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New families in our Solar neighborhood: applying Gaussian Mixture models for objective classification of structures in
the Milky Way and in simulations
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ABSTRACT

The standard picture of galaxy formation motivates the decomposition of the Milky Way into 3—4 stellar
populations with distinct kinematic and elemental abundance distributions: the thin disk, thick disk, bulge, and
stellar halo. To test this idea, we construct a Gaussian mixture model (GMM) for both simulated and observed
stars in the Solar neighborhood, using measured velocities and iron abundances (i.e., an augmented Toomre
diagram) as the distributions to be decomposed. We compare results for the Gaia-APOGEE DR16 crossmatch
catalog of the Solar neighborhood with those from a suite of synthetic Gaia-APOGEE crossmatches constructed
from FIRE-2 cosmological simulations of Milky Way-mass galaxies. We find that in both the synthetic and real
data, the best-fit GMM uses five independent components, some of whose properties resemble the standard
populations predicted by galaxy formation theory. Two components can be identified unambiguously as the
thin disk and another as the halo. However, instead of a single counterpart to the thick disk, there are three
intermediate components with different age and alpha abundance distributions (although these data are not used
to construct the model). We use decompositions of the synthetic data to show that the classified components
indeed correspond to stars with different origins. By analogy with the simulated data, we show that our mixture
model of the real Gaia-APOGEE crossmatch distinguishes the following components: (1) a classic thin disk of
young stars on circular orbits (46%), (2) thin disk stars heated by interactions with satellites (22%), (3, 4) two
components representing the velocity asymmetry of the alpha-enhanced thick disk (27%), and (5) a stellar halo
consistent with early, massive accretion (4%).

1. INTRODUCTION history of the Galaxy we live in (e.g. Freeman & Bland-
Hawthorn 2002). In the classic picture, the distribution of
stars in velocity and elemental abundances has a relatively
small number of distinct components linked to different for-
mation epochs:

The kinematics and elemental abundances of the Milky
Way’s stars are thought to contain clues to the formation
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referred to as an “early spheroid” (e.g. Elmegreen et al.
2008). Stars formed very fast in this epoch, so despite
starting from gas almost free of metals, the resultant
population is quite metal-rich.

A subsequent epoch of accretion creates a hot disk
structure (still relatively metal-poor), which forms
stars in the present-day thick disk (e.g. Forbes et al.
2012; Bird et al. 2013) and/or stars formed early on in
a thin disk are heated by scattering processes and radial
migration to form the thick disk (Sharma et al. 2020;
Schonrich & Binney 2009).

The thin disk is formed by colder and more gradual ac-
cretion of more metal-rich gas, regulated by feedback
from relatively steady star formation, in a process that
continues to the present day (e.g., Brook et al. 2012;
Garrison-Kimmel et al. 2017; Ma et al. 2017b; Stern
et al. 2020).

Accretion of smaller, more metal-poor components
contributes an additional, roughly spheroidal with a
larger scale radius but with substructures, commonly
referred to as the “outer halo” or “accreted halo” (e.g.
Searle & Zinn 1978). ! In studies of the Solar neigh-
borhood, this component and the first one are often
jointly referred to as the “halo”, which is a suitable
simplification given the short scale radius and complex
kinematics of the Milky Way’s bulge-like component
(Gerhard & Martinez-Valpuesta 2012).

This picture sets up the expectation of a multi-component
stellar distribution in the Solar neighborhood, with old,
spheroidally distributed stars at the lowest metallicities (the
“halo”); young, metal-rich stars in a kinematically cold “thin
disk"; and a population intermediate in age, metallicity, and
kinematics, commonly referred to as the “thick disk”. Sus-
tained star formation during the cooling of the gas reservoir,
as well as gradual dynamical heating of the resulting stellar
population, would predict a smooth correspondence between
kinematic temperature, metallicity and age in the disk, with
kinematically hotter stars being older and more metal-poor.

Many papers prior to this one have sought to test these
ideas and refine our understanding of the processes that built
the Solar neighborhood by selecting stars based on their
kinematics, and studying their abundance distributions (e.g.,
Bensby et al. 2003; Venn et al. 2004; Ishigaki et al. 2013; Nis-
sen & Schuster 2010; Bonaca et al. 2017; An & Beers 2020;

! These two terms, though sometimes used interchangeably, are not synony-
mous: accreted material, especially from early epochs, can certainly be
found at small radii while stars formed in outflows from regions of high
star formation in the disk (Yu et al. 2020), and those kicked out by inter-
actions with satellite galaxies (Laporte et al. 2018), can reach large radii
(El-Badry et al. 2018; Starkenburg et al. 2017)

Hayden et al. 2020). Most often, these kinematic cuts are
performed in the Toomre diagram, where the x axis has the
velocity of stars in the direction of Galactic rotation Vy, and
the y axis has the perpendicular component Vyz = /VZ+V2.
Here, Vy is along the Sun-Galactic center direction, and V
is perpendicular to the disk plane in the direction of the total
angular momentum.

Figure 1 shows the Toomre diagram of stars drawn from
traditional components of the Galaxy measured by Bensby
et al. (2003), with the thin disk in magenta, the thick disk in
orange and the halo in purple. These components are over-
lapping, but a selection criterion based on the relative ve-
locity with respect to the Local Standard of Rest (LSR) can
preferentially select thin disk stars comoving with the LSR
(magenta shaded region in Figure 1), thick disk stars at inter-
mediate distance from the LSR (orange shaded region) and
halo stars moving at high velocity with respect to the LSR
(purple shaded region).

In an alternative to such kinematic selections, other studies
have selected disk stars based on their elemental abundances,
and from their spatial distributions tested the idea of a con-
tinuous transition between thin and thick disks (e.g., Bovy
et al. 2012a,b, 2016; Mackereth et al. 2017). Some cosmo-
logical simulations (e.g., Ma et al. 2017a; Bird et al. 2020)
also do not predict a clean/sharp transition from the thick to
the thin disk, but rather, a more gradual settling of the stellar
disk (note, however, that some simulations such as the FIRE
simulations analyzed in this paper suggest a sharper transi-
tion in the properties of the gas disk, as galaxies transition
from highly bursty to more steady star formation rates, (e.g.,
Stern et al. 2020)). Still others were interested in searching
for local interlopers from the halo to assess the Milky Way’s
accretion history, simultaneously employing both kinematic
and metallicity cuts to select this relatively small population
from the overwhelmingly more numerous disk stars (e.g.,
Helmi et al. 2017; Herzog-Arbeitman et al. 2017).

The assumptions these approaches make about links
between the kinematics and metallicity and/or alpha-
enhancement of stars have begun to be challenged with the
advent of Gaia’s exquisite kinematic information (Gaia Col-
laboration et al. 2016). For example, several authors have
pointed out the presence of a population that is either an in-
termediate component between the thick disk and the halo
(Bonaca et al. 2017; Posti et al. 2017; Belokurov et al. 2018a)
or a sense of rotation in the halo itself (Deason et al. 2017,
Kafle et al. 2017). The Gaia-Enceladus or “Sausage* struc-
ture (Belokurov et al. 2018a; Helmi et al. 2018a; Myeong
et al. 2018; Mackereth et al. 2018) is likely a massive con-
tributor to the local neighborhood and has 30%-50% of the
halo stellar mass (Mackereth & Bovy 2020).

This influx of new information both enables and motivates
the relaxation of some of the assumptions about the structure
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Figure 1. Typical regions of the Toomre diagram based on observa-
tion in the Solar neighborhood and ascribed to different chemokine-
matic components following Bensby et al. (2003): the metal-poor
“halo” (purple), the intermediate “thick disk” (orange), and the
metal-rich “thin disk” (magenta).

of the Solar neighborhood, in favor of allowing the data itself
to tell us what the distribution looks like. In this work, we
take the agnostic approach of modeling the stellar distribu-
tion as a mixture of Gaussians, with the goal of imposing as
few assumptions as possible on its observed quantities.

We construct a mixture model (described briefly in §2) of
the velocities and iron abundances of stars in the Solar neigh-
borhood, leaving the number of Gaussian components in the
model free to vary and using an information criterion to pick
the most suitable number. We test this approach on a new
set of mock Gaia-APOGEE catalogs generated from FIRE-
2 cosmological simulations® of a Milky Way-mass galaxy
(Sanderson et al. 2020) (described in §3). From these mock
catalogs, we find that the best-fit model is consistent with
previous arguments on the origins of Solar neighborhood
stars and their spatial, kinematic, and abundance distributions
(§4). Perhaps surprisingly, we find that the optimal decom-
position features five components in all the simulations: two
analogous to the thin disk and the halo, but instead of a sin-
gle counterpart to the thick disk, there are three intermediate
components with distinct age-alpha distributions and forma-
tion histories, even though these data are not used to fit the
model. We then apply the same strategy to stars in the Solar
neighborhood using the Gaia DR2 catalog crossmatched with
the APOGEE DR16 (§3) survey and find a similar result (§5).
We conclude in §6 by drawing analogies with the simulated
surveys to postulate distinct origins for the five components
identified in our Milky Way.

2. GAUSSIAN MIXTURE MODELING

A Gaussian mixture model (GMM) describes a distribu-
tion of n, data points (samples) X; using a combination of n,

2 See the FIRE project website: http://fire.northwestern.edu

Gaussian distributions with independent mean values /i’ and
covariance matrices X' The X; contain the n; features (i.e.
dimensions of data) used to determine the probabilities p that
each of the data points belongs to each of the n. Gaussian
components.

Thus for a given sample,

e
PEIFAGASY =Y mifi @i, 5, (1)
i=1
where f; is a ny-dimensional normal distribution with the
given mean and covariance, and 7; is the relative weight of
each Gaussian subject to the constraint that Y.<, 7; = 1.

The GMM is thus specified by n.—1 free weight parame-
ters 7, the n.ny means {/i}, and the n.ng(ny+1)/2 compo-
nents of the positive-definite, symmetric covariance matrices
{X}, for a total of

n, = %(n} +3np4+2)—1 2)

free parameters in the model. The probability of data point
J belonging to component k in the GMM, also known as the
responsibility R, is

TS, 20
PR VACTIITEDN
The model assigns a label to each sample, i.e. identifies the
Gaussian component to which the data point with coordi-
nates X is most likely to belong, by choosing the component
with the highest 2R;. Thus the GMM acts as both a descrip-
tion of the overall density distribution of the n, samples in
ny-dimensional space, and as an unsupervised classifier that
places each sample into one of n. groups. We use the imple-
mentation provided in the Python package scikit—-learn
(Pedregosa et al. 2011).

In our case the features used for classification will be
the three-dimensional velocities {Vx, Vy,Vz} of the ny stars,
where Vy is the Galactocentric velocity in the direction of the
disk rotation, Vx along the Sun—Galactic center direction, and
V, perpendicular to the disk plane in the direction of the total
angular momentum. We add the iron abundances [Fe/H] as a
fourth dimension or feature, so for our case ny = 4.

The reduction of dimensionality in moving from a three-
dimensional velocity vector to two Toomre components of
velocity {Vy,Vxz} is motivated by the underlying symmetry
of the Galaxy, but since there is a zero cutoff in Vx; and our
model is a mixture of Gaussians, we construct our model with
the three-dimensional velocity vector plus metallicity and
just represent obtained clusters in the Toomre sub-space plus
metallicity. Likewise, we use Cartesian coordinates rather
than cylindrical or spherical coordinates for the velocities to
avoid imprinting assumptions about symmetries. Surveys of
the current generation are for the most part embedded in the

R |7, {i} X = (©)
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Solar neighborhood, where the assumption of axisymmetry
is appropriate. Symmetry assumptions like this are less ap-
propriate to future surveys exploring a larger volume of the
Galaxy (e.g. Beane et al. 2019), and the framework and intu-
ition developed in this work lay ground for this transition.
To find the best-fit GMM, we start by choosing a number of
components 7.. We initialize their means, covariances, and
weights by preliminarily labeling each sample using k-means
clustering (Steinhaus 1957), and maximizing the likelihood

S 1 nrlog(2
In £@7 (i} {=h=3" [logfi_zlogzz|_'1f<>§<m

j=1 i=1
1 . A ,
- E=)" - (fj—ﬁ’)] , )

using expectation-maximization (Dempster et al. 1977),
which determines the best-fit weights, means, and covari-
ances. We then repeat this process for different values of
n. and determine the number of components that minimizes
the Bayes information criterion (Schwarz 1978),

BIC =-21InL+n,In(n), 5)

where £ is the maximum value of the likelihood function
given by Equation (4) and n,, is the total number of free pa-
rameters in the model, given by Equation (2). This criterion
compares the maximum likelihood values for different num-
bers of components (the first term) while including a penalty
for introducing additional parameters into the model (the sec-
ond term), to account for the fact that a model with more
free parameters will always produce a better fit. The value
of the penalty is derived from an asymptotic expansion of
the Bayes evidence as the sample size approaches infinity,
under the assumption that the data are independent samples
from a distribution with an exponential form (such as a Gaus-
sian). This agrees with the fundamental assumption of the
GMM, which motivates our use of this criterion for model
selection rather than an information-theory-based criterion
such as the Akaike information criterion (AIC; Akaike 1974).
The BIC’s penalty for adding model parameters, weighted by
Inny, strongly prefers models with lower n, relative to the
AIC (Schwarz 1978).

The assumption that the data we are fitting are truly drawn
from a combination of Gaussian components is not necessar-
ily a great one; in fact, it is demonstrably not true for the
Toomre coordinates, as we will discuss further in (§4), so the
penalty in the BIC for adding extra components to the mix-
ture model is at best an approximation. Thus although in the
idealized case one would look for the minimum BIC value
to select the preferred number of components in the model,
in practice we do so by increasing 7. just until the BIC stops
rapidly decreasing, which is called the Elbow rule/method
(Thorndike 1953).

3. OBSERVATIONAL AND MOCK GAIA-APOGEE
CATALOGS

To apply the concept of separating populations of stars us-
ing mixture modeling, we created a suite of mock catalogs
mimicking the crossmatch between the Gaia Data Release
2 (Gaia Collaboration et al. 2016, 2018) and the 16th data
release (DR16) of the Apache Point Observatory Galactic
Evolution Experiment (APOGEE) (Jonsson et al. 2020; Ahu-
mada et al. 2020).

3.1. Observed Catalog

APOGEE-2 (Majewski et al. 2017) is a dual hemisphere
survey that uses cloned spectrographs (Wilson et al. 2019)
operating each at the Apache Point Observatory on the Sloan
Foundation 2.5m telescope (Gunn et al. 2006) and at Las
Campanas Observatory on the duPont Telescope (Bowen &
Vaughan 1973). APOGEE targets primarily red giant stars in
all components of the Milky Way, with substantial additional
numbers of main sequence and massive evolved stars, which
are selected using a simple set of dereddened-color and mag-
nitude criteria. (Zasowski et al. 2013, 2017, Beaton et al. (in
prep.), Santana et al. (in prep.) ). The exact criteria vary by
location in the Galaxy and the length of time a given field
will be observed.

A custom processing pipeline (Nidever et al. 2015) re-
duces the data and calculates heliocentric radial velocities
(RVs), and the APOGEE Stellar Parameters and Abundances
Pipeline (ASPCAP, Garcia Pérez et al. 2016) produces fun-
damental stellar parameters (e.g., log(g), Tes) and elemen-
tal abundances for up to 26 species. The DRI16 catalog
contains measurements for 430,000 stars. We also make
some quality selections on the data to remove stars with very
small “observed” parallaxes (i.e. spuriously large distances,
m < 0.1pas or d > 100 kpc) and/or large measurement errors
on the parallax (Am /7 > 0.1), metallicity and radial velocity.
After applying these quality cuts around 150,000 stars re-
mained, which give us a radial coverage of 4-12 kpc Galac-
tocentric distances.

3.2. Mock Catalog

To create the mock Gaia-APOGEE crossmatches, we start
from the synthetic Gaia surveys Sanderson et al. (2020) cre-
ated from 3 Milky Way-mass galaxies in the Latte suite (first
introduced in Wetzel et al. (2016)) of FIRE-2 cosmologi-
cal simulations (Hopkins et al. 2018), which feature self-
consistent clustering of star formation in dense molecular
clouds and thin stellar/gaseous disks in live cosmological ha-
los with satellite dwarf galaxies and stellar halos. In each of
those simulations, there are 3 solar viewpoints that generate
nine synthetic Gaia-like surveys (3 galaxies x 3 neighbor-
hoods). The synthetic stars are sampled by assuming each
star particle represents a single stellar population. The simu-
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lations have initial star particle masses of 7070 M, but be-
cause of stellar mass loss, a typical star particle, at z = 0, has
amass of = 5000 M. Ateach neighborhood, dust extinction
is computed from the simulated gas metallicity distribution.

Regarding the iron abundance, it is important to bear in
mind that supernovae (core-collapse and Ia) and stellar winds
generate and disperse metals, which are then deposited into
gas particles. For supernovae Ia, the stellar nucleosynthe-
sis yields are adopted from Iwamoto et al. (1999), where the
rates follow Mannucci et al. (2006), including both prompt
and delayed populations. For core-collapse supernovae,
yields are from Nomoto et al. (2006); for stellar winds (AGB
and O/B-stars), yields are from a compilation of van den
Hoek & Groenewegen (1997); Marigo (2001); Izzard et al.
(2004).

These simulations also include an explicit treatment for un-
resolved turbulent diffusion of metals in gas, which produces
more realistic abundance distributions in both the MW-like
galaxies and in their satellite dwarf galaxies (Su et al. 2017;
Hopkins et al. 2018; Escala et al. 2018).

We also add an APOGEE-like error model for the ele-
mental abundances [Fe/H], [Mg/Fe], [C/Fe], [N/Fe], [S/Fe],
[O/Fe], [Si/Fe], and [Ca/Fe] as determined in Poovelil et al.
(in prep) * where we assume S/N of 100 for every star. Al-
though we only use [Fe/H] for constructing the GMM, we
need to track individual abundances (which are not used to
fit the model) to see the physical origin and formation histo-
ries of each component. In this paper, the [Mg/Fe] is used
for this purpose, but other abundances will be explored in
forthcoming works.

For each star the convolved abundances and velocities are
drawn from a normal distribution around the “true” value
generated in the synthetic stellar distribution, with the cor-
responding width, equivalent to the error on each property.
Our mock catalog is thus essentially an all-sky version of
the Gaia-APOGEE crossmatch. Although they are based on
the synthetic Gaia surveys constructed in Sanderson et al.
(2020), we refer to these simulated observations as mock cat-
alogs rather than synthetic surveys since we do not overlay
the APOGEE selection function. However, this will be done
in future work to produce true synthetic surveys for the Gaia-
APOGEE crossmatch. Finally, before running the mixture
model we make the same quality selections on the mock cat-
alogs as the observed catalog. These selections are all based
on the simulated Gaia observations, not on our rudimentary
APOGEE error modeling. Figure 2 shows face-on and edge-
on views of m12i simulation with density contours of the
sample stars.

3 A similar process was ultimately adopted for DR16 as is described in Jons-

son et al. (2020).

In addition to the APOGEE error model for elemental
abundances, we added the Two Micron All Sky Survey
(2ZMASS) J, H, K magnitudes to our catalogs (Skrutskie et al.
2006), corresponding to the bands used to select APOGEE
targets (see descriptions in Zasowski et al. 2013, 2017). The
2MASS photometric errors are estimated by using an ex-
ponential plus constant model and similar to the elemen-
tal abundances, the convolved magnitudes are drawn from
a zero-mean normal distribution with the corresponding vari-
ance.

4. MIXTURE MODELS OF MOCK GAIA-APOGEE
CATALOGS

To construct the mixture model, we use the three com-
ponents of the space velocity in Cartesian coordinates
{Vx,W,Vz} and add iron abundances relative to solar,
[Fe/H], as a fourth dimension. Compared to the classic
Toomre diagram (Vyz—Vy or Vgz—V; plane), which has histor-
ically been used to separate different stellar kinematic com-
ponents in the Solar neighborhood, this feature space allows
for the possibility that stars in different kinematic compo-
nents can have different metallicity distributions, but notably
does not make any assumptions about what those distribu-
tions are. It likewise makes no assumptions about approxi-
mate symmetries in the phase space distribution (spherical,
axisymmetric, or otherwise). This leaves us free to inter-
pret the components obtained by the model in the context of
broader ideas about galaxy formation, such as the expectation
that stars in the thin disk, with a velocity distribution centered
most closely on the Sun’s, should also be the youngest and
most metal-rich.

Figure 3 shows the results of testing different numbers of
Gaussian components to model this four-dimensional “aug-
mented Toomre diagram.” There is a clear improvement up
to 5 components and nearly no appreciable improvement af-
ter that (Elbow rule). Given the preference for a low num-
ber of distinct components (consistent with the idea of a thin
disk, thick disk, and halo perhaps broken into some subpop-
ulations) we choose the 5-component model for further ex-
amination.

In Figure 4 the density contours of each component of the
best-fit model for one of the mock catalogs are shown in
three projections of Toomre+[Fe/H] space. Each set of col-
ored contours shows the density distribution of synthetic stars
for which the probability of belonging to that component is
highest. We see that this model includes components that
fit the standard expectations of galaxy formation and the So-
lar neighborhood distribution: a metal-rich component with
a narrow velocity distribution around the solar velocity (the
“thin disk,” shown in magenta), a very metal-poor compo-
nent with a broad rotational velocity distribution around zero
(the “halo,” shown in dark purple), and a few progressively
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Figure 2. Face-on (left) and edge-on (right) views of m12i , one of the simulated galaxies used to generate the mock catalog. The red contours
represent density contours of the sample stars around the solar position that are used for constructing the Gaussian mixture model.
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Figure 3. Bayes information criterion (BIC) over the number of
objects versus the number of components of mixture models for all
nine Gaia-APOGEE mocks. Black symbols are for m12f simula-
tion, orange symbols for m12i simulation, and magenta symbols
are for m12m . All of the 3 simulations x 3 neighborhoods show
the same BIC plateau at 5 components, which means the optimal
decomposition features five components in all the simulations.

broader and more metal-poor components that together span
the difference between these (shown in orange, black, and
rose). We see a similar result, with slight variations in the
relative positions of the components, for all nine mock cata-
logs.

The probability panel (top right) in this figure gives a sense
of how well the model describes the data. It shows the dis-
tribution of probabilities of belonging to each component for
the different stars in the sample. For some components, this
distribution has well-defined peaks at O (i.e. the star is def-

initely not in that component) and 1 (i.e. the star is almost
certainly part of that component) with a relatively low num-
ber of probabilities at intermediate values. This means that
for these components, stars are easily classified. The halo
and thin disk components demonstrate this behavior.

On the other hand, for other components, there is still a
peak at zero but the distribution has more intermediate proba-
bility values and drops to zero before reaching p = 1. This in-
dicates that it is more difficult for the model to securely clas-
sify stars in one of these components; in this case it is because
they are relatively similar as can be seen by examining the
other panels, so many stars overlap with these. The three in-
termediate components demonstrate this behavior. This am-
biguity between the components could come from the fact
that a single Gaussian distribution in velocity is a bad de-
scription of the asymmetric velocity distribution displayed
by thick disk stars, which is better modeled by a superpo-
sition of Gaussians (e.g. Schwarzschild (1907); Nordstrom
et al. (2004)). In this case one would expect that multiple
otherwise similar components are being used to effectively
expand the velocity distribution in a basis of Gaussians. If
the GMM is simply to be used to separate the three traditional
constituents of the Solar neighborhood, the three intermedi-
ate components can be lumped together as the “thick disk”
with no practical or conceptual difficulty. However, the pref-
erence for a small number of intermediate components, and
the consistency of that number across all simulated and real
datasets, also raises the intriguing possibility that the GMM
is identifying subpopulations of stars with different intrinsic
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Figure 4. Augmented Toomre diagram (Vy versus Vyxz versus
[Fe/H]) contours of the best-fit five-component mixture model to
the m12f -LSRO mock Gaia-APOGEE catalog. The top right panel
shows the distribution of probabilities of belonging to each compo-
nent for the different stars in the sample. In this model, two com-
ponents can be identified unambiguously as the thin disk (magenta:
metal-rich component with a narrow velocity distribution around
the solar velocity) and another as the halo (purple: metal-poor com-
ponent with a broad rotational velocity distribution around zero).
Additionally, there are three progressively broader and more metal-
poor components that together span the difference between these.

properties or different origins. We will evaluate this possi-
bility, and analyze the intermediate components in detail, in
§4.1.

We can verify the correspondence between the traditional
components of the Solar neighborhood and these Gaussian
components by examining the distributions of various prop-
erties not used to derive the model. For example, if the most
metal-rich component truly corresponds to a traditional “thin
disk,” then stars in this component should have a narrow dis-
tribution of heights above the disk plane, young ages, en-
hanced alpha abundances, and formation distances close to
their present-day locations.

In Figure 5 we show a series of one-dimensional distri-
butions of various stellar properties for each component in
the same mock catalog. The probability panel is the same
as the top-right panel of Figure 4 and colors of the compo-
nents are the same as in that figure; the overall distribution
is shown in grey where applicable. In contrast to Figure 4,
which uses the GMM as a classifier and thus includes only
stars with p;(X) > p;-(X) in each component, these distribu-
tions are calculated by weighting each star’s contribution by

its probability of belonging to that component. This illus-
trates the power of mixture modeling to permit full proba-
bilistic analysis, which is especially important given the de-
gree of overlap between populations (illustrated by the prob-
ability distributions shown in Figure 4, which contain many
intermediate values).

As seen in the top row of Figure 5, the velocity distri-
butions of these three intermediate components bridge the
gap between stars rotating in the disk plane with the Sun
(Vv = Vv, shown with a vertical dashed line) and stars or-
biting in a broader distribution centered on the Galactic cen-
ter. However, the inclusion of [Fe/H] as a fourth component
shows that there is indeed some additional information in
this distribution: components with lower mean metallicities
which include metal-poor stars tend to have a broader ve-
locity distribution. In the standard picture of galaxy forma-
tion, metal-poor stars originate predominantly from a galaxy
merger and it is anticipated that they have a broader/more
spheroidal velocity distribution. However, recent observa-
tions show that the Milky Way’s metal-poor stars have strong
preference to be on prograde disk orbits (Sestito et al. 2019;
Sestito et al. 2020). The similar behavior of metal-poor stars
is shown for 11 of the 12 galaxies from the FIRE-2 simu-
lation suite, including two of the simulations that we use in
this work (m12f , and m12m ) (Santistevan et al. 2021). The
only galaxy among the 12 that does not show prograde orbits
for metal-poor stars is m12i and the reason for this might
be that all mergers occurred at about the same time, which
could have distorted any coherent effect (Santistevan et al.
2021). This preference of metal-poor stars helps us to un-
derstand the velocity asymmetry that we see in Figure 5 for
the halo component and the most metal-poor thick-disk-like
component.

The other panels in Figure 5 show quantities that were not
used in constructing the mixture model:

* the formation distance dr,mwhere the star particle
from which each mock star was spawned relative to
the main galaxy;

* the height |z| above the disk plane;
* the magnesium-to-iron abundance ratio;

* the stellar age.

These distributions can help us assess how the components
identified by the model map onto ideas about the structure of
the Solar neighborhood outlined in §1.

We track the approximate formation locations of each star
particle in the simulated galaxy, relative to the center of
the main halo at the time of formation, by post-processing
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Figure 5. Distribution of various properties of stars in each component of the best-fit mixture model, for the m12f -LSRO mock catalog. As
with all our mocks, one component (dark purple) is halo-like, one (magenta) is thin-disk-like, and three (rose, orange, and black) represent
intermediate populations whose properties vary with LSR and formation history. The overall distribution for all stars in this sample is shown
in grey. The upper right panel shows drormdistributions and stars with drorm > 20 kpc are considered to be accreted. The accreted fraction of the
total sample is about 2 percent and for the halo component it is about 20 percent. All five components have different age and alpha abundance

distributions and these properties are not used to construct the model.

the Gizmo® snapshots saved from the simulation (Wetzel &
Garrison-Kimmel 2020). We define dfymas the distance of
the star particle from the host galaxy center in the first snap-
shot after it is formed. As in Bonaca et al. (2017) and Sander-
son et al. (2017), we consider stars with dgor > 20-30 kpc
to be accreted depending on the simulation (see Figure 1 of
Sanderson et al. (2017)), although the caveats discussed ex-
tensively in both those works apply here as well. In short, this
can be considered a conservative definition of the accreted
stellar component.

Overall, we see that the distribution of the magenta com-
ponent closely resembles what would be considered the thin
disk: exclusively young, metal-rich stars formed inside the
galaxy, with alpha-to-iron ratios close to solar, orbiting with
the Sun near the disk plane. Likewise the dark purple com-
ponent pretty clearly fits our expectations for the halo: ve-
locities consistent with a kinematically hot spheroid (slightly
counter-rotating in some cases), a broad spatial distribution,
and exclusively old, metal-poor, alpha-enhanced stars. These
two components are clearly identifiable in the best-fit mixture
model for all nine mock catalogs. Given the clear parallels
between these two components and standard interpretations
of stellar populations, we will refer to them as the thin disk
and halo for short in the remainder of the paper. For these
two components the formation distance of the stars also sup-
ports classical theories about their origin: stars in the thin
disk component all formed within 25 kpc of the Galactic cen-
ter, while about 20 percent of the halo component was formed
beyond 20 kpc, where for this simulation most material can

4 https://bitbucket.org/awetzel/gizmo_analysis

be considered accreted rather than formed in situ. Interest-
ingly, more than half of the stars in the halo component have
an origin consistent with our picture of an early spheroid: ex-
tremely old ages and low metallicity, yet formed within the
main galaxy. These stars come from early, extremely bursty
epochs of star formation seen in the simulations (El-Badry
et al. 2018; Yu et al. 2020; Muratov et al. 2015; Sparre et al.
2017; Faucher-Giguere 2018). The accreted fraction the halo
component of m12f, m12i, and m12m simulations is about
20%, 10%, and 25% respectively, these percentages depend
on assembly history of each simulation and these three simu-
lations have different accretion histories. In each simulation,
the accreted fraction of each component is almost the same
(within 1-2 percent) in the three different LSRs and also the
the accreted fraction of all stars is the same in all nine mocks
(about 2 percent).

From the velocity and metallicity distributions, it is under-
standable how these two components, comprising the oldest
and the youngest stars in the sample, are most easily picked
out by the model with certainty. In the age distribution, which
is not used in our model, they are also very well separated.
They are most consistent with a Gaussian velocity distribu-
tion, though for two very different reasons: one has barely
been transformed from its birth distribution at all while the
other has evolved for many dynamical times. They also pick
out the metal-poor tail and metal-rich peak of the total stel-
lar distribution, respectively, making these stars particularly
easy to classify.

4.1. Thick Disk Decomposition

The remaining three components, which together make up
what would traditionally be referred to as the “thick disk,”
lie intermediate to the thin disk and halo components in all
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Figure 6. The distribution of the inclination angle of stars relative
to the disk plane at the time of formation for all components of
the m12f -LSRO mock catalog. The orange component has a much
flatter distribution than the other two intermediate components (rose
and black), but it is still not as flat as the distribution of the halo
component (purple).

the characteristics we examined. The separation of this inter-
mediate population into multiple components could indicate
less consistency with the assumptions of the model, a more
complex origin, or some of both. In this section we discuss
these three components in detail.

The component shown in orange most resembles the halo
component in terms of its velocity, metallicity, and z distri-
butions, but differs in a few important respects. First, there
are some younger stars present than in the halo component
(purple); and second, although there are a few stars present
formed at larger distances, the overall makeup of this sam-
ple resembles the total Solar neighborhood in terms of its ac-
creted fraction (about 1 percent). The stars in this component
are also slightly more metal-rich than the halo, and notably
less alpha-enhanced.

Moreover, from Figure 6, which shows the distribution of
the inclination angle of stars relative to the disk plane at the
time of formation, we can see that this component has a much
flatter distribution than the other two intermediate compo-
nents, but it is still not as flat as the distribution of the halo
component. The rose and black components also have dis-
tinct distributions in this view: most of the stars in the rose
component have Ogym< 7/4 (i.e. are formed quite close to
the galactic plane), while the black component has a longer
tail at higher fyp,.

The three components also show differences in their age
and alpha abundance, two other features that were not used
in classifying them. Figure 7 shows the distribution of age
versus alpha for these three components, obtained by clas-
sified stars as shown in Figure 4. The rose component has
younger, less alpha-enhanced stars, which is consistent with
the picture given by its formation angle distribution that these
stars formed after the disk plane is well established and the
disk relatively cold. In these simulations, this is usually due
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Figure 7. The distribution of age-alpha for three intermediate (thick
disk) components of the m12f -LSR0O mock catalog. The rose com-
ponent has younger, less alpha-enhanced stars, which is consistent
with the picture given by its formation angle distribution (Figure 6).

to an influx of cold, high-angular-momentum gas at rela-
tively late times (Garrison-Kimmel et al. 2017). Conversely,
the orange component includes the oldest and most alpha-
enhanced stars of the three, consistent with the picture that
these stars formed earlier when the disk was kinematically
hotter (often because of a wider distribution of angular mo-
mentum in the cold gas accretion).

The GMM used to classify the stars in these components is
based solely on 3D velocities plus iron abundance, yet we
see that they have different age and [Mg/Fe] distributions
and are formed in different locations relative to the galactic
center (drm) and to the disk plane at the time of formation
(Bform). Furthermore, while the thin disk and halo compo-
nents are consistently identified in every mock catalog, the
characteristics of intermediate components identified in dif-
ferent simulations (which have different assembly histories)
are markedly different. If the GMM were simply decompos-
ing the asymmetric drift in a combination of Gaussians, it is
highly unlikely that all these differences would be apparent.
We thus argue that the mixture model is indeed identifying
components with different physical origins within the thick
disk.

4.2. Dependence on position in the galaxy

With mock catalogs, it is possible to study how the distri-
bution of stars in the augmented Toomre space varies as a
function of position in the Galaxy. The solar position within
the simulation is a fairly arbitrary choice since the simulated
galaxy does not resemble the Milky Way in its detailed struc-
ture, such as the position and number of spiral arms, the size
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and orientation of a bar, or the number and location of tidal
streams in the halo. To illustrate how the augmented Toomre
diagram changes as a function of location, and to test the
sensitivity of this approach to the choice of solar position,
we generated different catalogs for three solar locations in
each simulated galaxy. They have 120 degree displacement
with each other on the solar circle. As shown in Figure 3,
the behavior of the BIC and the number of preferred mixture
components is consistent across different solar locations; im-
plying that this technique will be successful when applied to
the real data regardless of the local variations in the density
or distribution of stars.

Figure 8 shows that the characteristics of the components
identified by the model are not completely the same in all
of the nine mock catalogs, but in all of them we have three
components for the thick disk. In addition to position depen-
dence in the galaxy, these differences can depend on assem-
bly history of each simulation since these three galaxies have
different relative formation times and accretion histories.

4.3. Dependence on assembly history

Many scenarios have been proposed for the origin of the
thick disk. It may emerge from stars migrating outward from
the hot, inner disk (e.g. Loebman et al. 2011), from a turbu-
lent interstellar medium (ISM) (e.g. Bournaud et al. 2009) or
a gas-rich merger (e.g. Brook et al. 2004) at high redshift,
from a satellite dynamically heating a preexisting stellar disk
(e.g. Villalobos & Helmi 2008), or from the accretion of stars
stripped from satellites (e.g. Abadi et al. 2003). In addition to
each of these single-origin theories, the thick disk could also
arise from various combinations of these processes at differ-
ent times. Moreover, in these simulations, since there was not
always a single main progenitor, the definition of in/ex-situ
for for early-forming stars is complicated (Santistevan et al.
2020).

Figure 8 shows formation distance of stars versus their age
in each component. For each simulation we can see the de-
pendence on position in the galaxy (different LSRs) and by
comparing simulations to each other, we are able to see the
dependence on assembly history. In addition, the movies
available here’ show the formation and spatial evolution of
each component over time.

In m12f (top 3 rows), we see that the halo component
is clearly accreted, but includes the very earliest star forma-
tion in the main halo as well. The oldest thick disk compo-
nent (orange) is mostly composed of stars that formed very
early on near the galaxy center and radially migrated out-
ward (El-Badry et al. 2016; Ma et al. 2017b; El-Badry et al.
2018). It also has some stars from a merger that comes in
on a nearly co-planar orbit late in the simulation (bouncing

5 https://web.sas.upenn.edu/dynamics/data/ananke-2a

track at high dfym ). This leads to a far lower mean metallicity
for this component than for the other two thick disk compo-
nents (black and rose). These also mostly form interior to the
solar circle, but at more intermediate radii, starting and fin-
ishing their star formation later than the orange component.
The movie of these components shows they also have some
initial diskiness. The disk in this simulation starts out per-
pendicular to what ends up being the disk plane at present
day, and is torqued by a merger into its present configura-
tion. These intermediate components thus show the stages of
inside-out formation in the disk, modified by merger interac-
tions that scatter young stars formed near the solar circle, by
the rotation of the disk during the merger, and by “blurring”
(the selection effect that Solar neighborhood stars are pref-
erentially near apocenter). These two intermediate compo-
nents are also staggered in age, especially in LSRO, and this
is reflected in the systematic variation of their mean [Fe/H].
Closer to z =0, we see that the two later-forming thick disk
components also contain stars that were scattered onto orbits
that intersect the solar circle by the late interaction with the
merging galaxy, especially in LSR1 and LSR2. The thin disk
forms latest, after the merger torques all the thick disk stars
vary rapidly over into its preferred plane from a nearly 90-
degree angle. There is blurring here as well in that the stars
in the thin disk mostly come from interior to the solar circle,
but the central part is almost empty since these are stars on
the most circular orbits. This component is also scattered by
the merger; it looks like perhaps some stars are removed due
to the interaction, transferred to the higher-dispersion com-
ponent.

Examining m12i (middle three rows), we see that its differ-
ent history is reflected in the classified components, but that
the same set of mechanisms is present: accretion and early
star formation in the halo component, young stars and blur-
ring in the thin disk, and radial migration and heating in the
three thick disk components, which pick out stars of different
ages formed in different regions: the most metal-poor com-
ponent (orange) is also the oldest and most transformed by
radial migration; the intermediate component (black) shows
the classic combination of blurring and radial transport; the
youngest and most metal-rich (rose) actually resembles the
thin disk in some respects, but its stars are mostly older, have
a broader velocity distribution, and show a greater alpha en-
hancement. Here the different solar positions do not differ
as much as in m12f , a reflection of this simulated galaxy’s
overall much calmer late-time history that leads to a well-
mixed system. This is also reflected in the larger difference
between the halo metallicity and the disk-like components,
and in the systematic variation of the mean metallicities of
the disk-like components.

Finally, in m12m we find yet another superposition of the
different formation channels. Here we see stars with high for-



10°

10°

10!

o (kpe)

10°

107!

107!

10°

10?

10t

dom (kpc)

10°

107!

107!

NEW FAMILIES IN OUR SOLAR NEIGHBORHOOD

ml2f

11

m12f - LSR0O
([Fe/H]) =-0.023 ([Fe/H]) =-0.141 Fe/H]) = -0.086
0 5 10 15 0 5 10 50 5 10 15 0 5 10 15 15
Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr]
Perturbed disk stars
ml2f - LSR1
. Early SF
Radial mixing [
([Fe/H]) = 0.007 ([Fe/H]) = -0.188 Fe/H]) =-0031 ([Fe/H]) = -0.547
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr]
m12f - LSR2
([Fe/H]) = 0.016 ([Fe/H]) = -0.008 Fe/H]) = -0.058 (Fe/H)y =-0617
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr]
ml2i
o " Growth S . Early accretion
m12i - LSRO ‘inside-out” Growth Sequence ~—
— 1
D [B] (Al
Bulgc/ Early SF
([Fe/H]) = 0.029 ([Fe/H]) =-0.135 ’ Fe/H]) = 0.006 ([Fe/H]) =-0.92
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr]
m12i - LSR1
([Fe/H]) = 0.033 ([Fe/H]) = -0.135 Fe/H]) = 0.039 ([Fe/H]) = -0.855
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr] Age [Gyr]
m12i - LSR2
([Fe/H]) = 0.022 ([Fe/H)) = -0.087 Fe/H]) = 0.058 ([Fe/H)) = -0.773 )
0 5 10 15 0 10 15 0 5 10 15 0 10 15 0 5 10 15

9
Age [Gyr]

5
Age [Gyr]

5
Age [Gyr]

Age [Gyr]



12 NIKAKHTAR ET AL.

ml2m

10°

m12m - LSRO

10

10!

10°

([Re/])

[Fe/H)) = 0.146

107!

([Fe/H]) = -0.691

0 5 10 15 0

5 10 150
Age [Gyr] Age [Gyr]

Age [Gyr] Age [Gyr] Age [Gyr]

10 15 0 5 10 15 0 5 10 15

10°

out” Growth Sequence

ml2m - LSR1

Early ~1:1 merger

Fe/H]) = 0.158

\ Early in situ

Bulge ([Fe/H]) = -0.636

0 10 15 0 5 10 5 0

5
Age [Gyr] Age [Gyr]

5
Age [Gyr] Age [Gyr] Age [Gyr]

10 15 0 5 10 5 0 5 10 15

2m - LSR2
10% ;

10t

10°

Fe/H}) = 0.134

([Fe/H]) = -0.687

0 5 10 15 ;i
Age [Gyr] Age [Gyr]

10 15 0 5 10 15 0 5 10 15

Age [Gyr] ‘Ago [Gyr] Age [Gyr]

Figure 8. Formation distance - age for each component in all simulations. Some major events in each simulation are annotated in each panel
(e.g. radial mixing, “inside—out” growth sequence, merger, etc.) The intermediate components show the stages of inside-out formation in
the disk, modified by merger interactions that scatter young stars formed near the solar circle, by the rotation of the disk during the merger,
and by “blurring” (the selection effect that Solar neighborhood stars are preferentially near apocenter). In m12f simulation the intermediate
components contain stars that have been heated by interactions with satellite galaxies such as Sagittarius or a late merger. The halo components
of m12m panels support the idea that the majority of the halo component is from one or two early, massive mergers.
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Figure 9. Bayes information criterion (BIC) over the number of
stars versus the number of components of mixture models for the
real Gaia DR2 - APOGEE DR16 crossmatched catalog (compare to
Figure 3 for the mock catalogs).

mation distance even in the thin disk component, and across
all the others. These stars come from a ~1:1 merger at z ~ 2

that results in a starburst across the whole galaxy; a hand-

ful of these even end up on thin-disk-like orbits.® There are
traces of this merger scattered among all the components but
the bulk of its stars are in the halo (dark purple) where it
is apparent as a thick descending line at high age. We also
see some variations in the makeup of the thick disk compo-
nents at different solar positions: in two cases (LSRO and
LSR?2) there are two components with similar average metal-
licities of around —0.2 that are very old stars likely related to
the merger starburst, and another population at much higher
metallicity (around 0.0) that looks more like a classic radially
migrated distribution. In the other case (LSR1) the propor-
tions are reversed, and so are the average metallicities (now
two components have [Fe/H]~0 and one has [Fe/H]~ —0.2).

To summarize, we find that across all simulations and solar
locations, the components of our mixture models generally

6 Since the merger is roughly equal mass, it is somewhat arbitrary which

galaxy is the main progenitor.
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Figure 11. Augmented Toomre diagram for the 5-component mix-
ture model of the real Gaia-APOGEE catalog (compare to Figure 4
for the mock catalog).

correspond to different formation channels for their stars, in-
cluding the decomposition of the thick disk into multiple sub-
components. These can be disambiguated to some extent by
the grouping of the mean metallicities of the different com-
ponents, which varies based on the specific formation chan-
nels involved for each galaxy, or by examining distributions
of other elemental abundances if these are available.

5. MIXTURE MODELS OF THE REAL GAIA-APOGEE
CATALOG

We next constructed a mixture model of the real Gaia DR2-
APOGEE DR16 crossmatched catalog. As before, we tried
models with different numbers of Gaussian components and
used the Bayes Information Criterion to choose a preferred
number of components. Figure 9 shows that as with the mock
catalogs, the model with 5 components provides a significant
improvement over fewer-component models, while adding
additional components improves the performance far less.
We therefore proceed with 5 components as for the mock
catalogs.

In Table 1, we present the coefficients of the five-
component Gaussian mixture model trained on the real Gaia-
APOGEE dataset (different components of the model are de-
fined by their colors). This trained model can be used to iden-
tify members of these components in other surveys (§6). The
correlation matrices in this table show that for the thin disk
component there is a strong correlation (large off-diagonal
elements) between Vx and Vy, pointing towards a cylindri-
cal symmetry and Vi, V4 as coordinates. However, for other
components this is not as strong; the halo component in par-
ticular is correlated similarly strongly in Vx and Vy and in Vx
and V, which suggests spherical symmetry as expected.

In Figure 10, the left panel shows the residual plot of our
GMM model in the {Vyx,Vy} plane, and the right panel is
the density plot of the stars in the solar neighbourhood. In
the residual plot, we compare the kernel density estimation
(KDE) of the stars in that plane with the GMM probabil-
ity estimation, which shows the over- and under-estimation
locations of the density. The positions of the centres of
the stellar moving groups according to Antoja et al. (2008,
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Table 1. Best-fit Gaussian mixture model for the real Gaia-APOGEE catalog.
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Figure 12. Distribution of various properties of stars in each component of the best-fit mixture model, for the real Gaia-APOGEE catalog. We
do not have the drormvalues and ages for the real catalog, APOGEE provides magnesium-to-iron ratios, Gaia provides heights above the disk

plane at present day, and the astroNN Value-Added Catalog provides ages.

2010) are shown in the residual plot. The dashed lines
show the approximate trace of the branches and they are at
the same levels in both plots. They show that over[under]-
estimation of the density occurs at the locations of physical
under[over]densities. The Sirius, Coma, Hyades, Pleiades,
Hercules, and HR 1614 moving groups are clearly matched
with our over/under estimated regions and this shows that our
GMM model is classifying structures on larger scales than
individual moving groups, and could potentially be used to

remove the underlying smooth component for better study of
these groups.

Figure 11 shows the augmented Toomre diagram for
the best-fit S-component Gaussian mixture model of Gaia-
APOGEE. The components identified are strikingly similar
to those picked out by the best-fit model for the mock cata-
log (Figure 4). This is borne out by examining the distribu-
tions of various other stellar properties in Figure 12: though
(sadly) we cannot show the diyvalues and ages for the real
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Figure 13. The distribution of orbital eccentricity from astroNN
catalog. Stars of the halo component have more elliptical orbits and
thin disk stars are on circular orbits. The three thick disk compo-
nents in this space are also different from each other.

catalog, APOGEE provides magnesium-to-iron ratios, Gaia
provides heights above the disk plane at present day, and
the astroNN Value-Added Catalog provides ages and esti-
mated orbital properties (Leung & Bovy 2019; Mackereth
et al. 2019). For this catalog, in addition to quality cuts that
we apply on the observed and mock catalogs, we select the
astroNN ages for stars at [Fe/H]> —0.5 because there is not
any training set stars for the catalog with low metallicities.
The age distributions panel in Figure 12 is from the astroNN
Value Added Catalog and it shows the same pattern as in the
mock catalogs: an exclusively old halo component, a young
thin disk, and three intermediate groups with distinct distri-
butions. The rose and the black components are close to each
other in age, but the orange component is much younger on
average.

Figure 13 shows the orbital eccentricity distributions of the
real data, respectively, for subpopulations classified using our
mixture model. From the orbital eccentricity distributions,
we see that stars in the halo component have more elliptical
orbits and thin disk stars are on circular orbits, also as ex-
pected. The three thick disk components in this space are
also different from each other; the orange component con-
tains orbits that are generally more circular than those in the
black and rose components.

Examining the alpha abundance distributions bears out our
intuition from the mock catalogs as well. The Milky Way
famously has a bimodal distribution in [a/Fe] (e.g. Nidever
et al. 2015; Hayden et al. 2015) and we see that the least
alpha-enhanced stars are associated with the thin disk com-
ponent, while the halo includes the most enhanced ones. The
black and rose components include some stars with both al-
pha abundances while the orange component is mainly com-
posed of stars with some alpha-enhancement, but less than
the other two. However, the black and rose components
are not completely identical: the metallicity distribution for

the black component extends to Solar metallicity and above
while the rose component truncates at lower [Fe/H]. The
black component also has a larger tail at high Vy, extending
as far as the orange component does, while the rose compo-
nent is somewhat less extended in random energy. Interest-
ingly, the orange component has higher mean Vy than all but
the thin disk, yet also the widest spread in Vx of any but the
halo component.

6. DISCUSSION

In this paper we derived a best-fit, 5S-component Gaus-
sian mixture model of the Solar neighborhood in augmented
Toomre space (velocities plus iron abundances). Despite ex-
tremely limited assumptions, the components picked out by
the model in both the mock and real Gaia-APOGEE cata-
logs generally reflect common interpretations of the origin
of various kinematic subpopulations. Based on our parallel
analysis of simulated data, the model appears to be flexible
enough to accommodate both asymmetric drift and thick disk
subpopulations with different histories.

6.1. Origins of the families in our neighborhood

In §5 we discuss the properties of the five components
identified by our mixture model in the Gaia-APOGEE cross-
match. By analogy with similar distributions in our simu-
lations, we propose the following scenario that is consistent
with the properties of these different components and with
other observations of the Galaxy.

(a) The halo component is extremely old yet has a rela-
tively high mean metallicity, resembling the early his-
tory of m12m . This supports the idea that the majority
of the halo component is from one or two early, mas-
sive mergers (e.g. Belokurov et al. 2018b; Helmi et al.
2018b; Myeong et al. 2019; Horta et al. 2020; Santis-
tevan et al. 2020).

(b) The most metal-rich thick-disk-like component (12
in table 1; shown in orange) has very high random en-
ergy yet still orbits nearly at the Solar circular veloc-
ity, and appears to be made up mostly of stars with
solar values of [« /Fe] or slightly higher with younger
estimated ages. This resembles intermediate compo-
nents in our m12f simulation that contain stars dis-
turbed by a late merger. We propose that this compo-
nent contains stars that have been heated by inter-
actions with satellite galaxies such as Sagittarius (e.g.
Villalobos & Helmi 2008; Sheffield et al. 2018; Antoja
et al. 2018; Laporte et al. 2018; El-Badry et al. 2018;
Ma et al. 2017a).

(c, d) The two metal-poor thick-disk-like components One
component (I3, shown in black) has a random en-
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Figure 14. Spatial (top row) and velocity (bottom row) distributions of components 11, 12, and I3 in the mixture model of the real data. The
black component (I3) contains stars with preferentially negative Vz, while the rose component (I1) has mostly stars with positive V. These two
components comprise the velocity-asymmetric, alpha-enhanced thick disk, with one component used to represent each side of the “wave.” The
most metal-rich thick-disk-like component (I2; orange) has very high random energy orbits nearly at the Solar circular velocity, and contains
stars that have been heated by interactions with satellite galaxies such as Sagittarius.

ergy distribution as wide as 12 and extends to simi- thick disks seen in all three simulations, but given
larly high metallicity, but has lower orbital velocity the MW’s quiet recent accretion history, seem most
and contains far more alpha-enhanced stars. It also closely to resemble the black component of the three
seems to contain stars with preferentially negative V, m12i simulations.

while the other component (I1, shown in rose) has

mostly stars with positive Vz (Figure 14). 11 also (e) The thin disk component contains young, non-alpha-
has a slightly narrower Vxz distribution and slightly enhanced stars consistent with recent star formation
higher mean Vy, but is otherwise elementally and spa- in a cold gas disk, after a late influx of gas that re-
tially similar to I3. These two components comprise set the local [ar/Fe] ratio (e.g. Mackereth et al. 2017,
the velocity-asymmetric, alpha-enhanced thick disk 2018, Wetzel et al. (in prep.)).

(Widrow et al. 2012), with one component used to rep-

resent each side of the “wave.” Consistent with ob- Finally from the weights 7 in Table 1 we can estimate the
servations of the velocity asymmetry (e.g. Figure 3 of proportion of stars with each of these origins in the APOGEE
Widrow et al. 2012), we find that the negative-velocity (i.e., evolved-star) view of our Solar neighborhood. Accord-
component (I3) has a wider velocity spread and in- ing to our mixture, the APOGEE sample is 4% halo (a),
cludes stars both above and below the disk, while the 22% interaction-heated (b), 27% radially mixed, asym-
positive-velocity component (I1) is more coherent in metric thick disk (c, ), and 46% thin disk (e). We caution
velocity, more spatially confined, and slightly prefers that this breakdown is modulated by the APOGEE selection
positive z (Figure 14). In terms of formation mecha- function; we plan to correct for this in future work using our

nism, these components resemble the radially mixed new mock catalogs as a testbed.
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6.2. Further applications of the mixture model

Our strategy offers a probabilistic approach for selecting
stars that are likely to belong to a particular population, as an
alternative to making hard cuts on the data, through analogy
with state-of-the-art simulations of galaxies. The resulting
model can be used either to classify and study the stars within
the modeled dataset (in this case the Gaia-APOGEE catalog),
or to predict the composition of other datasets that measure
the same parameters.

A trained Gaussian mixture model can be used to identify
members of its components in any data set where the same
features are available. To identify structural components of
the Galaxy, we built a mixture model using 3D kinemat-
ics and metallicities of stars observed with Gaia-APOGEE,
but this model can be used to probabilistically classify any
star with a measured 3D velocity and [Fe/H]. Care should
be taken to use the same metallicity scale when combining
data from multiple sources. The “validity volume”, where
the GMM has been constructed, should be considered as
well. An already-trained mixture model is especially useful
for identifying members of Galactic components in smaller
surveys, or ones which have a more complicated selection
function, and are thus unlikely to independently constrain a
mixture model. This is likely to be especially useful given
that while Gaia provides all-sky coverage for proper motions
and distances, radial velocities and elemental abundances for
most stars are determined by an ensemble of ground-based
spectroscopic surveys, each with a different selection func-
tion, sky coverage, and target depth. Mixture modeling will
thus supply a crucial tool to relate stars in the same popula-
tion that have been observed by different instruments, unify-
ing our chemodynamical view of the Galaxy.
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