
UC Irvine
ICS Technical Reports

Title
A practical mobile-code format with linear verification effort

Permalink
https://escholarship.org/uc/item/3255966c

Authors
Wang, Ning
Franz, Michael

Publication Date
2003-11-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3255966c
https://escholarship.org
http://www.cdlib.org/

ICS
TECHNICAL REPORT

Notice: This Material
may be protecteci
by Copyright Law
(Title 17 U.S.G.)

A Practical Mobile-Code Format
with Linear Verification Effort

Ning Wang and Michael Franz

Technical Report 03-26
School of Information and Computer Science

University of California, Irvine, CA 92697-3425

Nov. 18,2003

Abstract

We present an abstract machine that encodes both type safety and control
safety in an efficient manner and that is suitable as a mobile-code format. At
the code consumer, a single linear-complexity algorithm performs not only

verification, but simultaneously also transforms the stack-based wire format
into a register-based internal format. The latter is beneficial for interpretation
and native code generation. Our dual-representation approach overcomes
some of the disadvantages of existing mobile-code representations, such as
the JVM and CLR wire formats.

Information and Computer Science
University of California, Irvine

CONTENTS 1

Contents

1 Introduction 3

2 Preliminaries 5

2.1 Terminology and Notation - . . 5
2.2 Safety Requirements . 5
2.3 Verification. 6

3 Certificate Abstract Machine 7

3.1 An Example 8
3.2 TheVerifier 9

3.3 Syntax 11
3.4 Valid Variable Analysis 13

3.4.1 Data flow analysis 13
3.4.2 Temporary Registers in CAM 15
3.4.3 Typelnterpreter , .16
3.4.4 Transition Rules 18

3.5 Control-How Safety Analysis 19
3.5.1 Dominance Invariance 20

3.5.2 Augmented Dominator Tree 21

4 Implementation Overview 23

5 Related work 24

6 Conclusion 26

7 Acknowledgment 26

A Algorithms and Proofs 26
A.0.3 Register Allocation ; . . . 26
A.0.4 ADTSuccessorVerifier 27

A.0.5 InsertMonitor . 28

A.0.6 CheckJsr 29

A.0.7 Proof of lemma 1 i 30

B Operational semantics 31

LIST OFHGURES 2

List of Figures

I Dependence among instructions, variables and control flow in JVML. 6
.2 , Dependence among instructions, variables, control flow and dom

inance in CAM 7

3 Life cycle—(a) translate JVML into CAM code at code producer;
(b) verify and execute CAM code at code consumer 8

4 (a) Java source and (b) JVM bytecode for the running example . . 9
5 (a) CAM code for the same example, consisting of an augmented

dominator tree and a sequence of instructions and (b) code se
quence executed by the verifier (boxes indicate the scopes of the
associated registentype pairs) 10

6 Register-based internal CAM representation of our example pro
gram, generated if verification succeeds 11

7 Syntax of the CAM wire format 12
8 The references of Xat point p are valid in (a) and (b) but are invalid

in (c) and (d). (e), (f)^ (g), (h) show precise type conditions for
valid references at point p. 14

9 (a), (c), (e) and (f) are the the dominator trees of 8(a), 8(b), 8(c)
and 8(d) respectively. Insertion a definition of x into B3 in (a) will ,
not change the behavior of the program. 15

10 Dominator tree; boxes represent variable scoping 16
II . (b) is the ADT encoding of the control flow graph (a) . . 22
12 Control flow graphs (b), (c),(d), (e) and (f) have the same domi

nator tree (a), (g) The abstract model of all control flow graphs,
edgerepresents a control flow path 23

13 Solid edges are tree edges, curve edges are tree paths and dash
edges are new edges added to the original control flow graph.
Triangles represent sub-tree. Given the dominator tree, adding
edge (£•, y) to its control flow graph G will not render a different
dominator tree in contrast to adding {z,y') which render a new
dominator tree with node y as the child of root. •. 31

List of Tables

1 INTRODUCTION 3

1 Introduction

Mobile programs can potentially be malicious. To protect itself, a host that re
ceives such mobile programs from an untrusted party or via an untrusted network
connection will want some kind of guarantee that the mobile code is not about
to cause any damage. The'Java Virtual Machine (JVM) pioneered the concept of
code verification by which a receiving host examines each arriving mobile pro
gram to rule out potentially malicious behavior even before starting execution.

Unfortunately, verification in itself consumes computing resources and thereby
represents an overhead. Moreover, the need for eventual verification at the code
recipient prevents many traditional compiler optimizations at the code producer.
As a result, first-generation verifiable mobile code formats such as JVM code and
the ECMA CLR inteimediate language require substantial just-in-time compila
tion effort at the code recipient to obtain reasonable execution performance.

The very concept of verification also presents a potential avenue for an attack.
Gal et al. [7] have recently shown how a carefully crafted mobile program in the
JVM byte-code language (JVML) can result in a denial of service attack when
sent as an "applet" to a client computer or as an "agent" to a server. Because
worst-case verification complexity in JVML does not grow linearly with method
size, one can craft relatively short programs (a few thousand bytes) that require an
extreme verification effort (on the order of hours on a workstation-class machine)
before they are finally recognized as valid.

The main characteristic of what we call "first-generation" mobile code repre
sentations (e.g., JVML and the ECMA CLR intemediate language) is that they are
based on virtual machines with unrestricted goto instructions and untyped expres
sion stacks. Both of these features represent major hurdles to (a) producer-side
code optimizations, (b) to verification efficiency, and (c) to high-quality just-in-
time code generation.

In the meantime, alternative schemes for mobile-code distribution have ap
peared that differ from the model exemplified by the JVM and the CLR. Proof-
carrying code (PCC) approaches [13, 14] involve the code producer in the verifi
cation process by obliging it to construct a proof of safety. The code consumer
computes a verification condition from the received program and checks whether .
the proof supplied by the producer discharges the computed verification condition.
PCC requires only linear (in the length of the proof) effort on the code consumer.
An early concern that the proofs were often larger than the programs themselves
has been put to rest by proof compaction techniques [15].

Amme et al. [3] have proposed a mobile-code format based on Static Single

1 . INTRODUCTION 4

Assignment Form that is both type-safe and control-safe. This format, SafeTSA,
retains the high-level control structures of the original source language, such as
while, if, mdfor loops. As a consequence, when the origin of a mobile program is
not source code,but existingcode in anotherrepresentation providing unrestricted
gotos (for example, JVML), this becomes a problem. Increasingly, JVM code
is run through code obfuscater prior to distribution, creating irreducible control
flow. Such code cannot easily be mapped back onto high-level control structures,
diminishing the applicabilityof representations such as SafeTSA.

Moreover, SSA-based representations are meant to be .compiled on-the-fly
rather than interpreted. A recent attempt at interpreting SSA directly [22] has
resulted in success, but at the expected low performance point. Hence, for the
foreseeable future, SSA-based mobile code formats are likely to remain restricted
to workstation-class devices with large memories and ample processor resources.

In this paper, we present a new approach to transmitting mobile code that is
based on an abstract machine that has two parts, a. wire format emitted by the
code producer andtransmitted to the code consumer, and an internalformat seen
only by the code consumer. The internal format is generated during veriflcation
of the wire format, and the effort for the veriflcation/translation step is linear in
the length of the wire representation.

Our abstract machine, which we call the Certificate Abstract Machine (CAM)^
is able to completely capture all control flow that mightresult fromrunning JVM
bytecodethrough a code obfuscater. Hence, we can translate directly from JVML
or CLR code into our wire format. Instead of providing difflcult-to-verify un
restricted gotos, our wire format provides complete inherent control-structure
safety. As we will explain below, the key to our representation is that it encodes
the dominance relationship and variable scoping directly.

The internal format of our abstract machine is register based and can be in
terpreted efficiently on resource-constrained devices. Alternatively, it can also be
translated quickly just-in-time into high-quality native code where the appropri
ate processorresources are available. Hence, it covers the complete applicability
range of the existingJVM and CLR formats at a better performancepoint.

In the following, we first present key terminology. We then present the key
idea of the CAM, namely the use of the dominator relationship for modeling con
trol safety and scoping to model data flow and type safety. Following this brief
overview, wepresent CAM in detail and specify the operational semantics for the
CAM abstract interpreter. After discussing the current implementation andrelated
work, we conclude our paper.

2 PRELIMINARIES 5

2 Preliminaries

2.1 Terminology and Notation

A controlflow graph (CFG) G{V, Eg) is a directed graph in which V is the set
ofnodes representing basic blocks, andan edge (x,y) GEq represents a possible
flow of control from x io y. There are two distinguished nodes: start and end.
start has no predecessor and every node is reachable from it. end has no succes
sors and is reachable from every node. The presence of an edge {start, end) G
Eg indicates that the surrounding program might not execute G at all.

A path in G is a sequence of nodes (ni, n2,..., n^) such that all nodes are
distinct and (nj, rij+i) G Eg, I < i < k. Vox nodes x and y G V, if x appears
on every path from start to y, then x dominates y. Every node dominates itself.
Node X strictly dominates node y if x dominates y, and x ^ y. We write x -<
y for strictly dominating and x ^ y for dominating. Node x is the immediate
dominator of node y, denoted idom{y), if x is the closest strict dominator of y
on any path from sfarf to y. Every node, except start, has a unique immediate
dominator. Every node has no more than one immediate dominator. The edges
Et = {{idom{x),x)\x GV—{start}} form a directed tree rooted at start, called
the dominator tree denoted by T{V, Et) of Giy, Eg), such that x dominates y if
and only if x is an ancestor of y in the dominator tree.

2.2 Safety Requirements

In order to guarantee the abstractions of the target machine, a mobile program
must satisfy all of the following;

1. Type,safety - every value is used only in ways that are consistent with its
type. For example, a floating point value could not be used as array index.

2. Control flow safety - control transfer instructions, i.e., branches that cause
the flow of control to leave a basic block, must lead to valid targets. For
example, procedures can only be reached at their entry point.

3. Data flow safety - every variable must be declared and initialized before it
is used.

In the following, we will call a program "well-typed" when it satisfies these
conditions. For programs written in high-level programming languages, a com-

2 PRELMINARJES 6

piler can easily check that these criteria are met. But now we are interested in
lower-level formats that still allow to verify these properties.

2.3 Verification

The JVM bytecode verifier checks the "well-typedness" criteria presented in Sec
tion 2.2 above. In particular, control flow safety and data flow safety are interwo
ven in the standard JVML verification algorithm. Verification is similar to abstract
interpretation of the program, considering only the types of variables rather than
their concrete values: At join points in the control flow, the verifier needs to con
firm type consistency in the data flow.

In the case of Java, which provides sub-typing, instructions encountered dur
ing the abstract interpretation may produce new variables or variables withnew
types, which in turn may affect the availability and type of other variables reach
able via control flow. The updated availability and types of variables may further
affect the behavior of already traversed instructions.

As a consequence of this mutual dependency between control flow and data
flow (Figure 1), the JVM bytecode verifier may need to iterate until it reaches a
stable state in which no new variable or new type is produced. This fixed-point
iteration algorithm [16] has a worst-case performance that is quadratic. In a recent
paper. Gal et al. [7] have shown how one can systematically construct JVML
programs that exhibit worst-case verification behavior and use these programs in
a denial-of-service attack on the machine hosting the JVM.,

instructions

vanablefW new types
new vari»les

(^ailabilityandtyp?~\ conlrol flow ^
variables.^..-^

variables w/ new types
new variables

Figure 1: Dependence among instructions, variables and control flow in JVML.

In the CertificateAbstract Machine, we successfully break up the cycle linking
control flow and data flow by introducing the dominator relationship directly into
the mobile-code representation (Figure 2). In our verification algorithm, travers
ing instructions affects the availability and type of variables via dominance instead
of via control flow. The updated availability and types of variables affect only the

3 CERTIFICATE ABSTRACT MACHINE 1

still-unchecked instructions in type-check sequence—-there is no longer a cycle.
This will be explained in detail in Section 3.4 below. In Section 3.5, we will also
give a definition of control safety based on dominance, and an algorithm to verify
the validity of control fiow.

instructions

variably w/ new types
new Variables

dominance

vanables w/rcw types
new vanables

availability and typ>e

of variables
control flow

Figure 2: Dependence among instructions, variables, control fiow and dominance
in CAM

After these preliminaries, we can now introduce the Certificate Abstract Ma
chine in'detail.

3 Certificate Abstract Machine

Our goal is to make checking the safety criteria listed in Section 2.2 as efficient
and simple as possible. The Certificate Abstract Machine is our vehicle to achieve
this goal. In particular, CAM provides more efficient verification than the Java
Virtual Machine, and also simpler and faster interpretation or just-in-time code
generation.

The CAM uses two different representations for every program, and translates
between these formats as a side-effect of verification. The wire format (or CAM
code) is a stack-based intermediate representation that is used to transport mobile

programs from one place to another. It is the representation that can be verified.
We can actually generate this format directly from JVML, i.e., we do not require
the presence of any Java source code, and our JVML-to-CAM compiler can even
deal with bytecode that has been deliberately obfuscated.

On the code consumer side, a CAM implementation takes the CAM code and
translates it into a register-based internal format. This translation occurs as a
side-effect of verification; the internal format is never seen on the outside of the
abstract machine and is executed only if verification is successful.

The verification/translation process involves a symbolic execution of the CAM
code consideriiig only the types of variables, rather than their values. Unlike

3 CERTIFICATE ABSTRACT MACHINE

CAMCooipller'.

VM Interpreter JIT Cooipller

Figure 3: Life cycle—(a) translate JVML into CAM code at code producer; (b)
verify and execute CAM code at code consumer

JVML verification, this process occurs in linear time. During this type-based
execution, types are loaded from the constant pool or register file onto a type
expression stack and operations are executed on these types. If the CAMVerifier
successfully completes execution, then the CAM code is safe and the register-
based internal format is emitted to the VM Interpreter or JIT compiler. The life
cycle of CAM from producer to consumer is illustrated in Figure 3. The rest of this
section will first present an example, and then introduce the various components
of CAM in more detail.

3.1 An Example

The best way to illustrate the differences between JVML code and CAM code is
by way of an example. The Java source program in Figure 4(a) computes n! if n
mod 2 is zero, otherwise it computes 2". The variable x is declared as a different

type in the different cases. The syntax of Java successfully assigns different scopes
to a: : int and x : long] hence, there is not conflict between them.

Figure 4(b) shows the JVML code corresponding to this example and Fig
ure 5(a) the CAM code. The major differences between CAM and JVML are the
following: JVML has explicit "gotos" and conditional branches with explicit jump
targets. In CAM code, on the other hand, the control flow targets are encoded in
an augmented dominator tree (ADT). Unlike the JVM, CAM has explicit block
instructions to delimit basic blocks (operational semantics will be given below).
All CAM instructions are designed to operate over types instead of values. CAM
has a RegisterFile, a typed ConstPool and a TypeOpStack. The loadr instruction

3 CERTIFICATE ABSTRACT MACHINE

long foo (int n)
{
int r = n % 2;
if(r=0){/*n!*/

if (n == 0) return 1;
long X = n;
while (n > 1) {

—n;

X = X * n;

)
return x;

}eise{ /* 2'^n */
int X = 2;

n = n - 1;
while (h > 0) {

—n;

X = X * 2;

}
return (long) x;

}

(a)

Bi;0ik>ad_0
j 1iconsi_2
12licn)
I3 istote^I
; 4 lload.l
!3lfD«33

. 82! 8iload.O
I 9 ifne 14

BT! 13]eanM_l
I 13lietum

B3' 14 ikMd.O

! 15i2l
! 16lslore_2
I 17 g- 0 28

BS!20UncO-l
.[23 lk»d_2
[24 ik>ad_0
[23121
[26 Imul
I 27 lstore_2

B4<28 lload.O

I29iconsLl
!30ir.ionpgt20

K-33 UobiI_2
I 34 Iietuni

B8> 33 tconst_2

l36isloce_2
I37iins0-I
140goto 30

Bl(] 43 UncO-I
[46 lliud_2
I47iconsl_2
I 48 loiul

I 49 lslore_2

B9i 30 llowl.O
[51 irg{41

Bn<34lk>a(l_2

i 33 121
136 Irenini

(b)

Figure 4: (a) Java source and (b) JVM bytecode for the running example

in CAM is untyped; it copies a type from the RegisterFile to the TypeOpStack:
The instruction decl assigns the next available register to a type. These three and
other specific instructions, all ofwhich are explained further below, represent the
model thatweusefor safety checking—they disappear after verification when the
code is re-writteninto its internal representation (Figure 6).

Finally, the most important and unique property ofCAM isscoping. The scope
of each local variable in JVML is unclear. CAM lets us recover instruction se
quences that have non-overlapping scopes for each register:type pair. Figure 5(b)
illustrates this point. The x : int and x : long inthe original Java code correspond
to F[3] : and F[3] ; Zonp respectively.

3.2 The Verifier

The CAM Verifier has two logically independent parts: a type-level abstract in
terpreter (Typelnterpreter) that operates on types instead of values, and an aug
mented dominator tree verifier (APTVerifier) that makes sure that control flows

3 CERTWICATE ABSTRACT MACHINE

ADT I OU. 12J

9 10, III

(a)

»ivr'
dcclM

k>Mlr2

•pp^ Iftw

•ppljriin:
decl kng

bi^V'
kMdr I

iwk kil *

•flpiy If."
Mock 6

MoetS

k>Hk:M'2'

^lycso«e
QMt- 1

(wlelnC-

Mock 10

R[llinl

block0 1
result inl >

paramint '

R(2]ant
block1 1
dfci Inl . 1 .

block2 1

irne j

R[3);iong
blocks !
decllong •

;

block4 !

Ifjcmpgl ,

blocks i

R(4]:long decl long ,

1 - 11
1

blocks !

jcnim 1

popfa

popfa

block? 1

return |

popfa
popfa

R(3]:lai

blocks 1
declinl !

1

block9 1

Ugl !

block ID !

popfa

1

block11 !

(b)

10

Figure 5: (a) CAM code for the same example, consisting of an augmented dom-
inator tree and a sequence of instmctions and (b) code sequence executed by the
verifier (boxes indicate the scopes of the associated register;type pairs)

go only to proper targets. A program represented in CAM code is well-typed if
both ADTVerifier and Typelnterpreter return true.

A set of transition functions over types constitutes the interpretation rules of
the Typelnterpreter. It interprets instructions in a sequence in which the scope of •
any variable v covers only the instructions following the define instruction of v.
We call this the type-check sequence as it is used only by the Typelnterpreter. The
type-check sequence doesn't necessarily have to coincide with either the program
sequence or control flow sequence. One example is show in Figure 5(b). The
algorithm generating the type-check sequence is givenbelow in section 3.4.3.

The Typelnterpreter completely ignores control flow instructions. It interprets

3 CERTIFICATE ABSTRACT MACHINE 11

B1 1 rem Rt2] R[l] 2

2 ifne R[23 12
B2 3 ifne R(l] 5

B7 4 return 1

B3 5 121 R[3] R[l]

6 goto 10

B5 7 iadd R[ai R[l] -1
8 i21 R[4] R[l]
9 imul R[3] R(33 R[4]

B4 10 if_iciipgt R[l] 1 7
B6 11 return R[3]

B8 12 mov RI33 2

13 iadd R[l] R[1J -1

14 goto 17

BIO 15 iadd R[l] R(l] -1

16 imul R(31 R[3] 2
B9 17 ifgt R[l] 15
Bll 18 return R[13

Figure 6: Register-based internal CAM representation of our example program,
generated if verification succeeds

instructions strictly following the type-check sequence and no control transfer
is ever taken into account interrupting the interpretation sequence. As a conse
quence, the interpretation complexity is 0(1), with Ibeing the number of instruc
tions. If the Typelnterpreter successfully interprets all instructions in the type-
check sequence, then the code doesn't violate any type rules.

The reader might have noticed a special instruction popfa in the type-check
sequence listed in Figure 5(b). These instructions are inserted during the prepa
ration of the type-check sequence and don't appear in the CAM wire format. We
elaborate on their operational semantics below.

The control safety property is encoded separately from the CAM code in
the Augmented Dominator Tree (ADT). The ADTVerifier (Section 3.5), which
is completely separate from the Typelnterpreter, checks the validity of the ADTin
0(E + V) complexity, with Ebeing the numberof edges and V being the number
of vertices in the tree. If the ADT is valid, then all control flow goes to proper
targets.

3.3 Syntax

The stack-based intermediate representation used as the CAM'S wire format is
designed solely for the purpose of verification. After successful verification, all
programs in this format will be rewritten into a register based internal format.
Since the register-based internal format exists only in memory and is private to
each implementation of the CAM, we specify only the syntax of the stack-based
wire format (Figure 7).

3 CERTMCATE ABSTRACT MACHINE

'Ti, n G N

Vo,...,VnGl'
R ::= {0 T, T}
C ::= {0 {vo, To),i ^ (ft, Tj)}
B , {0 iQ, ...,n ^ in} -
E ::= {}
nasic ••= T\int\long\Object...
'̂ array f {i)
tabstract "= i2l|iadd|move...
T T— T5Qsjc|Tarraj(
IctT ifne|if_icmpgt|retnv

I SWitch{'Do,fl,f2,f3,
lotheT '••= loadri|loadc ?|decl r|apply tabstract

I arraylength Tarray
I jblock tti

I popfa|result T|param t...
Kind normal\synch\jsr\ret •
ADT Tn[ni,n'^jsr ADT*

I m\n, ..3\{normal\synch\Tet} ADT*
I m\n\retADT*

BBO block 0 result r {param r}*
BB block Tn lother *
P R C B ADT BBO BB*

RegisterFile
ConstPool

BlockMap
ExceptionMap

BasicTypes
ArrayTypes

AbstractTypes
Types

Ctrllnst

Otherlnst

Inst

BIockKinds

ADT

BasicBIock

Program

Figure 7; Syntax of the CAM wire format

12

3 CERTIFICATE ABSTRACT MACHINE 13

CAM inherits the type system of JVML and the constant pool of JVIVIL.^
In our syntax description, i refers to an index into the RegisterFile or the Con-
stPooI. Implicit coercion is not allowed as in JVML. ADT is our Augmented
Dominator Tree encoding of the control flow graph. Each tree node has an unique
id m followed by a successor!adjacency) list [n,...] and Kind. Kind denotes the
semantics of a treenode, normal denotes normal basicblock, synch denotes syn
chronized block and ret denotes the semantics of flnal statement in Java source

language. Except for the end node, every node has at least one successor. The
number of successors of node b matches the Ctrllnst in the basic block b. For

example "ifne" has exactly two successors.
A program declaration RGB ADT BBO, BB* deflnes the stmcture of a

program. R is a register file and all registers are uninitialized; hence, all register
have the type T. C is a typed constant pool. B maps block ids to the numbers of
its successors. ADT is the Augmented Dominator Tree encoding of the control
flow graph as explained above. BBO defines the abstract data type of the method;
its counterpart in JVML is the method signature. BB* is the sequence of basic
blocks. Each basic block consists of a sequence of instructions. Before we explain
the semantics of the CAM wire format any further, we need go into the details of
the design principles of CAM.

3.4 Valid Variable Analysis

3.4.1 Data flow analysis

Form data flow analysis view points, given a control flow graph G{V, Eg), a ref
erence to Xat point p in G is valid if every path leading to p from start contains
a prior definition of x. More precisely, from the type inference view point, assume
the definitions of x prior to p have \- x •. Ti, Q < i < k and x is referred as r at
point p, if To < T A ...Tfc < r and r <l T, then the reference of x at point p is valid
and Xhas type r. For the examples in Figures 8(a) and 8(b), both paths leading
to B3 contain definitions of x, so the reference to x in B3 is valid. Conversely,
the references to x in Figure 8(c) and 8(d) are invalid because at least one path
from start to the reference contains no definition of x. All paths leading to point
p from start need to be considered to verify references at point p.

If Xis defined in any dominator of p and x has the type r which is the super-
type of all types of referee x which are dominated by r, then x must appears on

'in fact, in our implementation we re-use the complete JVM class-file format andmerely re
place the JVM's "code" attribute with our own combination of "CAM-code" and "ADT" attributes.

3 CERTIFICATE ABSTRACT MACHINE 14

PI--X-I Pl- = x-

B2 B1 B2 B1

Figure 8: The references of x at point p are valid in (a) and (b) but are invalid in
(c) and (d). (e), (f), (g), (h) show precise type conditions for valid references at
point p.

all paths reachable to point p from start by the definition of the dominator rela
tionship and if r <1 T, then it is valid typed. The converse is not true. Figure 9
illustrates the dominator trees of the examples in Figure 8. In the example of Fig
ure 8(a), the reference to x at block B3 is valid, but there is no common definition
of Xin the dominator (BO) of B3 (see Figure 9(a)).

In this case, we can insert a definition of x to BO (Figure 9(a)) or prompt the
type of Xin BO (Figure 9(c)) to r and h Ti < r A r2 < r without changing the
behavior of the programs. When applying this insertion or promotion to any pro
gram that has valid references initially, the resulting program after the procedure
will also be valid.

The programs after the insertion or promotion procedure have the following
property. In particular, let VALID(6) be the set of valid variables on entry to block
h and DEF(6) be the set of variables defined in h. We define a system of equations
for VALID(6), 6 e y:

Defibnition 1 (Valid variables at the entry of block h)

f 0 b = startVALID(6) =I vALID(idom(6)) UBEF{idom{b)) beV- {start}

A variable x defined in a block b can only be referred in the dominator sub-tree
rooted by b. This corresponds to the scope concept in CAM. Given the dominator

3 CERTIFICATE ABSTRACT MACHINE

Insert • BO

IDEF(x)| p IUSE(X)| IDEF(x) |

(a)

IDEF(x)| p IUSE(x)
B1 / B3
l>- '••r, Ip IhTgTA iTt] [

promate to

rn BO

p IUSE{x)| 81

B1 / \ B2 B3/ .
|DEF(x)[p iU5E(x)| I I |DeV(x)1

(e) (f)

B1 / B3 I B2 }
I a:Ti I p|hf<TAg:r| |l- |

(b)

15

Figure 9: (a), (c), (e) and (f) are the the dominator trees of8(a), 8(b), 8(c) and 8(d)
respectively. Insertion adefinition ofx into B3 in (a) will not change the behavior
of the program.

tree in Figure 10, the VALID set is
VALID(BO)

VALID (Bl)

VALIDCB2)

VALID(B4j

VALID(B5)

VALID(B8)

VALID(B9)

= 0

VALID(BO) U {a : int}

VALID(Bl) U {t : int)

VALID (B3) U {c : int}

VALID (S4) U 0

VALID(Bl) U (b : int}

VALID(B8) U {e ; int}

The valid variable analysis of the preprocessed program in CAM is simplified
vs. a program in JVML. Instead ofhaving to iterate over all paths that lead top
from start, one only needs to check if there is a definition of x as type r on the
path from start topoint p in the dominator tree and any referred type ofxwith
h Tj < r.

3.4.2 Temporary Registers in CAM

CAM code uses an implicit register numbering through the decl instmction. This
section explains how registers are assigned internally, based on these implicit dec-

3 CERTIFICATE ABSTRACT MACHINE 16

rUDK . 31-L. UndiB12

Figure 10: Dominator tree; boxes represent variable scopmg

larations. We will make use of this explanation below. . ;
Internally, the CAM machine keeps a maximum register pointer mrp. The

basic principle of register allocation then becomes: given a dominator tree. 1.
We start from the root and traverse down to one leaf. 2. When a new variable

definition is found, we assign R[mrp + 1] to that variable and increase the value
of mrp by one. 3. We reset mrp to 0, and repeat steps 1 and 2 until all pathsfrom
root to leaves are traversed. 3. We then forai the union of the results of traversing
all paths.

Given the dominator tree in Figure 10, the register allocation becomes:

From BO down to B5

a : int <—

b : int ' -^[2]

c : long *—

d : long *— -^[^I

a : int

b : int

e : int

Frame BO down to BIO

R[l]

iil21

ill3]

Forming the union of the results of traversing all paths, we get a : int ^ i?[l],
b : int <— R\2], c r. long -t— i?[3], d : long -i— i?[4], e : int -t— i?{3]. The full
algorithm is described in Appendix A.0.3.

3.4.3 lypelnterpreter

Before invoking Typelnterpreter, we need to prepare the instruction ordering that
is referred to as type-check sequence earlier. The scope of variable v in this se
quence covers only the instructions following the definition instruction of v. The

3 CERTIFICATE ABSTRACT MACHINE 17

type-check sequence is prepared as follows;
1. Initialize an empty type-check sequence. 2. Invoke a tree traversal on the

dominator tree. During the traversal, if a block is found for the first time, all
instructions in the block is appended to the type-check sequence. If the block is
visited again, then a popfa instruction is appended to the type-check sequence.
Figure 5.(b) shows a such sequence.

The Typelnterpreter scans theinstructions in thetype-check sequence inlinear
fashion and interprets instructions according to its transition rules. If Typelnter
preter successfully interprets all instructions, then the sequence is well typed and
the instructions in program order are well typed too.

The following is the transition system of the Typelnterpreter. For simplicity,
we omit the rules for rewriting the stack-based wire format into the register-based
internal format that are also part of our transition functions. The Typelnterpreter
uses a numberof storage areas for data, code andbook-keeping. Each storage area
is represented as mapping of indices i £ N onto values of the appropriate type.

1. ConstPooI C: contains constantvalueand type pairs - (u, r), Symbolically,
C[i ^ (u,r)].

2. RegisterFlIe R: contains types. Symbolically, R[z r].

3. Frame Stack fs: is used for book-keeping scopes. Each block instruction
creates a stack Frame. The Frame contains the current scope information
anda pointer to theprevious Frame; it has the following fourcomponents:
MaxRegPointer mrp is the maximum register number valid in the current
block (R(l) to R(mr-p) are visible inthe current block). Fr:ame pointer /p
to the previous frame. AnorigTypeStack ots with its stack pointer otsp is
used to save and trace the original types of retyped registers in current block.
Symbolically, Frame {otsp){ots){mrp) (fp) andfs[i Frame].

4. TypeOpStack tos: contains index and type pairs - {j, r). where j is the in
dexto RegisterFileand1 < i < mrp, if j = 0, thenthetypeis loaded from
ConstPooI. stackoperation can be modeled by a combination of adding (or
subtracting) a constant to (from) its stack pointer tosp and/or updating the
mapping tos[i 1-^ (y,r)].

Runtime Environment:Env ::= (fs, tos, tosp, R, C, mrp, Tresuit)- We do not list
the program counter pc exphcitly since it increases monotonically by one after
each instruction.

3 CERTIFICATE ABSTRACT MACHINE 18

3.4.4 Transition Rules

The rules for dec] below reveal most aspects of the notation that we are using. The
semantics of an instruction are defined by an axiom or an inference rule. A rule
has a number of premises (above the horizontalline) and a conclusion. An axiom
has a conclusion but no premises. Rules and axioms may have side conditions.

Env h R[77T.rp + 1 i—s- r] => R'
[decl] Env h (decl r, mrp, R) ^ (mrp+ 1,R')

The configuration on the left hand side of the consists of an instmction and its
operands (e.g. decl), the current maximum register pointer (mrp), and the register
file (R). The configuration on the right hand side consists of the next value ,of
the maximum register pointer (eg. mrp + 1) and the new register file (R'). The

.notation R[mrp -|-1 r] extends the mapping R with a new domain/range pair.
Any previous association for the new domain value mrp +1 is lost. It follows that
it is sufficient to decrement the maximum register pointer to 'forget' mappings for
particular values in the domain.

The CAM instructions can be classified as:

1. type inltializatidn operations: (decl, param) These two instructions ini
tialize registers with types, decl r assigns to the next available register in
register file the type r and increases mrp by one to point to the new assigned
register, param has the same semantics as decl, but param can only be used
in block BO.

2. type operand stack operations: (loadr, loadc) The only two instructions
that can increase the' stack pointer tosp. loadr i: pushes a (?, r) onto the
top of the stack, with type r denoting the type of the ith register, loadc i:

. performs the equivalent operation for zth constant from, the ConstPool,
but it pushes (0,r), with r denoting the type of the ith constant.

3. stack frame operations: (block, popfa) manage scopes during the type-
, level abstract interpretation, block i: pushes the current Frame, which

contains the current scopes, onto the stack, flushes tos and increases the
frame pointer fp by one to point to a new Frame, popfa: restores the
previous Frame and sets the frame pointer /p to the next frame.

4. apply operations: (121, iadd, imul, move etc.): These operations are uni
formly represented as a abstract data type tabstract = ri x ... x ^ r^+i.
For example, 121 with abstract data type mt —> long, iadd with abstract data

3 CERTMCATE ABSTRACT MACHINE 19

type int x int —)• int, move with abstract data type r ^ r, where r is a
type variable. For simplicity, we omitEnv in the following rule.

[apply]

F tabstract • ("^1 ^ ••• ^ ^
F (tos(tosp),..., tos{tosp - n + 1)) => ((n, t{), ..., (i„, r^))
h tos{tosp - n) => r„+i/)
h (r{ < n A... Ar;; < r„)
F (0 < i„+i ATn+i <
F (apply tabstract, tosp) {tOSp - Tl + 1)

F tabstract • ("^1. ^ ^ ''n ^'̂ n+l)
F (tos(tosp),..., tos(tosp —n + 1)) ((ii,r{),..., (injT^))
F tos(tosp —n) => (i„+i,Tn+i')
F (r(< Tl A... A< < Tn)
F (0 < in+1 Ar„+i ^ <^1)
F ots [otsp + 1 l-t (in+l,<+l)] ^ ots'
F Rfw Tn-bi] ^
F (apply tabstract, ^osp, ots, otsp, R) => (tosp —n + 1,ots', otsp+ 1,R')

E 0 < in+1, then is loadedfrom the R, hence it's update-able. ti < r2
denotes that ti is a subtype of T2. Each apply tabstract has two transition
rules, the one above is the transition rule for r/ < Tj, where i = 1,..., n and

Tn+i < <+1. E r„+i ^ then the (i„+i, need tobe pushed onto
the tos in the current Frame and will be restored when current Frame's
(scope) is popped.

5; array length operation: (arraylength) pops out two pairs (ii,Ti) and {12, T2)
from tos. E Tl ^ Tarray Or Ts mf, then we have a type mismatch.

6. miscellaneous; (result, retnv) result r: initializes Tresuit with r. retnv:
looks at the (i, r) pair on tos. If r Aesuit then we have a type mismatch
error.

The formal semantics of above operations are listed in Appendix B.

3.5 Control-Flow Safety Analysis

Branches that cause the flow of control to leave a basic block must have valid

targets. Intuitively [11,24], thisrules outjumping into themiddle of aninstruction

3 CERTIFICATE ABSTRACT MACHINE 20

or to data as if it were code. More subtly, we need to also rule out jumping
to an instruction that causes the data flow analysis of the Bytecode Verifier to
fail. Knowing all variables and their types, the property VALID(fc) at the entry
of block b is sufficient to check the well-typedness of instructions in block b.
If a VALID (6) ensures the well-typedness of instructions in block b, then this
VALID (6) is called well-typed. Annotating each basic block with a well-typed
VALID at compiler time is the technique used by the KVM [21] to reduce the
verification cost at runtime. A more precise control flow safety definition based
on well-typedness and VALID is given below:

Definition 2 (Valid control flows to block b) Ifthe VALID (6) calculated based
on the controlflows to block b fails to ensure the well-typedness of instructions
in block b, then those controlflows to block b are invalid with respect to these
instructions in block b, otherwise the controlflows to the block are valid.

Having the control fipw safety of individual blocks, it is no longer difficult to
define the control flow safety of a program.

In section 3.4, VALID(6) is recursively defined on dominance. If the control
flows toblock bpreserves thedominance onwhich VALID(6) is determined,then
it also preserves VALID (fe).

3.5.1 Dominance Invariance

We have successfully tied the valid variable analysis and control flow safety anal
ysis together by dominance. Dominance plays a fundamental role in the certifica
tion of CAM. Its control flow safety check relies on whether a control flow graph
conforms to the dominance on which virtual register allocation (section 3.4.2) is
based.

The dominance of a control flow graph is summarized as follows: Let dmtree :
G T denote the algorithm to compute the dominator tree from the CFG.
dmtree is a function which maps a control flow graph to an unique dominator
tree, while is not a function. Control flow safety verification requires
to check whether a control flow graph G conforms to a given dominator tree T.
An intuitiveway is to calculate the dominatortree T' of G and to compare T' and
T. dmtree functions are usually not linear. Alstrup et al. [2] published a theo
retical linear-time complexity dominance algorithm, but the actual complexity of
the algorithm, using practical data structures, is 0{E + \/logloglog\/). Cooper's
work [4] on fast dominance algorithms has demonstrated that a well-engineered

3 CERTMCATE ABSTRACT MACHINE 21

O(V^) dominance algorithm runs faster, in practice, than the classic Lengauer-
Taijan algorithm [10], which has a time-bound of0(E * iop(V)). Stephen [1] has
given a practical 0(E V) dominance algorithm limited to reducible graphs.

In previous work [23], wegave a simple 0(V -h E) algorithm, from a program
certification viewpoint, to verify whether an arbitrary (reducible or irreducible)
control fiow graph conforms to a given dominator tree. The algorithm demon
strates that checking the correctness of solution is easier or no more complicated
thanfinding thesolution in thefirst place. Thecentral idea is briefly repeated here.

An edge is dominance invariant if after adding the edge to a control flow
graph, the resulting control fiow graph has the same dominator tree as the original
control flow graph.

Definition 3 (dominance invariant successors) The dominance invariant suc
cessors ofnode z, denoted by domis(z), is the set ofnodesy and the edgefrom z
to y is dominance invariant.

•domis(2r)

{y\dmtree[G'{V, Eg U{(^,y)})) = dmtree{G{V, Eg))}

Lemma 1 \/z e V —{start}, domis(2:) is the set of nodes whose immediate
dominator (parent) dominate z.

By the definition of the dominator tree, the immediate dominator of nodere is also
the parent of node x. An edge (z,x) is dominance invariant if and only if the
parentof x is the ancestor of z. The proof is given in Appendix A.0.7.

3.5.2 Augmented Dominator Tree

Given a control fiow graph G and its dominator tree T, we annotate each tree
node with its successors. The resulting dominator tree is caEed Augmented Dom
inator Tree. Where Gadj is the adjacency list encoding of the control flow graph
G, ADT(T, Gadj) is the control flow safety certificate transported in CAM. An
example encoding is shown in Figure 11. Verification proceeds as follows:

Firstly, we verify that each successor list contains valid nodes. For any tree
node Xexcept start, let successor{x) denote the successor list of x in theADT.
By Definition 3, if successor{x) C domis{x), then successor (a;) is valid. By
Lemma 1, ifthe parents ofall nodes insuccessor[x] dominate x, then successor(x)
is valid. An 0(V -h E) ADTSuccessorVerifier algorithm is given in AppendixA.0.4.

3 CERTIFICATE ABSTRACT MACHINE 22

ADT C Sunmi.Ewl)

B3|B4| It BTlEad]

B)rB4| K BNEodl

(a) (b)

Figure 11: (b) is the ADT encoding of the control flow graph (a)

Secondly, weverify that Gadj is a validCFG (refer to the definition of acontrol
flow graph in section 2.1). This is not obvious since dmtree'^ is not a function.
Figure 12 shows multiple CFGs corresponding to one dominator tree. In other
words, Gad] is not unique. We define an abstract control flow graph denoting
Ga6s(T). It is the abstraction of all control flow graphs conforming to the domi
nator tree T. Ga5s (T) is constructed fromthe dominator tree T by linking all leaf
nodesto end node. Every edge (x, y) in GafcalT) models a flow path from x to y
and Xisn't necessary directly connected to y. All control flow graphs conforming
to the dominator tree T are modeled in Gabs{T). It's easy to verify that Gabs{T)
in Figure 12(g) abstractly models the control flow in CFGs from Figure 12(b) to
12(f).

A CFG G is said to conform to Ga6s, if for all edges {x,y) € Gabs, there
is a path from x to y in G. With the abstract control flow graph, we can give a
definition of the validity of Gadj-

Definition 4 (Validity of Gadj) Given an ADT{T, Gadj), Gadj Is a valid CFG if
Gadj conforms to Gabs{T).

An elimination strategy is usedto verify that conforms to Gabs{T). For
all edges (x, y) G Gabs{T), if y appears on any path from x to end in the CFG
represented by Gadj, then we delete the edge (x, y) from Gabs{T). If no edge is
left in Gabs (T) then Gadj is a validadjacent list encoding of the control flow graph.
This procedure has 0(V + E) complexity.

Theorem 1 (Validity of ADT) An ADT{T, Gadj) is valid ifand only if

, 1. y.x e V —{start}, \fz Gsuccessor{x), z Gdomis{x).

4 IMPLEMENTATION OVERVIEW 23

(a) (b) • (c) (d)

(e) (f) (o) I^abs

Figure 12: Control flow graphs (b), (c),(d), (e) and (f) have the same dominator
+.

tree (a), (g) The abstract model of all control flow graphs, edge
control flow path

represents a

2. Gadj conforms to Gabs{T).

The ADTVerifler consists of the ADTSuccessorVerifler and the verifier of

Gadj- Both have 0(V + E) complexity so the ADTVerifler is linear. The ADT
Verifler guarantees only that ADT{T, Gadj) is valid withrespect to the dominator
tree T. Finally, we need to make sure that the control flows in Gadj match with
the Ctrllnst at the end of each basic block (node). This check is linear over the
size of the basic block.

4 Implementation Overview

JVML to CAM compilation: We implement a compiler that converts existing
JVML code into CAM code. The .cam file keeps the original class file format and
only replaces JVML's code attribute by the code attribute of CAM instructions.
An additional attribute ADT is added that encodes the augmented dominator tree.

Thecompilation procedure first recovers all nestedtry-catchhloCms,. All blocks
in a try ox catc/z block are grouped as a sub control flow graph. Each try or catch
block is treated as a single block in the global control flow graph of a method.
Dominator trees of the global control flow and sub control flow graphs nested in

5 RELATED WORK 24

a try or catch are calculated separately. The complete dominator tree is formed
by replacing try or catch nodes with the dominator tree of the control flow graph
nested within it.

After this step, fix-point iterative data analysis is invoked to recover all vari
ables and their types. The virtual register allocation algorithm assigns registers to
all variables and (iec/ instructions are inserted at the appropriate blocks. Finally,
all JVML instructions are rewritten into CAM instructions.

CAMVerifer. The CAMVerfler consist of logically independent ADTVerifler
and Typelnterpreter. The former in turn consists of an ADTSuccessorVerifler
and a verifier for Gadj- Preparing the type-check sequence is not strictly neces
sary, since our Typelnterpreter can traverse the dominator tree directly. Since the
ADTSuccessorVerifler is a tree traversal based algorithm, our Typelnteipreter and
ADTSuccessorVerifler are implemented as a single integrated algorithm. The ver
ifier of Gadg needs to know the complete control flow graph, so it is implemented
as an independent component.

5 Related work

Checking the well-typedness of a program is a well-studied problem at different
levels: high-level source code, abstract machine code, native machine code. Ex
isting approaches include syntax-directed checking, abstract interpretation, data
flow analysis, general logic, and type theory.

On the high level source code side, most modem programming languages
have structured grammars. Syntax-directed type checking is sufficient to check
the well-typedness of source code in these languages. Type-checkers have been
widely implemented in compilers for strongly typed languages.

Abstract machines .[6] simulate real hardware machines by allowing step-by-
step execution. They bridge the semantic gap between high level languages and
low level real machines. The Java Virtual Machine is the abstract machine for

Java. The Java compiler produces stack-based JVML code that can be verifiedby
the Java Bytecode Verifier before execution with some basic level safety (includ
ing well-typedness).

On the other extreme, verifying the semantics of low-level native machine
code conforming to the semantics of high level source codeis not trivial and less
efficient. However, encouraging progress has been made in recent years:

• Proof Carrying Code [13] uses first-order logic to represent correctness

5 RELATED WORK 25

properties and a safety proof is constructed based ona general system such
as EdinburghLF and carried along with code.

• Typed Assembly Language [12] preserves typing information from a high-
level program written in a strongly-typed language and includes it with the
compiled program. It can then be checked by an ordinary type checker.

The JVM is still the most widely used approach for mobile code. Unfortu
nately, the design of JYML makes bytecode verification relatively complex in
both time and space consumption. KVM [21] for resource limited devices adopts
a lightweight verification algorithm [8] instead of the full Bytecode Verifier.

Kozen's [9] work on Efficient Code Certification (ECC) has a nature context-
free structure which mirrors the structure of high-level functional languages. ECC
is similar to SafeTSA (introduced in the Introduction) in the sense that both de
pend on the high-level control structure. The structure of ECC consists of well-
nested intervals of instructions, called blocks. Its certificate consists a block tree.
The block tree mirrors the nested structures of functional languages. ECC lim
its its inputs -tofunctional source code. Therefore, it does not need to deal with
arbitrary jumps (even irreducible control flow graphs) as our approach does.

Davis [5] experiments with converting the stack-based JVML into a register
basedinstruction set. His experiment shows that the transformation reduces the
number of executed instructions by 34.88% and increases the number of operand
fetch instructions by 44.81%.One of the main costs of an interpreter is that for
instruction dispatch. Davis' work has demonstrated that virtual register machines
are an attractive alternative to virtual stack machines.

Rose and Rose [17] proposed a (sparse) annotation of JVM code with types
to enable a one-pass verification of well-typedness. Roughly speaking, this trans
forms a type reconstruction problem into a type checking problem, which is easier.
More precisely, the type inference problem is a data flow analysis problem that
requires an iterative solution, whereas the type checking problem merely needs a
single pass to check consistency of the type annotations with the code. It trades
space for time: it is sufficient to store only the state type for the entry point to
each basic block because the remaining state types in that block can be computed
in linear time..

Sreedhar [19, 20, 18] proveda weaker version of lemma 1. D-J Graphs are an
alternative program representation used in loop identification, elimination-based
data flow analysis andfor placing nodes in linear time.

6 CONCLUSION 26

6 Conclusion

We have designed an alternative imperative core fortheJava Virtual Machine that
aims to encode well-typedness as compactly and transparently as possible. We
apply the data flow analysis to the design of CAM.The introducing of dominance
as code certificate greatlysimplify the verification logic and successfullyeliminate
the requirement of data flow analysis for well-typedness check.

7 Acknowledgment

This research effort was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory (AFRL), Air Force Ma
teriel Command, USAF, under agreement number F30602-99-1-0536, and by the
Office of Naval Research (ONR) under agreement NOOO14-01-1-0854. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and con
clusions contained herein are those of the authors and should not be interpreted as
necessarilyrepresenting the official policies or endorsements, either expressed or
implied, of DARPA,AFRL, ONR, or any other agency of the U.S. Government.

A Algorithms and Proofs

A.0.3 Register Allocatiori

proc RegisterAllocater
initialize all node as white

stack <— {}
X •(— RO

MaxRegNo-^0
for (v € DEF{x)) do

MaxRegNo •(— MaxRegNo + 1
assign R[MaxRegNo] to v

od

p\ish{stack, {x, MaxRegNo))
while (true) do

for {y e children{x)) ^

A ALGORITHMS AND PROOFS , 27

if {y is white)
then

for (v G DEF(v)) do
MaxRegNo MaxRegNo + 1
assign R[MaxRegNo] to v

od

mark y as black
push(stack, (y,MaxRegNo)

.x^-y

break

• „ . fi, ,
od

, pop(stack)
if {stack .

then {x, MaxRegNo) -s- peek(stack)
else return

fi
od

A.0.4 ADTSuccessorVerifier

proc ADTSuccessorVerifier

initialize all nodes as white

stack -f— {}
X •<— BO

push.{stack, x).
while (true), do .

for (y € children{x)) do
if (y is white)

then

for {z G unchkedPred{y)) ^
if {parent{z) ^ stack) .

then return false fi

od

mark y as black
push(stoc/c, y)
x<-y

break

fi

A ALGORITHMS AND PROOFS 28

od

^ {successor{x) 0)
then for (z € successor(x)) do

if (z is white)
then

unchkedPred{z) +— unchkedPred{z) U{x}
elsif {parent{z) ^ stack)

then return false
fi

od

fi

pop{stack)
if {stack 7^ {}) •

then X •(— peek(stoc/:)
else return true

fi

od

A.0.5 InsertMonitor

proc InsertMonitor

initialize all nodes as white

stack •<— {} '
X BO

push.{stack, x)
while {true} ^

for {y E children{x)) do
(y is white)
then

for (z Gpatchexit{y)) do
if {parent{z) 7^ parent{y)) then insert monitorexit into y

od

mark y as black
push(stack, y)
x^y .

if {y is synch) .
then insert monitorenter into y

fi

break

A ALGORITHMS ANDPROOFS 29

fi

od

if {successor[x) ^ 0)
then for {z € successor(x)) ^

if (z is white) then patchexit(z) *-patchexit{z) U{x}
elsif {parent{z) ^ x) then insert monitorexit into z
fi

od

fi
pop{stack)
if {stack ^ {})

then X <— peek(stacfc)
else return

fi
od

A.0.6 Checkjsr

proc CheckJsr

initialize all nodes as white

stack <— {}
X •(— BO

push(stoc/c, x)
while {true) ^

for {y € children{x)) ^
if {y is white)

then

for {z e patchexit{y)) ^
if {parent{z) ^ parent{y)) then insert monitorexit into y

od

mark y as black
push{stack, y)
x^y

if (y has jsr)
then insert jsr into y

fi

break

fi
od

A ALGORTTHMS AND PROOFS 30

if (successor(x) ^0)
then

if (Isuccessor(y)I = 2)
V <r— remove successor {y)-,
if (parent(y) ^ varent(v)) then return faZse

•fi ;•

fi"

if (|successor(j/)| = 2 Asuccessor (y).2nd = successor{x))
then

if (z is white) then yatchexitiz) ^ yatchexitiz) U {x}

elsif {parent{z) ^ x) then insert monitorexit into z
. fi

then

fi . • . •
pop(stacA:)
if [stack ^ {})

then X •<— peek(stacA:)
else return

fi

od

A.0.7 Proof of lemma 1

Proof. First we show that if idom[y) strictly dominates z, then y € domis[x). Let
X= idom[y), the CFG edge {z,y) might affect the dominance relation between x and z,
y and the dominator subtrees rooted at z, y respectively. We divide the proof in several
cases,, see the dominator tree in Figure 13

1. Subtree rooted at z will not be changed: The new CFG edge (z, y) bypasses all
(iescen(iaTit(z), which are strictly dominated by z.

2. Subtree rooted at y will not be changed: The new CFG edge (z, y) introduces
only new incoming paths to y, and y stiU appears on every path from start to
Wv € descendant{y).

3. Subtree rooted at x will not be changed: Both z and y are strictly dominated
by X. As X appears on every path from start to z, so x wih, also appear on path
start—)• X...Zy. Hence, X StiU immediate dominates y.

We conclude that the subtree rooted at x is same in all cases and that the dominance

relation is preserved.

B OPERATIONAL SEMANTICS 31

Figure 13: Solid edges are tree edges, curve edges are tree paths and dash edges
are new edges added to the original control flow graph. Triangles represent sub
tree. Giveri the dominator tree, adding edge (z, y) to its control flow graph G will
not render a different dominator tree in contrast to adding (z, y') which render a
new dominator tree with node y' as the child of root.

Secondly, we need to show that no other nodes can be found in domis(z). Suppose
y' e domis{z), idorn{y') z, and let y" = %dom{y'). Then we can find a path start

y'(Figure 13) that bypasses y", so y" no longer appears on every path from start
to y'. As y" does not dominate y', this contradicts the assumption that y' € domis[z).

B Operational semantics

For simplicity, we omit Env in the following configuration.

B OPERATIONAL SEMANTICS

type initialization operations

Env h R.[mrp -j-1 r] ^ R.'
[decl] Env 1- (decl r, mrp, R) => (mrp+1,R')

H Rfmrp -f-1 • t] => R'
[param] h (param r, mrp, R) =?• {mrp + 1, R')

frame stack operations

h fs(/p + 1 I—> Frame(otap)(ot5)(mrp)(/p)} => fs'
[block] H (block i, fs,/p, tosp) ^ (fs',/p-j-1, tosp —tosp)

H R ® {ots(otsp —1 + 1) => (rij, Tj), •—»]i ^ [otsp...!]}
)- fs(/p) ^ Frame(otgp^)(ots^)(mrp^)(/p^)

[popfa] h (popfa, fa,/p, otsp, ots, mrp, R) => (fa',/p', otsp', ots', mrp', R')

type operand stack operations

h 0 < i < mrp
H- R(i) => r
h tosftoap + 1 » (it •'')] ^ tos'

[loadrj I- (loadr i, tosp, tos) => (tosp + 1, tos')

^ i ^ C-rnax
h C(t) T
1-tos[tosp + 1 •—» (0, r)] ^ tos'

[loadc] h (loadc i, tosp, tos) ^ (tosp+ 1, tos')

switch operation

H tos(toap) => (i,Ti)
h = inf

[switch] h (switch, tosp) =>• (toap — 1)

array length operation

h (tos(tosp), tos(tosp — 1)) :
h Ti g TaT-T-gy A T2 = int

((i. ri), U, T2))

[arraylength] h (arraylength, tosp) •

apply operation

(toap — 1)

[apply]

[result]

[retnv]

^ ^abstract ' (''"1 X ... X Tji
h (tos(tosp), ..., tos(tosp —n -f 1)) =>• ((ii I"r^), (in
E tos(toap ^ n) => (in+l.'^n+l')
h (tj < ri A ... A < r«)
I- (0 < iyt+ i A
I- (apply tabstract. ^oap) ^ (toap - n + 1)

^ ^abstract • ("^1 ^ "• ^ "'"n+l)
f- (tos(tosp), ..., tos(fosp —n 4- 1)) => ((ii, r;(), (in, t^))
h tos(t0sp —n) => (in + l , +)
I- (t{ < Ti a ... A < Tn)
h {0 < i„+i AT„+1 ^ T^^j)
h ots(otsp + 1 • (iji-j-x. t^+j)] ^ ots'
HR(m Tn+l] => R'
h (apply tabstract. tosp, ots, otsp, R) ^

miscellaneous

i- (result r) => (r^es^lt = t)

h tos(tosp) ^ (i, r)
I- i < mrp

!- T = 'T-rcstiU
h (retnv, tosp) =>• (tosp — 1)

n+ l)

The notation R © {ots(ot5p ^ i + 1)

(tosp — n + 1, ots', otap + 1, R']

(rii^TiUni Ti\l

32

B OPERATIONAL SEMANTICS 33

extends the mapping R with a set of new domain/range pair i-+ n, where i is
from otsp to 1 and (n^, Tj) is poppedout from ots.

REFERENCES 34

References

[1] S. Alstrup and P. W. Lauridsen. A simple and optimal algorithm for finding
immediate dominators in reducible graphs. 1996.

[2] S. Alstrup, P. W. Lauridsen, and M. Thorup. Dominators in linear time.
DIKU technical report, (35), 1996.

[3] W. Amme, N. Dalton, J. von Ronne, and M. Franz. SafeTSA: a type safe
and referentially secure mobile-code representation based on Static Single
Assignment form. In Proceedings of the ACM SIGPLAN'Ol Conference on
Programming Language Design and Implementation, pages 137-147. ACM
Press, 2001.

[4] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance
algorithm. In Software-Practice And Experience, pages 4:1-10. John Wiley
and Sons, Ltd., 2001.

[5] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Waldron. The Case for
Virtual Register Machines. In Workshop on Interpreters, Virtual Machines
and Emulators, pages 41^9, San Diego, California, 2002. ACM Press.

[6] S. Diehl, P. Hartel, and P. Sestoft. Abstract machines for programming lan
guage implementation. Future Generation Computer Systems, 16(7):739-
751,2000.

[7] A. Gal, C. W. Probst, and M. Franz. A Denial of Service Attack on the Java
Bytecode Verifier. Technical Report 03-23, University of California, Irvine,
School of Information and Computer Science, 2003.

[8] G. Klein and T. Nipkow. Verified lightweight bytecode verification. Concur
rency and Computation: Practice and Experience, 13(13): 1133-1151,2001.
Invited contribution to special issue on Formal Techniques for Java.

[9] D. Kozen. Efficient code certification. Technical Report TR98-1661, 1998.

[10] T. Lengauer and R.E.Taijan. A fast algorithm for finding dominators in a
fiowgraph. In ACM Trans. Program. Lang. Syst., volume 1, pages 115-120,
July 1979.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, 1999.

REFERENCES 35

[12] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed
assembly language (extended version). Technical Report TR97-1651, 21,
1997.

[13] G. C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL '97), pages 106-119, Paris, Jan. 1997.

[14] G. C. Necula and P.Lee. The design and implementation of a certifying com
piler. El Proceedings of the 1998 ACM SIGPLAN Conference on Prgram-
ming Language Design and Implementation (PLDI), pages 333—344,1998.

[15] G. C. Necula and P. Lee. Efficient representation and validation of proofs.
El Logic in Computer Science, pages 93-104, 1998.

[16] Z. Qian. Standard fixpoint iteration for Java bytecode verification. ACM
Transactions on Programming Languages and Systems, 22(4):638—672,
2000. ,

[17] E. Rose and K. H. Rose. Lightweight bytecode verification. In Workshop
"Formal Lfnderpinnings of the Java Paradigm", OOPSLA'98, \99^.

[18] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing ^-nodes.
In Conference Record ofPOPL '95: 22nd ACM SIGPLAN-SIGACT Sympo
sium on Principles ofProgramming Languages, pages 62-73, San Francisco,
California, 1995.

[19] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. Identifying loops using DJ graphs.
ACM Transactions on Programming Languages and Systems, 18(6):649-
658, Nov. 1996.

[20] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee. A new framework for elimination-
based data flow analysis using DJ graphs. ACM Transactions on Program
ming Languages and Systems, 20(2):388-^35, Mar. 1998.

[21] Sun Microsystem. CLDC Specification, vl.l.

[22] J. von Ronne, N. Wang, A. Apel, and M. Franz., Virtual Machine for In
terpreting Programs in Static Single Assignment Form. Technical Report
03-19, University of California, Irvine, School of Information and Computer
Science, 2003.

REFERENCES 36

[23] N. Wang, M. Franz, and N. Dalton. Enabling Efficient Program Analysis for
Dynamic Optimization of a Family of Safe Mobile Code Formats. Technical
Report 02-24, University ,of California, Irvine, School of Information and
Computer Science, 2002.

[24] F. Yellin. Low Level Security in Java, 1995.

