UC Irvine
ICS Technical Reports

Title
A practical mobile-code format with linear verification effort

Permalink
https://escholarship.org/uc/item/3255966d

Authors

Wang, Ning
Franz, Michael

Publication Date
2003-11-18

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3255966c
https://escholarship.org
http://www.cdlib.org/

- ICS

- TECHNICAL REPORT
‘ Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

A Practical Mobile-Code Format
with Linear Verification Effort

Ning Wang and Michael Franz

Technical Report 03-26
School of Information and Computer Science
University of California, Irvine, CA 92697-3425

Nov. 18,2003

: Abstract

We present an abstract machine that encodes both type safety and control
safety in an efficient manner and that is suitable as a mobile-code format. At
the code consumer, a single linear-complexity algorithm performs not only
verification, but simultaneously also transforms the stack-based wire format
into aregister-based internal format. The latter is beneficial for interpretation
and native code generation. Our dual-representation approach overcomes
some of the disadvantages of existing mobile-code representations, such as
the JVM and CLR wire formats.

Information and Computer Science
University of California, Irvine

CONTENTS .~ 1

‘Contents

| 1 Introduction S = ' - 3
2 »Prehmmarles ‘ _ 5
2.1 Terminology and Notatlon e e e e e e .5
2.2 Safety Requirements 05
2.3 Verification. A e 6
3 Certificate Abstract Machine . o T 7
31 AnExample e 8
32 TheVerifier oo ee v i e e 9
33 Syntax e e e ... 1
3.4 Valid Variable Analys1s S I

B 3.4.1 = Dataflow analysis S T S 13
3.4.2 Temporary Registersin CAM I

343 TypeInterpreter....v..‘._ T £ T
, 3.44 Transition Rules R £
3.5 Control-Flow Safety Analysis A)
3.5.1 Dominance Invariance P
3.5.2 Augmented Dominator Tree- LoL21
4 Impl-bemenfati-on Overview o - 23
5 " Related work ’ E S 24
6 Conclusion ' - ' .26
7 A‘cknowledgment - o S) 26
A Algorlthms and Proofs o S | 26
A.0.3 Register Allocation : e e . .. 26
A.04 ADTSuccessorVerifier 27

A.0.5 ImsertMomitorol 28
‘A06 CheckIST . ..i i e 29

'A07 Proofoflemmal 30 .

B Opérational semantics - I S 31

LIST OF FIGURES

Llst of Flgures

1

[V, QN

Depéndence among 1nstruct1ons Varlables and control ﬁow mJVML.

Dependence among instructions, vanables control flow and dom-

mance in CAM« . ot i e e
Life cycle—(a) translate JVML into CAM code at code producer }

- (b) verify and execute CAM code at code.consumer, .

(a) Java source and (b) JVM bytecode for the running example . .
(a) CAM code for the same example, consisting of an augmented -

- dominator tree and a sequence of instructions and (b) code se-

10

11.

12

13

quence executed by the verifier (boxes mdlcate the scopes of the

 associated register:type pairs) e e e

Register-based internal CAM representation of our example pro-
gram, generated if verification succeeds
Syntax of the CAM wire format

The references of x at point p are valid in (a) and (b) but are mvalldb o

in (c) and (d). (e), (©); (g), (h) show precise type conditions for
valid references at point p.l |
(a), (c), (e) and (f) are the the dormnator trees of 8(a) 8(b) 8(c) _

- and 8(d) respectively. Insertion a definition of x 1nto B3 in (a) will .

not change the behavior of the program. e e .
Dominator tree; boxes represent variable scoping

(b) is the ADT encoding of the.control flow graph (a)

6

Control flow graphs (b); (c),(d), () and (f) have the same domi- -

nator tree (a). (g) The abstract model of all control ﬁow graphs

edge =, represents a control flowpath L
Solid edges are tree edges, curve edges are tree paths and dash

 edges are new edges added to the original control flow graph
~ Triangles represent sub-tree. Given the dominator tree. adding

edge (z,) to its control flow graph G will not render a different
dominator tree in contrast to adding (z,¥’) which render a new
dominator tree with node 3/ asthe child of root I

‘List of Tables_

1 INTRODUCTION ‘ 3

1 Introduction

Mobile programs can potentially be malicious. To protect itself, a host that re-
ceives such mobile programs from an untrusted party or via an untrusted network
connection will want some kind of guarantee that the mobile code is not about
to cause any damage. TheJava Virtual Machine (JVM) pioneered the concept of
code verification by which a receiving host examines each arriving mobile pro-
gram to rule out potentially malicious behavior even before starting execution.

" Unfortunately, verification in itself consumes computing resources and thereby
represents an overhead. Moreover, the need for eventual verification at the code
recipient prevents many traditional compiler optimizations at the code producer.
As aresult, first-generation verifiable mobile code formats such as JVM code and
the ECMA CLR intermediate language require substantial just-in-time compila-
tion effort at the code recipient to obtain reasonable execution performance.

The very concept of verification also presents a potential avenue for an attack.
Gal et al. [7] have recently shown how a carefully crafted mobile program in the
JVM byte-code language (JVML) can result in a denial of service attack when
sent as an “applet” to a client computer or as an “agent” to a server. Because
worst-case verification complexity in JVML does not grow linearly with method
size, one can craft relatively short programs (a few thousand bytes) that require an
extreme verification effort (on the .order of hours on a workstation-class machine)
before they are finally recognized as valid.

The main characteristic of what we call “ﬁrst-veneratlon mobile code repre-
sentations (e.g., JVML and the ECMA CLR intermediate language) is that they are
based on virtual machines with unrestricted goto instructions and untyped expres-
sion stacks. Both of these features represent major hurdles to (a) producer-side
code optimizations, (b) to verification efficiency, and (c) to high-quality just-in-
time code generation.

In the meantime, alternative schemes for mobile-code distribution have ap-
peared that differ from the model exemplified by the JVM and the CLR. Proof-
carrying code (PCC) approaches [13, 14] involve the code producer in the verifi-
cation process by obliging it to construct a proof of safety. The code consumer
computes a verification condition from the received program and checks whether .
the proof supplied by the producer discharges the computed verification condition.
PCC requires only linear (in the length of the proof) effort on the code consumer.
An early concern that the proofs were often larger than the programs themselves

. has been put to rest by proof compaction techniques [15].

Amme et al. [3] have proposed a mobile-code format based on Static Single

1 INTRODUCTION | o 4

Aésig’nme'nt Form that is both type-Safe and control-safe. This format, SafeTSA,
retains the high-level control structures of the original source language, such as
while, if, and for loops. As a consequence, when the origin of @ mobile program is
not source code, but existing code in another representation providing unrestricted
gotos (for example, JVML), this becomes a problem. Increasingly, JVM code
is Tun through code obfuscater prior to distribution, creating irreducible control

flow. Such code cannot easily be mapped back onto high-level control structures,

- diminishing the applicability of representations such as SafeTSA.

" Moreover, SSA-based representations are meant to be. compiled -on-the-fly
rather than interpreted. A recent attempt at interpreting SSA directly [22] has
resulted in success, but at the expected low performance point. Hence, for the
foreseeable future, SSA-based mobile code formats are likely to remain restricted
to workstation-class devices with large memories and ample processor resources.

- In this paper, we present a new approach to transmitting mobile code that is

"based on an abstract machine that has two parts, a wire format emitted by the

code producer and transmitted to the code consumer, and an internal format seen
only by the code consumer. The internal format is generated during verification
of the wire format, and the effort for the ver1ﬁcat1on/translat1on step is linear in
the length of the wire representation. ' :

.Our abstract machme which we call the Certzﬁcate Abstract Machine (CAM),
is able to-completely capture all control flow that might result from running JVM
bytecode through a code obfuscater. Hence, we can translate directly from JVML

“or CLR code into our wire format. Instead of providing difficult-to- verify un-

restricted gotos, our wire format provides complete inherent control-structure

safety. As we will explain below, the key to our representation is that it encodes
the dominance relationship and variable scoping directly.

The internal format of our abstract machine is register based and can be in-
terpreted efficiently on resource-constrained devices. Alternatively, it can also be
translated quickly just-in-time into high—quality native code where the appropri-
ate processor resources are available. Hence, it covers the complete applicability
. range of the existing JVM and CLR formats at a better performance point.-

In the following, we first present key terminology. - We then present the key
idea of the CAM, namely the use of the dominator relationship for modeling con- -

trol safety and scoping to model data flow and type safety. Following this brief
overview, we present CAM in detail and specify the operational semantics for the
CAM abstract interpreter. After discussing the current implementation and related
- work, we conclude our paper.

W

2 PRELIMINARIES
2 Preliminaries

2.1 Terminology and Notation

A control flow graph (CFG) G(V, Eg) is a directed graph in which V' is the set
of nodes representing basic blocks, and an edge (z,y) € Eg represents a possible
flow of control from z to y. There are two distinguished nodes: start and end.
start has no predecessor and every node is reachable from it. end has no succes-
sors and is reachable from every node. The presence of an edge (start, end) €
F¢ indicates that the surrounding program might not execute G at all.

A path in G is a sequence of nodes (ni, ng, ..., ng) such that all nodes are
distinct and (n;, niv1) € Fe, 1 < ¢ < k. Fornodes z and y € V, if = appears
on every path from start to y, then z dominates y. Every node dominates itself.
Node z strictly dominates node y if £ dominates y, and z # y. We write z <
y for strictly dominating and z < y for dominating. Node z is the immediate
dominator of node y, denoted idom(y), if = is the closest strict dominator of y
on any path from start to y. Every node, except start, has a unique immediate.
dominator. Every node has no more than one immediate dominator. The edges
Er = {(idom(z),z)|z € V—{start}} form a directed tree rooted at start, called
the dominator tree denoted by T'(V, Er) of G(V, Eg), such that z dominates y if
and only if z is an ancestor of ¥ in the dominator tree. v

2.2 Safety .Requirements

In order to guarantee the abstractions of the target machine, a mobile program
-must satisfy all of the following:

1. Type safety — every value is used only in ways that are consistent with its
type. For example, a floating point value could not be used as array index.

2. Control flow safety — control transfer instructions, 1.e., branches that cause
the flow of control to leave a basic block, must lead to valid targets. For
example, procedures can only be reached at their entry point.

3. Data flow safety — every variable must be declared and initialized before it
is used. :

In the following, we will call a program “well-typed” when it satisfies these
conditions. For programs written in high-level programming languages, a com-

2 PRELIMINARIES -« 6

‘piler can easily check that these criteria are met. -But NOW Wwe .are inte_rested in-

Tlower-level formats that still allow to verify these properties.

2.3 ',V,eriﬁcvation |

The JVM bytecode verifier checks the “weil-typedness” criteria preserrted in Sec-
tion 2.2 above. In particular, control flow safety and data flow safety are interwo-

ven in the standard JVML verification algorithm. Verification is similar to.abstract

interpretation of the program, considering only the types of variables rather than
their concrete values. At join points in the control flow, the verifier needs to con-
firm type consistency in the data flow. :

In the case of Java, which provides sub- typmg, 1nstruct1ons encountered dur--

ing the abstract interpretation may produce new variables or variables with new
types, which in turn may affect the availability and type of other variables reach-

able via control fiow. The updated availability and types of Varrables may further L

affect the behavior of already traversed instructions.

As a consequence of this mutual dependency between control ﬂow and data
flow (Figure 1), the JVM bytecode verifier may need to iterate until it reaches a
stable state in which no new variable or new type is produced. Thisfixed-point
iteration algorithm [16] has a worst-case performance that is quadratic. In arecent

paper, Gal et al. [7] have shown how one can systematically construct JVML -

programs that exhibit worst- case verification behavior and use these programs in
a denial- of-servrce attack on the machlne hosting the JVM. |

variables w/ new types
‘new vanahles " .

. . ? .
availability and type). o control flow
of variables. .-

Figure I: Dependence arnong‘instructions,'variables and ,centrol flow in JVML.

In the Certificate. Abstract Machine, we successfully break up the cycle linking
control flow and data flow by introducing the dominator relationship directly into
the mobile-code representation (Figure 2). In our verification algorithm, travers-
ing instructions affects the availability and type of variables via dominance instead
of via control flow. The updated availability and types of variables affect only the

3 CERTIFICATE ABSTRACT MACHINE 7 |

still-unchecked instructions in type-check sequence—there is no longer a cycle.
This will be explained in detail in Section 3.4 below. In Section 3.5, we will also
give a definition of control safety based on dominance, and an aloonthm to venfy
the validity of control flow.

variables w/ new types
ables

variables w/ aew types
new yafiables
availability and type
of variables

Figure 2: Dependence among instructions, variables, control flow and dominance
in CAM '

After these preliminaries, we can now introduce the Certificate Abstract Ma-
chine in detail.

3 Certiﬁcate Abstract Machine

Our goal is to make checking the safety criteria listed in Section 2.2 as efficient
and simple as possible. The Certificate Abstract Machine is our vehicle to achieve
* this goal. In particular, CAM provides more efficient verification than the Java
Virtual Machine, and also simpler and faster 1nterpretat10n or just-in-time code
generation. :

The CAM uses two different representations for every program, and translates
between these formats as a side-effect of verification. The wire format (or CAM
code) is a stack-based intermediate representation that is used to transport mobile
programs from one place to another. It is the representation that can be verified.
We can actually generate this format directly from JVML, i.e., we do not require
the presence of any Java source code, and our JVML-to-CAM compiler can even
deal with bytecode that has been deliberately obfuscated.

‘On the code consumer side, a CAM implementation takes the CAM code and
translates it into a register-based internal format. This translation occurs as a
side-effect of verification; the internal format is never seen on the outside of the
- abstract machine and is executed only if verification is successful.

The verification/translation process involves a symbolic execution of the CAM
code comnsidering only the types of variables, rather than their values. Unlike

3 CERTIFICATE ABSTRACT MACHINE L 8

.- CAM code in wire format

' Flgure 3: Life cycle——(a) translate JVML into CAM code at code producer (b)
© verify and execute CAM code at code consumer :

JVM_L,'veriﬁcation, this process occurs in linear time. During this type-based

execution, types are loaded from the constant pool or register file onto a type

expression stack and operations are executed on these types. If the CAM Verifier
successfully completes execution, then the CAM code is safe and the register- .

based internal format is emitted to the VM Interpreter or JIT compiler. The life
cycle of CAM from producer to consumer is illustrated in Figure 3. The rest of this
section will first present an example, and then introduce the various components

of CAM in more detail.

3.1 An 'Example |

The best 'Wéy to illustrate the differences betWeen JVML code and CAM code is

- by way of an example. The Java source program in Figure 4(a) computes n!if n
mod 2 is zero, otherwise it computes 2™. The variable z is declared as a different

type in the dlfferent cases. The syntax of Java successfully assigns different scopes

~ toz.:int and z : long; hence, there is not conflict between them. -

Flgure 4(b) shows ‘the TVML code corresponding to this example and Fig-
ure 5(a) the CAM code. The major differences between CAM and JVML are the
following: FVML has explicit “gotos” and conditional branches with explicit jump
targets. In'‘CAM code, on the other hand, the control flow targets are encoded in

an augmented dominator tree (ADT). Unlike the TVM, CAM has explicit block

instructions to.delimit basic blocks (operational semantics will be given below).
All CAM instructions are designed to operate over types instead of values. CAM

'has a RegisterFile, atyped ConstPool and a TypeOpStack. The loadr instmction

3+ CERTIFICATE ABSTRACT MACHINE 1 9

BI} Oiload_0
1 liconst 2
12iem
1 3istore_|
141ioad_1
C il
P losd0
ioyeis
: BT 12t |
. 13 Irctum
long foo (int n) tisirmrzzzd
B'.!: 14ilcad 0 1
N :15111 H
intr=n%2;" :j{::;—:
if (r=="0) { /*nl*/ b0}
if (n == 0) return 1; ’ﬁm_; '
long x =n;" : s
i 126 tonul ot
while (> 1) { ETET
- Bl 28 icad _'o""
x=x*n; zsnmsu
return x;
Jelse{" /*27n*/ B8} 35 teonst_2 ;
1 . l36ixux= 2
S imtx=2; 137 ine 0 =1 H
n=n-1; : o
while (n > 0) { _ Biqaslaco-t
l46lioad 2
’ —n; lericonsty |
. * 9. 148 imul H
X=X 2’v 1 49 istore 2 E

return (long) X;
}) Bll 54 liad 2
i : 155021
} Ls6ietm

@ (b)

Figure 4: (a) Java source and (b) JVM bytecode for the ;uri_ning example

iﬁ CAM is untyped: it copies a type from the .RvegisterFile to the TypeOpStack:

- The instruction dec! assigns the next available register to a type. These three and

other specific instructions, all of which are explained further below, represent the
model that we use for safety checkmg—they disappear after verification when the
code is re-written into its internal representation (Figure 6).

Finally, the most important and unique property of CAM is scopmg The scope
of each local variable in JVML is unclear. CAM lets us recover instruction se-
quences that have non-overlapping scopes for each register:type pair. Figure 5(b)
illustrates this point. The z : int and z : long in the orlvlnal Java code correspond

to R[3] : int and R[3] : long respectively.

3.2 The Verifier

The CAM Veriﬁér has two logically independent parts: a type-level abstract in-
terpreter (Typelnterpreter) that operates on types instead of values, and an aug-
_mented dominator tree verifier (ADT Verifier) that makes sure that control flows

3 CERTIFICATE ABSTRACT MACHINE o . 10

[.
podemnmans,

::; 1 block 0 '

losdr 1 K v result int H

Joad it 2" | R1}int + param int !

apply ircz e
block 1

ot REZHn 1

Lwpiylme odeslint

'
R[3)dong , decl long

............
...........

Rt 1 declint

(b)

‘Figure 5: (2) CAM code for the same example,‘consisting of an augmented dom-

inator tree and a sequence of instructions and (b) code sequence executed by the

~ verifier (boxes indicate the scopes of the associated register:type pairs)

go only to proper targets. A program represented in CAM code is well-typed if

both ADT Verifier and Typelnterpreter return true. ‘
A set of transition functions over types constitutes the interpretation rules of

the Typelnterpreter. It interprets instructions in a sequence in which the scope of -

any variable v covers only the instructions following the de fine instruction of v.
‘We call this the type-check sequence as it is used only by the Typelnterpreter. The
type-check sequence doesn’t necessarily have to coincide with either the program
sequence or control flow sequence. One example is show in Figure 5(b). The
algorithm generating the type-check sequence is given below in section 3.4.3.

The Typelnterpreter completely ignores control flow instructions. It interprets

3 CERTIFICATE ABSTRACT MACHINE | S 11

Bl 1 rem R[2) R[1] 2
2 ifne R[2] 12
B2 3 ifne R{1] 5
4 return 1
B3 5 i21 R([3] R[1}
6 goto 10
7 iadd R{1] R[1] -1
8 i21 R[4] RI[1]
9 imul R([3] R{3] R[4]
B4 10 if_iempgt R[X] 1 7
B6 11 return R(3]
BB 12 mov R[3)] 2
13 iadd R{1] R[1l) -1
14 goto 17
B10 15 iadd R[1) R{1] -1
16 imul R{3) R[3] 2
B9 17 ifgt R[1] 15
Bll 18 return R[1]

BS

Figure 6: Register-based internal CAM representation of .our example program,
generated if verification succeeds

instructions strictly following the type-check sequence and no control transfer
is ever taken into account interrupting the interpretation sequence. As a conse-
quence, the interpretation complexity is O(l), with | being the number of instruc-
tions. If the Typelnterpreter successfully interprets all instructions in the type-
check sequence, then the code doesn’t violate any type rules.

The reader might have noticed a special instruction popfa in the type -check
sequence listed in Figure 5(b). These instructions are inserted during the prepa-
ration of the type-check sequence and don’t appear in the CAM wire format. We
elaborate on their operational semantics below. o

The control safety property is encoded separately from the CAM code in
the Augmented Dominator Tree (ADT). The ADT Verifier (Section 3.5), which
is completely separate from the TypeInterpreter, checks the validity of the ADT in
O(E + V) complexity, with E being the number of edges and V being the number
of vertices in the tree If the ADT is valid, then all control flow goes to proper
targets.

3.3 Syntax

The stack-based intermediate representation used as the CAM’s wire format is
designed solely for the purposé of verification. After successful verification, all
programs in this format will be rewritten into a register based internal format.
Since the register-based internal format exists only in memory and is private to
each implementation of the CAM, we specify only the syntax of the stack-based

wire format (Figure 7).

3 CERTIFICATE ABSTRACT MACHINE

Hw oW

Thasic
Tarray

Tabstract
T

Loty
Tother
I
Kind

ADT

BBO
BB

L R T I T

i

© 19y ey i, b, m,n €N

VQ, ey Un € Z _

{0—T,.,i—T} RegisterFile
{0+~ (vo, 70), -o-r 8+ (vi, i) } ConstPool
{0 g, .cyn = in} - . BlockMap
{} : ' ExceptionMap
T|int|long|Object... BasicTypes
7 () : ArrayTypes -
i2||iadd|move... AbstractTypes
Thasic l Tarray . Types
ifnelif licmpgt|retnv

switch{vo, v1, U2, U3, ..., Un } CtrlInst
loadr 3|loadc i|decl 7]apply tapstract

arraylength Tarray Otherlnst
IctrllIotherlbIOCk m '

popfalresult T|param 7... Inst
normal|synch|jsriret . BlockKinds

mni, noljsr ADT*

m[n, ...]{normal|synch|ret} ADTx*

mn]ret ADT* ADT
block 0 result 7 {param 7}

block m Iptpher * Letr? ‘BasicBlock

R CB ADT BB0 BBx* Program

Figure 7: Syntax of the CAM wire format

12

3 CERTIFICATE ABSTRACT MACHINE - 13

CAM inherits the type system of JVML and the constant pool of JVML.!
In our syntax description, ¢ refers to an index into the RegisterFile or the Con-

stPool. Implicit coercion is not allowed as in JVML. ADT is our Augmented

Dominator Tree encoding of the control flow graph. Each tree node has an unique
id m followed by a successor(adjacency) list [n, ...] and Kind. Kind denotes the
semantics of a tree node, normal denotes normal basic block, synch denotes syn-
chronized block and ret denotes the semantics of final statement in Java source
language. Except for the end node, every node has at least one successor. The
number of successors of node b matches the Ctrllnst in the basic block b. For
example “ifne” has exactly two successors.

A program declaration R C B ADT BBQ, BB+ defines the structure of a
program. R is a register file and all registers are uninitialized; hence, all register
have the type T. C is a typed constant pool. B maps block ids to the numbers of
its successors. ADT is the Augmented Dominator Tree encoding of the control
flow graph as explained above. BBO defines the abstract data type of the method;
its counterpart in JVML is the method signature. BBx is the sequence of basic
blocks. Each basic block consists of a sequence of instructions. Before we explain
the semantics of the CAM wire format any further, we need go into the details of

the design principles of CAM.

3.4 Valid Variable Analysis
3.4.1 Data flow analysis

Form data flow analysis view points, given a control flow graph G(V, Eg), a ref-
erence to x at point p in G is valid if every path leading to p from start contains
a prior definition of x. More precisely, from the type inference view point, assume
the definitions of x prior to p have - z : 73, 0 < 7 < k and x is referred as 7 at
pointp, if 7o I T7A .7, I 7and T < T, then the reference of x at point p is valid
and x has type 7. For the examples in Figures 8(a) and 8(b), both paths leading
to B3 contain definitions of x, so the reference to x in B3 is valid. Conversely,
the references to z in Figure 8(c) and 8(d) are invalid because at least one path
from start to the reference contains no definition of x. All paths leading to point
p from start need to be considered to verify references at point p.

If x is defined in any dominator of p and x has the type 7 which is the super-
type of all types of referee x which are dominated by 7, then x must appears on

'In fact, in our implementation we re-use the complete JVM class-file format and merely re-
place the JVM’s “code” attribute with our own combination of “CAM-code” and “ADT” attributes.

3 CERTIFICATE ABSTRACT MACHINE _ 14

‘Figlire 8: The references of x at point p are valid in (a) and (b) but are invalid in
(c) and (d). (e), (D), (g), (h) show precise type conditions for valid references at
point p.

all paths reachable to point p from start by the definition of the dominator rela-
tionship and if 7 < T, then it is valid typed. The converse is not true. Figure 9
illustrates the dominator trees of the examples in Figure 8. In the example of Fig-
ure 8(a), the reference to x at block B3 is valid, but there is no common deﬁn1t1on
of x in the dominator (BO) of B3 (see Figure 9(a)).

In this case, we can insert a definition of x to BO (Flgure 9(a)) or prompt the
type of x in BO (Figure 9(c)) to 7 and - 7y 4 7 A 75 < 7 without changing the
behavior of the programs. When applying this insertion or promotion to any pro-
gram that has valid references initially, the resulting program after the procedure
will also be valid.

The programs after the 1nsert10n or promotion procedure have the followmg
property. In particular, let VALID(b) be the set of valid variables on entry to block
b and DEF(b) be the set of variables defined in b. We define a system of equations

for VALID(), b € V:

Déﬁnition 1 (Valid variables at the entry of block b)

%) ‘ b = start
VALID(b) = { VALID (idom(b)) U DEF (idom(b)) b€ V — {start}

A variable ¢ defined in a block b can only be referred in the dominator sub-tree
rooted by b. This corresponds to the scope concept in CAM. Given the dominator

3 CERTIFICATE ABSTRACT MACHINE , | 15

insert - .BO insert BO

Frarandrazir

B2 |

B3 B2 Bl 83
[USE(XE DEF{x) Fzimy plFraTAz:T
(@ (b)

a0 promate to

Fzim [™*Fr@rAndTAZTIT

Bl 83 B2
I}-::-r,lp[i—«rs'r/\zi] []

(@

Figure 9: (a), (c), (e) and (f) are the the dominator trees of 8(a), 8(b), 8(c) and 8(d)
- respectively. Insertion a definition of x into B3 in (a) will not change the behavior
of the program. ' : :

tree in Figure 10, the VALID set is

VALID(B0) = @

VALID(B1) = VALID(BO)U {a:int}
VALID(B2) = VALID(B1)U {b:int}
VALID(B4) = VALID(B3)U {c:int}
VALID(BS) = VALID(B4)U®
VALID(B8) = VALID(B1)U {b:int}
VALID(B9) =. VALID(BS8)U {e:int}

The valid variable analysis of the preprocessed program in CAM is simplified
vs. a program in JVML. Instead of having to iterate over all paths that lead to p
from start, one only needs to check if there is a definition of x as type 7 on the
path from start to point p in the dominator tree and any referred type 7; of x with

Frn QT

3.4.2 Temporary Registers in CAM

CAM code uses an implicit register numbering through the decl instruction. This
section explains how registers are assigned internally, based on these implicit dec-

3 CERTIFICATE ABSTRACT MACHINE \ _ 16

Figure 10: Dominator tree; boxes represent variable scoping

larations. We will make use of this explanation below.

Internally, the CAM machine keeps a maximum register pointer mrp. The
basic principle of register allocation then becomes: given a dominator tree. 1.
We start from the root and traverse down to one leaf. 2. When a new variable
definition is found, we assign R[mrp + 1] to that variable and increase the value
of mrp by one. 3. We reset mrp to 0, and repeat steps 1 and 2 until all paths from
root to leaves are traversed. 3. We then form the union of the results of traversing

all paths.
Given the dormnator tree in Figure 10, the register allocation becomes:

From B0 down to B5

a:int — R[1]

b:int ‘ — R[2]
c:long — R[3]
d:long — R[4]

Frome B0 down to B10

a:int — R[1]
b:int — R[2]
e:int — R[3)

Forming the union of the results of traversing all paths, we get a : int « R[],
b:int «— R[2],c: long «— R3], d : long +— R[4], e : int + R[3]. The full
algorithm is described in Appendix A.0.3. - '

3.4.3 Typelnterpreter

Before invoking Typelnterpreter, we need to prepare the instruction ordering that
is referred to as type-check sequence earlier. The scope of variable v in this se-
quence covers only the instructions following the definition instruction of v. The

3 CERTIFICATE ABSTRACT MACHINE 17

type-check sequence is prepared as follows:

1. Initialize an empty type-check sequence. 2. Invoke a tree traversal on the
dominator tree. During the traversal, if a block is found for the first time, all
instructions in the block is appended to the type-check sequence. If the block is
visited again, then a popfa instruction is appended to the type-check sequence.

- Figure 5(b) shows a such sequence. '
_ The Typelnterpreter scans the instructions in the type-check sequence in linear
fashion and interprets instructions according to its transition rules. If Typelnter-
preter successfully interprets all instructions, then the sequence is well typed and
the instructions in program order are well typed too.

The following is the transition system of the Typelnterpreter. For snnphmty'
we omit the rules for rewriting the stack-based wire format into the register-based
internal format that are also part of our transition functions. The Typelnterpreter

“uses a number of storage areas for data, code and book-keeping. Each storage area
is represented as mapping of indices ¢ € N onto values of the appropriate type.

1. ConstPool C: contains constant value and type pairs — (v,‘r), Symbolically,
Cli — (v, 7)].

2. RegisterFile R: contains types. Symbolically, R[i — 7].

3. Frame Stack fs: is used for book-keeping scopes. Each block instruction
creates a stack Frame. The Frame contains the current scope information
and a pointer to the previous Frame; it has the following four components:
MaxRegPointer mrp is the maximum register number valid in the current
block (R(1) to R(mrp) are visible in the current block). Frame pointer fp
to the previous frame. An origTypeStack ots with its stack pointer otsp is
used to save and trace the original types of retyped registers in current block.
Symbolically, Frame ::= (otsp)(ots)(mrp)(fp) and fs[i — Frame].

4. TypeOpStack tos: contains index and type pairs — (4, 7). where j is the in-
dex to RegisterFile and 1 < j < mrp, if j = 0, then the type is loaded from
ConstPool. stack operation can be modeled by a combination of adding (or
subtracting) a constant to (from) its stack pointer fosp and/or updating the

mapping tos(i — (7, 7)].

Runtime Environment:Env ::= (fs, tos, tosp, R, C, mrp, Tresui). We do not list
the program counter pc explicitly since it increases monotonically by one after

each instruction.

3 CERTIFICATEABSTRACTMACHM N ¥

3.4. 4 Transrtlon Rules

The rules for decl below reveal most aspects of the notation that we are using. The -
semantics of an instruction are defined by an axiom or an inference rule. A rule
has a number of premises (above the horizontal line) and a conclusion. An axiom
has a conclusion but no premises. Rules and axioms may have side conditions.

_ A EnvI—R[mrp+1r—->T]=>R"'
[decl] Env | (decl 7, mrp, R) (mrp+ 1 ,R')

The conﬁguratron on the left hand side of the => consists of an 1nstruct10n and its
operands (e.g. decl), the current maximum register pointer (mrp), and the register
file (R). The configuration on the right hand side consists of the next value .of
- the maximum register pointer (eg. mrp + 1) anid the new register file (R"). The
_notation R[mrp + 1 + 7] extends the mapping R with a new domair/range pair.

~ Any previous association for the new domain value mrp -+ 1 is lost. It follows that

it is sufficient to decrement the maximum I'CngtGI‘ p01nter to forget mappings for

partlcular values in the domain.

The CAM 1nstruct10ns can be class1ﬁed as:

1. type 1n1t1ahzat10n operatlons (decl, param) These two 1nstruct10ns ini-

tialize registers w1th types. decl 7 assigns to the next available register in

 register file the type 7 and i 1ncreases mrp by one to point to the new assigned
register. param has the same semantics as decl, but param can only be used

in block BO.

2. type operand stack operatlons (loadr Ioadc) The only two instructions -
“that can increase the stack pointer tosp. loadr i: pushes a (3, T) onto the
top of the stack, wrth type 7 denoting the type of the ith register. loadc i:

. performs the equivalent operation for ith constant from the ConstPool,
but it pushes (0, 7), with 7 denoting the type of the sth constant. :

" 3. stack frame operations: (block, popfa) manage scopes during the type-

. level abstract interpretation. block i: pushes the .current Frame, which -

~ contains the current scopes, onto the stack, flushes tos and increases the

. frame pointer fp by one to point to a new Frame. popfa: restores the
vprev1ous Frame and sets the frame pomter Jp to the next frame

4. apply operatlons (12I iadd, imul, move etc.): These operations are uni-
formly represented as a abstract data type tapstract = 71 X« X Ty = Tnt1.
For example, i2| with abstract data type int — long, iadd with'abstract data -

3 CERTIFICATE ABSTRACT MACHINE : 19

type int X int — 4nt, move with abstract data type 7 — 7, where 7 is a
type variable. For simplicity, we omit Env in the following rule.

b tabstract ° (Tl X oo X Tp — Tri—}—l) : _
F (tos(tosp), ..., tos(tosp — n+ 1)) = ({11, 71), s {bn,)
- tos(tosp — n) = (in+1, Tn+17)

F(rdnA AT ST)

F (O < ’l:n+1 A Tn+1 S T,,IH’_]_)

t (apply tabstracts tosp) = <t0$p —n-+ 1)

[apply]
' F tabstract (7-1. X ooee X T — T”+l) - .

F (tos(tosp), ..., tos(tosp — n+ 1)) = ((i1,71), -, (in, Tn))
F tos(tosp — n) = (int1, Tnt1’)

F(rSmA AT, D)

F (0 < int1 ATag1 D Thps)

F ots[otsp + 1 — (iny1,7h,1)] = ots’

FRw— mmy1] = R

F (apply tabstract, tosp, ots, otsp, R) = (tosp—n+1,0ts’,otsp+ 1, R’)

If 0 < 4p41, then 4,41 is loaded from the R, hence it’s update-able. 71 I 7
denotes that 7 is a subtype of 75. Each apply tapstract has two transition
rules, the one above is the transition rule for 77 < 7;, where i = 1, ..., n and
Tog1 S Tooq. I oy & 74, then the (inya, 754,) Deed to be pushed onto
the tos in the current Frame and will be restored when current Frame's
(scope) is popped. '

5. array length operation: (arraylength) pops out two pairs (i1, 71) and (i, o)
from tos. If 7, & Turray OF T2 # 4nt, then we have a type mismatch.

6. miscellaneous: (result, retnv) result 7: initializes Tyesu: With 7. retnv:
looks at the (i, 7) pair on tos. If 7 # Tyequ; then we have a type mismatch
EITOr. :

The formal semantics of above operations are listed in Appendix B.

3.5 Control-Flow Safety Analysis

Branches that cause the flow of control to leave a basic block rhust have valid
targets. Intuitively [11, 24], this rules out jumping into the middle of an instruction

"3 CERTIFICATE ABSTRACT MACHINE IR 20

or to data as if it were code. More subtly, we need to also rule out jumping
' 'to an instruction that causes the data flow analysis of the Bytecode Verifier to
fail. Knowing all variables and their types, the property VALID(b) at the entry
of block b is sufficient to check the well-typedness of instructions in block b.
~ If a VALID(b) ensures the well-typedness of instructions in block b, then this

VALID(b) is called well-typed. Annotating each basic block with a well- typed
~ VALID at compiler time is the technique used by the KVM [21] to reduce the
verification cost at runtime. A more precise control flow safety definition based
on well-typedness and VALID is given below: - -

Deﬁmtlon 2 (Valid control flows to block b) Ifthe VALID(b) calculated based
on the control flows to block b fails to ensure the well-typedness -of instructions
~in block b, then those control flows to block b are invalid with respect to these
»instructionsvin block b, otherwise the control ﬂows to the block are valid. '

Havmg the control flow safety of individual blocks it isno longer dlfﬁcult to
define the control flow safety of a program..
_ In section 3.4, VALID(b) is recursively defined on dominance. If the control E
- flows to block b preserves the dominance on which VALID(b) is determined, then
it also preserves VALID(b). | ’ S o :

3.5, 1 Dommance Invarlance

We have successfully tied the valid vanable analy51s and control flow safety anal-
ysis together by dorminance. Dominance plays a fundamental role in the certifica-
tion of CAM. Its control flow safety check relies on whether a control flow graph
conforms to the dornmance on Wthh v1rtua1 register allocation (secuon 3.4. 2) s
based. ' - : '
The dominance of a control flow graph is summanzed as follows: Let dmtree :
G — T denote the algorithm to compute the dominator tree from the CFG.
dmtree is a function which maps a control flow graph to an unique dominator
tree, while dmtree™! is not a function. Control flow safety verification requires
to check whether a control flow graph G conforms to a given dominator tree 7.
An intuitive way is to calculate the dominator tree 7’ of G and to compare 7" and

~ T. dmtree functions-are usually not linear. Alstrup ez al. [2] published a theo-

- retical linear-time complexity dominance algorithm, but the actual complexity of
~ the algorithm, using practical data structures, is O(E + VlogloglogV). Cooper’s
work [4] on fast dominance algorithms has demonstrated that a well-engineered

3 CERTIFICATE ABSTRACT MACHINE ' 21

O(V?) dominance algorithm runs faster, in practice, than the classic Lengauer-
Tarjan algorithm [10], which has a time-bound of O(E * log(V)). Stephen [1] has
given a practical O(E + V) dominance algorithm limited to reducible graphs.

In previous work [23], we gave a simple O(V + E) algorithm, from a program
certification viewpoint, to verify whether an arbitrary (reducible or irreducible)
control flow graph conforms to a given dominator tree. The algorithm demon-

‘strates that checking the correctness of solutjon is easier or no more complicated

than finding the solution in the first place. The central idea is briefly repeated here.
An edge is dominance invariant if after adding the edge to a control flow
graph, the resulting control flow graph has the same dominator tree as the original

control flow graph.

Definition 3 (dominance invariant successors) The dominance invariant suc-
cessors of node z, denoted by domis(z), is the set of nodes y and the edge from z

to y is dominance invariant.

“domis(z) =4 v ‘
{y]dmtree(G’(V, EcU{(z,¥)})) = dmtree(G(V, Eg))}

Lemmal Vz € V — {start}, domis(z) is the set of nodes whose immediate
dominator (parent) dominate z. '

By the definition of the dominator tree, the immediate dominator of node z is also
the parent of node z. An edge (z,z) is dominance invariant if and only if the
parent of z is the ancestor of z. The proof is given in Appendix A.0.7.

3.5.2 Augmented Dominator Tree

Given a control flow graph G and its dominator tree 7', we annotate each tree
node with its successors. The resulting dominator tree is called Augmented Dom-
inator Tree. Where Gqqj is the adjacency list encoding of the control flow graph
G, ADT(T,G,4) is the control flow safety certificate transported in CAM. An
example encoding is shown in Figure 11. Verification proceeds as follows:
Firstly, we verify that each successor list contains valid nodes. For any tree
node except start, let successor(z) denote the successor list of in the ADT.
By Definition 3, if successor(z) C domis(z), then successor(z) is valid. By
Lemma 1, if the parents of all nodes in successor(z) dominate z, then successor(z)
is valid. An O(V + E) ADTSuccessor Verifier algorithm is given in Appendix A.0.4.

'3 CERTIFICATE ABSTRACTMACHINE 2

@

- Figure 11: (b) is the ADT encoding of the control ﬁow graph (a)

Secondly, we verrfy that Gqi 1s a valid CFG (refer to the deﬁmtlon ofa control .
flow graph in section 2.1).. This is not obvious since dmitree™" is not a function.
- Figure 12 shows multiple CFGs corresponding to one dominator tree. In other
words, G,q is not unique. We define an abstract control flow graph denoting
Gaps(T). Tt is the abstraction of all control flow graphs conforming to the domi-
nator tree 7. Ggps(T') is constructed from the dominator tree T by linking all leaf
nodes to end node. Every edge (z,y) in G, (T) models a flow path from z to y
- and z isn’t necessary directly connected to y. All control flow graphs conforming
‘to the dominator tree T are modeled in G, (7). It’s easy to verify that Gaus(T)
in Figure 12(g) abstractly models the control flow in CFGs from Figure 12(b) to
12(9).

A CFG G is said to conform to Gabs, if for all edges (z,v) € G there
isa path from z to y in G. With the abstract control flow graph we can give a

- definition of the Va11d1ty of Gogj.

Definition 4 (Validity of G,4) Given an ADT (T, Gug;), Gags is a valid CF G if
G ogi conforms to Gaps(T). : o

~ . An elimination strategy is used to verify that Gog conforms to Gaps(T'). For
all edges (x y) € Gas(T), if y appears on any path from z to end in the CFG
represented by G, then we delete the edge (z,y) from G gps (T"). I no edge is
~ leftin Gaps (T') then Gog; is a valid adjacent list encoding of the control flow graph.

' ThlS procedure has O(V + E) complexity. -
Theorem 1 (Valrdrty of ADT) An ADT(T, Goy) is valid if and only i

1.VzeV -~ {s_ta'rt}, Vz € successor(z), z € domzs()

' 4 IMPLEMENTATION OVERVIEW: o 23

Figure 12 Control flow graphs (b), (c) (d), (e) and- (f) have the same dominator
tree (a). (g) The abstract model of all control flow graphs edge. = represents a
control flow path : o :

2. Gogj conforms-to Gabs(T).

The ADTVerifier consists of the ADTSuccessor Verifier and the verifier of
Gagj- Both have O(V + E) complexity so the ADT Verifier is linear. The ADT-
Verifier guarantees only that ADT' (T, G44;) is valid with respect to the dominator
tree T'. Finally, we need to make sure that the control flows in G,q match with
the CtrlInst at the end of each basic block (node). This check is hnear over the-

size of the basic block.

4 -Implementdtion Overview

_ JVML to CAM compzlatzon We implement a compiler that converts existing
. JVML code into CAM code. The .cam file keeps the original class file format and

only replaces JVML’s code attribute by the code attribute of CAM instructions.
An additional attribute ADT is added that encodes the angmented dominator tree.
The compilation procedure first recovers all nested zry-catch blocks. All blocks

. in a try or catch block a,re‘ grouped as a sub control flow graph. Each try or catch

block is treated as a single block in the global control flow graph of a method.
Dominator trees of the global control flow and sub control flow graphs nested in

5 RELATED WORK LT .

"a try or catch are calculated separately. The complete dominator tree is formed
by replacing try or catch nodes with the dormnator tree of the control flow graph
~nested within it.- , ‘ :

After this step, fix-point iterative data analysis is mvoked to recover all vari-
ables and their types. The virtual reglster allocation algonthm assigns registers to -
all variables and decl instructions are inserted at the appropnate blocks. Flnally,
all JVML 1nstruct1ons are rewritten into CAM instructions.

_' CAM Verifer: The CAM Verfier consist of logically independent ADTVenﬁer
and Typelnterpreter. The former in turn consists of an ADTSuccessor Verifier
and a verifier for G,g4. Preparing the type-check sequence is not strictly neces-
sary, since our Typelnterpreter can traverse the dominator tree directly. Since the
ADTSuccessor Verifier is a tree traversal based algorithm, our Typelnterpreter and
ADTSuccessor Verifier are implemented as a single integrated algorithm. The ver-
-ifier of G4 needs to know the complete control flow graph, so it is 1rnplemented
. as an independent component :

5 R{elated_ Work

Checking the well-typedness of a program is a well-studied problem at different
levels: high-level source code, abstract machine code, native machine code. Ex-
isting approaches include syntax-directed checking, abstract 1nterpretat10n data-
flow analysis, general logic, and type theory.

~ On the high level source code side, most modern programming languages
have structured grammars. Syntax-directed type checking is sufficient to check
the well-typedness of source code in these languages. »Type-"checkers have been
widely implernented in.compilers for strongly typed languages. '

Abstract machines [6] simulate real hardware machines by allowing step-by-
step execution. They ‘bridge the semantic gap between high level languages and
low level real machines. The Java Virtual Machine is the abstract machine for
Java. The Java compiler produces stack-based JVML code that can be verified by
the Java Bytecode Verifier before execution with some basic level safety (includ-
ing well-typedness).

» On the other extreme, verifying the semantics of low-level native rnachlne
code conforming to the semantics of high level source code is not trivial and less
efficient. However, encouraging progress has been made in recent years: -

. Proof Ca_frying Code [13] 'nses first-order logic to represent correctness

5 RELATED WORK) ' 25

properties and a safety proof is constructed based on a general system such
as Edinburgh LF and carried along with code.

e Typed Assembly Language [12] preserves typing information from a high-

level program written in a strongly-typed language and includes it with the

compiled program. It can then be checked by an ordinary type checker.

The JVM is still the most widely used approach for mobile code. Unfortu-
nately, the design of JVML makes bytecode verification relatively complex in
both time and space consumption. KVM [21] for resource limited devices adopts
a lightweight verification algorithm [8] instead of the full Bytecode Verifier.

Kozen’s [9] work on Efficient Code Certification (ECC) has a nature context-
free structure which mirrors the structure of high-level functional languages. ECC
is similar to SafeTSA (introduced in the Introduction) in the sense that both de-
pend on the high-level control structure. The structure of ECC consists of well-
nested intervals of instructions, called blocks. Its certificate consists a block tree.
The block tree mirrors the nested structures of functional languages. ECC lim-
its its inputs tofunctional source code. Therefore, it does not need to deal with
arbitrary jumps (even irreducible control flow graphs) as our approach does.

Davis [5] experiments with converting the stack-based JVML into a register
basedinstruction set. His experiment shows that the transformation reduces the
number of executed instructions by 34.88% and increases the number of operand
fetch instructions by 44.81%.One of the main costs of an interpreter is that for
instruction dispatch. Davis’ work has demonstrated that virtual register machines
are an attractive alternative to virtual stack machines.

Rose and Rose [17] proposed a (sparse) annotation of JVM code with types
to enable a one-pass verification of well-typedness. Roughly speaking, this trans-
forms a type reconstruction problem into a type checking problem, which is easier.
More precisely, the type inference problem is a data flow analysis problem that
requires an iterative solution, whereas the type checking problem merely needs a

- single pass to check consistency of the type annotations with the code. It trades

space for time: it is sufficient to store only the state type for the entry point to
each basic block because the remaining state types in that block can be computed

in linear time. . :
Sreedhar [19, 20, 18] proved a weaker version of lemma 1. D-J Graphs are an

alternative program representation used in loop identification, elimination-based
data flow analysis and for placing ¢ nodes in linear time.

6 CONCLUSION- . o 26

-6 Conclusion
We have designed an alternative imperative core for the Java Virtual Machine that
aims to encode well-typedness as compactly and transparently as possible. We
apply the data flow analysis to the design of CAM. The introducing of dominance

as code certificate greatly simplify the verification logic and successfully eliminate
the requirement of data flow analysis for well-typedness check.-

7 Acknowledgment
"This research effort was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory (AFRL), Air Force Ma-
teriel Command, USAF, under agreement number F30602-99-1-0536, and by the
Office of Naval Research (ONR) under agreement N00014-01-1-0854. The U.S.’
* Government is authorized to reproduce and distribute reprints for Governmental
_purposes notwithstanding any copyright annotation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA, AFRL, ONR, or any other agency of the U.S. Government.

A Algorithms and Proofs-

A.03 Register.Allocation‘

proc RegistérAllocater
initialize all node as white
stack — {} .
z +— B0
- MaxRegNo +— 0
for (v e DEF(z)) do
MazRegNo+ MazRegNo+1
. assign R[MazRegNo] tov
- push(stack, (z, MazRegNo))
while (true)do - .
- for (y € children(z)) do

A ALGORITHMS AND PROOFS

if (y is white)
" for (ve DEF(y)) do
" MazRegNo «— MazRegNo+1
assign R[MazRegNo| tov
od - :
mark y as black :
push(stack, (y, Maa:RegNo)
Ty
- break
fi '
od
. pop(stack)
if (stack # {}) '
- then (z, MazRegNo) + peek(stack)
else return S
i ‘

A04 _ADTSuccessorVeriﬁer_

proc ADTSuccessor Verifier
initialize all nodes as white
stack — {} '
z +— B0
push(stack, z).
while (true) do
" for (y € children(z)) do
if (y is white) '
for (z € unchkedPred(y)) do
- if (parent(z) ¢ stack) .
- then return false fi
od .
mark y as black .
~ push(stack, y)
Ty ‘
break -

.

27

A ALGORITHMS AND PROOFS

od : .
if (successor(z) # O)
- then for (z € successor(z)) do
if (z is white)
unchkedPred(z) «— unchkedPred(z) U {z}
elsif (parent(z) ¢ stack) ' o
' then return false
§ .
od
fi
“pop(stack)
if (stack #{})
_then z — peek(stack)
else return true
f ,
od

A.0.5 1nsertMonitqr

proc InsertMonitor
Initialize all nodes as white -
stack — {}
z «— B0
~ push(stack, z)
- while (true) do
for (y € children(z)) do
if (v is white)
then _
for (z € patchezit(y)) do

if (parent(z) # parent(y)) then insert monitorexit into y -

od .
mark y as black
push(stack, y)
Ty
~ if (y is synch) _ .
~ then insert monitorenter into y
fi
break

28

A ALGORITHMS AND PROOFS

6
od
if (successor(z) # ©)
then for (z € successor(z)) do : :
if (z is white) then patchezit(z) «— patchewit(z) U {z}
elsif (parent(z) # z) then insert monitorexit into z

fi

od
fi
pop(stack)
if (stack # ()
" then z +— peek(stack)
else return
fi
od

A.0.6 - CheckJsr

proc CheckJsr
initialize all nodes as white
stack «— {}
z +— B0
push(stack, z)
while (true) do :
for (y € children(z)) do
if (y is white)
then :
for (z € patchezit(y)) do
if (parent(z) # parent(y)) then insert monitorexit into y
od . '
mark ¥ as black
push(stack, y)
T—y '
if (y has jsr)
then insert jsrinto y
fi
break

=n

29

" A ALGORITHMS AND PROOFS

- if (successor(z) # O)
if (Jsuccessor(y)] = 2) -
v — remove successor(y); B :
if (parent(v) # parent(y)) then return false

I 1=

then | . ‘ :
if (z is white) then patchezit(z) «— patchexit(z) U {z}
elsif (parent(z) # z) then insert monitorexit into z
fi : ‘
then
pop(stack)
if (stack # {})
then z «— peek(stack)
else réturn

od

A.0. 7 Proof of Iemma 1

(|successor(y)| = 2A successor(y).2nd = successor(z))

30

PROOF. First we show that 1f idom(y) strictly dominates z, then y € domzs(z); Let
z = idom(y), the CFG edge (2, y) might affect the dominance relation between z and z,
vy and the dominator subtrees rooted at z, y respectively. We divide the proof in several

cases, see the dominator tree in Figure 13

1. Subtree rooted at z will not be changed: The new CFG edge (z,y) bypasses all _

descendant(z), which are strictly dominated by z.

2. Subtree rooted at y will not be changed: The new CFG edge (z, y) introduces
. only new incoming paths to y, and y still appears on every path from start to

Vv € descendant(y).

3. Subtree rooted‘at z will not be change_d: Both z and y ate strictly, dominated
" by z. As z appears on every path from start to z, so.z will also appear on path

- start — T..z — y. Hence T still immediate dominates Y.

‘We conclude that the subtree rooted at z is same in all cases and that the dominance

relation is preserved. -

B OPERATIONAL SEMANTICS | 3]

Figure 13: Solid edges are tree edges, curve edges are tree paths and dash edges
are new edges added to the original control flow graph. Triangles represent sub-
tree. Given the dominator tree. adding edge (z,) to its control flow graph G will -
not render a different dominator tree in contrast to adding (z,y’) which render a
new dominator tree with node ' as the child of root.

Secondly, we need to show that no other nodes can be found in domis(z). Suppose
y' € domis(z), idom(y') A z,and let y” = idom(y’). Then we can find a path start —
...z — y/(Figure 13) that bypasses 3", so ¢ no longer appears on every path from start
toy'. As y” does not dominate 3/, this contradicts the assumption that y’ € domis(z).

B Operational semantics

For simplicity, we omit Env in the following configuration.

B OPERATIONAL SEMANTICS | | 32

[decl]

[param]

[block]

[popfa]

[loadr]

[loadc]

[switch]

{arraylength]

[apply]

[result]

[retnv]

type initialization operations

Env i R{mrp+1— 7] = R’
Env (decl =, mrp, R) = (mrp+ 1, R’)

+Rlmrp+1m— 7] => R’
F (param T, mrp, R) = (mrp + 1, R/)

' frame stack operations

 fs{fp +1 — Frame(otsp){ots)(mrp)(fp)] = fs’
F (block 4, fs, fp, tosp) = (fs’, fp + 1, tosp — tosp)

F R @ {ots(otsp — i+ 1) = (n;, i), ny — 7;]i — [otsp...1]}
I fs(fp) => Frame(otsp’)(ots’ }(mrp’)(fp’)
I (popfa, fa, fp, otsp, ots, mrp, R) = (fa’, fp’, otsp’,ots’, mrp’, R’)

type operand stack operations

FO0<i< mrp

=R =T

F tos{tosp + 1 — (i, T)] = tos’

F (loadr i, tosp, tos) = (tosp + 1, tos’)

F0<i< Cmas

FCGE) =T

 tos[tosp + 1 — {0, 7)] => tos’

F (loadc i, tosp, tos) = (tosp + 1, tos’)

switch operation

- tos(tosp) = (%, 71)
kT =int
F (switch, tosp) = (tosp — 1)

array length operation

- (tos(tosp), tos(tosp — 1)) = ((i, 71}, (4, T2))
k71 € Tarray A T2 = int
I (arraylength, tosp) = (tosp — 1)

apply operation

b tapstract £ (T1 X oo X T — “'n+1) X s ,
- (tos(tosp), ..., tos(tosp — n + 1}) = ({1, 71}, «--) {n, 70))
F tos(tosp — n) = {iny1, Trt1!

F(r{ dT1 A AT, D)

F(0<ing1 ATny1 S Thiq)

= (apply tabstrace, tosp) = (tosp —n + 1)

b tapstract ¢ (T1 X oo X T = Tnyg)
 (tos(tosp), ..., tos(tosp — n + 1)) = ({i1, 7-{), eeey (s "'1’.))
Ftos(tosp — n) = (in41,T,p1/)

)—(-rl' <7y A.../\'r,'l < 7Ta)

(0 < in1 A Tadtl £ ‘r'/l+1)

Fotsfotsp + 1 — (int1, 11'1+1)'] = ots’

F Rlw — 7o4q] =R’

+ (apply tapstract; 08P, Ots, otsp, R) = (tosp —~ n + 1, ots’, otsp + 1, R')

miscellaneous

F Tresutt = T
F (result) = (Tresult = T)

F tos(tosp) = (i, 7)

Fi < mrp

I_ T ='Tv‘=s'u.lt

F {retnv, tosp) = (tosp — 1)

The notation R @ {ots(otsp — i + 1) = (n;, 1), n; — 7|t « [otsp...1]}

B OPERATIONAL SEMANTICS 33

extends the mapping R with a set of new domain/range pair n; — 7;, where 7 is
from otsp to 1 and (n;, ;) is popped out from ots.

REFERENCES . L

References v

1]
2

B

S. Alstrup and P. W. Lauridsen. A simple and optimal algonthm for ﬁndlng

immediate dominators in reducible graphs. 1996

S. Alstrup, P. ' W. Laundsen and M. Thorup Dommators in hnear time.
DIKU technical report, (35), 1996.

W. Amme, N. Dalton, J. von Ronne, and M. Franz. SaféTSA: a type safe
and referentially secure mobile-code representation based on Static Single
Assignment form. In Proceedings of the ACM SIGPLAN’01 Conference on
Programmmg Language Deszgn and Implementatzon pages 137-147. ACM

- Press, 2001.

4]

(5]

(6]

3 o 7]
[8]

9]
- [10]

)

K. D. Codper T I Harvey, and K. Kennedy. A sitnpie fast dominance _’
algorithm. In Software-Practice And Experzence pages 4:1-10. John Wlley '

and Sons, Ltd 2001.

B. Davis, A. Beatty K. Casey, D. Gregg, and J. Waldron. The Case for
Virtual Register Machines. In Workshop on Interpreters,. Virtual Machines
and Emulators, pages 4149, San Diego, California, 2002. ACM Press.

S. Diehl, P Hartel, and P. Sestoft. Abstract machines for programming lan-

guage 1mplementat10n F uture Generation Computer Systems 16(7) 739-
751, 2000.

-A Gal, C W. Probst and M. Franz A Denial of Serv1ce Attack on the Java _

Bytecode Verifier. Technical Report 03-23, University of Cahforma Irvine,
School of Information and Computer Science, 2003. .

G. Klein and T. Nipkow. Verified lightweight bytecode verification. Concur-
rency and Computation: Practice and Experience, 13(13):1133-1151, 2001.
Invited contribution to special issue on Formal Techniques for Java.

D. Kozen. Efficient code certlﬁcatlon ‘Technical Report TR98 1661, 1998.

T. Lengauer and R.E. Taxjan A fast algorithm for ﬁriding dominators in a
flowgraph. In ACM Trans. Program Lang. Syst volumel pages 115- -120,
July 1979

T. Llndholm and E Yelhn The Java Virtual Machme Spemﬁca’uon 1999

REFERENCES S ' - 35°

[12] G. Morrisett, D. Walker, K. Crary, and N. Glew. From systérn F to typed
assembly language (extended vers1on) Techmcal Report TR97 1651, 21,-

-1997.

[13] G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges
(POPL ’97), pages 106-119, Paris, Jan. 1997. ,

[14] G. C. Necula and P. Lee. The design and implementation ofa certifying com-
piler. In Proceedings of the 1998 ACM SIGPLAN Conference on Prgram-.
~ming Language Design and Implementation (PLDI), pages 333-344, 1998.

[15] G. C. Necula and P. _Lee. Efficient repreSentation and validation of proofs.
In Logic in Computer Science, pages 93-104, 1998..

[16] Z. Qian. Standard fixpoint iteration for Java bytecode'v'eriﬁcati.on ACM
Transactions on Programmzng Languages and Systems 22(4):638-672,
2000. : : L

[17] E. Rose and K. H. Rose.A Lightweight bytecode verification. In Workshop
" “Formal Underpinnings of the Java Paradigm”, OOPSLA’98, 1998.

[18] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing ¢-nodes.

~In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 62—73, San Francisco,
‘California, 1995. :

[19] V. C. Sreedhar, G. R. Géo and Y.-F. Lee. Identifying ldops using DJ graphs. g
- ACM Transactions on Programming Languages and Systems 18(6):649—
658, Nov. 1996. : :

[20] V.C. Sreedhar, G. R. Gao, and Y.-'_F. Lee. A new frame\nofk for elimination--
based data flow analysis using DJ graphs. ACM Transactions on Program-
ming Languages and Systems, 20(2):388—435 , Mar. 1998.

[21] Sun Mlcrosystem CLDC Spemﬁcatlon vl.1.

[22] J. von Ronne, N. Wang, A. Apel, and M. Franz. Virtual Machme for In-
terpreting Programs in Static Single Assignment Form. Technical Report
03-19, University of Cahforma Irvine, School of Information and Computer

Sc1ence 2003.

REPERENCES‘ SRR o 36

[23] N Wang, M. Franz and N. Dalton. Enabhng Efficient Prograrn Analy51s for

‘Dynamic Opt1rmzat10n ofa Family of Safe Mobile Code Formats. Technical .
Report 02-24, University.of Callforma, Irvine, School of Information and -

Computer Science, 2002.

[24] E Yelhn Low Level Securlty in Java, 1995

