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Article

Extended two-stage adaptive designs
with three target responses for
phase II clinical trials

Seongho Kim1 and Weng Kee Wong2

Abstract

We develop a nature-inspired stochastic population-based algorithm and call it discrete particle swarm optimization to

find extended two-stage adaptive optimal designs that allow three target response rates for the drug in a phase II trial.

Our proposed designs include the celebrated Simon’s two-stage design and its extension that allows two target response

rates to be specified for the drug. We show that discrete particle swarm optimization not only frequently outperforms

greedy algorithms, which are currently used to find such designs when there are only a few parameters; it is also capable

of solving design problems posed here with more parameters that greedy algorithms cannot solve. In stage 1 of our

proposed designs, futility is quickly assessed and if there are sufficient responders to move to stage 2, one tests one of

the three target response rates of the drug, subject to various user-specified testing error rates. Our designs are

therefore more flexible and interestingly, do not necessarily require larger expected sample size requirements than

two-stage adaptive designs. Using a real adaptive trial for melanoma patients, we show our proposed design requires one

half fewer subjects than the implemented design in the study.

Keywords

Adaptive design, greedy algorithm, particle swarm optimization, power, sequential design, Simon’s two-stage design

1 Introduction

Phase II clinical trials concern early exploration of efficacy effects and use the most recent results from a small
group of patients to make decision for the next group of patients until some prefixed termination rule is met.
Group sizes can range from 20 to 120 depending on the nature and seriousness of the disease. Kramar et al.1

provides a review on multistage designs for phase II clinical trials and statistical issues in cancer research and
Brown et al.2 gives an overview of the role of phase II trials in oncology. Increasingly, these designs employ an
adaptive approach, where design decisions for the next stage are made based on cumulative responses. Chow and
Chang3 reviews adaptive randomization designs in clinical trials.

Simon’s two-stage design was developed under a framework that if the proportion of responders in stage 1 is
small, the trial is terminated; otherwise, the trial goes on to stage 2 where the cumulative response rate is now used
to test whether the efficacy rate is at a higher pre-specified level. In essence, two user-selected efficacy rates are
posited p0 and p1 with p0 5 p1, and p0 is the uninspiring response rate. In stage 1, we test the null hypothesis
H0 : p ¼ p0 and if we fail to reject the null hypothesis, we terminate the trial; otherwise, we conclude that the drug
is sufficiently promising to advance to stage 2, where more responses from more patients will be used to test p¼ p1.
Given pre-specified Type I and II error rates for the tests at the two stages, the design questions are the number of
patients required in stage 1, number of responders required in stage 1, how many additional patients are required
for stage 2 and the cumulative number of responders required at the end of stage 2. The design problem is to
determine the optimal combination of these four numbers, so that the expected number of patients treated with a
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drug of low activity under the null hypothesis is minimized. Such an optimal design may not be unique and other
design criteria are possible.

Lin and Shih4 provided practical examples and showed that while it was relatively easy to specify the
uninteresting rate p0, the same was not true for p1. To tackle the issue of uncertainty in targeting the
hypothesis in stage 2, they proposed designs that allowed two specifications for p1 and called one a skeptical
choice and the other the optimistic choice. Their design problem now has seven parameters to optimize in contrast
to four in Simon’s two-stage design, subject to user-specified Type I and II error constraints. The additional three
parameters beyond the four parameters required for Simon’s two-stage design are for testing the additional
targeted efficacy rate. Both Simon and Lin and Shih employed a greedy search to find the optimal designs and
the latter stated that they ‘‘did not extend the selection to more than two prefixed possible response rates mainly
due to the complexity in the numerical solutions, and also because it is usually adequate for practitioners to
contemplate between two (high/low) choices of the response rate p1.’’

Our work was motivated by a real problem from clients interested to conduct a single-arm two-stage phase II
trial to the effect of head and neck cancer (HNC) on the incidence of obstructive sleep apnea (OSA). Our clients’
main goal was to ascertain accurately the incidence rate of OSA on HNC patients in a timely manner. Because of
the potential huge beneficial impact on treating HNC patients, the clients wanted a relatively simple design
that could terminate the study at stage 1 if the initial response (OSA incidence) rate was poor; otherwise, stage
2 of the design used the number of responders, who experienced OSA from stage 1 to recruit more patients to
more accurately assess the incidence rate of OSA. Clearly, Simon’s5 two-stage design proposed in 1989 and
the adaptive two-stage design proposed by Lin and Shih4 seemed useful.

Our clients were particularly interested to extend Lin and Shih’s4 approach to include an additional targeted
alternative hypothesis for testing in the second stage. The main reason was the great uncertainty in the OSA
incidence rate on HNC patients and the need to move a potentially promising impact further in the treatment of
HNC patients expeditiously with a very good estimate of the true OSA incidence rate of HNC patients.
Thus depending on the number of responders, who experience OSA in stage 1, more flexibility in specifying the
incidence rate of OSA in stage 2 is required. In particular, the clients did not want to run another costly follow-up
trial to more accurately evaluate the incidence rate of OSA in HNC patients. Another motivation for having such a
design was also recently made aware to the second author by personal communication from a senior researcher at
the National Institutes of Health. She mentioned that in oncology, there is a great tendency for researchers to be
too optimistic on the efficacy rate of a new drug. Our proposed designs should help address such an issue by
allowing the clinician the flexibility to perform a test at stage 2 for one of the two lower efficacy rates should the
drug efficacy rate be over-specified in the first place. In what is to follow, we discuss and construct extended two-
stage adaptive designs for our OSA study and two other applications. The first one is Lin and Shih’s4 vinorelbine,
bleomycin, and gemcitabine (VBG) study for patients with recurrent or refractory Hodgkin’s disease (HD) and the
second one is a Phase II BREAK-2 study for melanoma patients

We were able to formulate the optimization problem quickly as an extension of that from Lin and Shih’s4

article, but anticipated the optimization burden for the new constrained optimization problem now with
10 parameters to optimize for the three user-selected targeted alternative hypotheses in stage 2 and subject to
various user-specified Type I and II error rate constraints. Lin and Shih4 acknowledged computational difficulties
in their work at that time and remarked that further extension of the problem would seem to be a too challenging
or an impossible computational task. In what is to follow, we present an algorithm to solve this complex
constrained optimization problem and show that our extended two-stage adaptive design has advantages over
both Simon’s two-stage design and Lin and Shih’s designs in a number of ways.

There are many variations of strategies proposed for phase II designs since Simon’s two-stage design was
proposed. We mention some here and refer to earlier cited articles for a comprehensive overview.
Modifications and extensions of the likes of Simon’s two-stage design include having two binary outcomes6 or
finding designs that minimize the expected sample size or minimize the expected maximum sample size, not under
the null hypothesis but under the alternative hypothesis. For example, Mander and Thompson7 and Mander et al.8

investigated novel designs, which are optimal under the alternative hypothesis, that the tumor response rate is
higher than the null hypothesis value, and also designs which allow early stopping for efficacy. Wason et al.9

considered reducing sample size for phase II trials with a continuous outcome, and Kwak and Jung10 proposed a
two-stage adaptive optimal design for single arm trials with right-censored survival time that minimizes the
expected sample size subject to Type I and II error rate specifications. Phase II designs with three stages
were motivated and proposed in literature.11–13 Schlesselman and Reis14 noted limits and benefits of phase II
trials and Zhou15 gave some guidance on the choice of a design for an early phase trial.
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Software for computing various types of phase II adaptive designs for such trials is available in commercial
software statistical packages, like SAS, STATA, and JMP. They are also codes on webpages that generate various
adaptive optimal designs for early phase trials after the error rates are specified. One such site is at https://stattools.
crab.org/Calculators/twoStage.htm. Because none of the current software can find our proposed designs, we have
developed codes to run on a web browser using the R package shiny (http://shiny.rstudio.com) to generate our
proposed designs. We call our R package ss2stagePSO and it is freely available at http://cansur.wayne.edu/.
We also provide an option to compare competitive designs and user-specified designs relative to the optimal
designs by reporting their relative efficiencies.

In the next section, we first describe extended two-stage adaptive designs for phase II clinical trials and technical
background before discussing nature-inspired stochastic population-based algorithms for finding our proposed
designs. There are many of them and, as an example, we focus on particle swarm optimization (PSO), which seem
to be widely used. Motivated from our recent successes with this flexible algorithm, we modified it for our
application at hand, because PSO was originally designed to solve optimization problems over a continuous
domain, not optimization over a domain comprising of discrete positive integer numbers, and call it discrete
particle swarm optimization (DPSO). In particular, we show how DPSO solves our extended two-stage
adaptive design problems and related problems effectively that a greedy algorithm cannot. We then apply our
algorithm to real applications and show our proposed designs require smaller sample sizes than those that were
implemented in the trial. The article is concluded with a summary

2 Extended two-stage adaptive designs

Suppose p0 is the maximum uninteresting response rate and there are three choices for the target response rates:
p1, p2, p3, where 05 p0 5 p1 5 p2 5 p3 5 1. Data from stages 1 and 2 will be used to test one of the null hypotheses
in stage 2 depending on the number of responders in stage 1. Our adaptive design assumes that a total of n1 patients
are assigned at the first stage and the total number of patients and tests required in the entire trial will depend on the
number of responses in the first and subsequent stages. The null hypothesis at the first stage isH0: p � p0. According
to the number of responses in the first stage, the corresponding alternative hypothesis will be one of three hypotheses:
H11: p4 p1, H12: p4 p2 and H13: p4 p3. Using similar notation in Lin and Shih,4 our extended two-stage adaptive
design has a total of 10 parameters given by � ¼ ðs1, r1, q1, n1, s, l, r, m, q, nÞ and it operates as follows:

. Step I: Begin by recruiting n1 patients in the first stage of our design and observe the number of the responses, x,
from of n1 patients.

. Step II:
(1) If x � s1, stop the trial with failure to reject H0 (i.e. p � p0)
(2) If s1 5 x � r1, power the study at (1-�1) for p¼ p1 and enter l2 ¼ l� n1 additional patients into the study.

Reject the hypothesis that H11: p4 p1 if the total number of responses � s out of l patients.
(3) If r1 5 x � q1, power the study at (1-�2) for p¼ p2 and enter m2 ¼ m� n1 additional patients into the

study. Reject the hypothesis that H12: p4 p2 if the total number of responses � r out of m patients.
(4) If x4 q1, power the study at (1-�3) for p¼ p3 and enter n2 ¼ n� n1 additional patients into the study.

Reject the hypothesis that H13: p4 p3 if the total number of responses � q out of n patients.

By construction, the values of l, m, n are the total number of patients required for the entire trial corresponding
to the alternative hypotheses, H11: p4 p1, H12: p4 p2, and H13: p4 p3, respectively. The extended two-stage
adaptive design has a total of 10 parameters denoted by � ¼ ðs1, r1, q1, n1, s, l, r, m, q, nÞ that we wish to
optimize given error rate constraints and the stipulated three response rates. If the true response probability is
p, the probability of failing to reject H0 is given by

Gð�j pÞ ¼ Bðs1, n1, pÞ þ
Xminðr1,sÞ

x¼s1þ1

bðx, n1, pÞBðs� x, l2, pÞ

þ
Xminðq1,rÞ

x¼r1þ1

bðx, n1, pÞBðr� x,m2, pÞ þ
Xminðq,n1Þ

x¼q1þ1

bðx, n1, pÞBðq� x, n2, pÞ

ð1Þ

where b and B are the probability density function and cumulative density function of a binomial distribution,
respectively, with l ¼ n1 þ l2, m ¼ n1 þm2, and n ¼ n1 þ n2. It follows that when the true probability response rate

3630 Statistical Methods in Medical Research 27(12)

https://stattools.crab.org/Calculators/twoStage.htm
https://stattools.crab.org/Calculators/twoStage.htm
http://shiny.rstudio.com
http://cansur.wayne.edu/


is p, the expected sample size is

EðNj p, �Þ ¼ n1 þ ðBðr1, n1, pÞ � Bðs1, n1, pÞÞl2

þ ðBðq1, n1, pÞ � Bðr1, n1, pÞÞm2 þ ð1� Bðq1, n1, pÞÞn2
ð2Þ

Our design problem is to find a good choice �̂ 2 ~�, the set containing all values of � that satisfies four natural
error constraints

Gð�j p0Þ � 1� �, Gð�j p1Þ � �1, Gð�j p2Þ � �2 and Gð�j p3Þ � �3 ð3Þ

The goodness of �̂ may be determined by one of the following four optimality criteria:

. C1: �̂ ¼ argmin�2 ~� EðNj p0, �Þ;

. C2: �̂ ¼ argmin�2 ~� EðNj p0, �Þ and �̂ ¼ argmin�2 ~�fmaxðl,m, nÞg;

. C3: �̂ ¼ argmin�2 ~�fmaxi¼0,1,2,3 EðNj pi, �Þg;

. C4: �̂ ¼ argmin�2 ~�fmaxi¼0,1,2,3 EðNj pi, �Þg and �̂ ¼ argmin�2 ~�fmaxðl, m, nÞg.

The optimality criteria C1–C4 are extensions of Lin and Shih’s4 criteria and, if there is only one target response,
criteria C1 and C2 are exactly the same as Simon’s two optimality criteria. Our proposed extended two-stage
adaptive design is schematically described in Figure 1.

The above extension to three prefixed possible target responses may appear straightforward to implement, but
in reality, it is computationally impractical to find a solution by the use of greedy algorithms due to its complexity.
Indeed, we formulate the optimization problem and show that greedy algorithms fail to find a solution for our
10-dimensional optimization problem after running it for 30 days. To this end, we briefly review a nature-inspired

Figure 1. Flowchart of the extended two-stage adaptive design for Phase II clinical trials (third column) with s1 5 r1 5 q1. Simon’s

two-stage design is obtained by setting r1¼ n1 (first column) and Lin and Shih’s design is obtained by setting q1¼ n1 (second column).
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stochastic population-based algorithm, PSO technique, and show that it not only provides solutions in a relatively
short time but also facilitates performance comparison among different algorithms in the following sections.

3 DPSO

PSO, a population-based global optimization method, was introduced by Kennedy and Eberhart.16 It is an
evolutionary algorithm and stochastically evolves a group of particles that mimic observational behavior from
nature. PSO is motivated from observing how a flock of birds move in the sky and so is a member of the class of
nature-inspired stochastic population-based algorithms. This class of algorithms has been gaining lots of
recognition especially in the last decade or so for its ability to solve or nearly solve hard-to-optimize high
dimensional problems in the real world. Whitacre17,18 documented the meteoric rise in use of such algorithms
in applied fields and increasingly in academia as well. Their main appeals are that they are simple to implement,
assumption-free and tend to quickly converge to the optimum or get quickly to the vicinity of the optimum
solution. Additionally, they are general-purpose optimization algorithms and so are adaptable to solve different
types of optimization problems after the user inputs some tuning parameters to initiate the algorithm. Genetic
algorithm, simulated annealing, and PSO are examples of such algorithms.

Some recent applications of PSO to solve optimal design problems in statistics are in literature.19–22,23 They
tackled design problems in biomedical problems that ranged from finding D-optimal designs for several nonlinear
models and mixture models with multiple constraints to finding minimax and standardized maximin type of
optimal designs. The latter designs have non-differentiable optimality criteria that require a couple of nested
levels of optimization and are notoriously difficult to find. Phoa et al.21 applied swarm intelligence to find an
optimal supersaturated design in a high dimension problem that involves judicious and repeated exchanges of
columns in the design matrix to minimize correlations among the columns via the Eðs2Þ criterion. PSO has also
successfully used for estimation in statistical problems. For example, Kim and Li24,25 applied PSO to estimate
parameters in nonlinear mixed-effects pharmacokinetics models, and Kim et al.26 employed PSO to estimate
efficacy of different lung cancer screening methods. In each of the above problems, we observed, as many
others had, the flexibility of PSO and how it can be readily modified to solve an optimization problem at hand.
In what is to follow, we first demonstrate yet again that PSO can be adapted to efficiently solve our adaptive design
problem with a very different setup than those just mentioned above. Second, we show PSO can solve high
dimensional problems with many parameters in our adaptive design problems that current greedy algorithms
cannot and third, PSO can substantially outperform greedy algorithms in adaptive design problems with a small
number of parameters.

Operationally, the user initiates PSO by first specifying the maximum of iterations allowed, say K and the flock
size consisting of, say N, randomly generated particles for the search. Each particle represents a candidate solution
to the problem and at any one time, each has a fitness value (i.e. the design criterion value). As it searches, it keeps
track of its best value (personal or local best value) and communicates with the rest of the particles to determine
the global best value, defined as the best personal best value among the flock up to that iteration. The particles
updates these two values continuously as it moves across the search space in the direction guided by its most recent
local best and the global best with a velocity determined stochastically by a combination of values of the tuning
parameters, its personal best and the global best and the velocity with which it has arrived at the current position.
Specifically, suppose the nth particle’s position vector is xn ¼ ðxnkÞ

0
k¼1, ...,K and its updating velocity vector is

vn ¼ ðvnkÞ
0
k¼1, ...,K, n ¼ 1, . . .,N. If its local best and global best are xnlbest and xgbest, respectively, its velocity vnkþ1

and the position xnkþ1 at the ðkþ 1Þth iteration are determined by

vnkþ1 ¼ wkv
n
k þ c1r1ðx

n
lbest � xnkÞ þ c2r2ðxgbest � xnkÞ; xnkþ1 ¼ xnk þ vnkþ1 ð4Þ

Here wk is the inertia weight (0 � wk � 1) at the kth iteration, c1 and c2 are two positive constants called
cognitive and social coefficient, and r1 and r2 are two random variates in the range [0, 1]. The lower limit
values of the constants c1 and c2 determine how far particles are allowed to wander beyond the target region
before pulled back, and their upper limit values determine how sudden the particles should be moved back to the
target region. Following convention, we set c1 and c2 to their default values equal to 2 in our simulation studies. At
the kth iteration, the inertia weight wk is wk ¼ wmax-

k
K ðwmax � wminÞ, where wmin and wmax are user-defined

constants satisfying 0 � wK ¼ wmin � wk � wmax ¼ w0 � 1.
During the search, the inertia weight adaptively controls the impact of the previous history of velocities on the

current velocity and also influences the trade-off between global (wide-ranging) and local (nearby) exploration
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abilities of the particles, as they move across the search space. A larger inertia weight facilitates global exploration
(searching new areas) and a smaller inertia weight facilitates local exploration. When the inertia weight is suitably
chosen, it can provide a balance between global and local exploration abilities and on average, require fewer
iterations to find the global optimum.27 To exploit these properties of the inertia weight, we use a dynamic inertia
weight to enable PSO escape from premature convergence when it is stagnated.28

PSO was originally designed to solve optimization problems over a continuous domain, not optimization over a
domain comprising of discrete positive integer numbers. Since PSO is a flexible algorithm, we modified it for our
problem and call it DPSO. The task is to choose the right combination of several positive integers that would
minimize the total sample size required under various hypothesis and, at the same time, meet the user-specified
Type I and II error rates. The proposed DPSO has two different features from PSO: (a) the inertia weight w0k is the
nearest integer of PSO’s inertia weight wk at the kth iteration, i.e. w0k ¼ wk þ

1
2

� �
¼ wmax �

k
K ðwmax � wminÞ þ

1
2

� �
,

where xb c ¼ argmaxmfm 2 Zjm � xg and Z is a set of integers, and (b) the two random sequences are generated
from a discrete uniform distribution.

3.1 Extended two-stage adaptive design with three target responses

We consider two optimization approaches to find �̂, the optimal value for � ¼ ðs1, r1, q1, n1, s, l, r, m, q, nÞ for
our adaptive design problem. One is the greedy search and the other is DPSO proposed in this study. The greedy
search adopts the strategies used in Simon’s or Lin and Shih’s4 algorithms for the extended two-stage adaptive
design. Specifically, we first calculate the required sample sizes ni, i¼ l, m, and n, for a single-stage design, where nl,
nm, and nn are the required sample sizes corresponding to the target response rates p1, p2, and p3, respectively, and
constrain l, m, and n to be in the range of 0:85 � nib c � i � 1:5 � ni þ 1b c, where i¼ l, m, and n. For each value of l,
m, and n, and each of n1 in [1,minðl,m, nÞ � 1], s1 in [0, n1], r1 in [s1 þ 1, n1], and q1 in [r1 þ 1, n1], we then find the
set of feasible solutions ~� that satisfies the error constraints (3) for q in [q1 þ 1, n], r in [r1 þ 1, m], and s in [s1 þ 1, l]
and determine the optimum according to one of optimality criteria C1–C4.

To implement DPSO, we specify the lower and upper boundaries for each component of the parameter vector
� ¼ ðs1, r1, q1, n1, s, l, r, m, q, nÞ. Similar to the greedy search, we use the sample sizes nl, nm, and nn, required
for a single-stage design corresponding to the target response rates p1, p2, and p3, respectively and set

Li ¼ 0:85 � nib c, i ¼ l,m, n;

Ui ¼ 1:5 � ni þ 1b c, i ¼ l,m, n;

U ¼ minfUi; i ¼ l,m, ng:

ð5Þ

The lower and upper boundaries for each component of � are then obtained as follows:

s1 2 0,
Um

2
þ 1

� �� �
; r1 2 0, U � p1 þ 1

� �� 	
; q1 2 0, U � p2 þ 1

� �� 	
; n1 2 ½1,U�;

s 2 0, Ul � p1 þ 1
� �� 	

; l 2 ½Ll,Ul �; r 2 0, Um � p2 þ 1
� �� 	

; m 2 ½Lm,Um�;

q 2 0, Un � p3 þ 1
� �� 	

; n 2 ½Ln,Un�,

and used in DPSO to find the optimal solution under each of the C1–C4 optimality criteria among the feasible
solutions in ~� that satisfy the error constraints (3).

The standard PSO is usually not sensitive to the initial values of the tuning parameters and can find an optimal
solution using the default values. However, in our DPSO, a lot of iterations is required for convergence, especially
when there are two or three target responses and the initial values were not among the feasible solutions in ~�. For
this reason, we consider two approaches (G-DPSO and D-DPSO) to find an appropriate initial set of values
among the feasible solutions in ~� to boost the speed of convergence of DPSO.

In the first approach, the initial value is found by a greedy search over a smaller range of values for ni and not
over the entire range, where i¼ l, m, and n. Specifically, the required sample sizes ni, i¼ l, m, and n, are in the range
of ni � 1 � i � ni þ 1, where i¼ l, m, and n. Within this smaller domain, we searched for an appropriate set of
initial values using the same strategy as the greedy search did for the rest of the parameters. By shrinking the range
of the parameters ni, i¼ l, m, and n, we potentially reduced the computational burden. We call DPSO with this first
approach G-DPSO. In particular, we observed the consistency of the computation time with a short amount of
time, when G-DPSO was applied to the case with one target response (see Table 1 and Supplementary Information
Table S1). However, similar to the greedy search, the computation time of G-DPSO increases as the number of
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target response s increases, especially for two or three target responses (for example, see Tables 2 and 3 and
Supplementary Information Tables S2 and S3). Therefore, we devise the second approach that does not depend on
the number of target responses for the cases with two or three target responses.

The second approach abbreviated as D-DPSO is used when the number of target responses is two or more. D-
DPSO finds the initial set of values using an optimal set of values decided by the case with the one less number of
target response. In other words, when the number of target responses is k, the initial value is decided using the
sample sizes determined by the case when the number of target responses is k� 1, where k¼ 2, 3. By doing so, we
could make the second approach not depend on the number of target responses in terms of computation time. The
specific details for implementing D-DPSO to search for any one of the four types of optimal design when there are
two and three target responses are as follows.

3.1.1 The number of target responses is two

We first obtain two sets of sample sizes, E1 ¼ s11, n
1
1, s

1, n1

 �

and E2 ¼ s21, n
2
1, s

2, n2

 �

, from the target responses p1

and p2, respectively, based on the G-DPSO method when there is one target response. Then, using the two sets of

sample sizes E1 and E2, the initial value is set to ~�2 ¼ ~s1, ~r1, ~m1, ~s, ~m, ~r, ~n ¼ rank3 s11, n
1
1, s

2
1, n

2
1


 �
, s1, n1, s2, n2

� 

�
, where

rankkS is the top k elements of the set S arranged in ascending order. The first three values (~s1, ~r1, ~m1) correspond

to the null response p0 (i.e. the first stage), so the sample sizes s11, n
1
1, s

2
1, n

2
1

� 

, which correspond to the first stage of

E1 and E2, are used. Since (~s, ~m) and (~r, ~n) correspond to the target values p1 and p2 (i.e. the second stage),

respectively, the values (s1, n1) and (s2, n2), which correspond to the second stage of E1 and E2, are used.

3.1.2 The number of target responses is three

We first obtain two sets of sample sizes E1 ¼ s11, r
1
1,m

1
1, s

1,m1, r1, n1

 �

and E2 ¼ s21, n
2
1, s

2, n2

 �

using the D-DPSO
with the target responses (p1, p2) and the G-DPSO with the target response p3, respectively. Then, the initial value

Table 1. Various adaptive two-stage optimal designs with one target response when �¼ 0.05 and �¼ 0.20.

p0 p1

Optimal

criteria Method s1=n1 s / n 1� � � EðNj p0Þ EðNj p1Þ

0.05 0.20 C1 GS 0/10 3/29 0.953 0.199 17.624 26.960

G-DPSO 0/10 3/29 0.953 0.199 17.624 26.960

C2 GS 0/11 3/28 0.956 0.199 18.330 26.540

G-DPSO 0/11 3/28 0.956 0.199 18.330 26.540

C3 GS 0/11 3/28 0.956 0.199 18.330 26.540

G-DPSO 0/11 3/28 0.956 0.199 18.330 26.540

C4 GS 0/11 3/28 0.956 0.199 18.330 26.540

G-DPSO 0/11 3/28 0.956 0.199 18.330 26.540

0.20 0.35 C1 GS 5/22 19/72 0.951 0.200 35.368 63.855

G-DPSO 5/22 19/72 0.951 0.200 35.368 63.855

C2 GS 3/21 15/53 0.950 0.200 41.148 51.941

G-DPSO 3/21 15/53 0.950 0.200 41.148 51.941

C3 GS 6/31 15/53 0.950 0.198 40.436 51.983

G-DPSO 6/31 15/53 0.950 0.198 40.436 51.983

C4 GS 3/21 15/53 0.950 0.200 41.148 51.941

G-DPSO 3/21 15/53 0.950 0.200 41.148 51.941

0.55 0.70 C1 GS 15/26 48/76 0.952 0.195 42.021 69.735

G-DPSO 15/26 48/76 0.952 0.195 42.021 69.735

C2 GS 20/35 43/67 0.953 0.200 45.802 64.662

G-DPSOa 20/35 43/67 0.953 0.200 45.802 64.662

C3 GS 20/35 43/67 0.953 0.200 45.802 64.662

G-DPSO 20/35 43/67 0.953 0.200 45.802 64.662

C4 GS 20/35 43/67 0.953 0.200 45.802 64.662

G-DPSOb 20/35 43/67 0.953 0.200 45.802 64.662

a,b: The number of particles was increased from 10 to 20 and the population size was increased from10,000 to 70,000.
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is set to ~�3 ¼ ~s1, ~r1, ~q1, ~n1, ~s, ~l, ~r, ~m, ~q, ~n
� �

¼ rank4 s11, r
1
1,m

1
1, s

2
1, n

2
1


 ��
, s1, m1, r1, n1, s2, n2). The first four values

(~s1, ~r1, ~q1, ~n1) correspond to the null response p0 (i.e. the first stage), so the sample sizes (s11, r
1
1, m

1
1, s

2
1, n

2
1), which

correspond to the first stage of E1 and E2, are used. Since (~s, ~l, ~r, ~m) and ( ~q, ~n) correspond to the target values (p1,
p2) and p3 (i.e. the second stage), respectively, the values (s1, m1, r1, n1) and (s2, n2), which correspond to the second
stage of E1 and E2, are used.

4 Simulation studies

We use simulation studies to evaluate the performance of extended two-stage adaptive designs. We also generate
Simon’s two-stage design and Lin and Shih’s4 adaptive two-stage design using DPSO and compare results when
the number of target response is one and two, respectively. We refer to Simon’s two-stage design as an adaptive
two-stage design with one target response, Lin and Shih’s4 adaptive two-stage design as an adaptive two-stage
design with two target responses, and our extended two-stage adaptive design as an adaptive two-stage design with
three target responses.

Our simulation covers one set of Type I (�) and Type II (�) error rates with (�, �1, �2, �3) ¼ (0.05, 0.20, 0.10,
0.05) and three sets of target response rates, which are (p0, p1, p2, p3) 2 {(0.05, 0.20, 0.25, 0.30), (0.20, 0.35, 0.40,
0.45), (0.55, 0.70, 0.75, 0.80)}. Note that we empirically selected these combinations for null and target response
rates to reflect the general performances of each method. The optimal design under each of the four optimality
criteria C1–C4 was found using two optimization methods: a greedy search (GS) and DPSO. GS looks for all
possible and feasible cases to find the optimal solution, while DPSO stochastically searches for the optimal
solution using equations (1) and (2). The number of particles used to optimize each design parameter was 10
and the population size was set to 10,000 in our DPSO. The total number of iterations allowed was 50. The two
methods described in the previous section were applied to obtain initial values for G-DPSO and D-DPSO.

Tables 1–3 display optimal designs found from GS, G-DPSO and D-DPSO methods when there are one, two,
and three target responses, respectively. Details of the computation times in minutes to evaluate computational
burden for the different algorithms are available in the Supplementary Information Tables S1–S3. Note that the
computation times given in Supplementary Information Tables S1 to S3 might not accurately reflect the true
computational complexity of each method and we display them to give some insights on how efficient each method
is. All simulations were rendered up to 30 days using a high performance Grid enabled computing system at
Wayne State University. The Grid currently has the combined processing power of 4420 cores: 1200 Intel cores,
3220 AMD cores, with over 12TB of RAM and over half a petabyte of disk space.

We make two remarks before we present our results. First, to ensure a fair comparison, we implemented all the
GS, G-DPSO, and D-DPSO algorithms using the statistical software R. Some of our G-DPSO results are a bit
different from published results found by the GS method. This is not surprising because of the stochastic nature of
the G-DPSO algorithm and the results from G- or D-DPSO depend on the algorithm convergence criterion and
the tuning parameters, which for simplicity, we had set a priori to be same for all cases. Consequently, optimal
designs found by the G- and D-DPSO algorithm may vary each time we ran. For instance, when p0 ¼ 0:55 and
p1 ¼ 0:70, our simulation settings for PSO produced different results for criteria C2 and C4 than those reported in
Simon’s article found by a greedy search. Some such discrepancies are indicated in Table 1 by superscripts a and b,
but they can be resolved using a different set of tuning parameters for the algorithm. For example, in these
instances, when the number of particles was increased from 10 to 20 and the population size was increased from
10,000 to 70,000, our DPSO algorithm converged to the same optimal design with s1=n1 ¼ 20=35 obtained in
Simon’s article in a small fraction of the time required by GS. Second, our codes repeatedly call on IMS
functions for computing binomial probabilities every single time it is needed, which is unlike the codes in Simon’s
article where they were predefined upfront. Consequently, our CPU times may appear several factors longer than
those reported in earlier work, but are in fact substantially faster than the computing time required by GS.

4.1 Adaptive two-stage design with one target response

When there is one target response rate, the adaptive two-stage design is the same as Simon’s two-stage design.
Table 1 compares the results between GS and G-DPSO when p1 � p0 ¼ 0:15. As stated before, we applied
D-DPSO only when the number of target response is either two or three. In all cases, both optimization
methods give the exactly same optimal design with the same expected sample sizes. Table S1 in the
Supplementary Information shows G-DPSO can be up to 100 times faster than GS except when p0 ¼ 0:05.
One reason that G-DPSO is slower than GS is that the size of the solution domain when p0 ¼ 0:05 is small and

Kim and Wong 3635



the computational time of GS can be highly dependent on the size of the solution domain. As such, the
computational time required by GS can be highly variable. In contrast, the time required by G-DPSO to find
the optimum does not depend on the size of the solution set once the initial values are obtained. Consequently, we
observe a consistent computational time range required by DPSO for all the cases. The table also shows that the
sample size requirements for optimality criteria C2–C4 are smaller than those required by criterion C1.

4.2 Adaptive two-stage design with two target responses

We now apply GS and DPSO (G-DPSO and D-DPSO) to generate the Lin and Shih’s4 adaptive two-stage
designs and Table 2 displays them. Each optimization was allowed to run up to 30 days. GS reports the
optimal designs only when p0 ¼ 0:05, because the size of the solution area increases exponentially with
the number of target responses when p0 is close to 0.5. As a result, GS could not reach out to the solutions for
other cases. Interestingly, as shown in Supplementary Information Table S2, the computation time of GS
when p0 ¼ 0:05 is much longer (at least 68 times longer) than those of both G-DPSO and D-DPSO, even
though the determined sample sizes are comparable with or slightly smaller than those of G-DPSO and
D-DPSO. As expected, the required sample sizes of G-DPSO and D-DPSO are similar even though
the computation time for G-DPSO and D-DPSO are different; the former depends on the size of the solution
set but the latter does not, hence their computing times are different. For example, when (p0, p1, p2) ¼ (0.55, 0.70,
0.75), G-DPSO takes 23 times longer than D-DPSO to determine the optimal design, but when the size of
the solution set is small as when (p0, p1, p2) ¼ (0.05, 0.20, 0.25), the computation time required by G-DPSO is
shorter than that required by D-DPSO, which consistently ranges from 5.07 to 6.10min and independent of the
solution size.

Table 2. Various adaptive two-stage optimal designs with two target responses when �¼ 0.05, �1¼ 0.20 and �2¼ 0.10.

p0 p1 p2

Optimal

criteria Method s1=r1=n1 s / m r / n 1� � �1 �2 EðNj p0Þ EðNj p1Þ EðNj p2Þ

0.05 0.20 0.25 C1 GS 0/1/9 3/30 4/41 0.957 0.199 0.094 17.548 33.383 36.119

G-DPSO 0/1/10 3/28 3/31 0.953 0.199 0.088 17.481 27.940 29.254

D-DPSO 0/1/8 4/41 3/36 0.952 0.200 0.107 18.821 32.980 34.532

C2 GS 0/2/16 3/29 3/22 0.955 0.199 0.082 22.978 24.097 23.249

G-DPSO 0/2/14 3/29 3/21 0.954 0.200 0.084 21.444 23.925 22.982

D-DPSO 0/2/14 3/29 3/21 0.954 0.200 0.084 21.444 23.925 22.982

C3 GS 0/4/9 4/41 5/22 0.960 0.174 0.084 20.831 36.333 37.668

G-DPSO 0/5/11 3/28 6/25 0.956 0.199 0.083 18.330 26.505 27.179

D-DPSO 0/5/11 3/28 6/25 0.956 0.199 0.083 18.330 26.505 27.179

C4 GS 0/2/16 3/29 3/22 0.955 0.199 0.082 22.978 24.097 23.249

G-DPSO 0/2/15 3/28 3/23 0.957 0.197 0.078 21.796 24.533 24.007

D-DPSO 0/2/15 3/28 3/23 0.957 0.197 0.078 21.796 24.533 24.007

0.20 0.35 0.40 C1 G-DPSO 4/9/20 17/62 10/36 0.952 0.199 0.069 35.487 53.869 53.499

D-DPSO 5/10/22 19/72 11/36 0.951 0.199 0.078 35.311 60.004 60.179

C2 G-DPSO 8/12/37 16/57 13/41 0.950 0.196 0.059 42.913 46.949 44.252

D-DPSO 5/10/29 16/56 11/36 0.951 0.196 0.055 43.094 46.415 42.638

C3 G-DPSO 6/11/27 16/58 13/43 0.950 0.200 0.063 35.833 51.406 50.886

D-DPSO 3/10/21 15/53 11/36 0.950 0.200 0.058 41.131 50.629 49.683

C4 G-DPSO 8/12/38 16/56 13/43 0.952 0.200 0.057 43.830 47.337 45.224

D-DPSO 3/10/21 15/53 11/36 0.950 0.200 0.058 41.131 50.629 49.683

0.55 0.70 0.75 C1 G-DPSO 15/20/26 48/76 27/39 0.951 0.200 0.053 41.807 63.720 61.521

D-DPSO 15/20/26 48/76 27/39 0.951 0.200 0.053 41.807 63.720 61.521

C2 G-DPSO 24/28/41 47/73 30/45 0.951 0.194 0.039 48.872 55.463 50.268

D-DPSO 11/17/24 45/70 30/45 0.951 0.199 0.043 57.956 59.756 54.718

C3 G-DPSO 13/20/25 43/67 25/42 0.951 0.194 0.038 47.730 62.880 61.206

D-DPSO 14/20/26 43/67 23/39 0.950 0.199 0.041 45.163 59.975 56.926

C4 G-DPSO 25/30/44 44/68 32/49 0.950 0.197 0.037 51.862 56.540 52.457

D-DPSO 10/16/21 43/67 28/41 0.950 0.200 0.044 51.907 60.628 57.152
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4.3 Adaptive two-stage design with three target responses

Table 3 displays the extended two-stage adaptive designs with three target response rates. Within 30 days run, GS
always failed to determine the optimal design, but both G-DPSO and D-DPSO were able to find the optimal
designs with similar results. Interestingly, when (p0, p1, p2, p3) ¼ (0.55, 0.70, 0.75, 0.80), the computation time of G-
DPSO is almost 30 days, but that of D-DPSO is about 6.5min, demonstrating that D-DPSO is much more time
efficient that G-DPSO even in complicated situations and computation burden, see Table S3 in the Supplementary
Information.

At the request of an anonymous reviewer, we also performed another simulation with � ¼ 0:01. Tables S4 to S6
in the Supplementary Information display the results. Due to the expensive computation time, we included the
results only from D-DPSO when there are three target responses. The overall performances of each method with
� ¼ 0:01 are close to the case when � ¼ 0:05.

Figure 2 compares expected sample size requirements from the three types of two-stage designs discussed here
for criteria C1–C4. We considered three testing scenarios with various hypothesized efficacy rates for the drug in
the designs and investigated which method estimates the smallest sample size among the three types of two-stage
designs. Interestingly, we observe that among the three types of adaptive designs, there is no clear winner that
consistently requires the smallest expected sample sizes. We further compared expected sample size requirements
under various alternative hypotheses shown in Figures S1 to S3 in the Supplementary Information. We observe
that the adaptive designs with two or three targets are comparable similar to the null hypothesis, but the two-stage
design with one target requires the largest sample sizes. Our proposed extended two-stage adaptive designs are very
flexible and yet surprisingly do not necessarily require larger expected sample sizes than the other two types of
adaptive designs and sometimes smaller expected sample sizes, especially for criterion 3. Even when our proposed
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Figure 2. Expected sample sizes under the null hypothesis for the four criteria C1–C4 with 1, 2, or 3 target alternatives estimated by

D–DPSO for three scenarios (from left to right): (i) p0 ¼ 0:05, p1 ¼ 0:20, p2 ¼ 0:25, p3 ¼ 0:30, (ii) p0 ¼ 0:20, p1 ¼ 0:35, p2 ¼ 0:40,
p3 ¼ 0:45, and (iii) p0 ¼ 0:55, p1 ¼ 0:70, p2 ¼ 0:75, p3 ¼ 0:80. Error rates were set at � ¼ 0:05,�1 ¼ 0:20,�2 ¼ 0:10, and �3 ¼ 0:05.
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designs have larger expected sample size requirements, the additional numbers may not be large and seem
manageable. Clearly, compounding the comparison problem is that the expected sample sizes also crucially
depend on the various hypothesized rates in a complicated manner. The summary here is that our proposed
designs offer practitioners a good alternative, especially when it is difficult to ascertain the drug efficacy rate at
the onset.

5 Applications

5.1 OSA study

Our clients did not allow us to discuss the entire nature of their study and so we minimally describe the study
design. This study aims to assess the effect of HNC on the incidence of OSA compared to healthy patients. The
literature suggests the maximum incidence rate of snoring and sleep apnea on healthy patients is 16.5%, resulting
in the null hypothesis of 16.5% (i.e. p0 ¼ 0:165). There was neither historical nor preliminary data available,
except that the incidence rate of OSA will be higher in HNC patients. Our clients provided an empirical range of
the target response rates, which is from 24.38% to 39.00%. If Simon’s two-stage design were used for sample size
calculation with 80% power and 5% significance level, the required sample sizes range from 30 to 197, using
the optimality and not the minimax criterion. This shows the impact of the great uncertainty of the OSA incidence
rate on HNC patients has on the sample size requirements. So there is high risk of under or over powering study if
one mis-specifies the response rate. Due to wide range of the target response rates, Lin and Shih’s approach will
not be able to cover the great uncertainty. For our application, one may use the extreme limits in the range for
HNC patients as two target rates in the alternative hypotheses with the third that targets the midpoint between the
extreme limits in the presumed range. Table 4 shows the D-DPSO generated sample size requirements for this
scenario with three target responses (p1¼ 24.38, p2¼ 31.69%, and p3¼ 39.00%) and various error rates
specifications (�1¼ 0.20, �2¼ 0.15, and �3¼ 0.10).

5.2 Lin and Shih’s VBG study

This study is adapted from Lin and Shih’s work and is to investigate the efficacy of the combination therapy of
VBG on patients with recurrent or refractory HD. The null hypothesis was set at 40% based on the single agents’
response rate, but the target response rates ranges from 0.5 to 0.6. So, Lin and Shih applied their design to cover
this uncertainty with two target response rates, p1¼ 55% and p2¼ 60%, under �1¼ 0.20 and �2¼ 0.15 at a 5%
significance level. Using our proposed design, three target responses p1¼ 50%, p2¼ 55%, and p3¼ 60% are
considered with �1¼ 20%, �2¼ 15%, and �3¼ 5% and the optimal designs estimated are available in Table 4.
The D-DPSO’s required sample size in stage 1 (49 to 54) is a little larger than those of Lin and Shih’s (39), because
the smallest target rate in D-DPSO (p1 ¼ 0:50) is smaller than that in Lin and Shih’s (p1 ¼ 0:55). However, the
required sample sizes of both approaches in stage 2 are comparable to each other.

Table 4. Sample sizes from D-DPSO for the four optimality criteria for OSA, Lin and Shih’s VBG, and the Phase II BREAK-2 studies.

Optimality

criteria s1=r1=q1=n1 s/l r/m q/n EðNj p0Þ EðNj p1Þ EðNj p2Þ EðNj p3Þ

OSA

C1 2/8/9/21 39/188 13/55 10/39 136.92 167.28 157.91 124.73

C2 and C4 1/11/12/25 34/161 20/72 13/36 152.07 158.99 154.07 135.42

C3 1/8/9/17 37/177 12/58 10/35 144.40 166.73 167.70 153.87

Lin and Shih’s VBG

C1 20/29/35/49 83/183 33/75 39/77 101.45 157.83 153.53 129.21

C2 20/28/29/54 81/175 42/87 31/65 125.76 134.87 107.31 81.83

C3 20/31/33/51 77/168 40/76 37/68 107.64 154.27 150.26 129.11

C4 19/28/31/54 79/170 39/83 34/66 134.72 136.06 109.57 84.89

BREAK-2

C1 4/10/11/19 26/80 14/44 12/34 51.522 72.216 65.961 58.879

C2 and C4 4/9/12/22 27/83 16/43 13/31 62.079 65.691 50.196 43.063

C3 2/7/9/13 25/77 15/44 14/39 55.526 70.032 66.463 62.186
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5.3 Phase II BREAK-2 study

We now use a real trial from the literature and discuss advantages of our proposed extended two-stage adaptive
designs. In particular, we show our proposed optimal design can reduce the sample size used in the real trial by
one-half if it were implemented.

A multicenter, international, single-arm, phase II study (BREAK-2) was carried out to assess the overall
response rate of dabrafenib from patients with BRAFV600E mutation-positive metastatic melanoma.29 The null
hypothesis was set at p0 ¼ 0:25 and the alternative hypothesis was set at p1 ¼ 0:40. The trial wanted to recruit at
least 85 patients and the plan was to declare the treatment a success if at least 29 patients responded. The Green-
Dahlberg two-stage design30 was employed with an interim analysis planned after the first 30 patients with
BRAFV600E mutation-positive metastatic melanoma were enrolled. The expectation was that at least seven
patients were needed to respond at the interim analysis to continue the study when Type I and II error rates
were set at 0.05 and 0.10, respectively. The study BREAK-2 is ongoing, but not recruiting participants as of
14 December 2015 (http://www.clinicaltrials.gov, NCT01153763). Green and Dahlberg’s two-stage design (also
known as Southwest Oncology Group [SWOG] two-stage design) is similar to Simon’s two-stage design but uses a
simple and uniform (i.e. fixed) significance to estimate the sample sizes for each stage with 0.02 level in stage 1 and
0.055 level in stage 2, resulting in less sensitive (or more robust) to the discrepancy between the actual sample size
and the planned one. For example, as stated in Green and Dahlberg,30 multicenter studies are not easy to control
over the number of patients accrued. In addition, it often occurs for multicenter studies that some patients who
entered the study are ineligible after the accrual is suspended. To address these potential issues, BREAK-2
used Green and Dahlberg’s approach and, in fact, ended up a total of 76 patients, which differ from the
planned sample size of 85. Under the design parameters, using Green and Dahlberg’s approach and notation,
the sample sizes for each stage are n1 ¼ 45 and n2 ¼ 40 (i.e. n¼ 85). If Simon’s two-stage design is used, the sample
sizes are n1 ¼ 57 and n2 ¼ 13 (i.e. n¼ 83) with the minimax constraint and n1 ¼ 37 and n2 ¼ 10 (i.e. n¼ 99) with
the optimal constraint.

The efficacy results show that 76 patients with BRAFV600E mutation-positive metastatic melanoma were
enrolled and 45 patients (59%) had a confirmed response. Although its parent phase I study31 (http://www.
clinicaltrials.gov, NCT00880321) showed the same type of patients had a response rate of 50%, this phase II
study chose the response rate of 40% as an alternative hypothesis by lowering the response rate of phase I study.
However, based on the phase I study, it would be of benefit if the higher response rate was explored in addition to
40% because the final response rate of the phase II study was 59%. Examining the benefit of applying the adaptive
two-stage design, we determined the optimal design of this phase II study with p0 ¼ 0:25, p1 ¼ 0:40, p2 ¼ 0:50,
and p3 ¼ 0:55 and with � ¼ 0:05, �1 ¼ 0:15, �2 ¼ 0:10, and �3 ¼ 0:05 using D-DPSO.

Table 4 shows the two-stage adaptive optimal designs found from D-DPSO. The same DPSO setting of
parameters was used as the simulation studies did. Comparing to the original BREAK-2 study (i.e. when
p1 ¼ 0:4), all the sample sizes of the adaptive design (s/l in Table 4) are comparable but smaller than that of
BREAK-2 (29/85), while the sample size of the stage 1 of BREAK-2 (7/30) is larger than those of the adaptive
design (s1/n1 in Table 4), although the Type II error of the adaptive design is larger than that of BREAK-2 (i.e.
0.15 vs. 0.10). Given the response rate of 59% (i.e. the final results of BREAK-2), the probabilities of not
terminating the experiment at the end of the first stage are more than 99% for all three sample sizes in the
table. The probabilities of choosing the sample sizes corresponding to either p2 ¼ 0:5 or p3 ¼ 0:55 in the second
stage are 79%, 97%, and 75%, respectively, for C1, C2, and C4, and C3, given the response rate of 59%, implying
that only a half of the planned number of patients would be required for the BREAK-2 study if the adaptive
design were used. Furthermore, the probabilities of choosing the sample sizes corresponding to p3 ¼ 0:55 in the
second stage are 63%, 74%, and 33%, respectively, for C1, C2, and C4, and C3, given the response rate of 59%.

6 Conclusions

We proposed a novel and effective nature-inspired stochastic population-based algorithm called DPSO to find
extended two-stage adaptive designs. This design terminates the trial if there are too few responders in the first
stage and tests 1 of 3 preselected hypothesized response rates of a drug at the second stage, where the choice
depends on the number of responders in the first stage. The design controls user-selected Type I error rate in the
first stage and both Type I and II error rates at the second stage. Our results show that algorithms based on a
greedy search invariably failed to find extended two-stage adaptive designs and an improved version of DPSO,
called D-DPSO finds the optimum. When the problem is simplified to one or two target response rates, we also
showed that D-DPSO outperformed their peers by a wide margin. Additionally, we employed simulation studies
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and showed all D-DPSO generated designs were able to meet pre-specified Type I and II error requirements and
demonstrated how such designs can reap benefits if they were implemented in a real melanoma adaptive trial.
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