 Ca systems respectively. 1,2 Earlier we reported the FWHM's for the 40 Ar and 44 Ca systems to be 2.5-3.25 mass units and 2.0-3.5 mass units respectively. 4

The final isotopic distributions for Bk from the interactions of various heavy ions (HI) with ^{248}Cm are shown in The ^{31}P system has the highest production cross sections for ^{248 m}Bk by about a factor of 2. This high peak cross section for $^{248\,m}$ Bk might be due to the odd proton in 31 P. Since an odd proton would be unpaired in the nucleus, the probability of transferring 1 unpaired proton from an odd Z nucleus to the target should be greater than the probability of transferring one proton from an even Z nucleus. The calculated E_{x} 's for some Bk isotopes produced from the interactions of ¹⁸0, ³¹p, ⁴⁰Ar, ⁴⁰Ca, 44 Ca, and 48 Ca with 248 Cm are listed in Table V. The E_X values from the 31P system are greater than the corresponding values from the 18 O, 40 Ar, 44 Ca, and 48 Ca systems. However, the 40 Ca system has E_x values that are greater than those of the ^{31}P system. This should be expected since the neutron-to-proton ratio of 40Ca is only 1.00. With such a low neutron-to-proton ratio, 40Ca should preferentially transfer protons to the target nucleus. The neutron-deficient Bk isotope yields are essentially

independent of the projectile whereas the neutron-rich Bk isotopes are projectile dependent. 48 Ca, the most neutron-rich projectile gives the highest yields and 40 Ca, the most neutron-deficient projectile, gives the lowest yields of the neutron-rich Bk isotopes.

Isotopic distributions for Cf from the reactions of various heavy ions with ^{248}Cm are shown in Fig. 7. Again, the yields for the neutron-deficient Cf isotopes are independent of the projectile, except for the yields from the neutron-rich ^{48}Ca , which has the lowest cross sections. The cross sections for the neutron-rich Cf isotopes are all quite similar for ^{31}p , ^{40}Ar , ^{44}Ca , and ^{48}Ca . The most neutron-deficient projectile, ^{40}Ca , is the exception with the lowest cross sections for the neutron-rich Cf isotopes.

Isotopic distributions for Es produced from the interactions of some heavy ions with $^{248}\mathrm{Cm}$ are shown in Fig 8. $^{40}\mathrm{Ar}$ consistently has the highest yields for the isotopes $^{250-254}\mathrm{Es}$. The curve from the $^{31}\mathrm{P}$ system seems to have the narrowest FWHM.

Fig. 9 illustrates the final isotopic distributions for Fm produced from the interactions of various heavy ions with $^{248}\mathrm{Cm}$. $^{40}\mathrm{Ar}$ has the highest cross sections for the neutron-rich Fm isotopes, even though $^{44}\mathrm{Ca}$ and $^{48}\mathrm{Ca}$ have greater neutron-to-proton ratios. $^{48}\mathrm{Ca}$ has the lowest cross sections for the neutron-deficient Fm isotopes.

IV. Summary

The following conclusions can be made from the present study:

- 1. In general the cross sections decrease as the number of nucleons transferred increases.
- 2. Except for 245 Bk, 246 Bk, 246 Cf, and 253 Cf, the shapes of the excitation functions are consistent with the calculated excitation energies.
- 3. For the ^{31}P system, the maxima of the isotopic distributions occur for those reaction channels which involve the exchange of the fewest number of nucleons for which E_X is positive. This lends support to a binary-type reaction mechanism in which the targetlike fragment has little excitation energy.
- 4. The odd proton in 31 P does not have a noticeable effect on the final isotopic distributions of the 31 P system. A possible exception could be 248 mBk, which has a peak production cross section about a factor of 2 higher than the peak production cross sections for 248 mBk from other heavy ion- 248 Cm systems.
- 5. The neutron-rich projectiles such as 48 Ca enhance the production of neutron-rich products while the neutron-deficient projectiles such as 40 Ca and 31 P enhance the production of neutron-deficient products.

ACKNOWLEDGMENTS

The authors wish to thank the staff and crew of the Lawrence Berkeley Laboratory (LBL) 88-Inch Cyclotron for their assistance. The authors are indebted for the use of the ²⁴⁸Cm to the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, through the transplutonium element production facilities at the Oak Ridge National Laboratory. This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract No. DE-ACO3-76SF00098.

REFERENCES

- *Present address: Nuclear Chemistry Division L-396, Lawrence Livermore National Laboratory, Livermore, CA 94550
- *Present address: Department of Chemistry, Beloit College, Beloit, WI 53511
- ¹D. Lee, H.R. von Gunten, B. Jacak, M. Nurmia, Y. Liu, C. Luo, G.T. Seaborg, and D.C. Hoffman, Phys. Rev. C <u>25</u>, 286 (1982).
- ²D.C. Hoffman, M.M. Fowler, W.R. Daniels, H.R. von Gunten, D. Lee, K.J. Moody, K. Gregorich, R. Welch, G.T. Seaborg, W. Brüchle, M. Brügger, H. Gäggeler, M. Schädel, K. Sümmerer, G. Wirth, Th. Blaich, G. Herrmann, N. Hildebrand, J.V. Kratz, M. Lerch, and N. Trautmann, Phys. Rev. C <u>31</u>, 1763 (1985).
- ³A. Türler, H.R. von Gunten, J.D. Leyba, K.E. Gregorich, R.M. Chasteler, R.A. Henderson, D.A. Bennett, C.M. Gannett, H.L. Hall, R.B. Chadwick, D.M. Lee, M. Nurmia, and D.C. Hoffman, (to be submitted to Phys. Rev. C).
- ⁴J.D. Leyba, R.A. Henderson, H.L. Hall, C.M. Gannett, R.B. Chadwick, K.R. Czerwinski, B.A. Kadkhodayan, S.A. Kreek, G.R. Haynes, K.E. Gregorich, D.M. Lee, M.J. Nurmia, and D.C. Hoffman, Phys. Rev. C, (to be published).
- 5 L.C. Northcliffe and R.F. Schilling, Nucl. Data Tables A $\frac{7}{2}$, 233 (1970).
- 6 F. Mylius and C. Hüttner, Bec. Deut. Chem. Ges. $\underline{44}$, 1315 (1911).
- ⁷H.L. Hall (unpublished).
- 8 J.T. Routti and S.G. Prussin, Nucl. Instrum. Methods 72, 125 (1969).

- ⁹K.E. Gregorich, Ph.D. thesis, University of California, Berkeley, 1985.
- 10J.B. Cumming, Brookhaven National Laboratory Report BNL-6470, 1963.
- 11E. Browne, J.M. Dairiki, R.E. Doebler, A.A. Shihab-Eldin, L.J. Jardine, J.K. Tuli, and A.B. Buyrn, Table of Isotopes, edited by C.M. Lederer and V.M. Shirley (John Wiley and Sons, New York, 1978).
- 12D.C. Hoffman and M.M. Hoffman, Los Alamos National Laboratory Report LA-UR-82-824, March 1982.
- 13H.C. Britt, in Proceeding of the Fourth International Atomic Energy Agency Symposium on Physics and Chemistry of Fission, Jülich, 1979 (IAEA, Vienna, 1980), Vol. I, p. 3.
- 14H.C. Britt, E. Cheifetz, D.C. Hoffman, J.B. Wilhelmy, R.J. Dupzyk, and R.W. Lougheed, Phys. Rev. C 21, 761 1980.
- ¹⁵P.A. Seeger, and R.C. Perisho, Los Alamos Scientific Laboratory Report LA-3751, September 1967.

TABLE I. Cross sections from the bombardment of $^{248}\mathrm{Cm}$ with $^{31}\mathrm{P}.$

	174 MeV		190 MeV		207 MeV		223 MeV		239 MeV	
	Cross		Cross		Cross		Cross		Cross	
	Section	s	Section	s	Section	s	Section	s	Section	S
Nuclide	(µb)	(%)	(μb)	(%)	(μb)	(%)	(µb)	(%)	(μb)	(%
Bk 244	20.3	0.7	23.7	2.2	37.9	3.1	7.20	50	<2.96	
245	224	7.1	452	1.1	726	1.4	436	3.4	189	2.
246	829	1.6	1910	1.0	2590	1.2	1830	2.2	1090	1.
248 <i>m</i>	4270	1.6	7100	3.5	8680	12	3880	47	3590	5
250	486	1.4	991	1.0	1330	1.1	1050	1.9	552	1.
251	<6.25		<2.57		<5.23		<34.4		<7.88	
Cf 246	31.4	0.5	71.9	0.5	125	0.5	75.9	0.3	44.8	0.
248	892	1.1	1450	1.2	2340	1.1	1640	0.8	824	. 1.
250	2850	0.6	3460	0.4	5410	0.5	3790	0.5	2270	0.
252	50.1	8.5	73.6	4.2	105	5.9	75.9	7.8	29.4	1
253	2.98	14	3.45	15	3.15	30	1.10	25	0.81	1
Es 249	<6.71		<2.75		<8.73		<18.1		<27.8	
250 <i>m</i>	<11.6		<5.84		<43.9		<35.4		<33.7	
250 <i>g</i>	<35.1		<48.4		<2.34		<2.85		<4.28	
251	113	4.3	258	2.8	179	4.1	83.9	5.8	59.4	1
252	27.5	58	89.6	7.3	68.9	9.8	37.8	13	21.5	8.
253	4.22	15	7.26	5.0	5.23	7.6	3.11	8.5	2.10	6.
254 <i>m</i>	0.074	.11	0.21	3.8	0.17	4.1	0.097	11	0.078	7.
255	<0.01		0.006	53	0.011	45	0.018	54	0.005	6
Fm 250	1.12	15 ⁻	1.13	8.1	1.79	15	0.17	10	0.13	6
252	7.46	58	12.1	2.1	14.9	2.7	4.68	11	1.37	2
253	5.99	2.2	9.71	0.8	9.97	5.0	2.65	2.7	0.69	1
254	0.96	5.3	2.09	2.4	1.59	4.4	0.56	7.7	0.16	1
255	1.96	58	4.11	51	0.79	36	0.43	50	0.59	4
256	0.033	27	0.082	11	0.051	15	0.017	56	0.007	5

Table II. Calculated excitation energies E_X , for above target actinide products from the interactions of ^{31}P with ^{248}Cm . M is the total number of nucleons transferred.

Nucl	Lide	М	E _X	Nuclide	<i>M</i>	E _X
Bk	244	6	7.6	Cf 246	6	6.9
	245	5	11.3	247	5	6.3
	246	4	8.6	248	4	8.8
	247	3	10.8	249	3	6.7
	248	2	6.4	250	2	7.2
	249	1	6.0	251	3	2.5
	250	2	0.0	252	4	0.6
	251	3	- 2.3	253	5	- 8.1
				254	6	-13.9
Es	249	5	8.6	Fm 250	6	2.4
	250	4	7.1	251	5	4.0
	251	3	9.7	252	• 4	7.2
	252	4	6.1	253	5	5.6
	253	5	5.6	254	6	6.2
	254	6	- 0.8	255	7	1.9
	255	7	- 2.5	256	8	0.9
	256	8	-14.5			

Table III. Calculated fraction of energy transferred, F_t , from the ^{31}P projectile to the ^{248}Cm target. E_M is the maximum in the experimental excitation functions and E_t is the fraction of energy transferred assuming energy transfer is proportional to mass transfer. $E_B \approx 176$ MeV in the lab frame. An * indicates that $(E_{f,n} - E_X) < 0$. See explanation in text.

Nu o	clide	E _M (MeV)	Ft	E _t	Nue	clide	E _M (MeV)	F _t	E _t
Bk	244	200	*	0.19	Es	251	195	*	0.10
	245	207	*	0.16		252	195	*	0.13
	246	207	*	0.13		253	190	*	0.16
	248m	200	*	0.06		254 <i>m</i>	195	0.32	0.19
	250	207	0.17	0.06		255	220	0.18	0.23
Cf	246	207	*	0.19	F,m	250 .	202	0.13	0.19
	248	207	*	0.13		252	201	*	0.13
	250	207	*	0.06		253	200	0.01	0.16
	252	207	0.15	0.13		254	196	*	0.19
	253	195	0.69	0.16		255	190	0.26	0.23
						256	195	0.25	0.26

Table IV. Neutron-to-proton ratios N/Z, and peaks of isotopic distributions for the interactions of 253-MeV (1.08 X Coulomb barrier) 40 Ca ions, 207-MeV (1.17 X Coulomb barrier) 31 P ions, 275-MeV (1.16 X Coulomb barrier) 44 Ca ions, 245-MeV (1.16 X Coulomb barrier) 40 Ar ions, and 280-MeV (1.19 X Coulomb barrier) 48 Ca ions with 248 Cm targets. Data for 40 , 48 Ca taken from Ref. 2, 44 Ca taken from Ref. 3, and 40 Ar taken from Ref. 4.

Projectile	N/Z	Peak o	f Isotopi	c Dist	Distributions	
		<u>Bk</u>	Cf	Es	Fm	
	:		(Mass N	(umber		
40 _{Ca}	1.00	247	248	250	251-252	
31 _P	1.07	248	250	251	252	
44 _{Ca}	1.20	248	250	251	≤252	
40 _{Ar}	1.22	248	250	251	≤252	
48 _{Ca}	1.40	248	250	252	255	

Table V. Excitation energies, E_χ , for Bk isotopes produced from the interactions of various heavy ions with $^{248}\mathrm{Cm}$.

Product Nuclide	¹⁸ 80	31 _P	40 18 ^{Ar}	40 20	44 20 ^{Ca}	4 8 20Ca
				;		
Bk 244		7.6	0.1	17.2	6.8	-16.4
245	-11.4	11.3	3.0	16.5	8.8	-10.9
246	- 9.5	8.6	1.3	11.9	5.5	- 9.6
247	- 4.1	10.8	2.9	11.1	5.4	- 4.4
248	- 4.8	6.4	- 0.2	5.8	1.4	- 5.0
249	- 1.2	6.0	0.2	4.2	0.3	- 3.4
250	- 2.3	0.0	- 3.2	- 4.3	- 4.7	- 7.1
251	1.5	- 2.3	- 3.2	-10.2	- 6.0	- 7.7

FIGURE CAPTIONS

- FIG. 1. Excitation functions for isotopes of Bk from the interactions of $^{31}\mathrm{P}$ with $^{248}\mathrm{Cm}$.
- FIG. 2. Excitation functions for isotopes of Cf from the interactions of $^{31}\mathrm{P}$ with $^{248}\mathrm{Cm}$.
- FIG. 3. Excitation functions for isotopes of Es from the interactions of $^{31}\mathrm{P}$ with $^{248}\mathrm{Cm}$.
- FIG. 4. Excitation functions for isotopes of Fm from the interactions of $^{31}\mathrm{P}$ with $^{248}\mathrm{Cm}$.
- FIG. 5 Isotopic distributions for Bk, Cf, Es, and Fm from the reactions of 207-Mev (1.17 X Coulomb barrier) $^{31}{\rm P}$ ions with $^{248}{\rm Cm}$
- FIG. 6. Isotopic distributions for Bk produced in the interactions of 207-MeV (1.17 X Coulomb barrier) 31 P ions, 245-MeV (1.16 X Coulomb barrier) 40 Ar ions, 253-MeV (1.08 X Coulomb barrier) 40 Ca ions, 275-MeV (1.16 X Coulomb barrier) 44 Ca ions, and 280-MeV (1.19 X Coulomb barrier) 48 Ca ions with 248 Cm.
- FIG. 7. Isotopic distributions for Cf produced in the interactions of 207-MeV (1.17 X Coulomb barrier) 31 P ions, 245-MeV (1.16 X Coulomb barrier) 40 Ar ions, 253-MeV (1.08 X Coulomb barrier) 40 Ca ions, 275-MeV (1.16 X Coulomb barrier) 44 Ca ions, and 280-MeV (1.19 X Coulomb barrier) 48 Ca ions with 248 Cm.

- FIG. 8. Isotopic distributions for Es produced in the interactions of 207-MeV (1.17 X Coulomb barrier) 31 P ions, 245-MeV (1.16 X Coulomb barrier) 40 Ar ions, 253-MeV (1.08 X Coulomb barrier) 40 Ca ions, 275-MeV (1.16 X Coulomb barrier) 44 Ca ions, and 280-MeV (1.19 X Coulomb barrier) 48 Ca ions with 248 Cm.
- FIG. 9. Isotopic distributions for Fm produced in the interactions of 207-MeV (1.17 X Coulomb barrier) 31 P ions, 245-MeV (1.16 X Coulomb barrier) 40 Ar ions, 253-MeV (1.08 X Coulomb barrier) 40 Ca ions, 275-MeV (1.16 X Coulomb barrier) 44 Ca ions, and 280-MeV (1.19 X Coulomb barrier) 48 Ca ions with 248 Cm.

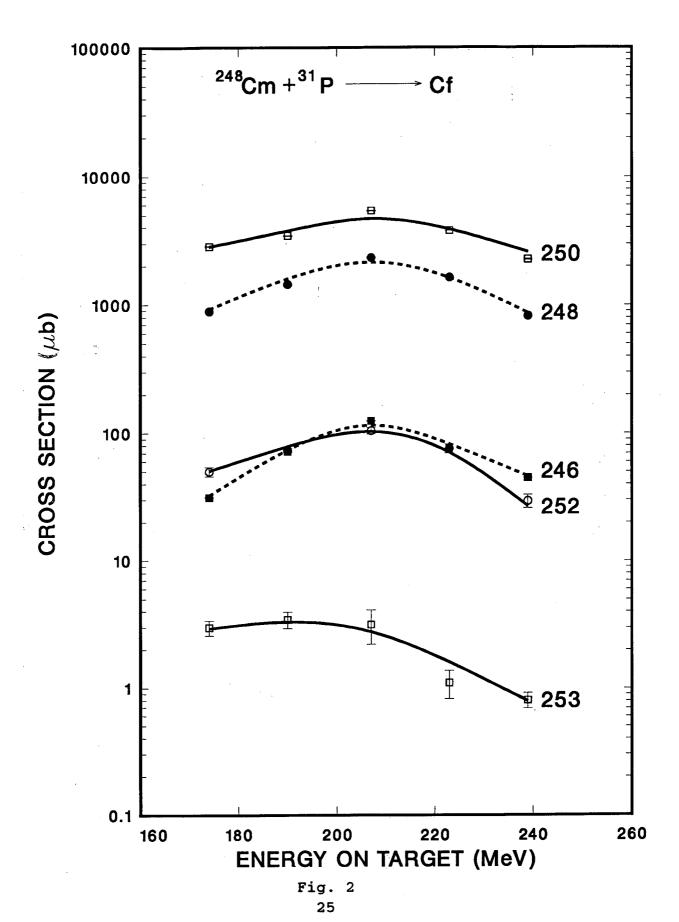



Fig. 1

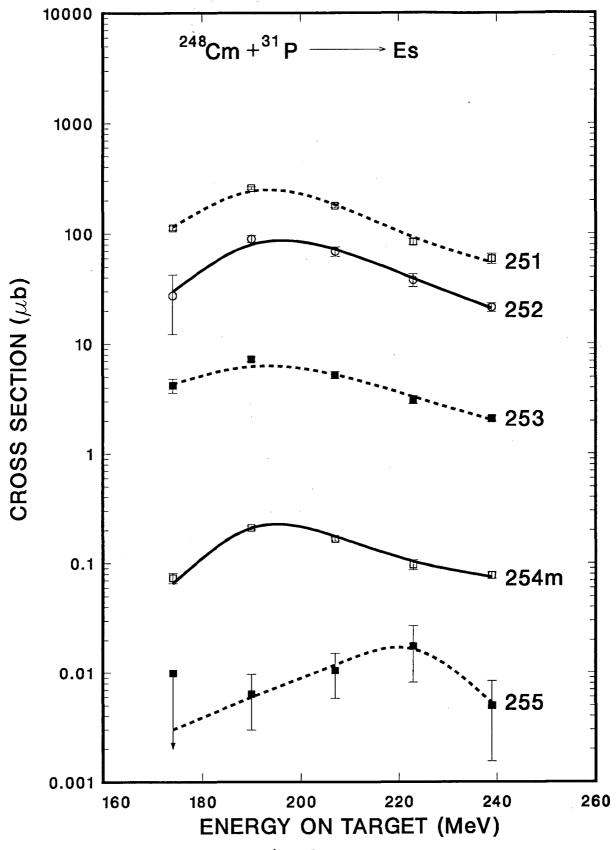


Fig. 3

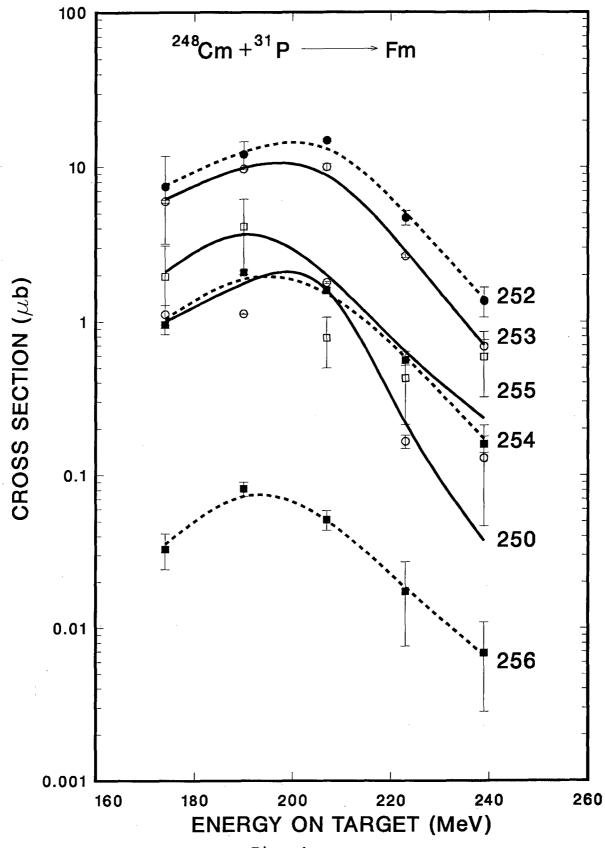


Fig. 4

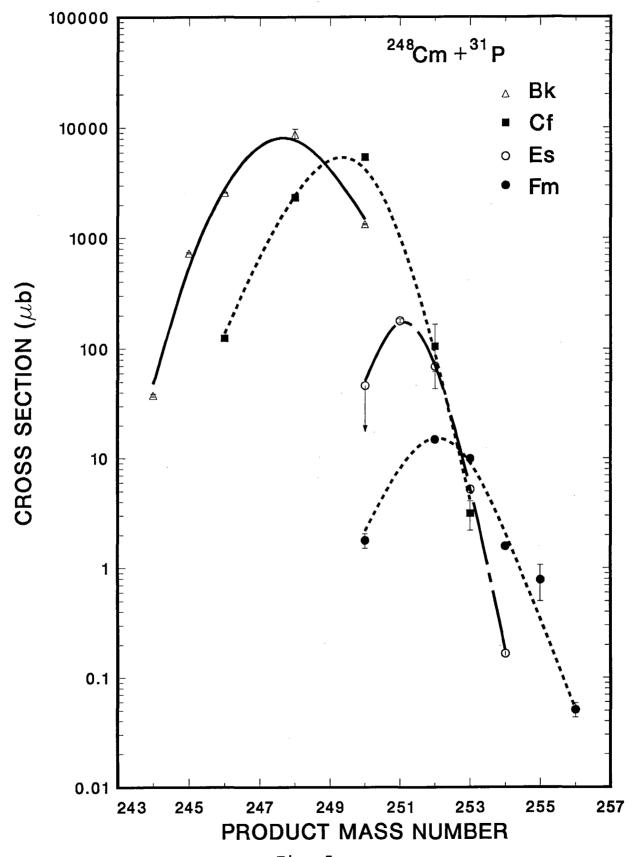


Fig. 5

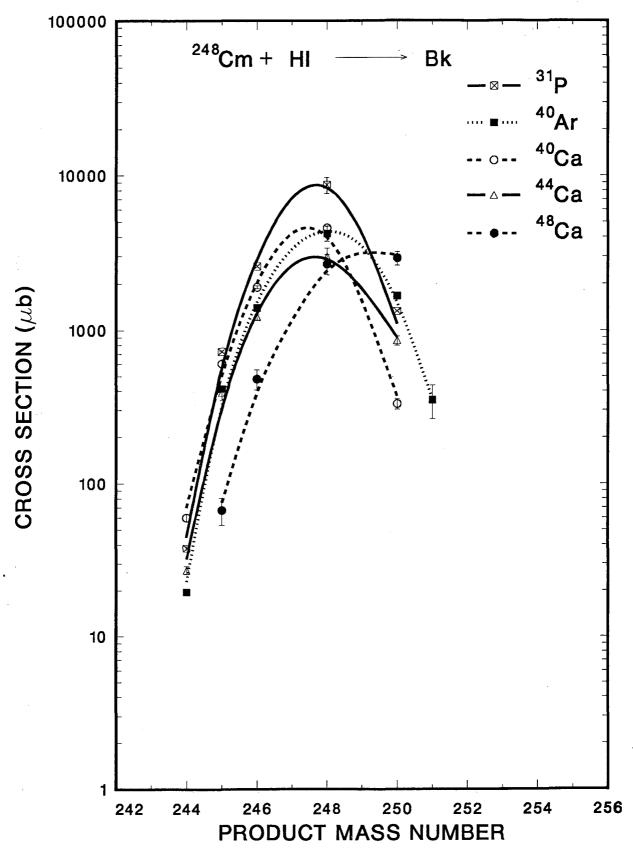


Fig. 6

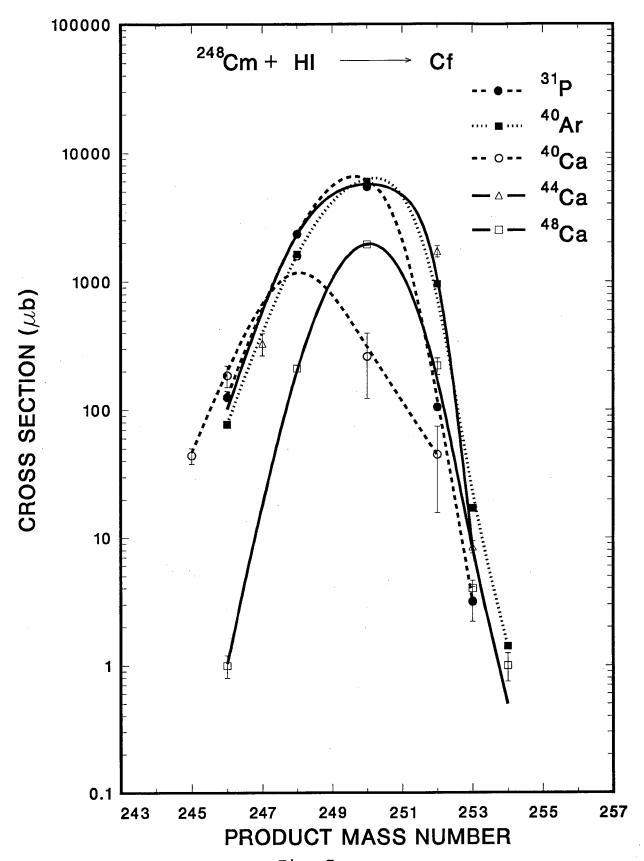


Fig. 7

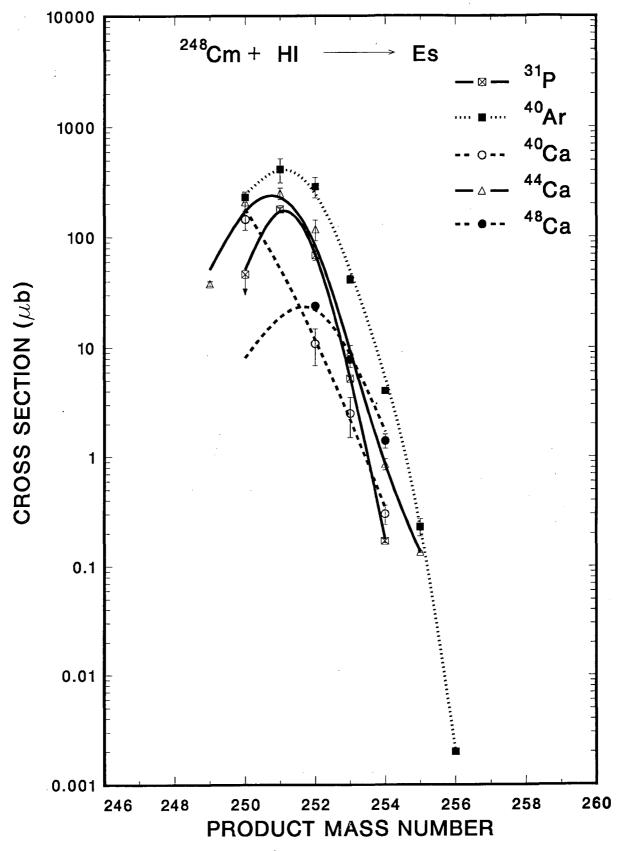


Fig. 8

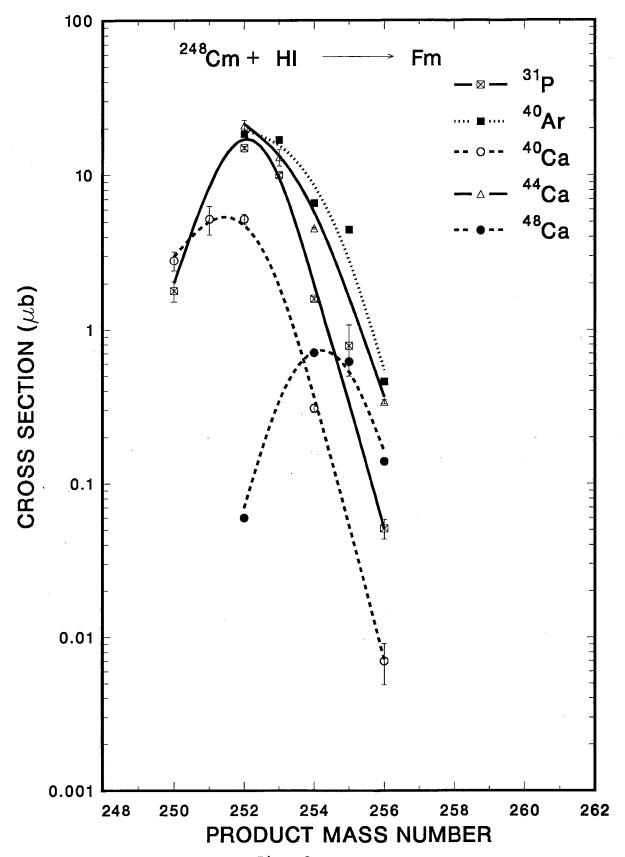


Fig. 9

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT
1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720