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S U M M A R Y
The turbulence generated in the liquid metal cores and subsurface oceans of planetary bodies
may be due to the role of mechanical forcing through precession/nutation, libration, tidal
forcing and collisions. Here, we model the response of an enclosed constant density fluid to
tidal forcing by combining laboratory equatorial velocity measurements with selected high-
resolution numerical simulations to show, for the first time, the generation of bulk filling
turbulence. The transition to saturated turbulence is characterized by an elliptical instability
that first excites primary inertial modes of the system, then secondary inertial modes forced
by the primary inertial modes, and then bulk filling turbulence. The amplitude of this satu-
rated turbulence scales with the body’s elliptical distortion, U ∼ β, while a time- and radially
averaged azimuthal zonal flow scales with β2. The results of the current tidal experiments
are compared with recent studies of the libration-driven turbulent flows studied by Grannan
et al. and Favier et al. Tides and libration correspond to two end-member types of geophys-
ical mechanical forcings. For satellites dominated by tidal forcing, the ellipsoidal boundary
enclosing the internal fluid layers is elastically deformed while, for librational forcing, the
core-mantle boundary possesses an inherently rigid, frozen-in ellipsoidal shape. We find strik-
ing similarities between tidally and librationally driven flow transitions to bulk turbulence and
zonal flows. This suggests a generic fluid response independent of the style of mechanical
forcing. Since β � 10−4 in planetary bodies, it is often argued that mechanically driven zonal
velocities will be small. In contrast, our linear scaling for mechanically driven bulk turbulence,
U ∼ β, suggests geophysically significant velocities that can play a significant role in planetary
processes including tidal dissipation and magnetic field generation.

Key words: Numerical solutions; Instability analysis; Tides and planetary waves; Core, outer
core and inner core; Planetary interiors.

1 I N T RO D U C T I O N

Observations made from Earth and from spacecraft missions
suggest the presence of liquid metal cores in terrestrial bodies
like Mercury (Stark et al. 2015), Mars (Yoder et al. 2003), Io
(Anderson et al. 1996) and Ganymede (Schubert et al. 2004), as well
as subsurface oceans in Europa (Anderson et al. 1998), Ganymede
(Schubert et al. 2004) and Enceladus (Cadek et al. 2016; Thomas
et al. 2016). Gravitational interactions between a variety of celes-
tial bodies, from stars and planets to satellites and asteroids, can
periodically perturb both a body’s shape and the direction and mag-
nitude of its rotation vector. Such perturbative effects can generate
mechanical forcing of interior fluid motions through libration, tidal
deformation and precession/nutation (Comstock & Bills 2003; Van
Hoolst et al. 2013).

Paleomagnetic measurements of rock samples from smaller ter-
restrial bodies reveal the remnant signatures of self-generated dy-
namo fields (e.g. Garrick-Bethell et al. 2009; Fu et al. 2012;
Tarduno et al. 2012; Johnson et al. 2015). The assumed driver
for the fluid motions responsible for dynamo generation is

thermo-compositional convection (e.g. Jones 2011; Schubert &
Soderlund 2011; O’Rourke & Stevenson 2016). However, the ex-
istence of dynamos on smaller bodies is difficult to reconcile with
our current understanding of the conditions necessary for magnetic
field generation in terrestrial bodies through thermo-compositional
convection alone (e.g. Nimmo 2009; Pozzo et al. 2012; Ol-
son 2013; Zhang et al. 2015). Thus, recent numerical studies,
(e.g. Tilgner 2005; Wu & Roberts 2009, 2013; Cébron & Holler-
bach 2014; Wei et al. 2014) have begun to address how mechanical
forcing can also drive dynamos by injecting a portion of the vast
quantity of rotational energy from the primary-satellite orbital sys-
tems into the interior fluid motions. However, even the basic proper-
ties of turbulence generated by mechanical forcing are not yet well
characterized.

The current work focuses on comparing new results from purely
hydrodynamic analogue models of tidal forcing in an ellipsoidal
container with previous studies of longitudinal librational forcing,
referred hereafter as librational forcing. In geophysical terms, the-
ses analogue models replicate the tidal and librational forcing in
deformed bodies as shown in polar view in Figs 1(a) and (b),
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(a) (b)

Figure 1. (a) A polar view of the model for a tidally deformed elastic body of amplitude β with a fluid interior spinning at �spin. A virtual attractor orbiting
at �orbit(t) is simulated in experiments by using two symmetric rollers. The deformed body’s r.m.s radius is RB, the fluid radius is R and the average distance
between the two bodies is D. (b) A polar view of the model for longitudinal libration of a rigid synchronous planet with a fluid interior rotating at �spin(t),
and orbiting at �orbit(t) where, when time-averaged, �spin = �orbit. The solid red arrow denotes the direction toward the gravitational partner. The dashed red
arrow denotes the direction of the long axis of the deformed ellipsoid. The misalignment between the two red arrows leads to restoring torques (black arrow)
that oscillate the deformed boundary. Schematics adapted from Le Bars et al. (2010), Noir et al. (2012).

respectively. For tides and libration, the fluid enclosed by the grey-
coloured ellipsoidal shell is constrained by a time-averaged angular
rotation rate, �spin. In Fig. 1(a), a planet having low rigidity and
hence a high tidal potential Love number k2, is deformed by an
orbiting attractor (e.g. Greff-Lefftz et al. 2005). As such, the planet
and boundary deformation rotate at separate rates �spin and �orb,
respectively.

In librational forcing of a rigid (low k2), synchronized planet,
the time-averaged spin and orbital rates are equal, �spin = �orb.
The model for this librational forcing is shown schematically in
Fig. 1(b) The eccentricity of the orbit leads to variations in the
orbital rate following Kepler’s third law and creates a phase lag
between the equatorial bulge and the line connecting the centres of
mass for the two bodies as shown by the dashed and solid red arrows
in Fig. 1(b), respectively. Periodic torques, shown as black arrows,
are induced to restore this alignment, leading to oscillations in the
rotation rate, �spin(t), of the deformed boundary about the average
spin rate �spin.

Mechanical forcing through tides and libration is capable of gen-
erating laminar and turbulent fluid motions in the bulk of the fluid.
It has been well-established that a laminar zonal flow is gener-
ated by the nonlinear self-interaction of the viscous flow in the
boundary layer (e.g. Wang 1970; Suess 1971; Busse 2010; Calkins
et al. 2010; Noir et al. 2010; Sauret et al. 2010; Chan et al. 2011;
Zhang et al. 2011). However, at planetary settings, these laminar
flows are expected to be weak and we will focus instead on the
generation of turbulent flow.

The generation and characteristics of bulk turbulence driven by
mechanical forcing is less well understood but crucial for under-
standing many planetary processes including tidal dissipation. It is
well known that for the Earth, the ocean is primarily responsible for
tidal dissipation (e.g. Egbert & Ray 2003). However, considering
other planetary bodies, many previous studies have considered tidal
dissipation in the solid planet and neglected any contributions from
lower viscosity fluid layers (e.g. Williams & Boggs 2015). More re-
cent studies have begun to consider the dynamic response of these
fluid layers to directly forced resonances from surface gravity waves,
planetary Rossby waves where the Coriolis forces of the rotating
body provides a restoring force and viscous drag at the fluid-solid
interface (e.g. Tyler 2008, 2014; Chen et al. 2014; Matsuyama 2014;

Kamata et al. 2015). In this work, we take a different approach by
considering indirectly forced resonances where the Coriolis force
alone provides the restoring force and can drive turbulence in the
entire fluid layer.

A necessary ingredient for such indirectly forced turbulence is
the presence of flows with elliptically deformed streamlines that
can then support elliptical instabilities. This instability is a para-
metric resonance between the elliptically deformed flow and two
resonating inertial modes of the system (e.g. Kerswell 2002). The
instability was found in elliptically deformed flows driven by tidal
and librational forcing and referred to as tide- (libration-) driven
elliptical instability, TDEI (LDEI; e.g. Kerswell & Malkus 1998;
Le Bars et al. 2007, 2010; Cébron et al. 2012b). In both TDEI and
LDEI, the periodic forcing of an ellipsoidal cavity can generate a tri-
adic resonance between the inviscid elliptically deformed base flow
and two inertial modes of the system that can globally destabilize
the layer leading to bulk turbulence.

TDEI experiments in a deformable sphere and cylinder have
shown, through side-view visualizations, that this triadic resonance
between the base flow and two inertial modes can generate either
intermittent or saturated turbulence (e.g. Lacaze et al. 2004, 2005;
Le Bars et al. 2007, 2010). These works confirmed the instabil-
ity regime, growth rates and the turbulent transition associated
with the TDEI. Recent LDEI studies in rigid ellipsoids have also
shown both intermittent and saturated globally turbulent flows (e.g.
Cébron et al. 2012b; Noir et al. 2012; Grannan et al. 2014; Favier
et al. 2015). The aspects of, and instabilities related to, mechanically
forced flows are reviewed in Le Bars et al. (2015).

We perform experiments here measuring, for the first time, the
TDEI-driven flow velocities in the equatorial plane of a deformable
spherical container. These results are coupled with selected di-
rect numerical simulations (DNS). For these studies, the Ekman
number, E = ν/(�spin R2), is defined as the ratio of viscous to
Coriolis forces where ν is the kinematic viscosity, �spin is the
mean rotation rate and R is the r.m.s elliptical boundary radius.
For the laboratory experimental and numerical work, the Ekman
number is fixed at E = 1.5 × 10−5 and E = 5 × 10−5, respec-
tively. Such efforts incorporate the more extreme parameters avail-
able to experiments with the full flow field available to numerical
simulations.
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We extend the previous experimental and numerical studies of
libration in a rigid cavity with a fixed deformation at the dimension-
less frequency, flib = 4 (e.g. Grannan et al. 2014; Favier et al. 2015).
In our studies of TDEI, we fix the dimensionless frequency at
ftide = 4. This dimensionless frequency is outside the range for
directly forced inertial resonances (e.g. Greenspan 1969) and al-
lows us then to focus only on the indirect forcing provided by TDEI
mechanism.

By comparing the tidal forcing results from the current work with
the previous studies of libration, strong similarities between tidal-
and libration-driven flows are found, suggesting a generic response
of the fluid layer independent of the specific forcing. In Section 2,
the mathematical framework is developed for tide- and libration-
driven flows, the experimental method is described in Section 3,
and the numerical method is outlined in Section 4. The results for
tide-driven flows and their comparison with libration-driven flows
are provided in Section 5. Finally, our conclusions are summarized
in Section 6.

2 M AT H E M AT I C A L B A C KG RO U N D

In our tidal forcing scenario, we consider a homogenous, in-
compressible, Newtonian fluid that is enclosed in an ellip-
soidal container. The boundary of this ellipsoid is specified by,
x2/a2 + y2/b2 + z2/c2 = 1, set in a Cartesian coordinate system
affixed to the ellipsoid with the long axis, x̂, of length a. The short
equatorial axis with length b is along ŷ while ẑ is along the axis of
rotation with length c. Non-dimensionalizing the ellipsoid equation
using the r.m.s. fluid layer length scale, R = √

(a2 + b2)/2, yields:

x2

1 + β
+ y2

1 − β
+ z2

c∗2
= 1. (1)

The equatorial ellipticity of the cavity is defined as
β = (a2 − b2)/(a2 + b2), while the axial deformation is c∗ = c/R.

From a numerical perspective, it is advantageous to work in the
reference frame fixed to the elliptical distortion, termed the orbital
frame rotating at �orb. The generalized equations of motion:

∂u

∂t
+ u · ∇u + 2γ (t)ẑ × u = −∇� + E∇2u − ∂γ (t)

∂t
ẑ × x,

(2)

∇ · u = 0, (3)

are non-dimensionalized using R as the length scale and the mean

spin rate of the fluid, �
−1
spin, as the time scale. In (2), the first two

terms on the left-hand side are the inertial terms, and the third term
is the Coriolis acceleration. Here,

γtide = �orb

�spin

, (4)

is the ratio of the elliptical distortion rotation rate to the mean spin
rate of the fluid. The forcing frequency felt by a fluid parcel, ωtide,
due to the elliptical distortion is related to the both rotation rates by
ωtide = 2(�spin − �orb). The dimensionless forcing frequency due
to the elliptical distortion is then ftide = ωtide/�spin = 2(1 − γtide).
On the right-hand side of (2), � is the modified pressure term where
the centrifugal acceleration, −γ (t)ẑ × γ (t)ẑ × x = ∇γ 2(t)(x2 +
y2)/2, is absorbed into the pressure gradient. The next term on
the right is the viscous diffusion term where E = ν/(�spin R2) is the
Ekman number defining the ratio of the viscous forces to Coriolis
forces where ν is the kinematic viscosity.

The final term on the right-hand side is the Poincaré acceleration
associated with the time-dependent elliptical distortion rotation rate.
This term is zero for the current tidal forcing studies since γ tide

is constant. For tidal forcing, an impermeable, no-slip boundary
condition is implemented with a horizontal tangential velocity given
by

ub.c. = (1 − γtide)

√
a′2 + b′2

2
τ , (5)

where τ is the normalized tangent vector and [a′, b′] =
[a, b]

√
1 − z2/c2. More details are provided in Appendix A.

In the studies of longitudinal libration, the reference frame is
fixed to the elliptical distortion such that the equations of motion
in (2) and (3) are still used. However, the ratio of the elliptical
distortion rotation rate to the mean spin rate of the fluid now takes
the form:

γlib(t) = �spin(t)

�spin

= (1 + εlib sin( flibt)) , (6)

where εlib = flib
φ is the dimensionless amplitude of librational os-
cillation where the dimensionless frequency ratio, flib = ωlib/�spin,
is the ratio of the elliptical distortion frequency to the mean rotation
rate and 
φ is the librational amplitude in radians (e.g. Cébron
et al. 2012b; Noir et al. 2012; Sauret 2012; Favier et al. 2015).
Because of the time-dependence in (6), the Poincaré term in (2) is
now non-zero. Finally, an impermeable, no-slip condition is imple-
mented with ub.c. = 0.

An inviscid solution of (2), generalized for tidal or librational
forcing in the orbital reference frame, is given in Cébron et al.
(2012a) as

UB = (1 − γtide,lib)

⎛
⎜⎜⎝

0 −(1 + β) 0

1 − β 0 0

0 0 0

⎞
⎟⎟⎠ x, (7)

where x = (x, y, z) is a general position vector and (1 − γ tide,lib)
is the forcing amplitude. The maximum amplitude of this forcing
is defined as εtide,lib = (1 − γ tide,lib)max. The purely horizontal base
flow in (7) satisfies a non-penetration condition at the boundary
and follows the ellipsoidal shape of the container characterized by
an azimuthal wavenumber in cylindrical coordinates, mtide,lib = 2,
and forced at the dimensionless frequency ftide,lib contained in the
forcing amplitude (1 − γ tide,lib). The total kinetic energy associated
with this flow in the orbital frame is

EB = 4π

15
(1 − γtide,lib)2 (

1 − β2
)3/2

c∗ . (8)

It is experimentally advantageous to work in the spin frame fixed at
�spin and, as such, the base flow is transformed into the spin frame
where

UBrot = (1 − γtide,lib)β

⎛
⎜⎜⎝

− sin (2θ (t)) − cos (2θ (t)) 0

− cos (2θ (t)) sin (2θ (t)) 0

0 0 0

⎞
⎟⎟⎠ xrot.

(9)

Here xrot = (X, Y, Z ) is a general position vector in the spin frame
and θ (t) = ∫ t

0 (1 − γtide,lib(t ′))dt ′ is the total angle between the axes
of the spin frame and the orbital frame. The total kinetic energy
associated with this flow in the spin frame is

EBrot = 4π

15
(1 − γtide,lib)2 β2

(
1 − β4

)
c∗. (10)
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Table 1. Comparison of tidal and librational forcing parameters. The definitions for equatorial ellipticity, β, mean rotation rate, �spin and the Ekman number,
E are shared by both types. The differences arise in how the mechanical forcing is implemented at the boundary. In the current work, ftide,lib = 4 is fixed
allowing for a comparison between both mechanisms.

Parameter Definition Tides Libration

Equatorial ellipticity β a2−b2

a2+b2
a2−b2

a2+b2

Mean rotation rate �spin �spin

Ekman number E = Viscous Force
Coriolis Force

ν

�spin R2
ν

�spin R2

Elliptical distortion rotation rate �orb �spin(t) = �spin + ωlib
φ sin( ωlib
�spin

t)

Elliptical distortion frequency ωtide = 2(�spin − �orb) ωlib

Forcing frequency ratio ftide,lib = ωtide,lib

�spin
2(1 − �orb

�spin
) ωlib

�spin

Rotation rate ratio γtide,lib = Elliptical dist. rotation rate
Mean rotation rate

�orb
�spin

1 + flib
φsin (flibt)

Forcing amplitude εtide,lib = (1 − γ tide,lib)max ftide/2 flib
φ

Inviscid growth rate σ tide,lib
inv

εtideβ
64 (4 + ftide)2 εlibβ

16 (16 + flib)2

To satisfy the no-slip boundary conditions, viscous corrections
in the Ekman boundary layer generate a flow linear in β that
connects the base flow with the no-slip boundary. The nonlinear
self-interaction of this mtide,lib = 2 flow generates flows of azimuthal
wavenumbers m = 4 and m = 0, the latter of which is associated
with an axisymmetric, steady zonal flow that scales with β2 in
the boundary layer and is independent of the Ekman number (e.g.
Sauret 2012).

Perturbations in rotating fluids can generate inertial waves whose
restoring force is the Coriolis force and whose dimensionless fre-
quency is given by the dispersion relation, λ = ωtide,lib/�spin =
±2 cos θ , where θ is the angle between the wave-vector and the
axis of rotation. In closed cavities, reflections and constructive in-
terference support inertial modes with the same frequency range,
namely −2 � λ � 2 (e.g. Greenspan 1969; Vantieghem 2014).
Mechanical forcing can excite these inertial modes, in addition to
generating the aforementioned elliptically deformed base flow (7).
An elliptical instability, (EI) can be generated when two inertial
mode frequencies and azimuthal wavenumbers are related to those
of the base flow given in Kerswell (2002) by:

|λ1 − λ2| = ftide,lib, (11)

|m1 − m2| = m tide,lib = 2. (12)

Using the inertial mode frequency range, the maximum frequency
for exciting EI is ftide,lib � 4. Uniquely for tides, since the tidal forcing
frequency is given by ftide = 2(1 − γ tide), this unstable range can be
written as −1 ≤ γ tide ≤ 3 (e.g. Le Bars et al. 2010). In contrast, for
libration, γ lib, in (6) can take any value to drive elliptical instability
as long as the elliptical distortion frequency ωlib is no greater than
four times the mean rotation rate (i.e. ωlib/�spin = flib � 4).

To calculate the inviscid growth rates, local stability analyses
were performed based on the Wentzel–Kramers–Brillouin method
in Le Dizes (2000). There it was shown, in the limit of εtide,lib,
β � 1, that the inviscid growth rates for TDEI and LDEI are given
respectively as:

σ tide
inv = εtideβ

64
(4 + ftide)

2, (13)

σ lib
inv = εlibβ

16
(16 + flib)2. (14)

The similarity of the growth rates in (13) and (14) suggest that
the response of a localized fluid parcel away from the elliptical
boundary is independent of the forcing mechanism. The general

form of the equation including viscous effects and the proximity of
the forcing frequency to some resonant frequency, fres, is given from
Cébron et al. (2012a) as:

σ =
√

σ 2
inv − ( fres − f )2 − K

√
E . (15)

The second term on the right-hand side of (15) is due to viscous
dissipation in the Ekman boundary where K is a constant typically
[1 − 10]. Table 1 provides a comparison of tidal and librational
formulae.

3 E X P E R I M E N TA L M E T H O D

The experimental setup, shown in Fig. 2(a) is adapted from the
same apparatus used previously in Le Bars et al. (2010), Morize
et al. (2010), Sauret et al. (2010, 2014). A hollow sphere is en-
closed in a cast cylinder of deformable semi-transparent silicone
gel. Tidal forcing is replicated using two motors. The first motor ro-
tates the sphere about the ẑ axis at a constant counter-clockwise rate,
�spin/2π = 1.05 Hz. The second motor generates the tidal defor-
mation by rotating two symmetric axial rollers pressed radially into
the silicone at a fixed clockwise rate, �orb/2π = 1.03 Hz. The rota-
tion rate ratio of the two motors is fixed at γtide = �orb/�spin 
 −1,
indicating that the rates are nearly equal and moving in opposite
directions. The amplitude of the equatorial ellipticity in the tidal
forcing, the amount by which the orbiting rollers are pressed radi-
ally inward, is given by, β = (a2 − b2)/(a2 + b2) ∈ [0.01 − 0.09].
For completeness, the axial deformation c∗ = c/R ∼ 1, where
R = √

(a2 + b2)/2 ∼ 10 cm for all cases. Finally, the Ekman num-
ber defining the ratio of viscous forces to the Coriolis forces is fixed
at E = 1.5 × 10−5 using water, for which ν ∼= 10−6 m2 s−1.

For comparison, the libration setup used in Grannan et al. (2014)
is included in Fig. 2(b). In brief, two motors generate a constant
background rotation, �spin, and superimposed sinusoidal oscilla-
tions at a fixed Ekman number, E = ν/(�spin R2) = 2.7 × 10−5.
Details of the experimental method are found in Grannan et al.
(2014) and Table 2 provides a comparison of laboratory experimen-
tal tidal and librational forcing parameters.

To make quantitative measurements in the tidal forcing labora-
tory experiments, a particle image velocimetry (PIV) technique is
employed in the �spin reference frame. Nearly spherical, 100 µm
diameter Optimage particles of density (1 ± 0.02 g cm−3) are added
to the water. Two oppositely faced laser light sheets are fixed in
the laboratory frame several millimetres above the equatorial plane
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Figure 2. Comparison of tide and libration experimental setups. (a) The tidal deformation experiment where the camera is fixed to a deformable container with
equatorial ellipticity, β, rotating at �spin. The two symmetric rollers rotate independently at �orb. (b) The libration experimental setup used in Grannan et al.
(2014). A rigid ellipsoid with equatorial ellipticity, β, rotates at a constant spin rate and oscillates using two motors such that �spin(t) = �spin(1 + εlib sin( flibt)).
Image from (b) adapted from Grannan et al. (2014).

Table 2. Comparison of laboratory experimental tidal and librational forcing parameters. The definitions for equatorial ellipticity, β,
mean rotation rate, �spin and the Ekman number, E are shared by both types. The differences arise in how the mechanical forcing is
implemented at the boundary. However, in the current work, ftide,lib 
 4 is fixed allowing for a comparison between both mechanisms.

Parameter Definition Tides Libration

a Long equatorial axis (cm) 10.05–10.8 cm 12.7 cm
b Short equatorial axis (cm) 9.95–9.2 cm 8.9 cm
c Short rotational axis (cm) 10 cm 8.9 cm

β a2−b2

a2+b2 0.01–0.16 0.34

R
√

a2+b2

2 10 cm 10.97 cm

ν Kinematic viscosity 10−6 m2s−1 10−6 m2s−1

�spin/2π Mean rotation rate 1.05 Hz 0.5 Hz

�orbit/2π Elliptical distortion rotation rate −1.03 Hz 0.5(1 + 0.8sin (4π t)) Hz
ωtide,lib/2π Elliptical distortion frequency 4.16 Hz 2.0 Hz

c∗ c
R 1 0.81

ftide,lib ωtide,lib/�spin 3.96 4.0

γ tide,lib
Elliptical dist. rotation rate

Mean rotation rate −0.98 1 + 0.8sin (4π t)

εtide,lib (1 − γ tide,lib)max 1.98 0.8

E ν

�spin R2 1.5 × 10−5 2.7 × 10−5

due to the presence of the joining seam of the silicone hemispheres.
Mirrors are also implemented in the laboratory frame to create a
more uniform laser light sheet. A GoPro Hero3+ camera is fixed in
the spin frame, in order to acquire 1920 × 1280 resolution movies
of the horizontal flow field at 60 frames per second. These movies
are made only after solid body rotation has been reached; they are
initiated at the start of tidal forcing and the recordings are typically
10 minutes in duration. The camera is controlled wirelessly using a
GoPro smartphone application.

All movies are separated into their constituent frames and pre-
processed to remove the Go-Pro’s fish-eye distortion and to adjust
the brightness and contrast. All adjusted images are passed through
Meunier & Lewecke’s (2003) open source PIV software, DPIV-
Soft2010, that has been successfully employed in previous studies
(e.g. Morize et al. 2010; Sauret et al. 2010; Grannan et al. 2014;
Sauret et al. 2014). The velocity field for an entire equatorial plane
is resolved spatially into a 40 × 60 grid with a typical resolution of
3 mm and the temporal resolution of the PIV is 59 Hz. The practical
dimensional and non-dimensional temporal frequency limit for our

setup is ∼8 Hz and f ∼ 8, respectively. For higher frequencies above
f > 8 where the power spectra falls below O(10−5), the noise is on
the order of the signal. This frequency cut-off is shown in Fig. 8 and
is discussed in Section 5.3.

All velocity measurements presented below are non-

dimensionalized using the radius, R, and spin period �
−1
spin. Thus,

the dimensional velocity is found by multiplying the dimensionless
velocity by �spin R. The dimensional energy density is found by

multiplying the dimensionless energy by ρ�
2
spin R2.

4 N U M E R I C A L M E T H O D

Numerical simulations were performed with the massively parallel
spectral-element code Nek5000 (http://nek5000.mcs.anl.gov) de-
veloped by Paul Fischer and collaborators (see Fischer et al. 2007,
and references within). Nek5000 solves the incompressible Navier–
Stokes equations via a Legendre polynomial based spectral element
method which combines the geometrical flexibility of finite ele-

http://nek5000.mcs.anl.gov
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ment methods with the accuracy of spectral methods. It is therefore
particularly well adapted to our problem involving turbulent flows
in complex non-axisymmetric geometries and has been used previ-
ously in the context of tidally forced spheres and librationally forced
elliptical flows (e.g. Favier et al. 2014a, 2015; Barker et al. 2016).

5 R E S U LT S

The laboratory experimental cases investigated in this work are
denoted by L − while the numerical cases are denoted by N −. The
parameters for all the experimental and numerical cases studied are
listed in Tables B1 and B2 respectively of Appendix B.

5.1 General properties

Fig. 3 shows, for the first time, the strong similarities found between
the TDEI excited in the experiments and numerics of the current
work with the LDEI found in the previous works of Grannan et al.
(2014); Favier et al. (2015). Kalliroscope visualizations are illumi-
nated by an axial laser light sheet in order to take high resolution
movies of the experiments. The tidal forcing images in Fig. 3(a)
are taken from case L5, (β = 0.06, E = 1.5 × 10−5) in the lab-
oratory frame while librational forcing images of Fig. 3(c) from
case V, (β = 0.34, E = 2.7 × 10−5) in Grannan et al. (2014) are
taken in the rotating frame. Snapshots of the numerical simulations
in Figs 3(b) and (d) show the axial velocities from the TDEI in
case N4, (β = 0.09, E = 5 × 10−5) and the LDEI from case A6,
(β = 0.34, E = 10−4) of Favier et al. (2015) in the ellipsoidal frame.

Moving from left to right through the three time steps of Fig. 3,
after solid body rotation has been reached, the forcing commences
with no visible flow in the bulk. Since the base flow is purely
horizontal, the numerical simulations in Figs 3(b) and (d) show that
axial velocity is non-zero only in the thin boundary layer. After
some time, for forcing above a critical value such that the growth
rate in (15) is positive, the excited inertial modes participating in the
instability grow and become visible. Since ftide,lib = 4 is at the limit
of elliptical instability, the coupled inertial modes are necessarily
|λ1, 2| = ftide,lib/2 ≈ 2 by (11), and the wave crests are perpendicular
to the rotation axis as indicated by the layered structures. It is noted
that inviscid inertial modes with |λ| = 2 exactly do not exist but may
be just below 2 due to viscous effects and imperfect resonances. On
the right of Fig. 3, the growth of the inertial modes leads to a wave
breaking event that transitions to sustained bulk filling small-scale
turbulence that does not return to the laminar base state found at
early times.

Side-view visualizations reveal that as the strength of tidal defor-
mation is varied between β ∈ [0.01 − 0.16], the transition to bulk
turbulence, shown in Fig. 3, is seen in all cases except for β = 0.01
which remains laminar for all times. Using this critical value for
tidal deformation, fres = 4, and setting the growth rate in eq. (15)
equal to zero, the dissipation constant is then K = 3 and 5 for DNS
and experiments, respectively. These K values are within the typical
range for K = [1 − 10] also found in previous studies (e.g. Cébron
et al. 2012b; Noir et al. 2012).

The onset of turbulence is quantified using the averaged axial
kinetic energy defined as

Ez = 1

2V

∫
V

u2
z dV, (16)

where V = 4/3πabc is the ellipsoidal volume and uz is the axial
velocity component. This diagnostic is a natural choice since the

tide-induced base flow of (7) and (9) are purely horizontal and any
increase in the axial energy indicates the excitement of the TDEI.

Additionally, these flow quantities vary in time due to the oscil-
lating base flow and may be sufficiently smoothed by averaging over
one spin period defined as

A(t) = 1

τspin

∫ t+τspin

t
A(t ′)dt ′, (17)

where τspin = 2π/�spin.
The axial kinetic energy in (16) is not measurable in the experi-

mental PIV which is limited to only the horizontal energy. Since the
experimental data is inherently more noisy, the horizontal flows for
experiments and DNS are computed by subtracting out the base flow
in (7) and (9), respectively. After the base flow is removed from the
experimental data, the horizontal energy in the bulk is integrated, in
the rotating frame, over an equatorial surface area with a maximum
radius 0.5R where R = √

a2 + b2/2:

E S
H = 1

2S

∫
S

(
uHrot − UBrot

)2
dS. (18)

In comparison, the volume averaged horizontal energy of the DNS
is computed in the ellipsoidal frame by

E V
H = 1

2V

∫
V

(uH − UB)2 dV. (19)

Fig. 4(a) shows the transition from laminar to turbulent flow as
the equatorial ellipticity, β, is increased by plotting the unaveraged
horizontal energy from (18) in grey and the time average in colour
as a function of the number of spin periods τ spin for the experiments.
The laminar case, β = 0.01, (blue line) shows no transition after the
base flow is established at early times.

For β ∈ [0.03 − 0.16], after the base flow is established, the energy
grows exponentially followed by an overshoot and then oscillations
around a saturated phase. This is corroborated in Fig. 4(b) where an
analysis of the volume averaged horizontal energy computed in the
ellipsoidal frame of the DNS reveals the same transitions. Once the
transition occurs we find no evidence for relaminarization wherein
the flow returns to the laminar base state found at early times. For all
cases, the energy of the unstable flow is quite small,O(10−3−10−2),
indicating that although the instability conveys just a small portion
of the available kinetic energy of the system, first order changes are
generated in the flow.

To verify the characteristics of the EI mechanism, we focus on the
transitions in the axially averaged energy of the DNS in Figs 4(c) and
(d). The growth rates for different β are predicted using the theoret-
ical growth rate given by (15) for fixed ftide = 4, E = 5 × 10−5 and
K = 3 plotted using solid black lines of the form, e2σ t, in Fig. 4(c).
The slope of the exponential phase is well-matched with the the-
oretical prediction. Note that the same analysis of the exponential
growth rate of the horizontal energy shown in Figs 4(a) and (b) is
also in general agreement.

Because the base flow in (7) is purely horizontal, the non-zero
axial energy for early times in Fig. 4(c) is associated with viscous
corrections in the boundary proportional to β2. Thus, normalizing
the axial energy by β2 collapses all the energy profiles to a constant
value as shown in Fig. 4(d) at early times. Unexpectedly, at later
times after the exponential growth of the flow energy, the amplitudes
of the saturated turbulent energy also collapse to oscillations around
a constant value as shown by the black horizontal line and indicate
that the saturation energy also scales with β2. By extension, the
saturation amplitude for the turbulent velocity, UTDEI, is then

UTDEI ∼ β. (20)
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Figure 3. Comparison of side-view visualizations showing the onset of the EI at ftide,lib = 4. For all cases, from left to right, first the base flow is established
in the bulk and axial flow occurs in the boundary layer, followed by the stacked structures indicating the growing inertial modes, and finally the breakdown
to sustained bulk turbulence. For experiments, Kalliroscope visualizations of the meridional flows illuminated by axial laser light sheets are shown while the
axial velocity is shown for the numerical simulations. (a) Tidally forced flow case L5 where β = 0.06 and E = 1.5 × 10−5 as seen in the laboratory frame. (b)
Excitation of TDEI from case N4 where β = 0.09 and E = 5 × 10−5. (c) LDEI experimental case from V in Grannan et al. (2014) with frequency flib = 4,
equatorial ellipticity β = 0.34 and Ekman number E = 2.7 × 10−5 seen in the rotating frame. (d) Numerical simulation of case A6 in Favier et al. (2015)
showing the excitation of the LDEI where β = 0.34 and E = 10−4.

Note that since β � 1 in the current work and in planetary set-
tings, this novel scaling for the turbulent saturation velocity is
larger than the amplitude associated with laminar zonal flows that
scale with β2. Note that a collapse of the saturation in the horizon-
tal flows in Figs 4(a) and (b) is also found, but is not shown for
brevity.

In Fig. 4 we also note a general increase in the frequency of the
oscillations as β increases during the saturated flow phase. This

increase is expected because as the saturation velocity scales with
β, the oscillations after the exponential growth phase correspond to
a typical oscillation frequency that scales as UTDEI/� ∼ O(β) for a
fixed length scale �. The relation between these oscillations and the
participating inertial modes requires a more complete analysis of
the long term evolution characteristics of the flow and is currently
being performed using numerical simulations in a local Cartesian
geometry (i.e. Barker & Lithwick 2013).
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(a) (b)

(d)(c)

Figure 4. Tidally driven laboratory experiments and numerical simulations. (a) Laboratory measurements of the instantaneous surface averaged horizontal
energy in the rotating frame with the base flow removed, E S

H , as defined in (18) and shown in grey. The coloured curves correspond to the averages over a
spin period following (17). The cases shown are L1, β = 0.01, L3, β = 0.04 and L8, β = 0.09. (b) For numerical simulations, the volume averaged horizontal
energy in the ellipsoidal frame with the base flow removed, E V

H , as defined in (19). The cases shown are N1, β = 0.01, N3, β = 0.04 and N4, β = 0.09. (c)
Time evolution of field-averaged axial kinetic energy Ez normalized by the kinetic energy associated with the base flow in the rotating frame, EB, from (8).
The solid black lines are the theoretical growth rates from (15) of the form e2σ t with K = 3. (d) Same averaged axial kinetic energy Ez now normalized by β2.
All energies are time-averaged using (17). The black dashed line indicates a constant saturation value. The cases in (c) and (d) are N1, β = 0.01, N2, β = 0.03,
N3, β = 0.04, N4, β = 0.09 and N5, β = 0.16. For all numerical simulations, E = 5 × 10−5.

The response of the flow to TDEI and LDEI was also addressed
in previous studies examining kinetic energy dissipation. For tur-
bulent flow, the dissipation is expected to scale as u3, where u is
the velocity (i.e. Kolmogorov 1941). In the numerical studies of the
current work, we also find that the dissipation in the bulk scales as
U 3

TDEI ∼ O(β3). A scaling for boundary layer dissipation is given
by β2E1/2 (i.e. Cébron et al. 2010). For the current work and in
planetary setting where β � E1/2, the bulk dissipation is larger than
the boundary layer dissipation. The scaling for the turbulent bulk
dissipation is also found in numerical simulations of tidal forcing
in a periodic box and in the ellipsoidal geometry with a free surface
(e.g. Barker & Lithwick 2013; Barker et al. 2016). This result is
expected since there are no boundaries and thus no viscous dis-
sipation in the boundary. In the study of turbulence generated by
LDEI in ellipsoids where both bulk and viscous boundary dissipa-
tion are present, the bulk dissipation is also found to be larger than
the viscous dissipation. (e.g. Favier et al. 2015).

5.2 Zonal flows

Tide-driven forcing can generate steady zonal flows driven by non-
linear self-interactions of the boundary flow that satisfy the no-slip

boundary condition. The amplitude of the typically retrograde zonal
flows scales with β2 and is independent of the Ekman number. How-
ever, as shown in recent numerical studies of libration by Favier et al.
(2015) where the Ekman number is varied, the zonal flow amplitude
is increased by the presence of elliptical instability. To look at the
influence of the TDEI on the zonal flow, we assume the mean veloc-
ity is strongly azimuthal and after subtracting the base flow in (7)
and (9), we decompose the flow into its mean azimuthal component
in cylindrical coordinates:

〈
Uφ

〉
(r ) = 1

Nr

∑
z

∑
φ

∑
r− dr

2 <r ′<r+ dr
2

Uφ(r ′, φ, z), (21)

where Nr is the number of points averaged in each radial ring. Note
that z is fixed for the experiments.

By separating the azimuthal flow into approximately 30 radial
rings and averaging the azimuthal velocity in each ring, radial pro-
files of the time-averaged azimuthal velocities are shown in Fig. 5(a)
where the symbols and dotted lines indicate the experimental and
DNS measurements respectively. Beginning with β = 0.01(blue),
the retrograde azimuthal flow velocity is quite small.
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(a) (b)

Figure 5. Measurements of tidally driven zonal flows. (a) Radial profiles of the time-averaged dimensionless azimuthal flow velocity, 〈Uφ〉, with normalized
radius r. The experimental data at E = 1.5 × 10−5 from cases L1, β = 0.01, L2, β = 0.03, L3, β = 0.04 and L8, β = 0.09 are shown with symbols and the DNS
cases at E = 5 × 10−5 with N1, β = 0.01, N2, β = 0.03, N3, β = 0.04 and N4, β = 0.09 are shown with dotted lines. (b) The maximum velocities, |〈Uφ〉|max,
are normalized by β2 and plotted as a function of β where triangles, (�), indicate laboratory experiments and boxes, (�), denote DNS velocity peaks. The
coloured symbols for the max values in (b) match the profiles in (a) from which they came. The grey symbols denote additional cases whose profiles were not
included in (a). The size of the symbols is inversely proportional to the Ekman number, E−1. The vertical dashed line represents the transition from laminar to
turbulent flows.

As β is increased the amplitude of the retrograde zonal flow grows
as well. For all profiles, the experimental data at E = 1.5 × 10−5

shows a larger magnitude and more centralized peak than numerical
studies at E = 5 × 10−5 for the same values of β. A transition to
a stronger more centralized geostrophic flow was also found in
studies of LDEI enhanced zonal flow where the Ekman number was
decreased and β was held constant (i.e. Favier et al. 2015). Thus we
believe that the disparity found for zonal flow peaks and locations
in the current work may also be related to differences in Ekman
number. More generally, the presence of such strong zonal flows
generated as the elliptical instability saturates (cf. Favier et al. 2015)
may play a crucial role for the long term flow evolution and will be
the subject of future studies.

In previous studies of tidal forcing, zonal flow peak amplitudes
were shown to scale with β2 (e.g. Suess 1971; Morize et al. 2010;
Sauret et al. 2014). As such, the maximum values of the azimuthal
velocity in the radial profiles of Fig. 5(a) are shown as coloured
points in Fig. 5(b) normalized by β2 as a function of β. The ad-
ditional grey symbols denote peaks from other profiles excluded
in Fig. 5(a) only for clarity. Triangle and square symbols denote
experiments and DNS, respectively. The size of the symbols are
inversely proportional to the Ekman number, E−1, varied between
E = [1.5 × 10−5 − 5 × 10−4].

The dotted vertical line denotes the transition between laminar
and TDEI induced turbulent flow around β ∼ 0.02. Below this
threshold, no clear trend is revealed and the experimental data at
β = 0.01 and zonal flow peaks are on the order of the noise in the
system. Above the threshold, the bulk of experimental and numerical
data are relatively flat around

|〈Uφ〉|max/β
2 ∼ 10, (22)

indicating that β2 normalization is well chosen. Additional numer-
ical data at fixed β = 0.16 on the right side of Fig. 5(b) clearly
reveal that the amplitude increases as the Ekman number is de-
creased. However, it is not clear from the present study if this
trend continues or the zonal flow saturates at some critical value

(cf. Sauret et al. 2014). A summary of the laboratory experimental
and numerical zonal flow velocities shown in Fig. 5(b) are compiled
in Tables B1 and B2 of Appendix B.

5.3 Mode coupling and the transition to turbulence

The transition to turbulence is explored by increasing the strength
of the tidal deformation from β ∈ [0.01 − 0.16] while keeping the
tidal frequency fixed at ftide = 4 and the Ekman numbers fixed at
E = 1.5 × 10−5, 5 × 10−5 for experiments and DNS, respectively.

To characterize the turbulent transition, all velocity components
are analysed in the rotating frame at probe points distributed homo-
geneously in the bulk of the ellipsoid for DNS and in the equato-
rial plane for the experiments. Because an adaptive time stepping
method is used in the DNS, signals must be evaluated on a uniform
grid formed using a Langrangian interpolation method. For DNS
and experiments, velocity signals are multiplied by a time-periodic
Hanning function to ensure all signals are periodic.

A comparison of the power spectrograms from experimental
cases L1(β = 0.01), L3(β = 0.04) and L8(β = 0.09) and DNS
cases N1(β = 0.01), N3(β = 0.04) and N4(β = 0.09) are shown in
Fig. 6. Sliding window discrete Fourier transforms are performed
on a moving window of 10 spin periods with a 90 per cent overlap.
The first signal is the strong peak at f = 4 corresponding to the
ftide = 4 of the tidal forcing that drives the ellipsoidal base flow and
persists for all times. The second shared signal is the zonal flow at
f = 0 whose characteristics are discussed in Section 5.2.

From side-view visualizations and from the flow energetics pro-
vided in Fig. 4, the case β = 0.01 shown in Figs 6(a) and (b) is
stable, exhibiting no signs of bulk turbulence for all times and one
strong peak at the tidal forcing, ftide = 4. Figs 6(c) and (d) show the
spectrogram for β = 0.04. Following the onset of the tidal forcing,
after a certain amount of time that depends on the strength of the
tidal forcing and Ekman number, a strong persistent signal appears
at f = 2, associated with the excitation of primary inertial modes at
half of the forcing frequency.
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Figure 6. Tidal forcing power spectrograms showing the dominant flow frequencies. Shown are cases (a) L1, β = 0.01, (b) N1, β = 0.01, (c) L3, β = 0.04, (d)
N3, β = 0.04, (e) L8, β = 0.09 and (f) N4, β = 0.09 where ftide = 4 and the Ekman number is fixed at E = 1.5 × 10−5, 5 × 10−5 for the laboratory experiments
and DNS, respectively.

The existence of these inertial modes at f = 2 satisfies the tempo-
ral resonance condition in (11). Spatially, the modes are identifiable
by their axial pancake-like structures as shown in the middle images
of Figs 3(a) and (b). Although we have not explicitly determined
the wavenumbers of these modes, nearly identical modes have also
been found in laboratory experiments and numerical simulations of
LDEI (i.e. Grannan et al. 2014; Favier et al. 2015). In those studies,
the inertial modes have an eigenfrequency |ftide/2| � 2 and their
spatial structure is characterized by both an azimuthal wavenumber,
m1, 2 = 1, and a large number of stacked axial structures. Analytical
descriptions of these ellipsoidal modes are theoretically possible
using a polynomial description of the modes but difficult in practice
because of the need to use high degree polynomials to resolve these
high axial wavenumber modes (i.e. Vantieghem 2014). Instead an-
alytical solutions from the sphere and polar flattened spheroid have
been implemented and show the existence of m1,2 = 1 that satisfies
the spatial resonance condition in (12) and have high frequencies
at λ ∼ 1.9 (i.e. Grannan et al. 2014; Favier et al. 2015). Thus, we
contend that similar inertial modes with the same spatial description
exist in the ellipsoidal geometry of the current work at an adjusted
frequency, |λ1, 2| ∼ 2.

As the tidal deformation is increased again, the growth rate given
by (15) also increases and thus the TDEI for β = 0.09, shown in
Figs 6(e) and (f), occurs earlier in time. For both cases β = 0.04,
0.09, after the amplitude of the primary inertial modes has grown,
secondary resonances can occur whose driving force is the primary
inertial mode frequency f = 2, instead of the tidal forcing at f = 4.

Evidence for these secondary resonances is seen more clearly in
the full time-averaged frequency spectrum shown for experiments
and numerics in Figs 7(a) and (b), respectively. We first note strong
spectral peaks at frequencies f = 1, 2, 3 are found only in the
experiments, and non-existent in the DNS. For β = 0.01 in Fig. 7(a),
the signals at f = 1, 2, 3 may have two causes. The first may be
periodic light intensity changes occurring as the camera, in the

rotating frame, moves between different laser light sources and the
mirrors used for reflecting the light mounted in the lab frame.

The second cause may be a misalignment of the rotating container
or the rollers replicating the tidal deformation. In any case, these
signals are related to the harmonics associated with the rotating fre-
quencies |�spin,�orb| ∼ 1 Hz and are found in all the experimental
measurements. However, the good agreement with the DNS sug-
gests that these signals do not appear to noticeably affect the results
and the peaks are still quite small in comparison to the primary
forcing at ftide = 4 for cases above the stable one at β = 0.01.

Concerning the secondary modes excited by the primary iner-
tial modes at f = 2, although the spatial structures for these sec-
ondary modes have not been uniquely determined, peak frequencies
at f ∼ 1.5 and f ∼ 0.5 are still evident in Fig. 7(b). The frequency
condition (11) is satisfied for a secondary resonance being driven by
the primary inertial mode at ftide/2 = 2. For the horizontal spectra
from the experiments in Fig. 7(a), the only clear peak resides at
f ∼ 1.5 while Fig. 7(b) shows a second peak at f ∼ 0.5. Similar to
the method used in libration simulations from Favier et al. (2015),
a decomposition of the tidal simulation spectra into axial and hor-
izontal components (not shown) reveals that the mode at f ∼ 0.5
is characterized by strong axial motions untraceable in the experi-
mental data. The mode at f ∼ 1.5 is composed of strong horizontal
motions and visible by both methods.

Finally, a comparison of the full power spectra generated through
TDEI and LDEI is shown in Figs 8(a) and (b) respectively. Fig. 8(a)
displays cases L8(β = 0.09, E = 1.5 × 10−5, blue) and N4(β = 0.09,
E = 5 × 10−5, red) from the current work. Fig. 8(b) is reproduced
from the experimental (blue) and DNS (red) spectra in the LDEI
studies of Favier et al. (2015) where flib = 4, εlib = 0.8 and β = 0.34
are fixed and E = 2.7 × 10−5 and E = 10−4 for the experiments and
numerics, respectively. In both images the forcing, primary inertial
modes, secondary inertial modes and high frequency tails are nearly
identical. Note that the experimental data has been cut at f ∼ 8 where
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(a) (b)

Figure 7. The time-averaged tidal forcing power spectrum of the saturated turbulent flow. (a) Laboratory experiments L1, β = 0.01, L3, β = 0.04 and L8,
β = 0.09 where Ekman, E = 1.5 × 10−5. (b) A similar power spectrum from DNS cases N1, β = 0.01, N3, β = 0.04 and N4, β = 0.09 where E = 5 × 10−5.

Figure 8. (a) The time-averaged power spectrum of the saturated turbulent flow in the current tidal studies where ftide = 4 and β = 0.09. The laboratory case,
L8, where E = 1.5 × 10−5 is shown in blue. The numerical case, N4, where E = 5 × 10−5 is shown in red. (b) The time-averaged power spectrum of the
saturated turbulent flow in the libration studies where εlib = 0.8 and flib = 4. The laboratory case V from Grannan et al. (2014) where E = 2.7 × 10−5 is shown
in blue. The DNS case A6 from Favier et al. (2015) where E = 10−4 is shown in red. The dashed line has an f−3 slope.

the spectra is O(10−5). At greater frequencies the signal to noise
ratio is unity in the experimental data and only the numerical spectra
fills the high frequency tail.

For both tides and libration the majority of the energy is contained
in the forcing and excited inertial modes. The power in the higher
frequency spectra more closely follows an f−3 scaling indicative of
scalings for rotating turbulence wherein the presence of the Coriolis
force reduces the forward energy cascade. The same scalings were
also found for the wavenumbers in the spatial spectra of local models
of tidal forcing and simulations of libration in ellipsoids (i.e. Barker
& Lithwick 2013; Favier et al. 2015; Barker et al. 2016).

6 C O N C LU S I O N S

We have combined laboratory experiments with numerical simula-
tions to show, for the first time, that tides can mechanically drive
bulk filling turbulence in an interior fluid region via elliptical in-

stability (see Figs 3a and b). We find strong agreement with the
theoretical prediction for the growth rate and the subsequent in-
stability whose forcing and inertial mode frequencies satisfy the
resonance conditions for the TDEI (see Fig. 4). The transition to
turbulence is characterized first by the growth of primary inertial
modes, then the excitation of additional secondary inertial modes,
and finally saturated bulk turbulent flow (see Figs 6 and 7). Fur-
thermore, our tidal results have both qualitative and quantitative
similarities to librationally driven flows (see Figs 3c, d and 8).

Tidal deformation of an elastically deformed ellipsoid and lon-
gitudinal libration of an ellipsoid with a rigid boundary represent
two end-member cases for the geophysically relevant periodic me-
chanical forcings that many planetary bodies experience. Our tidal
case better describes a flexible icy shell, for instance, in a non-
synchronous orbit, where the orbital and spin rate of the body
are unequal and the elastic boundary responds quickly to tidal
distortions. Our libration case is more relevant for planetary bodies
whose shapes have some degree of intrinsic ellipsoidal distortion
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[e.g. Vesta, Ermakov et al. (2014), and/or are in so-called syn-
chronous orbits where the time-averaged tidal forcing generates the
ellipsoidal deformation.

Although tidal and librational forcing mechanisms are quite dif-
ferent, their mathematical formulation can be generalized in the
same way as shown in Section 2 and Tables 1 and 2. The strong
agreement found between the transition to, and characteristics of,
the bulk turbulence driven by tides and libration hints at a generic
response of the fluid interior to elliptical instability as illustrated in
Figs 3 and 8, showing side-view visualizations and power spectra,
respectively. Furthermore, the small-scale turbulence observed is
more easily excited as the Ekman number is decreased (e.g. Lacaze
et al. 2004; Le Bars et al. 2010) and may be similar to the small-
scale turbulence that might be generated in planetary fluid interiors
where E � 1.

We find that the saturated turbulent velocity induced by TDEI
scales linearly with UTDEI ∼ β. In comparison, a bulk azimuthal
zonal flow is shown to scale with β2. In planetary settings where
β < 10−4 (e.g. Cébron et al. 2012a), the turbulent velocity scaling
is therefore much larger than that of the zonal flow and may be
of critical importance for planetary processes like tidal dissipation
in subsurface oceans and magnetic field generation in liquid metal
cores.

To investigate the generation of turbulence in planetary bodies
based on the velocity scaling in (20), we define a Reynolds number
that describes the strength of turbulence in a flow, Re = UR/ν,
where U is the dimensional turbulent velocity, R is the outer radius
of the fluid layer and ν is the kinematic viscosity. Using (20) a
dimensional velocity, U ∼ UTDEI�spin R, is formed. The Reynolds
number can then be rewritten in terms of the mechanical forcing
parameters such that

Re = β

E
. (23)

For elliptical instability to occur, it is required that σ > 0 in (15)
and thus
σinv√

E
∼ εtide,libβ√

E
≥ 1. (24)

This condition for elliptical instability in (24) can be rewritten in
terms of the Reynolds number in (23) forming a critical Reynolds
number, Recr:

Recr = 1

εtide,lib

√
E

. (25)

Thus the condition for the onset of elliptical instability in (24) can
be redefined as Re/Recr > 1. For the subsurface ocean on Europa,
the parameters ε = 2 × 10−4, β = 9.7 × 10−4 and E = 2 × 10−14

are taken from Cébron et al. (2012a). Using the planetary values
for Europa, Recr ∼ 4 × 1010 while Re ∼ 5 × 1010 indicating that
the body is marginally unstable and mechanical forcing may be
capable of generating turbulent flow that could play an important
geophysical role.

New observations of Enceladus have shown the presence of a
large libration in addition to a global subsurface ocean [i.e. Cadek
et al. (2016); Thomas et al. (2016)]. For Enceladus, εlib = 2 × 10−3,
β = 9 × 10−3 following the formulation used in Cébron et al.
(2012a), and E = 3 × 10−13 revealing that Recr = 9 × 108 and
Re = 3 × 1010 suggesting that the mechanical response of the fluid
may drive significant flows in a subsurface ocean.

Currently, most models for tidal dissipation only consider visco-
elastic dissipation in a given body’s solid layers, such as icy shells.
These models ignore the effects of dissipation within lower viscosity

fluid regions (e.g. Williams & Boggs 2015). Recent models have
now begun to include dissipation due to direct tidal resonances
in subsurface oceans on icy bodies (e.g. Tyler 2008, 2014; Chen
et al. 2014; Matsuyama 2014; Kamata et al. 2015). In the future
we will extend our models to estimate how tidal and librational
elliptical instabilities can drive further dissipation in low viscosity
planetary fluid layers [cf., Ibragimov (2007) for Earth’s oceans].

In addition, advance laboratory experiments currently under con-
struction and high resolution numerical simulations using full el-
lipsoids and local Cartesian geometries will focus on elliptical in-
stability with the inclusion of inner cores, fluid stratification and
multiple forcing frequencies at even more extreme ranges of forc-
ing parameters. These studies will aid in investigating whether the
scaling for the velocity, like that proposed in (20), holds, changes,
or saturates at some critical value of the parameters used. Recent
precession and tidal studies at more extreme parameters (i.e. Barker
& Lithwick 2013, 2014; Lin et al. 2015) have shown the forma-
tion of large scale structures similar to those being investigated in
convection (i.e. Julien et al. 2012; Stellmach et al. 2014; Favier
et al. 2014b; Guervilly et al. 2014; Aurnou et al. 2015; Guervilly
et al. 2015; Plumley et al. 2016). Furthermore, precession, nuta-
tion, tides, libration and even small body impacts, do not work in
isolation but are experienced in varying degrees by all bodies. For
instance, the combined effect of tidal and precessional forcing, as
seen in Morize et al. (2010), permits rich dynamics. Thus, there may
be many ways for mechanical forcing to perturb the fluid motions
in planetary interiors.
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Grannan, A.M., Le Bars, M., Cébron, D. & Aurnou, J.M., 2014. Experimen-
tal study of global-scale turbulence in a librating ellipsoid, Phys. Fluids,
26, 126601:1–19.

Greenspan, H.P., 1969. The Theory of Rotating Fluids, Cambridge Univ.
Press.

Greff-Lefftz, M., Métivier, L. & Legros, H., 2005. Analytical solutions of
Love numbers for a hydrostatic ellipsoidal incompressible homogeneous
Earth, Celest. Mech. Dyn. Astron., 93(1–4), 113–146.

Guervilly, C., Hughes, D.W. & Jones, C.A., 2014. Large-scale vortices in
rapidly rotating Rayleigh-Bénard convection, J. Fluid Mech., 758, 407–
435.

Guervilly, C., Hughes, D.W. & Jones, C.A., 2015. Generation of magnetic
fields by large-scale vortices in rotating convection, Phys. Rev. E, 91,
041001:1–5.

Ibragimov, R.N., 2007. Oscillatory nature and dissipation of of the internal
waves energy spectrum in the deep ocean, Eur. Phys. J. Appl. Phys., 40(3),
315–334.

Johnson, C.L. et al., 2015. Low-altitude magnetic field measurements by
MESSENGER reveal Mercury’s ancient crustal field, Science, 348(6237),
892–895.

Jones, C.A., 2011. Planetary magnetic fields and fluid dynamos, Annu. Rev.
Fluid Mech., 43(1), 583–614.

Julien, K., Rubio, A.M., Grooms, I. & Knobloch, E., 2012. Statistical and
physical balances in low-Rossby-number Rayleigh–Bénard convection,
Geophys. Astrophys. Fluid Dyn., 106(4–5), 392–428.

Kamata, S., Matsuyama, I. & Nimmo, F., 2015. Tidal resonance in icy
satellites with subsurface oceans, J. geophys. Res., 120(9), 1528–1542.

Kerswell, R.R., 2002. Elliptical instability, Annu. Rev. Fluid Mech., 34,
83–113.

Kerswell, R.R. & Malkus, W.V.R., 1998. Tidal instability as the source for
Io’s magnetic signature, Geophys. Res. Lett., 25(5), 603–606.

Kolmogorov, A.N., 1941. The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers, in Dokl. Akad. Nauk SSSR,
30, 301–305.

Lacaze, L., Le Gal, P. & Le Dizes, S., 2004. Elliptical instability in a rotating
spheroid, J. Fluid Mech., 505, 1–22.

Lacaze, L., Le Gal, P. & Le Dizes, S., 2005. Elliptical instability of the flow
in a rotating shell, Phys. Earth planet. Inter., 151, 194–205.

Le Bars, M., Le Dizes, S. & Le Gal, P., 2007. Coriolis effects on the elliptical
instability in cylindrical and spherical rotating containers, J. Fluid Mech.,
585, 323–342.

Le Bars, M., Lacaze, L., Le Dizes, S., Le Gal, P. & Rieutord, M., 2010. Tidal
instability in stellar and planetary binary systems, Phys. Earth planet.
Inter., 178, 48–55.
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A P P E N D I X A : B O U N DA RY C O N D I T I O N
I N T I D E S I M U L AT I O N S

In the orbital frame, the elliptical distortion is fixed and the boundary
maintains a constant horizontal velocity tangent to the ellipsoidal
surface. At any given height −c < z < c, the horizontal shape of
the container is given by

x2

a′2 + y2

b′2 = 1, (A1)

with a′ = a
√

1 − z2/c2 and b′ = b
√

1 − z2/c2. This curve can be
parametrized by

X(s) =

⎛
⎜⎜⎝

x = a′ cos s

y = b′ sin s

z

⎞
⎟⎟⎠, with s ∈ [0 − 2π ] (A2)

with a normalized tangent vector given by

τ = Xs

|Xs | = 1√
a′2 sin2 s + b′2 cos2 s

⎛
⎜⎜⎝

−a′ cos s

b′ sin s

0

⎞
⎟⎟⎠

= 1√
a2 y2/b2 + b2x2/a2

⎛
⎜⎝

−ay/b

bx/a

0

⎞
⎟⎠. (A3)

The boundary condition for the velocity on the elliptical boundary
is finally

ub.c. = (1 − γ )

√
a′2 + b′2

2
τ . (A4)

A P P E N D I X B : PA R A M E T E R S F RO M
L A B O R AT O RY E X P E R I M E N TA L
A N D N U M E R I C A L S T U D I E S

Table B1. Tidal laboratory experimental cases signi-
fied by (L−). For all cases, the Ekman number, E =
ν/(�spin R2) = 1.5 × 10−5 and the ratio of orbital rate the
spin rate, γ tide = −1, are fixed. The equatorial ellipticity
is β = (a2 − b2)/(a2 + b2). Case L1 is TDEI stable (No)
and all other cases are TDEI unstable (Yes). |〈Uφ〉|max is the
maximum absolute value for the time and spatially averaged
zonal flow defined in eq. (21) and plotted in Fig. 5.

Case β TDEI |Uφ |max

L1 0.01 No 0.0046
L2 0.03 Yes 0.0133
L3 0.04 Yes 0.0263
L4 0.05 Yes 0.0269
L5 0.06 Yes 0.0795
L6 0.07 Yes 0.0597
L7 0.08 Yes 0.0808
L8 0.09 Yes 0.1079

Table B2. Tidal DNS cases signified by (N − ). For all cases, the number of
elements, E = 3200, and the ratio of orbital rate to the spin rate, γ tide = −1,
are fixed. N is the order of the Legendre polynomials used in the simulations,
β = (a2 − b2)/(a2 + b2), and E = ν/(�spin R2) is the Ekman number.
Case N1 is TDEI stable (No) and all other cases are TDEI unstable (Yes).
|〈Uφ〉|max is the absolute maximum value for the time and spatially averaged
zonal flow defined in eq. (21) and plotted in Fig. 5.

Case E N β TDEI |〈Uφ〉|max

N1 5.0 × 10−5 17 0.01 No 6.5e-5
N2 5.0 × 10−5 17 0.03 Yes 0.0073
N3 5.0 × 10−5 17 0.04 Yes 0.0202
N4 5.0 × 10−5 17 0.09 Yes 0.0791
N5 5.0 × 10−5 17 0.16 Yes 0.2290
N6 2.0 × 10−4 13 0.16 Yes 0.1094
N7 5.0 × 10−4 9 0.16 Yes 0.0101




