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ABSTRACT

High-end computer systems increasingly rely on heteroge-
neous computing resources. For instance, a datacenter server
might include multiple CPUs, high-end GPUs, PCIe SSDs,
and high-speed networking interface cards. All of these
components provide computing resources and operate at a
high bandwidth. Coordinating the movement of data and
scheduling computation across these resources is a complex
task, as current programming models require system devel-
opers to explicitly schedule data transfers. Moving data is
also inefficient in terms of both performance and energy
costs: some applications running on GPU-equipped systems
spend over 55% of their execution time and 53% of energy
moving data between the storage device and the GPU.

This paper proposes Gullfoss, a system that provides
a simplified programming model for these heterogeneous
computing systems. Gullfoss provides a high-level interface
for specifying an application’s data movement requirements,
and dynamically schedules data transfers while accounting
for current system load and program requirements. Our ini-
tial implementation of Gullfoss focuses on data transfers be-
tween an SSD and a GPU, eliminating wasteful transfers to
and from main memory as data moves between the two. This
saves memory energy and bandwidth, leaving the CPU free
to do useful work or operate at a lower frequency to improve
energy efficiency.

We implement and evaluate Gullfoss using commercially
available hardware components. Gullfoss achieves 1.46×
speedup, reduces energy consumption by 28%, and im-
proves energy-delay product by 41%, comparing with sys-
tems without Gullfoss. For multi-program workloads, Gull-
foss shows 1.5× speedup. Gullfoss also improves the perfor-
mance of a GPU-based MapReduce framework by 10%.

1. INTRODUCTION

The growing size of application data, coupled with the in-
troduction of heterogeneous computing resources and high-
performance storage and network devices, is reshaping the
computing landscape. Increasingly, application performance
is determined by how efficiently data can can be moved be-
tween diverse hardware components. For instance, we found
that moving data accounts for 55% of execution time for the
Rodinia GPU benchmark suite [1].

As high-speed interconnects like PCIe enable fast, low-
latency communication between devices, applications still
must rely on the entrenched CPU-centric programming and
execution model in which the CPU first transfers data from
the source to main memory and then from main memory
to its destination. Many modern systems support a more
efficient transfer mechanism – peer-to-peer transfer over
PCIe [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] – but soft-
ware support for this approach is inconsistent and, even if
it is present, the programmer must choose between transfer-
ring data through main memory or using peer-to-peer com-
munication. The result is that programming heterogeneous
systems is cumbersome and it is difficult for programmers
to make the best use of available peripherals and PCIe and
memory bandwidth.

This paper presents Gullfoss, a framework that maximizes
the efficiency of data movement between peripherals within
a system. The Gullfoss interface allows programmers to
specify data transfer requirements at a high level and then
the Gullfoss runtime implements them efficiently using the
available communication mechanisms and taking into ac-
count the current state of the system.

Since Gullfoss automatically selects the most efficient
route of carrying application data, applications that use Gull-
foss are agnostic to the underlying interconnect technology.
As new interconnects emerge, Gullfoss could be extended
to utilize them as well without requiring changes to applica-
tions.

One of Gullfoss’s strengths is its ability to leverage peer-
to-peer transfers between peripherals. Avoiding a round trip
through memory provides multiple benefits. First, it reduces
transfer latency by removing the main memory and the CPU
from the data path. Second, it frees the CPU to perform
useful work rather than managing data movement. Third, it
reduces contention for TLB (Translation Look-aside Buffer)
entries and memory bandwidth. Finally, if there is no useful
work to do on the CPU, the CPU can shift to a low power
mode to save energy.

To demonstrate the effectiveness of Gullfoss, we have
used it to optimize the data transfer between NVM-Express
(NVMe) [14] high-speed solid-state disks (SSDs) [14, 15,
16] and general-purpose GPUs (GPGPUs). To accomplish
this we also implemented an extension of the existing NVMe
interface (called DirectNVMe) to support peer-to-peer trans-
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Figure 1: (a) The conventional GPGPU platform and (b) the process of moving data between the GPU and the SSD on
this platform

fers between NVMe SSDs and the GPUs.
This paper makes the following contributions:

• It presents Gullfoss, a framework that provides a sim-
ple, easy-to-use programming model and runtime sys-
tem for managing data movement in heterogeneous
computing systems.

• It proposes and implements DirectNVMe, an NVMe
extension to support peer-to-peer transfers between
SSDs and other devices (e.g., GPUs). This is the first
system we know of that implements direct data trans-
fers between commercially available NVMe SSDs and
GPUs.

• It evaluates Gullfoss and demonstrates the improve-
ment in performance and energy-efficiency that it en-
ables.

We implement Gullfoss and evaluate it in a system that in-
cludes an Intel Xeon processor, an NVIDIA K20 GPU, and
a high-end NVMe SSD. The experiments demonstrate that
for a single GPU-accelerated application, Gullfoss speeds up
application end-to-end latencies by 1.46× on average. Using
the default power management policy in Linux, Gullfoss re-
duces energy consumption by 28% and improves the energy-
delay product by 41%. With slower CPUs that consume less
power, Gullfoss becomes even more beneficial, speeding up
applications by 1.56× on average.

The performance advantage of Gullfoss is more signifi-
cant in a multi-program environment, as Gullfoss dynami-
cally spreads transfers across the available data paths when
multiple processes are sharing the same set of hardware
resources. Gullfoss can accelerate the execution multi-
program of GPU applications by 50% on average. Even
for the GPU-MapReduce framework that is highly optimized
for heterogeneous computing system [17], Gullfoss still im-
proves the performance of the framework by 10%

The remainder of this paper is organized as follows. Sec-
tion 2 describes the CPU-centric data transfer model cur-
rently used in heterogeneous computer systems and identi-
fies the importance of data movement to system efficiency.
Section 3 introduces the architectural supports that Gullfoss

relies on. Section 4 describes Gullfoss’s design, implemen-
tation, and programming model in detail. Section 5 de-
scribes the system and the benchmark applications that we
used to evaluate Gullfoss. Section 6 evaluates Gullfoss’s
performance and energy efficiency. Section 7 places Gull-
foss in the context of previous efforts. Section 8 concludes
this paper.

2. HETEROGENEOUS COMPUTING SYS-

TEMS

Heterogeneous computing systems bring together diverse
hardware resources such as GPGPUs and SSDs to improve
performance and efficiency. Figure 1(a) presents a typical ar-
chitecture for a heterogeneous computing platform equipped
with a GPGPU and an SSD. The GPU executes applica-
tion kernels that require high degrees of parallelism. The
CPU manages the execution of the kernels, performs com-
putations that are not suited to the GPU, executes system li-
braries, and manages the DRAM-based main memory. The
high-performance SSD holds input and output data and can
sustain several GB/sec of bandwidth. These system compo-
nents communicate through PCIe.

While this architecture allows programs to leverage the
performance of specialized components and provides more
computing resources than using APUs (Accelerated Process-
ing Units) [18, 19, 20], it also incurs costs in moving data
between these devices during execution. This data can add
large overheads to data-intensive applications.

In the current programming models for heterogeneous
computing systems (e.g., CUDA or OpenCL), the CPU
serves as both control plane and data plane. The applica-
tion requests a data transfer, for example, from an SSD to a
GPU. The SSD’s driver then transfers the data to a buffer in
DRAM via DMA before the GPU driver transfers it to the
GPU, again via DMA.

Figure 1(b) illustrates this process. Steps (1–6) transfer
data between the SSD and the GPU. In Steps(1–3), the ap-
plication creates file descriptors, allocates DRAM memory
buffers, and issues read() system calls. After the SSD di-
rectly accesses main memory in Step (4), the CPU allocates
space in the GPU (Step (5)) and, in Step (6), copies the data
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Figure 2: The (a) instruction count and (b) latency
breakdown for NVMe read commands under different
request sizes

from the main memory to the GPU memory. Steps (7–11)
show the same process in reverse as the program moves the
results of the GPU kernel back to the SSD.

The result is two useless copies that consume CPU time,
waste memory bandwidth, pollute TLBs and caches, and
consume DRAM. There are ancillary costs as well in the
form of extra run-time overheads and exception handling.

Figure 2 details the run-time overhead of this model on
a machine described in Section 5.1. We examine the num-
ber of CPU instructions and latencies required for read re-
quests varying from 4 MB to 32 MB. We start showing the
result from 4 MB since our smallest input file is 7 MB. Be-
cause the NVMe SSD we use here can accept at most 32 MB
data access in each I/O command, we stop at 32 MB. Fig-
ure 2 breaks down the CPU instructions and latencies into
three parts: “System library” covers most operations in Step
(1), including opening file descriptors and calculating the
LBAs (Logical Block Addresses) of requesting files. “Ker-
nel driver” represents the operations of Steps (3–4) that re-
quire the processor to set up DMA resources and interact
with the SSD. “GPU Memory Copy” includes the run-time
system costs of moving data from DRAM to GPU device
memory. We exclude the overheads of allocating DRAM
and GPU memory spaces in these tests. As Figure 2 presents,
the conventional programming model devotes 25%–50% of
its CPU instructions to moving data from DRAM to GPU
using the run-time system. This extra run-time overhead ac-
counts for 35%–55% of the latencies in our tests.

In addition to the system overhead, the conventional
model, combined with current SSD and GPU interfaces, pre-
vents programmers from utilizing the more efficient data
paths provided by emerging high-speed interconnects. For
example, PCIe allows each device to send data packets di-
rectly from one device to another if both peripherals pro-
vide architectural supports. AMD’s DirectGMA [3] and
NVIDIA’s GPUDirect [4] interface support peer-to-peer
transfers to network cards and, with some additional effort
(See Section 4.4), SSDs can support them as well. How-
ever, the current programming model requires significant re-
engineering to make use of these more direct transfers.

Figure 3 quantifies the significance of data movement
in nine GPGPU applications from the Rodinia benchmark
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Figure 3: The execution time breakdown of Rodinia ap-
plications
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tions

suite [1] running on a machine described in Section 5.1. It
breaks down the execution time into three different parts,
in which “Data movement” includes buffer allocation, data
transfer over PCIe and the memory bus, and access time for
the SSD and main memory. We modify Rodinia inputs to
use binary file formats to improve overall performance and
use read or write primitives to access the main memory
locations of application data. The size of the input data set is
shown in parentheses. Our experiments show that, on aver-
age, applications spend more than 55% of execution moving
data. Figure 4 breaks down compute and data movement en-
ergy usage in the same workloads. Data movement accounts
for 53% of total system energy.

3. ARCHITECTURAL SUPPORT FOR

Gullfoss

To establish direct data transfers between SSDs and
GPUs, Gullfoss requires architectural supports from NVMe-
compliant SSDs and GPUs [4] communicating through the
PCIe interconnect. This section provides a brief introduction
to these architectural supports.

3.1 GPU supports for Gullfoss

PCIe allows each device to send data packets directly from
one device to another, bypassing CPU and the main memory.
Supporting this peer-to-peer data transfer model requires the
devices to be able to map their device memory to PCIe base
address registers (BARs) in the PCIe controller/switch.

AMD’s DirectGMA and NVIDIA’s GPUDirect [3, 4] are

3



technologies that provide interfaces for software to program
PCIe peer-to-peer communication for GPUs. These tech-
nologies work together with the GPU hardware to first cre-
ate a pinned location in the GPU memory. After this opera-
tion succeeds, the device driver programs the PCI BARs; the
PCIe controller then makes the GPU memory region avail-
able to other PCIe devices connecting to the same controller.
Any PCIe device can issue read or write requests to the ad-
dresses that GPU makes available in the PCI BAR for data
interchange.

These GPU hardware and library supports allow Gullfoss
to make GPU device memory available in the PCIe inter-
connect. However, conventional SSDs cannot access GPU
device memory directly without supports like DirectNVMe
that we will discuss in Section 3.2 and Section 4.4.

3.2 NVMe SSDs and DirectNVMe

NVM Express (NVMe) is the emerging standard for PCIe
SSDs [14]. NVMe avoids the disk-centric legacy of SATA
and SCSI interfaces and leverages PCIe to provide scal-
able bandwidth. For example, 16-lane Gen3 PCIe supports
up to 15.754 GB/sec full-duplex data transfer, while SATA
can typically only achieve 600 MB/sec. NVMe also sup-
ports more concurrent I/O requests than SATA or SCSI by
maintaining a software command queue holding up to 64K
entries for each processor core, and its command set in-
cludes scatter-gather data transfer operations with out-of-
order completion, further improving performance.

Current NVMe SSDs cannot provide native support for
peer-to-peer data transfers with other PCIe devices, since
NVMe uses a doorbell model for PCIe communication and
does not map device memory for data accesses. This is be-
cause SSDs are block devices: Their internal data arrays are
not byte-addressable and require the SSD controller to trans-
late the logic block addresses into physical block addresses.
Furthermore, allowing other PCIe peripherals to access the
SSD’s data array directly and bypass the host operating sys-
tem could result in data integrity issues.

To overcome this limitation, this paper proposes and de-
velops DirectNVMe. DirectNVMe is an extension of the
NVMe interface that adds new ioctl-based read and write
commands to send data directly between SSDs and GPUs
(or, in principle, other devices). These read/write commands
resemble conventional read/write requests except that they
use GPU memory instead of main memory as the DMA tar-
get. The conversion takes place in the DirectNVMe driver: It
ensures that the GPU memory address is available for PCIe
peer-to-peer transfers and then issues normal NVMe read
and write commands using GPU memory addresses. When
the SSD receives the command, it reads or writes data di-
rectly from or to the GPU without further involvement of the
CPU or main memory. Because DirectNVMe still relies on
the CPU code to issue read/write commands, DirectNVMe
does not incur any new file system integrity issues.

4. GULLFOSS

Gullfoss decouples the control plane and the data plane for
applications and manages the low-level details of scheduling
and executing data transfers. This frees the CPU for more
important tasks and lowers the burden on the programmer.

Application

Gullfoss API

Gullfoss Router

DirectNVMe

PCIe Interconnect

GPU
NVMe
SSD

Operating 
system

Hardware

GPU 
runtime

NVMe

Gullfoss Kernel Module

Figure 5: The system components of Gullfoss

In many cases, this will improve latency by eliminating un-
necssary copies to and from main memory. This, in turn,
frees up CPU time and main memory bandwidth for more
important tasks. Finally, it can save energy, since the CPU
can, if there is no other work for it to do, run at a lower clock
rate or be put into a sleep mode.

Gullfoss relies on four components (shown in grey in Fig-
ure 5):

Gullfoss API: Gullfoss provides an API for programmers
to specify the sources and destinations for data transfers.

Gullfoss Router: The router selects the best route to carry
desired data transfers. It understands the file layout in the
storage devices and monitors resource availability on the
destination device to decide which transfer method to use.

Gullfoss Kernel module: The Gullfoss kernel module
maintains the runtime information from all processes using
Gullfoss and allows the router to make inter-process deci-
sions about resource allocation.

DirectNVMe: Gullfoss uses DirectNVMe (described in
Section 3.2) to perform peer-to-peer transfers between the
SSD and GPU.

We describe each of these in more detail below.

4.1 Gullfoss API

The Gullfoss API allows programmers to provide only the
sources and the targets of data transfers, and rely on Gullfoss
to handle the details.

Table 1 documents the API. The functions initialize the
environment for Gullfoss, create data access requests, per-
form data transfers, and release the resources when Gullfoss
is finished. The Gullfoss API interacts with the underlying
file system, operating systems, and the Gullfoss kernel mod-
ule to acquire permission for accessing files.

Figure 6 compares the source code of a simple GPU ap-
plication using CUDA (a) and Gullfoss (b). The Gullfoss
code is much shorter. It forgoes the malloc call in line 2
, the cudaMalloc calls of line 6, and cudaMemcpy calls
of line 7 and 10.

The resulting code (Figure 6(b)) is much simpler. Af-
ter the call to gullfoss_init() initializes the Gullfoss
runtime system, gullfoss_send() sends data from the
SSD to the GPU (Line 2). Once the function finishes, a

4



Synopsis Description
int gullfoss_init() The gullfoss_init() function initializes the Gullfoss runtime.
size_t gullfoss_send(const char

*filename, void **gpuMemPtr,
size_t offset, size_t size)

The gullfoss_send() function creates the Gullfoss task of sending data
from filename with offset to GPU memory location gpuMemPtr. If the
user passes a gpuMemPtr containing NULL, Gullfoss automatically allocates
the GPU memory space fits the input file or requested size.

size_t gullfoss_recv(const char

*filename, void *gpuMemPtr, size_t
offset, size_t size)

The gullfoss_recv() function creates the Gullfoss task of sending size
bytes of data from GPU memory location gpuMemPtr to the filename with
offset.

int gullfoss_deinit() This function releases the resource that Gullfoss uses for an application.

Table 1: The Gullfoss API.

1:  fp = open(filename, O_RDONLY|O_DIRECT);
2:  m = (float*) malloc(sizeof(float)*matrix_dim*matrix_dim);
3:  read(fp,m,sizeof(float)*matrix_dim*matrix_dim);
4:  close(fp);
5:
6:  cudaMalloc((void**)&d_m, 
      matrix_dim*matrix_dim*sizeof(float));
7:  cudaMemcpy(d_m, m, matrix_dim*matrix_dim*sizeof(float), 

     cudaMemcpyHostToDevice);
8:  lud_diagonal<<<1, matrix_dim>>>(d_m, matrix_dim);
9:
10: cudaMemcpy(m, d_m, matrix_dim*matrix_dim*sizeof(float), 

                               cudaMemcpyDeviceToHost);
11: store_matrix(m, matrix_dim);

(a)

1:  gullfoss_init();

2:  gullfoss_send(filename, (void **)&d_m, 0, 0);

3:

4:  lud<<<1, matrix_dim>>>(d_m, matrix_dim);

5:

6:  gullfoss_recv(output_filename, d_m, 0, 

                      sizeof(float)*matrix_dim*matrix_dim);

7:  gullfoss_deinit(); 

(b)

Figure 6: The CUDA and the Gullfoss programming
model (a) A simplified CUDA example LU Decomposi-
tion (LUD) code (b) the Gullfoss code

kernel running on the GPU can access the memory in d_m
(Line 4). When the kernel completes, gullfoss_recv()
moves data directly from the GPU to the SSD (Line
6), and releases any resources Gullfoss was using with
gullfoss_deinit() (Line 7).

4.2 Gullfoss Router

The Gullfoss router receives data transfer tasks from the
API, chooses the data transfer method, and schedules these
tasks. The Gullfoss system provides two routes for data
transfers. The preferred method is to move data using a Di-
rectNVMe peer-to-peer transfer. The secondary, more con-
ventional option is to send data to their destination through
the main memory.

Gullfoss uses the secondary option only if the GPU has in-
sufficient memory space to receive the incoming data. This
can happen when the GPU is under heavy load. In this case,
rather than holding the data while waiting to initiate a peer-
to-peer transfer, Gullfoss will move the data to main mem-
ory. When the GPU memory becomes available, Gullfoss
initiates a transfer from main memory to the GPU. This re-

sults in lower overall latency by overlapping SSD accesses
with ongoing GPU computation; in addition, the later data
transfer leverages the GPU and main memory bandwidth,
which is higher than SSD bandwidth.

Likewise, upon receiving an SSD write request that writes
from a GPU memory address, Gullfoss uses DirectNVMe
as the default data route. However, if the Gullfoss kernel
module reports that pending data read requests are already
buffered because of limited GPU memory, Gullfoss will use
the conventional NVMe to write data to the main memory
and free up the occupied GPU location. In this case, Gullfoss
can shorten the transition time between GPU kernels and
then overlap the upcoming GPU kernel computation with the
rest of the data write request.

To provide fair sharing among processors, an NVMe SSD
periodically polls the software-maintained NVMe command
queue for each processor [21]. As a result, the SSD can
under-utilize both internal access and outgoing bandwidth if
only one or two processes are issuing commands to the SSD.
The Gullfoss router fixes this problem by querying the occu-
pancy of the SSD’s NVMe command queues. If the queues
are nearly empty, the router boosts performance by running
multiple DirectNVMe transfers in parallel, improving band-
width.

4.3 Gullfoss kernel module

The Gullfoss kernel module serves as a synchronization
point that collects information about SSD resource utiliza-
tion from all running processes using the Gullfoss frame-
work.

In Gullfoss, the kernel module forwards the I/O requests
from the Gullfoss router to the underlying DirectNVMe or
NVMe system components. Therefore, the Gullfoss kernel
module can track the number of pending tasks and the uti-
lization of NVMe command queues from the system.

4.4 DirectNVMe

DirectNVMe allows Gullfoss to perform peer-to-peer data
transfers between the SSD and the GPU. Figure 7 illustrates
how Gullfoss uses DirectNVMe to avoid unnecessary copies
to and from main memory. After the Gullfoss API initiates
a file transfer and obtains a file descriptor from the operat-
ing system (Step (1)), the Gullfoss router requests a region
in the GPU memory (Step (2)). In Step (3), DirectNVMe
issues NVMe read commands that include the GPU memory
addresses to the SSD. Finally in Step (4), the SSD pushes
data directly from the SSD to the GPU using DMA, without
any CPU involvement.

To write computations to the SSD, DirectNVMe follows

5
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Figure 7: The process of establishing direct data access
channels for Gullfoss

Steps (5–7), which resemble Steps (1–4) except that Direct-
NVMe issues NVMe write commands instead of read com-
mands and pulls data directly from the GPU memory.

DirectNVMe requires pinning GPU device memory to a
BAR in the PCIe controller, which is a slow operation [4].
Therefore, the DirectNVMe module maintains a pinbuffer.
When an application calls gullfoss_init(), Gullfoss
pre-allocates a pinned memory region in the pinbuffer. Fu-
ture Gullfoss transfers reuse this pinned GPU memory and
avoid the overhead of manipulating PCIe BARs.

Some GPUs (e.g., the Tesla K20) use a BAR to limit the
GPU memory size that can be visible. For these systems, the
Gullfoss router performs transfers in chunks that fit within
those limits. When all the chunks have been transferred,
Gullfoss uses device-to-device memory copy to move data
between the pinned region of GPU memory and the actual
target GPU memory. More recent GPU accelerators such as
the Tesla K40 do not suffer from this limitation on BAR size.

5. EXPERIMENTAL METHODOLOGY

To evaluate Gullfoss, we use a test platform that contains
an Intel Xeon processor, the NVIDIA Tesla K20 GPU, and a
high-end PCIe-attached SSD using a PMCS controller. We
select nine applications in the Rodinia benchmark suite and
four workloads from the GPMR MapReduce framework and
integrate the Gullfoss library into these applications. This
section describes our test bed, benchmark applications, and
the process of evaluating the selected benchmark applica-
tions.

5.1 Experimental Platform

The testing platform uses an Intel Xeon E5-2609V2 pro-
cessor that contains 4 cores and a 10 MB shared L3 cache.
Each processor core runs at 2.5GHz by default. Each core
has its own private 32KB L1 D-cache, 32KB L1 I-cache,
and 256KB L2 cache. The on-chip memory controller in
this processor manages the 64GB DRAM main memory.

The GPU in our test bed is an NVIDIA Tesla K20 GPU
accelerator. The GPU contains 2496 CUDA cores and 5GB
GDDR5 memory on board. The GPU connects to the rest
of the components in the system through 16 lanes of the
PCIe interconnect, providing 8 GB/sec I/O bandwidth. The
card BIOS allows at most 192 MB of device memory to be

Input Size
Application Name Small Medium Large
Breadth-First Search 37 MB 587 MB 1.17 GB
(BFS)
Computational Fluid 16 MB 570 MB 713 MB
Dynamics (CFD)
2D Discrete Wavelet 7 MB 27 MB 106 MB
Transform (DWT2D)
Gaussian Elimination 67 MB 268 MB 1.07 GB
(Gaussian)
HotSpot 34 MB 537 MB 2.15 GB
Hybrid Sort 40 MB 200 MB 1.2 GB
Kmeans 41 MB 136 MB 1.36 GB
LU Decomposition (LUD) 17 MB 268 MB 1.07 GB
k-Nearest Neighbors (NN) 71 MB 570 MB 1.14 GB
GPMR-IntCount 128 MB 256 MB 512 MB
GPMR-Kmeans 128 MB 512 MB 1 GB
GPMR-LinReg 128 MB 512 MB 1 GB
(Linear Regression)
GPMR-MM 128 MB 512 MB 2 GB
(Matrix Multiplication)

Table 2: The applications and the input data sizes that
we used in this paper.

mapped to the PCIe BARs for peer-to-peer PCIe accesses.
We use an SSD supporting NVMe 1.1 commands as the

data storage. This SSD contains SLC chips with 768GB ca-
pacity available for applications. It can sustain 2.2 GB/s for
both read and writes. The SSD uses 4 PCIe 3.0 lanes to pro-
vide 4GB/sec bandwidth.

We use Linux 3.16.3 in our experiments. The system uses
the default “performance” governor in the Linux Intel CPU
driver as the power management policy. This policy dy-
namically optimizes the frequencies of processor cores from
1.2 GHz to 2.5 GHz. To measure the power consumption,
we use a Wattsup power meter that allows us to read the to-
tal system power each second. The test system consumes
117.6 W when idle.

5.2 Benchmarks

We select nine CUDA applications from the Rodinia
benchmark suite [1]. This set contains all the applications
in the suite that accept files as inputs and provide genera-
tors to create input data files of arbitrary sizes. Table 2 lists
the applications we select and the sizes of input data we use
in our experiments. We store the input data files using the
binary format to eliminate the overhead of ASCII to binary
translation. We use the same data input files for the “base-
line” and Gullfoss-enabled versions of our benchmarks. The
applications spend, on average, 55% of execution time mov-
ing data.

For each benchmark, we generate three different sizes of
input data. For the small input data set, we generate files that
are close to 100 MB. For the medium input data set, we gen-
erate input files with sizes ranging from 136MB–587MB.
DWT2D and CFD are exceptions. For DWT2D, we use a
27 MB file for the medium input data and a 106 MB file for
the large input data. For CFD, we use a 713MB input file
for the large dataset. In both cases, this is because if we use
GB-scale input files the working set sizes of their GPU ker-
nels will exceed the memory capacity of the K20 GPU. This
is not a limitation of Gullfoss.
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Figure 8: The throughput of different data paths in
Gullfoss

We also include GPMR [17], a multiprogrammed MapRe-
duce framework that utilizes GPU to concurrently process
MapReduce tasks. As with our modifications to the Rodinia
benchmark suite, when adapting GPMR we modify only the
file I/O and code related to data transfers between SSDs and
GPUs. We run four workloads—IntCount, K-Means, Lin-
ear Regression and Matrix multiplication—that GPMR pro-
vides. Table 2 contains additional details.

To integrate Gullfoss into these applications, we replace
traditional I/O and data movement commands with with
gullfoss_send() and/or gullfoss_recv(). To
produce multi-program workloads from the Rodinia bench-
mark suite, we run them concurrently and modify the appli-
cations to ensure that the GPU kernels have sufficient input
data and output memory space to complete the GPU tasks
without blocking.

6. RESULTS

This section measures the impact Gullfoss has on per-
formance and efficiency using microbenchmarks and the
benchmarks we described in the previous section. First, we
measure the impact of DirectNVMe on data transfer perfor-
mance, then we report results for individual Rodinia bench-
marks, multi-program workloads, and our Gullfoss-enabled
MapReduce framework.

6.1 Performance of DirectNVMe and Gullfoss

Gullfoss supports peer-to-peer communication between
the GPU and the SSD using DirectNVMe. This section
presents the performance advantages of this route option and
run-time optimization from the Gullfoss framework.

Figure 8 compares the throughput of moving data from
the SSD to the GPU using Gullfoss against standard NVMe
(NVMe), pipelined NVMe (NVMe-pipeline) that overlaps
SSD access with GPU memory copy and the single chan-
nel, peer-to-peer DirectNVMe (DirectNVMe). We report
the data transfer throughput under different file sizes, ex-
cluding the overhead of allocating all necessary resources
(e.g. memory buffers) along the data paths. Because the K20
GPU has only 4.8GB device memory available for applica-
tions, we examine these route options with file sizes under
4GB.
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Figure 9: The total CPU instruction counts for different
data paths in Gullfoss

Since the Gullfoss router dynamically creates multiple si-
multaneous DirectNVMe data transfers using free NVMe
command queues, Gullfoss outperforms all other route op-
tions. The performance advantage of Gullfoss becomes
more significant as file size increases. When transferring a
4GB file between the SSD and the GPU, a DirectNVMe that
performs file access requests using a single NVMe command
queue only achieves bandwidth of 1110 MB/sec, due to the
under-utilized NVMe SSD resources. Gullfoss, on the other
hand, offers up to 2221 MB/sec bandwidth.

NVMe-pipeline improves the performance of standard
NVMe by compensating for latencies with multiple data
transfers. However, NVMe-pipeline can still only achieve
a throughput of 1691 MB/Sec between the SSD and GPU
for 4GB files, 34% slower than Gullfoss, because NVMe-
pipeline requires more CPU resources.

To present the CPU overheads that different data move-
ment mechanisms consume, Figure 9 depicts the number of
CPU instructions given in the experiments in Figure 8. Stan-
dard NVMe and NVMe-pipeline require the GPU runtime
system to move data between DRAM and GPU memory,
so they require more CPU instructions than DirectNVMe
and Gullfoss. To transfer a 4GB file, standard NVMe uses
4× the instructions used by DirectNVMe and 3× the in-
structions used by Gullfoss. To streamline requests, NVMe-
pipeline partitions file accesses into smaller chunks to bal-
ance pipeline stages, resulting in 60% more CPU instruc-
tions than standard NVMe.

Enabling simultaneous DirectNVMe channels achieves
the best bandwidth in our tests, so we configure Gullfoss
to dynamically use all free NVMe command queues for a
single process by default. To make fair comparisons, the
following paragraphs still present Gullfoss results in which
applications use only single DirectNVMe connections, to
highlight the performance difference arising from utilizing
multiple command queues.

6.2 Single Process Workload

In this section, we evaluate the effect of Gullfoss when
the system is running a single GPU process. In these exper-
iments, we execute only one instance of these applications
at a time. Therefore, Gullfoss always uses DirectNVMe to
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Figure 10: The speedup of benchmark applications using Gullfoss
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Figure 11: The speedup of data movement in benchmark applications using Gullfoss

move data since there is no competition for GPU resources.

6.2.1 Performance

Figure 10 illustrates the speedup of using Gullfoss on our
benchmarks. We measure the end-to-end latencies for each
application. Gullfoss achieves an average speedup of 1.46×
for the large input set. For the medium input data set and
the small input data set, Gullfoss speeds up the whole ap-
plication by 1.39× and 1.29× respectively. If we limit each
process to use only one NVMe queue (DirectNVMe), Gull-
foss still achieves an average speedup of 1.19× for both
the medium and the large inputs, and 1.16× for the small
data set. With pipelining, standard NVMe can slightly out-
perform DirectNVMe using large input data, but still falls
behind Gullfoss. Figure 11 only presents the speedup of
data movement in applications. We measure the end-to-end
latencies for all data movement operations. Gullfoss speeds
up the data movement by 2× for the large inputs.

In most cases, the impact of Gullfoss increases with data
set size, since larger input files help amortize the initializa-
tion costs in Gullfoss runtime. In hybridsort and NN, the
impact of Gullfoss becomes less significant because the per-
centage of data transfer time decreases as input sizes grow.

Table 3 shows how effectively Gullfoss reduces the main
memory usage and the overhead of handling page faults.
This table presents the relative number of page faults of ap-
plications using Gullfoss compared with the baseline imple-
mentation. Gullfoss reduces the number of page faults by

Relative Page Faults
Application Small Medium Large
BFS 67.71% 53.04% 49.66%
CFD 100.85% 85.24% 83.14%
DWT2D 40.60% 40.78% 39.37%
Gaussian 81.30% 86.63% 90.08%
HotSpot 65.23% 57.35% 48.27%
HybridSort 83.23% 77.48% 71.74%
Kmeans 83.10% 83.03% 78.06%
LUD 99.77% 94.17% 62.91%
NN 89.44% 87.20% 87.17%
Average 79.03% 73.88% 67.82%

Table 3: The relative number of page faults of applica-
tions with different input data sets using DirectNVMe.

21% for the small data set, 26% for the medium data set and
32% for the large data set.

6.2.2 Energy and Power

Gullfoss reduces the load on CPUs during data transfers,
enabling processor cores to operate at lower clock rates or
perform more useful work. To explore the potential energy
and power savings using Gullfoss, we measure the total sys-
tem power and calculate the energy used during the entire
running time of these applications.

Figure 12 presents the relative total system energy con-
sumption of our benchmark applications using Gullfoss,
Gullfoss with single DirectNVMe connection, and NVMe
with pipelining, compared with a baseline that uses only
conventional NVMe. We report that Gullfoss can reduce
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Figure 12: The relative energy consumption of benchmark applications using Gullfoss
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Figure 13: The relative energy–delay product of bench-
mark applications using Gullfoss

total energy consumption by 28% when using large input
data set for these applications. If we limit each process to
use only one DirectNVMe connection, DirectNVMe still re-
duces energy consumption by 17%.

This figure also breaks down energy consumption into
idle energy and application energy. We calculate applica-
tion energy by subtracting system idle energy from total en-
ergy consumption. Since DirectNVMe improves the exe-
cution time of programs, we observe 27% reduction in idle
energy. Even with an Intel CPU driver that optimizes for
energy efficiency, Gullfoss still reduces total system power
consumption by up to 8% and saves 30% of application en-
ergy over the baseline. On the other hand, while NVMe-
pipeline also reduces execution time and idle energy, it con-
sumes 2% more application energy than the baseline because
of increased power consumption.

Figure 13 reports the energy–delay product. Gullfoss im-
proves the energy–delay of applications by 41% for large
data sets. Even with DirectNVMe only using one NVMe
queue, we still see 27% improvement in energy–delay. Since
the Intel CPU driver already aggressively optimizes for both
performance and power, we see only a marginal (2%) im-
provement in energy consumption when using more aggres-
sive power management policies in Gullfoss.

6.2.3 Gullfoss and Lower-End CPUs

Gullfoss does not rely heavily on the CPU to exchange
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Figure 14: The (a) speedup and (b) relative energy
consumption with baseline running at 1.2GHz, single
connection DirectNVMe at 1.2GHz, NVMe-pipeline at
1.2GHz and full-fledged Gullfoss at 1.2GHz

data between the SSD and GPU. Therefore, the system can
also use a simpler but more energy-efficient processor if tar-
get workloads require only a small amount of CPU compu-
tation. This section explores the potential of using Gullfoss
in servers with lower-end CPUs.

In this section, we restrict the CPU frequency in our test
bed to 1.2GHz, the lowest clock rate that the processor sup-
ports. Figure 14(a) examines the performance of a baseline
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system running at 1.2 GHz (“baseline-1.2G”), Gullfoss with
only single DirectNVMe connections running at 1.2 GHz
(“DirectNVMe-1.2G”), standard NVMe with pipelining run-
ning at 1.2 GHz (“NVMe-pipeline-1.2G”), and full-fledged
Gullfoss running at 1.2 GHz (“Gullfoss-1.2G”). All of these
are compared against the baseline running at 2.5 GHz. Low-
ering the CPU frequency to 1.2 GHz results in a 22% slow-
down for baseline-1.2G, since the 52% slower clock rate in-
creases the CPU computation time by 237% and data move-
ment time by 41%. We also observe 8% overall performance
slowdown in NVMe-pipeline for similar reasons.

Using Gullfoss, applications still suffer from the same in-
crease in CPU computation time, but Gullfoss speeds up
data movement time over baseline-2.5G by 1.33×. As a re-
sult, Gullfoss-1.2G achieves 14% performance gain. In this
lower-end server setup, Gullfoss shows more performance
advantages. If we use execution time of baseline-1.2G as
the baseline, the Gullfoss-1.2G achieves 1.56× speedup.
With the limitation of using a single DirectNVMe chan-
nel for each process, DirectNVMe-1.2G still reduces data
movement time by 12% and delivers similar performance to
baseline-2.5G.

Figure 14(b) shows the relative energy consumption of
the above three configurations, compared with baseline-
2.5GHz. For DirectNVMe-1.2G and Gullfoss-1.2G, the sys-
tem can reduce energy consumption by 11% and 18%. How-
ever, baseline-1.2G consumes 20% more energy in total,
even with a lower-power processor, due to the increased ex-
ecution time.

6.3 Multi-program workload

To demonstrate the effectiveness of the Gullfoss router
in a multi-program environment, we create multiprocess
workloads to mimic the usage of heterogeneous computing
servers. In this series of experiments we submit 8 homo-
geneous Rodinia benchmark tasks simultaneously with the
large input data set.

Figure 15 shows the performance of these server work-
loads. We use the unmodified applications as the baseline
and measure the end-to-end latencies of programs. To mea-
sure the effects of Gullfoss system components, we compare
four different configurations of Gullfoss.
(1) DirectNVMe: we route I/O requests so as to always use
a single DirectNVMe channel.
(2) DirectNVMe with Gullfoss Router: we enable the Gull-
foss router but still use a single DirectNVMe channel for
each process.
(3) Gullfoss w/o router: we force Gullfoss to always select
DirectNVMe and establish multiple DirectNVMe channels
if possible.
(4) Gullfoss: we enable all Gullfoss features.

If we allow Gullfoss to utilize multiple queues and enable
the router (Gullfoss), we can achieve 1.5× speedup. With-
out the router dynamically selecting routes (Gullfoss w/o
router), we can improve only 31% over the baseline.

If we force Gullfoss to use a single DirectNVMe connec-
tion for each process (DirectNVMe), we find that Direct-
NVMe can achieve only 10% performance gain over these
multiprocess workloads. For hotspot and hybridsort, we ob-
serve performance loss. This is because a running GPU task

uses all available GPU memory in these two applications and
as a result, the DirectNVMe cannot initiate data transfers
until the GPU task completes. In the baseline implemen-
tation, applications can send I/O data to main memory be-
fore the GPU resource becomes available; the main memory
provides larger bandwidth than SSDs, thereby reducing the
GPU idle time between tasks.

By allowing the router to dynamically select routes but
requiring that it still use a single DirectNVMe for each
process (DirectNVMe with Gullfoss router), Gullfoss im-
proves the performance of DirectNVMe and achieves 1.3×
of speedup—a 17% increase over DirectNVMe. This result
points out that the effect of the Gullfoss router is especially
important for heterogeneous servers with heavily loads.

6.4 GPU-MapReduce workload

To understand the impact of Gullfoss in highly-optimized
GPU server workloads, we tailor the GPMR [17] framework
that supports MapReduce applications on GPU to use Gull-
foss for data transfers between SSDs and GPUs. For each
workload, we run 4 processes in parallel. We present this
set of results in Figure 15. Even though the baseline aggres-
sively reduces file I/O operations and optimizes the overlap-
ping between GPU data transfers and GPU kernels, Gullfoss
still improves the performance by 2%–27%.

Most of these GPMR workloads, except for matrix multi-
plication, contain relatively fewer MapReduce tasks and file
I/O operations. As a result, Gullfoss achieves limited per-
formance gain in IntCount and K-Means on GPMR. For ma-
trix multiplication, the workload spawns thousands of tasks
and each task reads relatively larger chunks from the input
files. This allows Gullfoss to achieve 1.27× speedup in ma-
trix multiplication workload on GPMR.

Comparing the result of using Gullfoss and single connec-
tion DirectNVMe in GPMR, the improvement of I/O per-
formance allows the GPMR to outperform single connec-
tion DirectNVMe by shrinking the gaps between GPU ma-
trix multiplication kernels. We see little difference in perfor-
mance on rest workloads, as the number of file accesses in
these workloads is small.

The effect of the Gullfoss router in GPMR is limited. As
GPMR aggressively preserves resources for the input data in
GPU tasks but generates tasks conservatively, the Gullfoss
router seldom selects the alternative route of DirectNVMe.
However, we expect the router can still be beneficial if we
use GPMR to perform larger-scale workloads.

7. RELATED WORK

Gullfoss improves performance by optimizing data trans-
fers within the system. Most previous works considering the
importance of data transfer in a GPGPU computing node fo-
cus on the bottleneck between CPU and GPU [22, 23, 24].
Several works also propose solutions [25, 26, 27, 28] to
mitigate the CPU–GPU bottleneck using runtime scheduling
and pipelining to allow data transfer time and computation
time to overlap. Gullfoss leverages the efforts made in these
works to create efficient data paths from storage device to
GPU via main memory as an alternative to DirectNVMe. As
a great deal of the research on high-performance comput-
ing focuses on reducing computation time on GPU [29, 30,
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Figure 15: The speedup of Gullfoss under multiprogram workload

31], we expect the data movement problem to become more
important.

Gullfoss is the first system we know of that implements
direct data transfers between commercially available NVMe
SSDs and GPUs, although AMD’s DirectGMA or NVIDIA’s
GPUDirect provides peer-to-peer communication between
two GPUs or between the GPU and an Infiniband device [3,
4] to improve inter-node communication within GPU clus-
ters [5, 6, 7] or intra-node communication between GPUs or
other devices [8, 9, 10, 11, 12, 13]. GPUDrive [32] provides
similar functionality, but it uses a customized PCIe switch to
provide access to SATA SSDs.

Gullfoss reduces the importance of CPU performance in
heterogeneous computing platforms. The result of Gullfoss
encourages researchers to revisit the design of server archi-
tectures [33]. Several server systems including FAWN [34],
Gordon [35] and Blade [36] also prove the concept of us-
ing low-end CPUs for servers running data-intensive appli-
cations. Our experiments show that Gullfoss is especially
effective for GPU servers using low-end CPUs.

Heterogeneous System Architecture (HSA) [37] provides
another approach to eliminating data transfers between CPU
and GPU. HSA integrates the CPU and GPU on the same
chip and uses a unified virtual address space to share the
memory. Several research papers demonstrate the potential
benefits of HSA in analytical workloads and database opera-
tions [38, 39, 40]. However, with the limitation in the shared
main memory bandwidth and the power constraint from dark
silicon problem [41, 42], such integrated GPUs [20] can ac-
commodate less than 20% of the streaming units and so de-
liver only moderate performance compared with high-end,
discrete GPUs [18, 19]. In fact, due to their streaming na-
ture [43], many GPGPU applications require higher memory
bandwidth and have different memory access patterns than
most CPU applications. Gullfoss will help systems with dis-
crete GPUs deliver better performance and energy efficiency
on data-intensive and GPU-intensive applications, by signif-
icantly reducing the data transfer overhead as well as by cap-
italizing on the superior internal GPU memory bandwidth.

8. CONCLUSION

The widespread use of accelerators, high-speed storage
devices and peripherals in heterogeneous computing plat-
forms calls for more advanced intra-computer interconnect

as well as a thorough rethinking of the data transfer model.
This paper presents the Gullfoss system stack, which effi-

ciently handles data transfers inside heterogeneous comput-
ers. As programming network data transfers requires only
the source data and destination network address, Gullfoss
needs only the source and destination locations in the com-
puter. Gullfoss makes wise choices regarding data routes,
including DirectNVMe, to directly send data between SSDs
and GPUs without consuming host CPU cycles and main
memory.

As Gullfoss works for commercially available hardware,
we evaluate its performance on a real system. We achieve
an average speedup of 1.46× for single applications pro-
cessing files larger than a few GBs. Gullfoss reduces en-
ergy consumption by 28% and energy–delay product by 41%
for GB-scale input data. Gullfoss is especially effective for
data center servers, improving server performance by 50%
for multi-program GPU workloads and 10% for MapReduce
workloads on the GPU. However, even a lower performance
CPU-powered server using Gullfoss can still outperform a
high-end server by 14%.
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