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Abstract

BACKGROUND: Understanding biology, particularly at the level of actionable drug discovery, is 

often a matter of developing accurate stories about how proteins work. This requires understanding 

the physics of the system, and physics-based computer modeling is a prime tool for that. However, 

the computational molecular physics (CMP) of proteins has previously been much too expensive 

and slow. A large fraction of public supercomputing resources worldwide is currently running 

CMP simulations of biologically relevant systems. We review here the history and status of this 

large and diverse scientific enterprise. Among other things, protein modeling has driven major 

computer hardware advances, such as IBM’s Blue Gene and DE Shaw’s Anton computers. 

Further, protein modeling has advanced rapidly over 50 years, even slightly faster than Moore’s 

law. We also review an interesting scientific social construct that has arisen around protein 

modeling: community-wide blind competitions. They have transformed how we test, validate, and 

improve our computational models of proteins.

ADVANCES: For 50 years, two approaches to computer modeling have been mainstays for 

developing stories about protein molecules and their biological actions. (i) Inferences from 

structure-property relations: Based on the principle that a protein’s action depends on its shape, it 

is possible to use databases of known proteins to learn about unknown proteins. (ii) Computational 

molecular physics uses force fields of atom-atom interactions, sampled by molecular dynamics 

(MD), to develop biological action stories that satisfy principles of chemistry and 

thermodynamics. CMP has traditionally been computationally costly, limited to studying only 

simple actions of small proteins. But CMP has recently advanced enormously. (i) Force fields and 

their corresponding solvent models are now sufficiently accurate at capturing the molecular 

interactions, and conformational searching and sampling methods are sufficiently fast, that CMP is 

able to model, fairly accurately, protein actions on time scales longer than microseconds, and 

sometimes milliseconds. So, we are now accessing important biological events, such as protein 

folding, unbinding, allosteric change, and assembly. (ii) Just as car races do for auto 
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manufacturers, communal blind tests such as protein structure-prediction events are giving protein 

modelers a shared evaluation venue for improving our methods. CMP methods are now competing 

and often doing quite well. (iii) New methods are harnessing external information—like 

experimental structural data—to accelerate CMP, notably, while preserving proper physics.

What are we learning? For one thing, a long-standing hypothesis is that proteins fold by multiple 

different microscopic routes, a story that is too granular to learn from experiments alone. CMP 

recently affirmed this principle while giving accurate and testable microscopic details, protein by 

protein. In addition, CMP is now contributing to physico-chemical drug design. Structure-based 

methods of drug discovery have long been able to discern what small-molecule drug candidates 

might bind to a given target protein and where on the protein they might bind. However, such 

methods don’t reveal some all-important physical properties needed for drug discovery campaigns

—the affinities and the on- and off-rates of the ligand binding to the protein. CMP is beginning to 

compute these properties accurately. A third example is shown in the figure. It shows the spike 

protein of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), the causative agent of 

today’s coronavirus disease 2019 (COVID-19) pandemic. A large, hinge-like movement of this 

sizable protein is the critical action needed for the virus to enter and infect the human cell. The 

only way to see the details of this motion—to attempt to block it with drugs—is by CMP. The 

figure shows CMP simulation results of three dynamical states of this motion.

OUTLOOK: A cell’s behavior is due to the actions of its thousands of different proteins. Every 

protein has its own story to tell. CMP is a granular and principled tool that is able to discover those 

stories. CMP is now being tested and improved through blind communal validations. It is attacking 

ever larger proteins, exploring increasingly bigger and slower motions, and with ever more 

accurate physics. We are reaching a physical understanding of biology at the microscopic level as 

CMP reveals causations and forces, step-by-step actions in space and time, conformational 

distributions along the way, and important physical quantities such as free energies, rates, and 

equilibrium constants.■

Graphical Abstract
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CMP modeling of COVID-19 infecting the human cell. SARS-CoV-2 spike glycoprotein (green, 

with its glycan shield in yellow) attaching to the human angiotensin-converting enzyme 2 (ACE2) 

receptor protein (purple) through its spike receptor-binding domain (red). (Left) The receptor 

binding domain (RBD) is hidden. (Middle) The RBD is open and accessible. (Right) The RBD 

binds human ACE2 receptor. This is followed by a cascade of larger conformational changes in the 

spike protein, leading to viral fusion to the human host cell.

Abstract

Every protein has a story—how it folds, what it binds, its biological actions, and how it 

misbehaves in aging or disease. Stories are often inferred from a protein’s shape (i.e., its 

structure). But increasingly, stories are told using computational molecular physics (CMP). CMP 

is rooted in the principled physics of driving forces and reveals granular detail of conformational 

populations in space and time. Recent advances are accessing longer time scales, larger actions, 

and blind testing, enabling more of biology’s stories to be told in the language of atomistic 

physics.

Science…is the organized systematic enterprise that gathers knowledge about the 

world and condenses [it] into testable laws and principles.

—E. O. Wilson, Consilience

Scientists are storytellers. Biologists tell stories about biomolecules and their actions in the 

cell. Even the simplest cell has thousands of types of proteins. Based on the premise that 

structure determines function—the same principle that helps you discern how a knife and 

fork work—protein shapes are often the starting points for protein storytelling. Like a 

necklace of beads, a protein is a molecule of amino acids (the beads) chained together. The 

20 different types of amino acids make up an alphabet for stringing the beads into different 

sequences that fold into different native structures (the compact shapes that proteins adopt in 

the cell). These shapes are known at atomic detail for more than 150,000 proteins and 

available in a public resource called the Protein DataBank (PDB) (1), thanks to x-ray 

crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo–electron 

microscopy (cryo-EM) experiments from a large community of structural biologists over the 

past 60 years.

Computer modeling plays a big role in molecular storytelling. For one thing, two proteins 

having similar sequences often have similar shapes and perform similar actions. After a 

protein folds, it can go to work in the cell through binding to other molecules, or its motions, 

or working together in complex assemblies. Some computer algorithms are designed to get 

insights about poorly understood proteins by looking at proteins with known structures. For 

another thing, computing can leverage the laws of physics for understanding the motions and 

actions of biomolecules. The former approach is called structural bioinformatics (SBI) and 

the latter, computational molecular physics (CMP). Today’s computational modeling is often 

a combination of both. For protein storytelling, what’s usually asked of SBI is to reveal a 

native structure. But the native structure is a single static snapshot, often insufficient to tell 

the story of how the protein works. What’s missing in SBI is the physics—the driving 

forces, the causes and effects, the intermediate steps—the how’s, not just the what’s. What’s 
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asked of CMP is to reveal the forces, motions, binding, and actions, in addition to structures. 

Atomistic physical modeling with force fields, often sampled by molecular dynamics (MD), 

draws upon our knowledge of covalent and noncovalent bonding in molecules, how those 

interactions are affected by the solvent water molecules, the considerable role of entropies, 

and how it all manifests in the complex environment inside the protein.

CMP helps to write the stories of biomolecules

Molecular physics aims to accomplish the following: (i) Reveal causalities, by allowing 

investigations of the driving forces, dynamics, and motions. (ii) Give the intermediate steps 

in time and space, angstrom by angstrom, nanosecond by nanosecond—narratives of 

molecular actions such as folding, binding, and rearrangements. (iii) Give conformational 

distributions, not just a single averaged structure. Proteins writhe and deform in ways that 

are needed for matching our stories to experiments. Drugs often don’t bind “key-in-lock” to 

preexisting protein cavities; they push the protein into a new shape that we seek to learn. (iv) 

Systematize, giving a common language for our storytelling. In principle, physical modeling 

is transferable: to different proteins, different ligands, different binding situations, or 

different experimental conditions, including those not yet measured. And physics-based 

models are less susceptible to errors of so-called hasty generalization (i.e., incorrect 

inferences from too little data), so their parameters can be systematically improved. (v) Go 

beyond limitations of databases. Physical modeling can be applied to classes of 

biomolecules that are sparsely represented in databases, such as membrane proteins, or 

molecules that are intrinsically disordered, large, or complexed. These are not well 

populated in databases because experiments are difficult. But they obey the same laws of 

physics.

CMP needs large computations. In practice, it means sacrificing some accuracy in the 

physical model, or limiting the time scale simulated to those shorter than the biological 

actions of interest. To reach for the deepest truths, we need to root our stories in our deepest 

understanding of nature. And though CMP modeling entails simplifications and 

approximations, it nevertheless provides today’s best achievable description of the 

underlying physics consistent with achievable computational costs.

CMP uses physical potentials and Boltzmann sampling

The properties of molecules are governed by quantum mechanics (QM). But QM 

computations are much too costly for large, flexible systems like proteins in water. So, in 

biomolecular modeling, true forces are approximated using force fields. Such models treat 

molecules as having preferred bond lengths and angles and describe other interatomic 

interactions as a combination of van der Waals and Coulomb forces, including the impact of 

solvation (2)—typically in water—and ultimately of proteins’ preferential conformations. 

Molecular force fields originated in the 1960s and ‘70s (3–13); they were pioneered by 

Allinger, Lifson, Kollman, and Scheraga, in addition to Levitt, Warshel, and Karplus, whose 

achievements were recognized by the 2013 Nobel Prize in Chemistry. They continue to 

undergo systematic improvement by a large community (14–20).
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But knowing accurate physical potentials is only part of the problem. To generate faithful 

protein stories, modeling must respect other physics: the nature of movement and change 

and the laws of thermodynamics. Dynamical processes must follow Newton’s laws of 

motion. Equilibrium modeling must give the Boltzmann distribution of conformational 

populations—and thus free energies, which are where models meet experiments. The latter 

can only be fulfilled by using special sampling approaches, such as Monte Carlo (MC) or 

MD, sometimes accelerated by enhanced sampling (21). MD computations are expensive 

because they require femtosecond timesteps, to avoid violating Newton’s laws (22). And 

even though such methods have now become relatively efficient, they still entail 

compromises, and the stories that are most faithful to nature are of the simplest proteins, the 

shortest time scales, or the smallest actions.

A key consideration is always speed versus accuracy. To gain speed, you can use coarse-

grained models. Coarse-grained modeling lumps together atoms into larger rigid units (23–

26). This approach is useful when you know in advance which degrees of freedom are 

relevant to the problem at hand. Conversely, some questions, involving mechanisms of 

enzyme reactions or spectroscopic observables, for example, require quantum-mechanical 

details, including the electrons on all or part of the protein. Including such details increases 

the cost of the calculation and is tractable only when protein movements are small. Although 

important advances have been made with both of these approaches, atomistic CMP modeling 

remains a popular compromise between speed and accuracy for much of biology and drug 

discovery and is the focus of this review.

CMP has been both a driver and beneficiary of many advances

As computer power has grown exponentially, so has CMP modeling power (Fig. 1). The first 

stories told were of how proteins fold and how they bind small molecules, both of which 

have relevance to drug discovery. The earliest computational physics of proteins, in the 

1960s and ‘70s (27), was done largely on central mainframes. Then came labclusters in the 

‘90s and supercomputing. Among the first protein-folding stories, in 1998, was one from 

van Gunsteren and co-workers on peptides (28) and one from Duan and Kollman and their 

colleagues, who applied supercomputing to attempt to fold the villin headpiece, one of the 

smallest foldable proteins (29).

Protein modeling is now a major activity of public supercomputers. The demand for better 

CMP modeling of biomolecules has driven advances in high-performance computing, 

including (i) the IBM Blue Gene computer (30); (ii) Folding@Home, a distributed grid 

network developed by Pande and Shirts at Stanford (31); and (iii) D. E. Shaw and 

colleagues’ special purpose Anton and Anton 2 supercomputer (32, 33).

CMP modeling has advanced at Moore’s law rates

Advances have come not only from computer hardware. CMP has also advanced from 

systematic improvements in atomistic force fields, solvation, sampling, and workflows. The 

first MD simulations, in 1977, sampled motions of a small protein representing a real time of 

only about 3 ps and necessarily left out an essential component, namely, the water solvent 

(27). Today’s simulations are run with quality force fields and models of surrounding 
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solvent or membrane, and over much longer time scales, through developments described 

below. An important milestone, which was reached about a decade ago, was simulating time 

scales of milliseconds and longer. This has been transformative because these are the time 

scales on which large-scale, biologically interesting motions appear.

Enhanced sampling methods help to tell bigger stories

Today’s storytelling is often limited to small proteins, simple actions, or short time scales. 

To tell bigger stories, we need faster and more efficient conformational searching and 

sampling. Advances are coming from enhanced sampling methods, such as metadynamics 

(34), replica exchange molecular dynamics (REMD) (35), simulated annealing (36), 

adaptive force biasing (37), and umbrella sampling (38) [for reviews, see (39, 40), and for 

the basic concepts see (21, 41)]. Also important has been systematic improvement in 

measuring and controlling errors, such as through the multi-state Bennett acceptance ratio 

estimator (MBAR) (42) and the weighted histogram analysis method (WHAM) (43).

Protein structure modeling can benefit from harnessing external information, an approach 

called integrative modeling (44). Computer algorithms can be accelerated by leveraging 

additional SBI insights about protein structures. For example, Rosetta (45), Quark (46), 

Dock 1 (47), Cluspro (48), Haddock (49), MODELLER (50), and IMP (51) do this to 

outstanding effect for certain structure-based computations. However, methods for 

leveraging external information often require sacrificing the ability to give Boltzmann 

populations, free energies, or dynamics.

An alternative integrative approach is MELD (modeling employing limited data), an 

accelerator of MD that also retains the advantages of the physics (52, 53). MELD-

accelerated MD (MELD × MD) melds external information or directives about the end state 

of interest with CMP, in a way that preserves Boltzmann populations. It uses Bayesian 

inference to leverage noisy, combinatoric, corrupted, sparse, or ambiguous information, to 

accelerate MD, often by orders of magnitude. It adds value in protein structure prediction 

from sequences (52, 54, 55), native structure determination in conjunction with problematic 

experimental data (53, 56), ligand binding to proteins (57–59), and finding dynamical routes 

of conformational change processes (60).

CMP can tell dynamical stories

Some protein stories are about dynamics and motions. In those cases, we seek the sequences 

of events (i.e., the pathways or routes) and their speeds (i.e., the transition rates). Pathways 

can be studied in CMP by using long simulations of individual trajectories (61). But long 

trajectories are expensive to compute and hard to converge, owing to many stochastic 

meanderings. Often, the story line is better obtained by dividing the possible routes into 

multiple short trajectories that can be computed in parallel, each of which traverses fewer 

states. Increasingly, studies of processes are done by stitching together many short 

simulations in parallel.

One strategy for computational parallelization is Markov state modeling (62–68). Markov 

state models (MSMs) use short trajectories in parallel to efficiently compute the rates and 

routes of protein motions and actions (69), protein-folding pathways (70), motions and 
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dynamics (71), and ligand binding (72) and unbinding (73). MSMs are best when a pathway 

has a few dominant routes (“superhighways” in conformational space).

Another parallelization strategy is milestoning, which is best when a process has a dispersed 

diffusional route structure (74). In milestoning, a path along a predefined reaction coordinate 

is metaphorically “fenced off into different time zones,” called milestones. Each milestone 

boundary is a starting point for spawning independent parallel trajectories to the next 

milestone. First-passage times are computed, then combined, to give the time evolution of 

the whole process. Milestoning is effective in simulating binding (75), membrane dynamics 

(76), and transitions between protein conformations (77). Milestoning relies on the 

assumptions that the transition events between successive milestones and the time lags 

between these transitions are statistically independent.

The weighted ensemble method (78) also fences off conformational space into zones but 

then spawns new daughter trajectories whenever a trajectory hits a fence that leads to an 

“interesting” area of the phase space. This enhances the sampling of interesting events while 

providing a rigorous nonequilibrium reweighting scheme to learn the unbiased time 

evolution of the trajectory (79).

Blind competitions are validating our storytelling tools

How do we know if our stories are true? This question applies to both types of stories—

those from structural biology and those from CMP. It has long been difficult to model the 

native structures—and tell the stories—of most proteins. It still is. But the field was 

advanced enormously in 1994 when John Moult introduced a new type of community-wide 

blind-test event (80). In CASP (critical assessment of protein structure prediction), a core 

team of assessors releases various amino acid sequences onto a website. Modelers then have 

a short, fixed time to submit their predictions of that sequence’s three-dimensional (3D) 

structure. Subsequently, the true experimentally determined 3D structures are released. The 

assessors then compare and evaluate all the predictions. This event has brought considerable 

value. Blind testing helps eliminate our biases, accelerate our learning, and enhance our 

communal interests.

Until recently, CMP modeling has been too slow to compete, so CASP has given insights 

mostly about SBI modeling. Because SBI methods draw inferences from other known 

protein structures, SBI predictors are most successful when a closely related PDB template 

protein can be found. And SBI successes at CASP have benefited from (i) rapid growth of 

the PDB database; (ii) algorithms for improved alignments of the target with the PDB 

template protein (such as PSIBLAST (81)); (iii) using protein fragments rather than 

individual amino acids as units of structure; (iv) using information fromsequence 

coevolution (82) to identify native contacts; and recently, (v) deep learning (DL) modeling; 

see Fig. 2.

CASP has spawned other protein computational competitions. Among the newest is the EM 

validation challenge, started in 2019, which tests protein structures computed from limited 

EM data (83). Other events concern binding actions [CAPRI (Critical Assessment of 
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Prediction of Interactions], which began in 2001, addresses multiple proteins binding to each 

other. SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands), initiated in 

2008 (84), is about predicting solvation free energies, binding affinities, host-guest 

conformational sampling, and pKa’s (acid dissociation constants) of small molecules. D3R 

(Drug Design Data Resource), first run in 2015, evaluates small-molecule and drug-like 

ligands bound to proteins (85).] And still other events focus on the functions of proteins 

[CAFA (Critical Assessment of protein Function Annotation), initiated in 2013, assesses 

protein function predicted from amino acid sequences (86) and CAGI (Critical Assessment 

of Genome Interpretation), now in its fifth iteration, assesses effects of mutations on the 

stabilities and functions of proteins (87).] DREAM (Dialogue on Reverse Engineering 

Assessment and Methods), established in 2006, is crowdsourcing competitions in 

computational biomedicine for disease and drug discovery (88). These communal blind 

events have advanced our understanding of methodology through systematic comparative 

evaluations. They provide benchmarks of the year-to-year progress in computational protein 

modeling, illuminating the best methods and indicating where improvements are needed.

CMP is now becoming competitive in blind communal tests

Over the past half-decade, physics-based methods have become fast enough to enter the 

protein modeling competitions (89, 90). Physical methods predict more than is tested by 

these competitions, but these events provide quantitative touchstones that any storytelling 

tool must get right. If our stories don’t have the correct ending (native structure), how can 

we trust the rest of the story? And, whereas blind competitions help advance CMP, 

conversely, CMP adds value to protein structure prediction. CMP can circumvent an 

Achilles heel of SBI, namely, the need for structure databases, homology modeling, and 

sequence alignments. CMP can tackle proteins that don’t resemble known proteins. Some 

successes from the 2018 events are reported below.

Predicting native structures, assisted by data—Experimental structural biology 

provides data, but computations are needed to leverage that data to give an atomically 

detailed structure. CASP’s structure refinement category asks: Are approximately correct 

structures improvable? Early CASP results showed that trying to improve one SBI algorithm 

by another SBI method was mostly unsuccessful (91). However, recently, Feig and others 

have shown good success in improving SBI predictions by CMP approaches; see Fig. 3A (i) 

(92). In one CASP event category, predictors are given sparse NMR data from nuclear 

Overhauser effect spectroscopy and dipolar couplings. On its own, these data are not 

sufficient to determine a native structure. CASP asks whether computations can augment 

this data to give correct structures. The best predictor in this CASP category in 2018 was a 

CMP method, MELD × MD; see Fig. 3A (ii) (56, 93). The 2019 first EM validation 

challenge provided data from cryo-EM for predicting the structure of a protein at different 

EM map resolutions, and the structure of a protein-ligand complex at a single resolution 

(94). By several metrics, including root mean square deviation (RMSD), all predictors gave 

fairly accurate structures. But a CMP method (MELD × MDFF) also gave the best-fitting 

map, at a resolution of 2.3 Å; see Fig. 3A (iii). Structure 3AJO in Fig. 3B shows good 

agreement between the predicted (blue) and true (orange) native structure.
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Predicting a native structure from sequence alone—More challenging than 

predicting a structure by using ancillary data is CASP’s T0 category, for predicting structure 

from the amino acid sequence alone. For a few small, simple proteins, CMP methods 

succeed at these ab initio folding tests, from amino acid sequence alone (Fig. 3B). Each 

image in that figure gives its CASP target ID number (Txxx) and the RMSD error between 

the predicted (blue) and true (orange) native structure. For protein target T0958, a CMP 

model was the best prediction in CASP among all submitted (black triangle, Fig. 2). 

Although CMP modeling in CASP does not require externally supplied structural 

knowledge, the result in Fig. 3B was accelerated by seeding SBI server–predicted structures 

as initial structures for the simulation.

Predicting the tightness of binding—In the 2018 D3R grand challenge 4, predictors 

were given a target protein, cathepsin S, and 39 ligands that bind to it, spanning three orders 

of magnitude in binding affinity. The challenge was to compute the binding affinities (95). In 

this test, CMP free-energy calculations outperformed all other methods (including DL) to 

achieve an RMSE (root mean square energy error) of 0.49 kcal/mol over all ligands; see Fig. 

3A (iv) (96). A second test, of protein BACE1 bound to a challenging set of ligands, which 

have multiple scaffolds and high chemical and structural diversity, was not successful (95). 

However, CMP was partially successful in finding correct docking orientations; see Fig. 3C 

(59). A 2013 SAMPL 4 challenge sought small-molecule inhibitors of the HIV integrase 

catalytic core domain (97). CMP performed significantly better than control and null models 

(98); see Fig. 3A (v).

Predicting the shape fitting of two proteins binding together—It is currently 

challenging to predict the structure and relative orientations of two proteins that are bound to 

each other, starting from knowledge of only their amino acid sequences. If successful, it 

would pave the way to atomistic modeling of whole biochemical pathways, the elementary 

units of which are pairs of interacting proteins. Today’s successes require much more input 

knowledge. If the conformation of the bound form of both proteins are already known, then 

existing algorithms can often find the right docked structure by rigid body rotations of one 

relative to the other (99–101). A step in the direction of the grander challenge was protein 

T121 in CAPRI round 38: seeking the binding conformation of a protein of known shape to 

a peptide that is unstructured prior to binding. The challenge is to find the induced structure 

of the peptide in its bound state. In this case, combined with a rigid-body front-end step, 

MELD × MD gives a medium-quality model (58, 101).

Predicting conformational populations, foretelling when structures are right—
Here is a common problem in predictions: An algorithm outputs several plausible native 

structures, but we don’t know which one is right. SBI methods don’t provide a principle for 

choosing and have traditionally not been able to tell (89). The physically principled way to 

choose is to know the free energies (i.e., the relative populations). CMP methods can 

compute these. Indeed, as MD modeling has recently entered CASP, its predictions of 

relative populations have been shown to correctly foretell when its methods have found the 

true native structure (52–54).
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MD can predict structures without assistance from homology models—For 

some proteins, there are no templates in the PDB that are good starting points for 

bioinformatics predictions of native structures. Because CMP methods make predictions 

from physical principles and don’t require starting structural knowledge, they can often 

predict protein structures that database methods cannot (55). At the moment, however, the 

greatest power is still achieved by combining CMP with external structural information (52–

54, 56). CMP plus information is still CMP, provided it satisfies the physics of Newton and 

Boltzmann.

In short, CMP methods have now reached two key mileposts. (i) They are computationally 

fast enough to enter communal blind competitions, and (ii) they add value in some cases. 

However, CMP is still computationally expensive; does not yet have turn-key reliability 

across challenges; is best when some constraints are known; and is limited to small, simple 

proteins and ligands. But these are early days. Below are some stories being told; see also 

(21, 102).

A few of the stories being told by CMP

CMP modeling has several roles. It helps to turn NMR, x-ray, and cryo-EM data into protein 

structures; to compute binding affinities that can be actionable in discovering new drugs; and 

to establish detailed principled narratives about biomolecule behaviors and their actions in 

the cell. Below are a few examples.

Resolving the paradox of protein-folding route heterogeneity—A long-standing 

puzzle entails the routes of protein folding. Is there a general kinetic principle by which all 

proteins fold from their unfolded state to each one’s unique native state? The issue has 

hinged on the meaning of the word “pathway.” For experimentalists, a pathway is often 

defined on the experimental macroscale as a single predominant sequence of events. For 

theorists, a pathway is often defined by the simulational microscale watching the individual 

wiggling of each trajectory. State-of-the-art MD simulations over the past decade have 

shown that individual molecules reflect the heterogeneity expected from statistical 

mechanical theories, yet with average behaviors that reflect the routes that experimentalists 

see (103–105), resolving such paradoxes. An important side consequence of modeling 

pathways is the demonstration that the molecular physics alone can accurately predict the 

pathway end states, namely, the native structures of (small, simple) proteins, without the 

need for homology modeling of other reference proteins (55, 104, 105).

Computing drug–protein affinities—A major objective has been to compute how 

tightly a chemical (natural ligand or drug, for example) can bind to a protein. So-called 

docking methods can often estimate a pose, what protein crevice the molecule might fit, and 

how it orients inside it. But more crucial for understanding biological mechanisms and 

protein stories is how tightly it binds. This is becoming increasingly possible through CMP. 

Here are some of the advances (106–110): (i) A test of small ligands in different proteins. In 

2015, the Schrodinger group modeled 200 ligands in eight proteins (108), giving the results 

in Fig. 4A. (ii) Computing selectivities. Aldeghi et al. computed the selectivities of ligand 

binding across a family of related proteins (111); see Fig 4B. (iii) Complex flexible ligands. 
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Morrone et al. (57) computed the relative binding affinities of highly flexible peptide ligands 

(P53 mutants) to MDM2 and MDMx proteins; see Fig. 4C. (iv) Mutations in protein-protein 

binding. Free energies of binding one protein to another can change upon mutation. Some 

are now accurately captured by CMP (112); see Fig. 4E. The average errors are very small, 

0.27 kcal/mol. Similarly small average errors are found for CMP predictions of mutational 

effects on protein stabilities (113). The high accuracy likely reflects the relative maturity of 

today’s force fields designed to handle proteins. Force fields for more diverse molecules, 

such as small-molecule drugs and ligands, are not as accurate, but communal efforts (114) 

are improving them. (v) Thermodynamic components. MD simulations are now also giving 

the thermodynamic components, enthalpy and entropy, of binding, which give additional 

insights for storytelling about molecular recognition (115, 116).

Mechanisms of ligand dissociation and off-rate estimation—There is interest in 

knowing not just the affinity of a ligand molecule for a protein, but also its off-rate. The off-

rate (koff) is a measure of the residence time that the ligand spends in the site and is 

sometimes a better predictor of biological efficacy than is the equilibrium binding affinity (K 
= kon/koff) (117). Even though some off-rates are known to be as slow as minutes, advanced-

sampling MD simulations give good agreement with experiments (118, 119), including over 

these slow time scales (120). MD simulations identified the mechanisms underlying slow 

off-rates in a tuberculosis drug target, guiding the rational design of new ligands with even 

longer residence times. Subsequent synthesis, crystallography, and kinetic assays have 

confirmed the predictions (121, 122).

Mechanisms of amyloid aggregation—No experiment is yet granular enough to show 

the molecular events as protein chains come together to form the amyloid fibers that are 

relevant to diseases of neurodegeneration. MD simulations are elucidating the kinetic steps 

(123–126) and giving insights into new drug discovery approaches (127).

Space here does not allow us to review the many other important emerging stories, about 

how transducing proteins convert the chemical energy of adenosine 5′-triphosphate 

hydrolysis into mechanical work and forces, how allosteric “action-at-a-distance” 

conformational changes transmit chemical signals across large molecules, how kinase 

proteins send signals in cancer cells, and how molecules cause biological motions by 

“walking” along tracks made of other proteins.

What lies ahead?

How can we model bigger proteins, bigger motions, and longer time scales?

We need continued improvements in force fields and solvent models. We need faster and 

more targeted searching and sampling, to reduce the combinatorial nightmare of 

conformational space. One innovative idea is to estimate entropies by using ideas based on 

computer compression algorithms (128). One new accelerator of molecular dynamics is 

Boltzmann generators, which use deep learning methods to learn where to find the deepest 

free-energy wells on landscapes (129) and improve sampling (130). And quantum 

computing might ultimately help us tackle these big stochastic optimization challenges. But 
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we also need more than better hardware alone, because the scaling to larger proteins is a 

bigger problem than even continued advances based on Moore’s law can solve.

The role of deep learning—DL can bring insights into protein structures that can 

complement the CMP’s insights into the physics. In December 2018, the CASP evaluators 

reported notable success from AlphaFold, a new DL method from Google’s London-based 

DeepMind group and other groups (131). The superior ability of DL methods (131, 132) in 

harnessing data relative to earlier statistical methods led to the best results in CASP’s free 

modeling category (90). The advance from DL was about twofold that of the average natural 

biennial advance in CASP. DL is powerful when given either large databases to learn from, 

or when some rules—such as in games—can be used to generate input. Alpha-Fold learned 

from the protein structures in the PDB. But DL does not know what it cannot see. In drug 

discovery, what’s most needed is to generate diversity, i.e., new classes of molecules that are 

not already known drugs (133, 134). Protein storytelling can benefit from both DL for 

insights from knowledge bases and from CMP for causation and driving forces, motions, and 

binding, where structures are heterogeneous, and where we need to understand the role of 

the protein’s external environment.

Summary

CMP is an increasingly powerful tool for telling the stories of protein molecule actions. 

Systematic improvements in force fields, enhanced sampling methods, and accelerators have 

enabled CMP to reach time scales of important biological actions and opened the door to 

evaluation in communal blind events, like CASP. These time-scale successes were forecast a 

quarter-century ago (135). At this rate, in the next quarter-century, we’ll be telling stories of 

protein molecules over the whole life span—tens of minutes—of a bacterial cell; perhaps the 

updated version of this article will be called “Cellular storytelling through physics.” CMP is 

increasingly grounding our narrative stories of the biological actions of proteins in 

principled physics.
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Fig. 1. Molecular simulations have improved faster than Moore’s law.
Blue: MD simulations have accessed exponentially longer time scales of molecular motions 

over the past 50 years. Gray: For reference, Moore’s law of increased densities of transistors 

on microchips (136).
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Fig. 2. CASP success rates versus difficulty of the target protein, over the years.
“Difficulty” is defined by how similar a template sequence that can be found in the PDB is 

to the target protein being predicted. Data points show the best predictions for each target 

protein in CASP 13; the purple shading shows the variance. Lines show the mean for each 

CASP. Main conclusions: (i) SBI requires good templates (all lines slope down). (ii) 

Predictions are improving over time (lines are higher in later events). (iii) Coevolutionary 

data and deep learning are adding value (step from CASP 12 to 13). (iv) CMP is now 

competitive in CASP (black triangle).
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Fig. 3. Successes of CMP in blind communal events.
(A) Comparisons with other predictions, in five events. Blue bars, CMP predictions; yellow 

bars, other. Left to right: Most- to least-successful predictions, based on each y axis metric. 

From top to bottom: CASP 13 structure refinement, CASP 13 leveraging NMR data to 

determine protein structures, Cryo-Electron Microscopy Model Challenge (2019 EMMC), 

D3R binding affinity of 300 ligands to cathepsin S, SAMPL 4 virtual screening of ligands to 

HIV integrase. (B) Predicted versus true structures from CMP in CASP 13 ab initio folding 

and 2019 EMMC cryo-EM refinement. (C) CMP-based protein-protein docking structures, 

in the D3R Grand Challenge 4 stage 2b event (59), after a rigid-body ClusPro first step. y 
axis, RMSD error of MELD + ClusPro refined protein docked structures; x axis, RMSD 

error of ClusPro prediction alone. Points below the line indicate successful refinements.
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Fig. 4. CMP can predict relatively accurate experimental binding affinities, across multiple 
ligands and proteins.
The diagonal line represents perfect agreement with experiments. The shaded area indicate 1 

kcal-mol−1 error bars. (A) Schrodinger free-energy perturbation calculations of 200 ligands 

in eight proteins (108). (B) Algedhi et al. prediction of binding affinities of ligands across 

protein families (111). (C) MELD × MD relative binding affinities of various P53 mutant 

peptides, which are highly flexible, to the MDM2/x protein (57). (D) The thermodynamic 

cycle of Zou et al. for computing mutational effects on protein-protein binding (112). (E) 
Predicted affinities versus experiments for (D) (112).

Brini et al. Page 23

Science. Author manuscript; available in PMC 2021 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Abstract
	CMP helps to write the stories of biomolecules
	CMP uses physical potentials and Boltzmann sampling
	CMP has been both a driver and beneficiary of many advances
	CMP modeling has advanced at Moore’s law rates
	Enhanced sampling methods help to tell bigger stories
	CMP can tell dynamical stories

	Blind competitions are validating our storytelling tools
	CMP is now becoming competitive in blind communal tests
	Predicting native structures, assisted by data
	Predicting a native structure from sequence alone
	Predicting the tightness of binding
	Predicting the shape fitting of two proteins binding together
	Predicting conformational populations, foretelling when structures are right
	MD can predict structures without assistance from homology models

	A few of the stories being told by CMP
	Resolving the paradox of protein-folding route heterogeneity
	Computing drug–protein affinities
	Mechanisms of ligand dissociation and off-rate estimation
	Mechanisms of amyloid aggregation


	What lies ahead?
	How can we model bigger proteins, bigger motions, and longer time scales?
	The role of deep learning


	Summary
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.



