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SUMMARY

Autism spectrum disorder (ASD) is a heritable, com-
mon neurodevelopmental disorder with diverse ge-
netic causes. Several studies have implicated protein
synthesis as one among several of its potential
convergent mechanisms. We originally identified Ja-
nus kinase and microtubule-interacting protein 1
(JAKMIP1) as differentially expressed in patients
with distinct syndromic forms of ASD, fragile X syn-
drome, and 15q duplication syndrome. Here, we pro-
vide multiple lines of evidence that JAKMIP1 is a
component of polyribosomes and an RNP transla-
tional regulatory complex that includes fragile X
mental retardation protein, DEAD box helicase 5, and
the poly(A) binding protein cytoplasmic 1. JAKMIP1
loss dysregulates neuronal translation during synap-
tic development, affecting glutamatergic NMDAR
signaling, and results in social deficits, stereotyped
activity, abnormal postnatal vocalizations, and other
autistic-like behaviors in the mouse. These findings
define an important and novel role for JAKMIP1 in
neural development and further highlight pathways
regulating mRNA translation during synaptogenesis
in the genesis of neurodevelopmental disorders.

INTRODUCTION

Autism spectrum disorder (ASD) is a pervasive, heritable neuro-

developmental disorder (Abrahams and Geschwind, 2008; Berg
Ne
and Geschwind, 2012) that manifests during infancy or early

childhood by impaired social communication and restrictive

and repetitive behaviors (DSM-V, 2013). A growing number of

risk genes have been identified, and similar to other complex ge-

netic conditions, it is estimated that hundreds of genes may

contribute to ASD risk (Iossifov et al., 2014). This complexity

has spawned focus on identifying pathways where multiple

ASD risk genes may converge, including the RNA-binding pro-

teins FMRP and RBFOX1 (De Rubeis et al., 2014; Fogel et al.,

2012; Steinberg andWebber, 2013). Other convergent pathways

related to ASD include mTOR, which itself is not a ASD risk gene

but is recognized as regulating a key pathway impacted by ASD

risk genes, such as PTEN and TSC1/2 (Sawicka and Zukin,

2012).

JAKMIP1 is an RNA binding protein that is conserved on the

vertebrate lineage (Couve et al., 2004; Steindler et al., 2004)

and expressed highly in glutamatergic neurons during brain

development (http://www.genepaint.org) (Cahoy et al., 2008; Vi-

dal et al., 2009). We found that JAKMIP1 was differentially ex-

pressed in patients with two syndromic forms of ASD, fragile X

and (dup)15q11-13 syndrome, and upon RBFOX1 knockdown

(Fogel et al., 2012; Nishimura et al., 2007). To date, 11 ASD sub-

jects have been identified with copy-number variants that

contain JAKMIP1 (Szatmari et al., 2007; Kaminsky et al., 2011;

Poultney et al., 2013; Tzetis et al., 2012). However, its interac-

tions or function in the CNS, especially during brain develop-

ment, is largely unknown.

Here, we use an unbiased proteomic approach to identify

JAKMIP1’s protein interactomeduring its peak expression in vivo

and observe that JAKMIP1’s binding partners are remarkably

enriched for proteins involved in translation. JAKMIP1 binds a

complex including FMRP, multiple proteins known to interact

with FMRP (Kanai et al., 2004; Villacé et al., 2004), and its
uron 88, 1173–1191, December 16, 2015 ª2015 Elsevier Inc. 1173
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Figure 1. JAKMIP1 Associates with Proteins Involved in Translation

(A) JAKMIP1 increases in expression during the second postnatal week in mouse neocortex, peaking from P8 to P14. Upper graph displays relative JAKMIP1

protein levels between P1 and P46. JAKMIP1 expression in embryonic day 17 (E17) whole brain (far left) is also included. The y axis represents within-blot GAPDH

normalized values from ImageJ densitometry analysis of JAKMIP1. A representative western blot (IB) is shown below (65% increase from P8 to P10, p = 0.007,

two-tailed unpaired t test; 36% decrease from P12 to P14, p = 0.01, two-tailed unpaired t test; n = 3 for each time point). Red bar below denotes period of

JAKMIP1 expression change. Data are shown as mean ± SEM.

(legend continued on next page)
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translational targets (Fernández et al., 2013; Santoro et al.,

2012). We show that JAKMIP1 is expressed in fractions contain-

ing messenger ribonucleoprotein particles (mRNPs), mono-

somes, and polyribosomes and demonstrate a functional role

for JAKMIP1 in translation by showing that Jakmip1 knockout re-

duces new translation in neurons. Jakmip1 knockout in mouse

leads to ASD-related behaviors includingmotor and neurological

stereotypies, social abnormalities, abnormal ultrasonic vocaliza-

tions, reduced anxiety/increased impulsivity, and motor impair-

ments as well as glutamatergic NMDAR signaling deficits that

are predicted by some of its targets. These data demonstrate

an important role for JAKMIP1 in translational regulation during

development, coinciding with the peak period of cortical synap-

togenesis. These observations also strengthen the link between

neuronal translation and behavior, an emerging theme in the

pathophysiology of ASD (Gkogkas et al., 2013; Kelleher and

Bear, 2008; Santini et al., 2013).

RESULTS

Defining JAKMIP1’s Protein Interactome during
Neocortex Development In Vivo
To determine JAKMIP1 function in the CNS in an unbiased

manner, we employed multidimensional protein identification

technology (MudPIT) (Wohlschlegel, 2009) to investigate

JAKMIP1’s proteomic interactome during its peak expression

in mouse neocortical development (postnatal day 8 [P8] to

P14; Figures 1A and 1B). Using conservative criteria, we identi-

fied a core set of 33 JAKMIP1 interactors (Table 1), including

eleven genes involved in translation and YWHAG, a previously

identified interactor, which serves as a positive control (Jin

et al., 2004). Pathway analysis of JAKMIP1’s top binding part-

ners revealed that they coalesce into two primary networks

that share ‘‘protein synthesis’’ as the common denominator

and the most significant molecular and cellular function

(Figure 1C).

We next cross-referenced the JAKMIP1 interactors in network

1 with the Human Protein Reference Database (HPRD) to exter-

nally validate these networks and to assess their conservation

between mouse and human (Prasad et al., 2009). We identified

17 protein interactions that were observed in the MudPIT from

mouse tissue within the HPRD protein interaction list, de-

monstrating a statistically significant enrichment of known

protein-protein interactions (PPIs) (permutation test; p value =

3.4E-12). To experimentally validate the identified protein asso-

ciations, we performed co-immunoprecipitation (co-IP), confirm-

ing DDX5, CLASP2, PABPC1, and CAMK2G using either

JAKMIP1 or target protein pull-down (Figures 1D and S1A–
(B) JAKMIP1 was immunoprecipitated from two pools of postnatal WTmouse neo

JAKMIP1 pull-down was confirmed by immunoblotting (IB). MudPIT readouts ar

(C) Upper left: Ingenuity network 1, ‘‘cell to cell signaling and interaction, nervous

most significant molecular and cellular functions of JAKMIP1 interactors. Up

modification, cell death.’’ Lower right: Ingenuity pathway analysis network legend.

known PPIs.

(D) JAKMIP1 or target protein was immunoprecipitated from mouse postnatal ne

immunoblotting with target protein or JAKMIP1. JK #1 (JAKMIP1 #1) is J269–286 (S

and CL is rabbit anti CLASP2.

See also Figure S1.

Ne
S1D). These results indicate that JAKMIP1 binds an evolution-

arily conserved protein interactome related to neural translation

during postnatal cortical development.

JAKMIP1 and Its Protein Interactome Are Strongly
Associated with the Cellular Translational Machinery
That the majority of JAKMIP1 protein interactors are involved in

translation or associated with ribosomal function suggested that

JAKMIP1 itself might also be ribosome associated. To test this,

we determined if JAKMIP1 binds to polyribosomes by co-IP us-

ing a BacTRAP N2A cell line in which RPL10A, an integral part of

the 60S ribosome subunit, is fused to an EGFP tag (Heiman et al.,

2008). We found that JAKMIP1, DEAD box helicase 5 (DDX5),

and the poly(A) binding protein cytoplasmic 1 (PABPC1) all co-

immunoprecipitate with RPL10A, which was not observed in

the controls (Figure S2A), confirming JAKMIP1 interactions

with ribosomal components.

To further explore JAKMIP1’s involvement with translation

in vivo, we tested its co-expression with mRNPs, monosomes,

and polyribosomes. Polyribosome profiling frommouse brain re-

vealed that JAKMIP1 was expressed alongside its confirmed

MudPIT interactors DDX5 and PABPC1, a polyribosome-en-

riched control (Gebauer and Hentze, 2004), in mRNP, mono-

some, and polyribosome fractions (Figure 2A). Fractionation

controls, RPS6, eIF4E, and PABPC1, all showed the expected

protein expression distribution. To further test whether JAKMIP1

is important for the integrity of the translational machinery, we

repeated these experiments in Jakmip1�/� (KO) mice (Figures

S2B–S2F). We observed that in the absence of JAKMIP1, both

PABPC1 and DDX5 proteins showed a statistically significant

shift from polyribosome fractions to monosome and mRNP frac-

tions (Figure 2B). This in vivo data indicate that JAKMIP1 is ex-

pressed alongside mRNPs, monosomes, and polyribosomes

and that JAKMIP1 contributes to the association of PABPC1

and DDX5 with polyribosomes.

JAKMIP1 Associates with an FMRP-Containing RNA
Transport Granule
Transport RNA-protein granules involved in translational control

have been identified that contain FMRP, kinesin, and several

JAKMIP1 binding partners identified here by MudPIT, including

PABPC1 (Villacé et al., 2004) and DDX5 (Kanai et al., 2004). To

further explore JAKMIP1’s relationship with RNA granules, we

tested for overlap of JAKMIP1 interactors identified here with

known FMRP-containing RNA-transport granules and found sig-

nificant overlap with JAKMIP1 interactors (Kanai et al., 2004) (hy-

pergeometric probability; p value = 9.7E-08; Table 2). A similar

overlap was observed between JAKMIP1’s protein interactome
cortex (round 1 and round 2). PIS is rabbit preimmune serum (negative control).

e listed below.

system development and function, protein synthesis.’’ Lower left: a list of the

per right: Ingenuity network 2, ‘‘protein synthesis, RNA post-transcriptional

Proteins highlighted in blue are JAKMIP1 protein interactors. Red lines indicate

ocortex or differentiated mouse neural progenitor cells (PABPC1) followed by

teindler et al., 2004), JAKMIP1 #2 is rabbit anti JAKMIP1 (Proteintech Group),

uron 88, 1173–1191, December 16, 2015 ª2015 Elsevier Inc. 1175



Table 1. JAKMIP1’s In Vivo Developmental Proteomic Interactome

Entrez Gene Name Symbol

MudPIT Run #1 MudPIT Run #2 MudPIT Run #1 MudPIT Run #2

PatternLab

ACFold (p value) Networks LocationNSAFe5 NSAFe5

Spectral

Counts

Spectral

Counts

Janus kinase and microtubule

interacting protein 1

JAKMIP1 4455/0 855/0 177/0 129/0 4.42E-26 NA cytoplasm

Actin, alpha, cardiac muscle 1 ACTC1 585/0 1255/0 14/0 114/0 NS 1 cytoplasm

Calcium/calmodulin-dependent

protein kinase II alpha

CAMK2A 264/0 260/0 8/0 30/0 NS 1 cytoplasm

Calcium/calmodulin-dependent

protein kinase II gamma

CAMK2G 208/0 118/0 7/0 15/0 0.028 1 cytoplasm

Cytoplasmic linker associated

protein 1

CLASP1 554/0 149/0 54/0 55/0 2.65E-09 1 cytoplasm

Cytoplasmic linker associated

protein 2

CLASP2 881/127 132/0 72/6 41/0 2.028E-06 1 cytoplasm

CAP-GLY domain containing linker

protein family, member 4

CLIP4 895/0 194/0 40/0 33/0 2.56E-06 NA unknown

doublecortin-like kinase 1 DCLK1 229/0 181/0 11/0 33/0 NS 2 cytoplasm

DEAD (Asp-Glu-Ala-Asp) box

polypeptide 5

DDX5a 436/0 41/0 17/0 6/0 0.023 1 nucleus

Eukaryotic translation elongation

factor 1 alpha 1

EEF1A1a 102/0 871/0 3/0 97/0 NS 1 cytoplasm

Eukaryotic translation elongation

factor 2

EEF2 202/0 174/0 11/0 36/0 NS 1 cytoplasm

Glutamate dehydrogenase 1 GLUD1 819/195 37/0 29/4 5/0 NS 1 cytoplasm

Guanine nucleotide binding protein

(G protein), beta polypeptide 2-like 1

GNB2L1 696/257 275/0 14/3 21/0 NS 1 cytoplasm

Glycogen synthase 1 (muscle) GYS1 534/0 11/0 25/0 2/0 0.012 2 cytoplasm

Heterogeneous nuclear

ribonucleoprotein K

HNRNPKa 306/235 116/0 9/4 13/0 NS 1 nucleus

Heterogeneous nuclear

ribonucleoprotein M

HNRNPM 108/0 61/0 5/0 10/0 NS 2 plasma membrane

Myosin VA (heavy chain 12, myoxin) MYO5Aa,b 51/0 16/0 6/0 7/0 NS 1 cytoplasm

Poly(A) binding protein, cytoplasmic 1 PABPC1a,b 124/0 46/0 5/0 7/0 NS 1 cytoplasm

Plectin PLEC 118/0 10/0 35/0 11/0 3.99E-04 1 cytoplasm

Purine-rich element

binding protein A

PURAa,b 147/0 65/0 3/0 5/0 NS 1 nucleus

Purine-rich element

binding protein B

PURBa 584/0 51/0 12/0 4/0 NS 1 nucleus

Ribosomal protein L14 RPL14 871/0 76/0 12/0 4/0 NS 2 cytoplasm

Ribosomal protein L5 RPL5 955/0 70/0 18/0 5/0 0.023 2 cytoplasm

(Continued on next page)
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Table 1. Continued

Entrez Gene Name Symbol

MudPIT Run #1 MudPIT Run #2 MudPIT Run #1 MudPIT Run #2

PatternLab

ACFold (p value) Networks LocationNSAFe5 NSAFe5

Spectral

Counts

Spectral

Counts

Ribosomal protein L6 RPL6a 586/0 70/0 11/0 5/0 NS 2 cytoplasm

Ribosomal protein L7a RPL7A 829/0 31/0 14/0 2/0 NS 2 cytoplasm

Ribosomal protein, large, P0 RPLP0a 845/0 92/0 17/0 7/0 0.020 1 cytoplasm

Ribosomal protein S17 RPS17 1634/0 154/0 14/0 5/0 0.046 2 cytoplasm

Ribosomal protein S3 RPS3 1167/0 102/0 18/0 6/0 NS 1 cytoplasm

Ribosomal protein S8 RPS8 1212/522 100/0 16/4 5/0 NS 2 cytoplasm

Ribosomal protein SA RPSA 694/0 56/0 13/0 4/0 NS 2 plasma membrane

RUN and FYVE domain

containing 3

RUFY3 235/174 88/0 7/3 10/0 NS NA unknown

Synaptotagmin binding,

cytoplasmic RNA interacting protein

SYNCRIPa 253/0 27/0 10/0 4/0 NS 2 nucleus

Tubulin, alpha 4a TUBA4A 1512/0 2695/0 43/0 291/0 NS NA cytoplasm

Tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein,

gamma polypeptide

YWHAG 191/0 739/0 3/0 44/0 NS 1 cytoplasm

Tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein,

eta polypeptide

YWHAH 128/0 641/0 2/0 38/0 NS 1 cytoplasm

1810049H19Rik 1112/0 895/0 18/0 55/0 2.56E-06 NA NA

Igkv1-117 1787/0 122/0 27/0 7/0 NS NA NA

Columns 3–6 from left are JAKMIP1 IP values/control IP values.

NA, not assigned; NS, not significant.
aFMRP interactor.
bDid not meet spectral criteria, but did meet two of three screening criteria.
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Figure 2. JAKMIP1 Is an Integral Component of Translation-Associated RNP Granules and Regulates Neuronal Translation

(A) Left: a representative neocortex polyribosome fractionation profile from WT postnatal mice. Right: representative western blots demonstrating JAKMIP1,

PABPC1, DDX5, eukaryotic translation initiation factor 4E (eIF4E), and ribosomal protein S6 (RPS6) expression in each corresponding fraction (1–18).

(B) Left: Representative polyribosome fractionation profiles of postnatal WT or Jakmip1 KO mouse neocortex. Middle: representative western blots demon-

strating PABPC1 and DDX5 protein expression in corresponding fractions (1–18). Right: quantification of polyribosome protein shifts. Graphs are the cumulative

ratio of protein signal (y axis) per fraction (x axis) calculated within sample. Red represents Jakmip1 KO signal, while blue representsWT signal (PABPC1 [WT, n =

3; KO, n = 3], DDX5 [WT, n = 4; KO, n = 4]). Significance was calculated using a two sample, one-tailed t test. Data are shown as mean ± SEM. For (A) and (B),

fractions 1–9 and 10–18 span two blots and were run simultaneously.

(C) JAKMIP1 colocalizes with PABPC1-positive granules in vitro (arrows). Human JAKMIP1 N-ter protein (left) and human PABPC1-dsRED fusion protein (middle)

are coexpressed in granules (right) of differentiated neurons from Jakmip1 KO mice. To match signal intensity across channels, brightness and contrast was

adjusted for each channel independently.

(legend continued on next page)

1178 Neuron 88, 1173–1191, December 16, 2015 ª2015 Elsevier Inc.



and an FMRP RNA-transport granule identified by Staufen pull-

down (Villacé et al., 2004) (hypergeometric probability; p value =

1.3E-11; Table 2).

DDX5 is a member of the FMRP-kinesin transport RNP

granule, and we confirmed its JAKMIP1 binding (Figures 1D

and S1A). To further explore this interaction, we performed co-

IP experiments and found that DDX5 co-immunoprecipitates

with JAKMIP1, PABPC1, and FMRP in vitro and in vivo (Figures

S3A–S3C). We observed that binding of DDX5 to JAKMIP1 and

FMRP depends on single-stranded, but not double-stranded,

RNA (Figure S3C), consistent with its participation in a RNA-

protein complex. Based on these data, we hypothesized that

JAKMIP1 is a likely member of PABCP1-containing RNP gran-

ules. To test this directly, we overexpressed human JAKMIP1

and PABPC1 in differentiated mouse neural progenitor cells

lacking Jakmip1 and assessed localization by immunocyto-

chemistry. We observed that JAKMIP1 co-localizes with

PABPC1-positive RNP granules, providing evidence for itsmem-

bership in these complexes (Figure 2C).

JAKMIP1 Binds to FMRP mRNA Targets and Modulates
Neuronal Translation
These MudPIT, co-IP, in vitro, and in vivo data provide multiple

lines of evidence for JAKMIP1’s interaction with mRNPs, mo-

nosomes, and polyribosomes; its binding to protein-RNA gran-

ules containing FMRP; and JAKMIP1’s role in the composition

of polyribosomes. Given these data, we hypothesized that

JAKMIP1 plays a role in neuronal translation. To test this, we

measured translation in neurons from Jakmip1 KO versus wild-

type (WT) mice using fluorescent non-canonical amino acid

tagging (FUNCAT) (Dieterich et al., 2010), where newly synthe-

sized proteins are measured by incorporation of a fluorescently

labeledmethionine analog (Figure S4). We observed a significant

reduction in nascent whole-cell, soma, and neurite translation in

Jakmip1 KO mouse neurons compared to matched WT neurons

(Figures 2D and 2E). These data demonstrate that JAKMIP1 is

not only present in RNP granules and polyribosomes but also

regulates neuronal translation.

We next considered whether JAKMIP1 might interact with

FMRP by performing co-IP of either JAKMIP1 or FMRP. We

observed that JAKMIP1 interacts with FMRP in postnatal

neocortex from mouse (Figure 3A, top panels). Furthermore, the

maintenanceof this association in thepresenceofRNasedemon-

strates that the JAKMIP1-FMRP interaction is independent of

double- or single-stranded RNA (Figure 3A, middle panels).

To determine whether JAKMIP1 also binds mRNA, we con-

ducted RNA immunoprecipitation (RIP) experiments by immuno-

precipitating JAKMIP1 fromWT postnatal neocortex followed by
(D) Nascent protein synthesis, defined as the mean signal intensity (total pixel int

n = 224: p = 0.049 and 0.045, respectively) and neurites (WT, n = 227; KO, n =

Significance across three trials was estimated using mixed effects regression w

Residual intensity after correction for date and littermate set is displayed. Data a

(E) Representative images used for FUNCAT analysis, where greater pixel intensi

visualization, brightness of the red image was increased equally for both genotype

left, TUJ1; upper right, Azide 555 (new translation, cell soma); lower left, neurite m

space shown. Neurite mask is inverted to black show translation space). Whi

translation.

See also Figures S2 and S4.

Ne
RT-PCR (Figures 3B and 3C) and fromWT and Jakmip1KOpost-

natal brain (negative control) followed by qRT-PCR (Figures 3D

and S5A) for FMRP targets (De Rubeis and Bagni, 2011; Dicten-

berg et al., 2008; Santoro et al., 2012). FMRP immunoprecipita-

tion was run alongside as a positive control (Figure S5B). We

observed that JAKMIP1 bound Sapap4, Dag1, Camk2a, App,

and PSD95 mRNAs (Figures 3B–3D). Since JAKMIP1 and

FMRP interact, we next tested whether their RNA binding was

dependent on one another by performing JAKMIP1 RIP in

Fmr1 KO mouse neocortex and FMRP RIP from Jakmip1 KO

mouse neocortex. We observed no change in RNA binding in

either condition (Figures 3C, S5C, and S5D), showing that

JAKMIP1 and FMRP binding of mouse synaptic protein mRNAs

is independent of each other.

Given our finding that JAKMIP1 binds tomultiple FMRPmRNA

targets and regulates protein translation, we next asked if

JAKMIP1 modulates the translation of these specific targets

in vivo (Figures 3E and S6A–S6C). We observed that PSD95, a

major component of the postsynaptic density, showed a statis-

tically significant decrease in protein, but not RNA expression,

with Jakmip1 loss (Figure 3E), consistent with a role for JAKMIP1

in regulating PSD95 translation. Protein or mRNA for APP,

CAMK2A, SAPAP4, and DAG1 did not change (Figures S6A–

S6C). Comparison of the distribution of PSD95mRNA in the Jak-

mip1 KO versus WT mice revealed a reduction of PSD95 mRNA

in the monosome and polyribosome fractions from Jakmip1 KO

mice (Figure 3F). These data demonstrate that JAKMIP1 regu-

lates the translation of PSD95, a major postsynaptic density

(PSD) component (Kim and Sheng, 2004).

JAKMIP1 KO Mice Display ASD-Associated Behaviors
Recent work, including knockout of the eukaryotic translation

initiation factor 4E-binding protein 2 (4E-BP2) (Gkogkas et al.,

2013) and overexpression of the eukaryotic translation initiation

factor 4E (eIF4E) (Santini et al., 2013), suggests that disrupting

mRNA translation can lead to ASD-like behaviors in the mouse.

We developed a line of knockout mice (Figure S2) and chara-

cterized multiple ASD-related behavioral domains including

repetitive behavior, social abnormalities, and altered vocal

communication, as well as other associated phenotypes

including increased impulsivity and motor abnormalities in these

Jakmip1 KO mice.

Jakmip1 KO mice showed striking motor stereotypies during

home-cage behavior including significantly increased grooming

and repetitive jumping behavior with over 90% penetrance

(Movie S1; Figures 4A and 4B). Jakmip1 KO mice also show

increased perseveration in the T maze, displaying significantly

fewer alterations than WT mice (Figure 4C). These behaviors
ensity/area measured), is decreased in whole cell and soma (WT, n = 199; KO,

264: p = 0.00125; n refers to number of images) of neurons lacking Jakmip1.

ith a fixed effect covariate for imaging date and a random intercept for litter.

re shown as mean ± SEM.

ty (red, Azide 555) demonstrates increased translation. To facilitate translation

s. Brightness was adjusted slightly for TUJ1 images. Panel descriptions: upper

ask (space analyzed); lower right (nascent translation from cell neurite analysis

te arrows indicate cell soma translation, while black arrows indicate neurite
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Table 2. MudPIT-Identified JAKMIP1 Protein Interactors ShowOverlapwith Previously Identified FMRP-Containing RNA-Transporting

Granules Involved in Translation

Kanai et al. (2004)

JAKMIP1 Binder MudPIT

Villacé et al. (2004)

JAKMIP1 Binder MudPITProtein Name Protein Name

FMR1 Co-IP evidence b-5 tubulin —

FXR1 X 1 a-tubulin X 2

FXR2 — tau —

PURAa X 2 Staufen isoform 2 —

PURBa X 2 ACTB —

Staufen — myosin heavy chain X 2

EF-1a X 2 RNA-dependent RNA

helicase A

—

eIF2a — nucleolin X 1

eIF2b — hnRNPU X 2

eIF2y — PABP1 X 2

Hsp70 — a-internexin X 1

RPL3 X 1 dynein intermediate chain X 1

DDX1a X 1 kinesin X 1

DDX3a X 1 p-associated protein

kinase II

—

DDX5 X 2 Ras GAP —

hnRNPA/B — Rac1 —

hnRNPA0 — Cdc42 —

hnRNPA1 — IQGAP1 —

hnRNPD X 1 FMRP co-IP evidence

hnRNPUa X 2 RPLP0 X 2

ARF-GEP100/BRAG2 — RPS4 X 2

ALYa — RPS6 X 1

CIRBP — RPL6 X 2

EWS — RPL28 —

NONOa X 1

Nucleolin X 1

PSPC1 —

PSFa —

RTCD1 —

RNA binding motif protein 3 —

SYNCRIPa X 2

TLSa —

Ser/Thr kinase receptor-

associated protein

—

TRIM2 —

TRIM3 X 1

JAKMIP1’s protein interactome overlaps with an FMRP/kinesin RNA transport granule (Kanai et al., 2004) and with an FMRP/Staufen RNA transport

granule (Villacé et al., 2004). Proteins listed under ‘‘Protein Name’’ are part of the RNP complex. ‘‘X’’ under JAKMIP1 binder denotes a MudPIT-iden-

tified JAKMIP1 interactor. Numbers listed under MudPIT are the number of MudPIT runs that identified the protein.
aMost conservative granule members.
are considered mouse analogs of restrictive and repetitive

behaviors observed in ASD (Silverman et al., 2010). Probing

social behavior with the three-chamber task also revealed social

dysfunction in Jakmip1 KOmice (Figures 4D and 4E). This social

deficit was not due to disrupted olfaction, as Jakmip1 KO mice

showed normal olfaction in the buried food test (Figure S7A).
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To determine if Jakmip1 KO mice display disruptions in vocal

communication, we tested ultrasonic vocalizations in postnatal

WT and KO mice upon separation from their mother. These

distress calls are thought to model early vocalization abnormal-

ities in ASD infants and are observed in several mouse models of

ASD, including Fmr1 KO mice (Lai et al., 2014; Nakatani et al.,
.



2009; Peñagarikano et al., 2011; Scattoni et al., 2011). We found

that Jakmip1 KOmice showed a significant increase in vocaliza-

tions and various call types across all time points (Figure 4F) not

related to weight (Figure S7B).

Jakmip1 KO mice also displayed significant deficits in motor

function and impulsivity, which, although not core diagnostic fea-

tures of ASD, are frequently observed in patients, including those

with fragile X syndrome (De Rubeis and Bagni, 2011; Moon et al.,

2006). Jakmip1 KO mice performed poorly on both the acceler-

ating rotarod andwire hang test, indicating abnormalmotor func-

tion (Figure 4G). In the light-dark box test for anxiety, Jakmip1KO

mice showed a trend toward spending more time in the light

compartment compared to the dark compartment, a significant

reduction of latency to enter the light compartment, as well as

increased border crossings (Figure 4H), suggestive of either

reduced anxiety or increased impulsivity (Zaĭchenko et al., 2011).

To test for learning impairments, we conducted auditory fear

conditioning, which measures hippocampal and amygdala-

dependent learning (Kim and Fanselow, 1992; Phillips and Le-

Doux, 1992). Jakmip1 KO mice were able to learn to freeze to

a tone after tone-shock pairings during the acquisition phase

of fear conditioning but showed significant decreases in freezing

during the second and third intertone intervals as compared to

WT mice (Figure S7C, top left) not due to impaired sensitivity

to shock stimuli (Figure S7C, top right). Jakmip1 KO mice

showed normal context dependent fear conditioning, indicative

of preserved hippocampal-dependent learning (Figure S7C, bot-

tom left, context A). They also performed normally in a test of

generalized fear assessment when placed in a new context (Fig-

ure S7C, bottom left, context B). However, Jakmip1KOmice dis-

played decreased noise-cued fear response (Figure S7C,

bottom right), suggesting disrupted amygdala/auditory pathway

function (Phillips and LeDoux, 1992).

Marble burying is a naturalistic repetitive behavior that is often

reduced in WT C57BL/6 mice treated with anxiolytics or selec-

tive serotonin reuptake inhibitors (Kedia and Chattarji, 2014;

Njung’e andHandley, 1991). Jakmip1KOmice buried fewermar-

bles than WT mice (Figure S7D), consistent with the increased

impulsivity/decreased anxiety suggested by their performance

in the light-dark box. They also showed decreased digging,

another form of naturalistic repetitive behavior (Figure 4B).

Jakmip1 KO mice performed indistinguishably from WT mice

on tests of sensory acuity (Figure S7E) and nesting (Figure S7F)

and showed normal open-field activity (Figure S7G).

JAKMIP1 Regulates NMDAR-Associated Glutamatergic
Signaling in the Postnatal Striatum
One of the most salient behaviors displayed by the Jakmip1 KO

mouse is restrictive and repetitive jumping. Previous work indi-

cates that this behavior is mediated by the striatal glutamatergic

system (Presti et al., 2004). Additionally, structural imaging of

ASD mouse models implicates basal ganglia and cortex circuits

in repetitive behavior (Ellegood et al., 2015). To first assess gross

morphology in implicated brain structures, we conducted live-

scan MRI imaging of 2- and 10-month-old Jakmip1 KO and

WT male mice. We found a significant reduction in caudate

and putamenal volume, along with reductions in cortex and cer-

ebellum volume. Absence of a strain by age effect in any of the
Ne
structures analyzed indicates that this is most likely develop-

mental microcephaly rather than neurodegeneration (Tables 3

and 4; Supplemental Images for Tables 3 and 4).

These findings, coupled with Jakmip1’s high levels of expres-

sion in the striatum both during brain development (Figure S2F)

and adulthood (Allen Mouse Brain Atlas [http://mouse.brain-

map.org] and the Allen Human Brain Atlas [http://brainspan.org])

led us to hypothesize that JAKMIP1’s loss would disrupt striatal

function via reduction in target PSD protein mRNAs. We first

tested JAKMIP1’s ability to bind to high-confidence FMRP RNA

targets known to be involved in glutamatergic signaling in the

striatum.WeconductedRIPexperimentsby immunoprecipitating

JAKMIP1 from postnatal WT and Jakmip1 KO striatum (negative

control) and observed that JAKMIP1 bound Grin2a, Grin2b, and

Shank2, known FMRP RNA targets (Figure 5A). Taf13 mRNA

(negative control), a gene expressed in postnatal neurons and

not identified asanFMRP target (Darnell et al., 2011),wasnot pre-

sent in immunoprecipitation reactions (not shown).

We next asked if the corresponding proteins were decreased

in striatal synaptosomal membranes of Jakmip1 KO mice. We

found that GluN2A (Grin2a), GluN2B (Grin2b), SHANK2, and

SHANK3a, all members of an NMDAR scaffolding complex,

were reduced in striatal synapses of Jakmip1 KO mice

compared to controls during postnatal development, but not

adulthood (Figure 5B). We found no change in AMPA receptor

subunits throughout development (data not shown). Of note,

GluN2A, SHANK2, and SHANK3a, but not GluN2B, were also

reduced in synaptosomal membranes from postnatal neocortex

of Jakmip1 KO mice compared to controls, consistent with

regional differences (Figure S6D).

We hypothesized that decreased expression of the NMDAR

complex in Jakmip1 KO mice would result in abnormal

NMDAR-mediated, but not AMPAR-mediated, signaling. To

test this, we conducted electrophysiological recordings of early

postnatal and adult dorsolateral medium-sized spiny neurons

(MSNs) from Jakmip1 KO and WT mice. At a holding potential

of �70 mV, electrical stimulation evoked an AMPAR-mediated

inward current with a fast-rising component followed by a slowly

desensitizing component, which is characteristic of juvenile

AMPAR currents in the striatum. The amplitude (WT, 84.8 ±

10.8 pA; KO, 92.7 ± 13.2 pA) and the decay time (WT, 11.4 ±

2.8 ms; KO, 17.8 ± 3.7 ms) of the AMPAR-mediated responses

were similar between groups. However, the charge was

significantly increased in Jakmip1 KO MSNs compared to WT

MSNs (WT, 385.5 ± 83 pA.ms; KO, 902.2 ± 191.6 pA.ms; t test

p < 0.05) due to an increased duration of the slowly desensitizing

component. In adults, no differences in amplitude, charge, and

decay time were observed between WT and Jakmip1 KO

AMPAR-mediated responses (Figure 5C).

A proportion of Jakmip1 KOMSNs (postnatal 25%, adult 16%)

showing an AMPAR-mediated response failed to display an

NMDAR-mediated response, whereas all WT MSNs responded

(Figure 5D, right upper panel). The population of responding

postnatal Jakmip1 KO MSNs showed a greater NMDAR-medi-

ated response than WT MSNs. The charge (WT, 11,263.5 ±

2,213.9 pA.ms; KO, 19,945.6 ± 3,466.9 pA.ms; t test, p < 0.05)

and the decay time (WT, 277.1 ± 30 ms; KO, 423.6 ± 58 ms;

t test, p < 0.05) were significantly increased. In adults, no
uron 88, 1173–1191, December 16, 2015 ª2015 Elsevier Inc. 1181
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changes in amplitude, charge, and decay time were observed

between WT and KO NMDAR-mediated responses in MSN

consistent with no change in NMDAR subunit protein expression

in adults (Figure 5D, left lower panels).

Finally, we asked if Jakmip1 KO mice display an increased

time to return to huddle, a postnatal social behavior observed

in mice with a GluN2B to 2A substitution (Wang et al., 2011),

whichwould be consistent with the physiological findings related

to GluN2B dysfunction. We found that Jakmip1 KO mice take

longer to return to huddle during the postnatal period than WT

controls (Figure 5E). Taken together, these results show that

loss of JAKMIP1 disrupts striatal NMDAR signaling, contributing

to the disruption of their behavior.

DISCUSSION

A critical goal of research in etiologically complex neurodevelop-

mental disorders such as ASD is to identify potentially conver-

gent molecular pathways (Parikshak et al., 2013; Voineagu

et al., 2011). A salient example of such convergence is at the pro-

tein mTOR, which although not known to be mutated in ASD,

functions as a key modulator of multiple ASD risk genes that

regulate mRNA translation pathways (Sawicka and Zukin,

2012). Based on our original findings that JAKMIP1 expression

is regulated downstream of three ASD risk loci, FMRP, (dup)

15q11-13, and RBFOX1(Fogel et al., 2012; Nishimura et al.,

2007), we hypothesized that JAKMIP1, a highly conserved

neuronal mRNA binding protein, would have a role in regulating

mRNAs important for synaptic function and ASD pathophysi-

ology. We show for the first time that JAKMIP1 regulates

neuronal translation and binds FMRP protein, directly or indi-

rectly, as well as many known FMRP protein interactors and its

mRNA binding targets. JAKMIP1’s polyribosome profile sug-

gests that it is expressed not only in polyribosomes but also in

mRNPs, not unlike FMRP (Zalfa et al., 2003). Loss of JAKMIP1

in vivo disrupts the polyribosome expression profile of PABPC1

and DDX5, the former of which is required for translation initia-
Figure 3. JAKMIP1 Immunoprecipitates with FMRP and Associated m

(A) Top panels: JAKMIP1 and FMRP co-IP in mouse postnatal neocortex. FMRP #

FMRP (Millipore). Middle panels: JAKMIP1’s association with FMRP does not de

brain in the presence of RNases and immunoblotted for FMRP (top panel) and

stranded,’’ and ‘‘(�)’’ are IPs conducted in the presence of RNase I, RNase I and V1

of JAKMIP1 IP for IPs conducted in (B, top) and (C, bottom).

(B) JAKMIP1 immunoprecipitates with FMRPmRNA targets in mouse postnatal n

positive control) or mouse immunoglobulin G (mIgG, negative control). Middle c

(rIgG, negative control). The right column demonstrates that all mRNA targets are

control. 18S serves as a loading control.

(C) JAKMIP1 immunoprecipitates with FMRP mRNA targets in the absence of FM

with JAKMIP1 (lane 1) or rabbit IgG (lane 2) in Fmr1 KO (FP KO) mouse neocortex

targets are analyzed at 30 or 35 cycles. D2DR signal is shown at both cycles in (

(D) qRT-PCR of FMRP mRNA targets extracted from postnatal brain protein (WT

precipitation. D2DR RNA was not present in immunoprecipitation reactions (no

measures ANOVA and Sidak multiple comparisons test; *p % 0.05, (across geno

(E) Reduction of PSD95 protein (left), but not RNA (right), in the identical cortex of p

or fold change (RNA). WT, n = 3; KO, n = 4, as one litter contains two KOs. Statist

A representative western blot is shown in the middle panel.

(F) PSD95mRNA is reduced in themonosome and polyribosome fractions of Jakm

unpaired t tests.

For (D)–(F), data are shown as mean ± SEM. See also Figures S5 and S6.

Ne
tion, suggesting that JAKMIP1 may be important in stabilizing

FMRP-containing polyribosomes. The recognition here, for the

first time, that JAKMIP1 binds to mRNAs that are important for

synaptic function and members of an FMRP-related protein

complex known to regulate translation during the peak period

of cortical synaptogenesis provides a strong motivation for

future detailed investigation of its biochemical mechanisms.

JAKMIP1 also regulates the expression of a subset of FMRP

mRNA targets that are implicated in ASD (PSD95, Grin2a,

Grin2b, Shank2, and Shank3) at postsynaptic membranes (Fer-

nández et al., 2013; Santoro et al., 2012). Mutations in both

SHANKs and GRIN2B have been shown to contribute to ASD

(De Rubeis et al., 2014; Iossifov et al., 2014; Jiang and Ehlers,

2013). Interestingly, our data suggest that FMRP and JAKMIP1

can bind their mRNA targets independently of one another,

implying the two proteins might work in parallel. Remarkably,

mouse models in which either SHANK2 or SHANK3 expression

is reduced show behavioral or physiologic abnormalities parallel

to those observed in the Jakmip1 KO mouse including repetitive

behaviors, decreased social interaction, and similar changes in

glutamatergic signaling (Peça et al., 2011; Won et al., 2012).

JAKMIP1’s regulation of the NMDAR receptor subunits

GluN2A and GluN2B is another area of potential convergence.

Recent exome-sequencing studies identify Grin2b as among

two dozen genes with the most compelling genetic evidence

for involvement in ASD (De Rubeis et al., 2014; Iossifov et al.,

2014; O’Roak et al., 2012). We found that JAKMIP1 binds both

Grin2a and Grin2b mRNA in striatum and that loss of JAKMIP1

decreases the levels of their protein products at striatal synap-

ses. A percentage of MSNs from the postnatal and adult striatum

of Jakmip1 KO mice showed no NMDAR evoked response but

had preserved AMPAR evoked response, corroborating the

biochemical findings. The greater NMDA receptor current shown

by the responding Jakmip1 KO MSNs may be due to comp-

ensatory mechanisms, including receptor subunit changes,

transporter modification, and/or glutamate spillover. Con-

sistent with lowered GluN2B levels, we observed an increase
RNA and Regulates PSD95 Expression

1 is rabbit anti FMRP (Santa Cruz Biotechnology), and FMRP #2 is mouse anti

pend on RNA. JAKMIP1 IP reactions were conducted using mouse postnatal

JAKMIP1 (bottom panel). Lanes labeled ‘‘single stranded,’’ ‘‘mix,’’ ‘‘double

, or RNaseV1 or without the RNases, respectively. Bottom panels: confirmation

eocortex. Left column is RNA immunoprecipitating with FMRP (mFP, FMRP #2,

olumn is RNA immunoprecipitating with JAKMIP1 or rabbit immunoglobulin G

present in postnatal cortex.D2DR, not regulated by FMRP, serves as a negative

RP in mouse postnatal neocortex. From left to right: RNA immunoprecipitating

, and JAKMIP1 (lane 3) or rabbit IgG (lane 4) in WT mouse neocortex. RT-PCR

B) and (C).

, n = 3: Jakmip1 KO, n = 3) by JAKMIP1 (JAKMIP1 #1) or rabbit IgG immuno-

t shown). Statistical significance was determined using two-way repeated-

type), **p % 0.01 (across genotype), *p % 0.05 (within genotype, gray).

ostnatal Jakmip1 KOmice shown as a percentage fromWT littermate (protein)

ical significance is determined using a two-tailed, one sample t test (p = 0.012).

ip1KOmice (n = 4;monosomes, p = 0.002; polyribosome, p = 0.001; one-tailed
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Figure 4. Jakmip1 Loss Leads to ASD-Associated Behaviors

(A and B) Jakmip1 KO mice show repetitive and perseverative behavior in the home-cage behavior test. (A) Characteristics of repetitive jumping stereotypy in

Jakmip1KOmice. Rightmost column displaysmean ± SEM. (B) Time spent digging (left) or grooming (right) within a 10-min period. p values were calculated using

a two-tailed unpaired t test (time spent digging, p = 0.0063; time spent grooming, p = 0.025; WT, n = 15; KO, n = 13).

(legend continued on next page)
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Table 3. Total Volume, Cortex, Caudate Putamen, and Cerebellar Volume Are Decreased in Jakmip1 KO Mice

Trait Mean Age Effect Strain Effect Strain 3 Age Rsq Fstat

TotalVol �0.22 �0.03 (0.49) 1.6 (0.0012)* �0.097 (0.14) 0.553 10.08 (0.00034)*

Cortex �0.3 �0.018 (0.72) 1.7 (0.0029)* �0.12 (0.13) 0.462 7.29 (0.0019)*

CaudoPut 0.048 �0.11 (0.0031)* 1.3 (0.00037)* �0.0089 (0.85) 0.785 27.84 (3.7e-07)*

HippF 0.24 �0.046 (0.43) 0.26 (0.65) 0.037 (0.66) �0.001 0.99 (0.42)

Dien �0.17 �0.016 (0.8) 0.98 (0.13) �0.046 (0.62) 0.097 1.79 (0.18)

Vent 0.14 �0.029 (0.69) 0.27 (0.71) �0.024 (0.83) �0.11 0.27 (0.85)

Cereb �0.15 �0.047 (0.28) 1.5 (0.0025)* �0.054 (0.4) 0.566 10.57 (0.00026)*

OlfBulb �0.38 0.1 (0.17) 0.24 (0.75) �0.12 (0.27) 0.015 1.11 (0.37)

Summary table of ANCOVA results. Estimates from the linear regression are shown in each row/column, and the p values for each estimate are shown

in parentheses. Asterisks denote significant p values.

TotalVol, total volume; CaudoPut, caudate putamen; HippF, hippocampal formation; Dien, diencephalon; Vent, ventricles; Cereb, cerebellum; OlfBulb,

olfactory bulb.
in return-to-huddle time of Jakmip1 KO mice during postnatal

development, a social deficit also observed in mice with a

GluN2B to 2A substitution (Wang et al., 2011). That JAKMIP1 it-

self has limited genetic evidence for contribution to ASD genetic

risk but some of its mRNA targets have significant genetic sup-

port for their role in ASD biology is reminiscent of mTOR, which

regulates multiple cellular functions, including protein synthesis,

and whose pathways family members, but not mTOR itself, have

strong genetic evidence for contributing to ASD risk (Lipton and

Sahin, 2014; Sawicka and Zukin, 2012).

In this regard, our observations connecting disruption of

neuronal protein translation by JAKMIP1 knockout with ASD-

like behaviors is worth highlighting (Kelleher and Bear, 2008).

Jakmip1 KOmice show repetitive jumping, increasing grooming,

and reduced alternation in the T-maze, as well as social deficits,

the two core features in ASD. Other allied, non-core ASD deficits,

such as motor dysfunction and changes in ultrasonic vocaliza-

tions (USVs), were also observed, but hyperactivity was not.

Consistent with this last observation, nest building, which is

related to dopaminergic function and can be associated with

changes in motor activity in mice (Deacon, 2006a; Szczypka

et al., 2001), was also normal. Testing of hippocampal memory

by contextual fear conditioning revealed no gross deficit in

context-dependent fear conditioning, indicative of intact spatial

memory. However, Jakmip1 KO mice displayed a diminished
(C) T-maze spontaneous alternation test. Number of alterations are shown. p va

p = 0.015).

(D and E) Jakmip1 KOmice show impaired social behavior in the three-chamber s

over a 10-min period. p values were calculated using a two-tailed paired t test (WT

chamber containing a novel mouse or in the chamber containing an empty cup. p

WT, p = 0.00064; KO, p = 0.73).

(F) Number of USV calls emitted from postnatal day 6, 9, and 12 pups after being s

call type distribution. Statistical significance is denoted on the KO pie charts wi

p = 1.2E-6], P9 [WT, n = 17; KO, n = 17; p = 0.038, and P12 [WT, n = 15; KO, n =

(G) Jakmip1 KO mice show impaired motor coordination and decreased stre

Maximum time of trial is 180 s. p values were calculated using a two-tailed unpaire

to fall from an inverted wire cage lid. Maximum time of trial is 60 s. p values were

p = 0.002).

(H) Jakmip1 KOmice show increased impulsivity/reduced anxiety in the light-dark

spent in the bright compartment over a 10-min period (WT, n = 15; KO, n = 13; p

(WT, n = 15; KO, n = 13; p = 0.029). Right: number of times the mouse crosses c

Data are shown as mean ± SEM. See also Figure S7.

Ne
noise-cued fear response, which suggests a potential disruption

of auditory-amygdala circuits (Phillips and LeDoux, 1992), which

we interpret as consistent with their potentially reduced anxiety/

increased impulsivity.

Marble burying is a naturalistic behavior in mice that has been

related to obsessive compulsive and repetitive behaviors and

anxiety inmice (Deacon, 2006b; Thomas et al., 2009). Decreased

digging and decreased marble burying as observed here in

conjunction with increased stereotypies has been observed in

other mouse models including Shank2 and Synapsin knockouts

(Greco et al., 2013; Won et al., 2012). The reduced digging and

marble burying in parallel with increases in other forms of repet-

itive behaviors is likely due to a combination of factors, including

decreased anxiety (Deacon, 2006b; Njung’e and Handley, 1991),

which is consistent with their light-dark box behavior. Alterna-

tively, the decreased digging andmarble buryingmay be caused

by the increased time spent in other stereotyped activities

(Greco et al., 2013). The reduction in digging and marble burying

in the presence of increases in several other repetitive behaviors

is consistent with the presence of independent forms of repeti-

tive behaviors in ASD patients (Bodfish, 2011). Although work

over several decades has clearly implicated striatal-cortical

pathways in repetitive behaviors (Langen et al., 2011), specific

circuits underlying themany different forms of repetitive behavior

are not yet well elucidated in mice. Thus, the Jakmip1 KO model
lue was calculated using a two-tailed unpaired t test (WT, n = 15; KO, n = 13;

ocial test. (D) Time spent sniffing a sex-matched novel mouse or an empty cup

, n = 15; KO, n = 13; WT, p = 0.00051; KO, p = 0.51). (E) Time spent in the social

values were calculated using a two-tailed paired t test (WT, n = 15; KO, n = 13:

eparated from their mother (5-min period). Pie charts to the right of graphs show

th all significant call types increased in KO mice (P6 [WT, n = 15; KO, n = 15;

15; p = 0.0034]). p values were calculated using a two-tailed unpaired t test.

ngth. Left: accelerating rotarod. y axis is latency to fall from the rotarod.

d t test (WT, n = 15; KO, n = 13; p = 0.011). Right: wire-hang test. y axis is latency

calculated using the non-parametric Mann-Whitney test (WT, n = 9; KO, n = 7;

box test. p values were calculated using a two-tailed unpaired t test. Left: time

= 0.075). Middle: time before the mouse first enters the bright compartment

ompartments over a 10-min period (WT, n = 15; KO, n = 13; p = 0.034).
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Table 4. Total Volume, Cortex, Caudate Putamen, and Cerebellar Volume Are Decreased in Jakmip1 KO Mice

Trait WT_mu KO_mu Effect Size CI t p

TotalVol 1.12 �0.28 -1.4 �2.17 to �0.62 �4.04 2.5E-03*

Cortex 1.11 �0.34 -1.44 �2.36 to �0.52 �3.58 6.6E-03*

CaudoPut 1.16 �0.17 -1.32 �1.82 to �0.82 �5.97 1.8E-04*

HippF 0.48 0.15 �0.33 �1.31 to 0.64 �0.75 4.7E-01

Dien 0.68 �0.2 �0.88 �2.06 to 0.29 �1.68 1.2E-01

Vent 0.31 0.08 �0.22 �1.22 to 0.78 �0.49 6.4E-01

Cereb 1.1 �0.24 -1.34 �2.09 to �0.59 �4.16 3.4E-03*

OlfBulb �0.17 �0.17 0.01 �0.73 to 0.74 0.02 9.8E-01

Summary table of t test results for 2 month olds. The mean for each trait and strain is shown in the second and third column. Trait values have been

standardized to mean = 0, SD = 1 prior to testing. The column labeled CI shows the 95% confidence interval for the difference in means. Asterisks

denote significant p values.

TotalVol, total volume; CaudoPut, caudate putamen; HippF, hippocampal formation; Dien, diencephalon; Vent, ventricles; Cereb, cerebellum; OlfBulb,

olfactory bulb.
and others with similar phenotypes provide important opportu-

nities to understand how specific pathways may lead to different

forms of ASD-related restrictive and repetitive behaviors.

Here, we describe a biochemical interaction between

JAKMIP1 and FMRP, which is likely indirect, involving associa-

tion with members of a translational complex including FMRP,

but not FMRP directly, as we only observed co-IP with lower

salt concentrations. The precise nature of this interaction will

require further investigation. Intriguingly, both proteins promote

the expression of PSD95 protein at the synapse (Muddashetty

et al., 2007; Todd et al., 2003; Zalfa et al., 2007) and, therefore,

may act in parallel. Irrespective of JAKMIP1’s relationship with

FMRP, we provide clear evidence that JAKMIP1 regulates pro-

tein synthesis in neurons during a specific postnatal develop-

mental window coincident with peak synaptogenesis, regulates

the protein expression of key targets involved in glutamatergic

transmission at the synapse, and affects the membership of pro-

teins and RNA in monosome and polyribosome fractions, which

has significant behavioral consequences.

JAKMIP1’s involvement in translation during the peak of syn-

aptogenesis is intriguing, as translational regulation has been

proposed as a potential convergent mechanism in ASD (Ebert

and Greenberg, 2013; Kelleher and Bear, 2008; Waung and

Huber, 2009), and the consequences of Jakmip1 deletion in

mouse mirror ASD-like behaviors observed in other mouse

models of ASD where specific components of the neural trans-

lational machinery are dysregulated in the CNS (Gkogkas et al.,

2013; Santini et al., 2013). The mechanisms by which JAKMIP1

reduction leads to these behaviors and the relative contribution

of its roles in mRNA transport versus translational regulation to

behavior warrants further detailed investigation. Careful cellular

anatomical examination to complement the gross analysis

performed here with MRI will be important for a complete

examination of this question. This work identifying JAKMIP1

as a new molecule regulating neural translation during the

peak period of postnatal synaptogenesis opens up many new

avenues of future research and further highlights the need to

gain a better understanding of neural translational regulation

during synaptic development as a potential convergent

pathway in ASD.
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EXPERIMENTAL PROCEDURES

Mass Spectrometry and Immunoprecipitation

Immunoprecipitations (IPs) were conducted using Dynabeads according to

the manufacturer’s instructions (Invitrogen), with slight modifications. Mass

spectrometry analysis was conducted as previously described (Wohlschlegel,

2009). Further details regarding IPs, interactor selection criteria, and immuno-

blotting are listed in Supplemental Experimental Procedures.

Generation of a Jakmip1 Knockout Mouse

Jakmip1 knockout mice were generated in collaboration with the UC Davis

KOMP Repository Knockout Mouse Project. Chimeras were produced from

Velocigene embryonic stem cells (Jakmip1tm1(KOMP)Vlcg) in which Jakmip1

coding exons 2–8 were replaced with a LacZ-Neo cassette by homologous

recombination. Methods related to confirmation of JAKMIP1 loss are detailed

in Supplemental Experimental Procedures.

Gene Ontology Analysis

Gene Ontology analysis was conducted using Ingenuity Pathway Analysis

software (http://www.ingenuity.com). MudPIT-identified JAKMIP1 protein

interactors listed in Table 1 were analyzed after removing JAKMIP1 and two

proteins not recognized by Ingenuity, 1810049H19Rik and Igkv1-117. Permu-

tation analysis details are listed in Supplemental Experimental Procedures.

Polyribosome Fractionation

Polyribosome fractionation was conducted as previously described (del Prete

et al., 2007), with modifications described in Supplemental Experimental

Procedures.

Nascent Synthesis of Proteins

FUNCAT analysis was performed on differentiated mouse neural progenitors

according to manufacturer’s instructions (ClickIT, Invitrogen). Custom soft-

ware using the R environment (http://www.r-project.org/), and the R packages

rimage and pixmap were developed to quantify the amount of new translation

(average 555 signal intensity) in the space defined by TUJ1-positive pixels. Im-

ages were subsequently manually curated to remove overlapping glial signal

and to divide the neuron into cell body and neurite compartments (see Supple-

mental Experimental Procedures).

Electrophysiology

Electrophysiology experiments were conducted from coronal slices of post-

natal and adult male mice. Whole-cell patch-clamp recordings in voltage

clamp mode were obtained from neurons. For evoked synaptic currents, the

stimulating electrode was placed in the corpus callosum 300 mm from the re-

corded cell. For additional methods, see Supplemental Experimental

Procedures.
.

http://www.ingenuity.com
http://www.r-project.org/
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Neuroimaging

Adult malemicewere imaged in a 7T small bore scanner using rapid acquisition

with refocused echoes (RARE) pulse sequence and analyzed for brain volu-

metric changes. SeeSupplemental Experimental Procedures for further details.

Behavioral Tests

Experiments were conducted using C57BL/6 Jakmip1WTand KOmice gener-

ated from matings of heterozygous mice. Mice had ad lib access to food and

water and were housed in a 12 hr light/12 hr dark cycle. Mice were ear tagged

or, in the case of pups, given a paw tattoo. Assessment of general health and

gross neurologic function was conducted according to previously published

methods (Crawley and Paylor, 1997). Experiments were carried out in accor-

dance with UCLA animal research committee. Home-cage behavior was con-

ducted by placing mice in juxtaposed cages separated by opaque panels that

contained fresh bedding. Behavior was recorded by the automated system

Top Scan (Clever Sys) for 20 min. The last 10 min of the recording was scored

for repetitive hindlimb jumping, digging, and grooming. The T-maze sponta-

neous alternation test was performed as previously described (Peñagarikano

et al., 2011). The three-chamber social interaction test was conducted as pre-

viously described (Silverman et al., 2010). The rotarod test was conducted by

placing mice on a rod that rotated for 5 rpm and then 20 rpm (constant test) or

5 rpm and then 60 rpm (accelerating test) for amaximum time of 180 s. Latency

to fall was measured. In the wire-hang test, mice were scored for their latency

to fall from a swiftly inverted wire lid. The light-dark exploration test was con-

ducted as previously described (Peñagarikano et al., 2011). USVs were re-

corded from pups separated from their mother at three postnatal time points.

USVs were processed and characterized according to previous methods (Bur-

kett et al., 2015; Scattoni et al., 2011). Return to huddle was conducted as pre-

viously described (Wang et al., 2011), with modifications. The hot-plate startle

test was conducted by placing mice on a 55�C hot plate, and time was re-

corded from time of placement to the first sign of pain, which included licking

or kicking of the paws. Auditory fear conditioning was performed as previously

described (Kim and Fanselow, 1992), withmodifications. The nesting-behavior

test was performed by exposing mice to a tightly packed unit of nest material

overnight. Nests were scored according to previously published criteria

(Deacon, 2006a). The marble-burying test was conducted as previously

described (Deacon, 2006b) with modifications. The open-field test was con-

ducted as previously described (Peñagarikano et al., 2011). Olfaction was

measured by testing latency to find a buried food item after 24-hr food depri-

vation according to previously published methods (Yang and Crawley, 2009).

Please see Supplemental Experimental Procedures for additional details.

Statistical Analysis

Significance was determined using a Student’s t test, two-way repeated-mea-

sures ANOVA with Sidak multiple comparisons test, a mixed-effects model, or
Figure 5. JAKMIP1 Regulates Glutamatergic Signaling in the Postnata

(A) JAKMIP1 immunoprecipitates with FMRP mRNA targets involved in glutamate

targets extracted from postnatal striatum (WT, n = 4: Jakmip1 KO, n = 4; all ma

(negative control) was not present in immunoprecipitation reactions (not shown

ANOVA and Sidak multiple comparisons test. *p % 0.05, *p % 0.001 (within gen

(B) Top panels: GluN2A (Grin2a, p = 0.019), GluN2B (Grin2b, p = 0.0012), SHANK2

of Jakmip1 KOmice (n = 7) compared to WT control (n = 7). Bottom panels: GluN2

striatal synapses of Jakmip1 KOmice (n = 7) compared toWT control (n = 7). Statis

normalized to corresponding b�actin loading control and then to 1 within blot.

(C) AMPAR-mediated synaptic responses. Representative traces showing evoke

(postnatal [WT, n = 15; KO, n = 16] and adult [WT, n = 21; KO, n = 25). Graphs show

postnatal animals is increased compared to WT (t test, p < 0.05).

(D) NMDAR-mediated synaptic responses. Left: representative traces showing ou

n = 15; KO, n = 12) and adult MSNs (WT, n = 21; KO, n = 21) with graphs showing m

time are significantly increased compared to WT responses (t test, p < 0.05) in po

(WT, n = 21; KO, n = 21). Table to the right displays the percentage of cells that

(E) Left: Jakmip1 KO mice take a significantly longer time to return to social hudd

KO, n = 12; p = 0.02). Right: weights of mice used in the return to huddle test (W

t test.

All data are shown as mean ± SEM.
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the non-parametric Mann-Whitney test where noted. For FUNCAT analysis, a

mixed-effects regression was used to statistically control for littermate set and

technical variation across day of imaging. Significance was estimated using a

mixed-effects regression model with a fixed effect covariate by date and a

random intercept for mouse set. Hypergeometric probability was calculated

using R code 1-phyper (k-1, j, m-j, n) with the following definitions: m is the uni-

verse of proteins defined as all brain expressed genes (15,132) (Kang et al.,

2011), k is number of overlapping proteins, j is number of FMRP complex

members, and n is JAKMIP1 interactors. For additional details related to hy-

pergeometric calculations (Table 2), please see Supplemental Experimental

Procedures. *p% 0.05, ** p% 0.01, and ***p% 0.001, and data are presented

as mean ± SEM.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

eight figures and, one movie and can be found with this article online at

http://dx.doi.org/10.1016/j.neuron.2015.10.031.
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rgic signaling and ASD in mouse postnatal striatum. qRT-PCR of FMRP mRNA

le) by JAKMIP1 (JAKMIP1 #1) or rabbit IgG immunoprecipitation. Taf13 RNA

). Statistical significance was determined using two-way repeated-measures

otype).

(p = 0.018), and SHANK3a (p = 0.029) are reduced in postnatal striatal synapses

A (Grin2a), GluN2B (Grin2b), SHANK2, and SHANK3a are not changed in adult

tical significance was determined using two-tailed unpaired t tests. Signal was

d inward currents in MSNs from postnatal and adult Jakmip1 KO and WT mice

mean ± SEMof peak amplitude, charge, and decay time. Charge inMSNs from

tward evoked currents in cells from Jakmip1 KO andWTmice in postnatal (WT,

ean ± SEM of peak amplitude, charge, and decay time. The charge and decay

stnatal Jakmip1 KO MSNs. In the adult, no significant changes were observed

showed an AMPAR-mediated, but not NMDAR-mediated, response.
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Burkett, Z.D., Day, N.F., Peñagarikano, O., Geschwind, D.H., and White, S.A.

(2015). VoICE: a semi-automated pipeline for standardizing vocal analysis

across models. Sci. Rep. 5, 10237.

Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L.,

Christopherson, K.S., Xing, Y., Lubischer, J.L., Krieg, P.A., Krupenko, S.A.,

et al. (2008). A transcriptome database for astrocytes, neurons, and oligoden-

drocytes: a new resource for understanding brain development and function.

J. Neurosci. 28, 264–278.

Couve, A., Restituito, S., Brandon, J.M., Charles, K.J., Bawagan, H., Freeman,

K.B., Pangalos, M.N., Calver, A.R., and Moss, S.J. (2004). Marlin-1, a novel

RNA-binding protein associates with GABA receptors. J. Biol. Chem. 279,

13934–13943.

Crawley, J.N., and Paylor, R. (1997). A proposed test battery and constella-

tions of specific behavioral paradigms to investigate the behavioral pheno-

types of transgenic and knockout mice. Horm. Behav. 31, 197–211.

Darnell, J.C., Van Driesche, S.J., Zhang, C., Hung, K.Y., Mele, A., Fraser, C.E.,

Stone, E.F., Chen, C., Fak, J.J., Chi, S.W., et al. (2011). FMRP stalls ribosomal
Ne
translocation on mRNAs linked to synaptic function and autism. Cell 146,

247–261.

De Rubeis, S., and Bagni, C. (2011). Regulation of molecular pathways in the

Fragile X Syndrome: insights into Autism Spectrum Disorders. J. Neurodev.

Disord. 3, 257–269.

DeRubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Cicek, A.E.,

Kou, Y., Liu, L., Fromer, M., Walker, S., et al.; DDD Study; Homozygosity

Mapping Collaborative for Autism; UK10K Consortium (2014). Synaptic, tran-

scriptional and chromatin genes disrupted in autism. Nature 515, 209–215.

Deacon,R.M. (2006a).Assessingnestbuilding inmice.Nat.Protoc.1, 1117–1119.

Deacon, R.M. (2006b). Digging andmarble burying inmice: simplemethods for

in vivo identification of biological impacts. Nat. Protoc. 1, 122–124.

del Prete, M.J., Vernal, R., Dolznig, H., Müllner, E.W., and Garcia-Sanz, J.A.
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